1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
487                                             const APInt &DemandedBits,
488                                             const APInt &DemandedElts,
489                                             TargetLoweringOpt &TLO) const {
490   SDLoc DL(Op);
491   unsigned Opcode = Op.getOpcode();
492 
493   // Do target-specific constant optimization.
494   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
495     return TLO.New.getNode();
496 
497   // FIXME: ISD::SELECT, ISD::SELECT_CC
498   switch (Opcode) {
499   default:
500     break;
501   case ISD::XOR:
502   case ISD::AND:
503   case ISD::OR: {
504     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
505     if (!Op1C)
506       return false;
507 
508     // If this is a 'not' op, don't touch it because that's a canonical form.
509     const APInt &C = Op1C->getAPIntValue();
510     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
511       return false;
512 
513     if (!C.isSubsetOf(DemandedBits)) {
514       EVT VT = Op.getValueType();
515       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
516       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
517       return TLO.CombineTo(Op, NewOp);
518     }
519 
520     break;
521   }
522   }
523 
524   return false;
525 }
526 
527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
528                                             const APInt &DemandedBits,
529                                             TargetLoweringOpt &TLO) const {
530   EVT VT = Op.getValueType();
531   APInt DemandedElts = VT.isVector()
532                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
533                            : APInt(1, 1);
534   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
535 }
536 
537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
539 /// generalized for targets with other types of implicit widening casts.
540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
541                                       const APInt &Demanded,
542                                       TargetLoweringOpt &TLO) const {
543   assert(Op.getNumOperands() == 2 &&
544          "ShrinkDemandedOp only supports binary operators!");
545   assert(Op.getNode()->getNumValues() == 1 &&
546          "ShrinkDemandedOp only supports nodes with one result!");
547 
548   SelectionDAG &DAG = TLO.DAG;
549   SDLoc dl(Op);
550 
551   // Early return, as this function cannot handle vector types.
552   if (Op.getValueType().isVector())
553     return false;
554 
555   // Don't do this if the node has another user, which may require the
556   // full value.
557   if (!Op.getNode()->hasOneUse())
558     return false;
559 
560   // Search for the smallest integer type with free casts to and from
561   // Op's type. For expedience, just check power-of-2 integer types.
562   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
563   unsigned DemandedSize = Demanded.getActiveBits();
564   unsigned SmallVTBits = DemandedSize;
565   if (!isPowerOf2_32(SmallVTBits))
566     SmallVTBits = NextPowerOf2(SmallVTBits);
567   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
568     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
569     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
570         TLI.isZExtFree(SmallVT, Op.getValueType())) {
571       // We found a type with free casts.
572       SDValue X = DAG.getNode(
573           Op.getOpcode(), dl, SmallVT,
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
575           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
576       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
577       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
578       return TLO.CombineTo(Op, Z);
579     }
580   }
581   return false;
582 }
583 
584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
585                                           DAGCombinerInfo &DCI) const {
586   SelectionDAG &DAG = DCI.DAG;
587   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
588                         !DCI.isBeforeLegalizeOps());
589   KnownBits Known;
590 
591   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
592   if (Simplified) {
593     DCI.AddToWorklist(Op.getNode());
594     DCI.CommitTargetLoweringOpt(TLO);
595   }
596   return Simplified;
597 }
598 
599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
600                                           KnownBits &Known,
601                                           TargetLoweringOpt &TLO,
602                                           unsigned Depth,
603                                           bool AssumeSingleUse) const {
604   EVT VT = Op.getValueType();
605 
606   // TODO: We can probably do more work on calculating the known bits and
607   // simplifying the operations for scalable vectors, but for now we just
608   // bail out.
609   if (VT.isScalableVector()) {
610     // Pretend we don't know anything for now.
611     Known = KnownBits(DemandedBits.getBitWidth());
612     return false;
613   }
614 
615   APInt DemandedElts = VT.isVector()
616                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
617                            : APInt(1, 1);
618   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
619                               AssumeSingleUse);
620 }
621 
622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
623 // TODO: Under what circumstances can we create nodes? Constant folding?
624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
625     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
626     SelectionDAG &DAG, unsigned Depth) const {
627   // Limit search depth.
628   if (Depth >= SelectionDAG::MaxRecursionDepth)
629     return SDValue();
630 
631   // Ignore UNDEFs.
632   if (Op.isUndef())
633     return SDValue();
634 
635   // Not demanding any bits/elts from Op.
636   if (DemandedBits == 0 || DemandedElts == 0)
637     return DAG.getUNDEF(Op.getValueType());
638 
639   unsigned NumElts = DemandedElts.getBitWidth();
640   unsigned BitWidth = DemandedBits.getBitWidth();
641   KnownBits LHSKnown, RHSKnown;
642   switch (Op.getOpcode()) {
643   case ISD::BITCAST: {
644     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
645     EVT SrcVT = Src.getValueType();
646     EVT DstVT = Op.getValueType();
647     if (SrcVT == DstVT)
648       return Src;
649 
650     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
651     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
652     if (NumSrcEltBits == NumDstEltBits)
653       if (SDValue V = SimplifyMultipleUseDemandedBits(
654               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
655         return DAG.getBitcast(DstVT, V);
656 
657     // TODO - bigendian once we have test coverage.
658     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumDstEltBits / NumSrcEltBits;
661       unsigned NumSrcElts = SrcVT.getVectorNumElements();
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != Scale; ++i) {
665         unsigned Offset = i * NumSrcEltBits;
666         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
667         if (!Sub.isNullValue()) {
668           DemandedSrcBits |= Sub;
669           for (unsigned j = 0; j != NumElts; ++j)
670             if (DemandedElts[j])
671               DemandedSrcElts.setBit((j * Scale) + i);
672         }
673       }
674 
675       if (SDValue V = SimplifyMultipleUseDemandedBits(
676               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
677         return DAG.getBitcast(DstVT, V);
678     }
679 
680     // TODO - bigendian once we have test coverage.
681     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
682         DAG.getDataLayout().isLittleEndian()) {
683       unsigned Scale = NumSrcEltBits / NumDstEltBits;
684       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
685       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
686       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
687       for (unsigned i = 0; i != NumElts; ++i)
688         if (DemandedElts[i]) {
689           unsigned Offset = (i % Scale) * NumDstEltBits;
690           DemandedSrcBits.insertBits(DemandedBits, Offset);
691           DemandedSrcElts.setBit(i / Scale);
692         }
693 
694       if (SDValue V = SimplifyMultipleUseDemandedBits(
695               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
696         return DAG.getBitcast(DstVT, V);
697     }
698 
699     break;
700   }
701   case ISD::AND: {
702     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
703     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
704 
705     // If all of the demanded bits are known 1 on one side, return the other.
706     // These bits cannot contribute to the result of the 'and' in this
707     // context.
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
709       return Op.getOperand(0);
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
711       return Op.getOperand(1);
712     break;
713   }
714   case ISD::OR: {
715     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
716     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
717 
718     // If all of the demanded bits are known zero on one side, return the
719     // other.  These bits cannot contribute to the result of the 'or' in this
720     // context.
721     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
722       return Op.getOperand(0);
723     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
724       return Op.getOperand(1);
725     break;
726   }
727   case ISD::XOR: {
728     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
729     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
730 
731     // If all of the demanded bits are known zero on one side, return the
732     // other.
733     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
734       return Op.getOperand(0);
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
736       return Op.getOperand(1);
737     break;
738   }
739   case ISD::SHL: {
740     // If we are only demanding sign bits then we can use the shift source
741     // directly.
742     if (const APInt *MaxSA =
743             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
744       SDValue Op0 = Op.getOperand(0);
745       unsigned ShAmt = MaxSA->getZExtValue();
746       unsigned NumSignBits =
747           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
748       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
749       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
750         return Op0;
751     }
752     break;
753   }
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (DemandedBits.isSignMask() &&
762         Op0.getScalarValueSizeInBits() == BitWidth &&
763         getBooleanContents(Op0.getValueType()) ==
764             BooleanContent::ZeroOrNegativeOneBooleanContent) {
765       // If we're testing X < 0, then this compare isn't needed - just use X!
766       // FIXME: We're limiting to integer types here, but this should also work
767       // if we don't care about FP signed-zero. The use of SETLT with FP means
768       // that we don't care about NaNs.
769       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
770           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
771         return Op0;
772     }
773     break;
774   }
775   case ISD::SIGN_EXTEND_INREG: {
776     // If none of the extended bits are demanded, eliminate the sextinreg.
777     SDValue Op0 = Op.getOperand(0);
778     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
779     unsigned ExBits = ExVT.getScalarSizeInBits();
780     if (DemandedBits.getActiveBits() <= ExBits)
781       return Op0;
782     // If the input is already sign extended, just drop the extension.
783     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
784     if (NumSignBits >= (BitWidth - ExBits + 1))
785       return Op0;
786     break;
787   }
788   case ISD::ANY_EXTEND_VECTOR_INREG:
789   case ISD::SIGN_EXTEND_VECTOR_INREG:
790   case ISD::ZERO_EXTEND_VECTOR_INREG: {
791     // If we only want the lowest element and none of extended bits, then we can
792     // return the bitcasted source vector.
793     SDValue Src = Op.getOperand(0);
794     EVT SrcVT = Src.getValueType();
795     EVT DstVT = Op.getValueType();
796     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
797         DAG.getDataLayout().isLittleEndian() &&
798         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
799       return DAG.getBitcast(DstVT, Src);
800     }
801     break;
802   }
803   case ISD::INSERT_VECTOR_ELT: {
804     // If we don't demand the inserted element, return the base vector.
805     SDValue Vec = Op.getOperand(0);
806     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
807     EVT VecVT = Vec.getValueType();
808     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
809         !DemandedElts[CIdx->getZExtValue()])
810       return Vec;
811     break;
812   }
813   case ISD::INSERT_SUBVECTOR: {
814     // If we don't demand the inserted subvector, return the base vector.
815     SDValue Vec = Op.getOperand(0);
816     SDValue Sub = Op.getOperand(1);
817     uint64_t Idx = Op.getConstantOperandVal(2);
818     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
819     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
820       return Vec;
821     break;
822   }
823   case ISD::VECTOR_SHUFFLE: {
824     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
825 
826     // If all the demanded elts are from one operand and are inline,
827     // then we can use the operand directly.
828     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
829     for (unsigned i = 0; i != NumElts; ++i) {
830       int M = ShuffleMask[i];
831       if (M < 0 || !DemandedElts[i])
832         continue;
833       AllUndef = false;
834       IdentityLHS &= (M == (int)i);
835       IdentityRHS &= ((M - NumElts) == i);
836     }
837 
838     if (AllUndef)
839       return DAG.getUNDEF(Op.getValueType());
840     if (IdentityLHS)
841       return Op.getOperand(0);
842     if (IdentityRHS)
843       return Op.getOperand(1);
844     break;
845   }
846   default:
847     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
848       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
849               Op, DemandedBits, DemandedElts, DAG, Depth))
850         return V;
851     break;
852   }
853   return SDValue();
854 }
855 
856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
857     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
858     unsigned Depth) const {
859   EVT VT = Op.getValueType();
860   APInt DemandedElts = VT.isVector()
861                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
862                            : APInt(1, 1);
863   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
864                                          Depth);
865 }
866 
867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
868     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
869     unsigned Depth) const {
870   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
871   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
872                                          Depth);
873 }
874 
875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
876 /// result of Op are ever used downstream. If we can use this information to
877 /// simplify Op, create a new simplified DAG node and return true, returning the
878 /// original and new nodes in Old and New. Otherwise, analyze the expression and
879 /// return a mask of Known bits for the expression (used to simplify the
880 /// caller).  The Known bits may only be accurate for those bits in the
881 /// OriginalDemandedBits and OriginalDemandedElts.
882 bool TargetLowering::SimplifyDemandedBits(
883     SDValue Op, const APInt &OriginalDemandedBits,
884     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
885     unsigned Depth, bool AssumeSingleUse) const {
886   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
887   assert(Op.getScalarValueSizeInBits() == BitWidth &&
888          "Mask size mismatches value type size!");
889 
890   // Don't know anything.
891   Known = KnownBits(BitWidth);
892 
893   // TODO: We can probably do more work on calculating the known bits and
894   // simplifying the operations for scalable vectors, but for now we just
895   // bail out.
896   if (Op.getValueType().isScalableVector())
897     return false;
898 
899   unsigned NumElts = OriginalDemandedElts.getBitWidth();
900   assert((!Op.getValueType().isVector() ||
901           NumElts == Op.getValueType().getVectorNumElements()) &&
902          "Unexpected vector size");
903 
904   APInt DemandedBits = OriginalDemandedBits;
905   APInt DemandedElts = OriginalDemandedElts;
906   SDLoc dl(Op);
907   auto &DL = TLO.DAG.getDataLayout();
908 
909   // Undef operand.
910   if (Op.isUndef())
911     return false;
912 
913   if (Op.getOpcode() == ISD::Constant) {
914     // We know all of the bits for a constant!
915     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
916     Known.Zero = ~Known.One;
917     return false;
918   }
919 
920   if (Op.getOpcode() == ISD::ConstantFP) {
921     // We know all of the bits for a floating point constant!
922     Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt();
923     Known.Zero = ~Known.One;
924     return false;
925   }
926 
927   // Other users may use these bits.
928   EVT VT = Op.getValueType();
929   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
930     if (Depth != 0) {
931       // If not at the root, Just compute the Known bits to
932       // simplify things downstream.
933       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
934       return false;
935     }
936     // If this is the root being simplified, allow it to have multiple uses,
937     // just set the DemandedBits/Elts to all bits.
938     DemandedBits = APInt::getAllOnesValue(BitWidth);
939     DemandedElts = APInt::getAllOnesValue(NumElts);
940   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
941     // Not demanding any bits/elts from Op.
942     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
943   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
944     // Limit search depth.
945     return false;
946   }
947 
948   KnownBits Known2;
949   switch (Op.getOpcode()) {
950   case ISD::TargetConstant:
951     llvm_unreachable("Can't simplify this node");
952   case ISD::SCALAR_TO_VECTOR: {
953     if (!DemandedElts[0])
954       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
955 
956     KnownBits SrcKnown;
957     SDValue Src = Op.getOperand(0);
958     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
959     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
960     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
961       return true;
962 
963     // Upper elements are undef, so only get the knownbits if we just demand
964     // the bottom element.
965     if (DemandedElts == 1)
966       Known = SrcKnown.anyextOrTrunc(BitWidth);
967     break;
968   }
969   case ISD::BUILD_VECTOR:
970     // Collect the known bits that are shared by every demanded element.
971     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
972     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
973     return false; // Don't fall through, will infinitely loop.
974   case ISD::LOAD: {
975     LoadSDNode *LD = cast<LoadSDNode>(Op);
976     if (getTargetConstantFromLoad(LD)) {
977       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
978       return false; // Don't fall through, will infinitely loop.
979     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
980       // If this is a ZEXTLoad and we are looking at the loaded value.
981       EVT MemVT = LD->getMemoryVT();
982       unsigned MemBits = MemVT.getScalarSizeInBits();
983       Known.Zero.setBitsFrom(MemBits);
984       return false; // Don't fall through, will infinitely loop.
985     }
986     break;
987   }
988   case ISD::INSERT_VECTOR_ELT: {
989     SDValue Vec = Op.getOperand(0);
990     SDValue Scl = Op.getOperand(1);
991     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
992     EVT VecVT = Vec.getValueType();
993 
994     // If index isn't constant, assume we need all vector elements AND the
995     // inserted element.
996     APInt DemandedVecElts(DemandedElts);
997     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
998       unsigned Idx = CIdx->getZExtValue();
999       DemandedVecElts.clearBit(Idx);
1000 
1001       // Inserted element is not required.
1002       if (!DemandedElts[Idx])
1003         return TLO.CombineTo(Op, Vec);
1004     }
1005 
1006     KnownBits KnownScl;
1007     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1008     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1009     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1010       return true;
1011 
1012     Known = KnownScl.anyextOrTrunc(BitWidth);
1013 
1014     KnownBits KnownVec;
1015     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1016                              Depth + 1))
1017       return true;
1018 
1019     if (!!DemandedVecElts) {
1020       Known.One &= KnownVec.One;
1021       Known.Zero &= KnownVec.Zero;
1022     }
1023 
1024     return false;
1025   }
1026   case ISD::INSERT_SUBVECTOR: {
1027     // Demand any elements from the subvector and the remainder from the src its
1028     // inserted into.
1029     SDValue Src = Op.getOperand(0);
1030     SDValue Sub = Op.getOperand(1);
1031     uint64_t Idx = Op.getConstantOperandVal(2);
1032     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1033     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1034     APInt DemandedSrcElts = DemandedElts;
1035     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1036 
1037     KnownBits KnownSub, KnownSrc;
1038     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1039                              Depth + 1))
1040       return true;
1041     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1042                              Depth + 1))
1043       return true;
1044 
1045     Known.Zero.setAllBits();
1046     Known.One.setAllBits();
1047     if (!!DemandedSubElts) {
1048       Known.One &= KnownSub.One;
1049       Known.Zero &= KnownSub.Zero;
1050     }
1051     if (!!DemandedSrcElts) {
1052       Known.One &= KnownSrc.One;
1053       Known.Zero &= KnownSrc.Zero;
1054     }
1055 
1056     // Attempt to avoid multi-use src if we don't need anything from it.
1057     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1058         !DemandedSrcElts.isAllOnesValue()) {
1059       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1060           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1061       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1062           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1063       if (NewSub || NewSrc) {
1064         NewSub = NewSub ? NewSub : Sub;
1065         NewSrc = NewSrc ? NewSrc : Src;
1066         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1067                                         Op.getOperand(2));
1068         return TLO.CombineTo(Op, NewOp);
1069       }
1070     }
1071     break;
1072   }
1073   case ISD::EXTRACT_SUBVECTOR: {
1074     // Offset the demanded elts by the subvector index.
1075     SDValue Src = Op.getOperand(0);
1076     if (Src.getValueType().isScalableVector())
1077       break;
1078     uint64_t Idx = Op.getConstantOperandVal(1);
1079     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1080     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1081 
1082     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1083                              Depth + 1))
1084       return true;
1085 
1086     // Attempt to avoid multi-use src if we don't need anything from it.
1087     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1088       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1089           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1090       if (DemandedSrc) {
1091         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1092                                         Op.getOperand(1));
1093         return TLO.CombineTo(Op, NewOp);
1094       }
1095     }
1096     break;
1097   }
1098   case ISD::CONCAT_VECTORS: {
1099     Known.Zero.setAllBits();
1100     Known.One.setAllBits();
1101     EVT SubVT = Op.getOperand(0).getValueType();
1102     unsigned NumSubVecs = Op.getNumOperands();
1103     unsigned NumSubElts = SubVT.getVectorNumElements();
1104     for (unsigned i = 0; i != NumSubVecs; ++i) {
1105       APInt DemandedSubElts =
1106           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1107       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1108                                Known2, TLO, Depth + 1))
1109         return true;
1110       // Known bits are shared by every demanded subvector element.
1111       if (!!DemandedSubElts) {
1112         Known.One &= Known2.One;
1113         Known.Zero &= Known2.Zero;
1114       }
1115     }
1116     break;
1117   }
1118   case ISD::VECTOR_SHUFFLE: {
1119     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1120 
1121     // Collect demanded elements from shuffle operands..
1122     APInt DemandedLHS(NumElts, 0);
1123     APInt DemandedRHS(NumElts, 0);
1124     for (unsigned i = 0; i != NumElts; ++i) {
1125       if (!DemandedElts[i])
1126         continue;
1127       int M = ShuffleMask[i];
1128       if (M < 0) {
1129         // For UNDEF elements, we don't know anything about the common state of
1130         // the shuffle result.
1131         DemandedLHS.clearAllBits();
1132         DemandedRHS.clearAllBits();
1133         break;
1134       }
1135       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1136       if (M < (int)NumElts)
1137         DemandedLHS.setBit(M);
1138       else
1139         DemandedRHS.setBit(M - NumElts);
1140     }
1141 
1142     if (!!DemandedLHS || !!DemandedRHS) {
1143       SDValue Op0 = Op.getOperand(0);
1144       SDValue Op1 = Op.getOperand(1);
1145 
1146       Known.Zero.setAllBits();
1147       Known.One.setAllBits();
1148       if (!!DemandedLHS) {
1149         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1150                                  Depth + 1))
1151           return true;
1152         Known.One &= Known2.One;
1153         Known.Zero &= Known2.Zero;
1154       }
1155       if (!!DemandedRHS) {
1156         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1157                                  Depth + 1))
1158           return true;
1159         Known.One &= Known2.One;
1160         Known.Zero &= Known2.Zero;
1161       }
1162 
1163       // Attempt to avoid multi-use ops if we don't need anything from them.
1164       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1165           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1166       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1167           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1168       if (DemandedOp0 || DemandedOp1) {
1169         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1170         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1171         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1172         return TLO.CombineTo(Op, NewOp);
1173       }
1174     }
1175     break;
1176   }
1177   case ISD::AND: {
1178     SDValue Op0 = Op.getOperand(0);
1179     SDValue Op1 = Op.getOperand(1);
1180 
1181     // If the RHS is a constant, check to see if the LHS would be zero without
1182     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1183     // simplify the LHS, here we're using information from the LHS to simplify
1184     // the RHS.
1185     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1186       // Do not increment Depth here; that can cause an infinite loop.
1187       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1188       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1189       if ((LHSKnown.Zero & DemandedBits) ==
1190           (~RHSC->getAPIntValue() & DemandedBits))
1191         return TLO.CombineTo(Op, Op0);
1192 
1193       // If any of the set bits in the RHS are known zero on the LHS, shrink
1194       // the constant.
1195       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1196                                  DemandedElts, TLO))
1197         return true;
1198 
1199       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1200       // constant, but if this 'and' is only clearing bits that were just set by
1201       // the xor, then this 'and' can be eliminated by shrinking the mask of
1202       // the xor. For example, for a 32-bit X:
1203       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1204       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1205           LHSKnown.One == ~RHSC->getAPIntValue()) {
1206         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1207         return TLO.CombineTo(Op, Xor);
1208       }
1209     }
1210 
1211     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1212                              Depth + 1))
1213       return true;
1214     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1215     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1216                              Known2, TLO, Depth + 1))
1217       return true;
1218     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1219 
1220     // Attempt to avoid multi-use ops if we don't need anything from them.
1221     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1222       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1223           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1224       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1225           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1226       if (DemandedOp0 || DemandedOp1) {
1227         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1228         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1229         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1230         return TLO.CombineTo(Op, NewOp);
1231       }
1232     }
1233 
1234     // If all of the demanded bits are known one on one side, return the other.
1235     // These bits cannot contribute to the result of the 'and'.
1236     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1237       return TLO.CombineTo(Op, Op0);
1238     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1239       return TLO.CombineTo(Op, Op1);
1240     // If all of the demanded bits in the inputs are known zeros, return zero.
1241     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1242       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1243     // If the RHS is a constant, see if we can simplify it.
1244     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1245                                TLO))
1246       return true;
1247     // If the operation can be done in a smaller type, do so.
1248     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1249       return true;
1250 
1251     Known &= Known2;
1252     break;
1253   }
1254   case ISD::OR: {
1255     SDValue Op0 = Op.getOperand(0);
1256     SDValue Op1 = Op.getOperand(1);
1257 
1258     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1259                              Depth + 1))
1260       return true;
1261     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1262     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1263                              Known2, TLO, Depth + 1))
1264       return true;
1265     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1266 
1267     // Attempt to avoid multi-use ops if we don't need anything from them.
1268     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1269       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1270           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1271       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1272           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1273       if (DemandedOp0 || DemandedOp1) {
1274         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1275         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1276         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1277         return TLO.CombineTo(Op, NewOp);
1278       }
1279     }
1280 
1281     // If all of the demanded bits are known zero on one side, return the other.
1282     // These bits cannot contribute to the result of the 'or'.
1283     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1284       return TLO.CombineTo(Op, Op0);
1285     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1286       return TLO.CombineTo(Op, Op1);
1287     // If the RHS is a constant, see if we can simplify it.
1288     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1289       return true;
1290     // If the operation can be done in a smaller type, do so.
1291     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1292       return true;
1293 
1294     Known |= Known2;
1295     break;
1296   }
1297   case ISD::XOR: {
1298     SDValue Op0 = Op.getOperand(0);
1299     SDValue Op1 = Op.getOperand(1);
1300 
1301     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1305     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1306                              Depth + 1))
1307       return true;
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // Attempt to avoid multi-use ops if we don't need anything from them.
1311     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1312       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1313           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1314       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1315           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1316       if (DemandedOp0 || DemandedOp1) {
1317         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1318         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1319         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1320         return TLO.CombineTo(Op, NewOp);
1321       }
1322     }
1323 
1324     // If all of the demanded bits are known zero on one side, return the other.
1325     // These bits cannot contribute to the result of the 'xor'.
1326     if (DemandedBits.isSubsetOf(Known.Zero))
1327       return TLO.CombineTo(Op, Op0);
1328     if (DemandedBits.isSubsetOf(Known2.Zero))
1329       return TLO.CombineTo(Op, Op1);
1330     // If the operation can be done in a smaller type, do so.
1331     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1332       return true;
1333 
1334     // If all of the unknown bits are known to be zero on one side or the other
1335     // turn this into an *inclusive* or.
1336     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1337     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1338       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1339 
1340     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1341     if (C) {
1342       // If one side is a constant, and all of the set bits in the constant are
1343       // also known set on the other side, turn this into an AND, as we know
1344       // the bits will be cleared.
1345       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1346       // NB: it is okay if more bits are known than are requested
1347       if (C->getAPIntValue() == Known2.One) {
1348         SDValue ANDC =
1349             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1350         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1351       }
1352 
1353       // If the RHS is a constant, see if we can change it. Don't alter a -1
1354       // constant because that's a 'not' op, and that is better for combining
1355       // and codegen.
1356       if (!C->isAllOnesValue() &&
1357           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1358         // We're flipping all demanded bits. Flip the undemanded bits too.
1359         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1360         return TLO.CombineTo(Op, New);
1361       }
1362     }
1363 
1364     // If we can't turn this into a 'not', try to shrink the constant.
1365     if (!C || !C->isAllOnesValue())
1366       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1367         return true;
1368 
1369     Known ^= Known2;
1370     break;
1371   }
1372   case ISD::SELECT:
1373     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1374                              Depth + 1))
1375       return true;
1376     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1377                              Depth + 1))
1378       return true;
1379     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1380     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1381 
1382     // If the operands are constants, see if we can simplify them.
1383     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1384       return true;
1385 
1386     // Only known if known in both the LHS and RHS.
1387     Known.One &= Known2.One;
1388     Known.Zero &= Known2.Zero;
1389     break;
1390   case ISD::SELECT_CC:
1391     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1392                              Depth + 1))
1393       return true;
1394     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1395                              Depth + 1))
1396       return true;
1397     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1398     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1399 
1400     // If the operands are constants, see if we can simplify them.
1401     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1402       return true;
1403 
1404     // Only known if known in both the LHS and RHS.
1405     Known.One &= Known2.One;
1406     Known.Zero &= Known2.Zero;
1407     break;
1408   case ISD::SETCC: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1412     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1413     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1414     // -1, we may be able to bypass the setcc.
1415     if (DemandedBits.isSignMask() &&
1416         Op0.getScalarValueSizeInBits() == BitWidth &&
1417         getBooleanContents(Op0.getValueType()) ==
1418             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1419       // If we're testing X < 0, then this compare isn't needed - just use X!
1420       // FIXME: We're limiting to integer types here, but this should also work
1421       // if we don't care about FP signed-zero. The use of SETLT with FP means
1422       // that we don't care about NaNs.
1423       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1424           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1425         return TLO.CombineTo(Op, Op0);
1426 
1427       // TODO: Should we check for other forms of sign-bit comparisons?
1428       // Examples: X <= -1, X >= 0
1429     }
1430     if (getBooleanContents(Op0.getValueType()) ==
1431             TargetLowering::ZeroOrOneBooleanContent &&
1432         BitWidth > 1)
1433       Known.Zero.setBitsFrom(1);
1434     break;
1435   }
1436   case ISD::SHL: {
1437     SDValue Op0 = Op.getOperand(0);
1438     SDValue Op1 = Op.getOperand(1);
1439     EVT ShiftVT = Op1.getValueType();
1440 
1441     if (const APInt *SA =
1442             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1443       unsigned ShAmt = SA->getZExtValue();
1444       if (ShAmt == 0)
1445         return TLO.CombineTo(Op, Op0);
1446 
1447       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1448       // single shift.  We can do this if the bottom bits (which are shifted
1449       // out) are never demanded.
1450       // TODO - support non-uniform vector amounts.
1451       if (Op0.getOpcode() == ISD::SRL) {
1452         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1453           if (const APInt *SA2 =
1454                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1455             unsigned C1 = SA2->getZExtValue();
1456             unsigned Opc = ISD::SHL;
1457             int Diff = ShAmt - C1;
1458             if (Diff < 0) {
1459               Diff = -Diff;
1460               Opc = ISD::SRL;
1461             }
1462             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1463             return TLO.CombineTo(
1464                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1465           }
1466         }
1467       }
1468 
1469       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1470       // are not demanded. This will likely allow the anyext to be folded away.
1471       // TODO - support non-uniform vector amounts.
1472       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1473         SDValue InnerOp = Op0.getOperand(0);
1474         EVT InnerVT = InnerOp.getValueType();
1475         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1476         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1477             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1478           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1479           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1480             ShTy = InnerVT;
1481           SDValue NarrowShl =
1482               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1483                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1484           return TLO.CombineTo(
1485               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1486         }
1487 
1488         // Repeat the SHL optimization above in cases where an extension
1489         // intervenes: (shl (anyext (shr x, c1)), c2) to
1490         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1491         // aren't demanded (as above) and that the shifted upper c1 bits of
1492         // x aren't demanded.
1493         // TODO - support non-uniform vector amounts.
1494         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1495             InnerOp.hasOneUse()) {
1496           if (const APInt *SA2 =
1497                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1498             unsigned InnerShAmt = SA2->getZExtValue();
1499             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1500                 DemandedBits.getActiveBits() <=
1501                     (InnerBits - InnerShAmt + ShAmt) &&
1502                 DemandedBits.countTrailingZeros() >= ShAmt) {
1503               SDValue NewSA =
1504                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1505               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1506                                                InnerOp.getOperand(0));
1507               return TLO.CombineTo(
1508                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1509             }
1510           }
1511         }
1512       }
1513 
1514       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1515       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1516                                Depth + 1))
1517         return true;
1518       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1519       Known.Zero <<= ShAmt;
1520       Known.One <<= ShAmt;
1521       // low bits known zero.
1522       Known.Zero.setLowBits(ShAmt);
1523 
1524       // Try shrinking the operation as long as the shift amount will still be
1525       // in range.
1526       if ((ShAmt < DemandedBits.getActiveBits()) &&
1527           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1528         return true;
1529     }
1530 
1531     // If we are only demanding sign bits then we can use the shift source
1532     // directly.
1533     if (const APInt *MaxSA =
1534             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1535       unsigned ShAmt = MaxSA->getZExtValue();
1536       unsigned NumSignBits =
1537           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1538       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1539       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1540         return TLO.CombineTo(Op, Op0);
1541     }
1542     break;
1543   }
1544   case ISD::SRL: {
1545     SDValue Op0 = Op.getOperand(0);
1546     SDValue Op1 = Op.getOperand(1);
1547     EVT ShiftVT = Op1.getValueType();
1548 
1549     if (const APInt *SA =
1550             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1551       unsigned ShAmt = SA->getZExtValue();
1552       if (ShAmt == 0)
1553         return TLO.CombineTo(Op, Op0);
1554 
1555       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1556       // single shift.  We can do this if the top bits (which are shifted out)
1557       // are never demanded.
1558       // TODO - support non-uniform vector amounts.
1559       if (Op0.getOpcode() == ISD::SHL) {
1560         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1561           if (const APInt *SA2 =
1562                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1563             unsigned C1 = SA2->getZExtValue();
1564             unsigned Opc = ISD::SRL;
1565             int Diff = ShAmt - C1;
1566             if (Diff < 0) {
1567               Diff = -Diff;
1568               Opc = ISD::SHL;
1569             }
1570             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1571             return TLO.CombineTo(
1572                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1573           }
1574         }
1575       }
1576 
1577       APInt InDemandedMask = (DemandedBits << ShAmt);
1578 
1579       // If the shift is exact, then it does demand the low bits (and knows that
1580       // they are zero).
1581       if (Op->getFlags().hasExact())
1582         InDemandedMask.setLowBits(ShAmt);
1583 
1584       // Compute the new bits that are at the top now.
1585       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1586                                Depth + 1))
1587         return true;
1588       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1589       Known.Zero.lshrInPlace(ShAmt);
1590       Known.One.lshrInPlace(ShAmt);
1591       // High bits known zero.
1592       Known.Zero.setHighBits(ShAmt);
1593     }
1594     break;
1595   }
1596   case ISD::SRA: {
1597     SDValue Op0 = Op.getOperand(0);
1598     SDValue Op1 = Op.getOperand(1);
1599     EVT ShiftVT = Op1.getValueType();
1600 
1601     // If we only want bits that already match the signbit then we don't need
1602     // to shift.
1603     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1604     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1605         NumHiDemandedBits)
1606       return TLO.CombineTo(Op, Op0);
1607 
1608     // If this is an arithmetic shift right and only the low-bit is set, we can
1609     // always convert this into a logical shr, even if the shift amount is
1610     // variable.  The low bit of the shift cannot be an input sign bit unless
1611     // the shift amount is >= the size of the datatype, which is undefined.
1612     if (DemandedBits.isOneValue())
1613       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1614 
1615     if (const APInt *SA =
1616             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1617       unsigned ShAmt = SA->getZExtValue();
1618       if (ShAmt == 0)
1619         return TLO.CombineTo(Op, Op0);
1620 
1621       APInt InDemandedMask = (DemandedBits << ShAmt);
1622 
1623       // If the shift is exact, then it does demand the low bits (and knows that
1624       // they are zero).
1625       if (Op->getFlags().hasExact())
1626         InDemandedMask.setLowBits(ShAmt);
1627 
1628       // If any of the demanded bits are produced by the sign extension, we also
1629       // demand the input sign bit.
1630       if (DemandedBits.countLeadingZeros() < ShAmt)
1631         InDemandedMask.setSignBit();
1632 
1633       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1634                                Depth + 1))
1635         return true;
1636       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1637       Known.Zero.lshrInPlace(ShAmt);
1638       Known.One.lshrInPlace(ShAmt);
1639 
1640       // If the input sign bit is known to be zero, or if none of the top bits
1641       // are demanded, turn this into an unsigned shift right.
1642       if (Known.Zero[BitWidth - ShAmt - 1] ||
1643           DemandedBits.countLeadingZeros() >= ShAmt) {
1644         SDNodeFlags Flags;
1645         Flags.setExact(Op->getFlags().hasExact());
1646         return TLO.CombineTo(
1647             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1648       }
1649 
1650       int Log2 = DemandedBits.exactLogBase2();
1651       if (Log2 >= 0) {
1652         // The bit must come from the sign.
1653         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1654         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1655       }
1656 
1657       if (Known.One[BitWidth - ShAmt - 1])
1658         // New bits are known one.
1659         Known.One.setHighBits(ShAmt);
1660 
1661       // Attempt to avoid multi-use ops if we don't need anything from them.
1662       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1663         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1664             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1665         if (DemandedOp0) {
1666           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1667           return TLO.CombineTo(Op, NewOp);
1668         }
1669       }
1670     }
1671     break;
1672   }
1673   case ISD::FSHL:
1674   case ISD::FSHR: {
1675     SDValue Op0 = Op.getOperand(0);
1676     SDValue Op1 = Op.getOperand(1);
1677     SDValue Op2 = Op.getOperand(2);
1678     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1679 
1680     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1681       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1682 
1683       // For fshl, 0-shift returns the 1st arg.
1684       // For fshr, 0-shift returns the 2nd arg.
1685       if (Amt == 0) {
1686         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1687                                  Known, TLO, Depth + 1))
1688           return true;
1689         break;
1690       }
1691 
1692       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1693       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1694       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1695       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1696       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1697                                Depth + 1))
1698         return true;
1699       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1700                                Depth + 1))
1701         return true;
1702 
1703       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1704       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1705       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1706       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1707       Known.One |= Known2.One;
1708       Known.Zero |= Known2.Zero;
1709     }
1710 
1711     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1712     if (isPowerOf2_32(BitWidth)) {
1713       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1714       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1715                                Known2, TLO, Depth + 1))
1716         return true;
1717     }
1718     break;
1719   }
1720   case ISD::ROTL:
1721   case ISD::ROTR: {
1722     SDValue Op0 = Op.getOperand(0);
1723     SDValue Op1 = Op.getOperand(1);
1724 
1725     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1726     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1727       return TLO.CombineTo(Op, Op0);
1728 
1729     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1730     if (isPowerOf2_32(BitWidth)) {
1731       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1732       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1733                                Depth + 1))
1734         return true;
1735     }
1736     break;
1737   }
1738   case ISD::BITREVERSE: {
1739     SDValue Src = Op.getOperand(0);
1740     APInt DemandedSrcBits = DemandedBits.reverseBits();
1741     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1742                              Depth + 1))
1743       return true;
1744     Known.One = Known2.One.reverseBits();
1745     Known.Zero = Known2.Zero.reverseBits();
1746     break;
1747   }
1748   case ISD::BSWAP: {
1749     SDValue Src = Op.getOperand(0);
1750     APInt DemandedSrcBits = DemandedBits.byteSwap();
1751     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1752                              Depth + 1))
1753       return true;
1754     Known.One = Known2.One.byteSwap();
1755     Known.Zero = Known2.Zero.byteSwap();
1756     break;
1757   }
1758   case ISD::CTPOP: {
1759     // If only 1 bit is demanded, replace with PARITY as long as we're before
1760     // op legalization.
1761     // FIXME: Limit to scalars for now.
1762     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1763       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1764                                                Op.getOperand(0)));
1765 
1766     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1767     break;
1768   }
1769   case ISD::SIGN_EXTEND_INREG: {
1770     SDValue Op0 = Op.getOperand(0);
1771     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1772     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1773 
1774     // If we only care about the highest bit, don't bother shifting right.
1775     if (DemandedBits.isSignMask()) {
1776       unsigned NumSignBits =
1777           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1778       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1779       // However if the input is already sign extended we expect the sign
1780       // extension to be dropped altogether later and do not simplify.
1781       if (!AlreadySignExtended) {
1782         // Compute the correct shift amount type, which must be getShiftAmountTy
1783         // for scalar types after legalization.
1784         EVT ShiftAmtTy = VT;
1785         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1786           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1787 
1788         SDValue ShiftAmt =
1789             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1790         return TLO.CombineTo(Op,
1791                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1792       }
1793     }
1794 
1795     // If none of the extended bits are demanded, eliminate the sextinreg.
1796     if (DemandedBits.getActiveBits() <= ExVTBits)
1797       return TLO.CombineTo(Op, Op0);
1798 
1799     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1800 
1801     // Since the sign extended bits are demanded, we know that the sign
1802     // bit is demanded.
1803     InputDemandedBits.setBit(ExVTBits - 1);
1804 
1805     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1806       return true;
1807     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808 
1809     // If the sign bit of the input is known set or clear, then we know the
1810     // top bits of the result.
1811 
1812     // If the input sign bit is known zero, convert this into a zero extension.
1813     if (Known.Zero[ExVTBits - 1])
1814       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1815 
1816     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1817     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1818       Known.One.setBitsFrom(ExVTBits);
1819       Known.Zero &= Mask;
1820     } else { // Input sign bit unknown
1821       Known.Zero &= Mask;
1822       Known.One &= Mask;
1823     }
1824     break;
1825   }
1826   case ISD::BUILD_PAIR: {
1827     EVT HalfVT = Op.getOperand(0).getValueType();
1828     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1829 
1830     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1831     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1832 
1833     KnownBits KnownLo, KnownHi;
1834 
1835     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1836       return true;
1837 
1838     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1839       return true;
1840 
1841     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1842                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1843 
1844     Known.One = KnownLo.One.zext(BitWidth) |
1845                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1846     break;
1847   }
1848   case ISD::ZERO_EXTEND:
1849   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1850     SDValue Src = Op.getOperand(0);
1851     EVT SrcVT = Src.getValueType();
1852     unsigned InBits = SrcVT.getScalarSizeInBits();
1853     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1854     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1855 
1856     // If none of the top bits are demanded, convert this into an any_extend.
1857     if (DemandedBits.getActiveBits() <= InBits) {
1858       // If we only need the non-extended bits of the bottom element
1859       // then we can just bitcast to the result.
1860       if (IsVecInReg && DemandedElts == 1 &&
1861           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1862           TLO.DAG.getDataLayout().isLittleEndian())
1863         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1864 
1865       unsigned Opc =
1866           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1867       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1868         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1869     }
1870 
1871     APInt InDemandedBits = DemandedBits.trunc(InBits);
1872     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1873     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1874                              Depth + 1))
1875       return true;
1876     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1877     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1878     Known = Known.zext(BitWidth);
1879 
1880     // Attempt to avoid multi-use ops if we don't need anything from them.
1881     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1882             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1883       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1884     break;
1885   }
1886   case ISD::SIGN_EXTEND:
1887   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1888     SDValue Src = Op.getOperand(0);
1889     EVT SrcVT = Src.getValueType();
1890     unsigned InBits = SrcVT.getScalarSizeInBits();
1891     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1892     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1893 
1894     // If none of the top bits are demanded, convert this into an any_extend.
1895     if (DemandedBits.getActiveBits() <= InBits) {
1896       // If we only need the non-extended bits of the bottom element
1897       // then we can just bitcast to the result.
1898       if (IsVecInReg && DemandedElts == 1 &&
1899           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1900           TLO.DAG.getDataLayout().isLittleEndian())
1901         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1902 
1903       unsigned Opc =
1904           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1905       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1906         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1907     }
1908 
1909     APInt InDemandedBits = DemandedBits.trunc(InBits);
1910     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1911 
1912     // Since some of the sign extended bits are demanded, we know that the sign
1913     // bit is demanded.
1914     InDemandedBits.setBit(InBits - 1);
1915 
1916     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1917                              Depth + 1))
1918       return true;
1919     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1920     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1921 
1922     // If the sign bit is known one, the top bits match.
1923     Known = Known.sext(BitWidth);
1924 
1925     // If the sign bit is known zero, convert this to a zero extend.
1926     if (Known.isNonNegative()) {
1927       unsigned Opc =
1928           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1929       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1930         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1931     }
1932 
1933     // Attempt to avoid multi-use ops if we don't need anything from them.
1934     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1935             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1936       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1937     break;
1938   }
1939   case ISD::ANY_EXTEND:
1940   case ISD::ANY_EXTEND_VECTOR_INREG: {
1941     SDValue Src = Op.getOperand(0);
1942     EVT SrcVT = Src.getValueType();
1943     unsigned InBits = SrcVT.getScalarSizeInBits();
1944     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1945     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1946 
1947     // If we only need the bottom element then we can just bitcast.
1948     // TODO: Handle ANY_EXTEND?
1949     if (IsVecInReg && DemandedElts == 1 &&
1950         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1951         TLO.DAG.getDataLayout().isLittleEndian())
1952       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1953 
1954     APInt InDemandedBits = DemandedBits.trunc(InBits);
1955     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1956     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1957                              Depth + 1))
1958       return true;
1959     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1960     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1961     Known = Known.anyext(BitWidth);
1962 
1963     // Attempt to avoid multi-use ops if we don't need anything from them.
1964     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1965             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1966       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1967     break;
1968   }
1969   case ISD::TRUNCATE: {
1970     SDValue Src = Op.getOperand(0);
1971 
1972     // Simplify the input, using demanded bit information, and compute the known
1973     // zero/one bits live out.
1974     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1975     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1976     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1977       return true;
1978     Known = Known.trunc(BitWidth);
1979 
1980     // Attempt to avoid multi-use ops if we don't need anything from them.
1981     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1982             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1983       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1984 
1985     // If the input is only used by this truncate, see if we can shrink it based
1986     // on the known demanded bits.
1987     if (Src.getNode()->hasOneUse()) {
1988       switch (Src.getOpcode()) {
1989       default:
1990         break;
1991       case ISD::SRL:
1992         // Shrink SRL by a constant if none of the high bits shifted in are
1993         // demanded.
1994         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1995           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1996           // undesirable.
1997           break;
1998 
1999         SDValue ShAmt = Src.getOperand(1);
2000         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
2001         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
2002           break;
2003         uint64_t ShVal = ShAmtC->getZExtValue();
2004 
2005         APInt HighBits =
2006             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2007         HighBits.lshrInPlace(ShVal);
2008         HighBits = HighBits.trunc(BitWidth);
2009 
2010         if (!(HighBits & DemandedBits)) {
2011           // None of the shifted in bits are needed.  Add a truncate of the
2012           // shift input, then shift it.
2013           if (TLO.LegalTypes())
2014             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
2015           SDValue NewTrunc =
2016               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2017           return TLO.CombineTo(
2018               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
2019         }
2020         break;
2021       }
2022     }
2023 
2024     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2025     break;
2026   }
2027   case ISD::AssertZext: {
2028     // AssertZext demands all of the high bits, plus any of the low bits
2029     // demanded by its users.
2030     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2031     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2032     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2033                              TLO, Depth + 1))
2034       return true;
2035     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2036 
2037     Known.Zero |= ~InMask;
2038     break;
2039   }
2040   case ISD::EXTRACT_VECTOR_ELT: {
2041     SDValue Src = Op.getOperand(0);
2042     SDValue Idx = Op.getOperand(1);
2043     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2044     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2045 
2046     if (SrcEltCnt.isScalable())
2047       return false;
2048 
2049     // Demand the bits from every vector element without a constant index.
2050     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2051     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2052     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2053       if (CIdx->getAPIntValue().ult(NumSrcElts))
2054         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2055 
2056     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2057     // anything about the extended bits.
2058     APInt DemandedSrcBits = DemandedBits;
2059     if (BitWidth > EltBitWidth)
2060       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2061 
2062     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2063                              Depth + 1))
2064       return true;
2065 
2066     // Attempt to avoid multi-use ops if we don't need anything from them.
2067     if (!DemandedSrcBits.isAllOnesValue() ||
2068         !DemandedSrcElts.isAllOnesValue()) {
2069       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2070               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2071         SDValue NewOp =
2072             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2073         return TLO.CombineTo(Op, NewOp);
2074       }
2075     }
2076 
2077     Known = Known2;
2078     if (BitWidth > EltBitWidth)
2079       Known = Known.anyext(BitWidth);
2080     break;
2081   }
2082   case ISD::BITCAST: {
2083     SDValue Src = Op.getOperand(0);
2084     EVT SrcVT = Src.getValueType();
2085     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2086 
2087     // If this is an FP->Int bitcast and if the sign bit is the only
2088     // thing demanded, turn this into a FGETSIGN.
2089     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2090         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2091         SrcVT.isFloatingPoint()) {
2092       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2093       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2094       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2095           SrcVT != MVT::f128) {
2096         // Cannot eliminate/lower SHL for f128 yet.
2097         EVT Ty = OpVTLegal ? VT : MVT::i32;
2098         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2099         // place.  We expect the SHL to be eliminated by other optimizations.
2100         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2101         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2102         if (!OpVTLegal && OpVTSizeInBits > 32)
2103           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2104         unsigned ShVal = Op.getValueSizeInBits() - 1;
2105         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2106         return TLO.CombineTo(Op,
2107                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2108       }
2109     }
2110 
2111     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2112     // Demand the elt/bit if any of the original elts/bits are demanded.
2113     // TODO - bigendian once we have test coverage.
2114     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2115         TLO.DAG.getDataLayout().isLittleEndian()) {
2116       unsigned Scale = BitWidth / NumSrcEltBits;
2117       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2118       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2119       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2120       for (unsigned i = 0; i != Scale; ++i) {
2121         unsigned Offset = i * NumSrcEltBits;
2122         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2123         if (!Sub.isNullValue()) {
2124           DemandedSrcBits |= Sub;
2125           for (unsigned j = 0; j != NumElts; ++j)
2126             if (DemandedElts[j])
2127               DemandedSrcElts.setBit((j * Scale) + i);
2128         }
2129       }
2130 
2131       APInt KnownSrcUndef, KnownSrcZero;
2132       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2133                                      KnownSrcZero, TLO, Depth + 1))
2134         return true;
2135 
2136       KnownBits KnownSrcBits;
2137       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2138                                KnownSrcBits, TLO, Depth + 1))
2139         return true;
2140     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2141                TLO.DAG.getDataLayout().isLittleEndian()) {
2142       unsigned Scale = NumSrcEltBits / BitWidth;
2143       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2144       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2145       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2146       for (unsigned i = 0; i != NumElts; ++i)
2147         if (DemandedElts[i]) {
2148           unsigned Offset = (i % Scale) * BitWidth;
2149           DemandedSrcBits.insertBits(DemandedBits, Offset);
2150           DemandedSrcElts.setBit(i / Scale);
2151         }
2152 
2153       if (SrcVT.isVector()) {
2154         APInt KnownSrcUndef, KnownSrcZero;
2155         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2156                                        KnownSrcZero, TLO, Depth + 1))
2157           return true;
2158       }
2159 
2160       KnownBits KnownSrcBits;
2161       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2162                                KnownSrcBits, TLO, Depth + 1))
2163         return true;
2164     }
2165 
2166     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2167     // recursive call where Known may be useful to the caller.
2168     if (Depth > 0) {
2169       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2170       return false;
2171     }
2172     break;
2173   }
2174   case ISD::ADD:
2175   case ISD::MUL:
2176   case ISD::SUB: {
2177     // Add, Sub, and Mul don't demand any bits in positions beyond that
2178     // of the highest bit demanded of them.
2179     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2180     SDNodeFlags Flags = Op.getNode()->getFlags();
2181     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2182     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2183     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2184                              Depth + 1) ||
2185         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2186                              Depth + 1) ||
2187         // See if the operation should be performed at a smaller bit width.
2188         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2189       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2190         // Disable the nsw and nuw flags. We can no longer guarantee that we
2191         // won't wrap after simplification.
2192         Flags.setNoSignedWrap(false);
2193         Flags.setNoUnsignedWrap(false);
2194         SDValue NewOp =
2195             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2196         return TLO.CombineTo(Op, NewOp);
2197       }
2198       return true;
2199     }
2200 
2201     // Attempt to avoid multi-use ops if we don't need anything from them.
2202     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2203       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2204           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2205       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2206           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2207       if (DemandedOp0 || DemandedOp1) {
2208         Flags.setNoSignedWrap(false);
2209         Flags.setNoUnsignedWrap(false);
2210         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2211         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2212         SDValue NewOp =
2213             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2214         return TLO.CombineTo(Op, NewOp);
2215       }
2216     }
2217 
2218     // If we have a constant operand, we may be able to turn it into -1 if we
2219     // do not demand the high bits. This can make the constant smaller to
2220     // encode, allow more general folding, or match specialized instruction
2221     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2222     // is probably not useful (and could be detrimental).
2223     ConstantSDNode *C = isConstOrConstSplat(Op1);
2224     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2225     if (C && !C->isAllOnesValue() && !C->isOne() &&
2226         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2227       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2228       // Disable the nsw and nuw flags. We can no longer guarantee that we
2229       // won't wrap after simplification.
2230       Flags.setNoSignedWrap(false);
2231       Flags.setNoUnsignedWrap(false);
2232       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2233       return TLO.CombineTo(Op, NewOp);
2234     }
2235 
2236     LLVM_FALLTHROUGH;
2237   }
2238   default:
2239     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2240       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2241                                             Known, TLO, Depth))
2242         return true;
2243       break;
2244     }
2245 
2246     // Just use computeKnownBits to compute output bits.
2247     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2248     break;
2249   }
2250 
2251   // If we know the value of all of the demanded bits, return this as a
2252   // constant.
2253   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2254     // Avoid folding to a constant if any OpaqueConstant is involved.
2255     const SDNode *N = Op.getNode();
2256     for (SDNodeIterator I = SDNodeIterator::begin(N),
2257                         E = SDNodeIterator::end(N);
2258          I != E; ++I) {
2259       SDNode *Op = *I;
2260       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2261         if (C->isOpaque())
2262           return false;
2263     }
2264     if (VT.isInteger())
2265       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2266     if (VT.isFloatingPoint())
2267       return TLO.CombineTo(
2268           Op,
2269           TLO.DAG.getConstantFP(
2270               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2271   }
2272 
2273   return false;
2274 }
2275 
2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2277                                                 const APInt &DemandedElts,
2278                                                 APInt &KnownUndef,
2279                                                 APInt &KnownZero,
2280                                                 DAGCombinerInfo &DCI) const {
2281   SelectionDAG &DAG = DCI.DAG;
2282   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2283                         !DCI.isBeforeLegalizeOps());
2284 
2285   bool Simplified =
2286       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2287   if (Simplified) {
2288     DCI.AddToWorklist(Op.getNode());
2289     DCI.CommitTargetLoweringOpt(TLO);
2290   }
2291 
2292   return Simplified;
2293 }
2294 
2295 /// Given a vector binary operation and known undefined elements for each input
2296 /// operand, compute whether each element of the output is undefined.
2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2298                                          const APInt &UndefOp0,
2299                                          const APInt &UndefOp1) {
2300   EVT VT = BO.getValueType();
2301   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2302          "Vector binop only");
2303 
2304   EVT EltVT = VT.getVectorElementType();
2305   unsigned NumElts = VT.getVectorNumElements();
2306   assert(UndefOp0.getBitWidth() == NumElts &&
2307          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2308 
2309   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2310                                    const APInt &UndefVals) {
2311     if (UndefVals[Index])
2312       return DAG.getUNDEF(EltVT);
2313 
2314     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2315       // Try hard to make sure that the getNode() call is not creating temporary
2316       // nodes. Ignore opaque integers because they do not constant fold.
2317       SDValue Elt = BV->getOperand(Index);
2318       auto *C = dyn_cast<ConstantSDNode>(Elt);
2319       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2320         return Elt;
2321     }
2322 
2323     return SDValue();
2324   };
2325 
2326   APInt KnownUndef = APInt::getNullValue(NumElts);
2327   for (unsigned i = 0; i != NumElts; ++i) {
2328     // If both inputs for this element are either constant or undef and match
2329     // the element type, compute the constant/undef result for this element of
2330     // the vector.
2331     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2332     // not handle FP constants. The code within getNode() should be refactored
2333     // to avoid the danger of creating a bogus temporary node here.
2334     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2335     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2336     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2337       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2338         KnownUndef.setBit(i);
2339   }
2340   return KnownUndef;
2341 }
2342 
2343 bool TargetLowering::SimplifyDemandedVectorElts(
2344     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2345     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2346     bool AssumeSingleUse) const {
2347   EVT VT = Op.getValueType();
2348   unsigned Opcode = Op.getOpcode();
2349   APInt DemandedElts = OriginalDemandedElts;
2350   unsigned NumElts = DemandedElts.getBitWidth();
2351   assert(VT.isVector() && "Expected vector op");
2352 
2353   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2354 
2355   // TODO: For now we assume we know nothing about scalable vectors.
2356   if (VT.isScalableVector())
2357     return false;
2358 
2359   assert(VT.getVectorNumElements() == NumElts &&
2360          "Mask size mismatches value type element count!");
2361 
2362   // Undef operand.
2363   if (Op.isUndef()) {
2364     KnownUndef.setAllBits();
2365     return false;
2366   }
2367 
2368   // If Op has other users, assume that all elements are needed.
2369   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2370     DemandedElts.setAllBits();
2371 
2372   // Not demanding any elements from Op.
2373   if (DemandedElts == 0) {
2374     KnownUndef.setAllBits();
2375     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2376   }
2377 
2378   // Limit search depth.
2379   if (Depth >= SelectionDAG::MaxRecursionDepth)
2380     return false;
2381 
2382   SDLoc DL(Op);
2383   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2384 
2385   // Helper for demanding the specified elements and all the bits of both binary
2386   // operands.
2387   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2388     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2389                                                            TLO.DAG, Depth + 1);
2390     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2391                                                            TLO.DAG, Depth + 1);
2392     if (NewOp0 || NewOp1) {
2393       SDValue NewOp = TLO.DAG.getNode(
2394           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2395       return TLO.CombineTo(Op, NewOp);
2396     }
2397     return false;
2398   };
2399 
2400   switch (Opcode) {
2401   case ISD::SCALAR_TO_VECTOR: {
2402     if (!DemandedElts[0]) {
2403       KnownUndef.setAllBits();
2404       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2405     }
2406     KnownUndef.setHighBits(NumElts - 1);
2407     break;
2408   }
2409   case ISD::BITCAST: {
2410     SDValue Src = Op.getOperand(0);
2411     EVT SrcVT = Src.getValueType();
2412 
2413     // We only handle vectors here.
2414     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2415     if (!SrcVT.isVector())
2416       break;
2417 
2418     // Fast handling of 'identity' bitcasts.
2419     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2420     if (NumSrcElts == NumElts)
2421       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2422                                         KnownZero, TLO, Depth + 1);
2423 
2424     APInt SrcZero, SrcUndef;
2425     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2426 
2427     // Bitcast from 'large element' src vector to 'small element' vector, we
2428     // must demand a source element if any DemandedElt maps to it.
2429     if ((NumElts % NumSrcElts) == 0) {
2430       unsigned Scale = NumElts / NumSrcElts;
2431       for (unsigned i = 0; i != NumElts; ++i)
2432         if (DemandedElts[i])
2433           SrcDemandedElts.setBit(i / Scale);
2434 
2435       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2436                                      TLO, Depth + 1))
2437         return true;
2438 
2439       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2440       // of the large element.
2441       // TODO - bigendian once we have test coverage.
2442       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2443         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2444         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2445         for (unsigned i = 0; i != NumElts; ++i)
2446           if (DemandedElts[i]) {
2447             unsigned Ofs = (i % Scale) * EltSizeInBits;
2448             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2449           }
2450 
2451         KnownBits Known;
2452         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2453                                  TLO, Depth + 1))
2454           return true;
2455       }
2456 
2457       // If the src element is zero/undef then all the output elements will be -
2458       // only demanded elements are guaranteed to be correct.
2459       for (unsigned i = 0; i != NumSrcElts; ++i) {
2460         if (SrcDemandedElts[i]) {
2461           if (SrcZero[i])
2462             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2463           if (SrcUndef[i])
2464             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2465         }
2466       }
2467     }
2468 
2469     // Bitcast from 'small element' src vector to 'large element' vector, we
2470     // demand all smaller source elements covered by the larger demanded element
2471     // of this vector.
2472     if ((NumSrcElts % NumElts) == 0) {
2473       unsigned Scale = NumSrcElts / NumElts;
2474       for (unsigned i = 0; i != NumElts; ++i)
2475         if (DemandedElts[i])
2476           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2477 
2478       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2479                                      TLO, Depth + 1))
2480         return true;
2481 
2482       // If all the src elements covering an output element are zero/undef, then
2483       // the output element will be as well, assuming it was demanded.
2484       for (unsigned i = 0; i != NumElts; ++i) {
2485         if (DemandedElts[i]) {
2486           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2487             KnownZero.setBit(i);
2488           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2489             KnownUndef.setBit(i);
2490         }
2491       }
2492     }
2493     break;
2494   }
2495   case ISD::BUILD_VECTOR: {
2496     // Check all elements and simplify any unused elements with UNDEF.
2497     if (!DemandedElts.isAllOnesValue()) {
2498       // Don't simplify BROADCASTS.
2499       if (llvm::any_of(Op->op_values(),
2500                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2501         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2502         bool Updated = false;
2503         for (unsigned i = 0; i != NumElts; ++i) {
2504           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2505             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2506             KnownUndef.setBit(i);
2507             Updated = true;
2508           }
2509         }
2510         if (Updated)
2511           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2512       }
2513     }
2514     for (unsigned i = 0; i != NumElts; ++i) {
2515       SDValue SrcOp = Op.getOperand(i);
2516       if (SrcOp.isUndef()) {
2517         KnownUndef.setBit(i);
2518       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2519                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2520         KnownZero.setBit(i);
2521       }
2522     }
2523     break;
2524   }
2525   case ISD::CONCAT_VECTORS: {
2526     EVT SubVT = Op.getOperand(0).getValueType();
2527     unsigned NumSubVecs = Op.getNumOperands();
2528     unsigned NumSubElts = SubVT.getVectorNumElements();
2529     for (unsigned i = 0; i != NumSubVecs; ++i) {
2530       SDValue SubOp = Op.getOperand(i);
2531       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2532       APInt SubUndef, SubZero;
2533       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2534                                      Depth + 1))
2535         return true;
2536       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2537       KnownZero.insertBits(SubZero, i * NumSubElts);
2538     }
2539     break;
2540   }
2541   case ISD::INSERT_SUBVECTOR: {
2542     // Demand any elements from the subvector and the remainder from the src its
2543     // inserted into.
2544     SDValue Src = Op.getOperand(0);
2545     SDValue Sub = Op.getOperand(1);
2546     uint64_t Idx = Op.getConstantOperandVal(2);
2547     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2548     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2549     APInt DemandedSrcElts = DemandedElts;
2550     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2551 
2552     APInt SubUndef, SubZero;
2553     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2554                                    Depth + 1))
2555       return true;
2556 
2557     // If none of the src operand elements are demanded, replace it with undef.
2558     if (!DemandedSrcElts && !Src.isUndef())
2559       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2560                                                TLO.DAG.getUNDEF(VT), Sub,
2561                                                Op.getOperand(2)));
2562 
2563     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2564                                    TLO, Depth + 1))
2565       return true;
2566     KnownUndef.insertBits(SubUndef, Idx);
2567     KnownZero.insertBits(SubZero, Idx);
2568 
2569     // Attempt to avoid multi-use ops if we don't need anything from them.
2570     if (!DemandedSrcElts.isAllOnesValue() ||
2571         !DemandedSubElts.isAllOnesValue()) {
2572       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2573           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2574       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2575           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2576       if (NewSrc || NewSub) {
2577         NewSrc = NewSrc ? NewSrc : Src;
2578         NewSub = NewSub ? NewSub : Sub;
2579         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2580                                         NewSub, Op.getOperand(2));
2581         return TLO.CombineTo(Op, NewOp);
2582       }
2583     }
2584     break;
2585   }
2586   case ISD::EXTRACT_SUBVECTOR: {
2587     // Offset the demanded elts by the subvector index.
2588     SDValue Src = Op.getOperand(0);
2589     if (Src.getValueType().isScalableVector())
2590       break;
2591     uint64_t Idx = Op.getConstantOperandVal(1);
2592     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2593     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2594 
2595     APInt SrcUndef, SrcZero;
2596     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2597                                    Depth + 1))
2598       return true;
2599     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2600     KnownZero = SrcZero.extractBits(NumElts, Idx);
2601 
2602     // Attempt to avoid multi-use ops if we don't need anything from them.
2603     if (!DemandedElts.isAllOnesValue()) {
2604       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2605           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2606       if (NewSrc) {
2607         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2608                                         Op.getOperand(1));
2609         return TLO.CombineTo(Op, NewOp);
2610       }
2611     }
2612     break;
2613   }
2614   case ISD::INSERT_VECTOR_ELT: {
2615     SDValue Vec = Op.getOperand(0);
2616     SDValue Scl = Op.getOperand(1);
2617     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2618 
2619     // For a legal, constant insertion index, if we don't need this insertion
2620     // then strip it, else remove it from the demanded elts.
2621     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2622       unsigned Idx = CIdx->getZExtValue();
2623       if (!DemandedElts[Idx])
2624         return TLO.CombineTo(Op, Vec);
2625 
2626       APInt DemandedVecElts(DemandedElts);
2627       DemandedVecElts.clearBit(Idx);
2628       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2629                                      KnownZero, TLO, Depth + 1))
2630         return true;
2631 
2632       KnownUndef.setBitVal(Idx, Scl.isUndef());
2633 
2634       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2635       break;
2636     }
2637 
2638     APInt VecUndef, VecZero;
2639     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2640                                    Depth + 1))
2641       return true;
2642     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2643     break;
2644   }
2645   case ISD::VSELECT: {
2646     // Try to transform the select condition based on the current demanded
2647     // elements.
2648     // TODO: If a condition element is undef, we can choose from one arm of the
2649     //       select (and if one arm is undef, then we can propagate that to the
2650     //       result).
2651     // TODO - add support for constant vselect masks (see IR version of this).
2652     APInt UnusedUndef, UnusedZero;
2653     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2654                                    UnusedZero, TLO, Depth + 1))
2655       return true;
2656 
2657     // See if we can simplify either vselect operand.
2658     APInt DemandedLHS(DemandedElts);
2659     APInt DemandedRHS(DemandedElts);
2660     APInt UndefLHS, ZeroLHS;
2661     APInt UndefRHS, ZeroRHS;
2662     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2663                                    ZeroLHS, TLO, Depth + 1))
2664       return true;
2665     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2666                                    ZeroRHS, TLO, Depth + 1))
2667       return true;
2668 
2669     KnownUndef = UndefLHS & UndefRHS;
2670     KnownZero = ZeroLHS & ZeroRHS;
2671     break;
2672   }
2673   case ISD::VECTOR_SHUFFLE: {
2674     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2675 
2676     // Collect demanded elements from shuffle operands..
2677     APInt DemandedLHS(NumElts, 0);
2678     APInt DemandedRHS(NumElts, 0);
2679     for (unsigned i = 0; i != NumElts; ++i) {
2680       int M = ShuffleMask[i];
2681       if (M < 0 || !DemandedElts[i])
2682         continue;
2683       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2684       if (M < (int)NumElts)
2685         DemandedLHS.setBit(M);
2686       else
2687         DemandedRHS.setBit(M - NumElts);
2688     }
2689 
2690     // See if we can simplify either shuffle operand.
2691     APInt UndefLHS, ZeroLHS;
2692     APInt UndefRHS, ZeroRHS;
2693     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2694                                    ZeroLHS, TLO, Depth + 1))
2695       return true;
2696     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2697                                    ZeroRHS, TLO, Depth + 1))
2698       return true;
2699 
2700     // Simplify mask using undef elements from LHS/RHS.
2701     bool Updated = false;
2702     bool IdentityLHS = true, IdentityRHS = true;
2703     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2704     for (unsigned i = 0; i != NumElts; ++i) {
2705       int &M = NewMask[i];
2706       if (M < 0)
2707         continue;
2708       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2709           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2710         Updated = true;
2711         M = -1;
2712       }
2713       IdentityLHS &= (M < 0) || (M == (int)i);
2714       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2715     }
2716 
2717     // Update legal shuffle masks based on demanded elements if it won't reduce
2718     // to Identity which can cause premature removal of the shuffle mask.
2719     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2720       SDValue LegalShuffle =
2721           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2722                                   NewMask, TLO.DAG);
2723       if (LegalShuffle)
2724         return TLO.CombineTo(Op, LegalShuffle);
2725     }
2726 
2727     // Propagate undef/zero elements from LHS/RHS.
2728     for (unsigned i = 0; i != NumElts; ++i) {
2729       int M = ShuffleMask[i];
2730       if (M < 0) {
2731         KnownUndef.setBit(i);
2732       } else if (M < (int)NumElts) {
2733         if (UndefLHS[M])
2734           KnownUndef.setBit(i);
2735         if (ZeroLHS[M])
2736           KnownZero.setBit(i);
2737       } else {
2738         if (UndefRHS[M - NumElts])
2739           KnownUndef.setBit(i);
2740         if (ZeroRHS[M - NumElts])
2741           KnownZero.setBit(i);
2742       }
2743     }
2744     break;
2745   }
2746   case ISD::ANY_EXTEND_VECTOR_INREG:
2747   case ISD::SIGN_EXTEND_VECTOR_INREG:
2748   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2749     APInt SrcUndef, SrcZero;
2750     SDValue Src = Op.getOperand(0);
2751     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2752     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2753     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2754                                    Depth + 1))
2755       return true;
2756     KnownZero = SrcZero.zextOrTrunc(NumElts);
2757     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2758 
2759     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2760         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2761         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2762       // aext - if we just need the bottom element then we can bitcast.
2763       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2764     }
2765 
2766     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2767       // zext(undef) upper bits are guaranteed to be zero.
2768       if (DemandedElts.isSubsetOf(KnownUndef))
2769         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2770       KnownUndef.clearAllBits();
2771     }
2772     break;
2773   }
2774 
2775   // TODO: There are more binop opcodes that could be handled here - MIN,
2776   // MAX, saturated math, etc.
2777   case ISD::OR:
2778   case ISD::XOR:
2779   case ISD::ADD:
2780   case ISD::SUB:
2781   case ISD::FADD:
2782   case ISD::FSUB:
2783   case ISD::FMUL:
2784   case ISD::FDIV:
2785   case ISD::FREM: {
2786     SDValue Op0 = Op.getOperand(0);
2787     SDValue Op1 = Op.getOperand(1);
2788 
2789     APInt UndefRHS, ZeroRHS;
2790     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2791                                    Depth + 1))
2792       return true;
2793     APInt UndefLHS, ZeroLHS;
2794     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2795                                    Depth + 1))
2796       return true;
2797 
2798     KnownZero = ZeroLHS & ZeroRHS;
2799     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2800 
2801     // Attempt to avoid multi-use ops if we don't need anything from them.
2802     // TODO - use KnownUndef to relax the demandedelts?
2803     if (!DemandedElts.isAllOnesValue())
2804       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2805         return true;
2806     break;
2807   }
2808   case ISD::SHL:
2809   case ISD::SRL:
2810   case ISD::SRA:
2811   case ISD::ROTL:
2812   case ISD::ROTR: {
2813     SDValue Op0 = Op.getOperand(0);
2814     SDValue Op1 = Op.getOperand(1);
2815 
2816     APInt UndefRHS, ZeroRHS;
2817     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2818                                    Depth + 1))
2819       return true;
2820     APInt UndefLHS, ZeroLHS;
2821     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2822                                    Depth + 1))
2823       return true;
2824 
2825     KnownZero = ZeroLHS;
2826     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2827 
2828     // Attempt to avoid multi-use ops if we don't need anything from them.
2829     // TODO - use KnownUndef to relax the demandedelts?
2830     if (!DemandedElts.isAllOnesValue())
2831       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2832         return true;
2833     break;
2834   }
2835   case ISD::MUL:
2836   case ISD::AND: {
2837     SDValue Op0 = Op.getOperand(0);
2838     SDValue Op1 = Op.getOperand(1);
2839 
2840     APInt SrcUndef, SrcZero;
2841     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2842                                    Depth + 1))
2843       return true;
2844     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2845                                    TLO, Depth + 1))
2846       return true;
2847 
2848     // If either side has a zero element, then the result element is zero, even
2849     // if the other is an UNDEF.
2850     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2851     // and then handle 'and' nodes with the rest of the binop opcodes.
2852     KnownZero |= SrcZero;
2853     KnownUndef &= SrcUndef;
2854     KnownUndef &= ~KnownZero;
2855 
2856     // Attempt to avoid multi-use ops if we don't need anything from them.
2857     // TODO - use KnownUndef to relax the demandedelts?
2858     if (!DemandedElts.isAllOnesValue())
2859       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2860         return true;
2861     break;
2862   }
2863   case ISD::TRUNCATE:
2864   case ISD::SIGN_EXTEND:
2865   case ISD::ZERO_EXTEND:
2866     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2867                                    KnownZero, TLO, Depth + 1))
2868       return true;
2869 
2870     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2871       // zext(undef) upper bits are guaranteed to be zero.
2872       if (DemandedElts.isSubsetOf(KnownUndef))
2873         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2874       KnownUndef.clearAllBits();
2875     }
2876     break;
2877   default: {
2878     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2879       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2880                                                   KnownZero, TLO, Depth))
2881         return true;
2882     } else {
2883       KnownBits Known;
2884       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2885       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2886                                TLO, Depth, AssumeSingleUse))
2887         return true;
2888     }
2889     break;
2890   }
2891   }
2892   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2893 
2894   // Constant fold all undef cases.
2895   // TODO: Handle zero cases as well.
2896   if (DemandedElts.isSubsetOf(KnownUndef))
2897     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2898 
2899   return false;
2900 }
2901 
2902 /// Determine which of the bits specified in Mask are known to be either zero or
2903 /// one and return them in the Known.
2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2905                                                    KnownBits &Known,
2906                                                    const APInt &DemandedElts,
2907                                                    const SelectionDAG &DAG,
2908                                                    unsigned Depth) const {
2909   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2910           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2911           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2912           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2913          "Should use MaskedValueIsZero if you don't know whether Op"
2914          " is a target node!");
2915   Known.resetAll();
2916 }
2917 
2918 void TargetLowering::computeKnownBitsForTargetInstr(
2919     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2920     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2921     unsigned Depth) const {
2922   Known.resetAll();
2923 }
2924 
2925 void TargetLowering::computeKnownBitsForFrameIndex(
2926   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2927   // The low bits are known zero if the pointer is aligned.
2928   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2929 }
2930 
2931 Align TargetLowering::computeKnownAlignForTargetInstr(
2932   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2933   unsigned Depth) const {
2934   return Align(1);
2935 }
2936 
2937 /// This method can be implemented by targets that want to expose additional
2938 /// information about sign bits to the DAG Combiner.
2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2940                                                          const APInt &,
2941                                                          const SelectionDAG &,
2942                                                          unsigned Depth) const {
2943   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2944           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2945           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2946           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2947          "Should use ComputeNumSignBits if you don't know whether Op"
2948          " is a target node!");
2949   return 1;
2950 }
2951 
2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2953   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2954   const MachineRegisterInfo &MRI, unsigned Depth) const {
2955   return 1;
2956 }
2957 
2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2959     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2960     TargetLoweringOpt &TLO, unsigned Depth) const {
2961   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2962           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2963           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2964           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2965          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2966          " is a target node!");
2967   return false;
2968 }
2969 
2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2971     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2972     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2973   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2974           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2975           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2976           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2977          "Should use SimplifyDemandedBits if you don't know whether Op"
2978          " is a target node!");
2979   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2980   return false;
2981 }
2982 
2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2984     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2985     SelectionDAG &DAG, unsigned Depth) const {
2986   assert(
2987       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2988        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2989        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2990        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2991       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2992       " is a target node!");
2993   return SDValue();
2994 }
2995 
2996 SDValue
2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2998                                         SDValue N1, MutableArrayRef<int> Mask,
2999                                         SelectionDAG &DAG) const {
3000   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3001   if (!LegalMask) {
3002     std::swap(N0, N1);
3003     ShuffleVectorSDNode::commuteMask(Mask);
3004     LegalMask = isShuffleMaskLegal(Mask, VT);
3005   }
3006 
3007   if (!LegalMask)
3008     return SDValue();
3009 
3010   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3011 }
3012 
3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3014   return nullptr;
3015 }
3016 
3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3018                                                   const SelectionDAG &DAG,
3019                                                   bool SNaN,
3020                                                   unsigned Depth) const {
3021   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3022           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3023           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3024           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3025          "Should use isKnownNeverNaN if you don't know whether Op"
3026          " is a target node!");
3027   return false;
3028 }
3029 
3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3031 // work with truncating build vectors and vectors with elements of less than
3032 // 8 bits.
3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3034   if (!N)
3035     return false;
3036 
3037   APInt CVal;
3038   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3039     CVal = CN->getAPIntValue();
3040   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3041     auto *CN = BV->getConstantSplatNode();
3042     if (!CN)
3043       return false;
3044 
3045     // If this is a truncating build vector, truncate the splat value.
3046     // Otherwise, we may fail to match the expected values below.
3047     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3048     CVal = CN->getAPIntValue();
3049     if (BVEltWidth < CVal.getBitWidth())
3050       CVal = CVal.trunc(BVEltWidth);
3051   } else {
3052     return false;
3053   }
3054 
3055   switch (getBooleanContents(N->getValueType(0))) {
3056   case UndefinedBooleanContent:
3057     return CVal[0];
3058   case ZeroOrOneBooleanContent:
3059     return CVal.isOneValue();
3060   case ZeroOrNegativeOneBooleanContent:
3061     return CVal.isAllOnesValue();
3062   }
3063 
3064   llvm_unreachable("Invalid boolean contents");
3065 }
3066 
3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3068   if (!N)
3069     return false;
3070 
3071   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3072   if (!CN) {
3073     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3074     if (!BV)
3075       return false;
3076 
3077     // Only interested in constant splats, we don't care about undef
3078     // elements in identifying boolean constants and getConstantSplatNode
3079     // returns NULL if all ops are undef;
3080     CN = BV->getConstantSplatNode();
3081     if (!CN)
3082       return false;
3083   }
3084 
3085   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3086     return !CN->getAPIntValue()[0];
3087 
3088   return CN->isNullValue();
3089 }
3090 
3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3092                                        bool SExt) const {
3093   if (VT == MVT::i1)
3094     return N->isOne();
3095 
3096   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3097   switch (Cnt) {
3098   case TargetLowering::ZeroOrOneBooleanContent:
3099     // An extended value of 1 is always true, unless its original type is i1,
3100     // in which case it will be sign extended to -1.
3101     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3102   case TargetLowering::UndefinedBooleanContent:
3103   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3104     return N->isAllOnesValue() && SExt;
3105   }
3106   llvm_unreachable("Unexpected enumeration.");
3107 }
3108 
3109 /// This helper function of SimplifySetCC tries to optimize the comparison when
3110 /// either operand of the SetCC node is a bitwise-and instruction.
3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3112                                          ISD::CondCode Cond, const SDLoc &DL,
3113                                          DAGCombinerInfo &DCI) const {
3114   // Match these patterns in any of their permutations:
3115   // (X & Y) == Y
3116   // (X & Y) != Y
3117   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3118     std::swap(N0, N1);
3119 
3120   EVT OpVT = N0.getValueType();
3121   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3122       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3123     return SDValue();
3124 
3125   SDValue X, Y;
3126   if (N0.getOperand(0) == N1) {
3127     X = N0.getOperand(1);
3128     Y = N0.getOperand(0);
3129   } else if (N0.getOperand(1) == N1) {
3130     X = N0.getOperand(0);
3131     Y = N0.getOperand(1);
3132   } else {
3133     return SDValue();
3134   }
3135 
3136   SelectionDAG &DAG = DCI.DAG;
3137   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3138   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3139     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3140     // Note that where Y is variable and is known to have at most one bit set
3141     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3142     // equivalent when Y == 0.
3143     assert(OpVT.isInteger());
3144     Cond = ISD::getSetCCInverse(Cond, OpVT);
3145     if (DCI.isBeforeLegalizeOps() ||
3146         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3147       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3148   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3149     // If the target supports an 'and-not' or 'and-complement' logic operation,
3150     // try to use that to make a comparison operation more efficient.
3151     // But don't do this transform if the mask is a single bit because there are
3152     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3153     // 'rlwinm' on PPC).
3154 
3155     // Bail out if the compare operand that we want to turn into a zero is
3156     // already a zero (otherwise, infinite loop).
3157     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3158     if (YConst && YConst->isNullValue())
3159       return SDValue();
3160 
3161     // Transform this into: ~X & Y == 0.
3162     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3163     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3164     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3165   }
3166 
3167   return SDValue();
3168 }
3169 
3170 /// There are multiple IR patterns that could be checking whether certain
3171 /// truncation of a signed number would be lossy or not. The pattern which is
3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3173 /// We are looking for the following pattern: (KeptBits is a constant)
3174 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3176 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3177 /// We will unfold it into the natural trunc+sext pattern:
3178 ///   ((%x << C) a>> C) dstcond %x
3179 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3181     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3182     const SDLoc &DL) const {
3183   // We must be comparing with a constant.
3184   ConstantSDNode *C1;
3185   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3186     return SDValue();
3187 
3188   // N0 should be:  add %x, (1 << (KeptBits-1))
3189   if (N0->getOpcode() != ISD::ADD)
3190     return SDValue();
3191 
3192   // And we must be 'add'ing a constant.
3193   ConstantSDNode *C01;
3194   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3195     return SDValue();
3196 
3197   SDValue X = N0->getOperand(0);
3198   EVT XVT = X.getValueType();
3199 
3200   // Validate constants ...
3201 
3202   APInt I1 = C1->getAPIntValue();
3203 
3204   ISD::CondCode NewCond;
3205   if (Cond == ISD::CondCode::SETULT) {
3206     NewCond = ISD::CondCode::SETEQ;
3207   } else if (Cond == ISD::CondCode::SETULE) {
3208     NewCond = ISD::CondCode::SETEQ;
3209     // But need to 'canonicalize' the constant.
3210     I1 += 1;
3211   } else if (Cond == ISD::CondCode::SETUGT) {
3212     NewCond = ISD::CondCode::SETNE;
3213     // But need to 'canonicalize' the constant.
3214     I1 += 1;
3215   } else if (Cond == ISD::CondCode::SETUGE) {
3216     NewCond = ISD::CondCode::SETNE;
3217   } else
3218     return SDValue();
3219 
3220   APInt I01 = C01->getAPIntValue();
3221 
3222   auto checkConstants = [&I1, &I01]() -> bool {
3223     // Both of them must be power-of-two, and the constant from setcc is bigger.
3224     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3225   };
3226 
3227   if (checkConstants()) {
3228     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3229   } else {
3230     // What if we invert constants? (and the target predicate)
3231     I1.negate();
3232     I01.negate();
3233     assert(XVT.isInteger());
3234     NewCond = getSetCCInverse(NewCond, XVT);
3235     if (!checkConstants())
3236       return SDValue();
3237     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3238   }
3239 
3240   // They are power-of-two, so which bit is set?
3241   const unsigned KeptBits = I1.logBase2();
3242   const unsigned KeptBitsMinusOne = I01.logBase2();
3243 
3244   // Magic!
3245   if (KeptBits != (KeptBitsMinusOne + 1))
3246     return SDValue();
3247   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3248 
3249   // We don't want to do this in every single case.
3250   SelectionDAG &DAG = DCI.DAG;
3251   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3252           XVT, KeptBits))
3253     return SDValue();
3254 
3255   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3256   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3257 
3258   // Unfold into:  ((%x << C) a>> C) cond %x
3259   // Where 'cond' will be either 'eq' or 'ne'.
3260   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3261   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3262   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3263   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3264 
3265   return T2;
3266 }
3267 
3268 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3270     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3271     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3272   assert(isConstOrConstSplat(N1C) &&
3273          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3274          "Should be a comparison with 0.");
3275   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3276          "Valid only for [in]equality comparisons.");
3277 
3278   unsigned NewShiftOpcode;
3279   SDValue X, C, Y;
3280 
3281   SelectionDAG &DAG = DCI.DAG;
3282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3283 
3284   // Look for '(C l>>/<< Y)'.
3285   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3286     // The shift should be one-use.
3287     if (!V.hasOneUse())
3288       return false;
3289     unsigned OldShiftOpcode = V.getOpcode();
3290     switch (OldShiftOpcode) {
3291     case ISD::SHL:
3292       NewShiftOpcode = ISD::SRL;
3293       break;
3294     case ISD::SRL:
3295       NewShiftOpcode = ISD::SHL;
3296       break;
3297     default:
3298       return false; // must be a logical shift.
3299     }
3300     // We should be shifting a constant.
3301     // FIXME: best to use isConstantOrConstantVector().
3302     C = V.getOperand(0);
3303     ConstantSDNode *CC =
3304         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3305     if (!CC)
3306       return false;
3307     Y = V.getOperand(1);
3308 
3309     ConstantSDNode *XC =
3310         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3311     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3312         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3313   };
3314 
3315   // LHS of comparison should be an one-use 'and'.
3316   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3317     return SDValue();
3318 
3319   X = N0.getOperand(0);
3320   SDValue Mask = N0.getOperand(1);
3321 
3322   // 'and' is commutative!
3323   if (!Match(Mask)) {
3324     std::swap(X, Mask);
3325     if (!Match(Mask))
3326       return SDValue();
3327   }
3328 
3329   EVT VT = X.getValueType();
3330 
3331   // Produce:
3332   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3333   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3334   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3335   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3336   return T2;
3337 }
3338 
3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3341 /// handle the commuted versions of these patterns.
3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3343                                            ISD::CondCode Cond, const SDLoc &DL,
3344                                            DAGCombinerInfo &DCI) const {
3345   unsigned BOpcode = N0.getOpcode();
3346   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3347          "Unexpected binop");
3348   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3349 
3350   // (X + Y) == X --> Y == 0
3351   // (X - Y) == X --> Y == 0
3352   // (X ^ Y) == X --> Y == 0
3353   SelectionDAG &DAG = DCI.DAG;
3354   EVT OpVT = N0.getValueType();
3355   SDValue X = N0.getOperand(0);
3356   SDValue Y = N0.getOperand(1);
3357   if (X == N1)
3358     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3359 
3360   if (Y != N1)
3361     return SDValue();
3362 
3363   // (X + Y) == Y --> X == 0
3364   // (X ^ Y) == Y --> X == 0
3365   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3366     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3367 
3368   // The shift would not be valid if the operands are boolean (i1).
3369   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3370     return SDValue();
3371 
3372   // (X - Y) == Y --> X == Y << 1
3373   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3374                                  !DCI.isBeforeLegalize());
3375   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3376   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3377   if (!DCI.isCalledByLegalizer())
3378     DCI.AddToWorklist(YShl1.getNode());
3379   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3380 }
3381 
3382 /// Try to simplify a setcc built with the specified operands and cc. If it is
3383 /// unable to simplify it, return a null SDValue.
3384 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3385                                       ISD::CondCode Cond, bool foldBooleans,
3386                                       DAGCombinerInfo &DCI,
3387                                       const SDLoc &dl) const {
3388   SelectionDAG &DAG = DCI.DAG;
3389   const DataLayout &Layout = DAG.getDataLayout();
3390   EVT OpVT = N0.getValueType();
3391 
3392   // Constant fold or commute setcc.
3393   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3394     return Fold;
3395 
3396   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3397   // TODO: Handle non-splat vector constants. All undef causes trouble.
3398   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3399   if (isConstOrConstSplat(N0) &&
3400       (DCI.isBeforeLegalizeOps() ||
3401        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3402     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3403 
3404   // If we have a subtract with the same 2 non-constant operands as this setcc
3405   // -- but in reverse order -- then try to commute the operands of this setcc
3406   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3407   // instruction on some targets.
3408   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3409       (DCI.isBeforeLegalizeOps() ||
3410        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3411       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3412       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3413     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3414 
3415   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3416     const APInt &C1 = N1C->getAPIntValue();
3417 
3418     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3419     // equality comparison, then we're just comparing whether X itself is
3420     // zero.
3421     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3422         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3423         N0.getOperand(1).getOpcode() == ISD::Constant) {
3424       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3425       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3426           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3427         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3428           // (srl (ctlz x), 5) == 0  -> X != 0
3429           // (srl (ctlz x), 5) != 1  -> X != 0
3430           Cond = ISD::SETNE;
3431         } else {
3432           // (srl (ctlz x), 5) != 0  -> X == 0
3433           // (srl (ctlz x), 5) == 1  -> X == 0
3434           Cond = ISD::SETEQ;
3435         }
3436         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3437         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3438                             Zero, Cond);
3439       }
3440     }
3441 
3442     SDValue CTPOP = N0;
3443     // Look through truncs that don't change the value of a ctpop.
3444     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3445       CTPOP = N0.getOperand(0);
3446 
3447     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3448         (N0 == CTPOP ||
3449          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3450       EVT CTVT = CTPOP.getValueType();
3451       SDValue CTOp = CTPOP.getOperand(0);
3452 
3453       // (ctpop x) u< 2 -> (x & x-1) == 0
3454       // (ctpop x) u> 1 -> (x & x-1) != 0
3455       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3456         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3457         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3458         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3459         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3460         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3461       }
3462 
3463       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3464       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3465           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3466         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3467         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3468         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3469         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3470         assert(CTVT.isInteger());
3471         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3472         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3473         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3474         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3475         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3476         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3477         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3478       }
3479     }
3480 
3481     // (zext x) == C --> x == (trunc C)
3482     // (sext x) == C --> x == (trunc C)
3483     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3484         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3485       unsigned MinBits = N0.getValueSizeInBits();
3486       SDValue PreExt;
3487       bool Signed = false;
3488       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3489         // ZExt
3490         MinBits = N0->getOperand(0).getValueSizeInBits();
3491         PreExt = N0->getOperand(0);
3492       } else if (N0->getOpcode() == ISD::AND) {
3493         // DAGCombine turns costly ZExts into ANDs
3494         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3495           if ((C->getAPIntValue()+1).isPowerOf2()) {
3496             MinBits = C->getAPIntValue().countTrailingOnes();
3497             PreExt = N0->getOperand(0);
3498           }
3499       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3500         // SExt
3501         MinBits = N0->getOperand(0).getValueSizeInBits();
3502         PreExt = N0->getOperand(0);
3503         Signed = true;
3504       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3505         // ZEXTLOAD / SEXTLOAD
3506         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3507           MinBits = LN0->getMemoryVT().getSizeInBits();
3508           PreExt = N0;
3509         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3510           Signed = true;
3511           MinBits = LN0->getMemoryVT().getSizeInBits();
3512           PreExt = N0;
3513         }
3514       }
3515 
3516       // Figure out how many bits we need to preserve this constant.
3517       unsigned ReqdBits = Signed ?
3518         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3519         C1.getActiveBits();
3520 
3521       // Make sure we're not losing bits from the constant.
3522       if (MinBits > 0 &&
3523           MinBits < C1.getBitWidth() &&
3524           MinBits >= ReqdBits) {
3525         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3526         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3527           // Will get folded away.
3528           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3529           if (MinBits == 1 && C1 == 1)
3530             // Invert the condition.
3531             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3532                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3533           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3534           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3535         }
3536 
3537         // If truncating the setcc operands is not desirable, we can still
3538         // simplify the expression in some cases:
3539         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3540         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3541         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3542         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3543         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3544         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3545         SDValue TopSetCC = N0->getOperand(0);
3546         unsigned N0Opc = N0->getOpcode();
3547         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3548         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3549             TopSetCC.getOpcode() == ISD::SETCC &&
3550             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3551             (isConstFalseVal(N1C) ||
3552              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3553 
3554           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3555                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3556 
3557           if (!Inverse)
3558             return TopSetCC;
3559 
3560           ISD::CondCode InvCond = ISD::getSetCCInverse(
3561               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3562               TopSetCC.getOperand(0).getValueType());
3563           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3564                                       TopSetCC.getOperand(1),
3565                                       InvCond);
3566         }
3567       }
3568     }
3569 
3570     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3571     // equality or unsigned, and all 1 bits of the const are in the same
3572     // partial word, see if we can shorten the load.
3573     if (DCI.isBeforeLegalize() &&
3574         !ISD::isSignedIntSetCC(Cond) &&
3575         N0.getOpcode() == ISD::AND && C1 == 0 &&
3576         N0.getNode()->hasOneUse() &&
3577         isa<LoadSDNode>(N0.getOperand(0)) &&
3578         N0.getOperand(0).getNode()->hasOneUse() &&
3579         isa<ConstantSDNode>(N0.getOperand(1))) {
3580       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3581       APInt bestMask;
3582       unsigned bestWidth = 0, bestOffset = 0;
3583       if (Lod->isSimple() && Lod->isUnindexed()) {
3584         unsigned origWidth = N0.getValueSizeInBits();
3585         unsigned maskWidth = origWidth;
3586         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3587         // 8 bits, but have to be careful...
3588         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3589           origWidth = Lod->getMemoryVT().getSizeInBits();
3590         const APInt &Mask = N0.getConstantOperandAPInt(1);
3591         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3592           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3593           for (unsigned offset=0; offset<origWidth/width; offset++) {
3594             if (Mask.isSubsetOf(newMask)) {
3595               if (Layout.isLittleEndian())
3596                 bestOffset = (uint64_t)offset * (width/8);
3597               else
3598                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3599               bestMask = Mask.lshr(offset * (width/8) * 8);
3600               bestWidth = width;
3601               break;
3602             }
3603             newMask <<= width;
3604           }
3605         }
3606       }
3607       if (bestWidth) {
3608         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3609         if (newVT.isRound() &&
3610             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3611           SDValue Ptr = Lod->getBasePtr();
3612           if (bestOffset != 0)
3613             Ptr =
3614                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3615           SDValue NewLoad =
3616               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3617                           Lod->getPointerInfo().getWithOffset(bestOffset),
3618                           Lod->getOriginalAlign());
3619           return DAG.getSetCC(dl, VT,
3620                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3621                                       DAG.getConstant(bestMask.trunc(bestWidth),
3622                                                       dl, newVT)),
3623                               DAG.getConstant(0LL, dl, newVT), Cond);
3624         }
3625       }
3626     }
3627 
3628     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3629     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3630       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3631 
3632       // If the comparison constant has bits in the upper part, the
3633       // zero-extended value could never match.
3634       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3635                                               C1.getBitWidth() - InSize))) {
3636         switch (Cond) {
3637         case ISD::SETUGT:
3638         case ISD::SETUGE:
3639         case ISD::SETEQ:
3640           return DAG.getConstant(0, dl, VT);
3641         case ISD::SETULT:
3642         case ISD::SETULE:
3643         case ISD::SETNE:
3644           return DAG.getConstant(1, dl, VT);
3645         case ISD::SETGT:
3646         case ISD::SETGE:
3647           // True if the sign bit of C1 is set.
3648           return DAG.getConstant(C1.isNegative(), dl, VT);
3649         case ISD::SETLT:
3650         case ISD::SETLE:
3651           // True if the sign bit of C1 isn't set.
3652           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3653         default:
3654           break;
3655         }
3656       }
3657 
3658       // Otherwise, we can perform the comparison with the low bits.
3659       switch (Cond) {
3660       case ISD::SETEQ:
3661       case ISD::SETNE:
3662       case ISD::SETUGT:
3663       case ISD::SETUGE:
3664       case ISD::SETULT:
3665       case ISD::SETULE: {
3666         EVT newVT = N0.getOperand(0).getValueType();
3667         if (DCI.isBeforeLegalizeOps() ||
3668             (isOperationLegal(ISD::SETCC, newVT) &&
3669              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3670           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3671           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3672 
3673           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3674                                           NewConst, Cond);
3675           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3676         }
3677         break;
3678       }
3679       default:
3680         break; // todo, be more careful with signed comparisons
3681       }
3682     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3683                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3684       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3685       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3686       EVT ExtDstTy = N0.getValueType();
3687       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3688 
3689       // If the constant doesn't fit into the number of bits for the source of
3690       // the sign extension, it is impossible for both sides to be equal.
3691       if (C1.getMinSignedBits() > ExtSrcTyBits)
3692         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3693 
3694       SDValue ZextOp;
3695       EVT Op0Ty = N0.getOperand(0).getValueType();
3696       if (Op0Ty == ExtSrcTy) {
3697         ZextOp = N0.getOperand(0);
3698       } else {
3699         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3700         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3701                              DAG.getConstant(Imm, dl, Op0Ty));
3702       }
3703       if (!DCI.isCalledByLegalizer())
3704         DCI.AddToWorklist(ZextOp.getNode());
3705       // Otherwise, make this a use of a zext.
3706       return DAG.getSetCC(dl, VT, ZextOp,
3707                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3708                                                               ExtDstTyBits,
3709                                                               ExtSrcTyBits),
3710                                           dl, ExtDstTy),
3711                           Cond);
3712     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3713                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3714       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3715       if (N0.getOpcode() == ISD::SETCC &&
3716           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3717           (N0.getValueType() == MVT::i1 ||
3718            getBooleanContents(N0.getOperand(0).getValueType()) ==
3719                        ZeroOrOneBooleanContent)) {
3720         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3721         if (TrueWhenTrue)
3722           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3723         // Invert the condition.
3724         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3725         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3726         if (DCI.isBeforeLegalizeOps() ||
3727             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3728           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3729       }
3730 
3731       if ((N0.getOpcode() == ISD::XOR ||
3732            (N0.getOpcode() == ISD::AND &&
3733             N0.getOperand(0).getOpcode() == ISD::XOR &&
3734             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3735           isa<ConstantSDNode>(N0.getOperand(1)) &&
3736           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3737         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3738         // can only do this if the top bits are known zero.
3739         unsigned BitWidth = N0.getValueSizeInBits();
3740         if (DAG.MaskedValueIsZero(N0,
3741                                   APInt::getHighBitsSet(BitWidth,
3742                                                         BitWidth-1))) {
3743           // Okay, get the un-inverted input value.
3744           SDValue Val;
3745           if (N0.getOpcode() == ISD::XOR) {
3746             Val = N0.getOperand(0);
3747           } else {
3748             assert(N0.getOpcode() == ISD::AND &&
3749                     N0.getOperand(0).getOpcode() == ISD::XOR);
3750             // ((X^1)&1)^1 -> X & 1
3751             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3752                               N0.getOperand(0).getOperand(0),
3753                               N0.getOperand(1));
3754           }
3755 
3756           return DAG.getSetCC(dl, VT, Val, N1,
3757                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3758         }
3759       } else if (N1C->isOne()) {
3760         SDValue Op0 = N0;
3761         if (Op0.getOpcode() == ISD::TRUNCATE)
3762           Op0 = Op0.getOperand(0);
3763 
3764         if ((Op0.getOpcode() == ISD::XOR) &&
3765             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3766             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3767           SDValue XorLHS = Op0.getOperand(0);
3768           SDValue XorRHS = Op0.getOperand(1);
3769           // Ensure that the input setccs return an i1 type or 0/1 value.
3770           if (Op0.getValueType() == MVT::i1 ||
3771               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3772                       ZeroOrOneBooleanContent &&
3773                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3774                         ZeroOrOneBooleanContent)) {
3775             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3776             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3777             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3778           }
3779         }
3780         if (Op0.getOpcode() == ISD::AND &&
3781             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3782             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3783           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3784           if (Op0.getValueType().bitsGT(VT))
3785             Op0 = DAG.getNode(ISD::AND, dl, VT,
3786                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3787                           DAG.getConstant(1, dl, VT));
3788           else if (Op0.getValueType().bitsLT(VT))
3789             Op0 = DAG.getNode(ISD::AND, dl, VT,
3790                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3791                         DAG.getConstant(1, dl, VT));
3792 
3793           return DAG.getSetCC(dl, VT, Op0,
3794                               DAG.getConstant(0, dl, Op0.getValueType()),
3795                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3796         }
3797         if (Op0.getOpcode() == ISD::AssertZext &&
3798             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3799           return DAG.getSetCC(dl, VT, Op0,
3800                               DAG.getConstant(0, dl, Op0.getValueType()),
3801                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3802       }
3803     }
3804 
3805     // Given:
3806     //   icmp eq/ne (urem %x, %y), 0
3807     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3808     //   icmp eq/ne %x, 0
3809     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3810         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3811       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3812       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3813       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3814         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3815     }
3816 
3817     if (SDValue V =
3818             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3819       return V;
3820   }
3821 
3822   // These simplifications apply to splat vectors as well.
3823   // TODO: Handle more splat vector cases.
3824   if (auto *N1C = isConstOrConstSplat(N1)) {
3825     const APInt &C1 = N1C->getAPIntValue();
3826 
3827     APInt MinVal, MaxVal;
3828     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3829     if (ISD::isSignedIntSetCC(Cond)) {
3830       MinVal = APInt::getSignedMinValue(OperandBitSize);
3831       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3832     } else {
3833       MinVal = APInt::getMinValue(OperandBitSize);
3834       MaxVal = APInt::getMaxValue(OperandBitSize);
3835     }
3836 
3837     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3838     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3839       // X >= MIN --> true
3840       if (C1 == MinVal)
3841         return DAG.getBoolConstant(true, dl, VT, OpVT);
3842 
3843       if (!VT.isVector()) { // TODO: Support this for vectors.
3844         // X >= C0 --> X > (C0 - 1)
3845         APInt C = C1 - 1;
3846         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3847         if ((DCI.isBeforeLegalizeOps() ||
3848              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3849             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3850                                   isLegalICmpImmediate(C.getSExtValue())))) {
3851           return DAG.getSetCC(dl, VT, N0,
3852                               DAG.getConstant(C, dl, N1.getValueType()),
3853                               NewCC);
3854         }
3855       }
3856     }
3857 
3858     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3859       // X <= MAX --> true
3860       if (C1 == MaxVal)
3861         return DAG.getBoolConstant(true, dl, VT, OpVT);
3862 
3863       // X <= C0 --> X < (C0 + 1)
3864       if (!VT.isVector()) { // TODO: Support this for vectors.
3865         APInt C = C1 + 1;
3866         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3867         if ((DCI.isBeforeLegalizeOps() ||
3868              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3869             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3870                                   isLegalICmpImmediate(C.getSExtValue())))) {
3871           return DAG.getSetCC(dl, VT, N0,
3872                               DAG.getConstant(C, dl, N1.getValueType()),
3873                               NewCC);
3874         }
3875       }
3876     }
3877 
3878     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3879       if (C1 == MinVal)
3880         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3881 
3882       // TODO: Support this for vectors after legalize ops.
3883       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3884         // Canonicalize setlt X, Max --> setne X, Max
3885         if (C1 == MaxVal)
3886           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3887 
3888         // If we have setult X, 1, turn it into seteq X, 0
3889         if (C1 == MinVal+1)
3890           return DAG.getSetCC(dl, VT, N0,
3891                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3892                               ISD::SETEQ);
3893       }
3894     }
3895 
3896     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3897       if (C1 == MaxVal)
3898         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3899 
3900       // TODO: Support this for vectors after legalize ops.
3901       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3902         // Canonicalize setgt X, Min --> setne X, Min
3903         if (C1 == MinVal)
3904           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3905 
3906         // If we have setugt X, Max-1, turn it into seteq X, Max
3907         if (C1 == MaxVal-1)
3908           return DAG.getSetCC(dl, VT, N0,
3909                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3910                               ISD::SETEQ);
3911       }
3912     }
3913 
3914     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3915       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3916       if (C1.isNullValue())
3917         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3918                 VT, N0, N1, Cond, DCI, dl))
3919           return CC;
3920     }
3921 
3922     // If we have "setcc X, C0", check to see if we can shrink the immediate
3923     // by changing cc.
3924     // TODO: Support this for vectors after legalize ops.
3925     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3926       // SETUGT X, SINTMAX  -> SETLT X, 0
3927       // SETUGE X, SINTMIN -> SETLT X, 0
3928       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
3929           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
3930         return DAG.getSetCC(dl, VT, N0,
3931                             DAG.getConstant(0, dl, N1.getValueType()),
3932                             ISD::SETLT);
3933 
3934       // SETULT X, SINTMIN  -> SETGT X, -1
3935       // SETULE X, SINTMAX  -> SETGT X, -1
3936       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
3937           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
3938         return DAG.getSetCC(dl, VT, N0,
3939                             DAG.getAllOnesConstant(dl, N1.getValueType()),
3940                             ISD::SETGT);
3941     }
3942   }
3943 
3944   // Back to non-vector simplifications.
3945   // TODO: Can we do these for vector splats?
3946   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3947     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3948     const APInt &C1 = N1C->getAPIntValue();
3949     EVT ShValTy = N0.getValueType();
3950 
3951     // Fold bit comparisons when we can.
3952     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3953         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3954         N0.getOpcode() == ISD::AND) {
3955       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3956         EVT ShiftTy =
3957             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3958         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3959           // Perform the xform if the AND RHS is a single bit.
3960           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3961           if (AndRHS->getAPIntValue().isPowerOf2() &&
3962               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3963             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3964                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3965                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3966           }
3967         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3968           // (X & 8) == 8  -->  (X & 8) >> 3
3969           // Perform the xform if C1 is a single bit.
3970           unsigned ShCt = C1.logBase2();
3971           if (C1.isPowerOf2() &&
3972               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3973             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3974                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3975                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3976           }
3977         }
3978       }
3979     }
3980 
3981     if (C1.getMinSignedBits() <= 64 &&
3982         !isLegalICmpImmediate(C1.getSExtValue())) {
3983       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3984       // (X & -256) == 256 -> (X >> 8) == 1
3985       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3986           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3987         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3988           const APInt &AndRHSC = AndRHS->getAPIntValue();
3989           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3990             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3991             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3992               SDValue Shift =
3993                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3994                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3995               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3996               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3997             }
3998           }
3999         }
4000       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4001                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4002         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4003         // X <  0x100000000 -> (X >> 32) <  1
4004         // X >= 0x100000000 -> (X >> 32) >= 1
4005         // X <= 0x0ffffffff -> (X >> 32) <  1
4006         // X >  0x0ffffffff -> (X >> 32) >= 1
4007         unsigned ShiftBits;
4008         APInt NewC = C1;
4009         ISD::CondCode NewCond = Cond;
4010         if (AdjOne) {
4011           ShiftBits = C1.countTrailingOnes();
4012           NewC = NewC + 1;
4013           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4014         } else {
4015           ShiftBits = C1.countTrailingZeros();
4016         }
4017         NewC.lshrInPlace(ShiftBits);
4018         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4019             isLegalICmpImmediate(NewC.getSExtValue()) &&
4020             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4021           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4022                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4023           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4024           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4025         }
4026       }
4027     }
4028   }
4029 
4030   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4031     auto *CFP = cast<ConstantFPSDNode>(N1);
4032     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4033 
4034     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4035     // constant if knowing that the operand is non-nan is enough.  We prefer to
4036     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4037     // materialize 0.0.
4038     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4039       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4040 
4041     // setcc (fneg x), C -> setcc swap(pred) x, -C
4042     if (N0.getOpcode() == ISD::FNEG) {
4043       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4044       if (DCI.isBeforeLegalizeOps() ||
4045           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4046         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4047         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4048       }
4049     }
4050 
4051     // If the condition is not legal, see if we can find an equivalent one
4052     // which is legal.
4053     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4054       // If the comparison was an awkward floating-point == or != and one of
4055       // the comparison operands is infinity or negative infinity, convert the
4056       // condition to a less-awkward <= or >=.
4057       if (CFP->getValueAPF().isInfinity()) {
4058         bool IsNegInf = CFP->getValueAPF().isNegative();
4059         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4060         switch (Cond) {
4061         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4062         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4063         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4064         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4065         default: break;
4066         }
4067         if (NewCond != ISD::SETCC_INVALID &&
4068             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4069           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4070       }
4071     }
4072   }
4073 
4074   if (N0 == N1) {
4075     // The sext(setcc()) => setcc() optimization relies on the appropriate
4076     // constant being emitted.
4077     assert(!N0.getValueType().isInteger() &&
4078            "Integer types should be handled by FoldSetCC");
4079 
4080     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4081     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4082     if (UOF == 2) // FP operators that are undefined on NaNs.
4083       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4084     if (UOF == unsigned(EqTrue))
4085       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4086     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4087     // if it is not already.
4088     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4089     if (NewCond != Cond &&
4090         (DCI.isBeforeLegalizeOps() ||
4091                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4092       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4093   }
4094 
4095   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4096       N0.getValueType().isInteger()) {
4097     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4098         N0.getOpcode() == ISD::XOR) {
4099       // Simplify (X+Y) == (X+Z) -->  Y == Z
4100       if (N0.getOpcode() == N1.getOpcode()) {
4101         if (N0.getOperand(0) == N1.getOperand(0))
4102           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4103         if (N0.getOperand(1) == N1.getOperand(1))
4104           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4105         if (isCommutativeBinOp(N0.getOpcode())) {
4106           // If X op Y == Y op X, try other combinations.
4107           if (N0.getOperand(0) == N1.getOperand(1))
4108             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4109                                 Cond);
4110           if (N0.getOperand(1) == N1.getOperand(0))
4111             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4112                                 Cond);
4113         }
4114       }
4115 
4116       // If RHS is a legal immediate value for a compare instruction, we need
4117       // to be careful about increasing register pressure needlessly.
4118       bool LegalRHSImm = false;
4119 
4120       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4121         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4122           // Turn (X+C1) == C2 --> X == C2-C1
4123           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4124             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4125                                 DAG.getConstant(RHSC->getAPIntValue()-
4126                                                 LHSR->getAPIntValue(),
4127                                 dl, N0.getValueType()), Cond);
4128           }
4129 
4130           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4131           if (N0.getOpcode() == ISD::XOR)
4132             // If we know that all of the inverted bits are zero, don't bother
4133             // performing the inversion.
4134             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4135               return
4136                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4137                              DAG.getConstant(LHSR->getAPIntValue() ^
4138                                                RHSC->getAPIntValue(),
4139                                              dl, N0.getValueType()),
4140                              Cond);
4141         }
4142 
4143         // Turn (C1-X) == C2 --> X == C1-C2
4144         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4145           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4146             return
4147               DAG.getSetCC(dl, VT, N0.getOperand(1),
4148                            DAG.getConstant(SUBC->getAPIntValue() -
4149                                              RHSC->getAPIntValue(),
4150                                            dl, N0.getValueType()),
4151                            Cond);
4152           }
4153         }
4154 
4155         // Could RHSC fold directly into a compare?
4156         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4157           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4158       }
4159 
4160       // (X+Y) == X --> Y == 0 and similar folds.
4161       // Don't do this if X is an immediate that can fold into a cmp
4162       // instruction and X+Y has other uses. It could be an induction variable
4163       // chain, and the transform would increase register pressure.
4164       if (!LegalRHSImm || N0.hasOneUse())
4165         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4166           return V;
4167     }
4168 
4169     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4170         N1.getOpcode() == ISD::XOR)
4171       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4172         return V;
4173 
4174     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4175       return V;
4176   }
4177 
4178   // Fold remainder of division by a constant.
4179   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4180       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4181     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4182 
4183     // When division is cheap or optimizing for minimum size,
4184     // fall through to DIVREM creation by skipping this fold.
4185     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4186       if (N0.getOpcode() == ISD::UREM) {
4187         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4188           return Folded;
4189       } else if (N0.getOpcode() == ISD::SREM) {
4190         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4191           return Folded;
4192       }
4193     }
4194   }
4195 
4196   // Fold away ALL boolean setcc's.
4197   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4198     SDValue Temp;
4199     switch (Cond) {
4200     default: llvm_unreachable("Unknown integer setcc!");
4201     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4202       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4203       N0 = DAG.getNOT(dl, Temp, OpVT);
4204       if (!DCI.isCalledByLegalizer())
4205         DCI.AddToWorklist(Temp.getNode());
4206       break;
4207     case ISD::SETNE:  // X != Y   -->  (X^Y)
4208       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4209       break;
4210     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4211     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4212       Temp = DAG.getNOT(dl, N0, OpVT);
4213       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4214       if (!DCI.isCalledByLegalizer())
4215         DCI.AddToWorklist(Temp.getNode());
4216       break;
4217     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4218     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4219       Temp = DAG.getNOT(dl, N1, OpVT);
4220       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4221       if (!DCI.isCalledByLegalizer())
4222         DCI.AddToWorklist(Temp.getNode());
4223       break;
4224     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4225     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4226       Temp = DAG.getNOT(dl, N0, OpVT);
4227       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4228       if (!DCI.isCalledByLegalizer())
4229         DCI.AddToWorklist(Temp.getNode());
4230       break;
4231     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4232     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4233       Temp = DAG.getNOT(dl, N1, OpVT);
4234       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4235       break;
4236     }
4237     if (VT.getScalarType() != MVT::i1) {
4238       if (!DCI.isCalledByLegalizer())
4239         DCI.AddToWorklist(N0.getNode());
4240       // FIXME: If running after legalize, we probably can't do this.
4241       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4242       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4243     }
4244     return N0;
4245   }
4246 
4247   // Could not fold it.
4248   return SDValue();
4249 }
4250 
4251 /// Returns true (and the GlobalValue and the offset) if the node is a
4252 /// GlobalAddress + offset.
4253 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4254                                     int64_t &Offset) const {
4255 
4256   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4257 
4258   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4259     GA = GASD->getGlobal();
4260     Offset += GASD->getOffset();
4261     return true;
4262   }
4263 
4264   if (N->getOpcode() == ISD::ADD) {
4265     SDValue N1 = N->getOperand(0);
4266     SDValue N2 = N->getOperand(1);
4267     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4268       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4269         Offset += V->getSExtValue();
4270         return true;
4271       }
4272     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4273       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4274         Offset += V->getSExtValue();
4275         return true;
4276       }
4277     }
4278   }
4279 
4280   return false;
4281 }
4282 
4283 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4284                                           DAGCombinerInfo &DCI) const {
4285   // Default implementation: no optimization.
4286   return SDValue();
4287 }
4288 
4289 //===----------------------------------------------------------------------===//
4290 //  Inline Assembler Implementation Methods
4291 //===----------------------------------------------------------------------===//
4292 
4293 TargetLowering::ConstraintType
4294 TargetLowering::getConstraintType(StringRef Constraint) const {
4295   unsigned S = Constraint.size();
4296 
4297   if (S == 1) {
4298     switch (Constraint[0]) {
4299     default: break;
4300     case 'r':
4301       return C_RegisterClass;
4302     case 'm': // memory
4303     case 'o': // offsetable
4304     case 'V': // not offsetable
4305       return C_Memory;
4306     case 'n': // Simple Integer
4307     case 'E': // Floating Point Constant
4308     case 'F': // Floating Point Constant
4309       return C_Immediate;
4310     case 'i': // Simple Integer or Relocatable Constant
4311     case 's': // Relocatable Constant
4312     case 'p': // Address.
4313     case 'X': // Allow ANY value.
4314     case 'I': // Target registers.
4315     case 'J':
4316     case 'K':
4317     case 'L':
4318     case 'M':
4319     case 'N':
4320     case 'O':
4321     case 'P':
4322     case '<':
4323     case '>':
4324       return C_Other;
4325     }
4326   }
4327 
4328   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4329     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4330       return C_Memory;
4331     return C_Register;
4332   }
4333   return C_Unknown;
4334 }
4335 
4336 /// Try to replace an X constraint, which matches anything, with another that
4337 /// has more specific requirements based on the type of the corresponding
4338 /// operand.
4339 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4340   if (ConstraintVT.isInteger())
4341     return "r";
4342   if (ConstraintVT.isFloatingPoint())
4343     return "f"; // works for many targets
4344   return nullptr;
4345 }
4346 
4347 SDValue TargetLowering::LowerAsmOutputForConstraint(
4348     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4349     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4350   return SDValue();
4351 }
4352 
4353 /// Lower the specified operand into the Ops vector.
4354 /// If it is invalid, don't add anything to Ops.
4355 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4356                                                   std::string &Constraint,
4357                                                   std::vector<SDValue> &Ops,
4358                                                   SelectionDAG &DAG) const {
4359 
4360   if (Constraint.length() > 1) return;
4361 
4362   char ConstraintLetter = Constraint[0];
4363   switch (ConstraintLetter) {
4364   default: break;
4365   case 'X':     // Allows any operand; labels (basic block) use this.
4366     if (Op.getOpcode() == ISD::BasicBlock ||
4367         Op.getOpcode() == ISD::TargetBlockAddress) {
4368       Ops.push_back(Op);
4369       return;
4370     }
4371     LLVM_FALLTHROUGH;
4372   case 'i':    // Simple Integer or Relocatable Constant
4373   case 'n':    // Simple Integer
4374   case 's': {  // Relocatable Constant
4375 
4376     GlobalAddressSDNode *GA;
4377     ConstantSDNode *C;
4378     BlockAddressSDNode *BA;
4379     uint64_t Offset = 0;
4380 
4381     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4382     // etc., since getelementpointer is variadic. We can't use
4383     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4384     // while in this case the GA may be furthest from the root node which is
4385     // likely an ISD::ADD.
4386     while (1) {
4387       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4388         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4389                                                  GA->getValueType(0),
4390                                                  Offset + GA->getOffset()));
4391         return;
4392       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4393                  ConstraintLetter != 's') {
4394         // gcc prints these as sign extended.  Sign extend value to 64 bits
4395         // now; without this it would get ZExt'd later in
4396         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4397         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4398         BooleanContent BCont = getBooleanContents(MVT::i64);
4399         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4400                                       : ISD::SIGN_EXTEND;
4401         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4402                                                     : C->getSExtValue();
4403         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4404                                             SDLoc(C), MVT::i64));
4405         return;
4406       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4407                  ConstraintLetter != 'n') {
4408         Ops.push_back(DAG.getTargetBlockAddress(
4409             BA->getBlockAddress(), BA->getValueType(0),
4410             Offset + BA->getOffset(), BA->getTargetFlags()));
4411         return;
4412       } else {
4413         const unsigned OpCode = Op.getOpcode();
4414         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4415           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4416             Op = Op.getOperand(1);
4417           // Subtraction is not commutative.
4418           else if (OpCode == ISD::ADD &&
4419                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4420             Op = Op.getOperand(0);
4421           else
4422             return;
4423           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4424           continue;
4425         }
4426       }
4427       return;
4428     }
4429     break;
4430   }
4431   }
4432 }
4433 
4434 std::pair<unsigned, const TargetRegisterClass *>
4435 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4436                                              StringRef Constraint,
4437                                              MVT VT) const {
4438   if (Constraint.empty() || Constraint[0] != '{')
4439     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4440   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4441 
4442   // Remove the braces from around the name.
4443   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4444 
4445   std::pair<unsigned, const TargetRegisterClass *> R =
4446       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4447 
4448   // Figure out which register class contains this reg.
4449   for (const TargetRegisterClass *RC : RI->regclasses()) {
4450     // If none of the value types for this register class are valid, we
4451     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4452     if (!isLegalRC(*RI, *RC))
4453       continue;
4454 
4455     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4456          I != E; ++I) {
4457       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4458         std::pair<unsigned, const TargetRegisterClass *> S =
4459             std::make_pair(*I, RC);
4460 
4461         // If this register class has the requested value type, return it,
4462         // otherwise keep searching and return the first class found
4463         // if no other is found which explicitly has the requested type.
4464         if (RI->isTypeLegalForClass(*RC, VT))
4465           return S;
4466         if (!R.second)
4467           R = S;
4468       }
4469     }
4470   }
4471 
4472   return R;
4473 }
4474 
4475 //===----------------------------------------------------------------------===//
4476 // Constraint Selection.
4477 
4478 /// Return true of this is an input operand that is a matching constraint like
4479 /// "4".
4480 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4481   assert(!ConstraintCode.empty() && "No known constraint!");
4482   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4483 }
4484 
4485 /// If this is an input matching constraint, this method returns the output
4486 /// operand it matches.
4487 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4488   assert(!ConstraintCode.empty() && "No known constraint!");
4489   return atoi(ConstraintCode.c_str());
4490 }
4491 
4492 /// Split up the constraint string from the inline assembly value into the
4493 /// specific constraints and their prefixes, and also tie in the associated
4494 /// operand values.
4495 /// If this returns an empty vector, and if the constraint string itself
4496 /// isn't empty, there was an error parsing.
4497 TargetLowering::AsmOperandInfoVector
4498 TargetLowering::ParseConstraints(const DataLayout &DL,
4499                                  const TargetRegisterInfo *TRI,
4500                                  const CallBase &Call) const {
4501   /// Information about all of the constraints.
4502   AsmOperandInfoVector ConstraintOperands;
4503   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4504   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4505 
4506   // Do a prepass over the constraints, canonicalizing them, and building up the
4507   // ConstraintOperands list.
4508   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4509   unsigned ResNo = 0; // ResNo - The result number of the next output.
4510 
4511   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4512     ConstraintOperands.emplace_back(std::move(CI));
4513     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4514 
4515     // Update multiple alternative constraint count.
4516     if (OpInfo.multipleAlternatives.size() > maCount)
4517       maCount = OpInfo.multipleAlternatives.size();
4518 
4519     OpInfo.ConstraintVT = MVT::Other;
4520 
4521     // Compute the value type for each operand.
4522     switch (OpInfo.Type) {
4523     case InlineAsm::isOutput:
4524       // Indirect outputs just consume an argument.
4525       if (OpInfo.isIndirect) {
4526         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4527         break;
4528       }
4529 
4530       // The return value of the call is this value.  As such, there is no
4531       // corresponding argument.
4532       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4533       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4534         OpInfo.ConstraintVT =
4535             getSimpleValueType(DL, STy->getElementType(ResNo));
4536       } else {
4537         assert(ResNo == 0 && "Asm only has one result!");
4538         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4539       }
4540       ++ResNo;
4541       break;
4542     case InlineAsm::isInput:
4543       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4544       break;
4545     case InlineAsm::isClobber:
4546       // Nothing to do.
4547       break;
4548     }
4549 
4550     if (OpInfo.CallOperandVal) {
4551       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4552       if (OpInfo.isIndirect) {
4553         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4554         if (!PtrTy)
4555           report_fatal_error("Indirect operand for inline asm not a pointer!");
4556         OpTy = PtrTy->getElementType();
4557       }
4558 
4559       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4560       if (StructType *STy = dyn_cast<StructType>(OpTy))
4561         if (STy->getNumElements() == 1)
4562           OpTy = STy->getElementType(0);
4563 
4564       // If OpTy is not a single value, it may be a struct/union that we
4565       // can tile with integers.
4566       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4567         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4568         switch (BitSize) {
4569         default: break;
4570         case 1:
4571         case 8:
4572         case 16:
4573         case 32:
4574         case 64:
4575         case 128:
4576           OpInfo.ConstraintVT =
4577               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4578           break;
4579         }
4580       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4581         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4582         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4583       } else {
4584         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4585       }
4586     }
4587   }
4588 
4589   // If we have multiple alternative constraints, select the best alternative.
4590   if (!ConstraintOperands.empty()) {
4591     if (maCount) {
4592       unsigned bestMAIndex = 0;
4593       int bestWeight = -1;
4594       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4595       int weight = -1;
4596       unsigned maIndex;
4597       // Compute the sums of the weights for each alternative, keeping track
4598       // of the best (highest weight) one so far.
4599       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4600         int weightSum = 0;
4601         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4602              cIndex != eIndex; ++cIndex) {
4603           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4604           if (OpInfo.Type == InlineAsm::isClobber)
4605             continue;
4606 
4607           // If this is an output operand with a matching input operand,
4608           // look up the matching input. If their types mismatch, e.g. one
4609           // is an integer, the other is floating point, or their sizes are
4610           // different, flag it as an maCantMatch.
4611           if (OpInfo.hasMatchingInput()) {
4612             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4613             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4614               if ((OpInfo.ConstraintVT.isInteger() !=
4615                    Input.ConstraintVT.isInteger()) ||
4616                   (OpInfo.ConstraintVT.getSizeInBits() !=
4617                    Input.ConstraintVT.getSizeInBits())) {
4618                 weightSum = -1; // Can't match.
4619                 break;
4620               }
4621             }
4622           }
4623           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4624           if (weight == -1) {
4625             weightSum = -1;
4626             break;
4627           }
4628           weightSum += weight;
4629         }
4630         // Update best.
4631         if (weightSum > bestWeight) {
4632           bestWeight = weightSum;
4633           bestMAIndex = maIndex;
4634         }
4635       }
4636 
4637       // Now select chosen alternative in each constraint.
4638       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4639            cIndex != eIndex; ++cIndex) {
4640         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4641         if (cInfo.Type == InlineAsm::isClobber)
4642           continue;
4643         cInfo.selectAlternative(bestMAIndex);
4644       }
4645     }
4646   }
4647 
4648   // Check and hook up tied operands, choose constraint code to use.
4649   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4650        cIndex != eIndex; ++cIndex) {
4651     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4652 
4653     // If this is an output operand with a matching input operand, look up the
4654     // matching input. If their types mismatch, e.g. one is an integer, the
4655     // other is floating point, or their sizes are different, flag it as an
4656     // error.
4657     if (OpInfo.hasMatchingInput()) {
4658       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4659 
4660       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4661         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4662             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4663                                          OpInfo.ConstraintVT);
4664         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4665             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4666                                          Input.ConstraintVT);
4667         if ((OpInfo.ConstraintVT.isInteger() !=
4668              Input.ConstraintVT.isInteger()) ||
4669             (MatchRC.second != InputRC.second)) {
4670           report_fatal_error("Unsupported asm: input constraint"
4671                              " with a matching output constraint of"
4672                              " incompatible type!");
4673         }
4674       }
4675     }
4676   }
4677 
4678   return ConstraintOperands;
4679 }
4680 
4681 /// Return an integer indicating how general CT is.
4682 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4683   switch (CT) {
4684   case TargetLowering::C_Immediate:
4685   case TargetLowering::C_Other:
4686   case TargetLowering::C_Unknown:
4687     return 0;
4688   case TargetLowering::C_Register:
4689     return 1;
4690   case TargetLowering::C_RegisterClass:
4691     return 2;
4692   case TargetLowering::C_Memory:
4693     return 3;
4694   }
4695   llvm_unreachable("Invalid constraint type");
4696 }
4697 
4698 /// Examine constraint type and operand type and determine a weight value.
4699 /// This object must already have been set up with the operand type
4700 /// and the current alternative constraint selected.
4701 TargetLowering::ConstraintWeight
4702   TargetLowering::getMultipleConstraintMatchWeight(
4703     AsmOperandInfo &info, int maIndex) const {
4704   InlineAsm::ConstraintCodeVector *rCodes;
4705   if (maIndex >= (int)info.multipleAlternatives.size())
4706     rCodes = &info.Codes;
4707   else
4708     rCodes = &info.multipleAlternatives[maIndex].Codes;
4709   ConstraintWeight BestWeight = CW_Invalid;
4710 
4711   // Loop over the options, keeping track of the most general one.
4712   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4713     ConstraintWeight weight =
4714       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4715     if (weight > BestWeight)
4716       BestWeight = weight;
4717   }
4718 
4719   return BestWeight;
4720 }
4721 
4722 /// Examine constraint type and operand type and determine a weight value.
4723 /// This object must already have been set up with the operand type
4724 /// and the current alternative constraint selected.
4725 TargetLowering::ConstraintWeight
4726   TargetLowering::getSingleConstraintMatchWeight(
4727     AsmOperandInfo &info, const char *constraint) const {
4728   ConstraintWeight weight = CW_Invalid;
4729   Value *CallOperandVal = info.CallOperandVal;
4730     // If we don't have a value, we can't do a match,
4731     // but allow it at the lowest weight.
4732   if (!CallOperandVal)
4733     return CW_Default;
4734   // Look at the constraint type.
4735   switch (*constraint) {
4736     case 'i': // immediate integer.
4737     case 'n': // immediate integer with a known value.
4738       if (isa<ConstantInt>(CallOperandVal))
4739         weight = CW_Constant;
4740       break;
4741     case 's': // non-explicit intregal immediate.
4742       if (isa<GlobalValue>(CallOperandVal))
4743         weight = CW_Constant;
4744       break;
4745     case 'E': // immediate float if host format.
4746     case 'F': // immediate float.
4747       if (isa<ConstantFP>(CallOperandVal))
4748         weight = CW_Constant;
4749       break;
4750     case '<': // memory operand with autodecrement.
4751     case '>': // memory operand with autoincrement.
4752     case 'm': // memory operand.
4753     case 'o': // offsettable memory operand
4754     case 'V': // non-offsettable memory operand
4755       weight = CW_Memory;
4756       break;
4757     case 'r': // general register.
4758     case 'g': // general register, memory operand or immediate integer.
4759               // note: Clang converts "g" to "imr".
4760       if (CallOperandVal->getType()->isIntegerTy())
4761         weight = CW_Register;
4762       break;
4763     case 'X': // any operand.
4764   default:
4765     weight = CW_Default;
4766     break;
4767   }
4768   return weight;
4769 }
4770 
4771 /// If there are multiple different constraints that we could pick for this
4772 /// operand (e.g. "imr") try to pick the 'best' one.
4773 /// This is somewhat tricky: constraints fall into four classes:
4774 ///    Other         -> immediates and magic values
4775 ///    Register      -> one specific register
4776 ///    RegisterClass -> a group of regs
4777 ///    Memory        -> memory
4778 /// Ideally, we would pick the most specific constraint possible: if we have
4779 /// something that fits into a register, we would pick it.  The problem here
4780 /// is that if we have something that could either be in a register or in
4781 /// memory that use of the register could cause selection of *other*
4782 /// operands to fail: they might only succeed if we pick memory.  Because of
4783 /// this the heuristic we use is:
4784 ///
4785 ///  1) If there is an 'other' constraint, and if the operand is valid for
4786 ///     that constraint, use it.  This makes us take advantage of 'i'
4787 ///     constraints when available.
4788 ///  2) Otherwise, pick the most general constraint present.  This prefers
4789 ///     'm' over 'r', for example.
4790 ///
4791 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4792                              const TargetLowering &TLI,
4793                              SDValue Op, SelectionDAG *DAG) {
4794   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4795   unsigned BestIdx = 0;
4796   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4797   int BestGenerality = -1;
4798 
4799   // Loop over the options, keeping track of the most general one.
4800   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4801     TargetLowering::ConstraintType CType =
4802       TLI.getConstraintType(OpInfo.Codes[i]);
4803 
4804     // Indirect 'other' or 'immediate' constraints are not allowed.
4805     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4806                                CType == TargetLowering::C_Register ||
4807                                CType == TargetLowering::C_RegisterClass))
4808       continue;
4809 
4810     // If this is an 'other' or 'immediate' constraint, see if the operand is
4811     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4812     // the operand is an integer in the range [0..31] we want to use I (saving a
4813     // load of a register), otherwise we must use 'r'.
4814     if ((CType == TargetLowering::C_Other ||
4815          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4816       assert(OpInfo.Codes[i].size() == 1 &&
4817              "Unhandled multi-letter 'other' constraint");
4818       std::vector<SDValue> ResultOps;
4819       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4820                                        ResultOps, *DAG);
4821       if (!ResultOps.empty()) {
4822         BestType = CType;
4823         BestIdx = i;
4824         break;
4825       }
4826     }
4827 
4828     // Things with matching constraints can only be registers, per gcc
4829     // documentation.  This mainly affects "g" constraints.
4830     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4831       continue;
4832 
4833     // This constraint letter is more general than the previous one, use it.
4834     int Generality = getConstraintGenerality(CType);
4835     if (Generality > BestGenerality) {
4836       BestType = CType;
4837       BestIdx = i;
4838       BestGenerality = Generality;
4839     }
4840   }
4841 
4842   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4843   OpInfo.ConstraintType = BestType;
4844 }
4845 
4846 /// Determines the constraint code and constraint type to use for the specific
4847 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4848 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4849                                             SDValue Op,
4850                                             SelectionDAG *DAG) const {
4851   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4852 
4853   // Single-letter constraints ('r') are very common.
4854   if (OpInfo.Codes.size() == 1) {
4855     OpInfo.ConstraintCode = OpInfo.Codes[0];
4856     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4857   } else {
4858     ChooseConstraint(OpInfo, *this, Op, DAG);
4859   }
4860 
4861   // 'X' matches anything.
4862   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4863     // Labels and constants are handled elsewhere ('X' is the only thing
4864     // that matches labels).  For Functions, the type here is the type of
4865     // the result, which is not what we want to look at; leave them alone.
4866     Value *v = OpInfo.CallOperandVal;
4867     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4868       OpInfo.CallOperandVal = v;
4869       return;
4870     }
4871 
4872     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4873       return;
4874 
4875     // Otherwise, try to resolve it to something we know about by looking at
4876     // the actual operand type.
4877     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4878       OpInfo.ConstraintCode = Repl;
4879       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4880     }
4881   }
4882 }
4883 
4884 /// Given an exact SDIV by a constant, create a multiplication
4885 /// with the multiplicative inverse of the constant.
4886 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4887                               const SDLoc &dl, SelectionDAG &DAG,
4888                               SmallVectorImpl<SDNode *> &Created) {
4889   SDValue Op0 = N->getOperand(0);
4890   SDValue Op1 = N->getOperand(1);
4891   EVT VT = N->getValueType(0);
4892   EVT SVT = VT.getScalarType();
4893   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4894   EVT ShSVT = ShVT.getScalarType();
4895 
4896   bool UseSRA = false;
4897   SmallVector<SDValue, 16> Shifts, Factors;
4898 
4899   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4900     if (C->isNullValue())
4901       return false;
4902     APInt Divisor = C->getAPIntValue();
4903     unsigned Shift = Divisor.countTrailingZeros();
4904     if (Shift) {
4905       Divisor.ashrInPlace(Shift);
4906       UseSRA = true;
4907     }
4908     // Calculate the multiplicative inverse, using Newton's method.
4909     APInt t;
4910     APInt Factor = Divisor;
4911     while ((t = Divisor * Factor) != 1)
4912       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4913     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4914     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4915     return true;
4916   };
4917 
4918   // Collect all magic values from the build vector.
4919   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4920     return SDValue();
4921 
4922   SDValue Shift, Factor;
4923   if (VT.isVector()) {
4924     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4925     Factor = DAG.getBuildVector(VT, dl, Factors);
4926   } else {
4927     Shift = Shifts[0];
4928     Factor = Factors[0];
4929   }
4930 
4931   SDValue Res = Op0;
4932 
4933   // Shift the value upfront if it is even, so the LSB is one.
4934   if (UseSRA) {
4935     // TODO: For UDIV use SRL instead of SRA.
4936     SDNodeFlags Flags;
4937     Flags.setExact(true);
4938     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4939     Created.push_back(Res.getNode());
4940   }
4941 
4942   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4943 }
4944 
4945 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4946                               SelectionDAG &DAG,
4947                               SmallVectorImpl<SDNode *> &Created) const {
4948   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4949   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4950   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4951     return SDValue(N, 0); // Lower SDIV as SDIV
4952   return SDValue();
4953 }
4954 
4955 /// Given an ISD::SDIV node expressing a divide by constant,
4956 /// return a DAG expression to select that will generate the same value by
4957 /// multiplying by a magic number.
4958 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4959 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4960                                   bool IsAfterLegalization,
4961                                   SmallVectorImpl<SDNode *> &Created) const {
4962   SDLoc dl(N);
4963   EVT VT = N->getValueType(0);
4964   EVT SVT = VT.getScalarType();
4965   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4966   EVT ShSVT = ShVT.getScalarType();
4967   unsigned EltBits = VT.getScalarSizeInBits();
4968 
4969   // Check to see if we can do this.
4970   // FIXME: We should be more aggressive here.
4971   if (!isTypeLegal(VT))
4972     return SDValue();
4973 
4974   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4975   if (N->getFlags().hasExact())
4976     return BuildExactSDIV(*this, N, dl, DAG, Created);
4977 
4978   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4979 
4980   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4981     if (C->isNullValue())
4982       return false;
4983 
4984     const APInt &Divisor = C->getAPIntValue();
4985     APInt::ms magics = Divisor.magic();
4986     int NumeratorFactor = 0;
4987     int ShiftMask = -1;
4988 
4989     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4990       // If d is +1/-1, we just multiply the numerator by +1/-1.
4991       NumeratorFactor = Divisor.getSExtValue();
4992       magics.m = 0;
4993       magics.s = 0;
4994       ShiftMask = 0;
4995     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4996       // If d > 0 and m < 0, add the numerator.
4997       NumeratorFactor = 1;
4998     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4999       // If d < 0 and m > 0, subtract the numerator.
5000       NumeratorFactor = -1;
5001     }
5002 
5003     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5004     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5005     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5006     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5007     return true;
5008   };
5009 
5010   SDValue N0 = N->getOperand(0);
5011   SDValue N1 = N->getOperand(1);
5012 
5013   // Collect the shifts / magic values from each element.
5014   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5015     return SDValue();
5016 
5017   SDValue MagicFactor, Factor, Shift, ShiftMask;
5018   if (VT.isVector()) {
5019     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5020     Factor = DAG.getBuildVector(VT, dl, Factors);
5021     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5022     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5023   } else {
5024     MagicFactor = MagicFactors[0];
5025     Factor = Factors[0];
5026     Shift = Shifts[0];
5027     ShiftMask = ShiftMasks[0];
5028   }
5029 
5030   // Multiply the numerator (operand 0) by the magic value.
5031   // FIXME: We should support doing a MUL in a wider type.
5032   SDValue Q;
5033   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
5034                           : isOperationLegalOrCustom(ISD::MULHS, VT))
5035     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
5036   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
5037                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5038     SDValue LoHi =
5039         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
5040     Q = SDValue(LoHi.getNode(), 1);
5041   } else
5042     return SDValue(); // No mulhs or equivalent.
5043   Created.push_back(Q.getNode());
5044 
5045   // (Optionally) Add/subtract the numerator using Factor.
5046   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5047   Created.push_back(Factor.getNode());
5048   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5049   Created.push_back(Q.getNode());
5050 
5051   // Shift right algebraic by shift value.
5052   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5053   Created.push_back(Q.getNode());
5054 
5055   // Extract the sign bit, mask it and add it to the quotient.
5056   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5057   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5058   Created.push_back(T.getNode());
5059   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5060   Created.push_back(T.getNode());
5061   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5062 }
5063 
5064 /// Given an ISD::UDIV node expressing a divide by constant,
5065 /// return a DAG expression to select that will generate the same value by
5066 /// multiplying by a magic number.
5067 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5068 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5069                                   bool IsAfterLegalization,
5070                                   SmallVectorImpl<SDNode *> &Created) const {
5071   SDLoc dl(N);
5072   EVT VT = N->getValueType(0);
5073   EVT SVT = VT.getScalarType();
5074   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5075   EVT ShSVT = ShVT.getScalarType();
5076   unsigned EltBits = VT.getScalarSizeInBits();
5077 
5078   // Check to see if we can do this.
5079   // FIXME: We should be more aggressive here.
5080   if (!isTypeLegal(VT))
5081     return SDValue();
5082 
5083   bool UseNPQ = false;
5084   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5085 
5086   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5087     if (C->isNullValue())
5088       return false;
5089     // FIXME: We should use a narrower constant when the upper
5090     // bits are known to be zero.
5091     APInt Divisor = C->getAPIntValue();
5092     APInt::mu magics = Divisor.magicu();
5093     unsigned PreShift = 0, PostShift = 0;
5094 
5095     // If the divisor is even, we can avoid using the expensive fixup by
5096     // shifting the divided value upfront.
5097     if (magics.a != 0 && !Divisor[0]) {
5098       PreShift = Divisor.countTrailingZeros();
5099       // Get magic number for the shifted divisor.
5100       magics = Divisor.lshr(PreShift).magicu(PreShift);
5101       assert(magics.a == 0 && "Should use cheap fixup now");
5102     }
5103 
5104     APInt Magic = magics.m;
5105 
5106     unsigned SelNPQ;
5107     if (magics.a == 0 || Divisor.isOneValue()) {
5108       assert(magics.s < Divisor.getBitWidth() &&
5109              "We shouldn't generate an undefined shift!");
5110       PostShift = magics.s;
5111       SelNPQ = false;
5112     } else {
5113       PostShift = magics.s - 1;
5114       SelNPQ = true;
5115     }
5116 
5117     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5118     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5119     NPQFactors.push_back(
5120         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5121                                : APInt::getNullValue(EltBits),
5122                         dl, SVT));
5123     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5124     UseNPQ |= SelNPQ;
5125     return true;
5126   };
5127 
5128   SDValue N0 = N->getOperand(0);
5129   SDValue N1 = N->getOperand(1);
5130 
5131   // Collect the shifts/magic values from each element.
5132   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5133     return SDValue();
5134 
5135   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5136   if (VT.isVector()) {
5137     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5138     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5139     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5140     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5141   } else {
5142     PreShift = PreShifts[0];
5143     MagicFactor = MagicFactors[0];
5144     PostShift = PostShifts[0];
5145   }
5146 
5147   SDValue Q = N0;
5148   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5149   Created.push_back(Q.getNode());
5150 
5151   // FIXME: We should support doing a MUL in a wider type.
5152   auto GetMULHU = [&](SDValue X, SDValue Y) {
5153     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5154                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5155       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5156     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5157                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5158       SDValue LoHi =
5159           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5160       return SDValue(LoHi.getNode(), 1);
5161     }
5162     return SDValue(); // No mulhu or equivalent
5163   };
5164 
5165   // Multiply the numerator (operand 0) by the magic value.
5166   Q = GetMULHU(Q, MagicFactor);
5167   if (!Q)
5168     return SDValue();
5169 
5170   Created.push_back(Q.getNode());
5171 
5172   if (UseNPQ) {
5173     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5174     Created.push_back(NPQ.getNode());
5175 
5176     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5177     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5178     if (VT.isVector())
5179       NPQ = GetMULHU(NPQ, NPQFactor);
5180     else
5181       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5182 
5183     Created.push_back(NPQ.getNode());
5184 
5185     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5186     Created.push_back(Q.getNode());
5187   }
5188 
5189   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5190   Created.push_back(Q.getNode());
5191 
5192   SDValue One = DAG.getConstant(1, dl, VT);
5193   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5194   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5195 }
5196 
5197 /// If all values in Values that *don't* match the predicate are same 'splat'
5198 /// value, then replace all values with that splat value.
5199 /// Else, if AlternativeReplacement was provided, then replace all values that
5200 /// do match predicate with AlternativeReplacement value.
5201 static void
5202 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5203                           std::function<bool(SDValue)> Predicate,
5204                           SDValue AlternativeReplacement = SDValue()) {
5205   SDValue Replacement;
5206   // Is there a value for which the Predicate does *NOT* match? What is it?
5207   auto SplatValue = llvm::find_if_not(Values, Predicate);
5208   if (SplatValue != Values.end()) {
5209     // Does Values consist only of SplatValue's and values matching Predicate?
5210     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5211           return Value == *SplatValue || Predicate(Value);
5212         })) // Then we shall replace values matching predicate with SplatValue.
5213       Replacement = *SplatValue;
5214   }
5215   if (!Replacement) {
5216     // Oops, we did not find the "baseline" splat value.
5217     if (!AlternativeReplacement)
5218       return; // Nothing to do.
5219     // Let's replace with provided value then.
5220     Replacement = AlternativeReplacement;
5221   }
5222   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5223 }
5224 
5225 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5226 /// where the divisor is constant and the comparison target is zero,
5227 /// return a DAG expression that will generate the same comparison result
5228 /// using only multiplications, additions and shifts/rotations.
5229 /// Ref: "Hacker's Delight" 10-17.
5230 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5231                                         SDValue CompTargetNode,
5232                                         ISD::CondCode Cond,
5233                                         DAGCombinerInfo &DCI,
5234                                         const SDLoc &DL) const {
5235   SmallVector<SDNode *, 5> Built;
5236   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5237                                          DCI, DL, Built)) {
5238     for (SDNode *N : Built)
5239       DCI.AddToWorklist(N);
5240     return Folded;
5241   }
5242 
5243   return SDValue();
5244 }
5245 
5246 SDValue
5247 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5248                                   SDValue CompTargetNode, ISD::CondCode Cond,
5249                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5250                                   SmallVectorImpl<SDNode *> &Created) const {
5251   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5252   // - D must be constant, with D = D0 * 2^K where D0 is odd
5253   // - P is the multiplicative inverse of D0 modulo 2^W
5254   // - Q = floor(((2^W) - 1) / D)
5255   // where W is the width of the common type of N and D.
5256   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5257          "Only applicable for (in)equality comparisons.");
5258 
5259   SelectionDAG &DAG = DCI.DAG;
5260 
5261   EVT VT = REMNode.getValueType();
5262   EVT SVT = VT.getScalarType();
5263   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5264   EVT ShSVT = ShVT.getScalarType();
5265 
5266   // If MUL is unavailable, we cannot proceed in any case.
5267   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5268     return SDValue();
5269 
5270   bool ComparingWithAllZeros = true;
5271   bool AllComparisonsWithNonZerosAreTautological = true;
5272   bool HadTautologicalLanes = false;
5273   bool AllLanesAreTautological = true;
5274   bool HadEvenDivisor = false;
5275   bool AllDivisorsArePowerOfTwo = true;
5276   bool HadTautologicalInvertedLanes = false;
5277   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5278 
5279   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5280     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5281     if (CDiv->isNullValue())
5282       return false;
5283 
5284     const APInt &D = CDiv->getAPIntValue();
5285     const APInt &Cmp = CCmp->getAPIntValue();
5286 
5287     ComparingWithAllZeros &= Cmp.isNullValue();
5288 
5289     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5290     // if C2 is not less than C1, the comparison is always false.
5291     // But we will only be able to produce the comparison that will give the
5292     // opposive tautological answer. So this lane would need to be fixed up.
5293     bool TautologicalInvertedLane = D.ule(Cmp);
5294     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5295 
5296     // If all lanes are tautological (either all divisors are ones, or divisor
5297     // is not greater than the constant we are comparing with),
5298     // we will prefer to avoid the fold.
5299     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5300     HadTautologicalLanes |= TautologicalLane;
5301     AllLanesAreTautological &= TautologicalLane;
5302 
5303     // If we are comparing with non-zero, we need'll need  to subtract said
5304     // comparison value from the LHS. But there is no point in doing that if
5305     // every lane where we are comparing with non-zero is tautological..
5306     if (!Cmp.isNullValue())
5307       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5308 
5309     // Decompose D into D0 * 2^K
5310     unsigned K = D.countTrailingZeros();
5311     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5312     APInt D0 = D.lshr(K);
5313 
5314     // D is even if it has trailing zeros.
5315     HadEvenDivisor |= (K != 0);
5316     // D is a power-of-two if D0 is one.
5317     // If all divisors are power-of-two, we will prefer to avoid the fold.
5318     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5319 
5320     // P = inv(D0, 2^W)
5321     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5322     unsigned W = D.getBitWidth();
5323     APInt P = D0.zext(W + 1)
5324                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5325                   .trunc(W);
5326     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5327     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5328 
5329     // Q = floor((2^W - 1) u/ D)
5330     // R = ((2^W - 1) u% D)
5331     APInt Q, R;
5332     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5333 
5334     // If we are comparing with zero, then that comparison constant is okay,
5335     // else it may need to be one less than that.
5336     if (Cmp.ugt(R))
5337       Q -= 1;
5338 
5339     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5340            "We are expecting that K is always less than all-ones for ShSVT");
5341 
5342     // If the lane is tautological the result can be constant-folded.
5343     if (TautologicalLane) {
5344       // Set P and K amount to a bogus values so we can try to splat them.
5345       P = 0;
5346       K = -1;
5347       // And ensure that comparison constant is tautological,
5348       // it will always compare true/false.
5349       Q = -1;
5350     }
5351 
5352     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5353     KAmts.push_back(
5354         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5355     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5356     return true;
5357   };
5358 
5359   SDValue N = REMNode.getOperand(0);
5360   SDValue D = REMNode.getOperand(1);
5361 
5362   // Collect the values from each element.
5363   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5364     return SDValue();
5365 
5366   // If all lanes are tautological, the result can be constant-folded.
5367   if (AllLanesAreTautological)
5368     return SDValue();
5369 
5370   // If this is a urem by a powers-of-two, avoid the fold since it can be
5371   // best implemented as a bit test.
5372   if (AllDivisorsArePowerOfTwo)
5373     return SDValue();
5374 
5375   SDValue PVal, KVal, QVal;
5376   if (VT.isVector()) {
5377     if (HadTautologicalLanes) {
5378       // Try to turn PAmts into a splat, since we don't care about the values
5379       // that are currently '0'. If we can't, just keep '0'`s.
5380       turnVectorIntoSplatVector(PAmts, isNullConstant);
5381       // Try to turn KAmts into a splat, since we don't care about the values
5382       // that are currently '-1'. If we can't, change them to '0'`s.
5383       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5384                                 DAG.getConstant(0, DL, ShSVT));
5385     }
5386 
5387     PVal = DAG.getBuildVector(VT, DL, PAmts);
5388     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5389     QVal = DAG.getBuildVector(VT, DL, QAmts);
5390   } else {
5391     PVal = PAmts[0];
5392     KVal = KAmts[0];
5393     QVal = QAmts[0];
5394   }
5395 
5396   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5397     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5398       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5399     assert(CompTargetNode.getValueType() == N.getValueType() &&
5400            "Expecting that the types on LHS and RHS of comparisons match.");
5401     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5402   }
5403 
5404   // (mul N, P)
5405   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5406   Created.push_back(Op0.getNode());
5407 
5408   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5409   // divisors as a performance improvement, since rotating by 0 is a no-op.
5410   if (HadEvenDivisor) {
5411     // We need ROTR to do this.
5412     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5413       return SDValue();
5414     SDNodeFlags Flags;
5415     Flags.setExact(true);
5416     // UREM: (rotr (mul N, P), K)
5417     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5418     Created.push_back(Op0.getNode());
5419   }
5420 
5421   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5422   SDValue NewCC =
5423       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5424                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5425   if (!HadTautologicalInvertedLanes)
5426     return NewCC;
5427 
5428   // If any lanes previously compared always-false, the NewCC will give
5429   // always-true result for them, so we need to fixup those lanes.
5430   // Or the other way around for inequality predicate.
5431   assert(VT.isVector() && "Can/should only get here for vectors.");
5432   Created.push_back(NewCC.getNode());
5433 
5434   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5435   // if C2 is not less than C1, the comparison is always false.
5436   // But we have produced the comparison that will give the
5437   // opposive tautological answer. So these lanes would need to be fixed up.
5438   SDValue TautologicalInvertedChannels =
5439       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5440   Created.push_back(TautologicalInvertedChannels.getNode());
5441 
5442   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5443     // If we have a vector select, let's replace the comparison results in the
5444     // affected lanes with the correct tautological result.
5445     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5446                                               DL, SETCCVT, SETCCVT);
5447     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5448                        Replacement, NewCC);
5449   }
5450 
5451   // Else, we can just invert the comparison result in the appropriate lanes.
5452   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5453     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5454                        TautologicalInvertedChannels);
5455 
5456   return SDValue(); // Don't know how to lower.
5457 }
5458 
5459 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5460 /// where the divisor is constant and the comparison target is zero,
5461 /// return a DAG expression that will generate the same comparison result
5462 /// using only multiplications, additions and shifts/rotations.
5463 /// Ref: "Hacker's Delight" 10-17.
5464 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5465                                         SDValue CompTargetNode,
5466                                         ISD::CondCode Cond,
5467                                         DAGCombinerInfo &DCI,
5468                                         const SDLoc &DL) const {
5469   SmallVector<SDNode *, 7> Built;
5470   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5471                                          DCI, DL, Built)) {
5472     assert(Built.size() <= 7 && "Max size prediction failed.");
5473     for (SDNode *N : Built)
5474       DCI.AddToWorklist(N);
5475     return Folded;
5476   }
5477 
5478   return SDValue();
5479 }
5480 
5481 SDValue
5482 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5483                                   SDValue CompTargetNode, ISD::CondCode Cond,
5484                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5485                                   SmallVectorImpl<SDNode *> &Created) const {
5486   // Fold:
5487   //   (seteq/ne (srem N, D), 0)
5488   // To:
5489   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5490   //
5491   // - D must be constant, with D = D0 * 2^K where D0 is odd
5492   // - P is the multiplicative inverse of D0 modulo 2^W
5493   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5494   // - Q = floor((2 * A) / (2^K))
5495   // where W is the width of the common type of N and D.
5496   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5497          "Only applicable for (in)equality comparisons.");
5498 
5499   SelectionDAG &DAG = DCI.DAG;
5500 
5501   EVT VT = REMNode.getValueType();
5502   EVT SVT = VT.getScalarType();
5503   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5504   EVT ShSVT = ShVT.getScalarType();
5505 
5506   // If MUL is unavailable, we cannot proceed in any case.
5507   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5508     return SDValue();
5509 
5510   // TODO: Could support comparing with non-zero too.
5511   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5512   if (!CompTarget || !CompTarget->isNullValue())
5513     return SDValue();
5514 
5515   bool HadIntMinDivisor = false;
5516   bool HadOneDivisor = false;
5517   bool AllDivisorsAreOnes = true;
5518   bool HadEvenDivisor = false;
5519   bool NeedToApplyOffset = false;
5520   bool AllDivisorsArePowerOfTwo = true;
5521   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5522 
5523   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5524     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5525     if (C->isNullValue())
5526       return false;
5527 
5528     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5529 
5530     // WARNING: this fold is only valid for positive divisors!
5531     APInt D = C->getAPIntValue();
5532     if (D.isNegative())
5533       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5534 
5535     HadIntMinDivisor |= D.isMinSignedValue();
5536 
5537     // If all divisors are ones, we will prefer to avoid the fold.
5538     HadOneDivisor |= D.isOneValue();
5539     AllDivisorsAreOnes &= D.isOneValue();
5540 
5541     // Decompose D into D0 * 2^K
5542     unsigned K = D.countTrailingZeros();
5543     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5544     APInt D0 = D.lshr(K);
5545 
5546     if (!D.isMinSignedValue()) {
5547       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5548       // we don't care about this lane in this fold, we'll special-handle it.
5549       HadEvenDivisor |= (K != 0);
5550     }
5551 
5552     // D is a power-of-two if D0 is one. This includes INT_MIN.
5553     // If all divisors are power-of-two, we will prefer to avoid the fold.
5554     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5555 
5556     // P = inv(D0, 2^W)
5557     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5558     unsigned W = D.getBitWidth();
5559     APInt P = D0.zext(W + 1)
5560                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5561                   .trunc(W);
5562     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5563     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5564 
5565     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5566     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5567     A.clearLowBits(K);
5568 
5569     if (!D.isMinSignedValue()) {
5570       // If divisor INT_MIN, then we don't care about this lane in this fold,
5571       // we'll special-handle it.
5572       NeedToApplyOffset |= A != 0;
5573     }
5574 
5575     // Q = floor((2 * A) / (2^K))
5576     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5577 
5578     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5579            "We are expecting that A is always less than all-ones for SVT");
5580     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5581            "We are expecting that K is always less than all-ones for ShSVT");
5582 
5583     // If the divisor is 1 the result can be constant-folded. Likewise, we
5584     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5585     if (D.isOneValue()) {
5586       // Set P, A and K to a bogus values so we can try to splat them.
5587       P = 0;
5588       A = -1;
5589       K = -1;
5590 
5591       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5592       Q = -1;
5593     }
5594 
5595     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5596     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5597     KAmts.push_back(
5598         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5599     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5600     return true;
5601   };
5602 
5603   SDValue N = REMNode.getOperand(0);
5604   SDValue D = REMNode.getOperand(1);
5605 
5606   // Collect the values from each element.
5607   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5608     return SDValue();
5609 
5610   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5611   if (AllDivisorsAreOnes)
5612     return SDValue();
5613 
5614   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5615   // since it can be best implemented as a bit test.
5616   if (AllDivisorsArePowerOfTwo)
5617     return SDValue();
5618 
5619   SDValue PVal, AVal, KVal, QVal;
5620   if (VT.isVector()) {
5621     if (HadOneDivisor) {
5622       // Try to turn PAmts into a splat, since we don't care about the values
5623       // that are currently '0'. If we can't, just keep '0'`s.
5624       turnVectorIntoSplatVector(PAmts, isNullConstant);
5625       // Try to turn AAmts into a splat, since we don't care about the
5626       // values that are currently '-1'. If we can't, change them to '0'`s.
5627       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5628                                 DAG.getConstant(0, DL, SVT));
5629       // Try to turn KAmts into a splat, since we don't care about the values
5630       // that are currently '-1'. If we can't, change them to '0'`s.
5631       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5632                                 DAG.getConstant(0, DL, ShSVT));
5633     }
5634 
5635     PVal = DAG.getBuildVector(VT, DL, PAmts);
5636     AVal = DAG.getBuildVector(VT, DL, AAmts);
5637     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5638     QVal = DAG.getBuildVector(VT, DL, QAmts);
5639   } else {
5640     PVal = PAmts[0];
5641     AVal = AAmts[0];
5642     KVal = KAmts[0];
5643     QVal = QAmts[0];
5644   }
5645 
5646   // (mul N, P)
5647   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5648   Created.push_back(Op0.getNode());
5649 
5650   if (NeedToApplyOffset) {
5651     // We need ADD to do this.
5652     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5653       return SDValue();
5654 
5655     // (add (mul N, P), A)
5656     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5657     Created.push_back(Op0.getNode());
5658   }
5659 
5660   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5661   // divisors as a performance improvement, since rotating by 0 is a no-op.
5662   if (HadEvenDivisor) {
5663     // We need ROTR to do this.
5664     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5665       return SDValue();
5666     SDNodeFlags Flags;
5667     Flags.setExact(true);
5668     // SREM: (rotr (add (mul N, P), A), K)
5669     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5670     Created.push_back(Op0.getNode());
5671   }
5672 
5673   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5674   SDValue Fold =
5675       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5676                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5677 
5678   // If we didn't have lanes with INT_MIN divisor, then we're done.
5679   if (!HadIntMinDivisor)
5680     return Fold;
5681 
5682   // That fold is only valid for positive divisors. Which effectively means,
5683   // it is invalid for INT_MIN divisors. So if we have such a lane,
5684   // we must fix-up results for said lanes.
5685   assert(VT.isVector() && "Can/should only get here for vectors.");
5686 
5687   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5688       !isOperationLegalOrCustom(ISD::AND, VT) ||
5689       !isOperationLegalOrCustom(Cond, VT) ||
5690       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5691     return SDValue();
5692 
5693   Created.push_back(Fold.getNode());
5694 
5695   SDValue IntMin = DAG.getConstant(
5696       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5697   SDValue IntMax = DAG.getConstant(
5698       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5699   SDValue Zero =
5700       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5701 
5702   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5703   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5704   Created.push_back(DivisorIsIntMin.getNode());
5705 
5706   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5707   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5708   Created.push_back(Masked.getNode());
5709   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5710   Created.push_back(MaskedIsZero.getNode());
5711 
5712   // To produce final result we need to blend 2 vectors: 'SetCC' and
5713   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5714   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5715   // constant-folded, select can get lowered to a shuffle with constant mask.
5716   SDValue Blended =
5717       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5718 
5719   return Blended;
5720 }
5721 
5722 bool TargetLowering::
5723 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5724   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5725     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5726                                 "be a constant integer");
5727     return true;
5728   }
5729 
5730   return false;
5731 }
5732 
5733 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5734                                              bool LegalOps, bool OptForSize,
5735                                              NegatibleCost &Cost,
5736                                              unsigned Depth) const {
5737   // fneg is removable even if it has multiple uses.
5738   if (Op.getOpcode() == ISD::FNEG) {
5739     Cost = NegatibleCost::Cheaper;
5740     return Op.getOperand(0);
5741   }
5742 
5743   // Don't recurse exponentially.
5744   if (Depth > SelectionDAG::MaxRecursionDepth)
5745     return SDValue();
5746 
5747   // Pre-increment recursion depth for use in recursive calls.
5748   ++Depth;
5749   const SDNodeFlags Flags = Op->getFlags();
5750   const TargetOptions &Options = DAG.getTarget().Options;
5751   EVT VT = Op.getValueType();
5752   unsigned Opcode = Op.getOpcode();
5753 
5754   // Don't allow anything with multiple uses unless we know it is free.
5755   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5756     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5757                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5758     if (!IsFreeExtend)
5759       return SDValue();
5760   }
5761 
5762   auto RemoveDeadNode = [&](SDValue N) {
5763     if (N && N.getNode()->use_empty())
5764       DAG.RemoveDeadNode(N.getNode());
5765   };
5766 
5767   SDLoc DL(Op);
5768 
5769   switch (Opcode) {
5770   case ISD::ConstantFP: {
5771     // Don't invert constant FP values after legalization unless the target says
5772     // the negated constant is legal.
5773     bool IsOpLegal =
5774         isOperationLegal(ISD::ConstantFP, VT) ||
5775         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5776                      OptForSize);
5777 
5778     if (LegalOps && !IsOpLegal)
5779       break;
5780 
5781     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5782     V.changeSign();
5783     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5784 
5785     // If we already have the use of the negated floating constant, it is free
5786     // to negate it even it has multiple uses.
5787     if (!Op.hasOneUse() && CFP.use_empty())
5788       break;
5789     Cost = NegatibleCost::Neutral;
5790     return CFP;
5791   }
5792   case ISD::BUILD_VECTOR: {
5793     // Only permit BUILD_VECTOR of constants.
5794     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5795           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5796         }))
5797       break;
5798 
5799     bool IsOpLegal =
5800         (isOperationLegal(ISD::ConstantFP, VT) &&
5801          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5802         llvm::all_of(Op->op_values(), [&](SDValue N) {
5803           return N.isUndef() ||
5804                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5805                               OptForSize);
5806         });
5807 
5808     if (LegalOps && !IsOpLegal)
5809       break;
5810 
5811     SmallVector<SDValue, 4> Ops;
5812     for (SDValue C : Op->op_values()) {
5813       if (C.isUndef()) {
5814         Ops.push_back(C);
5815         continue;
5816       }
5817       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5818       V.changeSign();
5819       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5820     }
5821     Cost = NegatibleCost::Neutral;
5822     return DAG.getBuildVector(VT, DL, Ops);
5823   }
5824   case ISD::FADD: {
5825     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5826       break;
5827 
5828     // After operation legalization, it might not be legal to create new FSUBs.
5829     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5830       break;
5831     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5832 
5833     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5834     NegatibleCost CostX = NegatibleCost::Expensive;
5835     SDValue NegX =
5836         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5837     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5838     NegatibleCost CostY = NegatibleCost::Expensive;
5839     SDValue NegY =
5840         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5841 
5842     // Negate the X if its cost is less or equal than Y.
5843     if (NegX && (CostX <= CostY)) {
5844       Cost = CostX;
5845       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5846       if (NegY != N)
5847         RemoveDeadNode(NegY);
5848       return N;
5849     }
5850 
5851     // Negate the Y if it is not expensive.
5852     if (NegY) {
5853       Cost = CostY;
5854       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5855       if (NegX != N)
5856         RemoveDeadNode(NegX);
5857       return N;
5858     }
5859     break;
5860   }
5861   case ISD::FSUB: {
5862     // We can't turn -(A-B) into B-A when we honor signed zeros.
5863     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5864       break;
5865 
5866     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5867     // fold (fneg (fsub 0, Y)) -> Y
5868     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5869       if (C->isZero()) {
5870         Cost = NegatibleCost::Cheaper;
5871         return Y;
5872       }
5873 
5874     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5875     Cost = NegatibleCost::Neutral;
5876     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5877   }
5878   case ISD::FMUL:
5879   case ISD::FDIV: {
5880     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5881 
5882     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5883     NegatibleCost CostX = NegatibleCost::Expensive;
5884     SDValue NegX =
5885         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5886     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5887     NegatibleCost CostY = NegatibleCost::Expensive;
5888     SDValue NegY =
5889         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5890 
5891     // Negate the X if its cost is less or equal than Y.
5892     if (NegX && (CostX <= CostY)) {
5893       Cost = CostX;
5894       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5895       if (NegY != N)
5896         RemoveDeadNode(NegY);
5897       return N;
5898     }
5899 
5900     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5901     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5902       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5903         break;
5904 
5905     // Negate the Y if it is not expensive.
5906     if (NegY) {
5907       Cost = CostY;
5908       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5909       if (NegX != N)
5910         RemoveDeadNode(NegX);
5911       return N;
5912     }
5913     break;
5914   }
5915   case ISD::FMA:
5916   case ISD::FMAD: {
5917     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5918       break;
5919 
5920     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5921     NegatibleCost CostZ = NegatibleCost::Expensive;
5922     SDValue NegZ =
5923         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5924     // Give up if fail to negate the Z.
5925     if (!NegZ)
5926       break;
5927 
5928     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5929     NegatibleCost CostX = NegatibleCost::Expensive;
5930     SDValue NegX =
5931         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5932     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5933     NegatibleCost CostY = NegatibleCost::Expensive;
5934     SDValue NegY =
5935         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5936 
5937     // Negate the X if its cost is less or equal than Y.
5938     if (NegX && (CostX <= CostY)) {
5939       Cost = std::min(CostX, CostZ);
5940       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5941       if (NegY != N)
5942         RemoveDeadNode(NegY);
5943       return N;
5944     }
5945 
5946     // Negate the Y if it is not expensive.
5947     if (NegY) {
5948       Cost = std::min(CostY, CostZ);
5949       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5950       if (NegX != N)
5951         RemoveDeadNode(NegX);
5952       return N;
5953     }
5954     break;
5955   }
5956 
5957   case ISD::FP_EXTEND:
5958   case ISD::FSIN:
5959     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5960                                             OptForSize, Cost, Depth))
5961       return DAG.getNode(Opcode, DL, VT, NegV);
5962     break;
5963   case ISD::FP_ROUND:
5964     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5965                                             OptForSize, Cost, Depth))
5966       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5967     break;
5968   }
5969 
5970   return SDValue();
5971 }
5972 
5973 //===----------------------------------------------------------------------===//
5974 // Legalization Utilities
5975 //===----------------------------------------------------------------------===//
5976 
5977 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
5978                                     SDValue LHS, SDValue RHS,
5979                                     SmallVectorImpl<SDValue> &Result,
5980                                     EVT HiLoVT, SelectionDAG &DAG,
5981                                     MulExpansionKind Kind, SDValue LL,
5982                                     SDValue LH, SDValue RL, SDValue RH) const {
5983   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5984          Opcode == ISD::SMUL_LOHI);
5985 
5986   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5987                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5988   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5989                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5990   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5991                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5992   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5993                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5994 
5995   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5996     return false;
5997 
5998   unsigned OuterBitSize = VT.getScalarSizeInBits();
5999   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6000   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
6001   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
6002 
6003   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6004   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6005          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6006 
6007   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6008   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6009                           bool Signed) -> bool {
6010     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6011       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6012       Hi = SDValue(Lo.getNode(), 1);
6013       return true;
6014     }
6015     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6016       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6017       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6018       return true;
6019     }
6020     return false;
6021   };
6022 
6023   SDValue Lo, Hi;
6024 
6025   if (!LL.getNode() && !RL.getNode() &&
6026       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6027     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6028     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6029   }
6030 
6031   if (!LL.getNode())
6032     return false;
6033 
6034   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6035   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6036       DAG.MaskedValueIsZero(RHS, HighMask)) {
6037     // The inputs are both zero-extended.
6038     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6039       Result.push_back(Lo);
6040       Result.push_back(Hi);
6041       if (Opcode != ISD::MUL) {
6042         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6043         Result.push_back(Zero);
6044         Result.push_back(Zero);
6045       }
6046       return true;
6047     }
6048   }
6049 
6050   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
6051       RHSSB > InnerBitSize) {
6052     // The input values are both sign-extended.
6053     // TODO non-MUL case?
6054     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6055       Result.push_back(Lo);
6056       Result.push_back(Hi);
6057       return true;
6058     }
6059   }
6060 
6061   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6062   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6063   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6064     // FIXME getShiftAmountTy does not always return a sensible result when VT
6065     // is an illegal type, and so the type may be too small to fit the shift
6066     // amount. Override it with i32. The shift will have to be legalized.
6067     ShiftAmountTy = MVT::i32;
6068   }
6069   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6070 
6071   if (!LH.getNode() && !RH.getNode() &&
6072       isOperationLegalOrCustom(ISD::SRL, VT) &&
6073       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6074     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6075     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6076     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6077     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6078   }
6079 
6080   if (!LH.getNode())
6081     return false;
6082 
6083   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6084     return false;
6085 
6086   Result.push_back(Lo);
6087 
6088   if (Opcode == ISD::MUL) {
6089     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6090     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6091     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6092     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6093     Result.push_back(Hi);
6094     return true;
6095   }
6096 
6097   // Compute the full width result.
6098   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6099     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6100     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6101     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6102     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6103   };
6104 
6105   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6106   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6107     return false;
6108 
6109   // This is effectively the add part of a multiply-add of half-sized operands,
6110   // so it cannot overflow.
6111   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6112 
6113   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6114     return false;
6115 
6116   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6117   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6118 
6119   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6120                   isOperationLegalOrCustom(ISD::ADDE, VT));
6121   if (UseGlue)
6122     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6123                        Merge(Lo, Hi));
6124   else
6125     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6126                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6127 
6128   SDValue Carry = Next.getValue(1);
6129   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6130   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6131 
6132   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6133     return false;
6134 
6135   if (UseGlue)
6136     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6137                      Carry);
6138   else
6139     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6140                      Zero, Carry);
6141 
6142   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6143 
6144   if (Opcode == ISD::SMUL_LOHI) {
6145     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6146                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6147     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6148 
6149     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6150                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6151     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6152   }
6153 
6154   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6155   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6156   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6157   return true;
6158 }
6159 
6160 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6161                                SelectionDAG &DAG, MulExpansionKind Kind,
6162                                SDValue LL, SDValue LH, SDValue RL,
6163                                SDValue RH) const {
6164   SmallVector<SDValue, 2> Result;
6165   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6166                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6167                            DAG, Kind, LL, LH, RL, RH);
6168   if (Ok) {
6169     assert(Result.size() == 2);
6170     Lo = Result[0];
6171     Hi = Result[1];
6172   }
6173   return Ok;
6174 }
6175 
6176 // Check that (every element of) Z is undef or not an exact multiple of BW.
6177 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6178   return ISD::matchUnaryPredicate(
6179       Z,
6180       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6181       true);
6182 }
6183 
6184 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6185                                        SelectionDAG &DAG) const {
6186   EVT VT = Node->getValueType(0);
6187 
6188   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6189                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6190                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6191                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6192     return false;
6193 
6194   SDValue X = Node->getOperand(0);
6195   SDValue Y = Node->getOperand(1);
6196   SDValue Z = Node->getOperand(2);
6197 
6198   unsigned BW = VT.getScalarSizeInBits();
6199   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6200   SDLoc DL(SDValue(Node, 0));
6201 
6202   EVT ShVT = Z.getValueType();
6203 
6204   // If a funnel shift in the other direction is more supported, use it.
6205   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6206   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6207       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6208     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6209       // fshl X, Y, Z -> fshr X, Y, -Z
6210       // fshr X, Y, Z -> fshl X, Y, -Z
6211       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6212       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6213     } else {
6214       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6215       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6216       SDValue One = DAG.getConstant(1, DL, ShVT);
6217       if (IsFSHL) {
6218         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6219         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6220       } else {
6221         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6222         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6223       }
6224       Z = DAG.getNOT(DL, Z, ShVT);
6225     }
6226     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6227     return true;
6228   }
6229 
6230   SDValue ShX, ShY;
6231   SDValue ShAmt, InvShAmt;
6232   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6233     // fshl: X << C | Y >> (BW - C)
6234     // fshr: X << (BW - C) | Y >> C
6235     // where C = Z % BW is not zero
6236     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6237     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6238     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6239     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6240     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6241   } else {
6242     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6243     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6244     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6245     if (isPowerOf2_32(BW)) {
6246       // Z % BW -> Z & (BW - 1)
6247       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6248       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6249       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6250     } else {
6251       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6252       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6253       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6254     }
6255 
6256     SDValue One = DAG.getConstant(1, DL, ShVT);
6257     if (IsFSHL) {
6258       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6259       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6260       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6261     } else {
6262       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6263       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6264       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6265     }
6266   }
6267   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6268   return true;
6269 }
6270 
6271 // TODO: Merge with expandFunnelShift.
6272 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6273                                SelectionDAG &DAG) const {
6274   EVT VT = Node->getValueType(0);
6275   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6276   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6277   SDValue Op0 = Node->getOperand(0);
6278   SDValue Op1 = Node->getOperand(1);
6279   SDLoc DL(SDValue(Node, 0));
6280 
6281   EVT ShVT = Op1.getValueType();
6282   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6283 
6284   // If a rotate in the other direction is supported, use it.
6285   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6286   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6287     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6288     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6289     return true;
6290   }
6291 
6292   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6293                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6294                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6295                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6296                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6297     return false;
6298 
6299   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6300   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6301   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6302   SDValue ShVal;
6303   SDValue HsVal;
6304   if (isPowerOf2_32(EltSizeInBits)) {
6305     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6306     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6307     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6308     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6309     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6310     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6311     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6312   } else {
6313     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6314     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6315     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6316     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6317     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6318     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6319     SDValue One = DAG.getConstant(1, DL, ShVT);
6320     HsVal =
6321         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6322   }
6323   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6324   return true;
6325 }
6326 
6327 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6328                                       SelectionDAG &DAG) const {
6329   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6330   SDValue Src = Node->getOperand(OpNo);
6331   EVT SrcVT = Src.getValueType();
6332   EVT DstVT = Node->getValueType(0);
6333   SDLoc dl(SDValue(Node, 0));
6334 
6335   // FIXME: Only f32 to i64 conversions are supported.
6336   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6337     return false;
6338 
6339   if (Node->isStrictFPOpcode())
6340     // When a NaN is converted to an integer a trap is allowed. We can't
6341     // use this expansion here because it would eliminate that trap. Other
6342     // traps are also allowed and cannot be eliminated. See
6343     // IEEE 754-2008 sec 5.8.
6344     return false;
6345 
6346   // Expand f32 -> i64 conversion
6347   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6348   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6349   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6350   EVT IntVT = SrcVT.changeTypeToInteger();
6351   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6352 
6353   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6354   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6355   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6356   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6357   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6358   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6359 
6360   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6361 
6362   SDValue ExponentBits = DAG.getNode(
6363       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6364       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6365   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6366 
6367   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6368                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6369                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6370   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6371 
6372   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6373                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6374                           DAG.getConstant(0x00800000, dl, IntVT));
6375 
6376   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6377 
6378   R = DAG.getSelectCC(
6379       dl, Exponent, ExponentLoBit,
6380       DAG.getNode(ISD::SHL, dl, DstVT, R,
6381                   DAG.getZExtOrTrunc(
6382                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6383                       dl, IntShVT)),
6384       DAG.getNode(ISD::SRL, dl, DstVT, R,
6385                   DAG.getZExtOrTrunc(
6386                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6387                       dl, IntShVT)),
6388       ISD::SETGT);
6389 
6390   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6391                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6392 
6393   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6394                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6395   return true;
6396 }
6397 
6398 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6399                                       SDValue &Chain,
6400                                       SelectionDAG &DAG) const {
6401   SDLoc dl(SDValue(Node, 0));
6402   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6403   SDValue Src = Node->getOperand(OpNo);
6404 
6405   EVT SrcVT = Src.getValueType();
6406   EVT DstVT = Node->getValueType(0);
6407   EVT SetCCVT =
6408       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6409   EVT DstSetCCVT =
6410       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6411 
6412   // Only expand vector types if we have the appropriate vector bit operations.
6413   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6414                                                    ISD::FP_TO_SINT;
6415   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6416                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6417     return false;
6418 
6419   // If the maximum float value is smaller then the signed integer range,
6420   // the destination signmask can't be represented by the float, so we can
6421   // just use FP_TO_SINT directly.
6422   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6423   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6424   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6425   if (APFloat::opOverflow &
6426       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6427     if (Node->isStrictFPOpcode()) {
6428       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6429                            { Node->getOperand(0), Src });
6430       Chain = Result.getValue(1);
6431     } else
6432       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6433     return true;
6434   }
6435 
6436   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6437   SDValue Sel;
6438 
6439   if (Node->isStrictFPOpcode()) {
6440     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6441                        Node->getOperand(0), /*IsSignaling*/ true);
6442     Chain = Sel.getValue(1);
6443   } else {
6444     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6445   }
6446 
6447   bool Strict = Node->isStrictFPOpcode() ||
6448                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6449 
6450   if (Strict) {
6451     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6452     // signmask then offset (the result of which should be fully representable).
6453     // Sel = Src < 0x8000000000000000
6454     // FltOfs = select Sel, 0, 0x8000000000000000
6455     // IntOfs = select Sel, 0, 0x8000000000000000
6456     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6457 
6458     // TODO: Should any fast-math-flags be set for the FSUB?
6459     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6460                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6461     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6462     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6463                                    DAG.getConstant(0, dl, DstVT),
6464                                    DAG.getConstant(SignMask, dl, DstVT));
6465     SDValue SInt;
6466     if (Node->isStrictFPOpcode()) {
6467       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6468                                 { Chain, Src, FltOfs });
6469       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6470                          { Val.getValue(1), Val });
6471       Chain = SInt.getValue(1);
6472     } else {
6473       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6474       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6475     }
6476     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6477   } else {
6478     // Expand based on maximum range of FP_TO_SINT:
6479     // True = fp_to_sint(Src)
6480     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6481     // Result = select (Src < 0x8000000000000000), True, False
6482 
6483     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6484     // TODO: Should any fast-math-flags be set for the FSUB?
6485     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6486                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6487     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6488                         DAG.getConstant(SignMask, dl, DstVT));
6489     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6490     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6491   }
6492   return true;
6493 }
6494 
6495 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6496                                       SDValue &Chain,
6497                                       SelectionDAG &DAG) const {
6498   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6499   SDValue Src = Node->getOperand(OpNo);
6500   EVT SrcVT = Src.getValueType();
6501   EVT DstVT = Node->getValueType(0);
6502 
6503   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6504     return false;
6505 
6506   // Only expand vector types if we have the appropriate vector bit operations.
6507   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6508                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6509                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6510                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6511                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6512     return false;
6513 
6514   SDLoc dl(SDValue(Node, 0));
6515   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6516 
6517   // Implementation of unsigned i64 to f64 following the algorithm in
6518   // __floatundidf in compiler_rt. This implementation has the advantage
6519   // of performing rounding correctly, both in the default rounding mode
6520   // and in all alternate rounding modes.
6521   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6522   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6523       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6524   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6525   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6526   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6527 
6528   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6529   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6530   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6531   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6532   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6533   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6534   if (Node->isStrictFPOpcode()) {
6535     SDValue HiSub =
6536         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6537                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6538     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6539                          {HiSub.getValue(1), LoFlt, HiSub});
6540     Chain = Result.getValue(1);
6541   } else {
6542     SDValue HiSub =
6543         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6544     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6545   }
6546   return true;
6547 }
6548 
6549 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6550                                               SelectionDAG &DAG) const {
6551   SDLoc dl(Node);
6552   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6553     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6554   EVT VT = Node->getValueType(0);
6555   if (isOperationLegalOrCustom(NewOp, VT)) {
6556     SDValue Quiet0 = Node->getOperand(0);
6557     SDValue Quiet1 = Node->getOperand(1);
6558 
6559     if (!Node->getFlags().hasNoNaNs()) {
6560       // Insert canonicalizes if it's possible we need to quiet to get correct
6561       // sNaN behavior.
6562       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6563         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6564                              Node->getFlags());
6565       }
6566       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6567         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6568                              Node->getFlags());
6569       }
6570     }
6571 
6572     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6573   }
6574 
6575   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6576   // instead if there are no NaNs.
6577   if (Node->getFlags().hasNoNaNs()) {
6578     unsigned IEEE2018Op =
6579         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6580     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6581       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6582                          Node->getOperand(1), Node->getFlags());
6583     }
6584   }
6585 
6586   // If none of the above worked, but there are no NaNs, then expand to
6587   // a compare/select sequence.  This is required for correctness since
6588   // InstCombine might have canonicalized a fcmp+select sequence to a
6589   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6590   // expansion to libcall, we might introduce a link-time dependency
6591   // on libm into a file that originally did not have one.
6592   if (Node->getFlags().hasNoNaNs()) {
6593     ISD::CondCode Pred =
6594         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6595     SDValue Op1 = Node->getOperand(0);
6596     SDValue Op2 = Node->getOperand(1);
6597     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6598     // Copy FMF flags, but always set the no-signed-zeros flag
6599     // as this is implied by the FMINNUM/FMAXNUM semantics.
6600     SDNodeFlags Flags = Node->getFlags();
6601     Flags.setNoSignedZeros(true);
6602     SelCC->setFlags(Flags);
6603     return SelCC;
6604   }
6605 
6606   return SDValue();
6607 }
6608 
6609 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6610                                  SelectionDAG &DAG) const {
6611   SDLoc dl(Node);
6612   EVT VT = Node->getValueType(0);
6613   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6614   SDValue Op = Node->getOperand(0);
6615   unsigned Len = VT.getScalarSizeInBits();
6616   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6617 
6618   // TODO: Add support for irregular type lengths.
6619   if (!(Len <= 128 && Len % 8 == 0))
6620     return false;
6621 
6622   // Only expand vector types if we have the appropriate vector bit operations.
6623   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6624                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6625                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6626                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6627                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6628     return false;
6629 
6630   // This is the "best" algorithm from
6631   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6632   SDValue Mask55 =
6633       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6634   SDValue Mask33 =
6635       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6636   SDValue Mask0F =
6637       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6638   SDValue Mask01 =
6639       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6640 
6641   // v = v - ((v >> 1) & 0x55555555...)
6642   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6643                    DAG.getNode(ISD::AND, dl, VT,
6644                                DAG.getNode(ISD::SRL, dl, VT, Op,
6645                                            DAG.getConstant(1, dl, ShVT)),
6646                                Mask55));
6647   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6648   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6649                    DAG.getNode(ISD::AND, dl, VT,
6650                                DAG.getNode(ISD::SRL, dl, VT, Op,
6651                                            DAG.getConstant(2, dl, ShVT)),
6652                                Mask33));
6653   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6654   Op = DAG.getNode(ISD::AND, dl, VT,
6655                    DAG.getNode(ISD::ADD, dl, VT, Op,
6656                                DAG.getNode(ISD::SRL, dl, VT, Op,
6657                                            DAG.getConstant(4, dl, ShVT))),
6658                    Mask0F);
6659   // v = (v * 0x01010101...) >> (Len - 8)
6660   if (Len > 8)
6661     Op =
6662         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6663                     DAG.getConstant(Len - 8, dl, ShVT));
6664 
6665   Result = Op;
6666   return true;
6667 }
6668 
6669 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6670                                 SelectionDAG &DAG) const {
6671   SDLoc dl(Node);
6672   EVT VT = Node->getValueType(0);
6673   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6674   SDValue Op = Node->getOperand(0);
6675   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6676 
6677   // If the non-ZERO_UNDEF version is supported we can use that instead.
6678   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6679       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6680     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6681     return true;
6682   }
6683 
6684   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6685   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6686     EVT SetCCVT =
6687         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6688     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6689     SDValue Zero = DAG.getConstant(0, dl, VT);
6690     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6691     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6692                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6693     return true;
6694   }
6695 
6696   // Only expand vector types if we have the appropriate vector bit operations.
6697   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6698                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6699                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6700                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6701     return false;
6702 
6703   // for now, we do this:
6704   // x = x | (x >> 1);
6705   // x = x | (x >> 2);
6706   // ...
6707   // x = x | (x >>16);
6708   // x = x | (x >>32); // for 64-bit input
6709   // return popcount(~x);
6710   //
6711   // Ref: "Hacker's Delight" by Henry Warren
6712   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6713     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6714     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6715                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6716   }
6717   Op = DAG.getNOT(dl, Op, VT);
6718   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6719   return true;
6720 }
6721 
6722 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6723                                 SelectionDAG &DAG) const {
6724   SDLoc dl(Node);
6725   EVT VT = Node->getValueType(0);
6726   SDValue Op = Node->getOperand(0);
6727   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6728 
6729   // If the non-ZERO_UNDEF version is supported we can use that instead.
6730   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6731       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6732     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6733     return true;
6734   }
6735 
6736   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6737   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6738     EVT SetCCVT =
6739         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6740     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6741     SDValue Zero = DAG.getConstant(0, dl, VT);
6742     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6743     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6744                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6745     return true;
6746   }
6747 
6748   // Only expand vector types if we have the appropriate vector bit operations.
6749   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6750                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6751                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6752                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6753                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6754                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6755     return false;
6756 
6757   // for now, we use: { return popcount(~x & (x - 1)); }
6758   // unless the target has ctlz but not ctpop, in which case we use:
6759   // { return 32 - nlz(~x & (x-1)); }
6760   // Ref: "Hacker's Delight" by Henry Warren
6761   SDValue Tmp = DAG.getNode(
6762       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6763       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6764 
6765   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6766   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6767     Result =
6768         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6769                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6770     return true;
6771   }
6772 
6773   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6774   return true;
6775 }
6776 
6777 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6778                                SelectionDAG &DAG) const {
6779   SDLoc dl(N);
6780   EVT VT = N->getValueType(0);
6781   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6782   SDValue Op = N->getOperand(0);
6783 
6784   // Only expand vector types if we have the appropriate vector operations.
6785   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6786                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6787                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6788     return false;
6789 
6790   SDValue Shift =
6791       DAG.getNode(ISD::SRA, dl, VT, Op,
6792                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6793   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6794   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6795   return true;
6796 }
6797 
6798 std::pair<SDValue, SDValue>
6799 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6800                                     SelectionDAG &DAG) const {
6801   SDLoc SL(LD);
6802   SDValue Chain = LD->getChain();
6803   SDValue BasePTR = LD->getBasePtr();
6804   EVT SrcVT = LD->getMemoryVT();
6805   EVT DstVT = LD->getValueType(0);
6806   ISD::LoadExtType ExtType = LD->getExtensionType();
6807 
6808   if (SrcVT.isScalableVector())
6809     report_fatal_error("Cannot scalarize scalable vector loads");
6810 
6811   unsigned NumElem = SrcVT.getVectorNumElements();
6812 
6813   EVT SrcEltVT = SrcVT.getScalarType();
6814   EVT DstEltVT = DstVT.getScalarType();
6815 
6816   // A vector must always be stored in memory as-is, i.e. without any padding
6817   // between the elements, since various code depend on it, e.g. in the
6818   // handling of a bitcast of a vector type to int, which may be done with a
6819   // vector store followed by an integer load. A vector that does not have
6820   // elements that are byte-sized must therefore be stored as an integer
6821   // built out of the extracted vector elements.
6822   if (!SrcEltVT.isByteSized()) {
6823     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6824     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6825 
6826     unsigned NumSrcBits = SrcVT.getSizeInBits();
6827     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6828 
6829     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6830     SDValue SrcEltBitMask = DAG.getConstant(
6831         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6832 
6833     // Load the whole vector and avoid masking off the top bits as it makes
6834     // the codegen worse.
6835     SDValue Load =
6836         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6837                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
6838                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6839 
6840     SmallVector<SDValue, 8> Vals;
6841     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6842       unsigned ShiftIntoIdx =
6843           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6844       SDValue ShiftAmount =
6845           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6846                                      LoadVT, SL, /*LegalTypes=*/false);
6847       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6848       SDValue Elt =
6849           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6850       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6851 
6852       if (ExtType != ISD::NON_EXTLOAD) {
6853         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6854         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6855       }
6856 
6857       Vals.push_back(Scalar);
6858     }
6859 
6860     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6861     return std::make_pair(Value, Load.getValue(1));
6862   }
6863 
6864   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6865   assert(SrcEltVT.isByteSized());
6866 
6867   SmallVector<SDValue, 8> Vals;
6868   SmallVector<SDValue, 8> LoadChains;
6869 
6870   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6871     SDValue ScalarLoad =
6872         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6873                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6874                        SrcEltVT, LD->getOriginalAlign(),
6875                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6876 
6877     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
6878 
6879     Vals.push_back(ScalarLoad.getValue(0));
6880     LoadChains.push_back(ScalarLoad.getValue(1));
6881   }
6882 
6883   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6884   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6885 
6886   return std::make_pair(Value, NewChain);
6887 }
6888 
6889 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6890                                              SelectionDAG &DAG) const {
6891   SDLoc SL(ST);
6892 
6893   SDValue Chain = ST->getChain();
6894   SDValue BasePtr = ST->getBasePtr();
6895   SDValue Value = ST->getValue();
6896   EVT StVT = ST->getMemoryVT();
6897 
6898   if (StVT.isScalableVector())
6899     report_fatal_error("Cannot scalarize scalable vector stores");
6900 
6901   // The type of the data we want to save
6902   EVT RegVT = Value.getValueType();
6903   EVT RegSclVT = RegVT.getScalarType();
6904 
6905   // The type of data as saved in memory.
6906   EVT MemSclVT = StVT.getScalarType();
6907 
6908   unsigned NumElem = StVT.getVectorNumElements();
6909 
6910   // A vector must always be stored in memory as-is, i.e. without any padding
6911   // between the elements, since various code depend on it, e.g. in the
6912   // handling of a bitcast of a vector type to int, which may be done with a
6913   // vector store followed by an integer load. A vector that does not have
6914   // elements that are byte-sized must therefore be stored as an integer
6915   // built out of the extracted vector elements.
6916   if (!MemSclVT.isByteSized()) {
6917     unsigned NumBits = StVT.getSizeInBits();
6918     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6919 
6920     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6921 
6922     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6923       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6924                                 DAG.getVectorIdxConstant(Idx, SL));
6925       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6926       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6927       unsigned ShiftIntoIdx =
6928           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6929       SDValue ShiftAmount =
6930           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6931       SDValue ShiftedElt =
6932           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6933       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6934     }
6935 
6936     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6937                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
6938                         ST->getAAInfo());
6939   }
6940 
6941   // Store Stride in bytes
6942   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6943   assert(Stride && "Zero stride!");
6944   // Extract each of the elements from the original vector and save them into
6945   // memory individually.
6946   SmallVector<SDValue, 8> Stores;
6947   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6948     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6949                               DAG.getVectorIdxConstant(Idx, SL));
6950 
6951     SDValue Ptr =
6952         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
6953 
6954     // This scalar TruncStore may be illegal, but we legalize it later.
6955     SDValue Store = DAG.getTruncStore(
6956         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6957         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
6958         ST->getAAInfo());
6959 
6960     Stores.push_back(Store);
6961   }
6962 
6963   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6964 }
6965 
6966 std::pair<SDValue, SDValue>
6967 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6968   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6969          "unaligned indexed loads not implemented!");
6970   SDValue Chain = LD->getChain();
6971   SDValue Ptr = LD->getBasePtr();
6972   EVT VT = LD->getValueType(0);
6973   EVT LoadedVT = LD->getMemoryVT();
6974   SDLoc dl(LD);
6975   auto &MF = DAG.getMachineFunction();
6976 
6977   if (VT.isFloatingPoint() || VT.isVector()) {
6978     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6979     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6980       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6981           LoadedVT.isVector()) {
6982         // Scalarize the load and let the individual components be handled.
6983         return scalarizeVectorLoad(LD, DAG);
6984       }
6985 
6986       // Expand to a (misaligned) integer load of the same size,
6987       // then bitconvert to floating point or vector.
6988       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6989                                     LD->getMemOperand());
6990       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6991       if (LoadedVT != VT)
6992         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6993                              ISD::ANY_EXTEND, dl, VT, Result);
6994 
6995       return std::make_pair(Result, newLoad.getValue(1));
6996     }
6997 
6998     // Copy the value to a (aligned) stack slot using (unaligned) integer
6999     // loads and stores, then do a (aligned) load from the stack slot.
7000     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7001     unsigned LoadedBytes = LoadedVT.getStoreSize();
7002     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7003     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7004 
7005     // Make sure the stack slot is also aligned for the register type.
7006     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7007     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7008     SmallVector<SDValue, 8> Stores;
7009     SDValue StackPtr = StackBase;
7010     unsigned Offset = 0;
7011 
7012     EVT PtrVT = Ptr.getValueType();
7013     EVT StackPtrVT = StackPtr.getValueType();
7014 
7015     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7016     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7017 
7018     // Do all but one copies using the full register width.
7019     for (unsigned i = 1; i < NumRegs; i++) {
7020       // Load one integer register's worth from the original location.
7021       SDValue Load = DAG.getLoad(
7022           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7023           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7024           LD->getAAInfo());
7025       // Follow the load with a store to the stack slot.  Remember the store.
7026       Stores.push_back(DAG.getStore(
7027           Load.getValue(1), dl, Load, StackPtr,
7028           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7029       // Increment the pointers.
7030       Offset += RegBytes;
7031 
7032       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7033       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7034     }
7035 
7036     // The last copy may be partial.  Do an extending load.
7037     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7038                                   8 * (LoadedBytes - Offset));
7039     SDValue Load =
7040         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7041                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7042                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7043                        LD->getAAInfo());
7044     // Follow the load with a store to the stack slot.  Remember the store.
7045     // On big-endian machines this requires a truncating store to ensure
7046     // that the bits end up in the right place.
7047     Stores.push_back(DAG.getTruncStore(
7048         Load.getValue(1), dl, Load, StackPtr,
7049         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7050 
7051     // The order of the stores doesn't matter - say it with a TokenFactor.
7052     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7053 
7054     // Finally, perform the original load only redirected to the stack slot.
7055     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7056                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7057                           LoadedVT);
7058 
7059     // Callers expect a MERGE_VALUES node.
7060     return std::make_pair(Load, TF);
7061   }
7062 
7063   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7064          "Unaligned load of unsupported type.");
7065 
7066   // Compute the new VT that is half the size of the old one.  This is an
7067   // integer MVT.
7068   unsigned NumBits = LoadedVT.getSizeInBits();
7069   EVT NewLoadedVT;
7070   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7071   NumBits >>= 1;
7072 
7073   Align Alignment = LD->getOriginalAlign();
7074   unsigned IncrementSize = NumBits / 8;
7075   ISD::LoadExtType HiExtType = LD->getExtensionType();
7076 
7077   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7078   if (HiExtType == ISD::NON_EXTLOAD)
7079     HiExtType = ISD::ZEXTLOAD;
7080 
7081   // Load the value in two parts
7082   SDValue Lo, Hi;
7083   if (DAG.getDataLayout().isLittleEndian()) {
7084     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7085                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7086                         LD->getAAInfo());
7087 
7088     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7089     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7090                         LD->getPointerInfo().getWithOffset(IncrementSize),
7091                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7092                         LD->getAAInfo());
7093   } else {
7094     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7095                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7096                         LD->getAAInfo());
7097 
7098     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7099     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7100                         LD->getPointerInfo().getWithOffset(IncrementSize),
7101                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7102                         LD->getAAInfo());
7103   }
7104 
7105   // aggregate the two parts
7106   SDValue ShiftAmount =
7107       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7108                                                     DAG.getDataLayout()));
7109   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7110   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7111 
7112   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7113                              Hi.getValue(1));
7114 
7115   return std::make_pair(Result, TF);
7116 }
7117 
7118 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7119                                              SelectionDAG &DAG) const {
7120   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7121          "unaligned indexed stores not implemented!");
7122   SDValue Chain = ST->getChain();
7123   SDValue Ptr = ST->getBasePtr();
7124   SDValue Val = ST->getValue();
7125   EVT VT = Val.getValueType();
7126   Align Alignment = ST->getOriginalAlign();
7127   auto &MF = DAG.getMachineFunction();
7128   EVT StoreMemVT = ST->getMemoryVT();
7129 
7130   SDLoc dl(ST);
7131   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7132     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7133     if (isTypeLegal(intVT)) {
7134       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7135           StoreMemVT.isVector()) {
7136         // Scalarize the store and let the individual components be handled.
7137         SDValue Result = scalarizeVectorStore(ST, DAG);
7138         return Result;
7139       }
7140       // Expand to a bitconvert of the value to the integer type of the
7141       // same size, then a (misaligned) int store.
7142       // FIXME: Does not handle truncating floating point stores!
7143       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7144       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7145                             Alignment, ST->getMemOperand()->getFlags());
7146       return Result;
7147     }
7148     // Do a (aligned) store to a stack slot, then copy from the stack slot
7149     // to the final destination using (unaligned) integer loads and stores.
7150     MVT RegVT = getRegisterType(
7151         *DAG.getContext(),
7152         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7153     EVT PtrVT = Ptr.getValueType();
7154     unsigned StoredBytes = StoreMemVT.getStoreSize();
7155     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7156     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7157 
7158     // Make sure the stack slot is also aligned for the register type.
7159     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7160     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7161 
7162     // Perform the original store, only redirected to the stack slot.
7163     SDValue Store = DAG.getTruncStore(
7164         Chain, dl, Val, StackPtr,
7165         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7166 
7167     EVT StackPtrVT = StackPtr.getValueType();
7168 
7169     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7170     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7171     SmallVector<SDValue, 8> Stores;
7172     unsigned Offset = 0;
7173 
7174     // Do all but one copies using the full register width.
7175     for (unsigned i = 1; i < NumRegs; i++) {
7176       // Load one integer register's worth from the stack slot.
7177       SDValue Load = DAG.getLoad(
7178           RegVT, dl, Store, StackPtr,
7179           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7180       // Store it to the final location.  Remember the store.
7181       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7182                                     ST->getPointerInfo().getWithOffset(Offset),
7183                                     ST->getOriginalAlign(),
7184                                     ST->getMemOperand()->getFlags()));
7185       // Increment the pointers.
7186       Offset += RegBytes;
7187       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7188       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7189     }
7190 
7191     // The last store may be partial.  Do a truncating store.  On big-endian
7192     // machines this requires an extending load from the stack slot to ensure
7193     // that the bits are in the right place.
7194     EVT LoadMemVT =
7195         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7196 
7197     // Load from the stack slot.
7198     SDValue Load = DAG.getExtLoad(
7199         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7200         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7201 
7202     Stores.push_back(
7203         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7204                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7205                           ST->getOriginalAlign(),
7206                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7207     // The order of the stores doesn't matter - say it with a TokenFactor.
7208     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7209     return Result;
7210   }
7211 
7212   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7213          "Unaligned store of unknown type.");
7214   // Get the half-size VT
7215   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7216   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7217   unsigned IncrementSize = NumBits / 8;
7218 
7219   // Divide the stored value in two parts.
7220   SDValue ShiftAmount = DAG.getConstant(
7221       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7222   SDValue Lo = Val;
7223   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7224 
7225   // Store the two parts
7226   SDValue Store1, Store2;
7227   Store1 = DAG.getTruncStore(Chain, dl,
7228                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7229                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7230                              ST->getMemOperand()->getFlags());
7231 
7232   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7233   Store2 = DAG.getTruncStore(
7234       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7235       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7236       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7237 
7238   SDValue Result =
7239       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7240   return Result;
7241 }
7242 
7243 SDValue
7244 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7245                                        const SDLoc &DL, EVT DataVT,
7246                                        SelectionDAG &DAG,
7247                                        bool IsCompressedMemory) const {
7248   SDValue Increment;
7249   EVT AddrVT = Addr.getValueType();
7250   EVT MaskVT = Mask.getValueType();
7251   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7252          "Incompatible types of Data and Mask");
7253   if (IsCompressedMemory) {
7254     if (DataVT.isScalableVector())
7255       report_fatal_error(
7256           "Cannot currently handle compressed memory with scalable vectors");
7257     // Incrementing the pointer according to number of '1's in the mask.
7258     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7259     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7260     if (MaskIntVT.getSizeInBits() < 32) {
7261       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7262       MaskIntVT = MVT::i32;
7263     }
7264 
7265     // Count '1's with POPCNT.
7266     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7267     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7268     // Scale is an element size in bytes.
7269     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7270                                     AddrVT);
7271     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7272   } else if (DataVT.isScalableVector()) {
7273     Increment = DAG.getVScale(DL, AddrVT,
7274                               APInt(AddrVT.getFixedSizeInBits(),
7275                                     DataVT.getStoreSize().getKnownMinSize()));
7276   } else
7277     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7278 
7279   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7280 }
7281 
7282 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7283                                        SDValue Idx,
7284                                        EVT VecVT,
7285                                        const SDLoc &dl) {
7286   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7287     return Idx;
7288 
7289   EVT IdxVT = Idx.getValueType();
7290   unsigned NElts = VecVT.getVectorMinNumElements();
7291   if (VecVT.isScalableVector()) {
7292     SDValue VS = DAG.getVScale(dl, IdxVT,
7293                                APInt(IdxVT.getFixedSizeInBits(),
7294                                      NElts));
7295     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7296                               DAG.getConstant(1, dl, IdxVT));
7297 
7298     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7299   } else {
7300     if (isPowerOf2_32(NElts)) {
7301       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7302                                        Log2_32(NElts));
7303       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7304                          DAG.getConstant(Imm, dl, IdxVT));
7305     }
7306   }
7307 
7308   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7309                      DAG.getConstant(NElts - 1, dl, IdxVT));
7310 }
7311 
7312 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7313                                                 SDValue VecPtr, EVT VecVT,
7314                                                 SDValue Index) const {
7315   SDLoc dl(Index);
7316   // Make sure the index type is big enough to compute in.
7317   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7318 
7319   EVT EltVT = VecVT.getVectorElementType();
7320 
7321   // Calculate the element offset and add it to the pointer.
7322   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7323   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7324          "Converting bits to bytes lost precision");
7325 
7326   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7327 
7328   EVT IdxVT = Index.getValueType();
7329 
7330   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7331                       DAG.getConstant(EltSize, dl, IdxVT));
7332   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7333 }
7334 
7335 //===----------------------------------------------------------------------===//
7336 // Implementation of Emulated TLS Model
7337 //===----------------------------------------------------------------------===//
7338 
7339 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7340                                                 SelectionDAG &DAG) const {
7341   // Access to address of TLS varialbe xyz is lowered to a function call:
7342   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7343   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7344   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7345   SDLoc dl(GA);
7346 
7347   ArgListTy Args;
7348   ArgListEntry Entry;
7349   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7350   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7351   StringRef EmuTlsVarName(NameString);
7352   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7353   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7354   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7355   Entry.Ty = VoidPtrType;
7356   Args.push_back(Entry);
7357 
7358   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7359 
7360   TargetLowering::CallLoweringInfo CLI(DAG);
7361   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7362   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7363   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7364 
7365   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7366   // At last for X86 targets, maybe good for other targets too?
7367   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7368   MFI.setAdjustsStack(true); // Is this only for X86 target?
7369   MFI.setHasCalls(true);
7370 
7371   assert((GA->getOffset() == 0) &&
7372          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7373   return CallResult.first;
7374 }
7375 
7376 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7377                                                 SelectionDAG &DAG) const {
7378   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7379   if (!isCtlzFast())
7380     return SDValue();
7381   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7382   SDLoc dl(Op);
7383   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7384     if (C->isNullValue() && CC == ISD::SETEQ) {
7385       EVT VT = Op.getOperand(0).getValueType();
7386       SDValue Zext = Op.getOperand(0);
7387       if (VT.bitsLT(MVT::i32)) {
7388         VT = MVT::i32;
7389         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7390       }
7391       unsigned Log2b = Log2_32(VT.getSizeInBits());
7392       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7393       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7394                                 DAG.getConstant(Log2b, dl, MVT::i32));
7395       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7396     }
7397   }
7398   return SDValue();
7399 }
7400 
7401 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7402   unsigned Opcode = Node->getOpcode();
7403   SDValue LHS = Node->getOperand(0);
7404   SDValue RHS = Node->getOperand(1);
7405   EVT VT = LHS.getValueType();
7406   SDLoc dl(Node);
7407 
7408   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7409   assert(VT.isInteger() && "Expected operands to be integers");
7410 
7411   // usub.sat(a, b) -> umax(a, b) - b
7412   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7413     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7414     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7415   }
7416 
7417   // uadd.sat(a, b) -> umin(a, ~b) + b
7418   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7419     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7420     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7421     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7422   }
7423 
7424   unsigned OverflowOp;
7425   switch (Opcode) {
7426   case ISD::SADDSAT:
7427     OverflowOp = ISD::SADDO;
7428     break;
7429   case ISD::UADDSAT:
7430     OverflowOp = ISD::UADDO;
7431     break;
7432   case ISD::SSUBSAT:
7433     OverflowOp = ISD::SSUBO;
7434     break;
7435   case ISD::USUBSAT:
7436     OverflowOp = ISD::USUBO;
7437     break;
7438   default:
7439     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7440                      "addition or subtraction node.");
7441   }
7442 
7443   // FIXME: Should really try to split the vector in case it's legal on a
7444   // subvector.
7445   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7446     return DAG.UnrollVectorOp(Node);
7447 
7448   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7449   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7450   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7451                                LHS, RHS);
7452   SDValue SumDiff = Result.getValue(0);
7453   SDValue Overflow = Result.getValue(1);
7454   SDValue Zero = DAG.getConstant(0, dl, VT);
7455   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7456 
7457   if (Opcode == ISD::UADDSAT) {
7458     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7459       // (LHS + RHS) | OverflowMask
7460       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7461       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7462     }
7463     // Overflow ? 0xffff.... : (LHS + RHS)
7464     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7465   } else if (Opcode == ISD::USUBSAT) {
7466     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7467       // (LHS - RHS) & ~OverflowMask
7468       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7469       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7470       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7471     }
7472     // Overflow ? 0 : (LHS - RHS)
7473     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7474   } else {
7475     // SatMax -> Overflow && SumDiff < 0
7476     // SatMin -> Overflow && SumDiff >= 0
7477     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7478     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7479     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7480     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7481     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7482     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7483     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7484   }
7485 }
7486 
7487 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7488   unsigned Opcode = Node->getOpcode();
7489   bool IsSigned = Opcode == ISD::SSHLSAT;
7490   SDValue LHS = Node->getOperand(0);
7491   SDValue RHS = Node->getOperand(1);
7492   EVT VT = LHS.getValueType();
7493   SDLoc dl(Node);
7494 
7495   assert((Node->getOpcode() == ISD::SSHLSAT ||
7496           Node->getOpcode() == ISD::USHLSAT) &&
7497           "Expected a SHLSAT opcode");
7498   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7499   assert(VT.isInteger() && "Expected operands to be integers");
7500 
7501   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7502 
7503   unsigned BW = VT.getScalarSizeInBits();
7504   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7505   SDValue Orig =
7506       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7507 
7508   SDValue SatVal;
7509   if (IsSigned) {
7510     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7511     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7512     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7513                              SatMin, SatMax, ISD::SETLT);
7514   } else {
7515     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7516   }
7517   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
7518 
7519   return Result;
7520 }
7521 
7522 SDValue
7523 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7524   assert((Node->getOpcode() == ISD::SMULFIX ||
7525           Node->getOpcode() == ISD::UMULFIX ||
7526           Node->getOpcode() == ISD::SMULFIXSAT ||
7527           Node->getOpcode() == ISD::UMULFIXSAT) &&
7528          "Expected a fixed point multiplication opcode");
7529 
7530   SDLoc dl(Node);
7531   SDValue LHS = Node->getOperand(0);
7532   SDValue RHS = Node->getOperand(1);
7533   EVT VT = LHS.getValueType();
7534   unsigned Scale = Node->getConstantOperandVal(2);
7535   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7536                      Node->getOpcode() == ISD::UMULFIXSAT);
7537   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7538                  Node->getOpcode() == ISD::SMULFIXSAT);
7539   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7540   unsigned VTSize = VT.getScalarSizeInBits();
7541 
7542   if (!Scale) {
7543     // [us]mul.fix(a, b, 0) -> mul(a, b)
7544     if (!Saturating) {
7545       if (isOperationLegalOrCustom(ISD::MUL, VT))
7546         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7547     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7548       SDValue Result =
7549           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7550       SDValue Product = Result.getValue(0);
7551       SDValue Overflow = Result.getValue(1);
7552       SDValue Zero = DAG.getConstant(0, dl, VT);
7553 
7554       APInt MinVal = APInt::getSignedMinValue(VTSize);
7555       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7556       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7557       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7558       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7559       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7560       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7561     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7562       SDValue Result =
7563           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7564       SDValue Product = Result.getValue(0);
7565       SDValue Overflow = Result.getValue(1);
7566 
7567       APInt MaxVal = APInt::getMaxValue(VTSize);
7568       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7569       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7570     }
7571   }
7572 
7573   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7574          "Expected scale to be less than the number of bits if signed or at "
7575          "most the number of bits if unsigned.");
7576   assert(LHS.getValueType() == RHS.getValueType() &&
7577          "Expected both operands to be the same type");
7578 
7579   // Get the upper and lower bits of the result.
7580   SDValue Lo, Hi;
7581   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7582   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7583   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7584     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7585     Lo = Result.getValue(0);
7586     Hi = Result.getValue(1);
7587   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7588     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7589     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7590   } else if (VT.isVector()) {
7591     return SDValue();
7592   } else {
7593     report_fatal_error("Unable to expand fixed point multiplication.");
7594   }
7595 
7596   if (Scale == VTSize)
7597     // Result is just the top half since we'd be shifting by the width of the
7598     // operand. Overflow impossible so this works for both UMULFIX and
7599     // UMULFIXSAT.
7600     return Hi;
7601 
7602   // The result will need to be shifted right by the scale since both operands
7603   // are scaled. The result is given to us in 2 halves, so we only want part of
7604   // both in the result.
7605   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7606   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7607                                DAG.getConstant(Scale, dl, ShiftTy));
7608   if (!Saturating)
7609     return Result;
7610 
7611   if (!Signed) {
7612     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7613     // widened multiplication) aren't all zeroes.
7614 
7615     // Saturate to max if ((Hi >> Scale) != 0),
7616     // which is the same as if (Hi > ((1 << Scale) - 1))
7617     APInt MaxVal = APInt::getMaxValue(VTSize);
7618     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7619                                       dl, VT);
7620     Result = DAG.getSelectCC(dl, Hi, LowMask,
7621                              DAG.getConstant(MaxVal, dl, VT), Result,
7622                              ISD::SETUGT);
7623 
7624     return Result;
7625   }
7626 
7627   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7628   // widened multiplication) aren't all ones or all zeroes.
7629 
7630   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7631   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7632 
7633   if (Scale == 0) {
7634     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7635                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7636     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7637     // Saturated to SatMin if wide product is negative, and SatMax if wide
7638     // product is positive ...
7639     SDValue Zero = DAG.getConstant(0, dl, VT);
7640     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7641                                                ISD::SETLT);
7642     // ... but only if we overflowed.
7643     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7644   }
7645 
7646   //  We handled Scale==0 above so all the bits to examine is in Hi.
7647 
7648   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7649   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7650   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7651                                     dl, VT);
7652   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7653   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7654   // which is the same as if (HI < (-1 << (Scale - 1))
7655   SDValue HighMask =
7656       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7657                       dl, VT);
7658   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7659   return Result;
7660 }
7661 
7662 SDValue
7663 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7664                                     SDValue LHS, SDValue RHS,
7665                                     unsigned Scale, SelectionDAG &DAG) const {
7666   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7667           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7668          "Expected a fixed point division opcode");
7669 
7670   EVT VT = LHS.getValueType();
7671   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7672   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7673   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7674 
7675   // If there is enough room in the type to upscale the LHS or downscale the
7676   // RHS before the division, we can perform it in this type without having to
7677   // resize. For signed operations, the LHS headroom is the number of
7678   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7679   // The headroom for the RHS is the number of trailing zeroes.
7680   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7681                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7682   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7683 
7684   // For signed saturating operations, we need to be able to detect true integer
7685   // division overflow; that is, when you have MIN / -EPS. However, this
7686   // is undefined behavior and if we emit divisions that could take such
7687   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7688   // example).
7689   // Avoid this by requiring an extra bit so that we never get this case.
7690   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7691   // signed saturating division, we need to emit a whopping 32-bit division.
7692   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7693     return SDValue();
7694 
7695   unsigned LHSShift = std::min(LHSLead, Scale);
7696   unsigned RHSShift = Scale - LHSShift;
7697 
7698   // At this point, we know that if we shift the LHS up by LHSShift and the
7699   // RHS down by RHSShift, we can emit a regular division with a final scaling
7700   // factor of Scale.
7701 
7702   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7703   if (LHSShift)
7704     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7705                       DAG.getConstant(LHSShift, dl, ShiftTy));
7706   if (RHSShift)
7707     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7708                       DAG.getConstant(RHSShift, dl, ShiftTy));
7709 
7710   SDValue Quot;
7711   if (Signed) {
7712     // For signed operations, if the resulting quotient is negative and the
7713     // remainder is nonzero, subtract 1 from the quotient to round towards
7714     // negative infinity.
7715     SDValue Rem;
7716     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7717     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7718     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7719     if (isTypeLegal(VT) &&
7720         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7721       Quot = DAG.getNode(ISD::SDIVREM, dl,
7722                          DAG.getVTList(VT, VT),
7723                          LHS, RHS);
7724       Rem = Quot.getValue(1);
7725       Quot = Quot.getValue(0);
7726     } else {
7727       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7728                          LHS, RHS);
7729       Rem = DAG.getNode(ISD::SREM, dl, VT,
7730                         LHS, RHS);
7731     }
7732     SDValue Zero = DAG.getConstant(0, dl, VT);
7733     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7734     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7735     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7736     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7737     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7738                                DAG.getConstant(1, dl, VT));
7739     Quot = DAG.getSelect(dl, VT,
7740                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7741                          Sub1, Quot);
7742   } else
7743     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7744                        LHS, RHS);
7745 
7746   return Quot;
7747 }
7748 
7749 void TargetLowering::expandUADDSUBO(
7750     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7751   SDLoc dl(Node);
7752   SDValue LHS = Node->getOperand(0);
7753   SDValue RHS = Node->getOperand(1);
7754   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7755 
7756   // If ADD/SUBCARRY is legal, use that instead.
7757   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7758   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7759     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7760     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7761                                     { LHS, RHS, CarryIn });
7762     Result = SDValue(NodeCarry.getNode(), 0);
7763     Overflow = SDValue(NodeCarry.getNode(), 1);
7764     return;
7765   }
7766 
7767   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7768                             LHS.getValueType(), LHS, RHS);
7769 
7770   EVT ResultType = Node->getValueType(1);
7771   EVT SetCCType = getSetCCResultType(
7772       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7773   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7774   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7775   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7776 }
7777 
7778 void TargetLowering::expandSADDSUBO(
7779     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7780   SDLoc dl(Node);
7781   SDValue LHS = Node->getOperand(0);
7782   SDValue RHS = Node->getOperand(1);
7783   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7784 
7785   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7786                             LHS.getValueType(), LHS, RHS);
7787 
7788   EVT ResultType = Node->getValueType(1);
7789   EVT OType = getSetCCResultType(
7790       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7791 
7792   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7793   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7794   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7795     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7796     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7797     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7798     return;
7799   }
7800 
7801   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7802 
7803   // For an addition, the result should be less than one of the operands (LHS)
7804   // if and only if the other operand (RHS) is negative, otherwise there will
7805   // be overflow.
7806   // For a subtraction, the result should be less than one of the operands
7807   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7808   // otherwise there will be overflow.
7809   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7810   SDValue ConditionRHS =
7811       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7812 
7813   Overflow = DAG.getBoolExtOrTrunc(
7814       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7815       ResultType, ResultType);
7816 }
7817 
7818 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7819                                 SDValue &Overflow, SelectionDAG &DAG) const {
7820   SDLoc dl(Node);
7821   EVT VT = Node->getValueType(0);
7822   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7823   SDValue LHS = Node->getOperand(0);
7824   SDValue RHS = Node->getOperand(1);
7825   bool isSigned = Node->getOpcode() == ISD::SMULO;
7826 
7827   // For power-of-two multiplications we can use a simpler shift expansion.
7828   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7829     const APInt &C = RHSC->getAPIntValue();
7830     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7831     if (C.isPowerOf2()) {
7832       // smulo(x, signed_min) is same as umulo(x, signed_min).
7833       bool UseArithShift = isSigned && !C.isMinSignedValue();
7834       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7835       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7836       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7837       Overflow = DAG.getSetCC(dl, SetCCVT,
7838           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7839                       dl, VT, Result, ShiftAmt),
7840           LHS, ISD::SETNE);
7841       return true;
7842     }
7843   }
7844 
7845   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7846   if (VT.isVector())
7847     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7848                               VT.getVectorNumElements());
7849 
7850   SDValue BottomHalf;
7851   SDValue TopHalf;
7852   static const unsigned Ops[2][3] =
7853       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7854         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7855   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7856     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7857     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7858   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7859     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7860                              RHS);
7861     TopHalf = BottomHalf.getValue(1);
7862   } else if (isTypeLegal(WideVT)) {
7863     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7864     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7865     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7866     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7867     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7868         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7869     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7870                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7871   } else {
7872     if (VT.isVector())
7873       return false;
7874 
7875     // We can fall back to a libcall with an illegal type for the MUL if we
7876     // have a libcall big enough.
7877     // Also, we can fall back to a division in some cases, but that's a big
7878     // performance hit in the general case.
7879     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7880     if (WideVT == MVT::i16)
7881       LC = RTLIB::MUL_I16;
7882     else if (WideVT == MVT::i32)
7883       LC = RTLIB::MUL_I32;
7884     else if (WideVT == MVT::i64)
7885       LC = RTLIB::MUL_I64;
7886     else if (WideVT == MVT::i128)
7887       LC = RTLIB::MUL_I128;
7888     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7889 
7890     SDValue HiLHS;
7891     SDValue HiRHS;
7892     if (isSigned) {
7893       // The high part is obtained by SRA'ing all but one of the bits of low
7894       // part.
7895       unsigned LoSize = VT.getSizeInBits();
7896       HiLHS =
7897           DAG.getNode(ISD::SRA, dl, VT, LHS,
7898                       DAG.getConstant(LoSize - 1, dl,
7899                                       getPointerTy(DAG.getDataLayout())));
7900       HiRHS =
7901           DAG.getNode(ISD::SRA, dl, VT, RHS,
7902                       DAG.getConstant(LoSize - 1, dl,
7903                                       getPointerTy(DAG.getDataLayout())));
7904     } else {
7905         HiLHS = DAG.getConstant(0, dl, VT);
7906         HiRHS = DAG.getConstant(0, dl, VT);
7907     }
7908 
7909     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7910     // pre-lowered to the correct types. This all depends upon WideVT not
7911     // being a legal type for the architecture and thus has to be split to
7912     // two arguments.
7913     SDValue Ret;
7914     TargetLowering::MakeLibCallOptions CallOptions;
7915     CallOptions.setSExt(isSigned);
7916     CallOptions.setIsPostTypeLegalization(true);
7917     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7918       // Halves of WideVT are packed into registers in different order
7919       // depending on platform endianness. This is usually handled by
7920       // the C calling convention, but we can't defer to it in
7921       // the legalizer.
7922       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7923       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7924     } else {
7925       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7926       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7927     }
7928     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7929            "Ret value is a collection of constituent nodes holding result.");
7930     if (DAG.getDataLayout().isLittleEndian()) {
7931       // Same as above.
7932       BottomHalf = Ret.getOperand(0);
7933       TopHalf = Ret.getOperand(1);
7934     } else {
7935       BottomHalf = Ret.getOperand(1);
7936       TopHalf = Ret.getOperand(0);
7937     }
7938   }
7939 
7940   Result = BottomHalf;
7941   if (isSigned) {
7942     SDValue ShiftAmt = DAG.getConstant(
7943         VT.getScalarSizeInBits() - 1, dl,
7944         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7945     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7946     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7947   } else {
7948     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7949                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7950   }
7951 
7952   // Truncate the result if SetCC returns a larger type than needed.
7953   EVT RType = Node->getValueType(1);
7954   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7955     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7956 
7957   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7958          "Unexpected result type for S/UMULO legalization");
7959   return true;
7960 }
7961 
7962 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7963   SDLoc dl(Node);
7964   unsigned BaseOpcode = 0;
7965   switch (Node->getOpcode()) {
7966   default: llvm_unreachable("Expected VECREDUCE opcode");
7967   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7968   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7969   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7970   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7971   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7972   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7973   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7974   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7975   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7976   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7977   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7978   case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break;
7979   case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break;
7980   }
7981 
7982   SDValue Op = Node->getOperand(0);
7983   EVT VT = Op.getValueType();
7984 
7985   // Try to use a shuffle reduction for power of two vectors.
7986   if (VT.isPow2VectorType()) {
7987     while (VT.getVectorNumElements() > 1) {
7988       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7989       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7990         break;
7991 
7992       SDValue Lo, Hi;
7993       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7994       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7995       VT = HalfVT;
7996     }
7997   }
7998 
7999   EVT EltVT = VT.getVectorElementType();
8000   unsigned NumElts = VT.getVectorNumElements();
8001 
8002   SmallVector<SDValue, 8> Ops;
8003   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8004 
8005   SDValue Res = Ops[0];
8006   for (unsigned i = 1; i < NumElts; i++)
8007     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8008 
8009   // Result type may be wider than element type.
8010   if (EltVT != Node->getValueType(0))
8011     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8012   return Res;
8013 }
8014 
8015 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8016                                SelectionDAG &DAG) const {
8017   EVT VT = Node->getValueType(0);
8018   SDLoc dl(Node);
8019   bool isSigned = Node->getOpcode() == ISD::SREM;
8020   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8021   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8022   SDValue Dividend = Node->getOperand(0);
8023   SDValue Divisor = Node->getOperand(1);
8024   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8025     SDVTList VTs = DAG.getVTList(VT, VT);
8026     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8027     return true;
8028   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8029     // X % Y -> X-X/Y*Y
8030     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8031     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8032     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8033     return true;
8034   }
8035   return false;
8036 }
8037