1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     // Match a multiply with a disguised negated-power-of-2 and convert to a
2490     // an equivalent shift-left amount.
2491     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2492     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2493       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2494         return 0;
2495 
2496       // Don't touch opaque constants. Also, ignore zero and power-of-2
2497       // multiplies. Those will get folded later.
2498       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2499       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2500           !MulC->getAPIntValue().isPowerOf2()) {
2501         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2502         if (UnmaskedC.isNegatedPowerOf2())
2503           return (-UnmaskedC).logBase2();
2504       }
2505       return 0;
2506     };
2507 
2508     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2509       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2510       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2511       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2512       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2513       return TLO.CombineTo(Op, Sub);
2514     };
2515 
2516     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2517       if (Op.getOpcode() == ISD::ADD) {
2518         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2519         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2520           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2521         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2522         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2523           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2524         // TODO:
2525         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2526       }
2527     }
2528 
2529     LLVM_FALLTHROUGH;
2530   }
2531   default:
2532     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2534                                             Known, TLO, Depth))
2535         return true;
2536       break;
2537     }
2538 
2539     // Just use computeKnownBits to compute output bits.
2540     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2541     break;
2542   }
2543 
2544   // If we know the value of all of the demanded bits, return this as a
2545   // constant.
2546   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2547     // Avoid folding to a constant if any OpaqueConstant is involved.
2548     const SDNode *N = Op.getNode();
2549     for (SDNode *Op :
2550          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2551       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2552         if (C->isOpaque())
2553           return false;
2554     }
2555     if (VT.isInteger())
2556       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2557     if (VT.isFloatingPoint())
2558       return TLO.CombineTo(
2559           Op,
2560           TLO.DAG.getConstantFP(
2561               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2562   }
2563 
2564   return false;
2565 }
2566 
2567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2568                                                 const APInt &DemandedElts,
2569                                                 DAGCombinerInfo &DCI) const {
2570   SelectionDAG &DAG = DCI.DAG;
2571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2572                         !DCI.isBeforeLegalizeOps());
2573 
2574   APInt KnownUndef, KnownZero;
2575   bool Simplified =
2576       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2577   if (Simplified) {
2578     DCI.AddToWorklist(Op.getNode());
2579     DCI.CommitTargetLoweringOpt(TLO);
2580   }
2581 
2582   return Simplified;
2583 }
2584 
2585 /// Given a vector binary operation and known undefined elements for each input
2586 /// operand, compute whether each element of the output is undefined.
2587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2588                                          const APInt &UndefOp0,
2589                                          const APInt &UndefOp1) {
2590   EVT VT = BO.getValueType();
2591   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2592          "Vector binop only");
2593 
2594   EVT EltVT = VT.getVectorElementType();
2595   unsigned NumElts = VT.getVectorNumElements();
2596   assert(UndefOp0.getBitWidth() == NumElts &&
2597          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2598 
2599   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2600                                    const APInt &UndefVals) {
2601     if (UndefVals[Index])
2602       return DAG.getUNDEF(EltVT);
2603 
2604     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2605       // Try hard to make sure that the getNode() call is not creating temporary
2606       // nodes. Ignore opaque integers because they do not constant fold.
2607       SDValue Elt = BV->getOperand(Index);
2608       auto *C = dyn_cast<ConstantSDNode>(Elt);
2609       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2610         return Elt;
2611     }
2612 
2613     return SDValue();
2614   };
2615 
2616   APInt KnownUndef = APInt::getZero(NumElts);
2617   for (unsigned i = 0; i != NumElts; ++i) {
2618     // If both inputs for this element are either constant or undef and match
2619     // the element type, compute the constant/undef result for this element of
2620     // the vector.
2621     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2622     // not handle FP constants. The code within getNode() should be refactored
2623     // to avoid the danger of creating a bogus temporary node here.
2624     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2625     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2626     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2627       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2628         KnownUndef.setBit(i);
2629   }
2630   return KnownUndef;
2631 }
2632 
2633 bool TargetLowering::SimplifyDemandedVectorElts(
2634     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2635     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2636     bool AssumeSingleUse) const {
2637   EVT VT = Op.getValueType();
2638   unsigned Opcode = Op.getOpcode();
2639   APInt DemandedElts = OriginalDemandedElts;
2640   unsigned NumElts = DemandedElts.getBitWidth();
2641   assert(VT.isVector() && "Expected vector op");
2642 
2643   KnownUndef = KnownZero = APInt::getZero(NumElts);
2644 
2645   // TODO: For now we assume we know nothing about scalable vectors.
2646   if (VT.isScalableVector())
2647     return false;
2648 
2649   assert(VT.getVectorNumElements() == NumElts &&
2650          "Mask size mismatches value type element count!");
2651 
2652   // Undef operand.
2653   if (Op.isUndef()) {
2654     KnownUndef.setAllBits();
2655     return false;
2656   }
2657 
2658   // If Op has other users, assume that all elements are needed.
2659   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2660     DemandedElts.setAllBits();
2661 
2662   // Not demanding any elements from Op.
2663   if (DemandedElts == 0) {
2664     KnownUndef.setAllBits();
2665     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2666   }
2667 
2668   // Limit search depth.
2669   if (Depth >= SelectionDAG::MaxRecursionDepth)
2670     return false;
2671 
2672   SDLoc DL(Op);
2673   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2674   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2675 
2676   // Helper for demanding the specified elements and all the bits of both binary
2677   // operands.
2678   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2679     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2680                                                            TLO.DAG, Depth + 1);
2681     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2682                                                            TLO.DAG, Depth + 1);
2683     if (NewOp0 || NewOp1) {
2684       SDValue NewOp = TLO.DAG.getNode(
2685           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2686       return TLO.CombineTo(Op, NewOp);
2687     }
2688     return false;
2689   };
2690 
2691   switch (Opcode) {
2692   case ISD::SCALAR_TO_VECTOR: {
2693     if (!DemandedElts[0]) {
2694       KnownUndef.setAllBits();
2695       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2696     }
2697     SDValue ScalarSrc = Op.getOperand(0);
2698     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2699       SDValue Src = ScalarSrc.getOperand(0);
2700       SDValue Idx = ScalarSrc.getOperand(1);
2701       EVT SrcVT = Src.getValueType();
2702 
2703       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2704 
2705       if (SrcEltCnt.isScalable())
2706         return false;
2707 
2708       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2709       if (isNullConstant(Idx)) {
2710         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2711         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2712         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2713         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2714                                        TLO, Depth + 1))
2715           return true;
2716       }
2717     }
2718     KnownUndef.setHighBits(NumElts - 1);
2719     break;
2720   }
2721   case ISD::BITCAST: {
2722     SDValue Src = Op.getOperand(0);
2723     EVT SrcVT = Src.getValueType();
2724 
2725     // We only handle vectors here.
2726     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2727     if (!SrcVT.isVector())
2728       break;
2729 
2730     // Fast handling of 'identity' bitcasts.
2731     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2732     if (NumSrcElts == NumElts)
2733       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2734                                         KnownZero, TLO, Depth + 1);
2735 
2736     APInt SrcDemandedElts, SrcZero, SrcUndef;
2737 
2738     // Bitcast from 'large element' src vector to 'small element' vector, we
2739     // must demand a source element if any DemandedElt maps to it.
2740     if ((NumElts % NumSrcElts) == 0) {
2741       unsigned Scale = NumElts / NumSrcElts;
2742       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2743       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2744                                      TLO, Depth + 1))
2745         return true;
2746 
2747       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2748       // of the large element.
2749       // TODO - bigendian once we have test coverage.
2750       if (IsLE) {
2751         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2752         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2753         for (unsigned i = 0; i != NumElts; ++i)
2754           if (DemandedElts[i]) {
2755             unsigned Ofs = (i % Scale) * EltSizeInBits;
2756             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2757           }
2758 
2759         KnownBits Known;
2760         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2761                                  TLO, Depth + 1))
2762           return true;
2763       }
2764 
2765       // If the src element is zero/undef then all the output elements will be -
2766       // only demanded elements are guaranteed to be correct.
2767       for (unsigned i = 0; i != NumSrcElts; ++i) {
2768         if (SrcDemandedElts[i]) {
2769           if (SrcZero[i])
2770             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2771           if (SrcUndef[i])
2772             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2773         }
2774       }
2775     }
2776 
2777     // Bitcast from 'small element' src vector to 'large element' vector, we
2778     // demand all smaller source elements covered by the larger demanded element
2779     // of this vector.
2780     if ((NumSrcElts % NumElts) == 0) {
2781       unsigned Scale = NumSrcElts / NumElts;
2782       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2783       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2784                                      TLO, Depth + 1))
2785         return true;
2786 
2787       // If all the src elements covering an output element are zero/undef, then
2788       // the output element will be as well, assuming it was demanded.
2789       for (unsigned i = 0; i != NumElts; ++i) {
2790         if (DemandedElts[i]) {
2791           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2792             KnownZero.setBit(i);
2793           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2794             KnownUndef.setBit(i);
2795         }
2796       }
2797     }
2798     break;
2799   }
2800   case ISD::BUILD_VECTOR: {
2801     // Check all elements and simplify any unused elements with UNDEF.
2802     if (!DemandedElts.isAllOnes()) {
2803       // Don't simplify BROADCASTS.
2804       if (llvm::any_of(Op->op_values(),
2805                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2806         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2807         bool Updated = false;
2808         for (unsigned i = 0; i != NumElts; ++i) {
2809           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2810             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2811             KnownUndef.setBit(i);
2812             Updated = true;
2813           }
2814         }
2815         if (Updated)
2816           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2817       }
2818     }
2819     for (unsigned i = 0; i != NumElts; ++i) {
2820       SDValue SrcOp = Op.getOperand(i);
2821       if (SrcOp.isUndef()) {
2822         KnownUndef.setBit(i);
2823       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2824                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2825         KnownZero.setBit(i);
2826       }
2827     }
2828     break;
2829   }
2830   case ISD::CONCAT_VECTORS: {
2831     EVT SubVT = Op.getOperand(0).getValueType();
2832     unsigned NumSubVecs = Op.getNumOperands();
2833     unsigned NumSubElts = SubVT.getVectorNumElements();
2834     for (unsigned i = 0; i != NumSubVecs; ++i) {
2835       SDValue SubOp = Op.getOperand(i);
2836       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2837       APInt SubUndef, SubZero;
2838       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2839                                      Depth + 1))
2840         return true;
2841       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2842       KnownZero.insertBits(SubZero, i * NumSubElts);
2843     }
2844     break;
2845   }
2846   case ISD::INSERT_SUBVECTOR: {
2847     // Demand any elements from the subvector and the remainder from the src its
2848     // inserted into.
2849     SDValue Src = Op.getOperand(0);
2850     SDValue Sub = Op.getOperand(1);
2851     uint64_t Idx = Op.getConstantOperandVal(2);
2852     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2853     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2854     APInt DemandedSrcElts = DemandedElts;
2855     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2856 
2857     APInt SubUndef, SubZero;
2858     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2859                                    Depth + 1))
2860       return true;
2861 
2862     // If none of the src operand elements are demanded, replace it with undef.
2863     if (!DemandedSrcElts && !Src.isUndef())
2864       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2865                                                TLO.DAG.getUNDEF(VT), Sub,
2866                                                Op.getOperand(2)));
2867 
2868     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2869                                    TLO, Depth + 1))
2870       return true;
2871     KnownUndef.insertBits(SubUndef, Idx);
2872     KnownZero.insertBits(SubZero, Idx);
2873 
2874     // Attempt to avoid multi-use ops if we don't need anything from them.
2875     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2876       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2877           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2878       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2879           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2880       if (NewSrc || NewSub) {
2881         NewSrc = NewSrc ? NewSrc : Src;
2882         NewSub = NewSub ? NewSub : Sub;
2883         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2884                                         NewSub, Op.getOperand(2));
2885         return TLO.CombineTo(Op, NewOp);
2886       }
2887     }
2888     break;
2889   }
2890   case ISD::EXTRACT_SUBVECTOR: {
2891     // Offset the demanded elts by the subvector index.
2892     SDValue Src = Op.getOperand(0);
2893     if (Src.getValueType().isScalableVector())
2894       break;
2895     uint64_t Idx = Op.getConstantOperandVal(1);
2896     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2897     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2898 
2899     APInt SrcUndef, SrcZero;
2900     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2901                                    Depth + 1))
2902       return true;
2903     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2904     KnownZero = SrcZero.extractBits(NumElts, Idx);
2905 
2906     // Attempt to avoid multi-use ops if we don't need anything from them.
2907     if (!DemandedElts.isAllOnes()) {
2908       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2909           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2910       if (NewSrc) {
2911         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2912                                         Op.getOperand(1));
2913         return TLO.CombineTo(Op, NewOp);
2914       }
2915     }
2916     break;
2917   }
2918   case ISD::INSERT_VECTOR_ELT: {
2919     SDValue Vec = Op.getOperand(0);
2920     SDValue Scl = Op.getOperand(1);
2921     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2922 
2923     // For a legal, constant insertion index, if we don't need this insertion
2924     // then strip it, else remove it from the demanded elts.
2925     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2926       unsigned Idx = CIdx->getZExtValue();
2927       if (!DemandedElts[Idx])
2928         return TLO.CombineTo(Op, Vec);
2929 
2930       APInt DemandedVecElts(DemandedElts);
2931       DemandedVecElts.clearBit(Idx);
2932       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2933                                      KnownZero, TLO, Depth + 1))
2934         return true;
2935 
2936       KnownUndef.setBitVal(Idx, Scl.isUndef());
2937 
2938       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2939       break;
2940     }
2941 
2942     APInt VecUndef, VecZero;
2943     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2944                                    Depth + 1))
2945       return true;
2946     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2947     break;
2948   }
2949   case ISD::VSELECT: {
2950     // Try to transform the select condition based on the current demanded
2951     // elements.
2952     // TODO: If a condition element is undef, we can choose from one arm of the
2953     //       select (and if one arm is undef, then we can propagate that to the
2954     //       result).
2955     // TODO - add support for constant vselect masks (see IR version of this).
2956     APInt UnusedUndef, UnusedZero;
2957     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2958                                    UnusedZero, TLO, Depth + 1))
2959       return true;
2960 
2961     // See if we can simplify either vselect operand.
2962     APInt DemandedLHS(DemandedElts);
2963     APInt DemandedRHS(DemandedElts);
2964     APInt UndefLHS, ZeroLHS;
2965     APInt UndefRHS, ZeroRHS;
2966     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2967                                    ZeroLHS, TLO, Depth + 1))
2968       return true;
2969     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2970                                    ZeroRHS, TLO, Depth + 1))
2971       return true;
2972 
2973     KnownUndef = UndefLHS & UndefRHS;
2974     KnownZero = ZeroLHS & ZeroRHS;
2975     break;
2976   }
2977   case ISD::VECTOR_SHUFFLE: {
2978     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2979 
2980     // Collect demanded elements from shuffle operands..
2981     APInt DemandedLHS(NumElts, 0);
2982     APInt DemandedRHS(NumElts, 0);
2983     for (unsigned i = 0; i != NumElts; ++i) {
2984       int M = ShuffleMask[i];
2985       if (M < 0 || !DemandedElts[i])
2986         continue;
2987       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2988       if (M < (int)NumElts)
2989         DemandedLHS.setBit(M);
2990       else
2991         DemandedRHS.setBit(M - NumElts);
2992     }
2993 
2994     // See if we can simplify either shuffle operand.
2995     APInt UndefLHS, ZeroLHS;
2996     APInt UndefRHS, ZeroRHS;
2997     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2998                                    ZeroLHS, TLO, Depth + 1))
2999       return true;
3000     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3001                                    ZeroRHS, TLO, Depth + 1))
3002       return true;
3003 
3004     // Simplify mask using undef elements from LHS/RHS.
3005     bool Updated = false;
3006     bool IdentityLHS = true, IdentityRHS = true;
3007     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3008     for (unsigned i = 0; i != NumElts; ++i) {
3009       int &M = NewMask[i];
3010       if (M < 0)
3011         continue;
3012       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3013           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3014         Updated = true;
3015         M = -1;
3016       }
3017       IdentityLHS &= (M < 0) || (M == (int)i);
3018       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3019     }
3020 
3021     // Update legal shuffle masks based on demanded elements if it won't reduce
3022     // to Identity which can cause premature removal of the shuffle mask.
3023     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3024       SDValue LegalShuffle =
3025           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3026                                   NewMask, TLO.DAG);
3027       if (LegalShuffle)
3028         return TLO.CombineTo(Op, LegalShuffle);
3029     }
3030 
3031     // Propagate undef/zero elements from LHS/RHS.
3032     for (unsigned i = 0; i != NumElts; ++i) {
3033       int M = ShuffleMask[i];
3034       if (M < 0) {
3035         KnownUndef.setBit(i);
3036       } else if (M < (int)NumElts) {
3037         if (UndefLHS[M])
3038           KnownUndef.setBit(i);
3039         if (ZeroLHS[M])
3040           KnownZero.setBit(i);
3041       } else {
3042         if (UndefRHS[M - NumElts])
3043           KnownUndef.setBit(i);
3044         if (ZeroRHS[M - NumElts])
3045           KnownZero.setBit(i);
3046       }
3047     }
3048     break;
3049   }
3050   case ISD::ANY_EXTEND_VECTOR_INREG:
3051   case ISD::SIGN_EXTEND_VECTOR_INREG:
3052   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3053     APInt SrcUndef, SrcZero;
3054     SDValue Src = Op.getOperand(0);
3055     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3056     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3057     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3058                                    Depth + 1))
3059       return true;
3060     KnownZero = SrcZero.zextOrTrunc(NumElts);
3061     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3062 
3063     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3064         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3065         DemandedSrcElts == 1) {
3066       // aext - if we just need the bottom element then we can bitcast.
3067       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3068     }
3069 
3070     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3071       // zext(undef) upper bits are guaranteed to be zero.
3072       if (DemandedElts.isSubsetOf(KnownUndef))
3073         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3074       KnownUndef.clearAllBits();
3075 
3076       // zext - if we just need the bottom element then we can mask:
3077       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3078       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3079           Op->isOnlyUserOf(Src.getNode()) &&
3080           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3081         SDLoc DL(Op);
3082         EVT SrcVT = Src.getValueType();
3083         EVT SrcSVT = SrcVT.getScalarType();
3084         SmallVector<SDValue> MaskElts;
3085         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3086         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3087         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3088         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3089                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3090           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3091           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3092         }
3093       }
3094     }
3095     break;
3096   }
3097 
3098   // TODO: There are more binop opcodes that could be handled here - MIN,
3099   // MAX, saturated math, etc.
3100   case ISD::ADD: {
3101     SDValue Op0 = Op.getOperand(0);
3102     SDValue Op1 = Op.getOperand(1);
3103     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3104       APInt UndefLHS, ZeroLHS;
3105       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3106                                      Depth + 1, /*AssumeSingleUse*/ true))
3107         return true;
3108     }
3109     LLVM_FALLTHROUGH;
3110   }
3111   case ISD::OR:
3112   case ISD::XOR:
3113   case ISD::SUB:
3114   case ISD::FADD:
3115   case ISD::FSUB:
3116   case ISD::FMUL:
3117   case ISD::FDIV:
3118   case ISD::FREM: {
3119     SDValue Op0 = Op.getOperand(0);
3120     SDValue Op1 = Op.getOperand(1);
3121 
3122     APInt UndefRHS, ZeroRHS;
3123     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3124                                    Depth + 1))
3125       return true;
3126     APInt UndefLHS, ZeroLHS;
3127     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3128                                    Depth + 1))
3129       return true;
3130 
3131     KnownZero = ZeroLHS & ZeroRHS;
3132     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3133 
3134     // Attempt to avoid multi-use ops if we don't need anything from them.
3135     // TODO - use KnownUndef to relax the demandedelts?
3136     if (!DemandedElts.isAllOnes())
3137       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3138         return true;
3139     break;
3140   }
3141   case ISD::SHL:
3142   case ISD::SRL:
3143   case ISD::SRA:
3144   case ISD::ROTL:
3145   case ISD::ROTR: {
3146     SDValue Op0 = Op.getOperand(0);
3147     SDValue Op1 = Op.getOperand(1);
3148 
3149     APInt UndefRHS, ZeroRHS;
3150     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3151                                    Depth + 1))
3152       return true;
3153     APInt UndefLHS, ZeroLHS;
3154     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3155                                    Depth + 1))
3156       return true;
3157 
3158     KnownZero = ZeroLHS;
3159     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3160 
3161     // Attempt to avoid multi-use ops if we don't need anything from them.
3162     // TODO - use KnownUndef to relax the demandedelts?
3163     if (!DemandedElts.isAllOnes())
3164       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3165         return true;
3166     break;
3167   }
3168   case ISD::MUL:
3169   case ISD::AND: {
3170     SDValue Op0 = Op.getOperand(0);
3171     SDValue Op1 = Op.getOperand(1);
3172 
3173     APInt SrcUndef, SrcZero;
3174     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3175                                    Depth + 1))
3176       return true;
3177     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3178                                    TLO, Depth + 1))
3179       return true;
3180 
3181     // If either side has a zero element, then the result element is zero, even
3182     // if the other is an UNDEF.
3183     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3184     // and then handle 'and' nodes with the rest of the binop opcodes.
3185     KnownZero |= SrcZero;
3186     KnownUndef &= SrcUndef;
3187     KnownUndef &= ~KnownZero;
3188 
3189     // Attempt to avoid multi-use ops if we don't need anything from them.
3190     // TODO - use KnownUndef to relax the demandedelts?
3191     if (!DemandedElts.isAllOnes())
3192       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3193         return true;
3194     break;
3195   }
3196   case ISD::TRUNCATE:
3197   case ISD::SIGN_EXTEND:
3198   case ISD::ZERO_EXTEND:
3199     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3200                                    KnownZero, TLO, Depth + 1))
3201       return true;
3202 
3203     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3204       // zext(undef) upper bits are guaranteed to be zero.
3205       if (DemandedElts.isSubsetOf(KnownUndef))
3206         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3207       KnownUndef.clearAllBits();
3208     }
3209     break;
3210   default: {
3211     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3212       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3213                                                   KnownZero, TLO, Depth))
3214         return true;
3215     } else {
3216       KnownBits Known;
3217       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3218       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3219                                TLO, Depth, AssumeSingleUse))
3220         return true;
3221     }
3222     break;
3223   }
3224   }
3225   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3226 
3227   // Constant fold all undef cases.
3228   // TODO: Handle zero cases as well.
3229   if (DemandedElts.isSubsetOf(KnownUndef))
3230     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3231 
3232   return false;
3233 }
3234 
3235 /// Determine which of the bits specified in Mask are known to be either zero or
3236 /// one and return them in the Known.
3237 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3238                                                    KnownBits &Known,
3239                                                    const APInt &DemandedElts,
3240                                                    const SelectionDAG &DAG,
3241                                                    unsigned Depth) const {
3242   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3243           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3244           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3245           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3246          "Should use MaskedValueIsZero if you don't know whether Op"
3247          " is a target node!");
3248   Known.resetAll();
3249 }
3250 
3251 void TargetLowering::computeKnownBitsForTargetInstr(
3252     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3253     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3254     unsigned Depth) const {
3255   Known.resetAll();
3256 }
3257 
3258 void TargetLowering::computeKnownBitsForFrameIndex(
3259   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3260   // The low bits are known zero if the pointer is aligned.
3261   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3262 }
3263 
3264 Align TargetLowering::computeKnownAlignForTargetInstr(
3265   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3266   unsigned Depth) const {
3267   return Align(1);
3268 }
3269 
3270 /// This method can be implemented by targets that want to expose additional
3271 /// information about sign bits to the DAG Combiner.
3272 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3273                                                          const APInt &,
3274                                                          const SelectionDAG &,
3275                                                          unsigned Depth) const {
3276   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3277           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3278           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3279           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3280          "Should use ComputeNumSignBits if you don't know whether Op"
3281          " is a target node!");
3282   return 1;
3283 }
3284 
3285 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3286   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3287   const MachineRegisterInfo &MRI, unsigned Depth) const {
3288   return 1;
3289 }
3290 
3291 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3292     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3293     TargetLoweringOpt &TLO, unsigned Depth) const {
3294   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3295           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3296           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3297           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3298          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3299          " is a target node!");
3300   return false;
3301 }
3302 
3303 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3304     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3305     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3306   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3307           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3308           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3309           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3310          "Should use SimplifyDemandedBits if you don't know whether Op"
3311          " is a target node!");
3312   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3313   return false;
3314 }
3315 
3316 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3317     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3318     SelectionDAG &DAG, unsigned Depth) const {
3319   assert(
3320       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3321        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3322        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3323        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3324       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3325       " is a target node!");
3326   return SDValue();
3327 }
3328 
3329 SDValue
3330 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3331                                         SDValue N1, MutableArrayRef<int> Mask,
3332                                         SelectionDAG &DAG) const {
3333   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3334   if (!LegalMask) {
3335     std::swap(N0, N1);
3336     ShuffleVectorSDNode::commuteMask(Mask);
3337     LegalMask = isShuffleMaskLegal(Mask, VT);
3338   }
3339 
3340   if (!LegalMask)
3341     return SDValue();
3342 
3343   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3344 }
3345 
3346 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3347   return nullptr;
3348 }
3349 
3350 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3351     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3352     bool PoisonOnly, unsigned Depth) const {
3353   assert(
3354       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3355        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3356        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3357        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3358       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3359       " is a target node!");
3360   return false;
3361 }
3362 
3363 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3364                                                   const SelectionDAG &DAG,
3365                                                   bool SNaN,
3366                                                   unsigned Depth) const {
3367   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3368           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3369           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3370           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3371          "Should use isKnownNeverNaN if you don't know whether Op"
3372          " is a target node!");
3373   return false;
3374 }
3375 
3376 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3377                                                const APInt &DemandedElts,
3378                                                APInt &UndefElts,
3379                                                unsigned Depth) const {
3380   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3381           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3382           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3383           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3384          "Should use isSplatValue if you don't know whether Op"
3385          " is a target node!");
3386   return false;
3387 }
3388 
3389 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3390 // work with truncating build vectors and vectors with elements of less than
3391 // 8 bits.
3392 bool TargetLowering::isConstTrueVal(SDValue N) const {
3393   if (!N)
3394     return false;
3395 
3396   unsigned EltWidth;
3397   APInt CVal;
3398   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3399                                                /*AllowTruncation=*/true)) {
3400     CVal = CN->getAPIntValue();
3401     EltWidth = N.getValueType().getScalarSizeInBits();
3402   } else
3403     return false;
3404 
3405   // If this is a truncating splat, truncate the splat value.
3406   // Otherwise, we may fail to match the expected values below.
3407   if (EltWidth < CVal.getBitWidth())
3408     CVal = CVal.trunc(EltWidth);
3409 
3410   switch (getBooleanContents(N.getValueType())) {
3411   case UndefinedBooleanContent:
3412     return CVal[0];
3413   case ZeroOrOneBooleanContent:
3414     return CVal.isOne();
3415   case ZeroOrNegativeOneBooleanContent:
3416     return CVal.isAllOnes();
3417   }
3418 
3419   llvm_unreachable("Invalid boolean contents");
3420 }
3421 
3422 bool TargetLowering::isConstFalseVal(SDValue N) const {
3423   if (!N)
3424     return false;
3425 
3426   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3427   if (!CN) {
3428     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3429     if (!BV)
3430       return false;
3431 
3432     // Only interested in constant splats, we don't care about undef
3433     // elements in identifying boolean constants and getConstantSplatNode
3434     // returns NULL if all ops are undef;
3435     CN = BV->getConstantSplatNode();
3436     if (!CN)
3437       return false;
3438   }
3439 
3440   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3441     return !CN->getAPIntValue()[0];
3442 
3443   return CN->isZero();
3444 }
3445 
3446 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3447                                        bool SExt) const {
3448   if (VT == MVT::i1)
3449     return N->isOne();
3450 
3451   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3452   switch (Cnt) {
3453   case TargetLowering::ZeroOrOneBooleanContent:
3454     // An extended value of 1 is always true, unless its original type is i1,
3455     // in which case it will be sign extended to -1.
3456     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3457   case TargetLowering::UndefinedBooleanContent:
3458   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3459     return N->isAllOnes() && SExt;
3460   }
3461   llvm_unreachable("Unexpected enumeration.");
3462 }
3463 
3464 /// This helper function of SimplifySetCC tries to optimize the comparison when
3465 /// either operand of the SetCC node is a bitwise-and instruction.
3466 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3467                                          ISD::CondCode Cond, const SDLoc &DL,
3468                                          DAGCombinerInfo &DCI) const {
3469   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3470     std::swap(N0, N1);
3471 
3472   SelectionDAG &DAG = DCI.DAG;
3473   EVT OpVT = N0.getValueType();
3474   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3475       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3476     return SDValue();
3477 
3478   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3479   // iff everything but LSB is known zero:
3480   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3481       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3482        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3483     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3484     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3485     if (DAG.MaskedValueIsZero(N0, UpperBits))
3486       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3487   }
3488 
3489   // Match these patterns in any of their permutations:
3490   // (X & Y) == Y
3491   // (X & Y) != Y
3492   SDValue X, Y;
3493   if (N0.getOperand(0) == N1) {
3494     X = N0.getOperand(1);
3495     Y = N0.getOperand(0);
3496   } else if (N0.getOperand(1) == N1) {
3497     X = N0.getOperand(0);
3498     Y = N0.getOperand(1);
3499   } else {
3500     return SDValue();
3501   }
3502 
3503   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3504   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3505     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3506     // Note that where Y is variable and is known to have at most one bit set
3507     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3508     // equivalent when Y == 0.
3509     assert(OpVT.isInteger());
3510     Cond = ISD::getSetCCInverse(Cond, OpVT);
3511     if (DCI.isBeforeLegalizeOps() ||
3512         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3513       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3514   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3515     // If the target supports an 'and-not' or 'and-complement' logic operation,
3516     // try to use that to make a comparison operation more efficient.
3517     // But don't do this transform if the mask is a single bit because there are
3518     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3519     // 'rlwinm' on PPC).
3520 
3521     // Bail out if the compare operand that we want to turn into a zero is
3522     // already a zero (otherwise, infinite loop).
3523     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3524     if (YConst && YConst->isZero())
3525       return SDValue();
3526 
3527     // Transform this into: ~X & Y == 0.
3528     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3529     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3530     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3531   }
3532 
3533   return SDValue();
3534 }
3535 
3536 /// There are multiple IR patterns that could be checking whether certain
3537 /// truncation of a signed number would be lossy or not. The pattern which is
3538 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3539 /// We are looking for the following pattern: (KeptBits is a constant)
3540 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3541 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3542 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3543 /// We will unfold it into the natural trunc+sext pattern:
3544 ///   ((%x << C) a>> C) dstcond %x
3545 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3546 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3547     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3548     const SDLoc &DL) const {
3549   // We must be comparing with a constant.
3550   ConstantSDNode *C1;
3551   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3552     return SDValue();
3553 
3554   // N0 should be:  add %x, (1 << (KeptBits-1))
3555   if (N0->getOpcode() != ISD::ADD)
3556     return SDValue();
3557 
3558   // And we must be 'add'ing a constant.
3559   ConstantSDNode *C01;
3560   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3561     return SDValue();
3562 
3563   SDValue X = N0->getOperand(0);
3564   EVT XVT = X.getValueType();
3565 
3566   // Validate constants ...
3567 
3568   APInt I1 = C1->getAPIntValue();
3569 
3570   ISD::CondCode NewCond;
3571   if (Cond == ISD::CondCode::SETULT) {
3572     NewCond = ISD::CondCode::SETEQ;
3573   } else if (Cond == ISD::CondCode::SETULE) {
3574     NewCond = ISD::CondCode::SETEQ;
3575     // But need to 'canonicalize' the constant.
3576     I1 += 1;
3577   } else if (Cond == ISD::CondCode::SETUGT) {
3578     NewCond = ISD::CondCode::SETNE;
3579     // But need to 'canonicalize' the constant.
3580     I1 += 1;
3581   } else if (Cond == ISD::CondCode::SETUGE) {
3582     NewCond = ISD::CondCode::SETNE;
3583   } else
3584     return SDValue();
3585 
3586   APInt I01 = C01->getAPIntValue();
3587 
3588   auto checkConstants = [&I1, &I01]() -> bool {
3589     // Both of them must be power-of-two, and the constant from setcc is bigger.
3590     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3591   };
3592 
3593   if (checkConstants()) {
3594     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3595   } else {
3596     // What if we invert constants? (and the target predicate)
3597     I1.negate();
3598     I01.negate();
3599     assert(XVT.isInteger());
3600     NewCond = getSetCCInverse(NewCond, XVT);
3601     if (!checkConstants())
3602       return SDValue();
3603     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3604   }
3605 
3606   // They are power-of-two, so which bit is set?
3607   const unsigned KeptBits = I1.logBase2();
3608   const unsigned KeptBitsMinusOne = I01.logBase2();
3609 
3610   // Magic!
3611   if (KeptBits != (KeptBitsMinusOne + 1))
3612     return SDValue();
3613   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3614 
3615   // We don't want to do this in every single case.
3616   SelectionDAG &DAG = DCI.DAG;
3617   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3618           XVT, KeptBits))
3619     return SDValue();
3620 
3621   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3622   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3623 
3624   // Unfold into:  ((%x << C) a>> C) cond %x
3625   // Where 'cond' will be either 'eq' or 'ne'.
3626   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3627   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3628   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3629   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3630 
3631   return T2;
3632 }
3633 
3634 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3635 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3636     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3637     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3638   assert(isConstOrConstSplat(N1C) &&
3639          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3640          "Should be a comparison with 0.");
3641   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3642          "Valid only for [in]equality comparisons.");
3643 
3644   unsigned NewShiftOpcode;
3645   SDValue X, C, Y;
3646 
3647   SelectionDAG &DAG = DCI.DAG;
3648   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3649 
3650   // Look for '(C l>>/<< Y)'.
3651   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3652     // The shift should be one-use.
3653     if (!V.hasOneUse())
3654       return false;
3655     unsigned OldShiftOpcode = V.getOpcode();
3656     switch (OldShiftOpcode) {
3657     case ISD::SHL:
3658       NewShiftOpcode = ISD::SRL;
3659       break;
3660     case ISD::SRL:
3661       NewShiftOpcode = ISD::SHL;
3662       break;
3663     default:
3664       return false; // must be a logical shift.
3665     }
3666     // We should be shifting a constant.
3667     // FIXME: best to use isConstantOrConstantVector().
3668     C = V.getOperand(0);
3669     ConstantSDNode *CC =
3670         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3671     if (!CC)
3672       return false;
3673     Y = V.getOperand(1);
3674 
3675     ConstantSDNode *XC =
3676         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3677     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3678         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3679   };
3680 
3681   // LHS of comparison should be an one-use 'and'.
3682   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3683     return SDValue();
3684 
3685   X = N0.getOperand(0);
3686   SDValue Mask = N0.getOperand(1);
3687 
3688   // 'and' is commutative!
3689   if (!Match(Mask)) {
3690     std::swap(X, Mask);
3691     if (!Match(Mask))
3692       return SDValue();
3693   }
3694 
3695   EVT VT = X.getValueType();
3696 
3697   // Produce:
3698   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3699   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3700   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3701   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3702   return T2;
3703 }
3704 
3705 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3706 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3707 /// handle the commuted versions of these patterns.
3708 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3709                                            ISD::CondCode Cond, const SDLoc &DL,
3710                                            DAGCombinerInfo &DCI) const {
3711   unsigned BOpcode = N0.getOpcode();
3712   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3713          "Unexpected binop");
3714   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3715 
3716   // (X + Y) == X --> Y == 0
3717   // (X - Y) == X --> Y == 0
3718   // (X ^ Y) == X --> Y == 0
3719   SelectionDAG &DAG = DCI.DAG;
3720   EVT OpVT = N0.getValueType();
3721   SDValue X = N0.getOperand(0);
3722   SDValue Y = N0.getOperand(1);
3723   if (X == N1)
3724     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3725 
3726   if (Y != N1)
3727     return SDValue();
3728 
3729   // (X + Y) == Y --> X == 0
3730   // (X ^ Y) == Y --> X == 0
3731   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3732     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3733 
3734   // The shift would not be valid if the operands are boolean (i1).
3735   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3736     return SDValue();
3737 
3738   // (X - Y) == Y --> X == Y << 1
3739   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3740                                  !DCI.isBeforeLegalize());
3741   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3742   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3743   if (!DCI.isCalledByLegalizer())
3744     DCI.AddToWorklist(YShl1.getNode());
3745   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3746 }
3747 
3748 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3749                                       SDValue N0, const APInt &C1,
3750                                       ISD::CondCode Cond, const SDLoc &dl,
3751                                       SelectionDAG &DAG) {
3752   // Look through truncs that don't change the value of a ctpop.
3753   // FIXME: Add vector support? Need to be careful with setcc result type below.
3754   SDValue CTPOP = N0;
3755   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3756       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3757     CTPOP = N0.getOperand(0);
3758 
3759   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3760     return SDValue();
3761 
3762   EVT CTVT = CTPOP.getValueType();
3763   SDValue CTOp = CTPOP.getOperand(0);
3764 
3765   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3766   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3767   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3768     return SDValue();
3769 
3770   // (ctpop x) u< 2 -> (x & x-1) == 0
3771   // (ctpop x) u> 1 -> (x & x-1) != 0
3772   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3773     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3774     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3775       return SDValue();
3776     if (C1 == 0 && (Cond == ISD::SETULT))
3777       return SDValue(); // This is handled elsewhere.
3778 
3779     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3780 
3781     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3782     SDValue Result = CTOp;
3783     for (unsigned i = 0; i < Passes; i++) {
3784       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3785       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3786     }
3787     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3788     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3789   }
3790 
3791   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3792   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3793     // For scalars, keep CTPOP if it is legal or custom.
3794     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3795       return SDValue();
3796     // This is based on X86's custom lowering for CTPOP which produces more
3797     // instructions than the expansion here.
3798 
3799     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3800     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3801     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3802     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3803     assert(CTVT.isInteger());
3804     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3805     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3806     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3807     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3808     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3809     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3810     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3811   }
3812 
3813   return SDValue();
3814 }
3815 
3816 /// Try to simplify a setcc built with the specified operands and cc. If it is
3817 /// unable to simplify it, return a null SDValue.
3818 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3819                                       ISD::CondCode Cond, bool foldBooleans,
3820                                       DAGCombinerInfo &DCI,
3821                                       const SDLoc &dl) const {
3822   SelectionDAG &DAG = DCI.DAG;
3823   const DataLayout &Layout = DAG.getDataLayout();
3824   EVT OpVT = N0.getValueType();
3825 
3826   // Constant fold or commute setcc.
3827   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3828     return Fold;
3829 
3830   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3831   // TODO: Handle non-splat vector constants. All undef causes trouble.
3832   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3833   // infinite loop here when we encounter one.
3834   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3835   if (isConstOrConstSplat(N0) &&
3836       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3837       (DCI.isBeforeLegalizeOps() ||
3838        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3839     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3840 
3841   // If we have a subtract with the same 2 non-constant operands as this setcc
3842   // -- but in reverse order -- then try to commute the operands of this setcc
3843   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3844   // instruction on some targets.
3845   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3846       (DCI.isBeforeLegalizeOps() ||
3847        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3848       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3849       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3850     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3851 
3852   if (auto *N1C = isConstOrConstSplat(N1)) {
3853     const APInt &C1 = N1C->getAPIntValue();
3854 
3855     // Optimize some CTPOP cases.
3856     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3857       return V;
3858 
3859     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3860     // equality comparison, then we're just comparing whether X itself is
3861     // zero.
3862     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3863         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3864         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3865       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3866         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3867             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3868           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3869             // (srl (ctlz x), 5) == 0  -> X != 0
3870             // (srl (ctlz x), 5) != 1  -> X != 0
3871             Cond = ISD::SETNE;
3872           } else {
3873             // (srl (ctlz x), 5) != 0  -> X == 0
3874             // (srl (ctlz x), 5) == 1  -> X == 0
3875             Cond = ISD::SETEQ;
3876           }
3877           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3878           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3879                               Cond);
3880         }
3881       }
3882     }
3883   }
3884 
3885   // FIXME: Support vectors.
3886   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3887     const APInt &C1 = N1C->getAPIntValue();
3888 
3889     // (zext x) == C --> x == (trunc C)
3890     // (sext x) == C --> x == (trunc C)
3891     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3892         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3893       unsigned MinBits = N0.getValueSizeInBits();
3894       SDValue PreExt;
3895       bool Signed = false;
3896       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3897         // ZExt
3898         MinBits = N0->getOperand(0).getValueSizeInBits();
3899         PreExt = N0->getOperand(0);
3900       } else if (N0->getOpcode() == ISD::AND) {
3901         // DAGCombine turns costly ZExts into ANDs
3902         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3903           if ((C->getAPIntValue()+1).isPowerOf2()) {
3904             MinBits = C->getAPIntValue().countTrailingOnes();
3905             PreExt = N0->getOperand(0);
3906           }
3907       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3908         // SExt
3909         MinBits = N0->getOperand(0).getValueSizeInBits();
3910         PreExt = N0->getOperand(0);
3911         Signed = true;
3912       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3913         // ZEXTLOAD / SEXTLOAD
3914         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3915           MinBits = LN0->getMemoryVT().getSizeInBits();
3916           PreExt = N0;
3917         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3918           Signed = true;
3919           MinBits = LN0->getMemoryVT().getSizeInBits();
3920           PreExt = N0;
3921         }
3922       }
3923 
3924       // Figure out how many bits we need to preserve this constant.
3925       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3926 
3927       // Make sure we're not losing bits from the constant.
3928       if (MinBits > 0 &&
3929           MinBits < C1.getBitWidth() &&
3930           MinBits >= ReqdBits) {
3931         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3932         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3933           // Will get folded away.
3934           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3935           if (MinBits == 1 && C1 == 1)
3936             // Invert the condition.
3937             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3938                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3939           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3940           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3941         }
3942 
3943         // If truncating the setcc operands is not desirable, we can still
3944         // simplify the expression in some cases:
3945         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3946         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3947         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3948         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3949         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3950         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3951         SDValue TopSetCC = N0->getOperand(0);
3952         unsigned N0Opc = N0->getOpcode();
3953         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3954         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3955             TopSetCC.getOpcode() == ISD::SETCC &&
3956             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3957             (isConstFalseVal(N1) ||
3958              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3959 
3960           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3961                          (!N1C->isZero() && Cond == ISD::SETNE);
3962 
3963           if (!Inverse)
3964             return TopSetCC;
3965 
3966           ISD::CondCode InvCond = ISD::getSetCCInverse(
3967               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3968               TopSetCC.getOperand(0).getValueType());
3969           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3970                                       TopSetCC.getOperand(1),
3971                                       InvCond);
3972         }
3973       }
3974     }
3975 
3976     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3977     // equality or unsigned, and all 1 bits of the const are in the same
3978     // partial word, see if we can shorten the load.
3979     if (DCI.isBeforeLegalize() &&
3980         !ISD::isSignedIntSetCC(Cond) &&
3981         N0.getOpcode() == ISD::AND && C1 == 0 &&
3982         N0.getNode()->hasOneUse() &&
3983         isa<LoadSDNode>(N0.getOperand(0)) &&
3984         N0.getOperand(0).getNode()->hasOneUse() &&
3985         isa<ConstantSDNode>(N0.getOperand(1))) {
3986       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3987       APInt bestMask;
3988       unsigned bestWidth = 0, bestOffset = 0;
3989       if (Lod->isSimple() && Lod->isUnindexed()) {
3990         unsigned origWidth = N0.getValueSizeInBits();
3991         unsigned maskWidth = origWidth;
3992         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3993         // 8 bits, but have to be careful...
3994         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3995           origWidth = Lod->getMemoryVT().getSizeInBits();
3996         const APInt &Mask = N0.getConstantOperandAPInt(1);
3997         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3998           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3999           for (unsigned offset=0; offset<origWidth/width; offset++) {
4000             if (Mask.isSubsetOf(newMask)) {
4001               if (Layout.isLittleEndian())
4002                 bestOffset = (uint64_t)offset * (width/8);
4003               else
4004                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4005               bestMask = Mask.lshr(offset * (width/8) * 8);
4006               bestWidth = width;
4007               break;
4008             }
4009             newMask <<= width;
4010           }
4011         }
4012       }
4013       if (bestWidth) {
4014         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4015         if (newVT.isRound() &&
4016             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4017           SDValue Ptr = Lod->getBasePtr();
4018           if (bestOffset != 0)
4019             Ptr =
4020                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4021           SDValue NewLoad =
4022               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4023                           Lod->getPointerInfo().getWithOffset(bestOffset),
4024                           Lod->getOriginalAlign());
4025           return DAG.getSetCC(dl, VT,
4026                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4027                                       DAG.getConstant(bestMask.trunc(bestWidth),
4028                                                       dl, newVT)),
4029                               DAG.getConstant(0LL, dl, newVT), Cond);
4030         }
4031       }
4032     }
4033 
4034     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4035     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4036       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4037 
4038       // If the comparison constant has bits in the upper part, the
4039       // zero-extended value could never match.
4040       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4041                                               C1.getBitWidth() - InSize))) {
4042         switch (Cond) {
4043         case ISD::SETUGT:
4044         case ISD::SETUGE:
4045         case ISD::SETEQ:
4046           return DAG.getConstant(0, dl, VT);
4047         case ISD::SETULT:
4048         case ISD::SETULE:
4049         case ISD::SETNE:
4050           return DAG.getConstant(1, dl, VT);
4051         case ISD::SETGT:
4052         case ISD::SETGE:
4053           // True if the sign bit of C1 is set.
4054           return DAG.getConstant(C1.isNegative(), dl, VT);
4055         case ISD::SETLT:
4056         case ISD::SETLE:
4057           // True if the sign bit of C1 isn't set.
4058           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4059         default:
4060           break;
4061         }
4062       }
4063 
4064       // Otherwise, we can perform the comparison with the low bits.
4065       switch (Cond) {
4066       case ISD::SETEQ:
4067       case ISD::SETNE:
4068       case ISD::SETUGT:
4069       case ISD::SETUGE:
4070       case ISD::SETULT:
4071       case ISD::SETULE: {
4072         EVT newVT = N0.getOperand(0).getValueType();
4073         if (DCI.isBeforeLegalizeOps() ||
4074             (isOperationLegal(ISD::SETCC, newVT) &&
4075              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4076           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4077           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4078 
4079           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4080                                           NewConst, Cond);
4081           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4082         }
4083         break;
4084       }
4085       default:
4086         break; // todo, be more careful with signed comparisons
4087       }
4088     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4089                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4090                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4091                                       OpVT)) {
4092       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4093       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4094       EVT ExtDstTy = N0.getValueType();
4095       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4096 
4097       // If the constant doesn't fit into the number of bits for the source of
4098       // the sign extension, it is impossible for both sides to be equal.
4099       if (C1.getMinSignedBits() > ExtSrcTyBits)
4100         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4101 
4102       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4103              ExtDstTy != ExtSrcTy && "Unexpected types!");
4104       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4105       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4106                                    DAG.getConstant(Imm, dl, ExtDstTy));
4107       if (!DCI.isCalledByLegalizer())
4108         DCI.AddToWorklist(ZextOp.getNode());
4109       // Otherwise, make this a use of a zext.
4110       return DAG.getSetCC(dl, VT, ZextOp,
4111                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4112     } else if ((N1C->isZero() || N1C->isOne()) &&
4113                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4114       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4115       if (N0.getOpcode() == ISD::SETCC &&
4116           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4117           (N0.getValueType() == MVT::i1 ||
4118            getBooleanContents(N0.getOperand(0).getValueType()) ==
4119                        ZeroOrOneBooleanContent)) {
4120         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4121         if (TrueWhenTrue)
4122           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4123         // Invert the condition.
4124         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4125         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4126         if (DCI.isBeforeLegalizeOps() ||
4127             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4128           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4129       }
4130 
4131       if ((N0.getOpcode() == ISD::XOR ||
4132            (N0.getOpcode() == ISD::AND &&
4133             N0.getOperand(0).getOpcode() == ISD::XOR &&
4134             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4135           isOneConstant(N0.getOperand(1))) {
4136         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4137         // can only do this if the top bits are known zero.
4138         unsigned BitWidth = N0.getValueSizeInBits();
4139         if (DAG.MaskedValueIsZero(N0,
4140                                   APInt::getHighBitsSet(BitWidth,
4141                                                         BitWidth-1))) {
4142           // Okay, get the un-inverted input value.
4143           SDValue Val;
4144           if (N0.getOpcode() == ISD::XOR) {
4145             Val = N0.getOperand(0);
4146           } else {
4147             assert(N0.getOpcode() == ISD::AND &&
4148                     N0.getOperand(0).getOpcode() == ISD::XOR);
4149             // ((X^1)&1)^1 -> X & 1
4150             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4151                               N0.getOperand(0).getOperand(0),
4152                               N0.getOperand(1));
4153           }
4154 
4155           return DAG.getSetCC(dl, VT, Val, N1,
4156                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4157         }
4158       } else if (N1C->isOne()) {
4159         SDValue Op0 = N0;
4160         if (Op0.getOpcode() == ISD::TRUNCATE)
4161           Op0 = Op0.getOperand(0);
4162 
4163         if ((Op0.getOpcode() == ISD::XOR) &&
4164             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4165             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4166           SDValue XorLHS = Op0.getOperand(0);
4167           SDValue XorRHS = Op0.getOperand(1);
4168           // Ensure that the input setccs return an i1 type or 0/1 value.
4169           if (Op0.getValueType() == MVT::i1 ||
4170               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4171                       ZeroOrOneBooleanContent &&
4172                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4173                         ZeroOrOneBooleanContent)) {
4174             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4175             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4176             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4177           }
4178         }
4179         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4180           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4181           if (Op0.getValueType().bitsGT(VT))
4182             Op0 = DAG.getNode(ISD::AND, dl, VT,
4183                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4184                           DAG.getConstant(1, dl, VT));
4185           else if (Op0.getValueType().bitsLT(VT))
4186             Op0 = DAG.getNode(ISD::AND, dl, VT,
4187                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4188                         DAG.getConstant(1, dl, VT));
4189 
4190           return DAG.getSetCC(dl, VT, Op0,
4191                               DAG.getConstant(0, dl, Op0.getValueType()),
4192                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4193         }
4194         if (Op0.getOpcode() == ISD::AssertZext &&
4195             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4196           return DAG.getSetCC(dl, VT, Op0,
4197                               DAG.getConstant(0, dl, Op0.getValueType()),
4198                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4199       }
4200     }
4201 
4202     // Given:
4203     //   icmp eq/ne (urem %x, %y), 0
4204     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4205     //   icmp eq/ne %x, 0
4206     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4207         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4208       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4209       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4210       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4211         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4212     }
4213 
4214     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4215     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4216     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4217         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4218         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4219         N1C && N1C->isAllOnes()) {
4220       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4221                           DAG.getConstant(0, dl, OpVT),
4222                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4223     }
4224 
4225     if (SDValue V =
4226             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4227       return V;
4228   }
4229 
4230   // These simplifications apply to splat vectors as well.
4231   // TODO: Handle more splat vector cases.
4232   if (auto *N1C = isConstOrConstSplat(N1)) {
4233     const APInt &C1 = N1C->getAPIntValue();
4234 
4235     APInt MinVal, MaxVal;
4236     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4237     if (ISD::isSignedIntSetCC(Cond)) {
4238       MinVal = APInt::getSignedMinValue(OperandBitSize);
4239       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4240     } else {
4241       MinVal = APInt::getMinValue(OperandBitSize);
4242       MaxVal = APInt::getMaxValue(OperandBitSize);
4243     }
4244 
4245     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4246     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4247       // X >= MIN --> true
4248       if (C1 == MinVal)
4249         return DAG.getBoolConstant(true, dl, VT, OpVT);
4250 
4251       if (!VT.isVector()) { // TODO: Support this for vectors.
4252         // X >= C0 --> X > (C0 - 1)
4253         APInt C = C1 - 1;
4254         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4255         if ((DCI.isBeforeLegalizeOps() ||
4256              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4257             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4258                                   isLegalICmpImmediate(C.getSExtValue())))) {
4259           return DAG.getSetCC(dl, VT, N0,
4260                               DAG.getConstant(C, dl, N1.getValueType()),
4261                               NewCC);
4262         }
4263       }
4264     }
4265 
4266     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4267       // X <= MAX --> true
4268       if (C1 == MaxVal)
4269         return DAG.getBoolConstant(true, dl, VT, OpVT);
4270 
4271       // X <= C0 --> X < (C0 + 1)
4272       if (!VT.isVector()) { // TODO: Support this for vectors.
4273         APInt C = C1 + 1;
4274         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4275         if ((DCI.isBeforeLegalizeOps() ||
4276              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4277             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4278                                   isLegalICmpImmediate(C.getSExtValue())))) {
4279           return DAG.getSetCC(dl, VT, N0,
4280                               DAG.getConstant(C, dl, N1.getValueType()),
4281                               NewCC);
4282         }
4283       }
4284     }
4285 
4286     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4287       if (C1 == MinVal)
4288         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4289 
4290       // TODO: Support this for vectors after legalize ops.
4291       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4292         // Canonicalize setlt X, Max --> setne X, Max
4293         if (C1 == MaxVal)
4294           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4295 
4296         // If we have setult X, 1, turn it into seteq X, 0
4297         if (C1 == MinVal+1)
4298           return DAG.getSetCC(dl, VT, N0,
4299                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4300                               ISD::SETEQ);
4301       }
4302     }
4303 
4304     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4305       if (C1 == MaxVal)
4306         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4307 
4308       // TODO: Support this for vectors after legalize ops.
4309       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4310         // Canonicalize setgt X, Min --> setne X, Min
4311         if (C1 == MinVal)
4312           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4313 
4314         // If we have setugt X, Max-1, turn it into seteq X, Max
4315         if (C1 == MaxVal-1)
4316           return DAG.getSetCC(dl, VT, N0,
4317                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4318                               ISD::SETEQ);
4319       }
4320     }
4321 
4322     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4323       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4324       if (C1.isZero())
4325         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4326                 VT, N0, N1, Cond, DCI, dl))
4327           return CC;
4328 
4329       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4330       // For example, when high 32-bits of i64 X are known clear:
4331       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4332       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4333       bool CmpZero = N1C->getAPIntValue().isZero();
4334       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4335       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4336         // Match or(lo,shl(hi,bw/2)) pattern.
4337         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4338           unsigned EltBits = V.getScalarValueSizeInBits();
4339           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4340             return false;
4341           SDValue LHS = V.getOperand(0);
4342           SDValue RHS = V.getOperand(1);
4343           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4344           // Unshifted element must have zero upperbits.
4345           if (RHS.getOpcode() == ISD::SHL &&
4346               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4347               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4348               DAG.MaskedValueIsZero(LHS, HiBits)) {
4349             Lo = LHS;
4350             Hi = RHS.getOperand(0);
4351             return true;
4352           }
4353           if (LHS.getOpcode() == ISD::SHL &&
4354               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4355               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4356               DAG.MaskedValueIsZero(RHS, HiBits)) {
4357             Lo = RHS;
4358             Hi = LHS.getOperand(0);
4359             return true;
4360           }
4361           return false;
4362         };
4363 
4364         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4365           unsigned EltBits = N0.getScalarValueSizeInBits();
4366           unsigned HalfBits = EltBits / 2;
4367           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4368           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4369           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4370           SDValue NewN0 =
4371               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4372           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4373           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4374         };
4375 
4376         SDValue Lo, Hi;
4377         if (IsConcat(N0, Lo, Hi))
4378           return MergeConcat(Lo, Hi);
4379 
4380         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4381           SDValue Lo0, Lo1, Hi0, Hi1;
4382           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4383               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4384             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4385                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4386           }
4387         }
4388       }
4389     }
4390 
4391     // If we have "setcc X, C0", check to see if we can shrink the immediate
4392     // by changing cc.
4393     // TODO: Support this for vectors after legalize ops.
4394     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4395       // SETUGT X, SINTMAX  -> SETLT X, 0
4396       // SETUGE X, SINTMIN -> SETLT X, 0
4397       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4398           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4399         return DAG.getSetCC(dl, VT, N0,
4400                             DAG.getConstant(0, dl, N1.getValueType()),
4401                             ISD::SETLT);
4402 
4403       // SETULT X, SINTMIN  -> SETGT X, -1
4404       // SETULE X, SINTMAX  -> SETGT X, -1
4405       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4406           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4407         return DAG.getSetCC(dl, VT, N0,
4408                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4409                             ISD::SETGT);
4410     }
4411   }
4412 
4413   // Back to non-vector simplifications.
4414   // TODO: Can we do these for vector splats?
4415   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4416     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4417     const APInt &C1 = N1C->getAPIntValue();
4418     EVT ShValTy = N0.getValueType();
4419 
4420     // Fold bit comparisons when we can. This will result in an
4421     // incorrect value when boolean false is negative one, unless
4422     // the bitsize is 1 in which case the false value is the same
4423     // in practice regardless of the representation.
4424     if ((VT.getSizeInBits() == 1 ||
4425          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4426         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4427         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4428         N0.getOpcode() == ISD::AND) {
4429       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4430         EVT ShiftTy =
4431             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4432         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4433           // Perform the xform if the AND RHS is a single bit.
4434           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4435           if (AndRHS->getAPIntValue().isPowerOf2() &&
4436               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4437             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4438                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4439                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4440           }
4441         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4442           // (X & 8) == 8  -->  (X & 8) >> 3
4443           // Perform the xform if C1 is a single bit.
4444           unsigned ShCt = C1.logBase2();
4445           if (C1.isPowerOf2() &&
4446               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4447             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4448                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4449                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4450           }
4451         }
4452       }
4453     }
4454 
4455     if (C1.getMinSignedBits() <= 64 &&
4456         !isLegalICmpImmediate(C1.getSExtValue())) {
4457       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4458       // (X & -256) == 256 -> (X >> 8) == 1
4459       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4460           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4461         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4462           const APInt &AndRHSC = AndRHS->getAPIntValue();
4463           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4464             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4465             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4466               SDValue Shift =
4467                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4468                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4469               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4470               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4471             }
4472           }
4473         }
4474       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4475                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4476         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4477         // X <  0x100000000 -> (X >> 32) <  1
4478         // X >= 0x100000000 -> (X >> 32) >= 1
4479         // X <= 0x0ffffffff -> (X >> 32) <  1
4480         // X >  0x0ffffffff -> (X >> 32) >= 1
4481         unsigned ShiftBits;
4482         APInt NewC = C1;
4483         ISD::CondCode NewCond = Cond;
4484         if (AdjOne) {
4485           ShiftBits = C1.countTrailingOnes();
4486           NewC = NewC + 1;
4487           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4488         } else {
4489           ShiftBits = C1.countTrailingZeros();
4490         }
4491         NewC.lshrInPlace(ShiftBits);
4492         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4493             isLegalICmpImmediate(NewC.getSExtValue()) &&
4494             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4495           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4496                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4497           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4498           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4499         }
4500       }
4501     }
4502   }
4503 
4504   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4505     auto *CFP = cast<ConstantFPSDNode>(N1);
4506     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4507 
4508     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4509     // constant if knowing that the operand is non-nan is enough.  We prefer to
4510     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4511     // materialize 0.0.
4512     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4513       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4514 
4515     // setcc (fneg x), C -> setcc swap(pred) x, -C
4516     if (N0.getOpcode() == ISD::FNEG) {
4517       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4518       if (DCI.isBeforeLegalizeOps() ||
4519           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4520         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4521         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4522       }
4523     }
4524 
4525     // If the condition is not legal, see if we can find an equivalent one
4526     // which is legal.
4527     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4528       // If the comparison was an awkward floating-point == or != and one of
4529       // the comparison operands is infinity or negative infinity, convert the
4530       // condition to a less-awkward <= or >=.
4531       if (CFP->getValueAPF().isInfinity()) {
4532         bool IsNegInf = CFP->getValueAPF().isNegative();
4533         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4534         switch (Cond) {
4535         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4536         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4537         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4538         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4539         default: break;
4540         }
4541         if (NewCond != ISD::SETCC_INVALID &&
4542             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4543           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4544       }
4545     }
4546   }
4547 
4548   if (N0 == N1) {
4549     // The sext(setcc()) => setcc() optimization relies on the appropriate
4550     // constant being emitted.
4551     assert(!N0.getValueType().isInteger() &&
4552            "Integer types should be handled by FoldSetCC");
4553 
4554     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4555     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4556     if (UOF == 2) // FP operators that are undefined on NaNs.
4557       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4558     if (UOF == unsigned(EqTrue))
4559       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4560     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4561     // if it is not already.
4562     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4563     if (NewCond != Cond &&
4564         (DCI.isBeforeLegalizeOps() ||
4565                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4566       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4567   }
4568 
4569   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4570       N0.getValueType().isInteger()) {
4571     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4572         N0.getOpcode() == ISD::XOR) {
4573       // Simplify (X+Y) == (X+Z) -->  Y == Z
4574       if (N0.getOpcode() == N1.getOpcode()) {
4575         if (N0.getOperand(0) == N1.getOperand(0))
4576           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4577         if (N0.getOperand(1) == N1.getOperand(1))
4578           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4579         if (isCommutativeBinOp(N0.getOpcode())) {
4580           // If X op Y == Y op X, try other combinations.
4581           if (N0.getOperand(0) == N1.getOperand(1))
4582             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4583                                 Cond);
4584           if (N0.getOperand(1) == N1.getOperand(0))
4585             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4586                                 Cond);
4587         }
4588       }
4589 
4590       // If RHS is a legal immediate value for a compare instruction, we need
4591       // to be careful about increasing register pressure needlessly.
4592       bool LegalRHSImm = false;
4593 
4594       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4595         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4596           // Turn (X+C1) == C2 --> X == C2-C1
4597           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4598             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4599                                 DAG.getConstant(RHSC->getAPIntValue()-
4600                                                 LHSR->getAPIntValue(),
4601                                 dl, N0.getValueType()), Cond);
4602           }
4603 
4604           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4605           if (N0.getOpcode() == ISD::XOR)
4606             // If we know that all of the inverted bits are zero, don't bother
4607             // performing the inversion.
4608             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4609               return
4610                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4611                              DAG.getConstant(LHSR->getAPIntValue() ^
4612                                                RHSC->getAPIntValue(),
4613                                              dl, N0.getValueType()),
4614                              Cond);
4615         }
4616 
4617         // Turn (C1-X) == C2 --> X == C1-C2
4618         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4619           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4620             return
4621               DAG.getSetCC(dl, VT, N0.getOperand(1),
4622                            DAG.getConstant(SUBC->getAPIntValue() -
4623                                              RHSC->getAPIntValue(),
4624                                            dl, N0.getValueType()),
4625                            Cond);
4626           }
4627         }
4628 
4629         // Could RHSC fold directly into a compare?
4630         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4631           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4632       }
4633 
4634       // (X+Y) == X --> Y == 0 and similar folds.
4635       // Don't do this if X is an immediate that can fold into a cmp
4636       // instruction and X+Y has other uses. It could be an induction variable
4637       // chain, and the transform would increase register pressure.
4638       if (!LegalRHSImm || N0.hasOneUse())
4639         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4640           return V;
4641     }
4642 
4643     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4644         N1.getOpcode() == ISD::XOR)
4645       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4646         return V;
4647 
4648     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4649       return V;
4650   }
4651 
4652   // Fold remainder of division by a constant.
4653   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4654       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4655     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4656 
4657     // When division is cheap or optimizing for minimum size,
4658     // fall through to DIVREM creation by skipping this fold.
4659     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4660       if (N0.getOpcode() == ISD::UREM) {
4661         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4662           return Folded;
4663       } else if (N0.getOpcode() == ISD::SREM) {
4664         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4665           return Folded;
4666       }
4667     }
4668   }
4669 
4670   // Fold away ALL boolean setcc's.
4671   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4672     SDValue Temp;
4673     switch (Cond) {
4674     default: llvm_unreachable("Unknown integer setcc!");
4675     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4676       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4677       N0 = DAG.getNOT(dl, Temp, OpVT);
4678       if (!DCI.isCalledByLegalizer())
4679         DCI.AddToWorklist(Temp.getNode());
4680       break;
4681     case ISD::SETNE:  // X != Y   -->  (X^Y)
4682       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4683       break;
4684     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4685     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4686       Temp = DAG.getNOT(dl, N0, OpVT);
4687       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4688       if (!DCI.isCalledByLegalizer())
4689         DCI.AddToWorklist(Temp.getNode());
4690       break;
4691     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4692     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4693       Temp = DAG.getNOT(dl, N1, OpVT);
4694       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4695       if (!DCI.isCalledByLegalizer())
4696         DCI.AddToWorklist(Temp.getNode());
4697       break;
4698     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4699     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4700       Temp = DAG.getNOT(dl, N0, OpVT);
4701       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4702       if (!DCI.isCalledByLegalizer())
4703         DCI.AddToWorklist(Temp.getNode());
4704       break;
4705     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4706     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4707       Temp = DAG.getNOT(dl, N1, OpVT);
4708       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4709       break;
4710     }
4711     if (VT.getScalarType() != MVT::i1) {
4712       if (!DCI.isCalledByLegalizer())
4713         DCI.AddToWorklist(N0.getNode());
4714       // FIXME: If running after legalize, we probably can't do this.
4715       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4716       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4717     }
4718     return N0;
4719   }
4720 
4721   // Could not fold it.
4722   return SDValue();
4723 }
4724 
4725 /// Returns true (and the GlobalValue and the offset) if the node is a
4726 /// GlobalAddress + offset.
4727 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4728                                     int64_t &Offset) const {
4729 
4730   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4731 
4732   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4733     GA = GASD->getGlobal();
4734     Offset += GASD->getOffset();
4735     return true;
4736   }
4737 
4738   if (N->getOpcode() == ISD::ADD) {
4739     SDValue N1 = N->getOperand(0);
4740     SDValue N2 = N->getOperand(1);
4741     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4742       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4743         Offset += V->getSExtValue();
4744         return true;
4745       }
4746     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4747       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4748         Offset += V->getSExtValue();
4749         return true;
4750       }
4751     }
4752   }
4753 
4754   return false;
4755 }
4756 
4757 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4758                                           DAGCombinerInfo &DCI) const {
4759   // Default implementation: no optimization.
4760   return SDValue();
4761 }
4762 
4763 //===----------------------------------------------------------------------===//
4764 //  Inline Assembler Implementation Methods
4765 //===----------------------------------------------------------------------===//
4766 
4767 TargetLowering::ConstraintType
4768 TargetLowering::getConstraintType(StringRef Constraint) const {
4769   unsigned S = Constraint.size();
4770 
4771   if (S == 1) {
4772     switch (Constraint[0]) {
4773     default: break;
4774     case 'r':
4775       return C_RegisterClass;
4776     case 'm': // memory
4777     case 'o': // offsetable
4778     case 'V': // not offsetable
4779       return C_Memory;
4780     case 'n': // Simple Integer
4781     case 'E': // Floating Point Constant
4782     case 'F': // Floating Point Constant
4783       return C_Immediate;
4784     case 'i': // Simple Integer or Relocatable Constant
4785     case 's': // Relocatable Constant
4786     case 'p': // Address.
4787     case 'X': // Allow ANY value.
4788     case 'I': // Target registers.
4789     case 'J':
4790     case 'K':
4791     case 'L':
4792     case 'M':
4793     case 'N':
4794     case 'O':
4795     case 'P':
4796     case '<':
4797     case '>':
4798       return C_Other;
4799     }
4800   }
4801 
4802   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4803     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4804       return C_Memory;
4805     return C_Register;
4806   }
4807   return C_Unknown;
4808 }
4809 
4810 /// Try to replace an X constraint, which matches anything, with another that
4811 /// has more specific requirements based on the type of the corresponding
4812 /// operand.
4813 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4814   if (ConstraintVT.isInteger())
4815     return "r";
4816   if (ConstraintVT.isFloatingPoint())
4817     return "f"; // works for many targets
4818   return nullptr;
4819 }
4820 
4821 SDValue TargetLowering::LowerAsmOutputForConstraint(
4822     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4823     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4824   return SDValue();
4825 }
4826 
4827 /// Lower the specified operand into the Ops vector.
4828 /// If it is invalid, don't add anything to Ops.
4829 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4830                                                   std::string &Constraint,
4831                                                   std::vector<SDValue> &Ops,
4832                                                   SelectionDAG &DAG) const {
4833 
4834   if (Constraint.length() > 1) return;
4835 
4836   char ConstraintLetter = Constraint[0];
4837   switch (ConstraintLetter) {
4838   default: break;
4839   case 'X':    // Allows any operand
4840   case 'i':    // Simple Integer or Relocatable Constant
4841   case 'n':    // Simple Integer
4842   case 's': {  // Relocatable Constant
4843 
4844     ConstantSDNode *C;
4845     uint64_t Offset = 0;
4846 
4847     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4848     // etc., since getelementpointer is variadic. We can't use
4849     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4850     // while in this case the GA may be furthest from the root node which is
4851     // likely an ISD::ADD.
4852     while (true) {
4853       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4854         // gcc prints these as sign extended.  Sign extend value to 64 bits
4855         // now; without this it would get ZExt'd later in
4856         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4857         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4858         BooleanContent BCont = getBooleanContents(MVT::i64);
4859         ISD::NodeType ExtOpc =
4860             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4861         int64_t ExtVal =
4862             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4863         Ops.push_back(
4864             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4865         return;
4866       }
4867       if (ConstraintLetter != 'n') {
4868         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4869           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4870                                                    GA->getValueType(0),
4871                                                    Offset + GA->getOffset()));
4872           return;
4873         }
4874         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4875           Ops.push_back(DAG.getTargetBlockAddress(
4876               BA->getBlockAddress(), BA->getValueType(0),
4877               Offset + BA->getOffset(), BA->getTargetFlags()));
4878           return;
4879         }
4880         if (isa<BasicBlockSDNode>(Op)) {
4881           Ops.push_back(Op);
4882           return;
4883         }
4884       }
4885       const unsigned OpCode = Op.getOpcode();
4886       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4887         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4888           Op = Op.getOperand(1);
4889         // Subtraction is not commutative.
4890         else if (OpCode == ISD::ADD &&
4891                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4892           Op = Op.getOperand(0);
4893         else
4894           return;
4895         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4896         continue;
4897       }
4898       return;
4899     }
4900     break;
4901   }
4902   }
4903 }
4904 
4905 std::pair<unsigned, const TargetRegisterClass *>
4906 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4907                                              StringRef Constraint,
4908                                              MVT VT) const {
4909   if (Constraint.empty() || Constraint[0] != '{')
4910     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4911   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4912 
4913   // Remove the braces from around the name.
4914   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4915 
4916   std::pair<unsigned, const TargetRegisterClass *> R =
4917       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4918 
4919   // Figure out which register class contains this reg.
4920   for (const TargetRegisterClass *RC : RI->regclasses()) {
4921     // If none of the value types for this register class are valid, we
4922     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4923     if (!isLegalRC(*RI, *RC))
4924       continue;
4925 
4926     for (const MCPhysReg &PR : *RC) {
4927       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4928         std::pair<unsigned, const TargetRegisterClass *> S =
4929             std::make_pair(PR, RC);
4930 
4931         // If this register class has the requested value type, return it,
4932         // otherwise keep searching and return the first class found
4933         // if no other is found which explicitly has the requested type.
4934         if (RI->isTypeLegalForClass(*RC, VT))
4935           return S;
4936         if (!R.second)
4937           R = S;
4938       }
4939     }
4940   }
4941 
4942   return R;
4943 }
4944 
4945 //===----------------------------------------------------------------------===//
4946 // Constraint Selection.
4947 
4948 /// Return true of this is an input operand that is a matching constraint like
4949 /// "4".
4950 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4951   assert(!ConstraintCode.empty() && "No known constraint!");
4952   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4953 }
4954 
4955 /// If this is an input matching constraint, this method returns the output
4956 /// operand it matches.
4957 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4958   assert(!ConstraintCode.empty() && "No known constraint!");
4959   return atoi(ConstraintCode.c_str());
4960 }
4961 
4962 /// Split up the constraint string from the inline assembly value into the
4963 /// specific constraints and their prefixes, and also tie in the associated
4964 /// operand values.
4965 /// If this returns an empty vector, and if the constraint string itself
4966 /// isn't empty, there was an error parsing.
4967 TargetLowering::AsmOperandInfoVector
4968 TargetLowering::ParseConstraints(const DataLayout &DL,
4969                                  const TargetRegisterInfo *TRI,
4970                                  const CallBase &Call) const {
4971   /// Information about all of the constraints.
4972   AsmOperandInfoVector ConstraintOperands;
4973   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4974   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4975 
4976   // Do a prepass over the constraints, canonicalizing them, and building up the
4977   // ConstraintOperands list.
4978   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4979   unsigned ResNo = 0; // ResNo - The result number of the next output.
4980 
4981   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4982     ConstraintOperands.emplace_back(std::move(CI));
4983     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4984 
4985     // Update multiple alternative constraint count.
4986     if (OpInfo.multipleAlternatives.size() > maCount)
4987       maCount = OpInfo.multipleAlternatives.size();
4988 
4989     OpInfo.ConstraintVT = MVT::Other;
4990 
4991     // Compute the value type for each operand.
4992     switch (OpInfo.Type) {
4993     case InlineAsm::isOutput:
4994       // Indirect outputs just consume an argument.
4995       if (OpInfo.isIndirect) {
4996         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4997         break;
4998       }
4999 
5000       // The return value of the call is this value.  As such, there is no
5001       // corresponding argument.
5002       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5003       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5004         OpInfo.ConstraintVT =
5005             getSimpleValueType(DL, STy->getElementType(ResNo));
5006       } else {
5007         assert(ResNo == 0 && "Asm only has one result!");
5008         OpInfo.ConstraintVT =
5009             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5010       }
5011       ++ResNo;
5012       break;
5013     case InlineAsm::isInput:
5014       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5015       break;
5016     case InlineAsm::isClobber:
5017       // Nothing to do.
5018       break;
5019     }
5020 
5021     if (OpInfo.CallOperandVal) {
5022       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5023       if (OpInfo.isIndirect) {
5024         OpTy = Call.getAttributes().getParamElementType(ArgNo);
5025         assert(OpTy && "Indirect opernad must have elementtype attribute");
5026       }
5027 
5028       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5029       if (StructType *STy = dyn_cast<StructType>(OpTy))
5030         if (STy->getNumElements() == 1)
5031           OpTy = STy->getElementType(0);
5032 
5033       // If OpTy is not a single value, it may be a struct/union that we
5034       // can tile with integers.
5035       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5036         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5037         switch (BitSize) {
5038         default: break;
5039         case 1:
5040         case 8:
5041         case 16:
5042         case 32:
5043         case 64:
5044         case 128:
5045           OpInfo.ConstraintVT =
5046               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5047           break;
5048         }
5049       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5050         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5051         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5052       } else {
5053         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5054       }
5055 
5056       ArgNo++;
5057     }
5058   }
5059 
5060   // If we have multiple alternative constraints, select the best alternative.
5061   if (!ConstraintOperands.empty()) {
5062     if (maCount) {
5063       unsigned bestMAIndex = 0;
5064       int bestWeight = -1;
5065       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5066       int weight = -1;
5067       unsigned maIndex;
5068       // Compute the sums of the weights for each alternative, keeping track
5069       // of the best (highest weight) one so far.
5070       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5071         int weightSum = 0;
5072         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5073              cIndex != eIndex; ++cIndex) {
5074           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5075           if (OpInfo.Type == InlineAsm::isClobber)
5076             continue;
5077 
5078           // If this is an output operand with a matching input operand,
5079           // look up the matching input. If their types mismatch, e.g. one
5080           // is an integer, the other is floating point, or their sizes are
5081           // different, flag it as an maCantMatch.
5082           if (OpInfo.hasMatchingInput()) {
5083             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5084             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5085               if ((OpInfo.ConstraintVT.isInteger() !=
5086                    Input.ConstraintVT.isInteger()) ||
5087                   (OpInfo.ConstraintVT.getSizeInBits() !=
5088                    Input.ConstraintVT.getSizeInBits())) {
5089                 weightSum = -1; // Can't match.
5090                 break;
5091               }
5092             }
5093           }
5094           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5095           if (weight == -1) {
5096             weightSum = -1;
5097             break;
5098           }
5099           weightSum += weight;
5100         }
5101         // Update best.
5102         if (weightSum > bestWeight) {
5103           bestWeight = weightSum;
5104           bestMAIndex = maIndex;
5105         }
5106       }
5107 
5108       // Now select chosen alternative in each constraint.
5109       for (AsmOperandInfo &cInfo : ConstraintOperands)
5110         if (cInfo.Type != InlineAsm::isClobber)
5111           cInfo.selectAlternative(bestMAIndex);
5112     }
5113   }
5114 
5115   // Check and hook up tied operands, choose constraint code to use.
5116   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5117        cIndex != eIndex; ++cIndex) {
5118     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5119 
5120     // If this is an output operand with a matching input operand, look up the
5121     // matching input. If their types mismatch, e.g. one is an integer, the
5122     // other is floating point, or their sizes are different, flag it as an
5123     // error.
5124     if (OpInfo.hasMatchingInput()) {
5125       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5126 
5127       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5128         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5129             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5130                                          OpInfo.ConstraintVT);
5131         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5132             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5133                                          Input.ConstraintVT);
5134         if ((OpInfo.ConstraintVT.isInteger() !=
5135              Input.ConstraintVT.isInteger()) ||
5136             (MatchRC.second != InputRC.second)) {
5137           report_fatal_error("Unsupported asm: input constraint"
5138                              " with a matching output constraint of"
5139                              " incompatible type!");
5140         }
5141       }
5142     }
5143   }
5144 
5145   return ConstraintOperands;
5146 }
5147 
5148 /// Return an integer indicating how general CT is.
5149 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5150   switch (CT) {
5151   case TargetLowering::C_Immediate:
5152   case TargetLowering::C_Other:
5153   case TargetLowering::C_Unknown:
5154     return 0;
5155   case TargetLowering::C_Register:
5156     return 1;
5157   case TargetLowering::C_RegisterClass:
5158     return 2;
5159   case TargetLowering::C_Memory:
5160     return 3;
5161   }
5162   llvm_unreachable("Invalid constraint type");
5163 }
5164 
5165 /// Examine constraint type and operand type and determine a weight value.
5166 /// This object must already have been set up with the operand type
5167 /// and the current alternative constraint selected.
5168 TargetLowering::ConstraintWeight
5169   TargetLowering::getMultipleConstraintMatchWeight(
5170     AsmOperandInfo &info, int maIndex) const {
5171   InlineAsm::ConstraintCodeVector *rCodes;
5172   if (maIndex >= (int)info.multipleAlternatives.size())
5173     rCodes = &info.Codes;
5174   else
5175     rCodes = &info.multipleAlternatives[maIndex].Codes;
5176   ConstraintWeight BestWeight = CW_Invalid;
5177 
5178   // Loop over the options, keeping track of the most general one.
5179   for (const std::string &rCode : *rCodes) {
5180     ConstraintWeight weight =
5181         getSingleConstraintMatchWeight(info, rCode.c_str());
5182     if (weight > BestWeight)
5183       BestWeight = weight;
5184   }
5185 
5186   return BestWeight;
5187 }
5188 
5189 /// Examine constraint type and operand type and determine a weight value.
5190 /// This object must already have been set up with the operand type
5191 /// and the current alternative constraint selected.
5192 TargetLowering::ConstraintWeight
5193   TargetLowering::getSingleConstraintMatchWeight(
5194     AsmOperandInfo &info, const char *constraint) const {
5195   ConstraintWeight weight = CW_Invalid;
5196   Value *CallOperandVal = info.CallOperandVal;
5197     // If we don't have a value, we can't do a match,
5198     // but allow it at the lowest weight.
5199   if (!CallOperandVal)
5200     return CW_Default;
5201   // Look at the constraint type.
5202   switch (*constraint) {
5203     case 'i': // immediate integer.
5204     case 'n': // immediate integer with a known value.
5205       if (isa<ConstantInt>(CallOperandVal))
5206         weight = CW_Constant;
5207       break;
5208     case 's': // non-explicit intregal immediate.
5209       if (isa<GlobalValue>(CallOperandVal))
5210         weight = CW_Constant;
5211       break;
5212     case 'E': // immediate float if host format.
5213     case 'F': // immediate float.
5214       if (isa<ConstantFP>(CallOperandVal))
5215         weight = CW_Constant;
5216       break;
5217     case '<': // memory operand with autodecrement.
5218     case '>': // memory operand with autoincrement.
5219     case 'm': // memory operand.
5220     case 'o': // offsettable memory operand
5221     case 'V': // non-offsettable memory operand
5222       weight = CW_Memory;
5223       break;
5224     case 'r': // general register.
5225     case 'g': // general register, memory operand or immediate integer.
5226               // note: Clang converts "g" to "imr".
5227       if (CallOperandVal->getType()->isIntegerTy())
5228         weight = CW_Register;
5229       break;
5230     case 'X': // any operand.
5231   default:
5232     weight = CW_Default;
5233     break;
5234   }
5235   return weight;
5236 }
5237 
5238 /// If there are multiple different constraints that we could pick for this
5239 /// operand (e.g. "imr") try to pick the 'best' one.
5240 /// This is somewhat tricky: constraints fall into four classes:
5241 ///    Other         -> immediates and magic values
5242 ///    Register      -> one specific register
5243 ///    RegisterClass -> a group of regs
5244 ///    Memory        -> memory
5245 /// Ideally, we would pick the most specific constraint possible: if we have
5246 /// something that fits into a register, we would pick it.  The problem here
5247 /// is that if we have something that could either be in a register or in
5248 /// memory that use of the register could cause selection of *other*
5249 /// operands to fail: they might only succeed if we pick memory.  Because of
5250 /// this the heuristic we use is:
5251 ///
5252 ///  1) If there is an 'other' constraint, and if the operand is valid for
5253 ///     that constraint, use it.  This makes us take advantage of 'i'
5254 ///     constraints when available.
5255 ///  2) Otherwise, pick the most general constraint present.  This prefers
5256 ///     'm' over 'r', for example.
5257 ///
5258 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5259                              const TargetLowering &TLI,
5260                              SDValue Op, SelectionDAG *DAG) {
5261   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5262   unsigned BestIdx = 0;
5263   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5264   int BestGenerality = -1;
5265 
5266   // Loop over the options, keeping track of the most general one.
5267   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5268     TargetLowering::ConstraintType CType =
5269       TLI.getConstraintType(OpInfo.Codes[i]);
5270 
5271     // Indirect 'other' or 'immediate' constraints are not allowed.
5272     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5273                                CType == TargetLowering::C_Register ||
5274                                CType == TargetLowering::C_RegisterClass))
5275       continue;
5276 
5277     // If this is an 'other' or 'immediate' constraint, see if the operand is
5278     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5279     // the operand is an integer in the range [0..31] we want to use I (saving a
5280     // load of a register), otherwise we must use 'r'.
5281     if ((CType == TargetLowering::C_Other ||
5282          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5283       assert(OpInfo.Codes[i].size() == 1 &&
5284              "Unhandled multi-letter 'other' constraint");
5285       std::vector<SDValue> ResultOps;
5286       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5287                                        ResultOps, *DAG);
5288       if (!ResultOps.empty()) {
5289         BestType = CType;
5290         BestIdx = i;
5291         break;
5292       }
5293     }
5294 
5295     // Things with matching constraints can only be registers, per gcc
5296     // documentation.  This mainly affects "g" constraints.
5297     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5298       continue;
5299 
5300     // This constraint letter is more general than the previous one, use it.
5301     int Generality = getConstraintGenerality(CType);
5302     if (Generality > BestGenerality) {
5303       BestType = CType;
5304       BestIdx = i;
5305       BestGenerality = Generality;
5306     }
5307   }
5308 
5309   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5310   OpInfo.ConstraintType = BestType;
5311 }
5312 
5313 /// Determines the constraint code and constraint type to use for the specific
5314 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5315 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5316                                             SDValue Op,
5317                                             SelectionDAG *DAG) const {
5318   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5319 
5320   // Single-letter constraints ('r') are very common.
5321   if (OpInfo.Codes.size() == 1) {
5322     OpInfo.ConstraintCode = OpInfo.Codes[0];
5323     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5324   } else {
5325     ChooseConstraint(OpInfo, *this, Op, DAG);
5326   }
5327 
5328   // 'X' matches anything.
5329   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5330     // Constants are handled elsewhere.  For Functions, the type here is the
5331     // type of the result, which is not what we want to look at; leave them
5332     // alone.
5333     Value *v = OpInfo.CallOperandVal;
5334     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5335       return;
5336     }
5337 
5338     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5339       OpInfo.ConstraintCode = "i";
5340       return;
5341     }
5342 
5343     // Otherwise, try to resolve it to something we know about by looking at
5344     // the actual operand type.
5345     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5346       OpInfo.ConstraintCode = Repl;
5347       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5348     }
5349   }
5350 }
5351 
5352 /// Given an exact SDIV by a constant, create a multiplication
5353 /// with the multiplicative inverse of the constant.
5354 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5355                               const SDLoc &dl, SelectionDAG &DAG,
5356                               SmallVectorImpl<SDNode *> &Created) {
5357   SDValue Op0 = N->getOperand(0);
5358   SDValue Op1 = N->getOperand(1);
5359   EVT VT = N->getValueType(0);
5360   EVT SVT = VT.getScalarType();
5361   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5362   EVT ShSVT = ShVT.getScalarType();
5363 
5364   bool UseSRA = false;
5365   SmallVector<SDValue, 16> Shifts, Factors;
5366 
5367   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5368     if (C->isZero())
5369       return false;
5370     APInt Divisor = C->getAPIntValue();
5371     unsigned Shift = Divisor.countTrailingZeros();
5372     if (Shift) {
5373       Divisor.ashrInPlace(Shift);
5374       UseSRA = true;
5375     }
5376     // Calculate the multiplicative inverse, using Newton's method.
5377     APInt t;
5378     APInt Factor = Divisor;
5379     while ((t = Divisor * Factor) != 1)
5380       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5381     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5382     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5383     return true;
5384   };
5385 
5386   // Collect all magic values from the build vector.
5387   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5388     return SDValue();
5389 
5390   SDValue Shift, Factor;
5391   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5392     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5393     Factor = DAG.getBuildVector(VT, dl, Factors);
5394   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5395     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5396            "Expected matchUnaryPredicate to return one element for scalable "
5397            "vectors");
5398     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5399     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5400   } else {
5401     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5402     Shift = Shifts[0];
5403     Factor = Factors[0];
5404   }
5405 
5406   SDValue Res = Op0;
5407 
5408   // Shift the value upfront if it is even, so the LSB is one.
5409   if (UseSRA) {
5410     // TODO: For UDIV use SRL instead of SRA.
5411     SDNodeFlags Flags;
5412     Flags.setExact(true);
5413     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5414     Created.push_back(Res.getNode());
5415   }
5416 
5417   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5418 }
5419 
5420 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5421                               SelectionDAG &DAG,
5422                               SmallVectorImpl<SDNode *> &Created) const {
5423   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5424   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5425   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5426     return SDValue(N, 0); // Lower SDIV as SDIV
5427   return SDValue();
5428 }
5429 
5430 /// Given an ISD::SDIV node expressing a divide by constant,
5431 /// return a DAG expression to select that will generate the same value by
5432 /// multiplying by a magic number.
5433 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5434 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5435                                   bool IsAfterLegalization,
5436                                   SmallVectorImpl<SDNode *> &Created) const {
5437   SDLoc dl(N);
5438   EVT VT = N->getValueType(0);
5439   EVT SVT = VT.getScalarType();
5440   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5441   EVT ShSVT = ShVT.getScalarType();
5442   unsigned EltBits = VT.getScalarSizeInBits();
5443   EVT MulVT;
5444 
5445   // Check to see if we can do this.
5446   // FIXME: We should be more aggressive here.
5447   if (!isTypeLegal(VT)) {
5448     // Limit this to simple scalars for now.
5449     if (VT.isVector() || !VT.isSimple())
5450       return SDValue();
5451 
5452     // If this type will be promoted to a large enough type with a legal
5453     // multiply operation, we can go ahead and do this transform.
5454     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5455       return SDValue();
5456 
5457     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5458     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5459         !isOperationLegal(ISD::MUL, MulVT))
5460       return SDValue();
5461   }
5462 
5463   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5464   if (N->getFlags().hasExact())
5465     return BuildExactSDIV(*this, N, dl, DAG, Created);
5466 
5467   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5468 
5469   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5470     if (C->isZero())
5471       return false;
5472 
5473     const APInt &Divisor = C->getAPIntValue();
5474     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5475     int NumeratorFactor = 0;
5476     int ShiftMask = -1;
5477 
5478     if (Divisor.isOne() || Divisor.isAllOnes()) {
5479       // If d is +1/-1, we just multiply the numerator by +1/-1.
5480       NumeratorFactor = Divisor.getSExtValue();
5481       magics.Magic = 0;
5482       magics.ShiftAmount = 0;
5483       ShiftMask = 0;
5484     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5485       // If d > 0 and m < 0, add the numerator.
5486       NumeratorFactor = 1;
5487     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5488       // If d < 0 and m > 0, subtract the numerator.
5489       NumeratorFactor = -1;
5490     }
5491 
5492     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5493     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5494     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5495     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5496     return true;
5497   };
5498 
5499   SDValue N0 = N->getOperand(0);
5500   SDValue N1 = N->getOperand(1);
5501 
5502   // Collect the shifts / magic values from each element.
5503   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5504     return SDValue();
5505 
5506   SDValue MagicFactor, Factor, Shift, ShiftMask;
5507   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5508     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5509     Factor = DAG.getBuildVector(VT, dl, Factors);
5510     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5511     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5512   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5513     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5514            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5515            "Expected matchUnaryPredicate to return one element for scalable "
5516            "vectors");
5517     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5518     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5519     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5520     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5521   } else {
5522     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5523     MagicFactor = MagicFactors[0];
5524     Factor = Factors[0];
5525     Shift = Shifts[0];
5526     ShiftMask = ShiftMasks[0];
5527   }
5528 
5529   // Multiply the numerator (operand 0) by the magic value.
5530   // FIXME: We should support doing a MUL in a wider type.
5531   auto GetMULHS = [&](SDValue X, SDValue Y) {
5532     // If the type isn't legal, use a wider mul of the the type calculated
5533     // earlier.
5534     if (!isTypeLegal(VT)) {
5535       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5536       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5537       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5538       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5539                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5540       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5541     }
5542 
5543     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5544       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5545     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5546       SDValue LoHi =
5547           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5548       return SDValue(LoHi.getNode(), 1);
5549     }
5550     return SDValue();
5551   };
5552 
5553   SDValue Q = GetMULHS(N0, MagicFactor);
5554   if (!Q)
5555     return SDValue();
5556 
5557   Created.push_back(Q.getNode());
5558 
5559   // (Optionally) Add/subtract the numerator using Factor.
5560   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5561   Created.push_back(Factor.getNode());
5562   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5563   Created.push_back(Q.getNode());
5564 
5565   // Shift right algebraic by shift value.
5566   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5567   Created.push_back(Q.getNode());
5568 
5569   // Extract the sign bit, mask it and add it to the quotient.
5570   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5571   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5572   Created.push_back(T.getNode());
5573   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5574   Created.push_back(T.getNode());
5575   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5576 }
5577 
5578 /// Given an ISD::UDIV node expressing a divide by constant,
5579 /// return a DAG expression to select that will generate the same value by
5580 /// multiplying by a magic number.
5581 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5582 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5583                                   bool IsAfterLegalization,
5584                                   SmallVectorImpl<SDNode *> &Created) const {
5585   SDLoc dl(N);
5586   EVT VT = N->getValueType(0);
5587   EVT SVT = VT.getScalarType();
5588   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5589   EVT ShSVT = ShVT.getScalarType();
5590   unsigned EltBits = VT.getScalarSizeInBits();
5591   EVT MulVT;
5592 
5593   // Check to see if we can do this.
5594   // FIXME: We should be more aggressive here.
5595   if (!isTypeLegal(VT)) {
5596     // Limit this to simple scalars for now.
5597     if (VT.isVector() || !VT.isSimple())
5598       return SDValue();
5599 
5600     // If this type will be promoted to a large enough type with a legal
5601     // multiply operation, we can go ahead and do this transform.
5602     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5603       return SDValue();
5604 
5605     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5606     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5607         !isOperationLegal(ISD::MUL, MulVT))
5608       return SDValue();
5609   }
5610 
5611   bool UseNPQ = false;
5612   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5613 
5614   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5615     if (C->isZero())
5616       return false;
5617     // FIXME: We should use a narrower constant when the upper
5618     // bits are known to be zero.
5619     const APInt& Divisor = C->getAPIntValue();
5620     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5621     unsigned PreShift = 0, PostShift = 0;
5622 
5623     // If the divisor is even, we can avoid using the expensive fixup by
5624     // shifting the divided value upfront.
5625     if (magics.IsAdd != 0 && !Divisor[0]) {
5626       PreShift = Divisor.countTrailingZeros();
5627       // Get magic number for the shifted divisor.
5628       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5629       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5630     }
5631 
5632     APInt Magic = magics.Magic;
5633 
5634     unsigned SelNPQ;
5635     if (magics.IsAdd == 0 || Divisor.isOne()) {
5636       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5637              "We shouldn't generate an undefined shift!");
5638       PostShift = magics.ShiftAmount;
5639       SelNPQ = false;
5640     } else {
5641       PostShift = magics.ShiftAmount - 1;
5642       SelNPQ = true;
5643     }
5644 
5645     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5646     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5647     NPQFactors.push_back(
5648         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5649                                : APInt::getZero(EltBits),
5650                         dl, SVT));
5651     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5652     UseNPQ |= SelNPQ;
5653     return true;
5654   };
5655 
5656   SDValue N0 = N->getOperand(0);
5657   SDValue N1 = N->getOperand(1);
5658 
5659   // Collect the shifts/magic values from each element.
5660   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5661     return SDValue();
5662 
5663   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5664   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5665     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5666     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5667     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5668     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5669   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5670     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5671            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5672            "Expected matchUnaryPredicate to return one for scalable vectors");
5673     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5674     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5675     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5676     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5677   } else {
5678     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5679     PreShift = PreShifts[0];
5680     MagicFactor = MagicFactors[0];
5681     PostShift = PostShifts[0];
5682   }
5683 
5684   SDValue Q = N0;
5685   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5686   Created.push_back(Q.getNode());
5687 
5688   // FIXME: We should support doing a MUL in a wider type.
5689   auto GetMULHU = [&](SDValue X, SDValue Y) {
5690     // If the type isn't legal, use a wider mul of the the type calculated
5691     // earlier.
5692     if (!isTypeLegal(VT)) {
5693       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5694       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5695       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5696       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5697                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5698       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5699     }
5700 
5701     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5702       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5703     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5704       SDValue LoHi =
5705           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5706       return SDValue(LoHi.getNode(), 1);
5707     }
5708     return SDValue(); // No mulhu or equivalent
5709   };
5710 
5711   // Multiply the numerator (operand 0) by the magic value.
5712   Q = GetMULHU(Q, MagicFactor);
5713   if (!Q)
5714     return SDValue();
5715 
5716   Created.push_back(Q.getNode());
5717 
5718   if (UseNPQ) {
5719     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5720     Created.push_back(NPQ.getNode());
5721 
5722     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5723     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5724     if (VT.isVector())
5725       NPQ = GetMULHU(NPQ, NPQFactor);
5726     else
5727       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5728 
5729     Created.push_back(NPQ.getNode());
5730 
5731     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5732     Created.push_back(Q.getNode());
5733   }
5734 
5735   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5736   Created.push_back(Q.getNode());
5737 
5738   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5739 
5740   SDValue One = DAG.getConstant(1, dl, VT);
5741   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5742   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5743 }
5744 
5745 /// If all values in Values that *don't* match the predicate are same 'splat'
5746 /// value, then replace all values with that splat value.
5747 /// Else, if AlternativeReplacement was provided, then replace all values that
5748 /// do match predicate with AlternativeReplacement value.
5749 static void
5750 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5751                           std::function<bool(SDValue)> Predicate,
5752                           SDValue AlternativeReplacement = SDValue()) {
5753   SDValue Replacement;
5754   // Is there a value for which the Predicate does *NOT* match? What is it?
5755   auto SplatValue = llvm::find_if_not(Values, Predicate);
5756   if (SplatValue != Values.end()) {
5757     // Does Values consist only of SplatValue's and values matching Predicate?
5758     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5759           return Value == *SplatValue || Predicate(Value);
5760         })) // Then we shall replace values matching predicate with SplatValue.
5761       Replacement = *SplatValue;
5762   }
5763   if (!Replacement) {
5764     // Oops, we did not find the "baseline" splat value.
5765     if (!AlternativeReplacement)
5766       return; // Nothing to do.
5767     // Let's replace with provided value then.
5768     Replacement = AlternativeReplacement;
5769   }
5770   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5771 }
5772 
5773 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5774 /// where the divisor is constant and the comparison target is zero,
5775 /// return a DAG expression that will generate the same comparison result
5776 /// using only multiplications, additions and shifts/rotations.
5777 /// Ref: "Hacker's Delight" 10-17.
5778 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5779                                         SDValue CompTargetNode,
5780                                         ISD::CondCode Cond,
5781                                         DAGCombinerInfo &DCI,
5782                                         const SDLoc &DL) const {
5783   SmallVector<SDNode *, 5> Built;
5784   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5785                                          DCI, DL, Built)) {
5786     for (SDNode *N : Built)
5787       DCI.AddToWorklist(N);
5788     return Folded;
5789   }
5790 
5791   return SDValue();
5792 }
5793 
5794 SDValue
5795 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5796                                   SDValue CompTargetNode, ISD::CondCode Cond,
5797                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5798                                   SmallVectorImpl<SDNode *> &Created) const {
5799   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5800   // - D must be constant, with D = D0 * 2^K where D0 is odd
5801   // - P is the multiplicative inverse of D0 modulo 2^W
5802   // - Q = floor(((2^W) - 1) / D)
5803   // where W is the width of the common type of N and D.
5804   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5805          "Only applicable for (in)equality comparisons.");
5806 
5807   SelectionDAG &DAG = DCI.DAG;
5808 
5809   EVT VT = REMNode.getValueType();
5810   EVT SVT = VT.getScalarType();
5811   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5812   EVT ShSVT = ShVT.getScalarType();
5813 
5814   // If MUL is unavailable, we cannot proceed in any case.
5815   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5816     return SDValue();
5817 
5818   bool ComparingWithAllZeros = true;
5819   bool AllComparisonsWithNonZerosAreTautological = true;
5820   bool HadTautologicalLanes = false;
5821   bool AllLanesAreTautological = true;
5822   bool HadEvenDivisor = false;
5823   bool AllDivisorsArePowerOfTwo = true;
5824   bool HadTautologicalInvertedLanes = false;
5825   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5826 
5827   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5828     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5829     if (CDiv->isZero())
5830       return false;
5831 
5832     const APInt &D = CDiv->getAPIntValue();
5833     const APInt &Cmp = CCmp->getAPIntValue();
5834 
5835     ComparingWithAllZeros &= Cmp.isZero();
5836 
5837     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5838     // if C2 is not less than C1, the comparison is always false.
5839     // But we will only be able to produce the comparison that will give the
5840     // opposive tautological answer. So this lane would need to be fixed up.
5841     bool TautologicalInvertedLane = D.ule(Cmp);
5842     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5843 
5844     // If all lanes are tautological (either all divisors are ones, or divisor
5845     // is not greater than the constant we are comparing with),
5846     // we will prefer to avoid the fold.
5847     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5848     HadTautologicalLanes |= TautologicalLane;
5849     AllLanesAreTautological &= TautologicalLane;
5850 
5851     // If we are comparing with non-zero, we need'll need  to subtract said
5852     // comparison value from the LHS. But there is no point in doing that if
5853     // every lane where we are comparing with non-zero is tautological..
5854     if (!Cmp.isZero())
5855       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5856 
5857     // Decompose D into D0 * 2^K
5858     unsigned K = D.countTrailingZeros();
5859     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5860     APInt D0 = D.lshr(K);
5861 
5862     // D is even if it has trailing zeros.
5863     HadEvenDivisor |= (K != 0);
5864     // D is a power-of-two if D0 is one.
5865     // If all divisors are power-of-two, we will prefer to avoid the fold.
5866     AllDivisorsArePowerOfTwo &= D0.isOne();
5867 
5868     // P = inv(D0, 2^W)
5869     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5870     unsigned W = D.getBitWidth();
5871     APInt P = D0.zext(W + 1)
5872                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5873                   .trunc(W);
5874     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5875     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5876 
5877     // Q = floor((2^W - 1) u/ D)
5878     // R = ((2^W - 1) u% D)
5879     APInt Q, R;
5880     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5881 
5882     // If we are comparing with zero, then that comparison constant is okay,
5883     // else it may need to be one less than that.
5884     if (Cmp.ugt(R))
5885       Q -= 1;
5886 
5887     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5888            "We are expecting that K is always less than all-ones for ShSVT");
5889 
5890     // If the lane is tautological the result can be constant-folded.
5891     if (TautologicalLane) {
5892       // Set P and K amount to a bogus values so we can try to splat them.
5893       P = 0;
5894       K = -1;
5895       // And ensure that comparison constant is tautological,
5896       // it will always compare true/false.
5897       Q = -1;
5898     }
5899 
5900     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5901     KAmts.push_back(
5902         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5903     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5904     return true;
5905   };
5906 
5907   SDValue N = REMNode.getOperand(0);
5908   SDValue D = REMNode.getOperand(1);
5909 
5910   // Collect the values from each element.
5911   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5912     return SDValue();
5913 
5914   // If all lanes are tautological, the result can be constant-folded.
5915   if (AllLanesAreTautological)
5916     return SDValue();
5917 
5918   // If this is a urem by a powers-of-two, avoid the fold since it can be
5919   // best implemented as a bit test.
5920   if (AllDivisorsArePowerOfTwo)
5921     return SDValue();
5922 
5923   SDValue PVal, KVal, QVal;
5924   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5925     if (HadTautologicalLanes) {
5926       // Try to turn PAmts into a splat, since we don't care about the values
5927       // that are currently '0'. If we can't, just keep '0'`s.
5928       turnVectorIntoSplatVector(PAmts, isNullConstant);
5929       // Try to turn KAmts into a splat, since we don't care about the values
5930       // that are currently '-1'. If we can't, change them to '0'`s.
5931       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5932                                 DAG.getConstant(0, DL, ShSVT));
5933     }
5934 
5935     PVal = DAG.getBuildVector(VT, DL, PAmts);
5936     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5937     QVal = DAG.getBuildVector(VT, DL, QAmts);
5938   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5939     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5940            "Expected matchBinaryPredicate to return one element for "
5941            "SPLAT_VECTORs");
5942     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5943     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5944     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5945   } else {
5946     PVal = PAmts[0];
5947     KVal = KAmts[0];
5948     QVal = QAmts[0];
5949   }
5950 
5951   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5952     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5953       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5954     assert(CompTargetNode.getValueType() == N.getValueType() &&
5955            "Expecting that the types on LHS and RHS of comparisons match.");
5956     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5957   }
5958 
5959   // (mul N, P)
5960   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5961   Created.push_back(Op0.getNode());
5962 
5963   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5964   // divisors as a performance improvement, since rotating by 0 is a no-op.
5965   if (HadEvenDivisor) {
5966     // We need ROTR to do this.
5967     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5968       return SDValue();
5969     // UREM: (rotr (mul N, P), K)
5970     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5971     Created.push_back(Op0.getNode());
5972   }
5973 
5974   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5975   SDValue NewCC =
5976       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5977                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5978   if (!HadTautologicalInvertedLanes)
5979     return NewCC;
5980 
5981   // If any lanes previously compared always-false, the NewCC will give
5982   // always-true result for them, so we need to fixup those lanes.
5983   // Or the other way around for inequality predicate.
5984   assert(VT.isVector() && "Can/should only get here for vectors.");
5985   Created.push_back(NewCC.getNode());
5986 
5987   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5988   // if C2 is not less than C1, the comparison is always false.
5989   // But we have produced the comparison that will give the
5990   // opposive tautological answer. So these lanes would need to be fixed up.
5991   SDValue TautologicalInvertedChannels =
5992       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5993   Created.push_back(TautologicalInvertedChannels.getNode());
5994 
5995   // NOTE: we avoid letting illegal types through even if we're before legalize
5996   // ops – legalization has a hard time producing good code for this.
5997   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5998     // If we have a vector select, let's replace the comparison results in the
5999     // affected lanes with the correct tautological result.
6000     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6001                                               DL, SETCCVT, SETCCVT);
6002     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6003                        Replacement, NewCC);
6004   }
6005 
6006   // Else, we can just invert the comparison result in the appropriate lanes.
6007   //
6008   // NOTE: see the note above VSELECT above.
6009   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6010     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6011                        TautologicalInvertedChannels);
6012 
6013   return SDValue(); // Don't know how to lower.
6014 }
6015 
6016 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6017 /// where the divisor is constant and the comparison target is zero,
6018 /// return a DAG expression that will generate the same comparison result
6019 /// using only multiplications, additions and shifts/rotations.
6020 /// Ref: "Hacker's Delight" 10-17.
6021 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6022                                         SDValue CompTargetNode,
6023                                         ISD::CondCode Cond,
6024                                         DAGCombinerInfo &DCI,
6025                                         const SDLoc &DL) const {
6026   SmallVector<SDNode *, 7> Built;
6027   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6028                                          DCI, DL, Built)) {
6029     assert(Built.size() <= 7 && "Max size prediction failed.");
6030     for (SDNode *N : Built)
6031       DCI.AddToWorklist(N);
6032     return Folded;
6033   }
6034 
6035   return SDValue();
6036 }
6037 
6038 SDValue
6039 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6040                                   SDValue CompTargetNode, ISD::CondCode Cond,
6041                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6042                                   SmallVectorImpl<SDNode *> &Created) const {
6043   // Fold:
6044   //   (seteq/ne (srem N, D), 0)
6045   // To:
6046   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6047   //
6048   // - D must be constant, with D = D0 * 2^K where D0 is odd
6049   // - P is the multiplicative inverse of D0 modulo 2^W
6050   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6051   // - Q = floor((2 * A) / (2^K))
6052   // where W is the width of the common type of N and D.
6053   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6054          "Only applicable for (in)equality comparisons.");
6055 
6056   SelectionDAG &DAG = DCI.DAG;
6057 
6058   EVT VT = REMNode.getValueType();
6059   EVT SVT = VT.getScalarType();
6060   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6061   EVT ShSVT = ShVT.getScalarType();
6062 
6063   // If we are after ops legalization, and MUL is unavailable, we can not
6064   // proceed.
6065   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6066     return SDValue();
6067 
6068   // TODO: Could support comparing with non-zero too.
6069   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6070   if (!CompTarget || !CompTarget->isZero())
6071     return SDValue();
6072 
6073   bool HadIntMinDivisor = false;
6074   bool HadOneDivisor = false;
6075   bool AllDivisorsAreOnes = true;
6076   bool HadEvenDivisor = false;
6077   bool NeedToApplyOffset = false;
6078   bool AllDivisorsArePowerOfTwo = true;
6079   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6080 
6081   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6082     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6083     if (C->isZero())
6084       return false;
6085 
6086     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6087 
6088     // WARNING: this fold is only valid for positive divisors!
6089     APInt D = C->getAPIntValue();
6090     if (D.isNegative())
6091       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6092 
6093     HadIntMinDivisor |= D.isMinSignedValue();
6094 
6095     // If all divisors are ones, we will prefer to avoid the fold.
6096     HadOneDivisor |= D.isOne();
6097     AllDivisorsAreOnes &= D.isOne();
6098 
6099     // Decompose D into D0 * 2^K
6100     unsigned K = D.countTrailingZeros();
6101     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6102     APInt D0 = D.lshr(K);
6103 
6104     if (!D.isMinSignedValue()) {
6105       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6106       // we don't care about this lane in this fold, we'll special-handle it.
6107       HadEvenDivisor |= (K != 0);
6108     }
6109 
6110     // D is a power-of-two if D0 is one. This includes INT_MIN.
6111     // If all divisors are power-of-two, we will prefer to avoid the fold.
6112     AllDivisorsArePowerOfTwo &= D0.isOne();
6113 
6114     // P = inv(D0, 2^W)
6115     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6116     unsigned W = D.getBitWidth();
6117     APInt P = D0.zext(W + 1)
6118                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6119                   .trunc(W);
6120     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6121     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6122 
6123     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6124     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6125     A.clearLowBits(K);
6126 
6127     if (!D.isMinSignedValue()) {
6128       // If divisor INT_MIN, then we don't care about this lane in this fold,
6129       // we'll special-handle it.
6130       NeedToApplyOffset |= A != 0;
6131     }
6132 
6133     // Q = floor((2 * A) / (2^K))
6134     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6135 
6136     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6137            "We are expecting that A is always less than all-ones for SVT");
6138     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6139            "We are expecting that K is always less than all-ones for ShSVT");
6140 
6141     // If the divisor is 1 the result can be constant-folded. Likewise, we
6142     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6143     if (D.isOne()) {
6144       // Set P, A and K to a bogus values so we can try to splat them.
6145       P = 0;
6146       A = -1;
6147       K = -1;
6148 
6149       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6150       Q = -1;
6151     }
6152 
6153     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6154     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6155     KAmts.push_back(
6156         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6157     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6158     return true;
6159   };
6160 
6161   SDValue N = REMNode.getOperand(0);
6162   SDValue D = REMNode.getOperand(1);
6163 
6164   // Collect the values from each element.
6165   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6166     return SDValue();
6167 
6168   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6169   if (AllDivisorsAreOnes)
6170     return SDValue();
6171 
6172   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6173   // since it can be best implemented as a bit test.
6174   if (AllDivisorsArePowerOfTwo)
6175     return SDValue();
6176 
6177   SDValue PVal, AVal, KVal, QVal;
6178   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6179     if (HadOneDivisor) {
6180       // Try to turn PAmts into a splat, since we don't care about the values
6181       // that are currently '0'. If we can't, just keep '0'`s.
6182       turnVectorIntoSplatVector(PAmts, isNullConstant);
6183       // Try to turn AAmts into a splat, since we don't care about the
6184       // values that are currently '-1'. If we can't, change them to '0'`s.
6185       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6186                                 DAG.getConstant(0, DL, SVT));
6187       // Try to turn KAmts into a splat, since we don't care about the values
6188       // that are currently '-1'. If we can't, change them to '0'`s.
6189       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6190                                 DAG.getConstant(0, DL, ShSVT));
6191     }
6192 
6193     PVal = DAG.getBuildVector(VT, DL, PAmts);
6194     AVal = DAG.getBuildVector(VT, DL, AAmts);
6195     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6196     QVal = DAG.getBuildVector(VT, DL, QAmts);
6197   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6198     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6199            QAmts.size() == 1 &&
6200            "Expected matchUnaryPredicate to return one element for scalable "
6201            "vectors");
6202     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6203     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6204     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6205     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6206   } else {
6207     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6208     PVal = PAmts[0];
6209     AVal = AAmts[0];
6210     KVal = KAmts[0];
6211     QVal = QAmts[0];
6212   }
6213 
6214   // (mul N, P)
6215   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6216   Created.push_back(Op0.getNode());
6217 
6218   if (NeedToApplyOffset) {
6219     // We need ADD to do this.
6220     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6221       return SDValue();
6222 
6223     // (add (mul N, P), A)
6224     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6225     Created.push_back(Op0.getNode());
6226   }
6227 
6228   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6229   // divisors as a performance improvement, since rotating by 0 is a no-op.
6230   if (HadEvenDivisor) {
6231     // We need ROTR to do this.
6232     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6233       return SDValue();
6234     // SREM: (rotr (add (mul N, P), A), K)
6235     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6236     Created.push_back(Op0.getNode());
6237   }
6238 
6239   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6240   SDValue Fold =
6241       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6242                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6243 
6244   // If we didn't have lanes with INT_MIN divisor, then we're done.
6245   if (!HadIntMinDivisor)
6246     return Fold;
6247 
6248   // That fold is only valid for positive divisors. Which effectively means,
6249   // it is invalid for INT_MIN divisors. So if we have such a lane,
6250   // we must fix-up results for said lanes.
6251   assert(VT.isVector() && "Can/should only get here for vectors.");
6252 
6253   // NOTE: we avoid letting illegal types through even if we're before legalize
6254   // ops – legalization has a hard time producing good code for the code that
6255   // follows.
6256   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6257       !isOperationLegalOrCustom(ISD::AND, VT) ||
6258       !isOperationLegalOrCustom(Cond, VT) ||
6259       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6260     return SDValue();
6261 
6262   Created.push_back(Fold.getNode());
6263 
6264   SDValue IntMin = DAG.getConstant(
6265       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6266   SDValue IntMax = DAG.getConstant(
6267       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6268   SDValue Zero =
6269       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6270 
6271   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6272   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6273   Created.push_back(DivisorIsIntMin.getNode());
6274 
6275   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6276   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6277   Created.push_back(Masked.getNode());
6278   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6279   Created.push_back(MaskedIsZero.getNode());
6280 
6281   // To produce final result we need to blend 2 vectors: 'SetCC' and
6282   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6283   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6284   // constant-folded, select can get lowered to a shuffle with constant mask.
6285   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6286                                 MaskedIsZero, Fold);
6287 
6288   return Blended;
6289 }
6290 
6291 bool TargetLowering::
6292 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6293   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6294     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6295                                 "be a constant integer");
6296     return true;
6297   }
6298 
6299   return false;
6300 }
6301 
6302 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6303                                          const DenormalMode &Mode) const {
6304   SDLoc DL(Op);
6305   EVT VT = Op.getValueType();
6306   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6307   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6308   // Testing it with denormal inputs to avoid wrong estimate.
6309   if (Mode.Input == DenormalMode::IEEE) {
6310     // This is specifically a check for the handling of denormal inputs,
6311     // not the result.
6312 
6313     // Test = fabs(X) < SmallestNormal
6314     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6315     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6316     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6317     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6318     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6319   }
6320   // Test = X == 0.0
6321   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6322 }
6323 
6324 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6325                                              bool LegalOps, bool OptForSize,
6326                                              NegatibleCost &Cost,
6327                                              unsigned Depth) const {
6328   // fneg is removable even if it has multiple uses.
6329   if (Op.getOpcode() == ISD::FNEG) {
6330     Cost = NegatibleCost::Cheaper;
6331     return Op.getOperand(0);
6332   }
6333 
6334   // Don't recurse exponentially.
6335   if (Depth > SelectionDAG::MaxRecursionDepth)
6336     return SDValue();
6337 
6338   // Pre-increment recursion depth for use in recursive calls.
6339   ++Depth;
6340   const SDNodeFlags Flags = Op->getFlags();
6341   const TargetOptions &Options = DAG.getTarget().Options;
6342   EVT VT = Op.getValueType();
6343   unsigned Opcode = Op.getOpcode();
6344 
6345   // Don't allow anything with multiple uses unless we know it is free.
6346   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6347     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6348                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6349     if (!IsFreeExtend)
6350       return SDValue();
6351   }
6352 
6353   auto RemoveDeadNode = [&](SDValue N) {
6354     if (N && N.getNode()->use_empty())
6355       DAG.RemoveDeadNode(N.getNode());
6356   };
6357 
6358   SDLoc DL(Op);
6359 
6360   // Because getNegatedExpression can delete nodes we need a handle to keep
6361   // temporary nodes alive in case the recursion manages to create an identical
6362   // node.
6363   std::list<HandleSDNode> Handles;
6364 
6365   switch (Opcode) {
6366   case ISD::ConstantFP: {
6367     // Don't invert constant FP values after legalization unless the target says
6368     // the negated constant is legal.
6369     bool IsOpLegal =
6370         isOperationLegal(ISD::ConstantFP, VT) ||
6371         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6372                      OptForSize);
6373 
6374     if (LegalOps && !IsOpLegal)
6375       break;
6376 
6377     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6378     V.changeSign();
6379     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6380 
6381     // If we already have the use of the negated floating constant, it is free
6382     // to negate it even it has multiple uses.
6383     if (!Op.hasOneUse() && CFP.use_empty())
6384       break;
6385     Cost = NegatibleCost::Neutral;
6386     return CFP;
6387   }
6388   case ISD::BUILD_VECTOR: {
6389     // Only permit BUILD_VECTOR of constants.
6390     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6391           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6392         }))
6393       break;
6394 
6395     bool IsOpLegal =
6396         (isOperationLegal(ISD::ConstantFP, VT) &&
6397          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6398         llvm::all_of(Op->op_values(), [&](SDValue N) {
6399           return N.isUndef() ||
6400                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6401                               OptForSize);
6402         });
6403 
6404     if (LegalOps && !IsOpLegal)
6405       break;
6406 
6407     SmallVector<SDValue, 4> Ops;
6408     for (SDValue C : Op->op_values()) {
6409       if (C.isUndef()) {
6410         Ops.push_back(C);
6411         continue;
6412       }
6413       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6414       V.changeSign();
6415       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6416     }
6417     Cost = NegatibleCost::Neutral;
6418     return DAG.getBuildVector(VT, DL, Ops);
6419   }
6420   case ISD::FADD: {
6421     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6422       break;
6423 
6424     // After operation legalization, it might not be legal to create new FSUBs.
6425     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6426       break;
6427     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6428 
6429     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6430     NegatibleCost CostX = NegatibleCost::Expensive;
6431     SDValue NegX =
6432         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6433     // Prevent this node from being deleted by the next call.
6434     if (NegX)
6435       Handles.emplace_back(NegX);
6436 
6437     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6438     NegatibleCost CostY = NegatibleCost::Expensive;
6439     SDValue NegY =
6440         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6441 
6442     // We're done with the handles.
6443     Handles.clear();
6444 
6445     // Negate the X if its cost is less or equal than Y.
6446     if (NegX && (CostX <= CostY)) {
6447       Cost = CostX;
6448       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6449       if (NegY != N)
6450         RemoveDeadNode(NegY);
6451       return N;
6452     }
6453 
6454     // Negate the Y if it is not expensive.
6455     if (NegY) {
6456       Cost = CostY;
6457       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6458       if (NegX != N)
6459         RemoveDeadNode(NegX);
6460       return N;
6461     }
6462     break;
6463   }
6464   case ISD::FSUB: {
6465     // We can't turn -(A-B) into B-A when we honor signed zeros.
6466     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6467       break;
6468 
6469     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6470     // fold (fneg (fsub 0, Y)) -> Y
6471     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6472       if (C->isZero()) {
6473         Cost = NegatibleCost::Cheaper;
6474         return Y;
6475       }
6476 
6477     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6478     Cost = NegatibleCost::Neutral;
6479     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6480   }
6481   case ISD::FMUL:
6482   case ISD::FDIV: {
6483     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6484 
6485     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6486     NegatibleCost CostX = NegatibleCost::Expensive;
6487     SDValue NegX =
6488         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6489     // Prevent this node from being deleted by the next call.
6490     if (NegX)
6491       Handles.emplace_back(NegX);
6492 
6493     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6494     NegatibleCost CostY = NegatibleCost::Expensive;
6495     SDValue NegY =
6496         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6497 
6498     // We're done with the handles.
6499     Handles.clear();
6500 
6501     // Negate the X if its cost is less or equal than Y.
6502     if (NegX && (CostX <= CostY)) {
6503       Cost = CostX;
6504       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6505       if (NegY != N)
6506         RemoveDeadNode(NegY);
6507       return N;
6508     }
6509 
6510     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6511     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6512       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6513         break;
6514 
6515     // Negate the Y if it is not expensive.
6516     if (NegY) {
6517       Cost = CostY;
6518       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6519       if (NegX != N)
6520         RemoveDeadNode(NegX);
6521       return N;
6522     }
6523     break;
6524   }
6525   case ISD::FMA:
6526   case ISD::FMAD: {
6527     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6528       break;
6529 
6530     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6531     NegatibleCost CostZ = NegatibleCost::Expensive;
6532     SDValue NegZ =
6533         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6534     // Give up if fail to negate the Z.
6535     if (!NegZ)
6536       break;
6537 
6538     // Prevent this node from being deleted by the next two calls.
6539     Handles.emplace_back(NegZ);
6540 
6541     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6542     NegatibleCost CostX = NegatibleCost::Expensive;
6543     SDValue NegX =
6544         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6545     // Prevent this node from being deleted by the next call.
6546     if (NegX)
6547       Handles.emplace_back(NegX);
6548 
6549     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6550     NegatibleCost CostY = NegatibleCost::Expensive;
6551     SDValue NegY =
6552         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6553 
6554     // We're done with the handles.
6555     Handles.clear();
6556 
6557     // Negate the X if its cost is less or equal than Y.
6558     if (NegX && (CostX <= CostY)) {
6559       Cost = std::min(CostX, CostZ);
6560       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6561       if (NegY != N)
6562         RemoveDeadNode(NegY);
6563       return N;
6564     }
6565 
6566     // Negate the Y if it is not expensive.
6567     if (NegY) {
6568       Cost = std::min(CostY, CostZ);
6569       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6570       if (NegX != N)
6571         RemoveDeadNode(NegX);
6572       return N;
6573     }
6574     break;
6575   }
6576 
6577   case ISD::FP_EXTEND:
6578   case ISD::FSIN:
6579     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6580                                             OptForSize, Cost, Depth))
6581       return DAG.getNode(Opcode, DL, VT, NegV);
6582     break;
6583   case ISD::FP_ROUND:
6584     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6585                                             OptForSize, Cost, Depth))
6586       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6587     break;
6588   }
6589 
6590   return SDValue();
6591 }
6592 
6593 //===----------------------------------------------------------------------===//
6594 // Legalization Utilities
6595 //===----------------------------------------------------------------------===//
6596 
6597 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6598                                     SDValue LHS, SDValue RHS,
6599                                     SmallVectorImpl<SDValue> &Result,
6600                                     EVT HiLoVT, SelectionDAG &DAG,
6601                                     MulExpansionKind Kind, SDValue LL,
6602                                     SDValue LH, SDValue RL, SDValue RH) const {
6603   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6604          Opcode == ISD::SMUL_LOHI);
6605 
6606   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6607                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6608   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6609                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6610   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6611                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6612   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6613                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6614 
6615   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6616     return false;
6617 
6618   unsigned OuterBitSize = VT.getScalarSizeInBits();
6619   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6620 
6621   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6622   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6623          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6624 
6625   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6626   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6627                           bool Signed) -> bool {
6628     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6629       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6630       Hi = SDValue(Lo.getNode(), 1);
6631       return true;
6632     }
6633     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6634       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6635       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6636       return true;
6637     }
6638     return false;
6639   };
6640 
6641   SDValue Lo, Hi;
6642 
6643   if (!LL.getNode() && !RL.getNode() &&
6644       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6645     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6646     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6647   }
6648 
6649   if (!LL.getNode())
6650     return false;
6651 
6652   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6653   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6654       DAG.MaskedValueIsZero(RHS, HighMask)) {
6655     // The inputs are both zero-extended.
6656     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6657       Result.push_back(Lo);
6658       Result.push_back(Hi);
6659       if (Opcode != ISD::MUL) {
6660         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6661         Result.push_back(Zero);
6662         Result.push_back(Zero);
6663       }
6664       return true;
6665     }
6666   }
6667 
6668   if (!VT.isVector() && Opcode == ISD::MUL &&
6669       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6670       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6671     // The input values are both sign-extended.
6672     // TODO non-MUL case?
6673     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6674       Result.push_back(Lo);
6675       Result.push_back(Hi);
6676       return true;
6677     }
6678   }
6679 
6680   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6681   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6682   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6683 
6684   if (!LH.getNode() && !RH.getNode() &&
6685       isOperationLegalOrCustom(ISD::SRL, VT) &&
6686       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6687     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6688     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6689     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6690     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6691   }
6692 
6693   if (!LH.getNode())
6694     return false;
6695 
6696   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6697     return false;
6698 
6699   Result.push_back(Lo);
6700 
6701   if (Opcode == ISD::MUL) {
6702     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6703     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6704     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6705     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6706     Result.push_back(Hi);
6707     return true;
6708   }
6709 
6710   // Compute the full width result.
6711   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6712     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6713     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6714     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6715     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6716   };
6717 
6718   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6719   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6720     return false;
6721 
6722   // This is effectively the add part of a multiply-add of half-sized operands,
6723   // so it cannot overflow.
6724   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6725 
6726   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6727     return false;
6728 
6729   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6730   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6731 
6732   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6733                   isOperationLegalOrCustom(ISD::ADDE, VT));
6734   if (UseGlue)
6735     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6736                        Merge(Lo, Hi));
6737   else
6738     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6739                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6740 
6741   SDValue Carry = Next.getValue(1);
6742   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6743   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6744 
6745   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6746     return false;
6747 
6748   if (UseGlue)
6749     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6750                      Carry);
6751   else
6752     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6753                      Zero, Carry);
6754 
6755   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6756 
6757   if (Opcode == ISD::SMUL_LOHI) {
6758     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6759                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6760     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6761 
6762     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6763                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6764     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6765   }
6766 
6767   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6768   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6769   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6770   return true;
6771 }
6772 
6773 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6774                                SelectionDAG &DAG, MulExpansionKind Kind,
6775                                SDValue LL, SDValue LH, SDValue RL,
6776                                SDValue RH) const {
6777   SmallVector<SDValue, 2> Result;
6778   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6779                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6780                            DAG, Kind, LL, LH, RL, RH);
6781   if (Ok) {
6782     assert(Result.size() == 2);
6783     Lo = Result[0];
6784     Hi = Result[1];
6785   }
6786   return Ok;
6787 }
6788 
6789 // Check that (every element of) Z is undef or not an exact multiple of BW.
6790 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6791   return ISD::matchUnaryPredicate(
6792       Z,
6793       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6794       true);
6795 }
6796 
6797 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6798                                           SelectionDAG &DAG) const {
6799   EVT VT = Node->getValueType(0);
6800 
6801   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6802                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6803                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6804                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6805     return SDValue();
6806 
6807   SDValue X = Node->getOperand(0);
6808   SDValue Y = Node->getOperand(1);
6809   SDValue Z = Node->getOperand(2);
6810 
6811   unsigned BW = VT.getScalarSizeInBits();
6812   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6813   SDLoc DL(SDValue(Node, 0));
6814 
6815   EVT ShVT = Z.getValueType();
6816 
6817   // If a funnel shift in the other direction is more supported, use it.
6818   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6819   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6820       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6821     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6822       // fshl X, Y, Z -> fshr X, Y, -Z
6823       // fshr X, Y, Z -> fshl X, Y, -Z
6824       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6825       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6826     } else {
6827       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6828       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6829       SDValue One = DAG.getConstant(1, DL, ShVT);
6830       if (IsFSHL) {
6831         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6832         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6833       } else {
6834         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6835         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6836       }
6837       Z = DAG.getNOT(DL, Z, ShVT);
6838     }
6839     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6840   }
6841 
6842   SDValue ShX, ShY;
6843   SDValue ShAmt, InvShAmt;
6844   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6845     // fshl: X << C | Y >> (BW - C)
6846     // fshr: X << (BW - C) | Y >> C
6847     // where C = Z % BW is not zero
6848     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6849     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6850     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6851     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6852     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6853   } else {
6854     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6855     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6856     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6857     if (isPowerOf2_32(BW)) {
6858       // Z % BW -> Z & (BW - 1)
6859       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6860       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6861       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6862     } else {
6863       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6864       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6865       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6866     }
6867 
6868     SDValue One = DAG.getConstant(1, DL, ShVT);
6869     if (IsFSHL) {
6870       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6871       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6872       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6873     } else {
6874       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6875       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6876       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6877     }
6878   }
6879   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6880 }
6881 
6882 // TODO: Merge with expandFunnelShift.
6883 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6884                                   SelectionDAG &DAG) const {
6885   EVT VT = Node->getValueType(0);
6886   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6887   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6888   SDValue Op0 = Node->getOperand(0);
6889   SDValue Op1 = Node->getOperand(1);
6890   SDLoc DL(SDValue(Node, 0));
6891 
6892   EVT ShVT = Op1.getValueType();
6893   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6894 
6895   // If a rotate in the other direction is more supported, use it.
6896   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6897   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6898       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6899     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6900     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6901   }
6902 
6903   if (!AllowVectorOps && VT.isVector() &&
6904       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6905        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6906        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6907        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6908        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6909     return SDValue();
6910 
6911   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6912   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6913   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6914   SDValue ShVal;
6915   SDValue HsVal;
6916   if (isPowerOf2_32(EltSizeInBits)) {
6917     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6918     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6919     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6920     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6921     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6922     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6923     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6924   } else {
6925     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6926     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6927     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6928     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6929     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6930     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6931     SDValue One = DAG.getConstant(1, DL, ShVT);
6932     HsVal =
6933         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6934   }
6935   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6936 }
6937 
6938 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6939                                       SelectionDAG &DAG) const {
6940   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6941   EVT VT = Node->getValueType(0);
6942   unsigned VTBits = VT.getScalarSizeInBits();
6943   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6944 
6945   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6946   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6947   SDValue ShOpLo = Node->getOperand(0);
6948   SDValue ShOpHi = Node->getOperand(1);
6949   SDValue ShAmt = Node->getOperand(2);
6950   EVT ShAmtVT = ShAmt.getValueType();
6951   EVT ShAmtCCVT =
6952       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6953   SDLoc dl(Node);
6954 
6955   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6956   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6957   // away during isel.
6958   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6959                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6960   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6961                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6962                        : DAG.getConstant(0, dl, VT);
6963 
6964   SDValue Tmp2, Tmp3;
6965   if (IsSHL) {
6966     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6967     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6968   } else {
6969     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6970     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6971   }
6972 
6973   // If the shift amount is larger or equal than the width of a part we don't
6974   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6975   // values for large shift amounts.
6976   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6977                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6978   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6979                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6980 
6981   if (IsSHL) {
6982     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6983     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6984   } else {
6985     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6986     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6987   }
6988 }
6989 
6990 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6991                                       SelectionDAG &DAG) const {
6992   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6993   SDValue Src = Node->getOperand(OpNo);
6994   EVT SrcVT = Src.getValueType();
6995   EVT DstVT = Node->getValueType(0);
6996   SDLoc dl(SDValue(Node, 0));
6997 
6998   // FIXME: Only f32 to i64 conversions are supported.
6999   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7000     return false;
7001 
7002   if (Node->isStrictFPOpcode())
7003     // When a NaN is converted to an integer a trap is allowed. We can't
7004     // use this expansion here because it would eliminate that trap. Other
7005     // traps are also allowed and cannot be eliminated. See
7006     // IEEE 754-2008 sec 5.8.
7007     return false;
7008 
7009   // Expand f32 -> i64 conversion
7010   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7011   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7012   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7013   EVT IntVT = SrcVT.changeTypeToInteger();
7014   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7015 
7016   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7017   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7018   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7019   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7020   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7021   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7022 
7023   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7024 
7025   SDValue ExponentBits = DAG.getNode(
7026       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7027       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7028   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7029 
7030   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7031                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7032                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7033   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7034 
7035   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7036                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7037                           DAG.getConstant(0x00800000, dl, IntVT));
7038 
7039   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7040 
7041   R = DAG.getSelectCC(
7042       dl, Exponent, ExponentLoBit,
7043       DAG.getNode(ISD::SHL, dl, DstVT, R,
7044                   DAG.getZExtOrTrunc(
7045                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7046                       dl, IntShVT)),
7047       DAG.getNode(ISD::SRL, dl, DstVT, R,
7048                   DAG.getZExtOrTrunc(
7049                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7050                       dl, IntShVT)),
7051       ISD::SETGT);
7052 
7053   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7054                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7055 
7056   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7057                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7058   return true;
7059 }
7060 
7061 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7062                                       SDValue &Chain,
7063                                       SelectionDAG &DAG) const {
7064   SDLoc dl(SDValue(Node, 0));
7065   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7066   SDValue Src = Node->getOperand(OpNo);
7067 
7068   EVT SrcVT = Src.getValueType();
7069   EVT DstVT = Node->getValueType(0);
7070   EVT SetCCVT =
7071       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7072   EVT DstSetCCVT =
7073       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7074 
7075   // Only expand vector types if we have the appropriate vector bit operations.
7076   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7077                                                    ISD::FP_TO_SINT;
7078   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7079                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7080     return false;
7081 
7082   // If the maximum float value is smaller then the signed integer range,
7083   // the destination signmask can't be represented by the float, so we can
7084   // just use FP_TO_SINT directly.
7085   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7086   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7087   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7088   if (APFloat::opOverflow &
7089       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7090     if (Node->isStrictFPOpcode()) {
7091       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7092                            { Node->getOperand(0), Src });
7093       Chain = Result.getValue(1);
7094     } else
7095       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7096     return true;
7097   }
7098 
7099   // Don't expand it if there isn't cheap fsub instruction.
7100   if (!isOperationLegalOrCustom(
7101           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7102     return false;
7103 
7104   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7105   SDValue Sel;
7106 
7107   if (Node->isStrictFPOpcode()) {
7108     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7109                        Node->getOperand(0), /*IsSignaling*/ true);
7110     Chain = Sel.getValue(1);
7111   } else {
7112     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7113   }
7114 
7115   bool Strict = Node->isStrictFPOpcode() ||
7116                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7117 
7118   if (Strict) {
7119     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7120     // signmask then offset (the result of which should be fully representable).
7121     // Sel = Src < 0x8000000000000000
7122     // FltOfs = select Sel, 0, 0x8000000000000000
7123     // IntOfs = select Sel, 0, 0x8000000000000000
7124     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7125 
7126     // TODO: Should any fast-math-flags be set for the FSUB?
7127     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7128                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7129     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7130     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7131                                    DAG.getConstant(0, dl, DstVT),
7132                                    DAG.getConstant(SignMask, dl, DstVT));
7133     SDValue SInt;
7134     if (Node->isStrictFPOpcode()) {
7135       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7136                                 { Chain, Src, FltOfs });
7137       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7138                          { Val.getValue(1), Val });
7139       Chain = SInt.getValue(1);
7140     } else {
7141       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7142       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7143     }
7144     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7145   } else {
7146     // Expand based on maximum range of FP_TO_SINT:
7147     // True = fp_to_sint(Src)
7148     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7149     // Result = select (Src < 0x8000000000000000), True, False
7150 
7151     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7152     // TODO: Should any fast-math-flags be set for the FSUB?
7153     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7154                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7155     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7156                         DAG.getConstant(SignMask, dl, DstVT));
7157     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7158     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7159   }
7160   return true;
7161 }
7162 
7163 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7164                                       SDValue &Chain,
7165                                       SelectionDAG &DAG) const {
7166   // This transform is not correct for converting 0 when rounding mode is set
7167   // to round toward negative infinity which will produce -0.0. So disable under
7168   // strictfp.
7169   if (Node->isStrictFPOpcode())
7170     return false;
7171 
7172   SDValue Src = Node->getOperand(0);
7173   EVT SrcVT = Src.getValueType();
7174   EVT DstVT = Node->getValueType(0);
7175 
7176   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7177     return false;
7178 
7179   // Only expand vector types if we have the appropriate vector bit operations.
7180   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7181                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7182                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7183                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7184                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7185     return false;
7186 
7187   SDLoc dl(SDValue(Node, 0));
7188   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7189 
7190   // Implementation of unsigned i64 to f64 following the algorithm in
7191   // __floatundidf in compiler_rt.  This implementation performs rounding
7192   // correctly in all rounding modes with the exception of converting 0
7193   // when rounding toward negative infinity. In that case the fsub will produce
7194   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7195   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7196   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7197       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7198   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7199   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7200   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7201 
7202   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7203   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7204   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7205   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7206   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7207   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7208   SDValue HiSub =
7209       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7210   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7211   return true;
7212 }
7213 
7214 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7215                                               SelectionDAG &DAG) const {
7216   SDLoc dl(Node);
7217   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7218     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7219   EVT VT = Node->getValueType(0);
7220 
7221   if (VT.isScalableVector())
7222     report_fatal_error(
7223         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7224 
7225   if (isOperationLegalOrCustom(NewOp, VT)) {
7226     SDValue Quiet0 = Node->getOperand(0);
7227     SDValue Quiet1 = Node->getOperand(1);
7228 
7229     if (!Node->getFlags().hasNoNaNs()) {
7230       // Insert canonicalizes if it's possible we need to quiet to get correct
7231       // sNaN behavior.
7232       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7233         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7234                              Node->getFlags());
7235       }
7236       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7237         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7238                              Node->getFlags());
7239       }
7240     }
7241 
7242     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7243   }
7244 
7245   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7246   // instead if there are no NaNs.
7247   if (Node->getFlags().hasNoNaNs()) {
7248     unsigned IEEE2018Op =
7249         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7250     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7251       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7252                          Node->getOperand(1), Node->getFlags());
7253     }
7254   }
7255 
7256   // If none of the above worked, but there are no NaNs, then expand to
7257   // a compare/select sequence.  This is required for correctness since
7258   // InstCombine might have canonicalized a fcmp+select sequence to a
7259   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7260   // expansion to libcall, we might introduce a link-time dependency
7261   // on libm into a file that originally did not have one.
7262   if (Node->getFlags().hasNoNaNs()) {
7263     ISD::CondCode Pred =
7264         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7265     SDValue Op1 = Node->getOperand(0);
7266     SDValue Op2 = Node->getOperand(1);
7267     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7268     // Copy FMF flags, but always set the no-signed-zeros flag
7269     // as this is implied by the FMINNUM/FMAXNUM semantics.
7270     SDNodeFlags Flags = Node->getFlags();
7271     Flags.setNoSignedZeros(true);
7272     SelCC->setFlags(Flags);
7273     return SelCC;
7274   }
7275 
7276   return SDValue();
7277 }
7278 
7279 // Only expand vector types if we have the appropriate vector bit operations.
7280 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7281   assert(VT.isVector() && "Expected vector type");
7282   unsigned Len = VT.getScalarSizeInBits();
7283   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7284          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7285          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7286          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7287          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7288 }
7289 
7290 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7291   SDLoc dl(Node);
7292   EVT VT = Node->getValueType(0);
7293   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7294   SDValue Op = Node->getOperand(0);
7295   unsigned Len = VT.getScalarSizeInBits();
7296   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7297 
7298   // TODO: Add support for irregular type lengths.
7299   if (!(Len <= 128 && Len % 8 == 0))
7300     return SDValue();
7301 
7302   // Only expand vector types if we have the appropriate vector bit operations.
7303   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7304     return SDValue();
7305 
7306   // This is the "best" algorithm from
7307   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7308   SDValue Mask55 =
7309       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7310   SDValue Mask33 =
7311       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7312   SDValue Mask0F =
7313       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7314   SDValue Mask01 =
7315       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7316 
7317   // v = v - ((v >> 1) & 0x55555555...)
7318   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7319                    DAG.getNode(ISD::AND, dl, VT,
7320                                DAG.getNode(ISD::SRL, dl, VT, Op,
7321                                            DAG.getConstant(1, dl, ShVT)),
7322                                Mask55));
7323   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7324   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7325                    DAG.getNode(ISD::AND, dl, VT,
7326                                DAG.getNode(ISD::SRL, dl, VT, Op,
7327                                            DAG.getConstant(2, dl, ShVT)),
7328                                Mask33));
7329   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7330   Op = DAG.getNode(ISD::AND, dl, VT,
7331                    DAG.getNode(ISD::ADD, dl, VT, Op,
7332                                DAG.getNode(ISD::SRL, dl, VT, Op,
7333                                            DAG.getConstant(4, dl, ShVT))),
7334                    Mask0F);
7335   // v = (v * 0x01010101...) >> (Len - 8)
7336   if (Len > 8)
7337     Op =
7338         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7339                     DAG.getConstant(Len - 8, dl, ShVT));
7340 
7341   return Op;
7342 }
7343 
7344 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7345   SDLoc dl(Node);
7346   EVT VT = Node->getValueType(0);
7347   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7348   SDValue Op = Node->getOperand(0);
7349   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7350 
7351   // If the non-ZERO_UNDEF version is supported we can use that instead.
7352   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7353       isOperationLegalOrCustom(ISD::CTLZ, VT))
7354     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7355 
7356   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7357   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7358     EVT SetCCVT =
7359         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7360     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7361     SDValue Zero = DAG.getConstant(0, dl, VT);
7362     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7363     return DAG.getSelect(dl, VT, SrcIsZero,
7364                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7365   }
7366 
7367   // Only expand vector types if we have the appropriate vector bit operations.
7368   // This includes the operations needed to expand CTPOP if it isn't supported.
7369   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7370                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7371                          !canExpandVectorCTPOP(*this, VT)) ||
7372                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7373                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7374     return SDValue();
7375 
7376   // for now, we do this:
7377   // x = x | (x >> 1);
7378   // x = x | (x >> 2);
7379   // ...
7380   // x = x | (x >>16);
7381   // x = x | (x >>32); // for 64-bit input
7382   // return popcount(~x);
7383   //
7384   // Ref: "Hacker's Delight" by Henry Warren
7385   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7386     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7387     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7388                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7389   }
7390   Op = DAG.getNOT(dl, Op, VT);
7391   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7392 }
7393 
7394 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7395   SDLoc dl(Node);
7396   EVT VT = Node->getValueType(0);
7397   SDValue Op = Node->getOperand(0);
7398   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7399 
7400   // If the non-ZERO_UNDEF version is supported we can use that instead.
7401   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7402       isOperationLegalOrCustom(ISD::CTTZ, VT))
7403     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7404 
7405   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7406   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7407     EVT SetCCVT =
7408         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7409     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7410     SDValue Zero = DAG.getConstant(0, dl, VT);
7411     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7412     return DAG.getSelect(dl, VT, SrcIsZero,
7413                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7414   }
7415 
7416   // Only expand vector types if we have the appropriate vector bit operations.
7417   // This includes the operations needed to expand CTPOP if it isn't supported.
7418   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7419                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7420                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7421                          !canExpandVectorCTPOP(*this, VT)) ||
7422                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7423                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7424                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7425     return SDValue();
7426 
7427   // for now, we use: { return popcount(~x & (x - 1)); }
7428   // unless the target has ctlz but not ctpop, in which case we use:
7429   // { return 32 - nlz(~x & (x-1)); }
7430   // Ref: "Hacker's Delight" by Henry Warren
7431   SDValue Tmp = DAG.getNode(
7432       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7433       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7434 
7435   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7436   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7437     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7438                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7439   }
7440 
7441   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7442 }
7443 
7444 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7445                                   bool IsNegative) const {
7446   SDLoc dl(N);
7447   EVT VT = N->getValueType(0);
7448   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7449   SDValue Op = N->getOperand(0);
7450 
7451   // abs(x) -> smax(x,sub(0,x))
7452   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7453       isOperationLegal(ISD::SMAX, VT)) {
7454     SDValue Zero = DAG.getConstant(0, dl, VT);
7455     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7456                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7457   }
7458 
7459   // abs(x) -> umin(x,sub(0,x))
7460   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7461       isOperationLegal(ISD::UMIN, VT)) {
7462     SDValue Zero = DAG.getConstant(0, dl, VT);
7463     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7464                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7465   }
7466 
7467   // 0 - abs(x) -> smin(x, sub(0,x))
7468   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7469       isOperationLegal(ISD::SMIN, VT)) {
7470     SDValue Zero = DAG.getConstant(0, dl, VT);
7471     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7472                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7473   }
7474 
7475   // Only expand vector types if we have the appropriate vector operations.
7476   if (VT.isVector() &&
7477       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7478        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7479        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7480        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7481     return SDValue();
7482 
7483   SDValue Shift =
7484       DAG.getNode(ISD::SRA, dl, VT, Op,
7485                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7486   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7487 
7488   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7489   if (!IsNegative)
7490     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7491 
7492   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7493   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7494 }
7495 
7496 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7497   SDLoc dl(N);
7498   EVT VT = N->getValueType(0);
7499   SDValue Op = N->getOperand(0);
7500 
7501   if (!VT.isSimple())
7502     return SDValue();
7503 
7504   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7505   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7506   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7507   default:
7508     return SDValue();
7509   case MVT::i16:
7510     // Use a rotate by 8. This can be further expanded if necessary.
7511     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7512   case MVT::i32:
7513     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7514     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7515     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7516     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7517     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7518                        DAG.getConstant(0xFF0000, dl, VT));
7519     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7520     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7521     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7522     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7523   case MVT::i64:
7524     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7525     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7526     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7527     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7528     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7529     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7530     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7531     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7532     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7533                        DAG.getConstant(255ULL<<48, dl, VT));
7534     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7535                        DAG.getConstant(255ULL<<40, dl, VT));
7536     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7537                        DAG.getConstant(255ULL<<32, dl, VT));
7538     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7539                        DAG.getConstant(255ULL<<24, dl, VT));
7540     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7541                        DAG.getConstant(255ULL<<16, dl, VT));
7542     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7543                        DAG.getConstant(255ULL<<8 , dl, VT));
7544     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7545     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7546     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7547     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7548     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7549     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7550     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7551   }
7552 }
7553 
7554 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7555   SDLoc dl(N);
7556   EVT VT = N->getValueType(0);
7557   SDValue Op = N->getOperand(0);
7558   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7559   unsigned Sz = VT.getScalarSizeInBits();
7560 
7561   SDValue Tmp, Tmp2, Tmp3;
7562 
7563   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7564   // and finally the i1 pairs.
7565   // TODO: We can easily support i4/i2 legal types if any target ever does.
7566   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7567     // Create the masks - repeating the pattern every byte.
7568     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7569     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7570     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7571 
7572     // BSWAP if the type is wider than a single byte.
7573     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7574 
7575     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7576     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7577     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7578     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7579     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7580     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7581 
7582     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7583     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7584     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7585     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7586     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7587     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7588 
7589     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7590     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7591     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7592     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7593     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7594     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7595     return Tmp;
7596   }
7597 
7598   Tmp = DAG.getConstant(0, dl, VT);
7599   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7600     if (I < J)
7601       Tmp2 =
7602           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7603     else
7604       Tmp2 =
7605           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7606 
7607     APInt Shift(Sz, 1);
7608     Shift <<= J;
7609     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7610     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7611   }
7612 
7613   return Tmp;
7614 }
7615 
7616 std::pair<SDValue, SDValue>
7617 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7618                                     SelectionDAG &DAG) const {
7619   SDLoc SL(LD);
7620   SDValue Chain = LD->getChain();
7621   SDValue BasePTR = LD->getBasePtr();
7622   EVT SrcVT = LD->getMemoryVT();
7623   EVT DstVT = LD->getValueType(0);
7624   ISD::LoadExtType ExtType = LD->getExtensionType();
7625 
7626   if (SrcVT.isScalableVector())
7627     report_fatal_error("Cannot scalarize scalable vector loads");
7628 
7629   unsigned NumElem = SrcVT.getVectorNumElements();
7630 
7631   EVT SrcEltVT = SrcVT.getScalarType();
7632   EVT DstEltVT = DstVT.getScalarType();
7633 
7634   // A vector must always be stored in memory as-is, i.e. without any padding
7635   // between the elements, since various code depend on it, e.g. in the
7636   // handling of a bitcast of a vector type to int, which may be done with a
7637   // vector store followed by an integer load. A vector that does not have
7638   // elements that are byte-sized must therefore be stored as an integer
7639   // built out of the extracted vector elements.
7640   if (!SrcEltVT.isByteSized()) {
7641     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7642     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7643 
7644     unsigned NumSrcBits = SrcVT.getSizeInBits();
7645     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7646 
7647     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7648     SDValue SrcEltBitMask = DAG.getConstant(
7649         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7650 
7651     // Load the whole vector and avoid masking off the top bits as it makes
7652     // the codegen worse.
7653     SDValue Load =
7654         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7655                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7656                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7657 
7658     SmallVector<SDValue, 8> Vals;
7659     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7660       unsigned ShiftIntoIdx =
7661           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7662       SDValue ShiftAmount =
7663           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7664                                      LoadVT, SL, /*LegalTypes=*/false);
7665       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7666       SDValue Elt =
7667           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7668       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7669 
7670       if (ExtType != ISD::NON_EXTLOAD) {
7671         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7672         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7673       }
7674 
7675       Vals.push_back(Scalar);
7676     }
7677 
7678     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7679     return std::make_pair(Value, Load.getValue(1));
7680   }
7681 
7682   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7683   assert(SrcEltVT.isByteSized());
7684 
7685   SmallVector<SDValue, 8> Vals;
7686   SmallVector<SDValue, 8> LoadChains;
7687 
7688   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7689     SDValue ScalarLoad =
7690         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7691                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7692                        SrcEltVT, LD->getOriginalAlign(),
7693                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7694 
7695     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7696 
7697     Vals.push_back(ScalarLoad.getValue(0));
7698     LoadChains.push_back(ScalarLoad.getValue(1));
7699   }
7700 
7701   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7702   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7703 
7704   return std::make_pair(Value, NewChain);
7705 }
7706 
7707 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7708                                              SelectionDAG &DAG) const {
7709   SDLoc SL(ST);
7710 
7711   SDValue Chain = ST->getChain();
7712   SDValue BasePtr = ST->getBasePtr();
7713   SDValue Value = ST->getValue();
7714   EVT StVT = ST->getMemoryVT();
7715 
7716   if (StVT.isScalableVector())
7717     report_fatal_error("Cannot scalarize scalable vector stores");
7718 
7719   // The type of the data we want to save
7720   EVT RegVT = Value.getValueType();
7721   EVT RegSclVT = RegVT.getScalarType();
7722 
7723   // The type of data as saved in memory.
7724   EVT MemSclVT = StVT.getScalarType();
7725 
7726   unsigned NumElem = StVT.getVectorNumElements();
7727 
7728   // A vector must always be stored in memory as-is, i.e. without any padding
7729   // between the elements, since various code depend on it, e.g. in the
7730   // handling of a bitcast of a vector type to int, which may be done with a
7731   // vector store followed by an integer load. A vector that does not have
7732   // elements that are byte-sized must therefore be stored as an integer
7733   // built out of the extracted vector elements.
7734   if (!MemSclVT.isByteSized()) {
7735     unsigned NumBits = StVT.getSizeInBits();
7736     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7737 
7738     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7739 
7740     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7741       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7742                                 DAG.getVectorIdxConstant(Idx, SL));
7743       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7744       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7745       unsigned ShiftIntoIdx =
7746           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7747       SDValue ShiftAmount =
7748           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7749       SDValue ShiftedElt =
7750           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7751       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7752     }
7753 
7754     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7755                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7756                         ST->getAAInfo());
7757   }
7758 
7759   // Store Stride in bytes
7760   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7761   assert(Stride && "Zero stride!");
7762   // Extract each of the elements from the original vector and save them into
7763   // memory individually.
7764   SmallVector<SDValue, 8> Stores;
7765   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7766     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7767                               DAG.getVectorIdxConstant(Idx, SL));
7768 
7769     SDValue Ptr =
7770         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7771 
7772     // This scalar TruncStore may be illegal, but we legalize it later.
7773     SDValue Store = DAG.getTruncStore(
7774         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7775         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7776         ST->getAAInfo());
7777 
7778     Stores.push_back(Store);
7779   }
7780 
7781   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7782 }
7783 
7784 std::pair<SDValue, SDValue>
7785 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7786   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7787          "unaligned indexed loads not implemented!");
7788   SDValue Chain = LD->getChain();
7789   SDValue Ptr = LD->getBasePtr();
7790   EVT VT = LD->getValueType(0);
7791   EVT LoadedVT = LD->getMemoryVT();
7792   SDLoc dl(LD);
7793   auto &MF = DAG.getMachineFunction();
7794 
7795   if (VT.isFloatingPoint() || VT.isVector()) {
7796     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7797     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7798       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7799           LoadedVT.isVector()) {
7800         // Scalarize the load and let the individual components be handled.
7801         return scalarizeVectorLoad(LD, DAG);
7802       }
7803 
7804       // Expand to a (misaligned) integer load of the same size,
7805       // then bitconvert to floating point or vector.
7806       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7807                                     LD->getMemOperand());
7808       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7809       if (LoadedVT != VT)
7810         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7811                              ISD::ANY_EXTEND, dl, VT, Result);
7812 
7813       return std::make_pair(Result, newLoad.getValue(1));
7814     }
7815 
7816     // Copy the value to a (aligned) stack slot using (unaligned) integer
7817     // loads and stores, then do a (aligned) load from the stack slot.
7818     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7819     unsigned LoadedBytes = LoadedVT.getStoreSize();
7820     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7821     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7822 
7823     // Make sure the stack slot is also aligned for the register type.
7824     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7825     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7826     SmallVector<SDValue, 8> Stores;
7827     SDValue StackPtr = StackBase;
7828     unsigned Offset = 0;
7829 
7830     EVT PtrVT = Ptr.getValueType();
7831     EVT StackPtrVT = StackPtr.getValueType();
7832 
7833     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7834     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7835 
7836     // Do all but one copies using the full register width.
7837     for (unsigned i = 1; i < NumRegs; i++) {
7838       // Load one integer register's worth from the original location.
7839       SDValue Load = DAG.getLoad(
7840           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7841           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7842           LD->getAAInfo());
7843       // Follow the load with a store to the stack slot.  Remember the store.
7844       Stores.push_back(DAG.getStore(
7845           Load.getValue(1), dl, Load, StackPtr,
7846           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7847       // Increment the pointers.
7848       Offset += RegBytes;
7849 
7850       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7851       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7852     }
7853 
7854     // The last copy may be partial.  Do an extending load.
7855     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7856                                   8 * (LoadedBytes - Offset));
7857     SDValue Load =
7858         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7859                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7860                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7861                        LD->getAAInfo());
7862     // Follow the load with a store to the stack slot.  Remember the store.
7863     // On big-endian machines this requires a truncating store to ensure
7864     // that the bits end up in the right place.
7865     Stores.push_back(DAG.getTruncStore(
7866         Load.getValue(1), dl, Load, StackPtr,
7867         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7868 
7869     // The order of the stores doesn't matter - say it with a TokenFactor.
7870     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7871 
7872     // Finally, perform the original load only redirected to the stack slot.
7873     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7874                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7875                           LoadedVT);
7876 
7877     // Callers expect a MERGE_VALUES node.
7878     return std::make_pair(Load, TF);
7879   }
7880 
7881   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7882          "Unaligned load of unsupported type.");
7883 
7884   // Compute the new VT that is half the size of the old one.  This is an
7885   // integer MVT.
7886   unsigned NumBits = LoadedVT.getSizeInBits();
7887   EVT NewLoadedVT;
7888   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7889   NumBits >>= 1;
7890 
7891   Align Alignment = LD->getOriginalAlign();
7892   unsigned IncrementSize = NumBits / 8;
7893   ISD::LoadExtType HiExtType = LD->getExtensionType();
7894 
7895   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7896   if (HiExtType == ISD::NON_EXTLOAD)
7897     HiExtType = ISD::ZEXTLOAD;
7898 
7899   // Load the value in two parts
7900   SDValue Lo, Hi;
7901   if (DAG.getDataLayout().isLittleEndian()) {
7902     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7903                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7904                         LD->getAAInfo());
7905 
7906     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7907     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7908                         LD->getPointerInfo().getWithOffset(IncrementSize),
7909                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7910                         LD->getAAInfo());
7911   } else {
7912     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7913                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7914                         LD->getAAInfo());
7915 
7916     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7917     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7918                         LD->getPointerInfo().getWithOffset(IncrementSize),
7919                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7920                         LD->getAAInfo());
7921   }
7922 
7923   // aggregate the two parts
7924   SDValue ShiftAmount =
7925       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7926                                                     DAG.getDataLayout()));
7927   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7928   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7929 
7930   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7931                              Hi.getValue(1));
7932 
7933   return std::make_pair(Result, TF);
7934 }
7935 
7936 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7937                                              SelectionDAG &DAG) const {
7938   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7939          "unaligned indexed stores not implemented!");
7940   SDValue Chain = ST->getChain();
7941   SDValue Ptr = ST->getBasePtr();
7942   SDValue Val = ST->getValue();
7943   EVT VT = Val.getValueType();
7944   Align Alignment = ST->getOriginalAlign();
7945   auto &MF = DAG.getMachineFunction();
7946   EVT StoreMemVT = ST->getMemoryVT();
7947 
7948   SDLoc dl(ST);
7949   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7950     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7951     if (isTypeLegal(intVT)) {
7952       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7953           StoreMemVT.isVector()) {
7954         // Scalarize the store and let the individual components be handled.
7955         SDValue Result = scalarizeVectorStore(ST, DAG);
7956         return Result;
7957       }
7958       // Expand to a bitconvert of the value to the integer type of the
7959       // same size, then a (misaligned) int store.
7960       // FIXME: Does not handle truncating floating point stores!
7961       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7962       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7963                             Alignment, ST->getMemOperand()->getFlags());
7964       return Result;
7965     }
7966     // Do a (aligned) store to a stack slot, then copy from the stack slot
7967     // to the final destination using (unaligned) integer loads and stores.
7968     MVT RegVT = getRegisterType(
7969         *DAG.getContext(),
7970         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7971     EVT PtrVT = Ptr.getValueType();
7972     unsigned StoredBytes = StoreMemVT.getStoreSize();
7973     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7974     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7975 
7976     // Make sure the stack slot is also aligned for the register type.
7977     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7978     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7979 
7980     // Perform the original store, only redirected to the stack slot.
7981     SDValue Store = DAG.getTruncStore(
7982         Chain, dl, Val, StackPtr,
7983         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7984 
7985     EVT StackPtrVT = StackPtr.getValueType();
7986 
7987     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7988     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7989     SmallVector<SDValue, 8> Stores;
7990     unsigned Offset = 0;
7991 
7992     // Do all but one copies using the full register width.
7993     for (unsigned i = 1; i < NumRegs; i++) {
7994       // Load one integer register's worth from the stack slot.
7995       SDValue Load = DAG.getLoad(
7996           RegVT, dl, Store, StackPtr,
7997           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7998       // Store it to the final location.  Remember the store.
7999       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8000                                     ST->getPointerInfo().getWithOffset(Offset),
8001                                     ST->getOriginalAlign(),
8002                                     ST->getMemOperand()->getFlags()));
8003       // Increment the pointers.
8004       Offset += RegBytes;
8005       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8006       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8007     }
8008 
8009     // The last store may be partial.  Do a truncating store.  On big-endian
8010     // machines this requires an extending load from the stack slot to ensure
8011     // that the bits are in the right place.
8012     EVT LoadMemVT =
8013         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8014 
8015     // Load from the stack slot.
8016     SDValue Load = DAG.getExtLoad(
8017         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8018         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8019 
8020     Stores.push_back(
8021         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8022                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8023                           ST->getOriginalAlign(),
8024                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8025     // The order of the stores doesn't matter - say it with a TokenFactor.
8026     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8027     return Result;
8028   }
8029 
8030   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8031          "Unaligned store of unknown type.");
8032   // Get the half-size VT
8033   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8034   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8035   unsigned IncrementSize = NumBits / 8;
8036 
8037   // Divide the stored value in two parts.
8038   SDValue ShiftAmount = DAG.getConstant(
8039       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8040   SDValue Lo = Val;
8041   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8042 
8043   // Store the two parts
8044   SDValue Store1, Store2;
8045   Store1 = DAG.getTruncStore(Chain, dl,
8046                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8047                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8048                              ST->getMemOperand()->getFlags());
8049 
8050   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8051   Store2 = DAG.getTruncStore(
8052       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8053       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8054       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8055 
8056   SDValue Result =
8057       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8058   return Result;
8059 }
8060 
8061 SDValue
8062 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8063                                        const SDLoc &DL, EVT DataVT,
8064                                        SelectionDAG &DAG,
8065                                        bool IsCompressedMemory) const {
8066   SDValue Increment;
8067   EVT AddrVT = Addr.getValueType();
8068   EVT MaskVT = Mask.getValueType();
8069   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8070          "Incompatible types of Data and Mask");
8071   if (IsCompressedMemory) {
8072     if (DataVT.isScalableVector())
8073       report_fatal_error(
8074           "Cannot currently handle compressed memory with scalable vectors");
8075     // Incrementing the pointer according to number of '1's in the mask.
8076     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8077     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8078     if (MaskIntVT.getSizeInBits() < 32) {
8079       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8080       MaskIntVT = MVT::i32;
8081     }
8082 
8083     // Count '1's with POPCNT.
8084     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8085     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8086     // Scale is an element size in bytes.
8087     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8088                                     AddrVT);
8089     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8090   } else if (DataVT.isScalableVector()) {
8091     Increment = DAG.getVScale(DL, AddrVT,
8092                               APInt(AddrVT.getFixedSizeInBits(),
8093                                     DataVT.getStoreSize().getKnownMinSize()));
8094   } else
8095     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8096 
8097   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8098 }
8099 
8100 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8101                                        EVT VecVT, const SDLoc &dl,
8102                                        ElementCount SubEC) {
8103   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8104          "Cannot index a scalable vector within a fixed-width vector");
8105 
8106   unsigned NElts = VecVT.getVectorMinNumElements();
8107   unsigned NumSubElts = SubEC.getKnownMinValue();
8108   EVT IdxVT = Idx.getValueType();
8109 
8110   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8111     // If this is a constant index and we know the value plus the number of the
8112     // elements in the subvector minus one is less than the minimum number of
8113     // elements then it's safe to return Idx.
8114     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8115       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8116         return Idx;
8117     SDValue VS =
8118         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8119     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8120     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8121                               DAG.getConstant(NumSubElts, dl, IdxVT));
8122     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8123   }
8124   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8125     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8126     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8127                        DAG.getConstant(Imm, dl, IdxVT));
8128   }
8129   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8130   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8131                      DAG.getConstant(MaxIndex, dl, IdxVT));
8132 }
8133 
8134 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8135                                                 SDValue VecPtr, EVT VecVT,
8136                                                 SDValue Index) const {
8137   return getVectorSubVecPointer(
8138       DAG, VecPtr, VecVT,
8139       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8140       Index);
8141 }
8142 
8143 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8144                                                SDValue VecPtr, EVT VecVT,
8145                                                EVT SubVecVT,
8146                                                SDValue Index) const {
8147   SDLoc dl(Index);
8148   // Make sure the index type is big enough to compute in.
8149   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8150 
8151   EVT EltVT = VecVT.getVectorElementType();
8152 
8153   // Calculate the element offset and add it to the pointer.
8154   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8155   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8156          "Converting bits to bytes lost precision");
8157   assert(SubVecVT.getVectorElementType() == EltVT &&
8158          "Sub-vector must be a vector with matching element type");
8159   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8160                                   SubVecVT.getVectorElementCount());
8161 
8162   EVT IdxVT = Index.getValueType();
8163   if (SubVecVT.isScalableVector())
8164     Index =
8165         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8166                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8167 
8168   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8169                       DAG.getConstant(EltSize, dl, IdxVT));
8170   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8171 }
8172 
8173 //===----------------------------------------------------------------------===//
8174 // Implementation of Emulated TLS Model
8175 //===----------------------------------------------------------------------===//
8176 
8177 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8178                                                 SelectionDAG &DAG) const {
8179   // Access to address of TLS varialbe xyz is lowered to a function call:
8180   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8181   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8182   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8183   SDLoc dl(GA);
8184 
8185   ArgListTy Args;
8186   ArgListEntry Entry;
8187   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8188   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8189   StringRef EmuTlsVarName(NameString);
8190   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8191   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8192   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8193   Entry.Ty = VoidPtrType;
8194   Args.push_back(Entry);
8195 
8196   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8197 
8198   TargetLowering::CallLoweringInfo CLI(DAG);
8199   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8200   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8201   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8202 
8203   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8204   // At last for X86 targets, maybe good for other targets too?
8205   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8206   MFI.setAdjustsStack(true); // Is this only for X86 target?
8207   MFI.setHasCalls(true);
8208 
8209   assert((GA->getOffset() == 0) &&
8210          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8211   return CallResult.first;
8212 }
8213 
8214 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8215                                                 SelectionDAG &DAG) const {
8216   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8217   if (!isCtlzFast())
8218     return SDValue();
8219   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8220   SDLoc dl(Op);
8221   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8222     if (C->isZero() && CC == ISD::SETEQ) {
8223       EVT VT = Op.getOperand(0).getValueType();
8224       SDValue Zext = Op.getOperand(0);
8225       if (VT.bitsLT(MVT::i32)) {
8226         VT = MVT::i32;
8227         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8228       }
8229       unsigned Log2b = Log2_32(VT.getSizeInBits());
8230       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8231       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8232                                 DAG.getConstant(Log2b, dl, MVT::i32));
8233       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8234     }
8235   }
8236   return SDValue();
8237 }
8238 
8239 // Convert redundant addressing modes (e.g. scaling is redundant
8240 // when accessing bytes).
8241 ISD::MemIndexType
8242 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8243                                       SDValue Offsets) const {
8244   bool IsScaledIndex =
8245       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8246   bool IsSignedIndex =
8247       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8248 
8249   // Scaling is unimportant for bytes, canonicalize to unscaled.
8250   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8251     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8252 
8253   return IndexType;
8254 }
8255 
8256 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8257   SDValue Op0 = Node->getOperand(0);
8258   SDValue Op1 = Node->getOperand(1);
8259   EVT VT = Op0.getValueType();
8260   unsigned Opcode = Node->getOpcode();
8261   SDLoc DL(Node);
8262 
8263   // umin(x,y) -> sub(x,usubsat(x,y))
8264   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8265       isOperationLegal(ISD::USUBSAT, VT)) {
8266     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8267                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8268   }
8269 
8270   // umax(x,y) -> add(x,usubsat(y,x))
8271   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8272       isOperationLegal(ISD::USUBSAT, VT)) {
8273     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8274                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8275   }
8276 
8277   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8278   ISD::CondCode CC;
8279   switch (Opcode) {
8280   default: llvm_unreachable("How did we get here?");
8281   case ISD::SMAX: CC = ISD::SETGT; break;
8282   case ISD::SMIN: CC = ISD::SETLT; break;
8283   case ISD::UMAX: CC = ISD::SETUGT; break;
8284   case ISD::UMIN: CC = ISD::SETULT; break;
8285   }
8286 
8287   // FIXME: Should really try to split the vector in case it's legal on a
8288   // subvector.
8289   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8290     return DAG.UnrollVectorOp(Node);
8291 
8292   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8293   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8294   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8295 }
8296 
8297 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8298   unsigned Opcode = Node->getOpcode();
8299   SDValue LHS = Node->getOperand(0);
8300   SDValue RHS = Node->getOperand(1);
8301   EVT VT = LHS.getValueType();
8302   SDLoc dl(Node);
8303 
8304   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8305   assert(VT.isInteger() && "Expected operands to be integers");
8306 
8307   // usub.sat(a, b) -> umax(a, b) - b
8308   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8309     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8310     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8311   }
8312 
8313   // uadd.sat(a, b) -> umin(a, ~b) + b
8314   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8315     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8316     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8317     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8318   }
8319 
8320   unsigned OverflowOp;
8321   switch (Opcode) {
8322   case ISD::SADDSAT:
8323     OverflowOp = ISD::SADDO;
8324     break;
8325   case ISD::UADDSAT:
8326     OverflowOp = ISD::UADDO;
8327     break;
8328   case ISD::SSUBSAT:
8329     OverflowOp = ISD::SSUBO;
8330     break;
8331   case ISD::USUBSAT:
8332     OverflowOp = ISD::USUBO;
8333     break;
8334   default:
8335     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8336                      "addition or subtraction node.");
8337   }
8338 
8339   // FIXME: Should really try to split the vector in case it's legal on a
8340   // subvector.
8341   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8342     return DAG.UnrollVectorOp(Node);
8343 
8344   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8345   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8346   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8347   SDValue SumDiff = Result.getValue(0);
8348   SDValue Overflow = Result.getValue(1);
8349   SDValue Zero = DAG.getConstant(0, dl, VT);
8350   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8351 
8352   if (Opcode == ISD::UADDSAT) {
8353     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8354       // (LHS + RHS) | OverflowMask
8355       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8356       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8357     }
8358     // Overflow ? 0xffff.... : (LHS + RHS)
8359     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8360   }
8361 
8362   if (Opcode == ISD::USUBSAT) {
8363     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8364       // (LHS - RHS) & ~OverflowMask
8365       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8366       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8367       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8368     }
8369     // Overflow ? 0 : (LHS - RHS)
8370     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8371   }
8372 
8373   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8374   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8375   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8376   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8377                               DAG.getConstant(BitWidth - 1, dl, VT));
8378   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8379   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8380 }
8381 
8382 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8383   unsigned Opcode = Node->getOpcode();
8384   bool IsSigned = Opcode == ISD::SSHLSAT;
8385   SDValue LHS = Node->getOperand(0);
8386   SDValue RHS = Node->getOperand(1);
8387   EVT VT = LHS.getValueType();
8388   SDLoc dl(Node);
8389 
8390   assert((Node->getOpcode() == ISD::SSHLSAT ||
8391           Node->getOpcode() == ISD::USHLSAT) &&
8392           "Expected a SHLSAT opcode");
8393   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8394   assert(VT.isInteger() && "Expected operands to be integers");
8395 
8396   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8397 
8398   unsigned BW = VT.getScalarSizeInBits();
8399   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8400   SDValue Orig =
8401       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8402 
8403   SDValue SatVal;
8404   if (IsSigned) {
8405     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8406     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8407     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8408                              SatMin, SatMax, ISD::SETLT);
8409   } else {
8410     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8411   }
8412   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8413 
8414   return Result;
8415 }
8416 
8417 SDValue
8418 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8419   assert((Node->getOpcode() == ISD::SMULFIX ||
8420           Node->getOpcode() == ISD::UMULFIX ||
8421           Node->getOpcode() == ISD::SMULFIXSAT ||
8422           Node->getOpcode() == ISD::UMULFIXSAT) &&
8423          "Expected a fixed point multiplication opcode");
8424 
8425   SDLoc dl(Node);
8426   SDValue LHS = Node->getOperand(0);
8427   SDValue RHS = Node->getOperand(1);
8428   EVT VT = LHS.getValueType();
8429   unsigned Scale = Node->getConstantOperandVal(2);
8430   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8431                      Node->getOpcode() == ISD::UMULFIXSAT);
8432   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8433                  Node->getOpcode() == ISD::SMULFIXSAT);
8434   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8435   unsigned VTSize = VT.getScalarSizeInBits();
8436 
8437   if (!Scale) {
8438     // [us]mul.fix(a, b, 0) -> mul(a, b)
8439     if (!Saturating) {
8440       if (isOperationLegalOrCustom(ISD::MUL, VT))
8441         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8442     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8443       SDValue Result =
8444           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8445       SDValue Product = Result.getValue(0);
8446       SDValue Overflow = Result.getValue(1);
8447       SDValue Zero = DAG.getConstant(0, dl, VT);
8448 
8449       APInt MinVal = APInt::getSignedMinValue(VTSize);
8450       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8451       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8452       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8453       // Xor the inputs, if resulting sign bit is 0 the product will be
8454       // positive, else negative.
8455       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8456       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8457       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8458       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8459     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8460       SDValue Result =
8461           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8462       SDValue Product = Result.getValue(0);
8463       SDValue Overflow = Result.getValue(1);
8464 
8465       APInt MaxVal = APInt::getMaxValue(VTSize);
8466       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8467       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8468     }
8469   }
8470 
8471   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8472          "Expected scale to be less than the number of bits if signed or at "
8473          "most the number of bits if unsigned.");
8474   assert(LHS.getValueType() == RHS.getValueType() &&
8475          "Expected both operands to be the same type");
8476 
8477   // Get the upper and lower bits of the result.
8478   SDValue Lo, Hi;
8479   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8480   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8481   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8482     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8483     Lo = Result.getValue(0);
8484     Hi = Result.getValue(1);
8485   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8486     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8487     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8488   } else if (VT.isVector()) {
8489     return SDValue();
8490   } else {
8491     report_fatal_error("Unable to expand fixed point multiplication.");
8492   }
8493 
8494   if (Scale == VTSize)
8495     // Result is just the top half since we'd be shifting by the width of the
8496     // operand. Overflow impossible so this works for both UMULFIX and
8497     // UMULFIXSAT.
8498     return Hi;
8499 
8500   // The result will need to be shifted right by the scale since both operands
8501   // are scaled. The result is given to us in 2 halves, so we only want part of
8502   // both in the result.
8503   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8504   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8505                                DAG.getConstant(Scale, dl, ShiftTy));
8506   if (!Saturating)
8507     return Result;
8508 
8509   if (!Signed) {
8510     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8511     // widened multiplication) aren't all zeroes.
8512 
8513     // Saturate to max if ((Hi >> Scale) != 0),
8514     // which is the same as if (Hi > ((1 << Scale) - 1))
8515     APInt MaxVal = APInt::getMaxValue(VTSize);
8516     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8517                                       dl, VT);
8518     Result = DAG.getSelectCC(dl, Hi, LowMask,
8519                              DAG.getConstant(MaxVal, dl, VT), Result,
8520                              ISD::SETUGT);
8521 
8522     return Result;
8523   }
8524 
8525   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8526   // widened multiplication) aren't all ones or all zeroes.
8527 
8528   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8529   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8530 
8531   if (Scale == 0) {
8532     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8533                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8534     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8535     // Saturated to SatMin if wide product is negative, and SatMax if wide
8536     // product is positive ...
8537     SDValue Zero = DAG.getConstant(0, dl, VT);
8538     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8539                                                ISD::SETLT);
8540     // ... but only if we overflowed.
8541     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8542   }
8543 
8544   //  We handled Scale==0 above so all the bits to examine is in Hi.
8545 
8546   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8547   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8548   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8549                                     dl, VT);
8550   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8551   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8552   // which is the same as if (HI < (-1 << (Scale - 1))
8553   SDValue HighMask =
8554       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8555                       dl, VT);
8556   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8557   return Result;
8558 }
8559 
8560 SDValue
8561 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8562                                     SDValue LHS, SDValue RHS,
8563                                     unsigned Scale, SelectionDAG &DAG) const {
8564   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8565           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8566          "Expected a fixed point division opcode");
8567 
8568   EVT VT = LHS.getValueType();
8569   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8570   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8571   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8572 
8573   // If there is enough room in the type to upscale the LHS or downscale the
8574   // RHS before the division, we can perform it in this type without having to
8575   // resize. For signed operations, the LHS headroom is the number of
8576   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8577   // The headroom for the RHS is the number of trailing zeroes.
8578   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8579                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8580   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8581 
8582   // For signed saturating operations, we need to be able to detect true integer
8583   // division overflow; that is, when you have MIN / -EPS. However, this
8584   // is undefined behavior and if we emit divisions that could take such
8585   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8586   // example).
8587   // Avoid this by requiring an extra bit so that we never get this case.
8588   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8589   // signed saturating division, we need to emit a whopping 32-bit division.
8590   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8591     return SDValue();
8592 
8593   unsigned LHSShift = std::min(LHSLead, Scale);
8594   unsigned RHSShift = Scale - LHSShift;
8595 
8596   // At this point, we know that if we shift the LHS up by LHSShift and the
8597   // RHS down by RHSShift, we can emit a regular division with a final scaling
8598   // factor of Scale.
8599 
8600   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8601   if (LHSShift)
8602     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8603                       DAG.getConstant(LHSShift, dl, ShiftTy));
8604   if (RHSShift)
8605     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8606                       DAG.getConstant(RHSShift, dl, ShiftTy));
8607 
8608   SDValue Quot;
8609   if (Signed) {
8610     // For signed operations, if the resulting quotient is negative and the
8611     // remainder is nonzero, subtract 1 from the quotient to round towards
8612     // negative infinity.
8613     SDValue Rem;
8614     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8615     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8616     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8617     if (isTypeLegal(VT) &&
8618         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8619       Quot = DAG.getNode(ISD::SDIVREM, dl,
8620                          DAG.getVTList(VT, VT),
8621                          LHS, RHS);
8622       Rem = Quot.getValue(1);
8623       Quot = Quot.getValue(0);
8624     } else {
8625       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8626                          LHS, RHS);
8627       Rem = DAG.getNode(ISD::SREM, dl, VT,
8628                         LHS, RHS);
8629     }
8630     SDValue Zero = DAG.getConstant(0, dl, VT);
8631     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8632     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8633     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8634     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8635     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8636                                DAG.getConstant(1, dl, VT));
8637     Quot = DAG.getSelect(dl, VT,
8638                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8639                          Sub1, Quot);
8640   } else
8641     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8642                        LHS, RHS);
8643 
8644   return Quot;
8645 }
8646 
8647 void TargetLowering::expandUADDSUBO(
8648     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8649   SDLoc dl(Node);
8650   SDValue LHS = Node->getOperand(0);
8651   SDValue RHS = Node->getOperand(1);
8652   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8653 
8654   // If ADD/SUBCARRY is legal, use that instead.
8655   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8656   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8657     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8658     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8659                                     { LHS, RHS, CarryIn });
8660     Result = SDValue(NodeCarry.getNode(), 0);
8661     Overflow = SDValue(NodeCarry.getNode(), 1);
8662     return;
8663   }
8664 
8665   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8666                             LHS.getValueType(), LHS, RHS);
8667 
8668   EVT ResultType = Node->getValueType(1);
8669   EVT SetCCType = getSetCCResultType(
8670       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8671   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8672   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8673   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8674 }
8675 
8676 void TargetLowering::expandSADDSUBO(
8677     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8678   SDLoc dl(Node);
8679   SDValue LHS = Node->getOperand(0);
8680   SDValue RHS = Node->getOperand(1);
8681   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8682 
8683   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8684                             LHS.getValueType(), LHS, RHS);
8685 
8686   EVT ResultType = Node->getValueType(1);
8687   EVT OType = getSetCCResultType(
8688       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8689 
8690   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8691   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8692   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8693     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8694     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8695     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8696     return;
8697   }
8698 
8699   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8700 
8701   // For an addition, the result should be less than one of the operands (LHS)
8702   // if and only if the other operand (RHS) is negative, otherwise there will
8703   // be overflow.
8704   // For a subtraction, the result should be less than one of the operands
8705   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8706   // otherwise there will be overflow.
8707   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8708   SDValue ConditionRHS =
8709       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8710 
8711   Overflow = DAG.getBoolExtOrTrunc(
8712       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8713       ResultType, ResultType);
8714 }
8715 
8716 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8717                                 SDValue &Overflow, SelectionDAG &DAG) const {
8718   SDLoc dl(Node);
8719   EVT VT = Node->getValueType(0);
8720   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8721   SDValue LHS = Node->getOperand(0);
8722   SDValue RHS = Node->getOperand(1);
8723   bool isSigned = Node->getOpcode() == ISD::SMULO;
8724 
8725   // For power-of-two multiplications we can use a simpler shift expansion.
8726   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8727     const APInt &C = RHSC->getAPIntValue();
8728     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8729     if (C.isPowerOf2()) {
8730       // smulo(x, signed_min) is same as umulo(x, signed_min).
8731       bool UseArithShift = isSigned && !C.isMinSignedValue();
8732       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8733       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8734       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8735       Overflow = DAG.getSetCC(dl, SetCCVT,
8736           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8737                       dl, VT, Result, ShiftAmt),
8738           LHS, ISD::SETNE);
8739       return true;
8740     }
8741   }
8742 
8743   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8744   if (VT.isVector())
8745     WideVT =
8746         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8747 
8748   SDValue BottomHalf;
8749   SDValue TopHalf;
8750   static const unsigned Ops[2][3] =
8751       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8752         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8753   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8754     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8755     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8756   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8757     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8758                              RHS);
8759     TopHalf = BottomHalf.getValue(1);
8760   } else if (isTypeLegal(WideVT)) {
8761     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8762     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8763     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8764     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8765     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8766         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8767     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8768                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8769   } else {
8770     if (VT.isVector())
8771       return false;
8772 
8773     // We can fall back to a libcall with an illegal type for the MUL if we
8774     // have a libcall big enough.
8775     // Also, we can fall back to a division in some cases, but that's a big
8776     // performance hit in the general case.
8777     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8778     if (WideVT == MVT::i16)
8779       LC = RTLIB::MUL_I16;
8780     else if (WideVT == MVT::i32)
8781       LC = RTLIB::MUL_I32;
8782     else if (WideVT == MVT::i64)
8783       LC = RTLIB::MUL_I64;
8784     else if (WideVT == MVT::i128)
8785       LC = RTLIB::MUL_I128;
8786     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8787 
8788     SDValue HiLHS;
8789     SDValue HiRHS;
8790     if (isSigned) {
8791       // The high part is obtained by SRA'ing all but one of the bits of low
8792       // part.
8793       unsigned LoSize = VT.getFixedSizeInBits();
8794       HiLHS =
8795           DAG.getNode(ISD::SRA, dl, VT, LHS,
8796                       DAG.getConstant(LoSize - 1, dl,
8797                                       getPointerTy(DAG.getDataLayout())));
8798       HiRHS =
8799           DAG.getNode(ISD::SRA, dl, VT, RHS,
8800                       DAG.getConstant(LoSize - 1, dl,
8801                                       getPointerTy(DAG.getDataLayout())));
8802     } else {
8803         HiLHS = DAG.getConstant(0, dl, VT);
8804         HiRHS = DAG.getConstant(0, dl, VT);
8805     }
8806 
8807     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8808     // pre-lowered to the correct types. This all depends upon WideVT not
8809     // being a legal type for the architecture and thus has to be split to
8810     // two arguments.
8811     SDValue Ret;
8812     TargetLowering::MakeLibCallOptions CallOptions;
8813     CallOptions.setSExt(isSigned);
8814     CallOptions.setIsPostTypeLegalization(true);
8815     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8816       // Halves of WideVT are packed into registers in different order
8817       // depending on platform endianness. This is usually handled by
8818       // the C calling convention, but we can't defer to it in
8819       // the legalizer.
8820       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8821       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8822     } else {
8823       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8824       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8825     }
8826     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8827            "Ret value is a collection of constituent nodes holding result.");
8828     if (DAG.getDataLayout().isLittleEndian()) {
8829       // Same as above.
8830       BottomHalf = Ret.getOperand(0);
8831       TopHalf = Ret.getOperand(1);
8832     } else {
8833       BottomHalf = Ret.getOperand(1);
8834       TopHalf = Ret.getOperand(0);
8835     }
8836   }
8837 
8838   Result = BottomHalf;
8839   if (isSigned) {
8840     SDValue ShiftAmt = DAG.getConstant(
8841         VT.getScalarSizeInBits() - 1, dl,
8842         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8843     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8844     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8845   } else {
8846     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8847                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8848   }
8849 
8850   // Truncate the result if SetCC returns a larger type than needed.
8851   EVT RType = Node->getValueType(1);
8852   if (RType.bitsLT(Overflow.getValueType()))
8853     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8854 
8855   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8856          "Unexpected result type for S/UMULO legalization");
8857   return true;
8858 }
8859 
8860 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8861   SDLoc dl(Node);
8862   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8863   SDValue Op = Node->getOperand(0);
8864   EVT VT = Op.getValueType();
8865 
8866   if (VT.isScalableVector())
8867     report_fatal_error(
8868         "Expanding reductions for scalable vectors is undefined.");
8869 
8870   // Try to use a shuffle reduction for power of two vectors.
8871   if (VT.isPow2VectorType()) {
8872     while (VT.getVectorNumElements() > 1) {
8873       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8874       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8875         break;
8876 
8877       SDValue Lo, Hi;
8878       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8879       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8880       VT = HalfVT;
8881     }
8882   }
8883 
8884   EVT EltVT = VT.getVectorElementType();
8885   unsigned NumElts = VT.getVectorNumElements();
8886 
8887   SmallVector<SDValue, 8> Ops;
8888   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8889 
8890   SDValue Res = Ops[0];
8891   for (unsigned i = 1; i < NumElts; i++)
8892     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8893 
8894   // Result type may be wider than element type.
8895   if (EltVT != Node->getValueType(0))
8896     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8897   return Res;
8898 }
8899 
8900 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8901   SDLoc dl(Node);
8902   SDValue AccOp = Node->getOperand(0);
8903   SDValue VecOp = Node->getOperand(1);
8904   SDNodeFlags Flags = Node->getFlags();
8905 
8906   EVT VT = VecOp.getValueType();
8907   EVT EltVT = VT.getVectorElementType();
8908 
8909   if (VT.isScalableVector())
8910     report_fatal_error(
8911         "Expanding reductions for scalable vectors is undefined.");
8912 
8913   unsigned NumElts = VT.getVectorNumElements();
8914 
8915   SmallVector<SDValue, 8> Ops;
8916   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8917 
8918   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8919 
8920   SDValue Res = AccOp;
8921   for (unsigned i = 0; i < NumElts; i++)
8922     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8923 
8924   return Res;
8925 }
8926 
8927 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8928                                SelectionDAG &DAG) const {
8929   EVT VT = Node->getValueType(0);
8930   SDLoc dl(Node);
8931   bool isSigned = Node->getOpcode() == ISD::SREM;
8932   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8933   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8934   SDValue Dividend = Node->getOperand(0);
8935   SDValue Divisor = Node->getOperand(1);
8936   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8937     SDVTList VTs = DAG.getVTList(VT, VT);
8938     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8939     return true;
8940   }
8941   if (isOperationLegalOrCustom(DivOpc, VT)) {
8942     // X % Y -> X-X/Y*Y
8943     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8944     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8945     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8946     return true;
8947   }
8948   return false;
8949 }
8950 
8951 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8952                                             SelectionDAG &DAG) const {
8953   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8954   SDLoc dl(SDValue(Node, 0));
8955   SDValue Src = Node->getOperand(0);
8956 
8957   // DstVT is the result type, while SatVT is the size to which we saturate
8958   EVT SrcVT = Src.getValueType();
8959   EVT DstVT = Node->getValueType(0);
8960 
8961   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8962   unsigned SatWidth = SatVT.getScalarSizeInBits();
8963   unsigned DstWidth = DstVT.getScalarSizeInBits();
8964   assert(SatWidth <= DstWidth &&
8965          "Expected saturation width smaller than result width");
8966 
8967   // Determine minimum and maximum integer values and their corresponding
8968   // floating-point values.
8969   APInt MinInt, MaxInt;
8970   if (IsSigned) {
8971     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8972     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8973   } else {
8974     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8975     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8976   }
8977 
8978   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8979   // libcall emission cannot handle this. Large result types will fail.
8980   if (SrcVT == MVT::f16) {
8981     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8982     SrcVT = Src.getValueType();
8983   }
8984 
8985   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8986   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8987 
8988   APFloat::opStatus MinStatus =
8989       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8990   APFloat::opStatus MaxStatus =
8991       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8992   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8993                              !(MaxStatus & APFloat::opStatus::opInexact);
8994 
8995   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8996   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8997 
8998   // If the integer bounds are exactly representable as floats and min/max are
8999   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9000   // of comparisons and selects.
9001   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9002                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9003   if (AreExactFloatBounds && MinMaxLegal) {
9004     SDValue Clamped = Src;
9005 
9006     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9007     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9008     // Clamp by MaxFloat from above. NaN cannot occur.
9009     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9010     // Convert clamped value to integer.
9011     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9012                                   dl, DstVT, Clamped);
9013 
9014     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9015     // which will cast to zero.
9016     if (!IsSigned)
9017       return FpToInt;
9018 
9019     // Otherwise, select 0 if Src is NaN.
9020     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9021     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9022                            ISD::CondCode::SETUO);
9023   }
9024 
9025   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9026   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9027 
9028   // Result of direct conversion. The assumption here is that the operation is
9029   // non-trapping and it's fine to apply it to an out-of-range value if we
9030   // select it away later.
9031   SDValue FpToInt =
9032       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9033 
9034   SDValue Select = FpToInt;
9035 
9036   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9037   // MinInt if Src is NaN.
9038   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9039                            ISD::CondCode::SETULT);
9040   // If Src OGT MaxFloat, select MaxInt.
9041   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9042                            ISD::CondCode::SETOGT);
9043 
9044   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9045   // is already zero.
9046   if (!IsSigned)
9047     return Select;
9048 
9049   // Otherwise, select 0 if Src is NaN.
9050   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9051   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9052 }
9053 
9054 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9055                                            SelectionDAG &DAG) const {
9056   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9057   assert(Node->getValueType(0).isScalableVector() &&
9058          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9059 
9060   EVT VT = Node->getValueType(0);
9061   SDValue V1 = Node->getOperand(0);
9062   SDValue V2 = Node->getOperand(1);
9063   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9064   SDLoc DL(Node);
9065 
9066   // Expand through memory thusly:
9067   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9068   //  Store V1, Ptr
9069   //  Store V2, Ptr + sizeof(V1)
9070   //  If (Imm < 0)
9071   //    TrailingElts = -Imm
9072   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9073   //  else
9074   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9075   //  Res = Load Ptr
9076 
9077   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9078 
9079   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9080                                VT.getVectorElementCount() * 2);
9081   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9082   EVT PtrVT = StackPtr.getValueType();
9083   auto &MF = DAG.getMachineFunction();
9084   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9085   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9086 
9087   // Store the lo part of CONCAT_VECTORS(V1, V2)
9088   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9089   // Store the hi part of CONCAT_VECTORS(V1, V2)
9090   SDValue OffsetToV2 = DAG.getVScale(
9091       DL, PtrVT,
9092       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9093   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9094   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9095 
9096   if (Imm >= 0) {
9097     // Load back the required element. getVectorElementPointer takes care of
9098     // clamping the index if it's out-of-bounds.
9099     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9100     // Load the spliced result
9101     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9102                        MachinePointerInfo::getUnknownStack(MF));
9103   }
9104 
9105   uint64_t TrailingElts = -Imm;
9106 
9107   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9108   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9109   SDValue TrailingBytes =
9110       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9111 
9112   if (TrailingElts > VT.getVectorMinNumElements()) {
9113     SDValue VLBytes = DAG.getVScale(
9114         DL, PtrVT,
9115         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9116     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9117   }
9118 
9119   // Calculate the start address of the spliced result.
9120   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9121 
9122   // Load the spliced result
9123   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9124                      MachinePointerInfo::getUnknownStack(MF));
9125 }
9126 
9127 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9128                                            SDValue &LHS, SDValue &RHS,
9129                                            SDValue &CC, bool &NeedInvert,
9130                                            const SDLoc &dl, SDValue &Chain,
9131                                            bool IsSignaling) const {
9132   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9133   MVT OpVT = LHS.getSimpleValueType();
9134   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9135   NeedInvert = false;
9136   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9137   default:
9138     llvm_unreachable("Unknown condition code action!");
9139   case TargetLowering::Legal:
9140     // Nothing to do.
9141     break;
9142   case TargetLowering::Expand: {
9143     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9144     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9145       std::swap(LHS, RHS);
9146       CC = DAG.getCondCode(InvCC);
9147       return true;
9148     }
9149     // Swapping operands didn't work. Try inverting the condition.
9150     bool NeedSwap = false;
9151     InvCC = getSetCCInverse(CCCode, OpVT);
9152     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9153       // If inverting the condition is not enough, try swapping operands
9154       // on top of it.
9155       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9156       NeedSwap = true;
9157     }
9158     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9159       CC = DAG.getCondCode(InvCC);
9160       NeedInvert = true;
9161       if (NeedSwap)
9162         std::swap(LHS, RHS);
9163       return true;
9164     }
9165 
9166     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9167     unsigned Opc = 0;
9168     switch (CCCode) {
9169     default:
9170       llvm_unreachable("Don't know how to expand this condition!");
9171     case ISD::SETUO:
9172       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9173         CC1 = ISD::SETUNE;
9174         CC2 = ISD::SETUNE;
9175         Opc = ISD::OR;
9176         break;
9177       }
9178       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9179              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9180       NeedInvert = true;
9181       LLVM_FALLTHROUGH;
9182     case ISD::SETO:
9183       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9184              "If SETO is expanded, SETOEQ must be legal!");
9185       CC1 = ISD::SETOEQ;
9186       CC2 = ISD::SETOEQ;
9187       Opc = ISD::AND;
9188       break;
9189     case ISD::SETONE:
9190     case ISD::SETUEQ:
9191       // If the SETUO or SETO CC isn't legal, we might be able to use
9192       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9193       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9194       // the operands.
9195       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9196       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9197           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9198            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9199         CC1 = ISD::SETOGT;
9200         CC2 = ISD::SETOLT;
9201         Opc = ISD::OR;
9202         NeedInvert = ((unsigned)CCCode & 0x8U);
9203         break;
9204       }
9205       LLVM_FALLTHROUGH;
9206     case ISD::SETOEQ:
9207     case ISD::SETOGT:
9208     case ISD::SETOGE:
9209     case ISD::SETOLT:
9210     case ISD::SETOLE:
9211     case ISD::SETUNE:
9212     case ISD::SETUGT:
9213     case ISD::SETUGE:
9214     case ISD::SETULT:
9215     case ISD::SETULE:
9216       // If we are floating point, assign and break, otherwise fall through.
9217       if (!OpVT.isInteger()) {
9218         // We can use the 4th bit to tell if we are the unordered
9219         // or ordered version of the opcode.
9220         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9221         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9222         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9223         break;
9224       }
9225       // Fallthrough if we are unsigned integer.
9226       LLVM_FALLTHROUGH;
9227     case ISD::SETLE:
9228     case ISD::SETGT:
9229     case ISD::SETGE:
9230     case ISD::SETLT:
9231     case ISD::SETNE:
9232     case ISD::SETEQ:
9233       // If all combinations of inverting the condition and swapping operands
9234       // didn't work then we have no means to expand the condition.
9235       llvm_unreachable("Don't know how to expand this condition!");
9236     }
9237 
9238     SDValue SetCC1, SetCC2;
9239     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9240       // If we aren't the ordered or unorder operation,
9241       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9242       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9243       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9244     } else {
9245       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9246       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9247       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9248     }
9249     if (Chain)
9250       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9251                           SetCC2.getValue(1));
9252     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9253     RHS = SDValue();
9254     CC = SDValue();
9255     return true;
9256   }
9257   }
9258   return false;
9259 }
9260