1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115   ByValType = nullptr;
116   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
117     ByValType = Call->getParamByValType(ArgIdx);
118 }
119 
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair<SDValue, SDValue>
123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
124                             ArrayRef<SDValue> Ops, bool isSigned,
125                             const SDLoc &dl, bool doesNotReturn,
126                             bool isReturnValueUsed,
127                             bool isPostTypeLegalization) const {
128   TargetLowering::ArgListTy Args;
129   Args.reserve(Ops.size());
130 
131   TargetLowering::ArgListEntry Entry;
132   for (SDValue Op : Ops) {
133     Entry.Node = Op;
134     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
135     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
136     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
137     Args.push_back(Entry);
138   }
139 
140   if (LC == RTLIB::UNKNOWN_LIBCALL)
141     report_fatal_error("Unsupported library call operation!");
142   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
143                                          getPointerTy(DAG.getDataLayout()));
144 
145   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
146   TargetLowering::CallLoweringInfo CLI(DAG);
147   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
148   CLI.setDebugLoc(dl)
149       .setChain(DAG.getEntryNode())
150       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
151       .setNoReturn(doesNotReturn)
152       .setDiscardResult(!isReturnValueUsed)
153       .setIsPostTypeLegalization(isPostTypeLegalization)
154       .setSExtResult(signExtend)
155       .setZExtResult(!signExtend);
156   return LowerCallTo(CLI);
157 }
158 
159 bool
160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
161                                          unsigned Limit, uint64_t Size,
162                                          unsigned DstAlign, unsigned SrcAlign,
163                                          bool IsMemset,
164                                          bool ZeroMemset,
165                                          bool MemcpyStrSrc,
166                                          bool AllowOverlap,
167                                          unsigned DstAS, unsigned SrcAS,
168                                          const AttributeList &FuncAttributes) const {
169   // If 'SrcAlign' is zero, that means the memory operation does not need to
170   // load the value, i.e. memset or memcpy from constant string. Otherwise,
171   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172   // is the specified alignment of the memory operation. If it is zero, that
173   // means it's possible to change the alignment of the destination.
174   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175   // not need to be loaded.
176   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
177     return false;
178 
179   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
180                                IsMemset, ZeroMemset, MemcpyStrSrc,
181                                FuncAttributes);
182 
183   if (VT == MVT::Other) {
184     // Use the largest integer type whose alignment constraints are satisfied.
185     // We only need to check DstAlign here as SrcAlign is always greater or
186     // equal to DstAlign (or zero).
187     VT = MVT::i64;
188     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
189            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
190       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
191     assert(VT.isInteger());
192 
193     // Find the largest legal integer type.
194     MVT LVT = MVT::i64;
195     while (!isTypeLegal(LVT))
196       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
197     assert(LVT.isInteger());
198 
199     // If the type we've chosen is larger than the largest legal integer type
200     // then use that instead.
201     if (VT.bitsGT(LVT))
202       VT = LVT;
203   }
204 
205   unsigned NumMemOps = 0;
206   while (Size != 0) {
207     unsigned VTSize = VT.getSizeInBits() / 8;
208     while (VTSize > Size) {
209       // For now, only use non-vector load / store's for the left-over pieces.
210       EVT NewVT = VT;
211       unsigned NewVTSize;
212 
213       bool Found = false;
214       if (VT.isVector() || VT.isFloatingPoint()) {
215         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
216         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
217             isSafeMemOpType(NewVT.getSimpleVT()))
218           Found = true;
219         else if (NewVT == MVT::i64 &&
220                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
221                  isSafeMemOpType(MVT::f64)) {
222           // i64 is usually not legal on 32-bit targets, but f64 may be.
223           NewVT = MVT::f64;
224           Found = true;
225         }
226       }
227 
228       if (!Found) {
229         do {
230           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
231           if (NewVT == MVT::i8)
232             break;
233         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
234       }
235       NewVTSize = NewVT.getSizeInBits() / 8;
236 
237       // If the new VT cannot cover all of the remaining bits, then consider
238       // issuing a (or a pair of) unaligned and overlapping load / store.
239       bool Fast;
240       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
241           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
242                                          MachineMemOperand::MONone, &Fast) &&
243           Fast)
244         VTSize = Size;
245       else {
246         VT = NewVT;
247         VTSize = NewVTSize;
248       }
249     }
250 
251     if (++NumMemOps > Limit)
252       return false;
253 
254     MemOps.push_back(VT);
255     Size -= VTSize;
256   }
257 
258   return true;
259 }
260 
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
264                                          SDValue &NewLHS, SDValue &NewRHS,
265                                          ISD::CondCode &CCCode,
266                                          const SDLoc &dl) const {
267   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
268          && "Unsupported setcc type!");
269 
270   // Expand into one or more soft-fp libcall(s).
271   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
272   bool ShouldInvertCC = false;
273   switch (CCCode) {
274   case ISD::SETEQ:
275   case ISD::SETOEQ:
276     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
277           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
278           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
279     break;
280   case ISD::SETNE:
281   case ISD::SETUNE:
282     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
283           (VT == MVT::f64) ? RTLIB::UNE_F64 :
284           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
285     break;
286   case ISD::SETGE:
287   case ISD::SETOGE:
288     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
289           (VT == MVT::f64) ? RTLIB::OGE_F64 :
290           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
291     break;
292   case ISD::SETLT:
293   case ISD::SETOLT:
294     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
295           (VT == MVT::f64) ? RTLIB::OLT_F64 :
296           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
297     break;
298   case ISD::SETLE:
299   case ISD::SETOLE:
300     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
301           (VT == MVT::f64) ? RTLIB::OLE_F64 :
302           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
303     break;
304   case ISD::SETGT:
305   case ISD::SETOGT:
306     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
307           (VT == MVT::f64) ? RTLIB::OGT_F64 :
308           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
309     break;
310   case ISD::SETUO:
311     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
312           (VT == MVT::f64) ? RTLIB::UO_F64 :
313           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
314     break;
315   case ISD::SETO:
316     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
317           (VT == MVT::f64) ? RTLIB::O_F64 :
318           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
319     break;
320   case ISD::SETONE:
321     // SETONE = SETOLT | SETOGT
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
326           (VT == MVT::f64) ? RTLIB::OGT_F64 :
327           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
328     break;
329   case ISD::SETUEQ:
330     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
331           (VT == MVT::f64) ? RTLIB::UO_F64 :
332           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
333     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
334           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
335           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
336     break;
337   default:
338     // Invert CC for unordered comparisons
339     ShouldInvertCC = true;
340     switch (CCCode) {
341     case ISD::SETULT:
342       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
343             (VT == MVT::f64) ? RTLIB::OGE_F64 :
344             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
345       break;
346     case ISD::SETULE:
347       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
348             (VT == MVT::f64) ? RTLIB::OGT_F64 :
349             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
350       break;
351     case ISD::SETUGT:
352       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
353             (VT == MVT::f64) ? RTLIB::OLE_F64 :
354             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
355       break;
356     case ISD::SETUGE:
357       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
358             (VT == MVT::f64) ? RTLIB::OLT_F64 :
359             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
360       break;
361     default: llvm_unreachable("Do not know how to soften this setcc!");
362     }
363   }
364 
365   // Use the target specific return value for comparions lib calls.
366   EVT RetVT = getCmpLibcallReturnType();
367   SDValue Ops[2] = {NewLHS, NewRHS};
368   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
369                        dl).first;
370   NewRHS = DAG.getConstant(0, dl, RetVT);
371 
372   CCCode = getCmpLibcallCC(LC1);
373   if (ShouldInvertCC)
374     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
375 
376   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
377     SDValue Tmp = DAG.getNode(
378         ISD::SETCC, dl,
379         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
380         NewLHS, NewRHS, DAG.getCondCode(CCCode));
381     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
382                          dl).first;
383     NewLHS = DAG.getNode(
384         ISD::SETCC, dl,
385         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
386         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
387     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
388     NewRHS = SDValue();
389   }
390 }
391 
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395   // In non-pic modes, just use the address of a block.
396   if (!isPositionIndependent())
397     return MachineJumpTableInfo::EK_BlockAddress;
398 
399   // In PIC mode, if the target supports a GPRel32 directive, use it.
400   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
402 
403   // Otherwise, use a label difference.
404   return MachineJumpTableInfo::EK_LabelDifference32;
405 }
406 
407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
408                                                  SelectionDAG &DAG) const {
409   // If our PIC model is GP relative, use the global offset table as the base.
410   unsigned JTEncoding = getJumpTableEncoding();
411 
412   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
413       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
414     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
415 
416   return Table;
417 }
418 
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
421 const MCExpr *
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
423                                              unsigned JTI,MCContext &Ctx) const{
424   // The normal PIC reloc base is the label at the start of the jump table.
425   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
426 }
427 
428 bool
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
430   const TargetMachine &TM = getTargetMachine();
431   const GlobalValue *GV = GA->getGlobal();
432 
433   // If the address is not even local to this DSO we will have to load it from
434   // a got and then add the offset.
435   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
436     return false;
437 
438   // If the code is position independent we will have to add a base register.
439   if (isPositionIndependent())
440     return false;
441 
442   // Otherwise we can do it.
443   return true;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //  Optimization Methods
448 //===----------------------------------------------------------------------===//
449 
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
452 /// return true.
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
454                                             TargetLoweringOpt &TLO) const {
455   SDLoc DL(Op);
456   unsigned Opcode = Op.getOpcode();
457 
458   // Do target-specific constant optimization.
459   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
460     return TLO.New.getNode();
461 
462   // FIXME: ISD::SELECT, ISD::SELECT_CC
463   switch (Opcode) {
464   default:
465     break;
466   case ISD::XOR:
467   case ISD::AND:
468   case ISD::OR: {
469     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
470     if (!Op1C)
471       return false;
472 
473     // If this is a 'not' op, don't touch it because that's a canonical form.
474     const APInt &C = Op1C->getAPIntValue();
475     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
476       return false;
477 
478     if (!C.isSubsetOf(Demanded)) {
479       EVT VT = Op.getValueType();
480       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
481       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
482       return TLO.CombineTo(Op, NewOp);
483     }
484 
485     break;
486   }
487   }
488 
489   return false;
490 }
491 
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
496                                       const APInt &Demanded,
497                                       TargetLoweringOpt &TLO) const {
498   assert(Op.getNumOperands() == 2 &&
499          "ShrinkDemandedOp only supports binary operators!");
500   assert(Op.getNode()->getNumValues() == 1 &&
501          "ShrinkDemandedOp only supports nodes with one result!");
502 
503   SelectionDAG &DAG = TLO.DAG;
504   SDLoc dl(Op);
505 
506   // Early return, as this function cannot handle vector types.
507   if (Op.getValueType().isVector())
508     return false;
509 
510   // Don't do this if the node has another user, which may require the
511   // full value.
512   if (!Op.getNode()->hasOneUse())
513     return false;
514 
515   // Search for the smallest integer type with free casts to and from
516   // Op's type. For expedience, just check power-of-2 integer types.
517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
518   unsigned DemandedSize = Demanded.getActiveBits();
519   unsigned SmallVTBits = DemandedSize;
520   if (!isPowerOf2_32(SmallVTBits))
521     SmallVTBits = NextPowerOf2(SmallVTBits);
522   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
523     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
524     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
525         TLI.isZExtFree(SmallVT, Op.getValueType())) {
526       // We found a type with free casts.
527       SDValue X = DAG.getNode(
528           Op.getOpcode(), dl, SmallVT,
529           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
530           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
531       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
532       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
533       return TLO.CombineTo(Op, Z);
534     }
535   }
536   return false;
537 }
538 
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
540                                           DAGCombinerInfo &DCI) const {
541   SelectionDAG &DAG = DCI.DAG;
542   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
543                         !DCI.isBeforeLegalizeOps());
544   KnownBits Known;
545 
546   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
547   if (Simplified) {
548     DCI.AddToWorklist(Op.getNode());
549     DCI.CommitTargetLoweringOpt(TLO);
550   }
551   return Simplified;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           KnownBits &Known,
556                                           TargetLoweringOpt &TLO,
557                                           unsigned Depth,
558                                           bool AssumeSingleUse) const {
559   EVT VT = Op.getValueType();
560   APInt DemandedElts = VT.isVector()
561                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
562                            : APInt(1, 1);
563   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
564                               AssumeSingleUse);
565 }
566 
567 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
568 // TODO: Under what circumstances can we create nodes? Constant folding?
569 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
570     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
571     SelectionDAG &DAG, unsigned Depth) const {
572   // Limit search depth.
573   if (Depth >= 6)
574     return SDValue();
575 
576   // Ignore UNDEFs.
577   if (Op.isUndef())
578     return SDValue();
579 
580   // Not demanding any bits/elts from Op.
581   if (DemandedBits == 0 || DemandedElts == 0)
582     return DAG.getUNDEF(Op.getValueType());
583 
584   unsigned NumElts = DemandedElts.getBitWidth();
585   KnownBits LHSKnown, RHSKnown;
586   switch (Op.getOpcode()) {
587   case ISD::BITCAST: {
588     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
589     EVT SrcVT = Src.getValueType();
590     EVT DstVT = Op.getValueType();
591     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
592     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
593 
594     if (NumSrcEltBits == NumDstEltBits)
595       if (SDValue V = SimplifyMultipleUseDemandedBits(
596               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
597         return DAG.getBitcast(DstVT, V);
598 
599     // TODO - bigendian once we have test coverage.
600     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
601         DAG.getDataLayout().isLittleEndian()) {
602       unsigned Scale = NumDstEltBits / NumSrcEltBits;
603       unsigned NumSrcElts = SrcVT.getVectorNumElements();
604       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
605       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
606       for (unsigned i = 0; i != Scale; ++i) {
607         unsigned Offset = i * NumSrcEltBits;
608         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
609         if (!Sub.isNullValue()) {
610           DemandedSrcBits |= Sub;
611           for (unsigned j = 0; j != NumElts; ++j)
612             if (DemandedElts[j])
613               DemandedSrcElts.setBit((j * Scale) + i);
614         }
615       }
616 
617       if (SDValue V = SimplifyMultipleUseDemandedBits(
618               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
619         return DAG.getBitcast(DstVT, V);
620     }
621 
622     // TODO - bigendian once we have test coverage.
623     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
624         DAG.getDataLayout().isLittleEndian()) {
625       unsigned Scale = NumSrcEltBits / NumDstEltBits;
626       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
627       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
628       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
629       for (unsigned i = 0; i != NumElts; ++i)
630         if (DemandedElts[i]) {
631           unsigned Offset = (i % Scale) * NumDstEltBits;
632           DemandedSrcBits.insertBits(DemandedBits, Offset);
633           DemandedSrcElts.setBit(i / Scale);
634         }
635 
636       if (SDValue V = SimplifyMultipleUseDemandedBits(
637               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
638         return DAG.getBitcast(DstVT, V);
639     }
640 
641     break;
642   }
643   case ISD::AND: {
644     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
645     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
646 
647     // If all of the demanded bits are known 1 on one side, return the other.
648     // These bits cannot contribute to the result of the 'and' in this
649     // context.
650     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
651       return Op.getOperand(0);
652     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
653       return Op.getOperand(1);
654     break;
655   }
656   case ISD::OR: {
657     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
658     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
659 
660     // If all of the demanded bits are known zero on one side, return the
661     // other.  These bits cannot contribute to the result of the 'or' in this
662     // context.
663     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
664       return Op.getOperand(0);
665     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
666       return Op.getOperand(1);
667     break;
668   }
669   case ISD::XOR: {
670     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
671     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
672 
673     // If all of the demanded bits are known zero on one side, return the
674     // other.
675     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
676       return Op.getOperand(0);
677     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
678       return Op.getOperand(1);
679     break;
680   }
681   case ISD::SIGN_EXTEND_INREG: {
682     // If none of the extended bits are demanded, eliminate the sextinreg.
683     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
684     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
685       return Op.getOperand(0);
686     break;
687   }
688   case ISD::INSERT_VECTOR_ELT: {
689     // If we don't demand the inserted element, return the base vector.
690     SDValue Vec = Op.getOperand(0);
691     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
692     EVT VecVT = Vec.getValueType();
693     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
694         !DemandedElts[CIdx->getZExtValue()])
695       return Vec;
696     break;
697   }
698   case ISD::VECTOR_SHUFFLE: {
699     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
700 
701     // If all the demanded elts are from one operand and are inline,
702     // then we can use the operand directly.
703     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
704     for (unsigned i = 0; i != NumElts; ++i) {
705       int M = ShuffleMask[i];
706       if (M < 0 || !DemandedElts[i])
707         continue;
708       AllUndef = false;
709       IdentityLHS &= (M == (int)i);
710       IdentityRHS &= ((M - NumElts) == i);
711     }
712 
713     if (AllUndef)
714       return DAG.getUNDEF(Op.getValueType());
715     if (IdentityLHS)
716       return Op.getOperand(0);
717     if (IdentityRHS)
718       return Op.getOperand(1);
719     break;
720   }
721   default:
722     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
723       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
724               Op, DemandedBits, DemandedElts, DAG, Depth))
725         return V;
726     break;
727   }
728   return SDValue();
729 }
730 
731 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
732 /// result of Op are ever used downstream. If we can use this information to
733 /// simplify Op, create a new simplified DAG node and return true, returning the
734 /// original and new nodes in Old and New. Otherwise, analyze the expression and
735 /// return a mask of Known bits for the expression (used to simplify the
736 /// caller).  The Known bits may only be accurate for those bits in the
737 /// OriginalDemandedBits and OriginalDemandedElts.
738 bool TargetLowering::SimplifyDemandedBits(
739     SDValue Op, const APInt &OriginalDemandedBits,
740     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
741     unsigned Depth, bool AssumeSingleUse) const {
742   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
743   assert(Op.getScalarValueSizeInBits() == BitWidth &&
744          "Mask size mismatches value type size!");
745 
746   unsigned NumElts = OriginalDemandedElts.getBitWidth();
747   assert((!Op.getValueType().isVector() ||
748           NumElts == Op.getValueType().getVectorNumElements()) &&
749          "Unexpected vector size");
750 
751   APInt DemandedBits = OriginalDemandedBits;
752   APInt DemandedElts = OriginalDemandedElts;
753   SDLoc dl(Op);
754   auto &DL = TLO.DAG.getDataLayout();
755 
756   // Don't know anything.
757   Known = KnownBits(BitWidth);
758 
759   // Undef operand.
760   if (Op.isUndef())
761     return false;
762 
763   if (Op.getOpcode() == ISD::Constant) {
764     // We know all of the bits for a constant!
765     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
766     Known.Zero = ~Known.One;
767     return false;
768   }
769 
770   // Other users may use these bits.
771   EVT VT = Op.getValueType();
772   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
773     if (Depth != 0) {
774       // If not at the root, Just compute the Known bits to
775       // simplify things downstream.
776       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
777       return false;
778     }
779     // If this is the root being simplified, allow it to have multiple uses,
780     // just set the DemandedBits/Elts to all bits.
781     DemandedBits = APInt::getAllOnesValue(BitWidth);
782     DemandedElts = APInt::getAllOnesValue(NumElts);
783   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
784     // Not demanding any bits/elts from Op.
785     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
786   } else if (Depth >= 6) { // Limit search depth.
787     return false;
788   }
789 
790   KnownBits Known2, KnownOut;
791   switch (Op.getOpcode()) {
792   case ISD::SCALAR_TO_VECTOR: {
793     if (!DemandedElts[0])
794       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
795 
796     KnownBits SrcKnown;
797     SDValue Src = Op.getOperand(0);
798     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
799     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
800     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
801       return true;
802     Known = SrcKnown.zextOrTrunc(BitWidth, false);
803     break;
804   }
805   case ISD::BUILD_VECTOR:
806     // Collect the known bits that are shared by every demanded element.
807     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
808     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
809     return false; // Don't fall through, will infinitely loop.
810   case ISD::LOAD: {
811     LoadSDNode *LD = cast<LoadSDNode>(Op);
812     if (getTargetConstantFromLoad(LD)) {
813       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
814       return false; // Don't fall through, will infinitely loop.
815     }
816     break;
817   }
818   case ISD::INSERT_VECTOR_ELT: {
819     SDValue Vec = Op.getOperand(0);
820     SDValue Scl = Op.getOperand(1);
821     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
822     EVT VecVT = Vec.getValueType();
823 
824     // If index isn't constant, assume we need all vector elements AND the
825     // inserted element.
826     APInt DemandedVecElts(DemandedElts);
827     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
828       unsigned Idx = CIdx->getZExtValue();
829       DemandedVecElts.clearBit(Idx);
830 
831       // Inserted element is not required.
832       if (!DemandedElts[Idx])
833         return TLO.CombineTo(Op, Vec);
834     }
835 
836     KnownBits KnownScl;
837     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
838     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
839     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
840       return true;
841 
842     Known = KnownScl.zextOrTrunc(BitWidth, false);
843 
844     KnownBits KnownVec;
845     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
846                              Depth + 1))
847       return true;
848 
849     if (!!DemandedVecElts) {
850       Known.One &= KnownVec.One;
851       Known.Zero &= KnownVec.Zero;
852     }
853 
854     return false;
855   }
856   case ISD::INSERT_SUBVECTOR: {
857     SDValue Base = Op.getOperand(0);
858     SDValue Sub = Op.getOperand(1);
859     EVT SubVT = Sub.getValueType();
860     unsigned NumSubElts = SubVT.getVectorNumElements();
861 
862     // If index isn't constant, assume we need the original demanded base
863     // elements and ALL the inserted subvector elements.
864     APInt BaseElts = DemandedElts;
865     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
866     if (isa<ConstantSDNode>(Op.getOperand(2))) {
867       const APInt &Idx = Op.getConstantOperandAPInt(2);
868       if (Idx.ule(NumElts - NumSubElts)) {
869         unsigned SubIdx = Idx.getZExtValue();
870         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
871         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
872       }
873     }
874 
875     KnownBits KnownSub, KnownBase;
876     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
877                              Depth + 1))
878       return true;
879     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
880                              Depth + 1))
881       return true;
882 
883     Known.Zero.setAllBits();
884     Known.One.setAllBits();
885     if (!!SubElts) {
886         Known.One &= KnownSub.One;
887         Known.Zero &= KnownSub.Zero;
888     }
889     if (!!BaseElts) {
890         Known.One &= KnownBase.One;
891         Known.Zero &= KnownBase.Zero;
892     }
893     break;
894   }
895   case ISD::CONCAT_VECTORS: {
896     Known.Zero.setAllBits();
897     Known.One.setAllBits();
898     EVT SubVT = Op.getOperand(0).getValueType();
899     unsigned NumSubVecs = Op.getNumOperands();
900     unsigned NumSubElts = SubVT.getVectorNumElements();
901     for (unsigned i = 0; i != NumSubVecs; ++i) {
902       APInt DemandedSubElts =
903           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
904       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
905                                Known2, TLO, Depth + 1))
906         return true;
907       // Known bits are shared by every demanded subvector element.
908       if (!!DemandedSubElts) {
909         Known.One &= Known2.One;
910         Known.Zero &= Known2.Zero;
911       }
912     }
913     break;
914   }
915   case ISD::VECTOR_SHUFFLE: {
916     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
917 
918     // Collect demanded elements from shuffle operands..
919     APInt DemandedLHS(NumElts, 0);
920     APInt DemandedRHS(NumElts, 0);
921     for (unsigned i = 0; i != NumElts; ++i) {
922       if (!DemandedElts[i])
923         continue;
924       int M = ShuffleMask[i];
925       if (M < 0) {
926         // For UNDEF elements, we don't know anything about the common state of
927         // the shuffle result.
928         DemandedLHS.clearAllBits();
929         DemandedRHS.clearAllBits();
930         break;
931       }
932       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
933       if (M < (int)NumElts)
934         DemandedLHS.setBit(M);
935       else
936         DemandedRHS.setBit(M - NumElts);
937     }
938 
939     if (!!DemandedLHS || !!DemandedRHS) {
940       SDValue Op0 = Op.getOperand(0);
941       SDValue Op1 = Op.getOperand(1);
942 
943       Known.Zero.setAllBits();
944       Known.One.setAllBits();
945       if (!!DemandedLHS) {
946         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
947                                  Depth + 1))
948           return true;
949         Known.One &= Known2.One;
950         Known.Zero &= Known2.Zero;
951       }
952       if (!!DemandedRHS) {
953         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
954                                  Depth + 1))
955           return true;
956         Known.One &= Known2.One;
957         Known.Zero &= Known2.Zero;
958       }
959 
960       // Attempt to avoid multi-use ops if we don't need anything from them.
961       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
962           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
963       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
964           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
965       if (DemandedOp0 || DemandedOp1) {
966         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
967         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
968         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
969         return TLO.CombineTo(Op, NewOp);
970       }
971     }
972     break;
973   }
974   case ISD::AND: {
975     SDValue Op0 = Op.getOperand(0);
976     SDValue Op1 = Op.getOperand(1);
977 
978     // If the RHS is a constant, check to see if the LHS would be zero without
979     // using the bits from the RHS.  Below, we use knowledge about the RHS to
980     // simplify the LHS, here we're using information from the LHS to simplify
981     // the RHS.
982     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
983       // Do not increment Depth here; that can cause an infinite loop.
984       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
985       // If the LHS already has zeros where RHSC does, this 'and' is dead.
986       if ((LHSKnown.Zero & DemandedBits) ==
987           (~RHSC->getAPIntValue() & DemandedBits))
988         return TLO.CombineTo(Op, Op0);
989 
990       // If any of the set bits in the RHS are known zero on the LHS, shrink
991       // the constant.
992       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
993         return true;
994 
995       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
996       // constant, but if this 'and' is only clearing bits that were just set by
997       // the xor, then this 'and' can be eliminated by shrinking the mask of
998       // the xor. For example, for a 32-bit X:
999       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1000       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1001           LHSKnown.One == ~RHSC->getAPIntValue()) {
1002         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1003         return TLO.CombineTo(Op, Xor);
1004       }
1005     }
1006 
1007     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1008                              Depth + 1))
1009       return true;
1010     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1011     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1012                              Known2, TLO, Depth + 1))
1013       return true;
1014     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1015 
1016     // Attempt to avoid multi-use ops if we don't need anything from them.
1017     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1018       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1019           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1020       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1021           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1022       if (DemandedOp0 || DemandedOp1) {
1023         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1024         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1025         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1026         return TLO.CombineTo(Op, NewOp);
1027       }
1028     }
1029 
1030     // If all of the demanded bits are known one on one side, return the other.
1031     // These bits cannot contribute to the result of the 'and'.
1032     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1033       return TLO.CombineTo(Op, Op0);
1034     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1035       return TLO.CombineTo(Op, Op1);
1036     // If all of the demanded bits in the inputs are known zeros, return zero.
1037     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1038       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1039     // If the RHS is a constant, see if we can simplify it.
1040     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1041       return true;
1042     // If the operation can be done in a smaller type, do so.
1043     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1044       return true;
1045 
1046     // Output known-1 bits are only known if set in both the LHS & RHS.
1047     Known.One &= Known2.One;
1048     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1049     Known.Zero |= Known2.Zero;
1050     break;
1051   }
1052   case ISD::OR: {
1053     SDValue Op0 = Op.getOperand(0);
1054     SDValue Op1 = Op.getOperand(1);
1055 
1056     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1057                              Depth + 1))
1058       return true;
1059     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1060     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1061                              Known2, TLO, Depth + 1))
1062       return true;
1063     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1064 
1065     // Attempt to avoid multi-use ops if we don't need anything from them.
1066     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1067       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1068           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1069       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1070           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1071       if (DemandedOp0 || DemandedOp1) {
1072         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1073         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1074         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1075         return TLO.CombineTo(Op, NewOp);
1076       }
1077     }
1078 
1079     // If all of the demanded bits are known zero on one side, return the other.
1080     // These bits cannot contribute to the result of the 'or'.
1081     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1082       return TLO.CombineTo(Op, Op0);
1083     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1084       return TLO.CombineTo(Op, Op1);
1085     // If the RHS is a constant, see if we can simplify it.
1086     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1087       return true;
1088     // If the operation can be done in a smaller type, do so.
1089     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1090       return true;
1091 
1092     // Output known-0 bits are only known if clear in both the LHS & RHS.
1093     Known.Zero &= Known2.Zero;
1094     // Output known-1 are known to be set if set in either the LHS | RHS.
1095     Known.One |= Known2.One;
1096     break;
1097   }
1098   case ISD::XOR: {
1099     SDValue Op0 = Op.getOperand(0);
1100     SDValue Op1 = Op.getOperand(1);
1101 
1102     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1103                              Depth + 1))
1104       return true;
1105     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1106     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1107                              Depth + 1))
1108       return true;
1109     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1110 
1111     // Attempt to avoid multi-use ops if we don't need anything from them.
1112     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1113       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1114           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1115       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1116           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1117       if (DemandedOp0 || DemandedOp1) {
1118         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1119         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1120         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1121         return TLO.CombineTo(Op, NewOp);
1122       }
1123     }
1124 
1125     // If all of the demanded bits are known zero on one side, return the other.
1126     // These bits cannot contribute to the result of the 'xor'.
1127     if (DemandedBits.isSubsetOf(Known.Zero))
1128       return TLO.CombineTo(Op, Op0);
1129     if (DemandedBits.isSubsetOf(Known2.Zero))
1130       return TLO.CombineTo(Op, Op1);
1131     // If the operation can be done in a smaller type, do so.
1132     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1133       return true;
1134 
1135     // If all of the unknown bits are known to be zero on one side or the other
1136     // (but not both) turn this into an *inclusive* or.
1137     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1138     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1139       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1140 
1141     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1142     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1143     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1144     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1145 
1146     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1147       // If one side is a constant, and all of the known set bits on the other
1148       // side are also set in the constant, turn this into an AND, as we know
1149       // the bits will be cleared.
1150       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1151       // NB: it is okay if more bits are known than are requested
1152       if (C->getAPIntValue() == Known2.One) {
1153         SDValue ANDC =
1154             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1155         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1156       }
1157 
1158       // If the RHS is a constant, see if we can change it. Don't alter a -1
1159       // constant because that's a 'not' op, and that is better for combining
1160       // and codegen.
1161       if (!C->isAllOnesValue()) {
1162         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1163           // We're flipping all demanded bits. Flip the undemanded bits too.
1164           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1165           return TLO.CombineTo(Op, New);
1166         }
1167         // If we can't turn this into a 'not', try to shrink the constant.
1168         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1169           return true;
1170       }
1171     }
1172 
1173     Known = std::move(KnownOut);
1174     break;
1175   }
1176   case ISD::SELECT:
1177     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1178                              Depth + 1))
1179       return true;
1180     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1181                              Depth + 1))
1182       return true;
1183     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1184     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1185 
1186     // If the operands are constants, see if we can simplify them.
1187     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1188       return true;
1189 
1190     // Only known if known in both the LHS and RHS.
1191     Known.One &= Known2.One;
1192     Known.Zero &= Known2.Zero;
1193     break;
1194   case ISD::SELECT_CC:
1195     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1196                              Depth + 1))
1197       return true;
1198     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1199                              Depth + 1))
1200       return true;
1201     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1202     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1203 
1204     // If the operands are constants, see if we can simplify them.
1205     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1206       return true;
1207 
1208     // Only known if known in both the LHS and RHS.
1209     Known.One &= Known2.One;
1210     Known.Zero &= Known2.Zero;
1211     break;
1212   case ISD::SETCC: {
1213     SDValue Op0 = Op.getOperand(0);
1214     SDValue Op1 = Op.getOperand(1);
1215     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1216     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1217     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1218     // -1, we may be able to bypass the setcc.
1219     if (DemandedBits.isSignMask() &&
1220         Op0.getScalarValueSizeInBits() == BitWidth &&
1221         getBooleanContents(VT) ==
1222             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1223       // If we're testing X < 0, then this compare isn't needed - just use X!
1224       // FIXME: We're limiting to integer types here, but this should also work
1225       // if we don't care about FP signed-zero. The use of SETLT with FP means
1226       // that we don't care about NaNs.
1227       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1228           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1229         return TLO.CombineTo(Op, Op0);
1230 
1231       // TODO: Should we check for other forms of sign-bit comparisons?
1232       // Examples: X <= -1, X >= 0
1233     }
1234     if (getBooleanContents(Op0.getValueType()) ==
1235             TargetLowering::ZeroOrOneBooleanContent &&
1236         BitWidth > 1)
1237       Known.Zero.setBitsFrom(1);
1238     break;
1239   }
1240   case ISD::SHL: {
1241     SDValue Op0 = Op.getOperand(0);
1242     SDValue Op1 = Op.getOperand(1);
1243 
1244     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1245       // If the shift count is an invalid immediate, don't do anything.
1246       if (SA->getAPIntValue().uge(BitWidth))
1247         break;
1248 
1249       unsigned ShAmt = SA->getZExtValue();
1250       if (ShAmt == 0)
1251         return TLO.CombineTo(Op, Op0);
1252 
1253       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1254       // single shift.  We can do this if the bottom bits (which are shifted
1255       // out) are never demanded.
1256       // TODO - support non-uniform vector amounts.
1257       if (Op0.getOpcode() == ISD::SRL) {
1258         if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1259           if (ConstantSDNode *SA2 =
1260                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1261             if (SA2->getAPIntValue().ult(BitWidth)) {
1262               unsigned C1 = SA2->getZExtValue();
1263               unsigned Opc = ISD::SHL;
1264               int Diff = ShAmt - C1;
1265               if (Diff < 0) {
1266                 Diff = -Diff;
1267                 Opc = ISD::SRL;
1268               }
1269 
1270               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1271               return TLO.CombineTo(
1272                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1273             }
1274           }
1275         }
1276       }
1277 
1278       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1279                                Known, TLO, Depth + 1))
1280         return true;
1281 
1282       // Try shrinking the operation as long as the shift amount will still be
1283       // in range.
1284       if ((ShAmt < DemandedBits.getActiveBits()) &&
1285           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1286         return true;
1287 
1288       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1289       // are not demanded. This will likely allow the anyext to be folded away.
1290       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1291         SDValue InnerOp = Op0.getOperand(0);
1292         EVT InnerVT = InnerOp.getValueType();
1293         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1294         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1295             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1296           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1297           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1298             ShTy = InnerVT;
1299           SDValue NarrowShl =
1300               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1301                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1302           return TLO.CombineTo(
1303               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1304         }
1305         // Repeat the SHL optimization above in cases where an extension
1306         // intervenes: (shl (anyext (shr x, c1)), c2) to
1307         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1308         // aren't demanded (as above) and that the shifted upper c1 bits of
1309         // x aren't demanded.
1310         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1311             InnerOp.hasOneUse()) {
1312           if (ConstantSDNode *SA2 =
1313                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1314             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1315             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1316                 DemandedBits.getActiveBits() <=
1317                     (InnerBits - InnerShAmt + ShAmt) &&
1318                 DemandedBits.countTrailingZeros() >= ShAmt) {
1319               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1320                                                   Op1.getValueType());
1321               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1322                                                InnerOp.getOperand(0));
1323               return TLO.CombineTo(
1324                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1325             }
1326           }
1327         }
1328       }
1329 
1330       Known.Zero <<= ShAmt;
1331       Known.One <<= ShAmt;
1332       // low bits known zero.
1333       Known.Zero.setLowBits(ShAmt);
1334     }
1335     break;
1336   }
1337   case ISD::SRL: {
1338     SDValue Op0 = Op.getOperand(0);
1339     SDValue Op1 = Op.getOperand(1);
1340 
1341     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1342       // If the shift count is an invalid immediate, don't do anything.
1343       if (SA->getAPIntValue().uge(BitWidth))
1344         break;
1345 
1346       unsigned ShAmt = SA->getZExtValue();
1347       if (ShAmt == 0)
1348         return TLO.CombineTo(Op, Op0);
1349 
1350       EVT ShiftVT = Op1.getValueType();
1351       APInt InDemandedMask = (DemandedBits << ShAmt);
1352 
1353       // If the shift is exact, then it does demand the low bits (and knows that
1354       // they are zero).
1355       if (Op->getFlags().hasExact())
1356         InDemandedMask.setLowBits(ShAmt);
1357 
1358       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1359       // single shift.  We can do this if the top bits (which are shifted out)
1360       // are never demanded.
1361       // TODO - support non-uniform vector amounts.
1362       if (Op0.getOpcode() == ISD::SHL) {
1363         if (ConstantSDNode *SA2 =
1364                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1365           if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1366             if (SA2->getAPIntValue().ult(BitWidth)) {
1367               unsigned C1 = SA2->getZExtValue();
1368               unsigned Opc = ISD::SRL;
1369               int Diff = ShAmt - C1;
1370               if (Diff < 0) {
1371                 Diff = -Diff;
1372                 Opc = ISD::SHL;
1373               }
1374 
1375               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1376               return TLO.CombineTo(
1377                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1378             }
1379           }
1380         }
1381       }
1382 
1383       // Compute the new bits that are at the top now.
1384       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1385                                Depth + 1))
1386         return true;
1387       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1388       Known.Zero.lshrInPlace(ShAmt);
1389       Known.One.lshrInPlace(ShAmt);
1390 
1391       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1392     }
1393     break;
1394   }
1395   case ISD::SRA: {
1396     SDValue Op0 = Op.getOperand(0);
1397     SDValue Op1 = Op.getOperand(1);
1398 
1399     // If this is an arithmetic shift right and only the low-bit is set, we can
1400     // always convert this into a logical shr, even if the shift amount is
1401     // variable.  The low bit of the shift cannot be an input sign bit unless
1402     // the shift amount is >= the size of the datatype, which is undefined.
1403     if (DemandedBits.isOneValue())
1404       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1405 
1406     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1407       // If the shift count is an invalid immediate, don't do anything.
1408       if (SA->getAPIntValue().uge(BitWidth))
1409         break;
1410 
1411       unsigned ShAmt = SA->getZExtValue();
1412       if (ShAmt == 0)
1413         return TLO.CombineTo(Op, Op0);
1414 
1415       APInt InDemandedMask = (DemandedBits << ShAmt);
1416 
1417       // If the shift is exact, then it does demand the low bits (and knows that
1418       // they are zero).
1419       if (Op->getFlags().hasExact())
1420         InDemandedMask.setLowBits(ShAmt);
1421 
1422       // If any of the demanded bits are produced by the sign extension, we also
1423       // demand the input sign bit.
1424       if (DemandedBits.countLeadingZeros() < ShAmt)
1425         InDemandedMask.setSignBit();
1426 
1427       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1428                                Depth + 1))
1429         return true;
1430       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1431       Known.Zero.lshrInPlace(ShAmt);
1432       Known.One.lshrInPlace(ShAmt);
1433 
1434       // If the input sign bit is known to be zero, or if none of the top bits
1435       // are demanded, turn this into an unsigned shift right.
1436       if (Known.Zero[BitWidth - ShAmt - 1] ||
1437           DemandedBits.countLeadingZeros() >= ShAmt) {
1438         SDNodeFlags Flags;
1439         Flags.setExact(Op->getFlags().hasExact());
1440         return TLO.CombineTo(
1441             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1442       }
1443 
1444       int Log2 = DemandedBits.exactLogBase2();
1445       if (Log2 >= 0) {
1446         // The bit must come from the sign.
1447         SDValue NewSA =
1448             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1449         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1450       }
1451 
1452       if (Known.One[BitWidth - ShAmt - 1])
1453         // New bits are known one.
1454         Known.One.setHighBits(ShAmt);
1455     }
1456     break;
1457   }
1458   case ISD::FSHL:
1459   case ISD::FSHR: {
1460     SDValue Op0 = Op.getOperand(0);
1461     SDValue Op1 = Op.getOperand(1);
1462     SDValue Op2 = Op.getOperand(2);
1463     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1464 
1465     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1466       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1467 
1468       // For fshl, 0-shift returns the 1st arg.
1469       // For fshr, 0-shift returns the 2nd arg.
1470       if (Amt == 0) {
1471         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1472                                  Known, TLO, Depth + 1))
1473           return true;
1474         break;
1475       }
1476 
1477       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1478       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1479       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1480       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1481       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1482                                Depth + 1))
1483         return true;
1484       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1485                                Depth + 1))
1486         return true;
1487 
1488       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1489       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1490       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1491       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1492       Known.One |= Known2.One;
1493       Known.Zero |= Known2.Zero;
1494     }
1495     break;
1496   }
1497   case ISD::BITREVERSE: {
1498     SDValue Src = Op.getOperand(0);
1499     APInt DemandedSrcBits = DemandedBits.reverseBits();
1500     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1501                              Depth + 1))
1502       return true;
1503     Known.One = Known2.One.reverseBits();
1504     Known.Zero = Known2.Zero.reverseBits();
1505     break;
1506   }
1507   case ISD::SIGN_EXTEND_INREG: {
1508     SDValue Op0 = Op.getOperand(0);
1509     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1510     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1511 
1512     // If we only care about the highest bit, don't bother shifting right.
1513     if (DemandedBits.isSignMask()) {
1514       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1515       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1516       // However if the input is already sign extended we expect the sign
1517       // extension to be dropped altogether later and do not simplify.
1518       if (!AlreadySignExtended) {
1519         // Compute the correct shift amount type, which must be getShiftAmountTy
1520         // for scalar types after legalization.
1521         EVT ShiftAmtTy = VT;
1522         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1523           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1524 
1525         SDValue ShiftAmt =
1526             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1527         return TLO.CombineTo(Op,
1528                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1529       }
1530     }
1531 
1532     // If none of the extended bits are demanded, eliminate the sextinreg.
1533     if (DemandedBits.getActiveBits() <= ExVTBits)
1534       return TLO.CombineTo(Op, Op0);
1535 
1536     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1537 
1538     // Since the sign extended bits are demanded, we know that the sign
1539     // bit is demanded.
1540     InputDemandedBits.setBit(ExVTBits - 1);
1541 
1542     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1543       return true;
1544     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1545 
1546     // If the sign bit of the input is known set or clear, then we know the
1547     // top bits of the result.
1548 
1549     // If the input sign bit is known zero, convert this into a zero extension.
1550     if (Known.Zero[ExVTBits - 1])
1551       return TLO.CombineTo(
1552           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1553 
1554     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1555     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1556       Known.One.setBitsFrom(ExVTBits);
1557       Known.Zero &= Mask;
1558     } else { // Input sign bit unknown
1559       Known.Zero &= Mask;
1560       Known.One &= Mask;
1561     }
1562     break;
1563   }
1564   case ISD::BUILD_PAIR: {
1565     EVT HalfVT = Op.getOperand(0).getValueType();
1566     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1567 
1568     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1569     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1570 
1571     KnownBits KnownLo, KnownHi;
1572 
1573     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1574       return true;
1575 
1576     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1577       return true;
1578 
1579     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1580                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1581 
1582     Known.One = KnownLo.One.zext(BitWidth) |
1583                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1584     break;
1585   }
1586   case ISD::ZERO_EXTEND:
1587   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1588     SDValue Src = Op.getOperand(0);
1589     EVT SrcVT = Src.getValueType();
1590     unsigned InBits = SrcVT.getScalarSizeInBits();
1591     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1592     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1593 
1594     // If none of the top bits are demanded, convert this into an any_extend.
1595     if (DemandedBits.getActiveBits() <= InBits) {
1596       // If we only need the non-extended bits of the bottom element
1597       // then we can just bitcast to the result.
1598       if (IsVecInReg && DemandedElts == 1 &&
1599           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1600           TLO.DAG.getDataLayout().isLittleEndian())
1601         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1602 
1603       unsigned Opc =
1604           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1605       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1606         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1607     }
1608 
1609     APInt InDemandedBits = DemandedBits.trunc(InBits);
1610     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1611     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1612                              Depth + 1))
1613       return true;
1614     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1615     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1616     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1617     break;
1618   }
1619   case ISD::SIGN_EXTEND:
1620   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1621     SDValue Src = Op.getOperand(0);
1622     EVT SrcVT = Src.getValueType();
1623     unsigned InBits = SrcVT.getScalarSizeInBits();
1624     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1625     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1626 
1627     // If none of the top bits are demanded, convert this into an any_extend.
1628     if (DemandedBits.getActiveBits() <= InBits) {
1629       // If we only need the non-extended bits of the bottom element
1630       // then we can just bitcast to the result.
1631       if (IsVecInReg && DemandedElts == 1 &&
1632           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1633           TLO.DAG.getDataLayout().isLittleEndian())
1634         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1635 
1636       unsigned Opc =
1637           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1638       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1639         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1640     }
1641 
1642     APInt InDemandedBits = DemandedBits.trunc(InBits);
1643     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1644 
1645     // Since some of the sign extended bits are demanded, we know that the sign
1646     // bit is demanded.
1647     InDemandedBits.setBit(InBits - 1);
1648 
1649     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1650                              Depth + 1))
1651       return true;
1652     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1653     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1654 
1655     // If the sign bit is known one, the top bits match.
1656     Known = Known.sext(BitWidth);
1657 
1658     // If the sign bit is known zero, convert this to a zero extend.
1659     if (Known.isNonNegative()) {
1660       unsigned Opc =
1661           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1662       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1663         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1664     }
1665     break;
1666   }
1667   case ISD::ANY_EXTEND:
1668   case ISD::ANY_EXTEND_VECTOR_INREG: {
1669     SDValue Src = Op.getOperand(0);
1670     EVT SrcVT = Src.getValueType();
1671     unsigned InBits = SrcVT.getScalarSizeInBits();
1672     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1673     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1674 
1675     // If we only need the bottom element then we can just bitcast.
1676     // TODO: Handle ANY_EXTEND?
1677     if (IsVecInReg && DemandedElts == 1 &&
1678         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1679         TLO.DAG.getDataLayout().isLittleEndian())
1680       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1681 
1682     APInt InDemandedBits = DemandedBits.trunc(InBits);
1683     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1684     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1685                              Depth + 1))
1686       return true;
1687     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1688     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1689     Known = Known.zext(BitWidth, false /* => any extend */);
1690     break;
1691   }
1692   case ISD::TRUNCATE: {
1693     SDValue Src = Op.getOperand(0);
1694 
1695     // Simplify the input, using demanded bit information, and compute the known
1696     // zero/one bits live out.
1697     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1698     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1699     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1700       return true;
1701     Known = Known.trunc(BitWidth);
1702 
1703     // Attempt to avoid multi-use ops if we don't need anything from them.
1704     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1705             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1706       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1707 
1708     // If the input is only used by this truncate, see if we can shrink it based
1709     // on the known demanded bits.
1710     if (Src.getNode()->hasOneUse()) {
1711       switch (Src.getOpcode()) {
1712       default:
1713         break;
1714       case ISD::SRL:
1715         // Shrink SRL by a constant if none of the high bits shifted in are
1716         // demanded.
1717         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1718           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1719           // undesirable.
1720           break;
1721 
1722         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1723         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1724           break;
1725 
1726         SDValue Shift = Src.getOperand(1);
1727         uint64_t ShVal = ShAmt->getZExtValue();
1728 
1729         if (TLO.LegalTypes())
1730           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1731 
1732         APInt HighBits =
1733             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1734         HighBits.lshrInPlace(ShVal);
1735         HighBits = HighBits.trunc(BitWidth);
1736 
1737         if (!(HighBits & DemandedBits)) {
1738           // None of the shifted in bits are needed.  Add a truncate of the
1739           // shift input, then shift it.
1740           SDValue NewTrunc =
1741               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1742           return TLO.CombineTo(
1743               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1744         }
1745         break;
1746       }
1747     }
1748 
1749     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1750     break;
1751   }
1752   case ISD::AssertZext: {
1753     // AssertZext demands all of the high bits, plus any of the low bits
1754     // demanded by its users.
1755     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1756     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1757     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1758                              TLO, Depth + 1))
1759       return true;
1760     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1761 
1762     Known.Zero |= ~InMask;
1763     break;
1764   }
1765   case ISD::EXTRACT_VECTOR_ELT: {
1766     SDValue Src = Op.getOperand(0);
1767     SDValue Idx = Op.getOperand(1);
1768     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1769     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1770 
1771     // Demand the bits from every vector element without a constant index.
1772     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1773     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1774       if (CIdx->getAPIntValue().ult(NumSrcElts))
1775         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1776 
1777     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1778     // anything about the extended bits.
1779     APInt DemandedSrcBits = DemandedBits;
1780     if (BitWidth > EltBitWidth)
1781       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1782 
1783     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1784                              Depth + 1))
1785       return true;
1786 
1787     Known = Known2;
1788     if (BitWidth > EltBitWidth)
1789       Known = Known.zext(BitWidth, false /* => any extend */);
1790     break;
1791   }
1792   case ISD::BITCAST: {
1793     SDValue Src = Op.getOperand(0);
1794     EVT SrcVT = Src.getValueType();
1795     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1796 
1797     // If this is an FP->Int bitcast and if the sign bit is the only
1798     // thing demanded, turn this into a FGETSIGN.
1799     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1800         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1801         SrcVT.isFloatingPoint()) {
1802       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1803       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1804       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1805           SrcVT != MVT::f128) {
1806         // Cannot eliminate/lower SHL for f128 yet.
1807         EVT Ty = OpVTLegal ? VT : MVT::i32;
1808         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1809         // place.  We expect the SHL to be eliminated by other optimizations.
1810         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1811         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1812         if (!OpVTLegal && OpVTSizeInBits > 32)
1813           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1814         unsigned ShVal = Op.getValueSizeInBits() - 1;
1815         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1816         return TLO.CombineTo(Op,
1817                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1818       }
1819     }
1820 
1821     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1822     // Demand the elt/bit if any of the original elts/bits are demanded.
1823     // TODO - bigendian once we have test coverage.
1824     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1825     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1826         (BitWidth % NumSrcEltBits) == 0 &&
1827         TLO.DAG.getDataLayout().isLittleEndian()) {
1828       unsigned Scale = BitWidth / NumSrcEltBits;
1829       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1830       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1831       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1832       for (unsigned i = 0; i != Scale; ++i) {
1833         unsigned Offset = i * NumSrcEltBits;
1834         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1835         if (!Sub.isNullValue()) {
1836           DemandedSrcBits |= Sub;
1837           for (unsigned j = 0; j != NumElts; ++j)
1838             if (DemandedElts[j])
1839               DemandedSrcElts.setBit((j * Scale) + i);
1840         }
1841       }
1842 
1843       APInt KnownSrcUndef, KnownSrcZero;
1844       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1845                                      KnownSrcZero, TLO, Depth + 1))
1846         return true;
1847 
1848       KnownBits KnownSrcBits;
1849       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1850                                KnownSrcBits, TLO, Depth + 1))
1851         return true;
1852     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1853                TLO.DAG.getDataLayout().isLittleEndian()) {
1854       unsigned Scale = NumSrcEltBits / BitWidth;
1855       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1856       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1857       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1858       for (unsigned i = 0; i != NumElts; ++i)
1859         if (DemandedElts[i]) {
1860           unsigned Offset = (i % Scale) * BitWidth;
1861           DemandedSrcBits.insertBits(DemandedBits, Offset);
1862           DemandedSrcElts.setBit(i / Scale);
1863         }
1864 
1865       if (SrcVT.isVector()) {
1866         APInt KnownSrcUndef, KnownSrcZero;
1867         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1868                                        KnownSrcZero, TLO, Depth + 1))
1869           return true;
1870       }
1871 
1872       KnownBits KnownSrcBits;
1873       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1874                                KnownSrcBits, TLO, Depth + 1))
1875         return true;
1876     }
1877 
1878     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1879     // recursive call where Known may be useful to the caller.
1880     if (Depth > 0) {
1881       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1882       return false;
1883     }
1884     break;
1885   }
1886   case ISD::ADD:
1887   case ISD::MUL:
1888   case ISD::SUB: {
1889     // Add, Sub, and Mul don't demand any bits in positions beyond that
1890     // of the highest bit demanded of them.
1891     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1892     SDNodeFlags Flags = Op.getNode()->getFlags();
1893     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1894     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1895     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1896                              Depth + 1) ||
1897         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1898                              Depth + 1) ||
1899         // See if the operation should be performed at a smaller bit width.
1900         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1901       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1902         // Disable the nsw and nuw flags. We can no longer guarantee that we
1903         // won't wrap after simplification.
1904         Flags.setNoSignedWrap(false);
1905         Flags.setNoUnsignedWrap(false);
1906         SDValue NewOp =
1907             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1908         return TLO.CombineTo(Op, NewOp);
1909       }
1910       return true;
1911     }
1912 
1913     // Attempt to avoid multi-use ops if we don't need anything from them.
1914     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1915       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1916           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1917       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1918           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1919       if (DemandedOp0 || DemandedOp1) {
1920         Flags.setNoSignedWrap(false);
1921         Flags.setNoUnsignedWrap(false);
1922         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1923         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1924         SDValue NewOp =
1925             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1926         return TLO.CombineTo(Op, NewOp);
1927       }
1928     }
1929 
1930     // If we have a constant operand, we may be able to turn it into -1 if we
1931     // do not demand the high bits. This can make the constant smaller to
1932     // encode, allow more general folding, or match specialized instruction
1933     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1934     // is probably not useful (and could be detrimental).
1935     ConstantSDNode *C = isConstOrConstSplat(Op1);
1936     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1937     if (C && !C->isAllOnesValue() && !C->isOne() &&
1938         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1939       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1940       // We can't guarantee that the new math op doesn't wrap, so explicitly
1941       // clear those flags to prevent folding with a potential existing node
1942       // that has those flags set.
1943       SDNodeFlags Flags;
1944       Flags.setNoSignedWrap(false);
1945       Flags.setNoUnsignedWrap(false);
1946       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1947       return TLO.CombineTo(Op, NewOp);
1948     }
1949 
1950     LLVM_FALLTHROUGH;
1951   }
1952   default:
1953     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1954       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1955                                             Known, TLO, Depth))
1956         return true;
1957       break;
1958     }
1959 
1960     // Just use computeKnownBits to compute output bits.
1961     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1962     break;
1963   }
1964 
1965   // If we know the value of all of the demanded bits, return this as a
1966   // constant.
1967   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1968     // Avoid folding to a constant if any OpaqueConstant is involved.
1969     const SDNode *N = Op.getNode();
1970     for (SDNodeIterator I = SDNodeIterator::begin(N),
1971                         E = SDNodeIterator::end(N);
1972          I != E; ++I) {
1973       SDNode *Op = *I;
1974       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1975         if (C->isOpaque())
1976           return false;
1977     }
1978     // TODO: Handle float bits as well.
1979     if (VT.isInteger())
1980       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1981   }
1982 
1983   return false;
1984 }
1985 
1986 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1987                                                 const APInt &DemandedElts,
1988                                                 APInt &KnownUndef,
1989                                                 APInt &KnownZero,
1990                                                 DAGCombinerInfo &DCI) const {
1991   SelectionDAG &DAG = DCI.DAG;
1992   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1993                         !DCI.isBeforeLegalizeOps());
1994 
1995   bool Simplified =
1996       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1997   if (Simplified) {
1998     DCI.AddToWorklist(Op.getNode());
1999     DCI.CommitTargetLoweringOpt(TLO);
2000   }
2001 
2002   return Simplified;
2003 }
2004 
2005 /// Given a vector binary operation and known undefined elements for each input
2006 /// operand, compute whether each element of the output is undefined.
2007 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2008                                          const APInt &UndefOp0,
2009                                          const APInt &UndefOp1) {
2010   EVT VT = BO.getValueType();
2011   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2012          "Vector binop only");
2013 
2014   EVT EltVT = VT.getVectorElementType();
2015   unsigned NumElts = VT.getVectorNumElements();
2016   assert(UndefOp0.getBitWidth() == NumElts &&
2017          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2018 
2019   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2020                                    const APInt &UndefVals) {
2021     if (UndefVals[Index])
2022       return DAG.getUNDEF(EltVT);
2023 
2024     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2025       // Try hard to make sure that the getNode() call is not creating temporary
2026       // nodes. Ignore opaque integers because they do not constant fold.
2027       SDValue Elt = BV->getOperand(Index);
2028       auto *C = dyn_cast<ConstantSDNode>(Elt);
2029       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2030         return Elt;
2031     }
2032 
2033     return SDValue();
2034   };
2035 
2036   APInt KnownUndef = APInt::getNullValue(NumElts);
2037   for (unsigned i = 0; i != NumElts; ++i) {
2038     // If both inputs for this element are either constant or undef and match
2039     // the element type, compute the constant/undef result for this element of
2040     // the vector.
2041     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2042     // not handle FP constants. The code within getNode() should be refactored
2043     // to avoid the danger of creating a bogus temporary node here.
2044     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2045     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2046     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2047       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2048         KnownUndef.setBit(i);
2049   }
2050   return KnownUndef;
2051 }
2052 
2053 bool TargetLowering::SimplifyDemandedVectorElts(
2054     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2055     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2056     bool AssumeSingleUse) const {
2057   EVT VT = Op.getValueType();
2058   APInt DemandedElts = OriginalDemandedElts;
2059   unsigned NumElts = DemandedElts.getBitWidth();
2060   assert(VT.isVector() && "Expected vector op");
2061   assert(VT.getVectorNumElements() == NumElts &&
2062          "Mask size mismatches value type element count!");
2063 
2064   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2065 
2066   // Undef operand.
2067   if (Op.isUndef()) {
2068     KnownUndef.setAllBits();
2069     return false;
2070   }
2071 
2072   // If Op has other users, assume that all elements are needed.
2073   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2074     DemandedElts.setAllBits();
2075 
2076   // Not demanding any elements from Op.
2077   if (DemandedElts == 0) {
2078     KnownUndef.setAllBits();
2079     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2080   }
2081 
2082   // Limit search depth.
2083   if (Depth >= 6)
2084     return false;
2085 
2086   SDLoc DL(Op);
2087   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2088 
2089   switch (Op.getOpcode()) {
2090   case ISD::SCALAR_TO_VECTOR: {
2091     if (!DemandedElts[0]) {
2092       KnownUndef.setAllBits();
2093       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2094     }
2095     KnownUndef.setHighBits(NumElts - 1);
2096     break;
2097   }
2098   case ISD::BITCAST: {
2099     SDValue Src = Op.getOperand(0);
2100     EVT SrcVT = Src.getValueType();
2101 
2102     // We only handle vectors here.
2103     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2104     if (!SrcVT.isVector())
2105       break;
2106 
2107     // Fast handling of 'identity' bitcasts.
2108     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2109     if (NumSrcElts == NumElts)
2110       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2111                                         KnownZero, TLO, Depth + 1);
2112 
2113     APInt SrcZero, SrcUndef;
2114     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2115 
2116     // Bitcast from 'large element' src vector to 'small element' vector, we
2117     // must demand a source element if any DemandedElt maps to it.
2118     if ((NumElts % NumSrcElts) == 0) {
2119       unsigned Scale = NumElts / NumSrcElts;
2120       for (unsigned i = 0; i != NumElts; ++i)
2121         if (DemandedElts[i])
2122           SrcDemandedElts.setBit(i / Scale);
2123 
2124       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2125                                      TLO, Depth + 1))
2126         return true;
2127 
2128       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2129       // of the large element.
2130       // TODO - bigendian once we have test coverage.
2131       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2132         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2133         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2134         for (unsigned i = 0; i != NumElts; ++i)
2135           if (DemandedElts[i]) {
2136             unsigned Ofs = (i % Scale) * EltSizeInBits;
2137             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2138           }
2139 
2140         KnownBits Known;
2141         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2142           return true;
2143       }
2144 
2145       // If the src element is zero/undef then all the output elements will be -
2146       // only demanded elements are guaranteed to be correct.
2147       for (unsigned i = 0; i != NumSrcElts; ++i) {
2148         if (SrcDemandedElts[i]) {
2149           if (SrcZero[i])
2150             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2151           if (SrcUndef[i])
2152             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2153         }
2154       }
2155     }
2156 
2157     // Bitcast from 'small element' src vector to 'large element' vector, we
2158     // demand all smaller source elements covered by the larger demanded element
2159     // of this vector.
2160     if ((NumSrcElts % NumElts) == 0) {
2161       unsigned Scale = NumSrcElts / NumElts;
2162       for (unsigned i = 0; i != NumElts; ++i)
2163         if (DemandedElts[i])
2164           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2165 
2166       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2167                                      TLO, Depth + 1))
2168         return true;
2169 
2170       // If all the src elements covering an output element are zero/undef, then
2171       // the output element will be as well, assuming it was demanded.
2172       for (unsigned i = 0; i != NumElts; ++i) {
2173         if (DemandedElts[i]) {
2174           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2175             KnownZero.setBit(i);
2176           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2177             KnownUndef.setBit(i);
2178         }
2179       }
2180     }
2181     break;
2182   }
2183   case ISD::BUILD_VECTOR: {
2184     // Check all elements and simplify any unused elements with UNDEF.
2185     if (!DemandedElts.isAllOnesValue()) {
2186       // Don't simplify BROADCASTS.
2187       if (llvm::any_of(Op->op_values(),
2188                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2189         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2190         bool Updated = false;
2191         for (unsigned i = 0; i != NumElts; ++i) {
2192           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2193             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2194             KnownUndef.setBit(i);
2195             Updated = true;
2196           }
2197         }
2198         if (Updated)
2199           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2200       }
2201     }
2202     for (unsigned i = 0; i != NumElts; ++i) {
2203       SDValue SrcOp = Op.getOperand(i);
2204       if (SrcOp.isUndef()) {
2205         KnownUndef.setBit(i);
2206       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2207                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2208         KnownZero.setBit(i);
2209       }
2210     }
2211     break;
2212   }
2213   case ISD::CONCAT_VECTORS: {
2214     EVT SubVT = Op.getOperand(0).getValueType();
2215     unsigned NumSubVecs = Op.getNumOperands();
2216     unsigned NumSubElts = SubVT.getVectorNumElements();
2217     for (unsigned i = 0; i != NumSubVecs; ++i) {
2218       SDValue SubOp = Op.getOperand(i);
2219       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2220       APInt SubUndef, SubZero;
2221       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2222                                      Depth + 1))
2223         return true;
2224       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2225       KnownZero.insertBits(SubZero, i * NumSubElts);
2226     }
2227     break;
2228   }
2229   case ISD::INSERT_SUBVECTOR: {
2230     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2231       break;
2232     SDValue Base = Op.getOperand(0);
2233     SDValue Sub = Op.getOperand(1);
2234     EVT SubVT = Sub.getValueType();
2235     unsigned NumSubElts = SubVT.getVectorNumElements();
2236     const APInt &Idx = Op.getConstantOperandAPInt(2);
2237     if (Idx.ugt(NumElts - NumSubElts))
2238       break;
2239     unsigned SubIdx = Idx.getZExtValue();
2240     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2241     APInt SubUndef, SubZero;
2242     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2243                                    Depth + 1))
2244       return true;
2245     APInt BaseElts = DemandedElts;
2246     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2247 
2248     // If none of the base operand elements are demanded, replace it with undef.
2249     if (!BaseElts && !Base.isUndef())
2250       return TLO.CombineTo(Op,
2251                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2252                                            TLO.DAG.getUNDEF(VT),
2253                                            Op.getOperand(1),
2254                                            Op.getOperand(2)));
2255 
2256     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2257                                    Depth + 1))
2258       return true;
2259     KnownUndef.insertBits(SubUndef, SubIdx);
2260     KnownZero.insertBits(SubZero, SubIdx);
2261     break;
2262   }
2263   case ISD::EXTRACT_SUBVECTOR: {
2264     SDValue Src = Op.getOperand(0);
2265     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2266     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2267     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2268       // Offset the demanded elts by the subvector index.
2269       uint64_t Idx = SubIdx->getZExtValue();
2270       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2271       APInt SrcUndef, SrcZero;
2272       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2273                                      Depth + 1))
2274         return true;
2275       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2276       KnownZero = SrcZero.extractBits(NumElts, Idx);
2277     }
2278     break;
2279   }
2280   case ISD::INSERT_VECTOR_ELT: {
2281     SDValue Vec = Op.getOperand(0);
2282     SDValue Scl = Op.getOperand(1);
2283     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2284 
2285     // For a legal, constant insertion index, if we don't need this insertion
2286     // then strip it, else remove it from the demanded elts.
2287     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2288       unsigned Idx = CIdx->getZExtValue();
2289       if (!DemandedElts[Idx])
2290         return TLO.CombineTo(Op, Vec);
2291 
2292       APInt DemandedVecElts(DemandedElts);
2293       DemandedVecElts.clearBit(Idx);
2294       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2295                                      KnownZero, TLO, Depth + 1))
2296         return true;
2297 
2298       KnownUndef.clearBit(Idx);
2299       if (Scl.isUndef())
2300         KnownUndef.setBit(Idx);
2301 
2302       KnownZero.clearBit(Idx);
2303       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2304         KnownZero.setBit(Idx);
2305       break;
2306     }
2307 
2308     APInt VecUndef, VecZero;
2309     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2310                                    Depth + 1))
2311       return true;
2312     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2313     break;
2314   }
2315   case ISD::VSELECT: {
2316     // Try to transform the select condition based on the current demanded
2317     // elements.
2318     // TODO: If a condition element is undef, we can choose from one arm of the
2319     //       select (and if one arm is undef, then we can propagate that to the
2320     //       result).
2321     // TODO - add support for constant vselect masks (see IR version of this).
2322     APInt UnusedUndef, UnusedZero;
2323     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2324                                    UnusedZero, TLO, Depth + 1))
2325       return true;
2326 
2327     // See if we can simplify either vselect operand.
2328     APInt DemandedLHS(DemandedElts);
2329     APInt DemandedRHS(DemandedElts);
2330     APInt UndefLHS, ZeroLHS;
2331     APInt UndefRHS, ZeroRHS;
2332     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2333                                    ZeroLHS, TLO, Depth + 1))
2334       return true;
2335     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2336                                    ZeroRHS, TLO, Depth + 1))
2337       return true;
2338 
2339     KnownUndef = UndefLHS & UndefRHS;
2340     KnownZero = ZeroLHS & ZeroRHS;
2341     break;
2342   }
2343   case ISD::VECTOR_SHUFFLE: {
2344     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2345 
2346     // Collect demanded elements from shuffle operands..
2347     APInt DemandedLHS(NumElts, 0);
2348     APInt DemandedRHS(NumElts, 0);
2349     for (unsigned i = 0; i != NumElts; ++i) {
2350       int M = ShuffleMask[i];
2351       if (M < 0 || !DemandedElts[i])
2352         continue;
2353       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2354       if (M < (int)NumElts)
2355         DemandedLHS.setBit(M);
2356       else
2357         DemandedRHS.setBit(M - NumElts);
2358     }
2359 
2360     // See if we can simplify either shuffle operand.
2361     APInt UndefLHS, ZeroLHS;
2362     APInt UndefRHS, ZeroRHS;
2363     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2364                                    ZeroLHS, TLO, Depth + 1))
2365       return true;
2366     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2367                                    ZeroRHS, TLO, Depth + 1))
2368       return true;
2369 
2370     // Simplify mask using undef elements from LHS/RHS.
2371     bool Updated = false;
2372     bool IdentityLHS = true, IdentityRHS = true;
2373     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2374     for (unsigned i = 0; i != NumElts; ++i) {
2375       int &M = NewMask[i];
2376       if (M < 0)
2377         continue;
2378       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2379           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2380         Updated = true;
2381         M = -1;
2382       }
2383       IdentityLHS &= (M < 0) || (M == (int)i);
2384       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2385     }
2386 
2387     // Update legal shuffle masks based on demanded elements if it won't reduce
2388     // to Identity which can cause premature removal of the shuffle mask.
2389     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2390         isShuffleMaskLegal(NewMask, VT))
2391       return TLO.CombineTo(Op,
2392                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2393                                                     Op.getOperand(1), NewMask));
2394 
2395     // Propagate undef/zero elements from LHS/RHS.
2396     for (unsigned i = 0; i != NumElts; ++i) {
2397       int M = ShuffleMask[i];
2398       if (M < 0) {
2399         KnownUndef.setBit(i);
2400       } else if (M < (int)NumElts) {
2401         if (UndefLHS[M])
2402           KnownUndef.setBit(i);
2403         if (ZeroLHS[M])
2404           KnownZero.setBit(i);
2405       } else {
2406         if (UndefRHS[M - NumElts])
2407           KnownUndef.setBit(i);
2408         if (ZeroRHS[M - NumElts])
2409           KnownZero.setBit(i);
2410       }
2411     }
2412     break;
2413   }
2414   case ISD::ANY_EXTEND_VECTOR_INREG:
2415   case ISD::SIGN_EXTEND_VECTOR_INREG:
2416   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2417     APInt SrcUndef, SrcZero;
2418     SDValue Src = Op.getOperand(0);
2419     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2420     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2421     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2422                                    Depth + 1))
2423       return true;
2424     KnownZero = SrcZero.zextOrTrunc(NumElts);
2425     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2426 
2427     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2428         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2429         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2430       // aext - if we just need the bottom element then we can bitcast.
2431       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2432     }
2433 
2434     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2435       // zext(undef) upper bits are guaranteed to be zero.
2436       if (DemandedElts.isSubsetOf(KnownUndef))
2437         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2438       KnownUndef.clearAllBits();
2439     }
2440     break;
2441   }
2442 
2443   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2444   // MAX, saturated math, etc.
2445   case ISD::OR:
2446   case ISD::XOR:
2447   case ISD::ADD:
2448   case ISD::SUB:
2449   case ISD::FADD:
2450   case ISD::FSUB:
2451   case ISD::FMUL:
2452   case ISD::FDIV:
2453   case ISD::FREM: {
2454     APInt UndefRHS, ZeroRHS;
2455     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2456                                    ZeroRHS, TLO, Depth + 1))
2457       return true;
2458     APInt UndefLHS, ZeroLHS;
2459     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2460                                    ZeroLHS, TLO, Depth + 1))
2461       return true;
2462 
2463     KnownZero = ZeroLHS & ZeroRHS;
2464     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2465     break;
2466   }
2467   case ISD::SHL:
2468   case ISD::SRL:
2469   case ISD::SRA:
2470   case ISD::ROTL:
2471   case ISD::ROTR: {
2472     APInt UndefRHS, ZeroRHS;
2473     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2474                                    ZeroRHS, TLO, Depth + 1))
2475       return true;
2476     APInt UndefLHS, ZeroLHS;
2477     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2478                                    ZeroLHS, TLO, Depth + 1))
2479       return true;
2480 
2481     KnownZero = ZeroLHS;
2482     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2483     break;
2484   }
2485   case ISD::MUL:
2486   case ISD::AND: {
2487     APInt SrcUndef, SrcZero;
2488     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2489                                    SrcZero, TLO, Depth + 1))
2490       return true;
2491     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2492                                    KnownZero, TLO, Depth + 1))
2493       return true;
2494 
2495     // If either side has a zero element, then the result element is zero, even
2496     // if the other is an UNDEF.
2497     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2498     // and then handle 'and' nodes with the rest of the binop opcodes.
2499     KnownZero |= SrcZero;
2500     KnownUndef &= SrcUndef;
2501     KnownUndef &= ~KnownZero;
2502     break;
2503   }
2504   case ISD::TRUNCATE:
2505   case ISD::SIGN_EXTEND:
2506   case ISD::ZERO_EXTEND:
2507     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2508                                    KnownZero, TLO, Depth + 1))
2509       return true;
2510 
2511     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2512       // zext(undef) upper bits are guaranteed to be zero.
2513       if (DemandedElts.isSubsetOf(KnownUndef))
2514         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2515       KnownUndef.clearAllBits();
2516     }
2517     break;
2518   default: {
2519     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2520       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2521                                                   KnownZero, TLO, Depth))
2522         return true;
2523     } else {
2524       KnownBits Known;
2525       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2526       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2527                                TLO, Depth, AssumeSingleUse))
2528         return true;
2529     }
2530     break;
2531   }
2532   }
2533   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2534 
2535   // Constant fold all undef cases.
2536   // TODO: Handle zero cases as well.
2537   if (DemandedElts.isSubsetOf(KnownUndef))
2538     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2539 
2540   return false;
2541 }
2542 
2543 /// Determine which of the bits specified in Mask are known to be either zero or
2544 /// one and return them in the Known.
2545 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2546                                                    KnownBits &Known,
2547                                                    const APInt &DemandedElts,
2548                                                    const SelectionDAG &DAG,
2549                                                    unsigned Depth) const {
2550   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2551           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2552           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2553           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2554          "Should use MaskedValueIsZero if you don't know whether Op"
2555          " is a target node!");
2556   Known.resetAll();
2557 }
2558 
2559 void TargetLowering::computeKnownBitsForTargetInstr(
2560     Register R, KnownBits &Known, const APInt &DemandedElts,
2561     const MachineRegisterInfo &MRI, unsigned Depth) const {
2562   Known.resetAll();
2563 }
2564 
2565 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2566                                                    KnownBits &Known,
2567                                                    const APInt &DemandedElts,
2568                                                    const SelectionDAG &DAG,
2569                                                    unsigned Depth) const {
2570   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2571 
2572   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2573     // The low bits are known zero if the pointer is aligned.
2574     Known.Zero.setLowBits(Log2_32(Align));
2575   }
2576 }
2577 
2578 /// This method can be implemented by targets that want to expose additional
2579 /// information about sign bits to the DAG Combiner.
2580 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2581                                                          const APInt &,
2582                                                          const SelectionDAG &,
2583                                                          unsigned Depth) const {
2584   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2585           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2586           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2587           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2588          "Should use ComputeNumSignBits if you don't know whether Op"
2589          " is a target node!");
2590   return 1;
2591 }
2592 
2593 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2594     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2595     TargetLoweringOpt &TLO, unsigned Depth) const {
2596   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2597           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2598           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2599           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2600          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2601          " is a target node!");
2602   return false;
2603 }
2604 
2605 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2606     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2607     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2608   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2609           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2610           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2611           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2612          "Should use SimplifyDemandedBits if you don't know whether Op"
2613          " is a target node!");
2614   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2615   return false;
2616 }
2617 
2618 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2619     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2620     SelectionDAG &DAG, unsigned Depth) const {
2621   assert(
2622       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2623        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2624        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2625        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2626       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2627       " is a target node!");
2628   return SDValue();
2629 }
2630 
2631 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2632   return nullptr;
2633 }
2634 
2635 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2636                                                   const SelectionDAG &DAG,
2637                                                   bool SNaN,
2638                                                   unsigned Depth) const {
2639   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2640           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2641           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2642           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2643          "Should use isKnownNeverNaN if you don't know whether Op"
2644          " is a target node!");
2645   return false;
2646 }
2647 
2648 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2649 // work with truncating build vectors and vectors with elements of less than
2650 // 8 bits.
2651 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2652   if (!N)
2653     return false;
2654 
2655   APInt CVal;
2656   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2657     CVal = CN->getAPIntValue();
2658   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2659     auto *CN = BV->getConstantSplatNode();
2660     if (!CN)
2661       return false;
2662 
2663     // If this is a truncating build vector, truncate the splat value.
2664     // Otherwise, we may fail to match the expected values below.
2665     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2666     CVal = CN->getAPIntValue();
2667     if (BVEltWidth < CVal.getBitWidth())
2668       CVal = CVal.trunc(BVEltWidth);
2669   } else {
2670     return false;
2671   }
2672 
2673   switch (getBooleanContents(N->getValueType(0))) {
2674   case UndefinedBooleanContent:
2675     return CVal[0];
2676   case ZeroOrOneBooleanContent:
2677     return CVal.isOneValue();
2678   case ZeroOrNegativeOneBooleanContent:
2679     return CVal.isAllOnesValue();
2680   }
2681 
2682   llvm_unreachable("Invalid boolean contents");
2683 }
2684 
2685 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2686   if (!N)
2687     return false;
2688 
2689   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2690   if (!CN) {
2691     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2692     if (!BV)
2693       return false;
2694 
2695     // Only interested in constant splats, we don't care about undef
2696     // elements in identifying boolean constants and getConstantSplatNode
2697     // returns NULL if all ops are undef;
2698     CN = BV->getConstantSplatNode();
2699     if (!CN)
2700       return false;
2701   }
2702 
2703   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2704     return !CN->getAPIntValue()[0];
2705 
2706   return CN->isNullValue();
2707 }
2708 
2709 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2710                                        bool SExt) const {
2711   if (VT == MVT::i1)
2712     return N->isOne();
2713 
2714   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2715   switch (Cnt) {
2716   case TargetLowering::ZeroOrOneBooleanContent:
2717     // An extended value of 1 is always true, unless its original type is i1,
2718     // in which case it will be sign extended to -1.
2719     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2720   case TargetLowering::UndefinedBooleanContent:
2721   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2722     return N->isAllOnesValue() && SExt;
2723   }
2724   llvm_unreachable("Unexpected enumeration.");
2725 }
2726 
2727 /// This helper function of SimplifySetCC tries to optimize the comparison when
2728 /// either operand of the SetCC node is a bitwise-and instruction.
2729 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2730                                          ISD::CondCode Cond, const SDLoc &DL,
2731                                          DAGCombinerInfo &DCI) const {
2732   // Match these patterns in any of their permutations:
2733   // (X & Y) == Y
2734   // (X & Y) != Y
2735   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2736     std::swap(N0, N1);
2737 
2738   EVT OpVT = N0.getValueType();
2739   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2740       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2741     return SDValue();
2742 
2743   SDValue X, Y;
2744   if (N0.getOperand(0) == N1) {
2745     X = N0.getOperand(1);
2746     Y = N0.getOperand(0);
2747   } else if (N0.getOperand(1) == N1) {
2748     X = N0.getOperand(0);
2749     Y = N0.getOperand(1);
2750   } else {
2751     return SDValue();
2752   }
2753 
2754   SelectionDAG &DAG = DCI.DAG;
2755   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2756   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2757     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2758     // Note that where Y is variable and is known to have at most one bit set
2759     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2760     // equivalent when Y == 0.
2761     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2762     if (DCI.isBeforeLegalizeOps() ||
2763         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2764       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2765   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2766     // If the target supports an 'and-not' or 'and-complement' logic operation,
2767     // try to use that to make a comparison operation more efficient.
2768     // But don't do this transform if the mask is a single bit because there are
2769     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2770     // 'rlwinm' on PPC).
2771 
2772     // Bail out if the compare operand that we want to turn into a zero is
2773     // already a zero (otherwise, infinite loop).
2774     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2775     if (YConst && YConst->isNullValue())
2776       return SDValue();
2777 
2778     // Transform this into: ~X & Y == 0.
2779     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2780     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2781     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2782   }
2783 
2784   return SDValue();
2785 }
2786 
2787 /// There are multiple IR patterns that could be checking whether certain
2788 /// truncation of a signed number would be lossy or not. The pattern which is
2789 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2790 /// We are looking for the following pattern: (KeptBits is a constant)
2791 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2792 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2793 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2794 /// We will unfold it into the natural trunc+sext pattern:
2795 ///   ((%x << C) a>> C) dstcond %x
2796 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2797 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2798     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2799     const SDLoc &DL) const {
2800   // We must be comparing with a constant.
2801   ConstantSDNode *C1;
2802   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2803     return SDValue();
2804 
2805   // N0 should be:  add %x, (1 << (KeptBits-1))
2806   if (N0->getOpcode() != ISD::ADD)
2807     return SDValue();
2808 
2809   // And we must be 'add'ing a constant.
2810   ConstantSDNode *C01;
2811   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2812     return SDValue();
2813 
2814   SDValue X = N0->getOperand(0);
2815   EVT XVT = X.getValueType();
2816 
2817   // Validate constants ...
2818 
2819   APInt I1 = C1->getAPIntValue();
2820 
2821   ISD::CondCode NewCond;
2822   if (Cond == ISD::CondCode::SETULT) {
2823     NewCond = ISD::CondCode::SETEQ;
2824   } else if (Cond == ISD::CondCode::SETULE) {
2825     NewCond = ISD::CondCode::SETEQ;
2826     // But need to 'canonicalize' the constant.
2827     I1 += 1;
2828   } else if (Cond == ISD::CondCode::SETUGT) {
2829     NewCond = ISD::CondCode::SETNE;
2830     // But need to 'canonicalize' the constant.
2831     I1 += 1;
2832   } else if (Cond == ISD::CondCode::SETUGE) {
2833     NewCond = ISD::CondCode::SETNE;
2834   } else
2835     return SDValue();
2836 
2837   APInt I01 = C01->getAPIntValue();
2838 
2839   auto checkConstants = [&I1, &I01]() -> bool {
2840     // Both of them must be power-of-two, and the constant from setcc is bigger.
2841     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2842   };
2843 
2844   if (checkConstants()) {
2845     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2846   } else {
2847     // What if we invert constants? (and the target predicate)
2848     I1.negate();
2849     I01.negate();
2850     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2851     if (!checkConstants())
2852       return SDValue();
2853     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2854   }
2855 
2856   // They are power-of-two, so which bit is set?
2857   const unsigned KeptBits = I1.logBase2();
2858   const unsigned KeptBitsMinusOne = I01.logBase2();
2859 
2860   // Magic!
2861   if (KeptBits != (KeptBitsMinusOne + 1))
2862     return SDValue();
2863   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2864 
2865   // We don't want to do this in every single case.
2866   SelectionDAG &DAG = DCI.DAG;
2867   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2868           XVT, KeptBits))
2869     return SDValue();
2870 
2871   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2872   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2873 
2874   // Unfold into:  ((%x << C) a>> C) cond %x
2875   // Where 'cond' will be either 'eq' or 'ne'.
2876   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2877   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2878   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2879   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2880 
2881   return T2;
2882 }
2883 
2884 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2885 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2886     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2887     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2888   assert(isConstOrConstSplat(N1C) &&
2889          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2890          "Should be a comparison with 0.");
2891   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2892          "Valid only for [in]equality comparisons.");
2893 
2894   unsigned NewShiftOpcode;
2895   SDValue X, C, Y;
2896 
2897   SelectionDAG &DAG = DCI.DAG;
2898   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2899 
2900   // Look for '(C l>>/<< Y)'.
2901   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2902     // The shift should be one-use.
2903     if (!V.hasOneUse())
2904       return false;
2905     unsigned OldShiftOpcode = V.getOpcode();
2906     switch (OldShiftOpcode) {
2907     case ISD::SHL:
2908       NewShiftOpcode = ISD::SRL;
2909       break;
2910     case ISD::SRL:
2911       NewShiftOpcode = ISD::SHL;
2912       break;
2913     default:
2914       return false; // must be a logical shift.
2915     }
2916     // We should be shifting a constant.
2917     // FIXME: best to use isConstantOrConstantVector().
2918     C = V.getOperand(0);
2919     ConstantSDNode *CC =
2920         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2921     if (!CC)
2922       return false;
2923     Y = V.getOperand(1);
2924 
2925     ConstantSDNode *XC =
2926         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2927     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2928         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2929   };
2930 
2931   // LHS of comparison should be an one-use 'and'.
2932   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2933     return SDValue();
2934 
2935   X = N0.getOperand(0);
2936   SDValue Mask = N0.getOperand(1);
2937 
2938   // 'and' is commutative!
2939   if (!Match(Mask)) {
2940     std::swap(X, Mask);
2941     if (!Match(Mask))
2942       return SDValue();
2943   }
2944 
2945   EVT VT = X.getValueType();
2946 
2947   // Produce:
2948   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2949   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2950   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2951   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2952   return T2;
2953 }
2954 
2955 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2956 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2957 /// handle the commuted versions of these patterns.
2958 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2959                                            ISD::CondCode Cond, const SDLoc &DL,
2960                                            DAGCombinerInfo &DCI) const {
2961   unsigned BOpcode = N0.getOpcode();
2962   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2963          "Unexpected binop");
2964   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2965 
2966   // (X + Y) == X --> Y == 0
2967   // (X - Y) == X --> Y == 0
2968   // (X ^ Y) == X --> Y == 0
2969   SelectionDAG &DAG = DCI.DAG;
2970   EVT OpVT = N0.getValueType();
2971   SDValue X = N0.getOperand(0);
2972   SDValue Y = N0.getOperand(1);
2973   if (X == N1)
2974     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2975 
2976   if (Y != N1)
2977     return SDValue();
2978 
2979   // (X + Y) == Y --> X == 0
2980   // (X ^ Y) == Y --> X == 0
2981   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2982     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2983 
2984   // The shift would not be valid if the operands are boolean (i1).
2985   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2986     return SDValue();
2987 
2988   // (X - Y) == Y --> X == Y << 1
2989   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2990                                  !DCI.isBeforeLegalize());
2991   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2992   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2993   if (!DCI.isCalledByLegalizer())
2994     DCI.AddToWorklist(YShl1.getNode());
2995   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2996 }
2997 
2998 /// Try to simplify a setcc built with the specified operands and cc. If it is
2999 /// unable to simplify it, return a null SDValue.
3000 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3001                                       ISD::CondCode Cond, bool foldBooleans,
3002                                       DAGCombinerInfo &DCI,
3003                                       const SDLoc &dl) const {
3004   SelectionDAG &DAG = DCI.DAG;
3005   EVT OpVT = N0.getValueType();
3006 
3007   // Constant fold or commute setcc.
3008   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3009     return Fold;
3010 
3011   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3012   // TODO: Handle non-splat vector constants. All undef causes trouble.
3013   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3014   if (isConstOrConstSplat(N0) &&
3015       (DCI.isBeforeLegalizeOps() ||
3016        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3017     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3018 
3019   // If we have a subtract with the same 2 non-constant operands as this setcc
3020   // -- but in reverse order -- then try to commute the operands of this setcc
3021   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3022   // instruction on some targets.
3023   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3024       (DCI.isBeforeLegalizeOps() ||
3025        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3026       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3027       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3028     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3029 
3030   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3031     const APInt &C1 = N1C->getAPIntValue();
3032 
3033     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3034     // equality comparison, then we're just comparing whether X itself is
3035     // zero.
3036     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3037         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3038         N0.getOperand(1).getOpcode() == ISD::Constant) {
3039       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3040       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3041           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3042         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3043           // (srl (ctlz x), 5) == 0  -> X != 0
3044           // (srl (ctlz x), 5) != 1  -> X != 0
3045           Cond = ISD::SETNE;
3046         } else {
3047           // (srl (ctlz x), 5) != 0  -> X == 0
3048           // (srl (ctlz x), 5) == 1  -> X == 0
3049           Cond = ISD::SETEQ;
3050         }
3051         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3052         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3053                             Zero, Cond);
3054       }
3055     }
3056 
3057     SDValue CTPOP = N0;
3058     // Look through truncs that don't change the value of a ctpop.
3059     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3060       CTPOP = N0.getOperand(0);
3061 
3062     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3063         (N0 == CTPOP ||
3064          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3065       EVT CTVT = CTPOP.getValueType();
3066       SDValue CTOp = CTPOP.getOperand(0);
3067 
3068       // (ctpop x) u< 2 -> (x & x-1) == 0
3069       // (ctpop x) u> 1 -> (x & x-1) != 0
3070       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3071         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3072         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3073         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3074         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3075         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3076       }
3077 
3078       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3079       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3080           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3081         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3082         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3083         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3084         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3085         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3086         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3087         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3088         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3089         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3090         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3091         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3092       }
3093     }
3094 
3095     // (zext x) == C --> x == (trunc C)
3096     // (sext x) == C --> x == (trunc C)
3097     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3098         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3099       unsigned MinBits = N0.getValueSizeInBits();
3100       SDValue PreExt;
3101       bool Signed = false;
3102       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3103         // ZExt
3104         MinBits = N0->getOperand(0).getValueSizeInBits();
3105         PreExt = N0->getOperand(0);
3106       } else if (N0->getOpcode() == ISD::AND) {
3107         // DAGCombine turns costly ZExts into ANDs
3108         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3109           if ((C->getAPIntValue()+1).isPowerOf2()) {
3110             MinBits = C->getAPIntValue().countTrailingOnes();
3111             PreExt = N0->getOperand(0);
3112           }
3113       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3114         // SExt
3115         MinBits = N0->getOperand(0).getValueSizeInBits();
3116         PreExt = N0->getOperand(0);
3117         Signed = true;
3118       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3119         // ZEXTLOAD / SEXTLOAD
3120         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3121           MinBits = LN0->getMemoryVT().getSizeInBits();
3122           PreExt = N0;
3123         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3124           Signed = true;
3125           MinBits = LN0->getMemoryVT().getSizeInBits();
3126           PreExt = N0;
3127         }
3128       }
3129 
3130       // Figure out how many bits we need to preserve this constant.
3131       unsigned ReqdBits = Signed ?
3132         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3133         C1.getActiveBits();
3134 
3135       // Make sure we're not losing bits from the constant.
3136       if (MinBits > 0 &&
3137           MinBits < C1.getBitWidth() &&
3138           MinBits >= ReqdBits) {
3139         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3140         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3141           // Will get folded away.
3142           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3143           if (MinBits == 1 && C1 == 1)
3144             // Invert the condition.
3145             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3146                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3147           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3148           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3149         }
3150 
3151         // If truncating the setcc operands is not desirable, we can still
3152         // simplify the expression in some cases:
3153         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3154         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3155         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3156         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3157         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3158         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3159         SDValue TopSetCC = N0->getOperand(0);
3160         unsigned N0Opc = N0->getOpcode();
3161         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3162         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3163             TopSetCC.getOpcode() == ISD::SETCC &&
3164             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3165             (isConstFalseVal(N1C) ||
3166              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3167 
3168           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3169                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3170 
3171           if (!Inverse)
3172             return TopSetCC;
3173 
3174           ISD::CondCode InvCond = ISD::getSetCCInverse(
3175               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3176               TopSetCC.getOperand(0).getValueType().isInteger());
3177           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3178                                       TopSetCC.getOperand(1),
3179                                       InvCond);
3180         }
3181       }
3182     }
3183 
3184     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3185     // equality or unsigned, and all 1 bits of the const are in the same
3186     // partial word, see if we can shorten the load.
3187     if (DCI.isBeforeLegalize() &&
3188         !ISD::isSignedIntSetCC(Cond) &&
3189         N0.getOpcode() == ISD::AND && C1 == 0 &&
3190         N0.getNode()->hasOneUse() &&
3191         isa<LoadSDNode>(N0.getOperand(0)) &&
3192         N0.getOperand(0).getNode()->hasOneUse() &&
3193         isa<ConstantSDNode>(N0.getOperand(1))) {
3194       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3195       APInt bestMask;
3196       unsigned bestWidth = 0, bestOffset = 0;
3197       if (!Lod->isVolatile() && Lod->isUnindexed()) {
3198         unsigned origWidth = N0.getValueSizeInBits();
3199         unsigned maskWidth = origWidth;
3200         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3201         // 8 bits, but have to be careful...
3202         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3203           origWidth = Lod->getMemoryVT().getSizeInBits();
3204         const APInt &Mask = N0.getConstantOperandAPInt(1);
3205         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3206           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3207           for (unsigned offset=0; offset<origWidth/width; offset++) {
3208             if (Mask.isSubsetOf(newMask)) {
3209               if (DAG.getDataLayout().isLittleEndian())
3210                 bestOffset = (uint64_t)offset * (width/8);
3211               else
3212                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3213               bestMask = Mask.lshr(offset * (width/8) * 8);
3214               bestWidth = width;
3215               break;
3216             }
3217             newMask <<= width;
3218           }
3219         }
3220       }
3221       if (bestWidth) {
3222         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3223         if (newVT.isRound() &&
3224             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3225           EVT PtrType = Lod->getOperand(1).getValueType();
3226           SDValue Ptr = Lod->getBasePtr();
3227           if (bestOffset != 0)
3228             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3229                               DAG.getConstant(bestOffset, dl, PtrType));
3230           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3231           SDValue NewLoad = DAG.getLoad(
3232               newVT, dl, Lod->getChain(), Ptr,
3233               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3234           return DAG.getSetCC(dl, VT,
3235                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3236                                       DAG.getConstant(bestMask.trunc(bestWidth),
3237                                                       dl, newVT)),
3238                               DAG.getConstant(0LL, dl, newVT), Cond);
3239         }
3240       }
3241     }
3242 
3243     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3244     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3245       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3246 
3247       // If the comparison constant has bits in the upper part, the
3248       // zero-extended value could never match.
3249       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3250                                               C1.getBitWidth() - InSize))) {
3251         switch (Cond) {
3252         case ISD::SETUGT:
3253         case ISD::SETUGE:
3254         case ISD::SETEQ:
3255           return DAG.getConstant(0, dl, VT);
3256         case ISD::SETULT:
3257         case ISD::SETULE:
3258         case ISD::SETNE:
3259           return DAG.getConstant(1, dl, VT);
3260         case ISD::SETGT:
3261         case ISD::SETGE:
3262           // True if the sign bit of C1 is set.
3263           return DAG.getConstant(C1.isNegative(), dl, VT);
3264         case ISD::SETLT:
3265         case ISD::SETLE:
3266           // True if the sign bit of C1 isn't set.
3267           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3268         default:
3269           break;
3270         }
3271       }
3272 
3273       // Otherwise, we can perform the comparison with the low bits.
3274       switch (Cond) {
3275       case ISD::SETEQ:
3276       case ISD::SETNE:
3277       case ISD::SETUGT:
3278       case ISD::SETUGE:
3279       case ISD::SETULT:
3280       case ISD::SETULE: {
3281         EVT newVT = N0.getOperand(0).getValueType();
3282         if (DCI.isBeforeLegalizeOps() ||
3283             (isOperationLegal(ISD::SETCC, newVT) &&
3284              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3285           EVT NewSetCCVT =
3286               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3287           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3288 
3289           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3290                                           NewConst, Cond);
3291           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3292         }
3293         break;
3294       }
3295       default:
3296         break; // todo, be more careful with signed comparisons
3297       }
3298     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3299                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3300       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3301       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3302       EVT ExtDstTy = N0.getValueType();
3303       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3304 
3305       // If the constant doesn't fit into the number of bits for the source of
3306       // the sign extension, it is impossible for both sides to be equal.
3307       if (C1.getMinSignedBits() > ExtSrcTyBits)
3308         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3309 
3310       SDValue ZextOp;
3311       EVT Op0Ty = N0.getOperand(0).getValueType();
3312       if (Op0Ty == ExtSrcTy) {
3313         ZextOp = N0.getOperand(0);
3314       } else {
3315         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3316         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3317                              DAG.getConstant(Imm, dl, Op0Ty));
3318       }
3319       if (!DCI.isCalledByLegalizer())
3320         DCI.AddToWorklist(ZextOp.getNode());
3321       // Otherwise, make this a use of a zext.
3322       return DAG.getSetCC(dl, VT, ZextOp,
3323                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3324                                                               ExtDstTyBits,
3325                                                               ExtSrcTyBits),
3326                                           dl, ExtDstTy),
3327                           Cond);
3328     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3329                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3330       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3331       if (N0.getOpcode() == ISD::SETCC &&
3332           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3333         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3334         if (TrueWhenTrue)
3335           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3336         // Invert the condition.
3337         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3338         CC = ISD::getSetCCInverse(CC,
3339                                   N0.getOperand(0).getValueType().isInteger());
3340         if (DCI.isBeforeLegalizeOps() ||
3341             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3342           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3343       }
3344 
3345       if ((N0.getOpcode() == ISD::XOR ||
3346            (N0.getOpcode() == ISD::AND &&
3347             N0.getOperand(0).getOpcode() == ISD::XOR &&
3348             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3349           isa<ConstantSDNode>(N0.getOperand(1)) &&
3350           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3351         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3352         // can only do this if the top bits are known zero.
3353         unsigned BitWidth = N0.getValueSizeInBits();
3354         if (DAG.MaskedValueIsZero(N0,
3355                                   APInt::getHighBitsSet(BitWidth,
3356                                                         BitWidth-1))) {
3357           // Okay, get the un-inverted input value.
3358           SDValue Val;
3359           if (N0.getOpcode() == ISD::XOR) {
3360             Val = N0.getOperand(0);
3361           } else {
3362             assert(N0.getOpcode() == ISD::AND &&
3363                     N0.getOperand(0).getOpcode() == ISD::XOR);
3364             // ((X^1)&1)^1 -> X & 1
3365             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3366                               N0.getOperand(0).getOperand(0),
3367                               N0.getOperand(1));
3368           }
3369 
3370           return DAG.getSetCC(dl, VT, Val, N1,
3371                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3372         }
3373       } else if (N1C->isOne() &&
3374                  (VT == MVT::i1 ||
3375                   getBooleanContents(N0->getValueType(0)) ==
3376                       ZeroOrOneBooleanContent)) {
3377         SDValue Op0 = N0;
3378         if (Op0.getOpcode() == ISD::TRUNCATE)
3379           Op0 = Op0.getOperand(0);
3380 
3381         if ((Op0.getOpcode() == ISD::XOR) &&
3382             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3383             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3384           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3385           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3386           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3387                               Cond);
3388         }
3389         if (Op0.getOpcode() == ISD::AND &&
3390             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3391             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3392           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3393           if (Op0.getValueType().bitsGT(VT))
3394             Op0 = DAG.getNode(ISD::AND, dl, VT,
3395                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3396                           DAG.getConstant(1, dl, VT));
3397           else if (Op0.getValueType().bitsLT(VT))
3398             Op0 = DAG.getNode(ISD::AND, dl, VT,
3399                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3400                         DAG.getConstant(1, dl, VT));
3401 
3402           return DAG.getSetCC(dl, VT, Op0,
3403                               DAG.getConstant(0, dl, Op0.getValueType()),
3404                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3405         }
3406         if (Op0.getOpcode() == ISD::AssertZext &&
3407             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3408           return DAG.getSetCC(dl, VT, Op0,
3409                               DAG.getConstant(0, dl, Op0.getValueType()),
3410                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3411       }
3412     }
3413 
3414     // Given:
3415     //   icmp eq/ne (urem %x, %y), 0
3416     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3417     //   icmp eq/ne %x, 0
3418     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3419         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3420       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3421       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3422       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3423         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3424     }
3425 
3426     if (SDValue V =
3427             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3428       return V;
3429   }
3430 
3431   // These simplifications apply to splat vectors as well.
3432   // TODO: Handle more splat vector cases.
3433   if (auto *N1C = isConstOrConstSplat(N1)) {
3434     const APInt &C1 = N1C->getAPIntValue();
3435 
3436     APInt MinVal, MaxVal;
3437     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3438     if (ISD::isSignedIntSetCC(Cond)) {
3439       MinVal = APInt::getSignedMinValue(OperandBitSize);
3440       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3441     } else {
3442       MinVal = APInt::getMinValue(OperandBitSize);
3443       MaxVal = APInt::getMaxValue(OperandBitSize);
3444     }
3445 
3446     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3447     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3448       // X >= MIN --> true
3449       if (C1 == MinVal)
3450         return DAG.getBoolConstant(true, dl, VT, OpVT);
3451 
3452       if (!VT.isVector()) { // TODO: Support this for vectors.
3453         // X >= C0 --> X > (C0 - 1)
3454         APInt C = C1 - 1;
3455         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3456         if ((DCI.isBeforeLegalizeOps() ||
3457              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3458             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3459                                   isLegalICmpImmediate(C.getSExtValue())))) {
3460           return DAG.getSetCC(dl, VT, N0,
3461                               DAG.getConstant(C, dl, N1.getValueType()),
3462                               NewCC);
3463         }
3464       }
3465     }
3466 
3467     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3468       // X <= MAX --> true
3469       if (C1 == MaxVal)
3470         return DAG.getBoolConstant(true, dl, VT, OpVT);
3471 
3472       // X <= C0 --> X < (C0 + 1)
3473       if (!VT.isVector()) { // TODO: Support this for vectors.
3474         APInt C = C1 + 1;
3475         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3476         if ((DCI.isBeforeLegalizeOps() ||
3477              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3478             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3479                                   isLegalICmpImmediate(C.getSExtValue())))) {
3480           return DAG.getSetCC(dl, VT, N0,
3481                               DAG.getConstant(C, dl, N1.getValueType()),
3482                               NewCC);
3483         }
3484       }
3485     }
3486 
3487     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3488       if (C1 == MinVal)
3489         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3490 
3491       // TODO: Support this for vectors after legalize ops.
3492       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3493         // Canonicalize setlt X, Max --> setne X, Max
3494         if (C1 == MaxVal)
3495           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3496 
3497         // If we have setult X, 1, turn it into seteq X, 0
3498         if (C1 == MinVal+1)
3499           return DAG.getSetCC(dl, VT, N0,
3500                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3501                               ISD::SETEQ);
3502       }
3503     }
3504 
3505     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3506       if (C1 == MaxVal)
3507         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3508 
3509       // TODO: Support this for vectors after legalize ops.
3510       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3511         // Canonicalize setgt X, Min --> setne X, Min
3512         if (C1 == MinVal)
3513           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3514 
3515         // If we have setugt X, Max-1, turn it into seteq X, Max
3516         if (C1 == MaxVal-1)
3517           return DAG.getSetCC(dl, VT, N0,
3518                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3519                               ISD::SETEQ);
3520       }
3521     }
3522 
3523     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3524       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3525       if (C1.isNullValue())
3526         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3527                 VT, N0, N1, Cond, DCI, dl))
3528           return CC;
3529     }
3530 
3531     // If we have "setcc X, C0", check to see if we can shrink the immediate
3532     // by changing cc.
3533     // TODO: Support this for vectors after legalize ops.
3534     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3535       // SETUGT X, SINTMAX  -> SETLT X, 0
3536       if (Cond == ISD::SETUGT &&
3537           C1 == APInt::getSignedMaxValue(OperandBitSize))
3538         return DAG.getSetCC(dl, VT, N0,
3539                             DAG.getConstant(0, dl, N1.getValueType()),
3540                             ISD::SETLT);
3541 
3542       // SETULT X, SINTMIN  -> SETGT X, -1
3543       if (Cond == ISD::SETULT &&
3544           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3545         SDValue ConstMinusOne =
3546             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3547                             N1.getValueType());
3548         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3549       }
3550     }
3551   }
3552 
3553   // Back to non-vector simplifications.
3554   // TODO: Can we do these for vector splats?
3555   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3556     const APInt &C1 = N1C->getAPIntValue();
3557 
3558     // Fold bit comparisons when we can.
3559     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3560         (VT == N0.getValueType() ||
3561          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3562         N0.getOpcode() == ISD::AND) {
3563       auto &DL = DAG.getDataLayout();
3564       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3565         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3566                                        !DCI.isBeforeLegalize());
3567         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3568           // Perform the xform if the AND RHS is a single bit.
3569           if (AndRHS->getAPIntValue().isPowerOf2()) {
3570             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3571                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3572                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3573                                    ShiftTy)));
3574           }
3575         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3576           // (X & 8) == 8  -->  (X & 8) >> 3
3577           // Perform the xform if C1 is a single bit.
3578           if (C1.isPowerOf2()) {
3579             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3580                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3581                                       DAG.getConstant(C1.logBase2(), dl,
3582                                                       ShiftTy)));
3583           }
3584         }
3585       }
3586     }
3587 
3588     if (C1.getMinSignedBits() <= 64 &&
3589         !isLegalICmpImmediate(C1.getSExtValue())) {
3590       // (X & -256) == 256 -> (X >> 8) == 1
3591       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3592           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3593         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3594           const APInt &AndRHSC = AndRHS->getAPIntValue();
3595           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3596             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3597             auto &DL = DAG.getDataLayout();
3598             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3599                                            !DCI.isBeforeLegalize());
3600             EVT CmpTy = N0.getValueType();
3601             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3602                                         DAG.getConstant(ShiftBits, dl,
3603                                                         ShiftTy));
3604             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3605             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3606           }
3607         }
3608       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3609                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3610         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3611         // X <  0x100000000 -> (X >> 32) <  1
3612         // X >= 0x100000000 -> (X >> 32) >= 1
3613         // X <= 0x0ffffffff -> (X >> 32) <  1
3614         // X >  0x0ffffffff -> (X >> 32) >= 1
3615         unsigned ShiftBits;
3616         APInt NewC = C1;
3617         ISD::CondCode NewCond = Cond;
3618         if (AdjOne) {
3619           ShiftBits = C1.countTrailingOnes();
3620           NewC = NewC + 1;
3621           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3622         } else {
3623           ShiftBits = C1.countTrailingZeros();
3624         }
3625         NewC.lshrInPlace(ShiftBits);
3626         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3627           isLegalICmpImmediate(NewC.getSExtValue())) {
3628           auto &DL = DAG.getDataLayout();
3629           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3630                                          !DCI.isBeforeLegalize());
3631           EVT CmpTy = N0.getValueType();
3632           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3633                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3634           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3635           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3636         }
3637       }
3638     }
3639   }
3640 
3641   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3642     auto *CFP = cast<ConstantFPSDNode>(N1);
3643     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3644 
3645     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3646     // constant if knowing that the operand is non-nan is enough.  We prefer to
3647     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3648     // materialize 0.0.
3649     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3650       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3651 
3652     // setcc (fneg x), C -> setcc swap(pred) x, -C
3653     if (N0.getOpcode() == ISD::FNEG) {
3654       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3655       if (DCI.isBeforeLegalizeOps() ||
3656           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3657         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3658         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3659       }
3660     }
3661 
3662     // If the condition is not legal, see if we can find an equivalent one
3663     // which is legal.
3664     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3665       // If the comparison was an awkward floating-point == or != and one of
3666       // the comparison operands is infinity or negative infinity, convert the
3667       // condition to a less-awkward <= or >=.
3668       if (CFP->getValueAPF().isInfinity()) {
3669         if (CFP->getValueAPF().isNegative()) {
3670           if (Cond == ISD::SETOEQ &&
3671               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3672             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3673           if (Cond == ISD::SETUEQ &&
3674               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3675             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3676           if (Cond == ISD::SETUNE &&
3677               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3678             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3679           if (Cond == ISD::SETONE &&
3680               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3681             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3682         } else {
3683           if (Cond == ISD::SETOEQ &&
3684               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3685             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3686           if (Cond == ISD::SETUEQ &&
3687               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3688             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3689           if (Cond == ISD::SETUNE &&
3690               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3691             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3692           if (Cond == ISD::SETONE &&
3693               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3694             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3695         }
3696       }
3697     }
3698   }
3699 
3700   if (N0 == N1) {
3701     // The sext(setcc()) => setcc() optimization relies on the appropriate
3702     // constant being emitted.
3703     assert(!N0.getValueType().isInteger() &&
3704            "Integer types should be handled by FoldSetCC");
3705 
3706     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3707     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3708     if (UOF == 2) // FP operators that are undefined on NaNs.
3709       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3710     if (UOF == unsigned(EqTrue))
3711       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3712     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3713     // if it is not already.
3714     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3715     if (NewCond != Cond &&
3716         (DCI.isBeforeLegalizeOps() ||
3717                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3718       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3719   }
3720 
3721   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3722       N0.getValueType().isInteger()) {
3723     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3724         N0.getOpcode() == ISD::XOR) {
3725       // Simplify (X+Y) == (X+Z) -->  Y == Z
3726       if (N0.getOpcode() == N1.getOpcode()) {
3727         if (N0.getOperand(0) == N1.getOperand(0))
3728           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3729         if (N0.getOperand(1) == N1.getOperand(1))
3730           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3731         if (isCommutativeBinOp(N0.getOpcode())) {
3732           // If X op Y == Y op X, try other combinations.
3733           if (N0.getOperand(0) == N1.getOperand(1))
3734             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3735                                 Cond);
3736           if (N0.getOperand(1) == N1.getOperand(0))
3737             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3738                                 Cond);
3739         }
3740       }
3741 
3742       // If RHS is a legal immediate value for a compare instruction, we need
3743       // to be careful about increasing register pressure needlessly.
3744       bool LegalRHSImm = false;
3745 
3746       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3747         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3748           // Turn (X+C1) == C2 --> X == C2-C1
3749           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3750             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3751                                 DAG.getConstant(RHSC->getAPIntValue()-
3752                                                 LHSR->getAPIntValue(),
3753                                 dl, N0.getValueType()), Cond);
3754           }
3755 
3756           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3757           if (N0.getOpcode() == ISD::XOR)
3758             // If we know that all of the inverted bits are zero, don't bother
3759             // performing the inversion.
3760             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3761               return
3762                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3763                              DAG.getConstant(LHSR->getAPIntValue() ^
3764                                                RHSC->getAPIntValue(),
3765                                              dl, N0.getValueType()),
3766                              Cond);
3767         }
3768 
3769         // Turn (C1-X) == C2 --> X == C1-C2
3770         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3771           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3772             return
3773               DAG.getSetCC(dl, VT, N0.getOperand(1),
3774                            DAG.getConstant(SUBC->getAPIntValue() -
3775                                              RHSC->getAPIntValue(),
3776                                            dl, N0.getValueType()),
3777                            Cond);
3778           }
3779         }
3780 
3781         // Could RHSC fold directly into a compare?
3782         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3783           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3784       }
3785 
3786       // (X+Y) == X --> Y == 0 and similar folds.
3787       // Don't do this if X is an immediate that can fold into a cmp
3788       // instruction and X+Y has other uses. It could be an induction variable
3789       // chain, and the transform would increase register pressure.
3790       if (!LegalRHSImm || N0.hasOneUse())
3791         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3792           return V;
3793     }
3794 
3795     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3796         N1.getOpcode() == ISD::XOR)
3797       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3798         return V;
3799 
3800     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3801       return V;
3802   }
3803 
3804   // Fold remainder of division by a constant.
3805   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3806       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3807     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3808 
3809     // When division is cheap or optimizing for minimum size,
3810     // fall through to DIVREM creation by skipping this fold.
3811     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3812       if (N0.getOpcode() == ISD::UREM) {
3813         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3814           return Folded;
3815       } else if (N0.getOpcode() == ISD::SREM) {
3816         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3817           return Folded;
3818       }
3819     }
3820   }
3821 
3822   // Fold away ALL boolean setcc's.
3823   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3824     SDValue Temp;
3825     switch (Cond) {
3826     default: llvm_unreachable("Unknown integer setcc!");
3827     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3828       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3829       N0 = DAG.getNOT(dl, Temp, OpVT);
3830       if (!DCI.isCalledByLegalizer())
3831         DCI.AddToWorklist(Temp.getNode());
3832       break;
3833     case ISD::SETNE:  // X != Y   -->  (X^Y)
3834       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3835       break;
3836     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3837     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3838       Temp = DAG.getNOT(dl, N0, OpVT);
3839       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3840       if (!DCI.isCalledByLegalizer())
3841         DCI.AddToWorklist(Temp.getNode());
3842       break;
3843     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3844     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3845       Temp = DAG.getNOT(dl, N1, OpVT);
3846       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3847       if (!DCI.isCalledByLegalizer())
3848         DCI.AddToWorklist(Temp.getNode());
3849       break;
3850     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3851     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3852       Temp = DAG.getNOT(dl, N0, OpVT);
3853       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3854       if (!DCI.isCalledByLegalizer())
3855         DCI.AddToWorklist(Temp.getNode());
3856       break;
3857     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3858     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3859       Temp = DAG.getNOT(dl, N1, OpVT);
3860       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3861       break;
3862     }
3863     if (VT.getScalarType() != MVT::i1) {
3864       if (!DCI.isCalledByLegalizer())
3865         DCI.AddToWorklist(N0.getNode());
3866       // FIXME: If running after legalize, we probably can't do this.
3867       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3868       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3869     }
3870     return N0;
3871   }
3872 
3873   // Could not fold it.
3874   return SDValue();
3875 }
3876 
3877 /// Returns true (and the GlobalValue and the offset) if the node is a
3878 /// GlobalAddress + offset.
3879 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3880                                     int64_t &Offset) const {
3881 
3882   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3883 
3884   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3885     GA = GASD->getGlobal();
3886     Offset += GASD->getOffset();
3887     return true;
3888   }
3889 
3890   if (N->getOpcode() == ISD::ADD) {
3891     SDValue N1 = N->getOperand(0);
3892     SDValue N2 = N->getOperand(1);
3893     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3894       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3895         Offset += V->getSExtValue();
3896         return true;
3897       }
3898     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3899       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3900         Offset += V->getSExtValue();
3901         return true;
3902       }
3903     }
3904   }
3905 
3906   return false;
3907 }
3908 
3909 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3910                                           DAGCombinerInfo &DCI) const {
3911   // Default implementation: no optimization.
3912   return SDValue();
3913 }
3914 
3915 //===----------------------------------------------------------------------===//
3916 //  Inline Assembler Implementation Methods
3917 //===----------------------------------------------------------------------===//
3918 
3919 TargetLowering::ConstraintType
3920 TargetLowering::getConstraintType(StringRef Constraint) const {
3921   unsigned S = Constraint.size();
3922 
3923   if (S == 1) {
3924     switch (Constraint[0]) {
3925     default: break;
3926     case 'r':
3927       return C_RegisterClass;
3928     case 'm': // memory
3929     case 'o': // offsetable
3930     case 'V': // not offsetable
3931       return C_Memory;
3932     case 'n': // Simple Integer
3933     case 'E': // Floating Point Constant
3934     case 'F': // Floating Point Constant
3935       return C_Immediate;
3936     case 'i': // Simple Integer or Relocatable Constant
3937     case 's': // Relocatable Constant
3938     case 'p': // Address.
3939     case 'X': // Allow ANY value.
3940     case 'I': // Target registers.
3941     case 'J':
3942     case 'K':
3943     case 'L':
3944     case 'M':
3945     case 'N':
3946     case 'O':
3947     case 'P':
3948     case '<':
3949     case '>':
3950       return C_Other;
3951     }
3952   }
3953 
3954   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3955     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3956       return C_Memory;
3957     return C_Register;
3958   }
3959   return C_Unknown;
3960 }
3961 
3962 /// Try to replace an X constraint, which matches anything, with another that
3963 /// has more specific requirements based on the type of the corresponding
3964 /// operand.
3965 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3966   if (ConstraintVT.isInteger())
3967     return "r";
3968   if (ConstraintVT.isFloatingPoint())
3969     return "f"; // works for many targets
3970   return nullptr;
3971 }
3972 
3973 SDValue TargetLowering::LowerAsmOutputForConstraint(
3974     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3975     SelectionDAG &DAG) const {
3976   return SDValue();
3977 }
3978 
3979 /// Lower the specified operand into the Ops vector.
3980 /// If it is invalid, don't add anything to Ops.
3981 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3982                                                   std::string &Constraint,
3983                                                   std::vector<SDValue> &Ops,
3984                                                   SelectionDAG &DAG) const {
3985 
3986   if (Constraint.length() > 1) return;
3987 
3988   char ConstraintLetter = Constraint[0];
3989   switch (ConstraintLetter) {
3990   default: break;
3991   case 'X':     // Allows any operand; labels (basic block) use this.
3992     if (Op.getOpcode() == ISD::BasicBlock ||
3993         Op.getOpcode() == ISD::TargetBlockAddress) {
3994       Ops.push_back(Op);
3995       return;
3996     }
3997     LLVM_FALLTHROUGH;
3998   case 'i':    // Simple Integer or Relocatable Constant
3999   case 'n':    // Simple Integer
4000   case 's': {  // Relocatable Constant
4001 
4002     GlobalAddressSDNode *GA;
4003     ConstantSDNode *C;
4004     BlockAddressSDNode *BA;
4005     uint64_t Offset = 0;
4006 
4007     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4008     // etc., since getelementpointer is variadic. We can't use
4009     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4010     // while in this case the GA may be furthest from the root node which is
4011     // likely an ISD::ADD.
4012     while (1) {
4013       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4014         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4015                                                  GA->getValueType(0),
4016                                                  Offset + GA->getOffset()));
4017         return;
4018       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4019                  ConstraintLetter != 's') {
4020         // gcc prints these as sign extended.  Sign extend value to 64 bits
4021         // now; without this it would get ZExt'd later in
4022         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4023         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4024         BooleanContent BCont = getBooleanContents(MVT::i64);
4025         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4026                                       : ISD::SIGN_EXTEND;
4027         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4028                                                     : C->getSExtValue();
4029         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4030                                             SDLoc(C), MVT::i64));
4031         return;
4032       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4033                  ConstraintLetter != 'n') {
4034         Ops.push_back(DAG.getTargetBlockAddress(
4035             BA->getBlockAddress(), BA->getValueType(0),
4036             Offset + BA->getOffset(), BA->getTargetFlags()));
4037         return;
4038       } else {
4039         const unsigned OpCode = Op.getOpcode();
4040         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4041           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4042             Op = Op.getOperand(1);
4043           // Subtraction is not commutative.
4044           else if (OpCode == ISD::ADD &&
4045                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4046             Op = Op.getOperand(0);
4047           else
4048             return;
4049           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4050           continue;
4051         }
4052       }
4053       return;
4054     }
4055     break;
4056   }
4057   }
4058 }
4059 
4060 std::pair<unsigned, const TargetRegisterClass *>
4061 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4062                                              StringRef Constraint,
4063                                              MVT VT) const {
4064   if (Constraint.empty() || Constraint[0] != '{')
4065     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4066   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4067 
4068   // Remove the braces from around the name.
4069   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4070 
4071   std::pair<unsigned, const TargetRegisterClass *> R =
4072       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4073 
4074   // Figure out which register class contains this reg.
4075   for (const TargetRegisterClass *RC : RI->regclasses()) {
4076     // If none of the value types for this register class are valid, we
4077     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4078     if (!isLegalRC(*RI, *RC))
4079       continue;
4080 
4081     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4082          I != E; ++I) {
4083       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4084         std::pair<unsigned, const TargetRegisterClass *> S =
4085             std::make_pair(*I, RC);
4086 
4087         // If this register class has the requested value type, return it,
4088         // otherwise keep searching and return the first class found
4089         // if no other is found which explicitly has the requested type.
4090         if (RI->isTypeLegalForClass(*RC, VT))
4091           return S;
4092         if (!R.second)
4093           R = S;
4094       }
4095     }
4096   }
4097 
4098   return R;
4099 }
4100 
4101 //===----------------------------------------------------------------------===//
4102 // Constraint Selection.
4103 
4104 /// Return true of this is an input operand that is a matching constraint like
4105 /// "4".
4106 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4107   assert(!ConstraintCode.empty() && "No known constraint!");
4108   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4109 }
4110 
4111 /// If this is an input matching constraint, this method returns the output
4112 /// operand it matches.
4113 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4114   assert(!ConstraintCode.empty() && "No known constraint!");
4115   return atoi(ConstraintCode.c_str());
4116 }
4117 
4118 /// Split up the constraint string from the inline assembly value into the
4119 /// specific constraints and their prefixes, and also tie in the associated
4120 /// operand values.
4121 /// If this returns an empty vector, and if the constraint string itself
4122 /// isn't empty, there was an error parsing.
4123 TargetLowering::AsmOperandInfoVector
4124 TargetLowering::ParseConstraints(const DataLayout &DL,
4125                                  const TargetRegisterInfo *TRI,
4126                                  ImmutableCallSite CS) const {
4127   /// Information about all of the constraints.
4128   AsmOperandInfoVector ConstraintOperands;
4129   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4130   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4131 
4132   // Do a prepass over the constraints, canonicalizing them, and building up the
4133   // ConstraintOperands list.
4134   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4135   unsigned ResNo = 0; // ResNo - The result number of the next output.
4136 
4137   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4138     ConstraintOperands.emplace_back(std::move(CI));
4139     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4140 
4141     // Update multiple alternative constraint count.
4142     if (OpInfo.multipleAlternatives.size() > maCount)
4143       maCount = OpInfo.multipleAlternatives.size();
4144 
4145     OpInfo.ConstraintVT = MVT::Other;
4146 
4147     // Compute the value type for each operand.
4148     switch (OpInfo.Type) {
4149     case InlineAsm::isOutput:
4150       // Indirect outputs just consume an argument.
4151       if (OpInfo.isIndirect) {
4152         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4153         break;
4154       }
4155 
4156       // The return value of the call is this value.  As such, there is no
4157       // corresponding argument.
4158       assert(!CS.getType()->isVoidTy() &&
4159              "Bad inline asm!");
4160       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4161         OpInfo.ConstraintVT =
4162             getSimpleValueType(DL, STy->getElementType(ResNo));
4163       } else {
4164         assert(ResNo == 0 && "Asm only has one result!");
4165         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4166       }
4167       ++ResNo;
4168       break;
4169     case InlineAsm::isInput:
4170       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4171       break;
4172     case InlineAsm::isClobber:
4173       // Nothing to do.
4174       break;
4175     }
4176 
4177     if (OpInfo.CallOperandVal) {
4178       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4179       if (OpInfo.isIndirect) {
4180         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4181         if (!PtrTy)
4182           report_fatal_error("Indirect operand for inline asm not a pointer!");
4183         OpTy = PtrTy->getElementType();
4184       }
4185 
4186       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4187       if (StructType *STy = dyn_cast<StructType>(OpTy))
4188         if (STy->getNumElements() == 1)
4189           OpTy = STy->getElementType(0);
4190 
4191       // If OpTy is not a single value, it may be a struct/union that we
4192       // can tile with integers.
4193       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4194         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4195         switch (BitSize) {
4196         default: break;
4197         case 1:
4198         case 8:
4199         case 16:
4200         case 32:
4201         case 64:
4202         case 128:
4203           OpInfo.ConstraintVT =
4204               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4205           break;
4206         }
4207       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4208         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4209         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4210       } else {
4211         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4212       }
4213     }
4214   }
4215 
4216   // If we have multiple alternative constraints, select the best alternative.
4217   if (!ConstraintOperands.empty()) {
4218     if (maCount) {
4219       unsigned bestMAIndex = 0;
4220       int bestWeight = -1;
4221       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4222       int weight = -1;
4223       unsigned maIndex;
4224       // Compute the sums of the weights for each alternative, keeping track
4225       // of the best (highest weight) one so far.
4226       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4227         int weightSum = 0;
4228         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4229              cIndex != eIndex; ++cIndex) {
4230           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4231           if (OpInfo.Type == InlineAsm::isClobber)
4232             continue;
4233 
4234           // If this is an output operand with a matching input operand,
4235           // look up the matching input. If their types mismatch, e.g. one
4236           // is an integer, the other is floating point, or their sizes are
4237           // different, flag it as an maCantMatch.
4238           if (OpInfo.hasMatchingInput()) {
4239             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4240             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4241               if ((OpInfo.ConstraintVT.isInteger() !=
4242                    Input.ConstraintVT.isInteger()) ||
4243                   (OpInfo.ConstraintVT.getSizeInBits() !=
4244                    Input.ConstraintVT.getSizeInBits())) {
4245                 weightSum = -1; // Can't match.
4246                 break;
4247               }
4248             }
4249           }
4250           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4251           if (weight == -1) {
4252             weightSum = -1;
4253             break;
4254           }
4255           weightSum += weight;
4256         }
4257         // Update best.
4258         if (weightSum > bestWeight) {
4259           bestWeight = weightSum;
4260           bestMAIndex = maIndex;
4261         }
4262       }
4263 
4264       // Now select chosen alternative in each constraint.
4265       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4266            cIndex != eIndex; ++cIndex) {
4267         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4268         if (cInfo.Type == InlineAsm::isClobber)
4269           continue;
4270         cInfo.selectAlternative(bestMAIndex);
4271       }
4272     }
4273   }
4274 
4275   // Check and hook up tied operands, choose constraint code to use.
4276   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4277        cIndex != eIndex; ++cIndex) {
4278     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4279 
4280     // If this is an output operand with a matching input operand, look up the
4281     // matching input. If their types mismatch, e.g. one is an integer, the
4282     // other is floating point, or their sizes are different, flag it as an
4283     // error.
4284     if (OpInfo.hasMatchingInput()) {
4285       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4286 
4287       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4288         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4289             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4290                                          OpInfo.ConstraintVT);
4291         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4292             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4293                                          Input.ConstraintVT);
4294         if ((OpInfo.ConstraintVT.isInteger() !=
4295              Input.ConstraintVT.isInteger()) ||
4296             (MatchRC.second != InputRC.second)) {
4297           report_fatal_error("Unsupported asm: input constraint"
4298                              " with a matching output constraint of"
4299                              " incompatible type!");
4300         }
4301       }
4302     }
4303   }
4304 
4305   return ConstraintOperands;
4306 }
4307 
4308 /// Return an integer indicating how general CT is.
4309 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4310   switch (CT) {
4311   case TargetLowering::C_Immediate:
4312   case TargetLowering::C_Other:
4313   case TargetLowering::C_Unknown:
4314     return 0;
4315   case TargetLowering::C_Register:
4316     return 1;
4317   case TargetLowering::C_RegisterClass:
4318     return 2;
4319   case TargetLowering::C_Memory:
4320     return 3;
4321   }
4322   llvm_unreachable("Invalid constraint type");
4323 }
4324 
4325 /// Examine constraint type and operand type and determine a weight value.
4326 /// This object must already have been set up with the operand type
4327 /// and the current alternative constraint selected.
4328 TargetLowering::ConstraintWeight
4329   TargetLowering::getMultipleConstraintMatchWeight(
4330     AsmOperandInfo &info, int maIndex) const {
4331   InlineAsm::ConstraintCodeVector *rCodes;
4332   if (maIndex >= (int)info.multipleAlternatives.size())
4333     rCodes = &info.Codes;
4334   else
4335     rCodes = &info.multipleAlternatives[maIndex].Codes;
4336   ConstraintWeight BestWeight = CW_Invalid;
4337 
4338   // Loop over the options, keeping track of the most general one.
4339   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4340     ConstraintWeight weight =
4341       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4342     if (weight > BestWeight)
4343       BestWeight = weight;
4344   }
4345 
4346   return BestWeight;
4347 }
4348 
4349 /// Examine constraint type and operand type and determine a weight value.
4350 /// This object must already have been set up with the operand type
4351 /// and the current alternative constraint selected.
4352 TargetLowering::ConstraintWeight
4353   TargetLowering::getSingleConstraintMatchWeight(
4354     AsmOperandInfo &info, const char *constraint) const {
4355   ConstraintWeight weight = CW_Invalid;
4356   Value *CallOperandVal = info.CallOperandVal;
4357     // If we don't have a value, we can't do a match,
4358     // but allow it at the lowest weight.
4359   if (!CallOperandVal)
4360     return CW_Default;
4361   // Look at the constraint type.
4362   switch (*constraint) {
4363     case 'i': // immediate integer.
4364     case 'n': // immediate integer with a known value.
4365       if (isa<ConstantInt>(CallOperandVal))
4366         weight = CW_Constant;
4367       break;
4368     case 's': // non-explicit intregal immediate.
4369       if (isa<GlobalValue>(CallOperandVal))
4370         weight = CW_Constant;
4371       break;
4372     case 'E': // immediate float if host format.
4373     case 'F': // immediate float.
4374       if (isa<ConstantFP>(CallOperandVal))
4375         weight = CW_Constant;
4376       break;
4377     case '<': // memory operand with autodecrement.
4378     case '>': // memory operand with autoincrement.
4379     case 'm': // memory operand.
4380     case 'o': // offsettable memory operand
4381     case 'V': // non-offsettable memory operand
4382       weight = CW_Memory;
4383       break;
4384     case 'r': // general register.
4385     case 'g': // general register, memory operand or immediate integer.
4386               // note: Clang converts "g" to "imr".
4387       if (CallOperandVal->getType()->isIntegerTy())
4388         weight = CW_Register;
4389       break;
4390     case 'X': // any operand.
4391   default:
4392     weight = CW_Default;
4393     break;
4394   }
4395   return weight;
4396 }
4397 
4398 /// If there are multiple different constraints that we could pick for this
4399 /// operand (e.g. "imr") try to pick the 'best' one.
4400 /// This is somewhat tricky: constraints fall into four classes:
4401 ///    Other         -> immediates and magic values
4402 ///    Register      -> one specific register
4403 ///    RegisterClass -> a group of regs
4404 ///    Memory        -> memory
4405 /// Ideally, we would pick the most specific constraint possible: if we have
4406 /// something that fits into a register, we would pick it.  The problem here
4407 /// is that if we have something that could either be in a register or in
4408 /// memory that use of the register could cause selection of *other*
4409 /// operands to fail: they might only succeed if we pick memory.  Because of
4410 /// this the heuristic we use is:
4411 ///
4412 ///  1) If there is an 'other' constraint, and if the operand is valid for
4413 ///     that constraint, use it.  This makes us take advantage of 'i'
4414 ///     constraints when available.
4415 ///  2) Otherwise, pick the most general constraint present.  This prefers
4416 ///     'm' over 'r', for example.
4417 ///
4418 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4419                              const TargetLowering &TLI,
4420                              SDValue Op, SelectionDAG *DAG) {
4421   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4422   unsigned BestIdx = 0;
4423   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4424   int BestGenerality = -1;
4425 
4426   // Loop over the options, keeping track of the most general one.
4427   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4428     TargetLowering::ConstraintType CType =
4429       TLI.getConstraintType(OpInfo.Codes[i]);
4430 
4431     // If this is an 'other' or 'immediate' constraint, see if the operand is
4432     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4433     // the operand is an integer in the range [0..31] we want to use I (saving a
4434     // load of a register), otherwise we must use 'r'.
4435     if ((CType == TargetLowering::C_Other ||
4436          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4437       assert(OpInfo.Codes[i].size() == 1 &&
4438              "Unhandled multi-letter 'other' constraint");
4439       std::vector<SDValue> ResultOps;
4440       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4441                                        ResultOps, *DAG);
4442       if (!ResultOps.empty()) {
4443         BestType = CType;
4444         BestIdx = i;
4445         break;
4446       }
4447     }
4448 
4449     // Things with matching constraints can only be registers, per gcc
4450     // documentation.  This mainly affects "g" constraints.
4451     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4452       continue;
4453 
4454     // This constraint letter is more general than the previous one, use it.
4455     int Generality = getConstraintGenerality(CType);
4456     if (Generality > BestGenerality) {
4457       BestType = CType;
4458       BestIdx = i;
4459       BestGenerality = Generality;
4460     }
4461   }
4462 
4463   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4464   OpInfo.ConstraintType = BestType;
4465 }
4466 
4467 /// Determines the constraint code and constraint type to use for the specific
4468 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4469 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4470                                             SDValue Op,
4471                                             SelectionDAG *DAG) const {
4472   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4473 
4474   // Single-letter constraints ('r') are very common.
4475   if (OpInfo.Codes.size() == 1) {
4476     OpInfo.ConstraintCode = OpInfo.Codes[0];
4477     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4478   } else {
4479     ChooseConstraint(OpInfo, *this, Op, DAG);
4480   }
4481 
4482   // 'X' matches anything.
4483   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4484     // Labels and constants are handled elsewhere ('X' is the only thing
4485     // that matches labels).  For Functions, the type here is the type of
4486     // the result, which is not what we want to look at; leave them alone.
4487     Value *v = OpInfo.CallOperandVal;
4488     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4489       OpInfo.CallOperandVal = v;
4490       return;
4491     }
4492 
4493     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4494       return;
4495 
4496     // Otherwise, try to resolve it to something we know about by looking at
4497     // the actual operand type.
4498     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4499       OpInfo.ConstraintCode = Repl;
4500       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4501     }
4502   }
4503 }
4504 
4505 /// Given an exact SDIV by a constant, create a multiplication
4506 /// with the multiplicative inverse of the constant.
4507 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4508                               const SDLoc &dl, SelectionDAG &DAG,
4509                               SmallVectorImpl<SDNode *> &Created) {
4510   SDValue Op0 = N->getOperand(0);
4511   SDValue Op1 = N->getOperand(1);
4512   EVT VT = N->getValueType(0);
4513   EVT SVT = VT.getScalarType();
4514   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4515   EVT ShSVT = ShVT.getScalarType();
4516 
4517   bool UseSRA = false;
4518   SmallVector<SDValue, 16> Shifts, Factors;
4519 
4520   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4521     if (C->isNullValue())
4522       return false;
4523     APInt Divisor = C->getAPIntValue();
4524     unsigned Shift = Divisor.countTrailingZeros();
4525     if (Shift) {
4526       Divisor.ashrInPlace(Shift);
4527       UseSRA = true;
4528     }
4529     // Calculate the multiplicative inverse, using Newton's method.
4530     APInt t;
4531     APInt Factor = Divisor;
4532     while ((t = Divisor * Factor) != 1)
4533       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4534     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4535     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4536     return true;
4537   };
4538 
4539   // Collect all magic values from the build vector.
4540   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4541     return SDValue();
4542 
4543   SDValue Shift, Factor;
4544   if (VT.isVector()) {
4545     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4546     Factor = DAG.getBuildVector(VT, dl, Factors);
4547   } else {
4548     Shift = Shifts[0];
4549     Factor = Factors[0];
4550   }
4551 
4552   SDValue Res = Op0;
4553 
4554   // Shift the value upfront if it is even, so the LSB is one.
4555   if (UseSRA) {
4556     // TODO: For UDIV use SRL instead of SRA.
4557     SDNodeFlags Flags;
4558     Flags.setExact(true);
4559     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4560     Created.push_back(Res.getNode());
4561   }
4562 
4563   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4564 }
4565 
4566 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4567                               SelectionDAG &DAG,
4568                               SmallVectorImpl<SDNode *> &Created) const {
4569   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4570   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4571   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4572     return SDValue(N, 0); // Lower SDIV as SDIV
4573   return SDValue();
4574 }
4575 
4576 /// Given an ISD::SDIV node expressing a divide by constant,
4577 /// return a DAG expression to select that will generate the same value by
4578 /// multiplying by a magic number.
4579 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4580 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4581                                   bool IsAfterLegalization,
4582                                   SmallVectorImpl<SDNode *> &Created) const {
4583   SDLoc dl(N);
4584   EVT VT = N->getValueType(0);
4585   EVT SVT = VT.getScalarType();
4586   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4587   EVT ShSVT = ShVT.getScalarType();
4588   unsigned EltBits = VT.getScalarSizeInBits();
4589 
4590   // Check to see if we can do this.
4591   // FIXME: We should be more aggressive here.
4592   if (!isTypeLegal(VT))
4593     return SDValue();
4594 
4595   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4596   if (N->getFlags().hasExact())
4597     return BuildExactSDIV(*this, N, dl, DAG, Created);
4598 
4599   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4600 
4601   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4602     if (C->isNullValue())
4603       return false;
4604 
4605     const APInt &Divisor = C->getAPIntValue();
4606     APInt::ms magics = Divisor.magic();
4607     int NumeratorFactor = 0;
4608     int ShiftMask = -1;
4609 
4610     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4611       // If d is +1/-1, we just multiply the numerator by +1/-1.
4612       NumeratorFactor = Divisor.getSExtValue();
4613       magics.m = 0;
4614       magics.s = 0;
4615       ShiftMask = 0;
4616     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4617       // If d > 0 and m < 0, add the numerator.
4618       NumeratorFactor = 1;
4619     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4620       // If d < 0 and m > 0, subtract the numerator.
4621       NumeratorFactor = -1;
4622     }
4623 
4624     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4625     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4626     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4627     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4628     return true;
4629   };
4630 
4631   SDValue N0 = N->getOperand(0);
4632   SDValue N1 = N->getOperand(1);
4633 
4634   // Collect the shifts / magic values from each element.
4635   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4636     return SDValue();
4637 
4638   SDValue MagicFactor, Factor, Shift, ShiftMask;
4639   if (VT.isVector()) {
4640     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4641     Factor = DAG.getBuildVector(VT, dl, Factors);
4642     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4643     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4644   } else {
4645     MagicFactor = MagicFactors[0];
4646     Factor = Factors[0];
4647     Shift = Shifts[0];
4648     ShiftMask = ShiftMasks[0];
4649   }
4650 
4651   // Multiply the numerator (operand 0) by the magic value.
4652   // FIXME: We should support doing a MUL in a wider type.
4653   SDValue Q;
4654   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4655                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4656     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4657   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4658                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4659     SDValue LoHi =
4660         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4661     Q = SDValue(LoHi.getNode(), 1);
4662   } else
4663     return SDValue(); // No mulhs or equivalent.
4664   Created.push_back(Q.getNode());
4665 
4666   // (Optionally) Add/subtract the numerator using Factor.
4667   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4668   Created.push_back(Factor.getNode());
4669   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4670   Created.push_back(Q.getNode());
4671 
4672   // Shift right algebraic by shift value.
4673   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4674   Created.push_back(Q.getNode());
4675 
4676   // Extract the sign bit, mask it and add it to the quotient.
4677   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4678   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4679   Created.push_back(T.getNode());
4680   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4681   Created.push_back(T.getNode());
4682   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4683 }
4684 
4685 /// Given an ISD::UDIV node expressing a divide by constant,
4686 /// return a DAG expression to select that will generate the same value by
4687 /// multiplying by a magic number.
4688 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4689 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4690                                   bool IsAfterLegalization,
4691                                   SmallVectorImpl<SDNode *> &Created) const {
4692   SDLoc dl(N);
4693   EVT VT = N->getValueType(0);
4694   EVT SVT = VT.getScalarType();
4695   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4696   EVT ShSVT = ShVT.getScalarType();
4697   unsigned EltBits = VT.getScalarSizeInBits();
4698 
4699   // Check to see if we can do this.
4700   // FIXME: We should be more aggressive here.
4701   if (!isTypeLegal(VT))
4702     return SDValue();
4703 
4704   bool UseNPQ = false;
4705   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4706 
4707   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4708     if (C->isNullValue())
4709       return false;
4710     // FIXME: We should use a narrower constant when the upper
4711     // bits are known to be zero.
4712     APInt Divisor = C->getAPIntValue();
4713     APInt::mu magics = Divisor.magicu();
4714     unsigned PreShift = 0, PostShift = 0;
4715 
4716     // If the divisor is even, we can avoid using the expensive fixup by
4717     // shifting the divided value upfront.
4718     if (magics.a != 0 && !Divisor[0]) {
4719       PreShift = Divisor.countTrailingZeros();
4720       // Get magic number for the shifted divisor.
4721       magics = Divisor.lshr(PreShift).magicu(PreShift);
4722       assert(magics.a == 0 && "Should use cheap fixup now");
4723     }
4724 
4725     APInt Magic = magics.m;
4726 
4727     unsigned SelNPQ;
4728     if (magics.a == 0 || Divisor.isOneValue()) {
4729       assert(magics.s < Divisor.getBitWidth() &&
4730              "We shouldn't generate an undefined shift!");
4731       PostShift = magics.s;
4732       SelNPQ = false;
4733     } else {
4734       PostShift = magics.s - 1;
4735       SelNPQ = true;
4736     }
4737 
4738     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4739     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4740     NPQFactors.push_back(
4741         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4742                                : APInt::getNullValue(EltBits),
4743                         dl, SVT));
4744     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4745     UseNPQ |= SelNPQ;
4746     return true;
4747   };
4748 
4749   SDValue N0 = N->getOperand(0);
4750   SDValue N1 = N->getOperand(1);
4751 
4752   // Collect the shifts/magic values from each element.
4753   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4754     return SDValue();
4755 
4756   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4757   if (VT.isVector()) {
4758     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4759     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4760     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4761     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4762   } else {
4763     PreShift = PreShifts[0];
4764     MagicFactor = MagicFactors[0];
4765     PostShift = PostShifts[0];
4766   }
4767 
4768   SDValue Q = N0;
4769   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4770   Created.push_back(Q.getNode());
4771 
4772   // FIXME: We should support doing a MUL in a wider type.
4773   auto GetMULHU = [&](SDValue X, SDValue Y) {
4774     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4775                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4776       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4777     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4778                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4779       SDValue LoHi =
4780           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4781       return SDValue(LoHi.getNode(), 1);
4782     }
4783     return SDValue(); // No mulhu or equivalent
4784   };
4785 
4786   // Multiply the numerator (operand 0) by the magic value.
4787   Q = GetMULHU(Q, MagicFactor);
4788   if (!Q)
4789     return SDValue();
4790 
4791   Created.push_back(Q.getNode());
4792 
4793   if (UseNPQ) {
4794     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4795     Created.push_back(NPQ.getNode());
4796 
4797     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4798     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4799     if (VT.isVector())
4800       NPQ = GetMULHU(NPQ, NPQFactor);
4801     else
4802       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4803 
4804     Created.push_back(NPQ.getNode());
4805 
4806     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4807     Created.push_back(Q.getNode());
4808   }
4809 
4810   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4811   Created.push_back(Q.getNode());
4812 
4813   SDValue One = DAG.getConstant(1, dl, VT);
4814   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4815   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4816 }
4817 
4818 /// If all values in Values that *don't* match the predicate are same 'splat'
4819 /// value, then replace all values with that splat value.
4820 /// Else, if AlternativeReplacement was provided, then replace all values that
4821 /// do match predicate with AlternativeReplacement value.
4822 static void
4823 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4824                           std::function<bool(SDValue)> Predicate,
4825                           SDValue AlternativeReplacement = SDValue()) {
4826   SDValue Replacement;
4827   // Is there a value for which the Predicate does *NOT* match? What is it?
4828   auto SplatValue = llvm::find_if_not(Values, Predicate);
4829   if (SplatValue != Values.end()) {
4830     // Does Values consist only of SplatValue's and values matching Predicate?
4831     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4832           return Value == *SplatValue || Predicate(Value);
4833         })) // Then we shall replace values matching predicate with SplatValue.
4834       Replacement = *SplatValue;
4835   }
4836   if (!Replacement) {
4837     // Oops, we did not find the "baseline" splat value.
4838     if (!AlternativeReplacement)
4839       return; // Nothing to do.
4840     // Let's replace with provided value then.
4841     Replacement = AlternativeReplacement;
4842   }
4843   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4844 }
4845 
4846 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4847 /// where the divisor is constant and the comparison target is zero,
4848 /// return a DAG expression that will generate the same comparison result
4849 /// using only multiplications, additions and shifts/rotations.
4850 /// Ref: "Hacker's Delight" 10-17.
4851 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4852                                         SDValue CompTargetNode,
4853                                         ISD::CondCode Cond,
4854                                         DAGCombinerInfo &DCI,
4855                                         const SDLoc &DL) const {
4856   SmallVector<SDNode *, 2> Built;
4857   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4858                                          DCI, DL, Built)) {
4859     for (SDNode *N : Built)
4860       DCI.AddToWorklist(N);
4861     return Folded;
4862   }
4863 
4864   return SDValue();
4865 }
4866 
4867 SDValue
4868 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4869                                   SDValue CompTargetNode, ISD::CondCode Cond,
4870                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4871                                   SmallVectorImpl<SDNode *> &Created) const {
4872   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4873   // - D must be constant, with D = D0 * 2^K where D0 is odd
4874   // - P is the multiplicative inverse of D0 modulo 2^W
4875   // - Q = floor(((2^W) - 1) / D)
4876   // where W is the width of the common type of N and D.
4877   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4878          "Only applicable for (in)equality comparisons.");
4879 
4880   SelectionDAG &DAG = DCI.DAG;
4881 
4882   EVT VT = REMNode.getValueType();
4883   EVT SVT = VT.getScalarType();
4884   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4885   EVT ShSVT = ShVT.getScalarType();
4886 
4887   // If MUL is unavailable, we cannot proceed in any case.
4888   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4889     return SDValue();
4890 
4891   // TODO: Could support comparing with non-zero too.
4892   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4893   if (!CompTarget || !CompTarget->isNullValue())
4894     return SDValue();
4895 
4896   bool HadOneDivisor = false;
4897   bool AllDivisorsAreOnes = true;
4898   bool HadEvenDivisor = false;
4899   bool AllDivisorsArePowerOfTwo = true;
4900   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4901 
4902   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4903     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4904     if (C->isNullValue())
4905       return false;
4906 
4907     const APInt &D = C->getAPIntValue();
4908     // If all divisors are ones, we will prefer to avoid the fold.
4909     HadOneDivisor |= D.isOneValue();
4910     AllDivisorsAreOnes &= D.isOneValue();
4911 
4912     // Decompose D into D0 * 2^K
4913     unsigned K = D.countTrailingZeros();
4914     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4915     APInt D0 = D.lshr(K);
4916 
4917     // D is even if it has trailing zeros.
4918     HadEvenDivisor |= (K != 0);
4919     // D is a power-of-two if D0 is one.
4920     // If all divisors are power-of-two, we will prefer to avoid the fold.
4921     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4922 
4923     // P = inv(D0, 2^W)
4924     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4925     unsigned W = D.getBitWidth();
4926     APInt P = D0.zext(W + 1)
4927                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4928                   .trunc(W);
4929     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4930     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4931 
4932     // Q = floor((2^W - 1) / D)
4933     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4934 
4935     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4936            "We are expecting that K is always less than all-ones for ShSVT");
4937 
4938     // If the divisor is 1 the result can be constant-folded.
4939     if (D.isOneValue()) {
4940       // Set P and K amount to a bogus values so we can try to splat them.
4941       P = 0;
4942       K = -1;
4943       assert(Q.isAllOnesValue() &&
4944              "Expecting all-ones comparison for one divisor");
4945     }
4946 
4947     PAmts.push_back(DAG.getConstant(P, DL, SVT));
4948     KAmts.push_back(
4949         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4950     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4951     return true;
4952   };
4953 
4954   SDValue N = REMNode.getOperand(0);
4955   SDValue D = REMNode.getOperand(1);
4956 
4957   // Collect the values from each element.
4958   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4959     return SDValue();
4960 
4961   // If this is a urem by a one, avoid the fold since it can be constant-folded.
4962   if (AllDivisorsAreOnes)
4963     return SDValue();
4964 
4965   // If this is a urem by a powers-of-two, avoid the fold since it can be
4966   // best implemented as a bit test.
4967   if (AllDivisorsArePowerOfTwo)
4968     return SDValue();
4969 
4970   SDValue PVal, KVal, QVal;
4971   if (VT.isVector()) {
4972     if (HadOneDivisor) {
4973       // Try to turn PAmts into a splat, since we don't care about the values
4974       // that are currently '0'. If we can't, just keep '0'`s.
4975       turnVectorIntoSplatVector(PAmts, isNullConstant);
4976       // Try to turn KAmts into a splat, since we don't care about the values
4977       // that are currently '-1'. If we can't, change them to '0'`s.
4978       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4979                                 DAG.getConstant(0, DL, ShSVT));
4980     }
4981 
4982     PVal = DAG.getBuildVector(VT, DL, PAmts);
4983     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4984     QVal = DAG.getBuildVector(VT, DL, QAmts);
4985   } else {
4986     PVal = PAmts[0];
4987     KVal = KAmts[0];
4988     QVal = QAmts[0];
4989   }
4990 
4991   // (mul N, P)
4992   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4993   Created.push_back(Op0.getNode());
4994 
4995   // Rotate right only if any divisor was even. We avoid rotates for all-odd
4996   // divisors as a performance improvement, since rotating by 0 is a no-op.
4997   if (HadEvenDivisor) {
4998     // We need ROTR to do this.
4999     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5000       return SDValue();
5001     SDNodeFlags Flags;
5002     Flags.setExact(true);
5003     // UREM: (rotr (mul N, P), K)
5004     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5005     Created.push_back(Op0.getNode());
5006   }
5007 
5008   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5009   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5010                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5011 }
5012 
5013 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5014 /// where the divisor is constant and the comparison target is zero,
5015 /// return a DAG expression that will generate the same comparison result
5016 /// using only multiplications, additions and shifts/rotations.
5017 /// Ref: "Hacker's Delight" 10-17.
5018 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5019                                         SDValue CompTargetNode,
5020                                         ISD::CondCode Cond,
5021                                         DAGCombinerInfo &DCI,
5022                                         const SDLoc &DL) const {
5023   SmallVector<SDNode *, 3> Built;
5024   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5025                                          DCI, DL, Built)) {
5026     for (SDNode *N : Built)
5027       DCI.AddToWorklist(N);
5028     return Folded;
5029   }
5030 
5031   return SDValue();
5032 }
5033 
5034 SDValue
5035 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5036                                   SDValue CompTargetNode, ISD::CondCode Cond,
5037                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5038                                   SmallVectorImpl<SDNode *> &Created) const {
5039   // Fold:
5040   //   (seteq/ne (srem N, D), 0)
5041   // To:
5042   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5043   //
5044   // - D must be constant, with D = D0 * 2^K where D0 is odd
5045   // - P is the multiplicative inverse of D0 modulo 2^W
5046   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5047   // - Q = floor((2 * A) / (2^K))
5048   // where W is the width of the common type of N and D.
5049   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5050          "Only applicable for (in)equality comparisons.");
5051 
5052   SelectionDAG &DAG = DCI.DAG;
5053 
5054   EVT VT = REMNode.getValueType();
5055   EVT SVT = VT.getScalarType();
5056   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5057   EVT ShSVT = ShVT.getScalarType();
5058 
5059   // If MUL is unavailable, we cannot proceed in any case.
5060   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5061     return SDValue();
5062 
5063   // TODO: Could support comparing with non-zero too.
5064   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5065   if (!CompTarget || !CompTarget->isNullValue())
5066     return SDValue();
5067 
5068   bool HadOneDivisor = false;
5069   bool AllDivisorsAreOnes = true;
5070   bool HadEvenDivisor = false;
5071   bool NeedToApplyOffset = false;
5072   bool AllDivisorsArePowerOfTwo = true;
5073   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5074 
5075   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5076     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5077     if (C->isNullValue())
5078       return false;
5079 
5080     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5081 
5082     // WARNING: this fold is only valid for positive divisors!
5083     APInt D = C->getAPIntValue();
5084     if (D.isMinSignedValue())
5085       return false; // We can't negate INT_MIN.
5086     if (D.isNegative())
5087       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5088 
5089     assert(!D.isNegative() && "The fold is only valid for positive divisors!");
5090 
5091     // If all divisors are ones, we will prefer to avoid the fold.
5092     HadOneDivisor |= D.isOneValue();
5093     AllDivisorsAreOnes &= D.isOneValue();
5094 
5095     // Decompose D into D0 * 2^K
5096     unsigned K = D.countTrailingZeros();
5097     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5098     APInt D0 = D.lshr(K);
5099 
5100     // D is even if it has trailing zeros.
5101     HadEvenDivisor |= (K != 0);
5102     // D is a power-of-two if D0 is one.
5103     // If all divisors are power-of-two, we will prefer to avoid the fold.
5104     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5105 
5106     // P = inv(D0, 2^W)
5107     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5108     unsigned W = D.getBitWidth();
5109     APInt P = D0.zext(W + 1)
5110                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5111                   .trunc(W);
5112     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5113     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5114 
5115     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5116     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5117     A.clearLowBits(K);
5118 
5119     NeedToApplyOffset |= A != 0;
5120 
5121     // Q = floor((2 * A) / (2^K))
5122     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5123 
5124     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5125            "We are expecting that A is always less than all-ones for SVT");
5126     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5127            "We are expecting that K is always less than all-ones for ShSVT");
5128 
5129     // If the divisor is 1 the result can be constant-folded.
5130     if (D.isOneValue()) {
5131       // Set P, A and K to a bogus values so we can try to splat them.
5132       P = 0;
5133       A = -1;
5134       K = -1;
5135 
5136       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5137       Q = -1;
5138     }
5139 
5140     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5141     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5142     KAmts.push_back(
5143         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5144     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5145     return true;
5146   };
5147 
5148   SDValue N = REMNode.getOperand(0);
5149   SDValue D = REMNode.getOperand(1);
5150 
5151   // Collect the values from each element.
5152   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5153     return SDValue();
5154 
5155   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5156   if (AllDivisorsAreOnes)
5157     return SDValue();
5158 
5159   // If this is a srem by a powers-of-two, avoid the fold since it can be
5160   // best implemented as a bit test.
5161   if (AllDivisorsArePowerOfTwo)
5162     return SDValue();
5163 
5164   SDValue PVal, AVal, KVal, QVal;
5165   if (VT.isVector()) {
5166     if (HadOneDivisor) {
5167       // Try to turn PAmts into a splat, since we don't care about the values
5168       // that are currently '0'. If we can't, just keep '0'`s.
5169       turnVectorIntoSplatVector(PAmts, isNullConstant);
5170       // Try to turn AAmts into a splat, since we don't care about the
5171       // values that are currently '-1'. If we can't, change them to '0'`s.
5172       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5173                                 DAG.getConstant(0, DL, SVT));
5174       // Try to turn KAmts into a splat, since we don't care about the values
5175       // that are currently '-1'. If we can't, change them to '0'`s.
5176       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5177                                 DAG.getConstant(0, DL, ShSVT));
5178     }
5179 
5180     PVal = DAG.getBuildVector(VT, DL, PAmts);
5181     AVal = DAG.getBuildVector(VT, DL, AAmts);
5182     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5183     QVal = DAG.getBuildVector(VT, DL, QAmts);
5184   } else {
5185     PVal = PAmts[0];
5186     AVal = AAmts[0];
5187     KVal = KAmts[0];
5188     QVal = QAmts[0];
5189   }
5190 
5191   // (mul N, P)
5192   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5193   Created.push_back(Op0.getNode());
5194 
5195   if (NeedToApplyOffset) {
5196     // We need ADD to do this.
5197     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5198       return SDValue();
5199 
5200     // (add (mul N, P), A)
5201     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5202     Created.push_back(Op0.getNode());
5203   }
5204 
5205   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5206   // divisors as a performance improvement, since rotating by 0 is a no-op.
5207   if (HadEvenDivisor) {
5208     // We need ROTR to do this.
5209     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5210       return SDValue();
5211     SDNodeFlags Flags;
5212     Flags.setExact(true);
5213     // SREM: (rotr (add (mul N, P), A), K)
5214     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5215     Created.push_back(Op0.getNode());
5216   }
5217 
5218   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5219   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5220                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5221 }
5222 
5223 bool TargetLowering::
5224 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5225   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5226     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5227                                 "be a constant integer");
5228     return true;
5229   }
5230 
5231   return false;
5232 }
5233 
5234 //===----------------------------------------------------------------------===//
5235 // Legalization Utilities
5236 //===----------------------------------------------------------------------===//
5237 
5238 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5239                                     SDValue LHS, SDValue RHS,
5240                                     SmallVectorImpl<SDValue> &Result,
5241                                     EVT HiLoVT, SelectionDAG &DAG,
5242                                     MulExpansionKind Kind, SDValue LL,
5243                                     SDValue LH, SDValue RL, SDValue RH) const {
5244   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5245          Opcode == ISD::SMUL_LOHI);
5246 
5247   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5248                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5249   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5250                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5251   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5252                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5253   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5254                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5255 
5256   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5257     return false;
5258 
5259   unsigned OuterBitSize = VT.getScalarSizeInBits();
5260   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5261   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5262   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5263 
5264   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5265   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5266          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5267 
5268   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5269   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5270                           bool Signed) -> bool {
5271     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5272       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5273       Hi = SDValue(Lo.getNode(), 1);
5274       return true;
5275     }
5276     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5277       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5278       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5279       return true;
5280     }
5281     return false;
5282   };
5283 
5284   SDValue Lo, Hi;
5285 
5286   if (!LL.getNode() && !RL.getNode() &&
5287       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5288     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5289     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5290   }
5291 
5292   if (!LL.getNode())
5293     return false;
5294 
5295   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5296   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5297       DAG.MaskedValueIsZero(RHS, HighMask)) {
5298     // The inputs are both zero-extended.
5299     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5300       Result.push_back(Lo);
5301       Result.push_back(Hi);
5302       if (Opcode != ISD::MUL) {
5303         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5304         Result.push_back(Zero);
5305         Result.push_back(Zero);
5306       }
5307       return true;
5308     }
5309   }
5310 
5311   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5312       RHSSB > InnerBitSize) {
5313     // The input values are both sign-extended.
5314     // TODO non-MUL case?
5315     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5316       Result.push_back(Lo);
5317       Result.push_back(Hi);
5318       return true;
5319     }
5320   }
5321 
5322   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5323   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5324   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5325     // FIXME getShiftAmountTy does not always return a sensible result when VT
5326     // is an illegal type, and so the type may be too small to fit the shift
5327     // amount. Override it with i32. The shift will have to be legalized.
5328     ShiftAmountTy = MVT::i32;
5329   }
5330   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5331 
5332   if (!LH.getNode() && !RH.getNode() &&
5333       isOperationLegalOrCustom(ISD::SRL, VT) &&
5334       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5335     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5336     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5337     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5338     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5339   }
5340 
5341   if (!LH.getNode())
5342     return false;
5343 
5344   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5345     return false;
5346 
5347   Result.push_back(Lo);
5348 
5349   if (Opcode == ISD::MUL) {
5350     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5351     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5352     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5353     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5354     Result.push_back(Hi);
5355     return true;
5356   }
5357 
5358   // Compute the full width result.
5359   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5360     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5361     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5362     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5363     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5364   };
5365 
5366   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5367   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5368     return false;
5369 
5370   // This is effectively the add part of a multiply-add of half-sized operands,
5371   // so it cannot overflow.
5372   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5373 
5374   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5375     return false;
5376 
5377   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5378   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5379 
5380   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5381                   isOperationLegalOrCustom(ISD::ADDE, VT));
5382   if (UseGlue)
5383     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5384                        Merge(Lo, Hi));
5385   else
5386     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5387                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5388 
5389   SDValue Carry = Next.getValue(1);
5390   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5391   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5392 
5393   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5394     return false;
5395 
5396   if (UseGlue)
5397     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5398                      Carry);
5399   else
5400     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5401                      Zero, Carry);
5402 
5403   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5404 
5405   if (Opcode == ISD::SMUL_LOHI) {
5406     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5407                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5408     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5409 
5410     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5411                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5412     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5413   }
5414 
5415   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5416   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5417   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5418   return true;
5419 }
5420 
5421 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5422                                SelectionDAG &DAG, MulExpansionKind Kind,
5423                                SDValue LL, SDValue LH, SDValue RL,
5424                                SDValue RH) const {
5425   SmallVector<SDValue, 2> Result;
5426   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5427                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5428                            DAG, Kind, LL, LH, RL, RH);
5429   if (Ok) {
5430     assert(Result.size() == 2);
5431     Lo = Result[0];
5432     Hi = Result[1];
5433   }
5434   return Ok;
5435 }
5436 
5437 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5438                                        SelectionDAG &DAG) const {
5439   EVT VT = Node->getValueType(0);
5440 
5441   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5442                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5443                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5444                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5445     return false;
5446 
5447   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5448   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5449   SDValue X = Node->getOperand(0);
5450   SDValue Y = Node->getOperand(1);
5451   SDValue Z = Node->getOperand(2);
5452 
5453   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5454   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5455   SDLoc DL(SDValue(Node, 0));
5456 
5457   EVT ShVT = Z.getValueType();
5458   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5459   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5460 
5461   SDValue ShAmt;
5462   if (isPowerOf2_32(EltSizeInBits)) {
5463     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5464     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5465   } else {
5466     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5467   }
5468 
5469   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5470   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5471   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5472   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5473 
5474   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5475   // and that is undefined. We must compare and select to avoid UB.
5476   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5477 
5478   // For fshl, 0-shift returns the 1st arg (X).
5479   // For fshr, 0-shift returns the 2nd arg (Y).
5480   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5481   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5482   return true;
5483 }
5484 
5485 // TODO: Merge with expandFunnelShift.
5486 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5487                                SelectionDAG &DAG) const {
5488   EVT VT = Node->getValueType(0);
5489   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5490   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5491   SDValue Op0 = Node->getOperand(0);
5492   SDValue Op1 = Node->getOperand(1);
5493   SDLoc DL(SDValue(Node, 0));
5494 
5495   EVT ShVT = Op1.getValueType();
5496   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5497 
5498   // If a rotate in the other direction is legal, use it.
5499   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5500   if (isOperationLegal(RevRot, VT)) {
5501     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5502     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5503     return true;
5504   }
5505 
5506   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5507                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5508                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5509                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5510                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5511     return false;
5512 
5513   // Otherwise,
5514   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5515   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5516   //
5517   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5518          "Expecting the type bitwidth to be a power of 2");
5519   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5520   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5521   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5522   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5523   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5524   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5525   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5526                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5527   return true;
5528 }
5529 
5530 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5531                                       SelectionDAG &DAG) const {
5532   SDValue Src = Node->getOperand(0);
5533   EVT SrcVT = Src.getValueType();
5534   EVT DstVT = Node->getValueType(0);
5535   SDLoc dl(SDValue(Node, 0));
5536 
5537   // FIXME: Only f32 to i64 conversions are supported.
5538   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5539     return false;
5540 
5541   // Expand f32 -> i64 conversion
5542   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5543   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5544   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5545   EVT IntVT = SrcVT.changeTypeToInteger();
5546   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5547 
5548   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5549   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5550   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5551   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5552   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5553   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5554 
5555   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5556 
5557   SDValue ExponentBits = DAG.getNode(
5558       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5559       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5560   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5561 
5562   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5563                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5564                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5565   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5566 
5567   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5568                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5569                           DAG.getConstant(0x00800000, dl, IntVT));
5570 
5571   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5572 
5573   R = DAG.getSelectCC(
5574       dl, Exponent, ExponentLoBit,
5575       DAG.getNode(ISD::SHL, dl, DstVT, R,
5576                   DAG.getZExtOrTrunc(
5577                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5578                       dl, IntShVT)),
5579       DAG.getNode(ISD::SRL, dl, DstVT, R,
5580                   DAG.getZExtOrTrunc(
5581                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5582                       dl, IntShVT)),
5583       ISD::SETGT);
5584 
5585   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5586                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5587 
5588   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5589                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5590   return true;
5591 }
5592 
5593 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5594                                       SelectionDAG &DAG) const {
5595   SDLoc dl(SDValue(Node, 0));
5596   SDValue Src = Node->getOperand(0);
5597 
5598   EVT SrcVT = Src.getValueType();
5599   EVT DstVT = Node->getValueType(0);
5600   EVT SetCCVT =
5601       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5602 
5603   // Only expand vector types if we have the appropriate vector bit operations.
5604   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5605                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5606     return false;
5607 
5608   // If the maximum float value is smaller then the signed integer range,
5609   // the destination signmask can't be represented by the float, so we can
5610   // just use FP_TO_SINT directly.
5611   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5612   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5613   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5614   if (APFloat::opOverflow &
5615       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5616     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5617     return true;
5618   }
5619 
5620   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5621   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5622 
5623   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5624   if (Strict) {
5625     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5626     // signmask then offset (the result of which should be fully representable).
5627     // Sel = Src < 0x8000000000000000
5628     // Val = select Sel, Src, Src - 0x8000000000000000
5629     // Ofs = select Sel, 0, 0x8000000000000000
5630     // Result = fp_to_sint(Val) ^ Ofs
5631 
5632     // TODO: Should any fast-math-flags be set for the FSUB?
5633     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5634                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5635     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5636                                 DAG.getConstant(SignMask, dl, DstVT));
5637     Result = DAG.getNode(ISD::XOR, dl, DstVT,
5638                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5639   } else {
5640     // Expand based on maximum range of FP_TO_SINT:
5641     // True = fp_to_sint(Src)
5642     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5643     // Result = select (Src < 0x8000000000000000), True, False
5644 
5645     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5646     // TODO: Should any fast-math-flags be set for the FSUB?
5647     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5648                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5649     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5650                         DAG.getConstant(SignMask, dl, DstVT));
5651     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5652   }
5653   return true;
5654 }
5655 
5656 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5657                                       SelectionDAG &DAG) const {
5658   SDValue Src = Node->getOperand(0);
5659   EVT SrcVT = Src.getValueType();
5660   EVT DstVT = Node->getValueType(0);
5661 
5662   if (SrcVT.getScalarType() != MVT::i64)
5663     return false;
5664 
5665   SDLoc dl(SDValue(Node, 0));
5666   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5667 
5668   if (DstVT.getScalarType() == MVT::f32) {
5669     // Only expand vector types if we have the appropriate vector bit
5670     // operations.
5671     if (SrcVT.isVector() &&
5672         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5673          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5674          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5675          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5676          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5677       return false;
5678 
5679     // For unsigned conversions, convert them to signed conversions using the
5680     // algorithm from the x86_64 __floatundidf in compiler_rt.
5681     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5682 
5683     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5684     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5685     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5686     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5687     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5688 
5689     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5690     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5691 
5692     // TODO: This really should be implemented using a branch rather than a
5693     // select.  We happen to get lucky and machinesink does the right
5694     // thing most of the time.  This would be a good candidate for a
5695     // pseudo-op, or, even better, for whole-function isel.
5696     EVT SetCCVT =
5697         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5698 
5699     SDValue SignBitTest = DAG.getSetCC(
5700         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5701     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5702     return true;
5703   }
5704 
5705   if (DstVT.getScalarType() == MVT::f64) {
5706     // Only expand vector types if we have the appropriate vector bit
5707     // operations.
5708     if (SrcVT.isVector() &&
5709         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5710          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5711          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5712          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5713          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5714       return false;
5715 
5716     // Implementation of unsigned i64 to f64 following the algorithm in
5717     // __floatundidf in compiler_rt. This implementation has the advantage
5718     // of performing rounding correctly, both in the default rounding mode
5719     // and in all alternate rounding modes.
5720     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5721     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5722         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5723     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5724     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5725     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5726 
5727     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5728     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5729     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5730     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5731     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5732     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5733     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5734     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5735     return true;
5736   }
5737 
5738   return false;
5739 }
5740 
5741 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5742                                               SelectionDAG &DAG) const {
5743   SDLoc dl(Node);
5744   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5745     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5746   EVT VT = Node->getValueType(0);
5747   if (isOperationLegalOrCustom(NewOp, VT)) {
5748     SDValue Quiet0 = Node->getOperand(0);
5749     SDValue Quiet1 = Node->getOperand(1);
5750 
5751     if (!Node->getFlags().hasNoNaNs()) {
5752       // Insert canonicalizes if it's possible we need to quiet to get correct
5753       // sNaN behavior.
5754       if (!DAG.isKnownNeverSNaN(Quiet0)) {
5755         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5756                              Node->getFlags());
5757       }
5758       if (!DAG.isKnownNeverSNaN(Quiet1)) {
5759         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5760                              Node->getFlags());
5761       }
5762     }
5763 
5764     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5765   }
5766 
5767   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5768   // instead if there are no NaNs.
5769   if (Node->getFlags().hasNoNaNs()) {
5770     unsigned IEEE2018Op =
5771         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5772     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5773       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5774                          Node->getOperand(1), Node->getFlags());
5775     }
5776   }
5777 
5778   return SDValue();
5779 }
5780 
5781 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5782                                  SelectionDAG &DAG) const {
5783   SDLoc dl(Node);
5784   EVT VT = Node->getValueType(0);
5785   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5786   SDValue Op = Node->getOperand(0);
5787   unsigned Len = VT.getScalarSizeInBits();
5788   assert(VT.isInteger() && "CTPOP not implemented for this type.");
5789 
5790   // TODO: Add support for irregular type lengths.
5791   if (!(Len <= 128 && Len % 8 == 0))
5792     return false;
5793 
5794   // Only expand vector types if we have the appropriate vector bit operations.
5795   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5796                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5797                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5798                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5799                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5800     return false;
5801 
5802   // This is the "best" algorithm from
5803   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5804   SDValue Mask55 =
5805       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5806   SDValue Mask33 =
5807       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5808   SDValue Mask0F =
5809       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5810   SDValue Mask01 =
5811       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5812 
5813   // v = v - ((v >> 1) & 0x55555555...)
5814   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5815                    DAG.getNode(ISD::AND, dl, VT,
5816                                DAG.getNode(ISD::SRL, dl, VT, Op,
5817                                            DAG.getConstant(1, dl, ShVT)),
5818                                Mask55));
5819   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5820   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5821                    DAG.getNode(ISD::AND, dl, VT,
5822                                DAG.getNode(ISD::SRL, dl, VT, Op,
5823                                            DAG.getConstant(2, dl, ShVT)),
5824                                Mask33));
5825   // v = (v + (v >> 4)) & 0x0F0F0F0F...
5826   Op = DAG.getNode(ISD::AND, dl, VT,
5827                    DAG.getNode(ISD::ADD, dl, VT, Op,
5828                                DAG.getNode(ISD::SRL, dl, VT, Op,
5829                                            DAG.getConstant(4, dl, ShVT))),
5830                    Mask0F);
5831   // v = (v * 0x01010101...) >> (Len - 8)
5832   if (Len > 8)
5833     Op =
5834         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5835                     DAG.getConstant(Len - 8, dl, ShVT));
5836 
5837   Result = Op;
5838   return true;
5839 }
5840 
5841 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5842                                 SelectionDAG &DAG) const {
5843   SDLoc dl(Node);
5844   EVT VT = Node->getValueType(0);
5845   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5846   SDValue Op = Node->getOperand(0);
5847   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5848 
5849   // If the non-ZERO_UNDEF version is supported we can use that instead.
5850   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5851       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5852     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5853     return true;
5854   }
5855 
5856   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5857   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5858     EVT SetCCVT =
5859         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5860     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5861     SDValue Zero = DAG.getConstant(0, dl, VT);
5862     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5863     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5864                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5865     return true;
5866   }
5867 
5868   // Only expand vector types if we have the appropriate vector bit operations.
5869   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5870                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5871                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5872                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5873     return false;
5874 
5875   // for now, we do this:
5876   // x = x | (x >> 1);
5877   // x = x | (x >> 2);
5878   // ...
5879   // x = x | (x >>16);
5880   // x = x | (x >>32); // for 64-bit input
5881   // return popcount(~x);
5882   //
5883   // Ref: "Hacker's Delight" by Henry Warren
5884   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5885     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5886     Op = DAG.getNode(ISD::OR, dl, VT, Op,
5887                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5888   }
5889   Op = DAG.getNOT(dl, Op, VT);
5890   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5891   return true;
5892 }
5893 
5894 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5895                                 SelectionDAG &DAG) const {
5896   SDLoc dl(Node);
5897   EVT VT = Node->getValueType(0);
5898   SDValue Op = Node->getOperand(0);
5899   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5900 
5901   // If the non-ZERO_UNDEF version is supported we can use that instead.
5902   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5903       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5904     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5905     return true;
5906   }
5907 
5908   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5909   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5910     EVT SetCCVT =
5911         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5912     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5913     SDValue Zero = DAG.getConstant(0, dl, VT);
5914     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5915     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5916                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5917     return true;
5918   }
5919 
5920   // Only expand vector types if we have the appropriate vector bit operations.
5921   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5922                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5923                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5924                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5925                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5926                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5927     return false;
5928 
5929   // for now, we use: { return popcount(~x & (x - 1)); }
5930   // unless the target has ctlz but not ctpop, in which case we use:
5931   // { return 32 - nlz(~x & (x-1)); }
5932   // Ref: "Hacker's Delight" by Henry Warren
5933   SDValue Tmp = DAG.getNode(
5934       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5935       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5936 
5937   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5938   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5939     Result =
5940         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5941                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5942     return true;
5943   }
5944 
5945   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5946   return true;
5947 }
5948 
5949 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5950                                SelectionDAG &DAG) const {
5951   SDLoc dl(N);
5952   EVT VT = N->getValueType(0);
5953   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5954   SDValue Op = N->getOperand(0);
5955 
5956   // Only expand vector types if we have the appropriate vector operations.
5957   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5958                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5959                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5960     return false;
5961 
5962   SDValue Shift =
5963       DAG.getNode(ISD::SRA, dl, VT, Op,
5964                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5965   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5966   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5967   return true;
5968 }
5969 
5970 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5971                                             SelectionDAG &DAG) const {
5972   SDLoc SL(LD);
5973   SDValue Chain = LD->getChain();
5974   SDValue BasePTR = LD->getBasePtr();
5975   EVT SrcVT = LD->getMemoryVT();
5976   ISD::LoadExtType ExtType = LD->getExtensionType();
5977 
5978   unsigned NumElem = SrcVT.getVectorNumElements();
5979 
5980   EVT SrcEltVT = SrcVT.getScalarType();
5981   EVT DstEltVT = LD->getValueType(0).getScalarType();
5982 
5983   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5984   assert(SrcEltVT.isByteSized());
5985 
5986   SmallVector<SDValue, 8> Vals;
5987   SmallVector<SDValue, 8> LoadChains;
5988 
5989   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5990     SDValue ScalarLoad =
5991         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5992                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5993                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5994                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5995 
5996     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5997 
5998     Vals.push_back(ScalarLoad.getValue(0));
5999     LoadChains.push_back(ScalarLoad.getValue(1));
6000   }
6001 
6002   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6003   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6004 
6005   return DAG.getMergeValues({Value, NewChain}, SL);
6006 }
6007 
6008 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6009                                              SelectionDAG &DAG) const {
6010   SDLoc SL(ST);
6011 
6012   SDValue Chain = ST->getChain();
6013   SDValue BasePtr = ST->getBasePtr();
6014   SDValue Value = ST->getValue();
6015   EVT StVT = ST->getMemoryVT();
6016 
6017   // The type of the data we want to save
6018   EVT RegVT = Value.getValueType();
6019   EVT RegSclVT = RegVT.getScalarType();
6020 
6021   // The type of data as saved in memory.
6022   EVT MemSclVT = StVT.getScalarType();
6023 
6024   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6025   unsigned NumElem = StVT.getVectorNumElements();
6026 
6027   // A vector must always be stored in memory as-is, i.e. without any padding
6028   // between the elements, since various code depend on it, e.g. in the
6029   // handling of a bitcast of a vector type to int, which may be done with a
6030   // vector store followed by an integer load. A vector that does not have
6031   // elements that are byte-sized must therefore be stored as an integer
6032   // built out of the extracted vector elements.
6033   if (!MemSclVT.isByteSized()) {
6034     unsigned NumBits = StVT.getSizeInBits();
6035     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6036 
6037     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6038 
6039     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6040       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6041                                 DAG.getConstant(Idx, SL, IdxVT));
6042       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6043       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6044       unsigned ShiftIntoIdx =
6045           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6046       SDValue ShiftAmount =
6047           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6048       SDValue ShiftedElt =
6049           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6050       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6051     }
6052 
6053     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6054                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6055                         ST->getAAInfo());
6056   }
6057 
6058   // Store Stride in bytes
6059   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6060   assert(Stride && "Zero stride!");
6061   // Extract each of the elements from the original vector and save them into
6062   // memory individually.
6063   SmallVector<SDValue, 8> Stores;
6064   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6065     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6066                               DAG.getConstant(Idx, SL, IdxVT));
6067 
6068     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6069 
6070     // This scalar TruncStore may be illegal, but we legalize it later.
6071     SDValue Store = DAG.getTruncStore(
6072         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6073         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6074         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6075 
6076     Stores.push_back(Store);
6077   }
6078 
6079   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6080 }
6081 
6082 std::pair<SDValue, SDValue>
6083 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6084   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6085          "unaligned indexed loads not implemented!");
6086   SDValue Chain = LD->getChain();
6087   SDValue Ptr = LD->getBasePtr();
6088   EVT VT = LD->getValueType(0);
6089   EVT LoadedVT = LD->getMemoryVT();
6090   SDLoc dl(LD);
6091   auto &MF = DAG.getMachineFunction();
6092 
6093   if (VT.isFloatingPoint() || VT.isVector()) {
6094     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6095     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6096       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6097           LoadedVT.isVector()) {
6098         // Scalarize the load and let the individual components be handled.
6099         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6100         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6101           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6102         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6103       }
6104 
6105       // Expand to a (misaligned) integer load of the same size,
6106       // then bitconvert to floating point or vector.
6107       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6108                                     LD->getMemOperand());
6109       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6110       if (LoadedVT != VT)
6111         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6112                              ISD::ANY_EXTEND, dl, VT, Result);
6113 
6114       return std::make_pair(Result, newLoad.getValue(1));
6115     }
6116 
6117     // Copy the value to a (aligned) stack slot using (unaligned) integer
6118     // loads and stores, then do a (aligned) load from the stack slot.
6119     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6120     unsigned LoadedBytes = LoadedVT.getStoreSize();
6121     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6122     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6123 
6124     // Make sure the stack slot is also aligned for the register type.
6125     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6126     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6127     SmallVector<SDValue, 8> Stores;
6128     SDValue StackPtr = StackBase;
6129     unsigned Offset = 0;
6130 
6131     EVT PtrVT = Ptr.getValueType();
6132     EVT StackPtrVT = StackPtr.getValueType();
6133 
6134     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6135     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6136 
6137     // Do all but one copies using the full register width.
6138     for (unsigned i = 1; i < NumRegs; i++) {
6139       // Load one integer register's worth from the original location.
6140       SDValue Load = DAG.getLoad(
6141           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6142           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6143           LD->getAAInfo());
6144       // Follow the load with a store to the stack slot.  Remember the store.
6145       Stores.push_back(DAG.getStore(
6146           Load.getValue(1), dl, Load, StackPtr,
6147           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6148       // Increment the pointers.
6149       Offset += RegBytes;
6150 
6151       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6152       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6153     }
6154 
6155     // The last copy may be partial.  Do an extending load.
6156     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6157                                   8 * (LoadedBytes - Offset));
6158     SDValue Load =
6159         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6160                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6161                        MinAlign(LD->getAlignment(), Offset),
6162                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6163     // Follow the load with a store to the stack slot.  Remember the store.
6164     // On big-endian machines this requires a truncating store to ensure
6165     // that the bits end up in the right place.
6166     Stores.push_back(DAG.getTruncStore(
6167         Load.getValue(1), dl, Load, StackPtr,
6168         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6169 
6170     // The order of the stores doesn't matter - say it with a TokenFactor.
6171     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6172 
6173     // Finally, perform the original load only redirected to the stack slot.
6174     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6175                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6176                           LoadedVT);
6177 
6178     // Callers expect a MERGE_VALUES node.
6179     return std::make_pair(Load, TF);
6180   }
6181 
6182   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6183          "Unaligned load of unsupported type.");
6184 
6185   // Compute the new VT that is half the size of the old one.  This is an
6186   // integer MVT.
6187   unsigned NumBits = LoadedVT.getSizeInBits();
6188   EVT NewLoadedVT;
6189   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6190   NumBits >>= 1;
6191 
6192   unsigned Alignment = LD->getAlignment();
6193   unsigned IncrementSize = NumBits / 8;
6194   ISD::LoadExtType HiExtType = LD->getExtensionType();
6195 
6196   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6197   if (HiExtType == ISD::NON_EXTLOAD)
6198     HiExtType = ISD::ZEXTLOAD;
6199 
6200   // Load the value in two parts
6201   SDValue Lo, Hi;
6202   if (DAG.getDataLayout().isLittleEndian()) {
6203     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6204                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6205                         LD->getAAInfo());
6206 
6207     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6208     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6209                         LD->getPointerInfo().getWithOffset(IncrementSize),
6210                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6211                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6212   } else {
6213     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6214                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6215                         LD->getAAInfo());
6216 
6217     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6218     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6219                         LD->getPointerInfo().getWithOffset(IncrementSize),
6220                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6221                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6222   }
6223 
6224   // aggregate the two parts
6225   SDValue ShiftAmount =
6226       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6227                                                     DAG.getDataLayout()));
6228   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6229   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6230 
6231   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6232                              Hi.getValue(1));
6233 
6234   return std::make_pair(Result, TF);
6235 }
6236 
6237 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6238                                              SelectionDAG &DAG) const {
6239   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6240          "unaligned indexed stores not implemented!");
6241   SDValue Chain = ST->getChain();
6242   SDValue Ptr = ST->getBasePtr();
6243   SDValue Val = ST->getValue();
6244   EVT VT = Val.getValueType();
6245   int Alignment = ST->getAlignment();
6246   auto &MF = DAG.getMachineFunction();
6247   EVT StoreMemVT = ST->getMemoryVT();
6248 
6249   SDLoc dl(ST);
6250   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6251     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6252     if (isTypeLegal(intVT)) {
6253       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6254           StoreMemVT.isVector()) {
6255         // Scalarize the store and let the individual components be handled.
6256         SDValue Result = scalarizeVectorStore(ST, DAG);
6257         return Result;
6258       }
6259       // Expand to a bitconvert of the value to the integer type of the
6260       // same size, then a (misaligned) int store.
6261       // FIXME: Does not handle truncating floating point stores!
6262       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6263       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6264                             Alignment, ST->getMemOperand()->getFlags());
6265       return Result;
6266     }
6267     // Do a (aligned) store to a stack slot, then copy from the stack slot
6268     // to the final destination using (unaligned) integer loads and stores.
6269     MVT RegVT = getRegisterType(
6270         *DAG.getContext(),
6271         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6272     EVT PtrVT = Ptr.getValueType();
6273     unsigned StoredBytes = StoreMemVT.getStoreSize();
6274     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6275     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6276 
6277     // Make sure the stack slot is also aligned for the register type.
6278     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6279     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6280 
6281     // Perform the original store, only redirected to the stack slot.
6282     SDValue Store = DAG.getTruncStore(
6283         Chain, dl, Val, StackPtr,
6284         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6285 
6286     EVT StackPtrVT = StackPtr.getValueType();
6287 
6288     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6289     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6290     SmallVector<SDValue, 8> Stores;
6291     unsigned Offset = 0;
6292 
6293     // Do all but one copies using the full register width.
6294     for (unsigned i = 1; i < NumRegs; i++) {
6295       // Load one integer register's worth from the stack slot.
6296       SDValue Load = DAG.getLoad(
6297           RegVT, dl, Store, StackPtr,
6298           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6299       // Store it to the final location.  Remember the store.
6300       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6301                                     ST->getPointerInfo().getWithOffset(Offset),
6302                                     MinAlign(ST->getAlignment(), Offset),
6303                                     ST->getMemOperand()->getFlags()));
6304       // Increment the pointers.
6305       Offset += RegBytes;
6306       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6307       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6308     }
6309 
6310     // The last store may be partial.  Do a truncating store.  On big-endian
6311     // machines this requires an extending load from the stack slot to ensure
6312     // that the bits are in the right place.
6313     EVT LoadMemVT =
6314         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6315 
6316     // Load from the stack slot.
6317     SDValue Load = DAG.getExtLoad(
6318         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6319         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6320 
6321     Stores.push_back(
6322         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6323                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6324                           MinAlign(ST->getAlignment(), Offset),
6325                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6326     // The order of the stores doesn't matter - say it with a TokenFactor.
6327     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6328     return Result;
6329   }
6330 
6331   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6332          "Unaligned store of unknown type.");
6333   // Get the half-size VT
6334   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6335   int NumBits = NewStoredVT.getSizeInBits();
6336   int IncrementSize = NumBits / 8;
6337 
6338   // Divide the stored value in two parts.
6339   SDValue ShiftAmount = DAG.getConstant(
6340       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6341   SDValue Lo = Val;
6342   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6343 
6344   // Store the two parts
6345   SDValue Store1, Store2;
6346   Store1 = DAG.getTruncStore(Chain, dl,
6347                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6348                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6349                              ST->getMemOperand()->getFlags());
6350 
6351   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6352   Alignment = MinAlign(Alignment, IncrementSize);
6353   Store2 = DAG.getTruncStore(
6354       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6355       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6356       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6357 
6358   SDValue Result =
6359       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6360   return Result;
6361 }
6362 
6363 SDValue
6364 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6365                                        const SDLoc &DL, EVT DataVT,
6366                                        SelectionDAG &DAG,
6367                                        bool IsCompressedMemory) const {
6368   SDValue Increment;
6369   EVT AddrVT = Addr.getValueType();
6370   EVT MaskVT = Mask.getValueType();
6371   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6372          "Incompatible types of Data and Mask");
6373   if (IsCompressedMemory) {
6374     // Incrementing the pointer according to number of '1's in the mask.
6375     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6376     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6377     if (MaskIntVT.getSizeInBits() < 32) {
6378       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6379       MaskIntVT = MVT::i32;
6380     }
6381 
6382     // Count '1's with POPCNT.
6383     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6384     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6385     // Scale is an element size in bytes.
6386     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6387                                     AddrVT);
6388     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6389   } else
6390     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6391 
6392   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6393 }
6394 
6395 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6396                                        SDValue Idx,
6397                                        EVT VecVT,
6398                                        const SDLoc &dl) {
6399   if (isa<ConstantSDNode>(Idx))
6400     return Idx;
6401 
6402   EVT IdxVT = Idx.getValueType();
6403   unsigned NElts = VecVT.getVectorNumElements();
6404   if (isPowerOf2_32(NElts)) {
6405     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6406                                      Log2_32(NElts));
6407     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6408                        DAG.getConstant(Imm, dl, IdxVT));
6409   }
6410 
6411   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6412                      DAG.getConstant(NElts - 1, dl, IdxVT));
6413 }
6414 
6415 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6416                                                 SDValue VecPtr, EVT VecVT,
6417                                                 SDValue Index) const {
6418   SDLoc dl(Index);
6419   // Make sure the index type is big enough to compute in.
6420   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6421 
6422   EVT EltVT = VecVT.getVectorElementType();
6423 
6424   // Calculate the element offset and add it to the pointer.
6425   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6426   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6427          "Converting bits to bytes lost precision");
6428 
6429   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6430 
6431   EVT IdxVT = Index.getValueType();
6432 
6433   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6434                       DAG.getConstant(EltSize, dl, IdxVT));
6435   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6436 }
6437 
6438 //===----------------------------------------------------------------------===//
6439 // Implementation of Emulated TLS Model
6440 //===----------------------------------------------------------------------===//
6441 
6442 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6443                                                 SelectionDAG &DAG) const {
6444   // Access to address of TLS varialbe xyz is lowered to a function call:
6445   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6446   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6447   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6448   SDLoc dl(GA);
6449 
6450   ArgListTy Args;
6451   ArgListEntry Entry;
6452   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6453   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6454   StringRef EmuTlsVarName(NameString);
6455   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6456   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6457   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6458   Entry.Ty = VoidPtrType;
6459   Args.push_back(Entry);
6460 
6461   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6462 
6463   TargetLowering::CallLoweringInfo CLI(DAG);
6464   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6465   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6466   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6467 
6468   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6469   // At last for X86 targets, maybe good for other targets too?
6470   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6471   MFI.setAdjustsStack(true); // Is this only for X86 target?
6472   MFI.setHasCalls(true);
6473 
6474   assert((GA->getOffset() == 0) &&
6475          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6476   return CallResult.first;
6477 }
6478 
6479 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6480                                                 SelectionDAG &DAG) const {
6481   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6482   if (!isCtlzFast())
6483     return SDValue();
6484   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6485   SDLoc dl(Op);
6486   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6487     if (C->isNullValue() && CC == ISD::SETEQ) {
6488       EVT VT = Op.getOperand(0).getValueType();
6489       SDValue Zext = Op.getOperand(0);
6490       if (VT.bitsLT(MVT::i32)) {
6491         VT = MVT::i32;
6492         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6493       }
6494       unsigned Log2b = Log2_32(VT.getSizeInBits());
6495       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6496       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6497                                 DAG.getConstant(Log2b, dl, MVT::i32));
6498       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6499     }
6500   }
6501   return SDValue();
6502 }
6503 
6504 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6505   unsigned Opcode = Node->getOpcode();
6506   SDValue LHS = Node->getOperand(0);
6507   SDValue RHS = Node->getOperand(1);
6508   EVT VT = LHS.getValueType();
6509   SDLoc dl(Node);
6510 
6511   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6512   assert(VT.isInteger() && "Expected operands to be integers");
6513 
6514   // usub.sat(a, b) -> umax(a, b) - b
6515   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6516     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6517     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6518   }
6519 
6520   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6521     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6522     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6523     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6524   }
6525 
6526   unsigned OverflowOp;
6527   switch (Opcode) {
6528   case ISD::SADDSAT:
6529     OverflowOp = ISD::SADDO;
6530     break;
6531   case ISD::UADDSAT:
6532     OverflowOp = ISD::UADDO;
6533     break;
6534   case ISD::SSUBSAT:
6535     OverflowOp = ISD::SSUBO;
6536     break;
6537   case ISD::USUBSAT:
6538     OverflowOp = ISD::USUBO;
6539     break;
6540   default:
6541     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6542                      "addition or subtraction node.");
6543   }
6544 
6545   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6546   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6547   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6548                                LHS, RHS);
6549   SDValue SumDiff = Result.getValue(0);
6550   SDValue Overflow = Result.getValue(1);
6551   SDValue Zero = DAG.getConstant(0, dl, VT);
6552   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6553 
6554   if (Opcode == ISD::UADDSAT) {
6555     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6556       // (LHS + RHS) | OverflowMask
6557       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6558       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6559     }
6560     // Overflow ? 0xffff.... : (LHS + RHS)
6561     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6562   } else if (Opcode == ISD::USUBSAT) {
6563     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6564       // (LHS - RHS) & ~OverflowMask
6565       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6566       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6567       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6568     }
6569     // Overflow ? 0 : (LHS - RHS)
6570     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6571   } else {
6572     // SatMax -> Overflow && SumDiff < 0
6573     // SatMin -> Overflow && SumDiff >= 0
6574     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6575     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6576     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6577     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6578     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6579     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6580     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6581   }
6582 }
6583 
6584 SDValue
6585 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6586   assert((Node->getOpcode() == ISD::SMULFIX ||
6587           Node->getOpcode() == ISD::UMULFIX ||
6588           Node->getOpcode() == ISD::SMULFIXSAT) &&
6589          "Expected a fixed point multiplication opcode");
6590 
6591   SDLoc dl(Node);
6592   SDValue LHS = Node->getOperand(0);
6593   SDValue RHS = Node->getOperand(1);
6594   EVT VT = LHS.getValueType();
6595   unsigned Scale = Node->getConstantOperandVal(2);
6596   bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6597   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6598   unsigned VTSize = VT.getScalarSizeInBits();
6599 
6600   if (!Scale) {
6601     // [us]mul.fix(a, b, 0) -> mul(a, b)
6602     if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6603       return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6604     } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6605       SDValue Result =
6606           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6607       SDValue Product = Result.getValue(0);
6608       SDValue Overflow = Result.getValue(1);
6609       SDValue Zero = DAG.getConstant(0, dl, VT);
6610 
6611       APInt MinVal = APInt::getSignedMinValue(VTSize);
6612       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6613       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6614       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6615       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6616       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6617       return DAG.getSelect(dl, VT, Overflow, Result, Product);
6618     }
6619   }
6620 
6621   bool Signed =
6622       Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6623   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6624          "Expected scale to be less than the number of bits if signed or at "
6625          "most the number of bits if unsigned.");
6626   assert(LHS.getValueType() == RHS.getValueType() &&
6627          "Expected both operands to be the same type");
6628 
6629   // Get the upper and lower bits of the result.
6630   SDValue Lo, Hi;
6631   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6632   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6633   if (isOperationLegalOrCustom(LoHiOp, VT)) {
6634     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6635     Lo = Result.getValue(0);
6636     Hi = Result.getValue(1);
6637   } else if (isOperationLegalOrCustom(HiOp, VT)) {
6638     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6639     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6640   } else if (VT.isVector()) {
6641     return SDValue();
6642   } else {
6643     report_fatal_error("Unable to expand fixed point multiplication.");
6644   }
6645 
6646   if (Scale == VTSize)
6647     // Result is just the top half since we'd be shifting by the width of the
6648     // operand.
6649     return Hi;
6650 
6651   // The result will need to be shifted right by the scale since both operands
6652   // are scaled. The result is given to us in 2 halves, so we only want part of
6653   // both in the result.
6654   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6655   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6656                                DAG.getConstant(Scale, dl, ShiftTy));
6657   if (!Saturating)
6658     return Result;
6659 
6660   unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6661   SDValue HiMask =
6662       DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6663   SDValue LoMask = DAG.getConstant(
6664       APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6665   APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6666   APInt MinVal = APInt::getSignedMinValue(VTSize);
6667 
6668   Result = DAG.getSelectCC(dl, Hi, LoMask,
6669                            DAG.getConstant(MaxVal, dl, VT), Result,
6670                            ISD::SETGT);
6671   return DAG.getSelectCC(dl, Hi, HiMask,
6672                          DAG.getConstant(MinVal, dl, VT), Result,
6673                          ISD::SETLT);
6674 }
6675 
6676 void TargetLowering::expandUADDSUBO(
6677     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6678   SDLoc dl(Node);
6679   SDValue LHS = Node->getOperand(0);
6680   SDValue RHS = Node->getOperand(1);
6681   bool IsAdd = Node->getOpcode() == ISD::UADDO;
6682 
6683   // If ADD/SUBCARRY is legal, use that instead.
6684   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6685   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6686     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6687     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6688                                     { LHS, RHS, CarryIn });
6689     Result = SDValue(NodeCarry.getNode(), 0);
6690     Overflow = SDValue(NodeCarry.getNode(), 1);
6691     return;
6692   }
6693 
6694   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6695                             LHS.getValueType(), LHS, RHS);
6696 
6697   EVT ResultType = Node->getValueType(1);
6698   EVT SetCCType = getSetCCResultType(
6699       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6700   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6701   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6702   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6703 }
6704 
6705 void TargetLowering::expandSADDSUBO(
6706     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6707   SDLoc dl(Node);
6708   SDValue LHS = Node->getOperand(0);
6709   SDValue RHS = Node->getOperand(1);
6710   bool IsAdd = Node->getOpcode() == ISD::SADDO;
6711 
6712   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6713                             LHS.getValueType(), LHS, RHS);
6714 
6715   EVT ResultType = Node->getValueType(1);
6716   EVT OType = getSetCCResultType(
6717       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6718 
6719   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6720   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6721   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6722     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6723     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6724     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6725     return;
6726   }
6727 
6728   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6729 
6730   //   LHSSign -> LHS >= 0
6731   //   RHSSign -> RHS >= 0
6732   //   SumSign -> Result >= 0
6733   //
6734   //   Add:
6735   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6736   //   Sub:
6737   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6738   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6739   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6740   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6741                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
6742 
6743   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6744   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6745 
6746   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6747   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6748 }
6749 
6750 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6751                                 SDValue &Overflow, SelectionDAG &DAG) const {
6752   SDLoc dl(Node);
6753   EVT VT = Node->getValueType(0);
6754   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6755   SDValue LHS = Node->getOperand(0);
6756   SDValue RHS = Node->getOperand(1);
6757   bool isSigned = Node->getOpcode() == ISD::SMULO;
6758 
6759   // For power-of-two multiplications we can use a simpler shift expansion.
6760   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6761     const APInt &C = RHSC->getAPIntValue();
6762     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6763     if (C.isPowerOf2()) {
6764       // smulo(x, signed_min) is same as umulo(x, signed_min).
6765       bool UseArithShift = isSigned && !C.isMinSignedValue();
6766       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6767       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6768       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6769       Overflow = DAG.getSetCC(dl, SetCCVT,
6770           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6771                       dl, VT, Result, ShiftAmt),
6772           LHS, ISD::SETNE);
6773       return true;
6774     }
6775   }
6776 
6777   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6778   if (VT.isVector())
6779     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6780                               VT.getVectorNumElements());
6781 
6782   SDValue BottomHalf;
6783   SDValue TopHalf;
6784   static const unsigned Ops[2][3] =
6785       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6786         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6787   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6788     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6789     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6790   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6791     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6792                              RHS);
6793     TopHalf = BottomHalf.getValue(1);
6794   } else if (isTypeLegal(WideVT)) {
6795     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6796     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6797     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6798     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6799     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6800         getShiftAmountTy(WideVT, DAG.getDataLayout()));
6801     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6802                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6803   } else {
6804     if (VT.isVector())
6805       return false;
6806 
6807     // We can fall back to a libcall with an illegal type for the MUL if we
6808     // have a libcall big enough.
6809     // Also, we can fall back to a division in some cases, but that's a big
6810     // performance hit in the general case.
6811     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6812     if (WideVT == MVT::i16)
6813       LC = RTLIB::MUL_I16;
6814     else if (WideVT == MVT::i32)
6815       LC = RTLIB::MUL_I32;
6816     else if (WideVT == MVT::i64)
6817       LC = RTLIB::MUL_I64;
6818     else if (WideVT == MVT::i128)
6819       LC = RTLIB::MUL_I128;
6820     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6821 
6822     SDValue HiLHS;
6823     SDValue HiRHS;
6824     if (isSigned) {
6825       // The high part is obtained by SRA'ing all but one of the bits of low
6826       // part.
6827       unsigned LoSize = VT.getSizeInBits();
6828       HiLHS =
6829           DAG.getNode(ISD::SRA, dl, VT, LHS,
6830                       DAG.getConstant(LoSize - 1, dl,
6831                                       getPointerTy(DAG.getDataLayout())));
6832       HiRHS =
6833           DAG.getNode(ISD::SRA, dl, VT, RHS,
6834                       DAG.getConstant(LoSize - 1, dl,
6835                                       getPointerTy(DAG.getDataLayout())));
6836     } else {
6837         HiLHS = DAG.getConstant(0, dl, VT);
6838         HiRHS = DAG.getConstant(0, dl, VT);
6839     }
6840 
6841     // Here we're passing the 2 arguments explicitly as 4 arguments that are
6842     // pre-lowered to the correct types. This all depends upon WideVT not
6843     // being a legal type for the architecture and thus has to be split to
6844     // two arguments.
6845     SDValue Ret;
6846     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6847       // Halves of WideVT are packed into registers in different order
6848       // depending on platform endianness. This is usually handled by
6849       // the C calling convention, but we can't defer to it in
6850       // the legalizer.
6851       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6852       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6853           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6854           /* isPostTypeLegalization */ true).first;
6855     } else {
6856       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6857       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6858           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6859           /* isPostTypeLegalization */ true).first;
6860     }
6861     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6862            "Ret value is a collection of constituent nodes holding result.");
6863     if (DAG.getDataLayout().isLittleEndian()) {
6864       // Same as above.
6865       BottomHalf = Ret.getOperand(0);
6866       TopHalf = Ret.getOperand(1);
6867     } else {
6868       BottomHalf = Ret.getOperand(1);
6869       TopHalf = Ret.getOperand(0);
6870     }
6871   }
6872 
6873   Result = BottomHalf;
6874   if (isSigned) {
6875     SDValue ShiftAmt = DAG.getConstant(
6876         VT.getScalarSizeInBits() - 1, dl,
6877         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6878     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6879     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6880   } else {
6881     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6882                             DAG.getConstant(0, dl, VT), ISD::SETNE);
6883   }
6884 
6885   // Truncate the result if SetCC returns a larger type than needed.
6886   EVT RType = Node->getValueType(1);
6887   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6888     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6889 
6890   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6891          "Unexpected result type for S/UMULO legalization");
6892   return true;
6893 }
6894 
6895 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6896   SDLoc dl(Node);
6897   bool NoNaN = Node->getFlags().hasNoNaNs();
6898   unsigned BaseOpcode = 0;
6899   switch (Node->getOpcode()) {
6900   default: llvm_unreachable("Expected VECREDUCE opcode");
6901   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6902   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6903   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
6904   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
6905   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
6906   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
6907   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
6908   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6909   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6910   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6911   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6912   case ISD::VECREDUCE_FMAX:
6913     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6914     break;
6915   case ISD::VECREDUCE_FMIN:
6916     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6917     break;
6918   }
6919 
6920   SDValue Op = Node->getOperand(0);
6921   EVT VT = Op.getValueType();
6922 
6923   // Try to use a shuffle reduction for power of two vectors.
6924   if (VT.isPow2VectorType()) {
6925     while (VT.getVectorNumElements() > 1) {
6926       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6927       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6928         break;
6929 
6930       SDValue Lo, Hi;
6931       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6932       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6933       VT = HalfVT;
6934     }
6935   }
6936 
6937   EVT EltVT = VT.getVectorElementType();
6938   unsigned NumElts = VT.getVectorNumElements();
6939 
6940   SmallVector<SDValue, 8> Ops;
6941   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6942 
6943   SDValue Res = Ops[0];
6944   for (unsigned i = 1; i < NumElts; i++)
6945     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6946 
6947   // Result type may be wider than element type.
6948   if (EltVT != Node->getValueType(0))
6949     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6950   return Res;
6951 }
6952