1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true") 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore NoAlias and NonNull because they don't affect the 61 // call sequence. 62 AttributeList CallerAttrs = F.getAttributes(); 63 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 64 .removeAttribute(Attribute::NoAlias) 65 .removeAttribute(Attribute::NonNull) 66 .hasAttributes()) 67 return false; 68 69 // It's not safe to eliminate the sign / zero extension of the return value. 70 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 71 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 72 return false; 73 74 // Check if the only use is a function return node. 75 return isUsedByReturnOnly(Node, Chain); 76 } 77 78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 79 const uint32_t *CallerPreservedMask, 80 const SmallVectorImpl<CCValAssign> &ArgLocs, 81 const SmallVectorImpl<SDValue> &OutVals) const { 82 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 83 const CCValAssign &ArgLoc = ArgLocs[I]; 84 if (!ArgLoc.isRegLoc()) 85 continue; 86 MCRegister Reg = ArgLoc.getLocReg(); 87 // Only look at callee saved registers. 88 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 89 continue; 90 // Check that we pass the value used for the caller. 91 // (We look for a CopyFromReg reading a virtual register that is used 92 // for the function live-in value of register Reg) 93 SDValue Value = OutVals[I]; 94 if (Value->getOpcode() != ISD::CopyFromReg) 95 return false; 96 MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 97 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 98 return false; 99 } 100 return true; 101 } 102 103 /// Set CallLoweringInfo attribute flags based on a call instruction 104 /// and called function attributes. 105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 106 unsigned ArgIdx) { 107 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 108 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 109 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 110 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 111 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 112 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 113 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 114 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 115 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 116 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 117 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 118 Alignment = Call->getParamAlign(ArgIdx); 119 ByValType = nullptr; 120 if (IsByVal) 121 ByValType = Call->getParamByValType(ArgIdx); 122 PreallocatedType = nullptr; 123 if (IsPreallocated) 124 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 125 } 126 127 /// Generate a libcall taking the given operands as arguments and returning a 128 /// result of type RetVT. 129 std::pair<SDValue, SDValue> 130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 131 ArrayRef<SDValue> Ops, 132 MakeLibCallOptions CallOptions, 133 const SDLoc &dl, 134 SDValue InChain) const { 135 if (!InChain) 136 InChain = DAG.getEntryNode(); 137 138 TargetLowering::ArgListTy Args; 139 Args.reserve(Ops.size()); 140 141 TargetLowering::ArgListEntry Entry; 142 for (unsigned i = 0; i < Ops.size(); ++i) { 143 SDValue NewOp = Ops[i]; 144 Entry.Node = NewOp; 145 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 146 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 147 CallOptions.IsSExt); 148 Entry.IsZExt = !Entry.IsSExt; 149 150 if (CallOptions.IsSoften && 151 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 152 Entry.IsSExt = Entry.IsZExt = false; 153 } 154 Args.push_back(Entry); 155 } 156 157 if (LC == RTLIB::UNKNOWN_LIBCALL) 158 report_fatal_error("Unsupported library call operation!"); 159 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 160 getPointerTy(DAG.getDataLayout())); 161 162 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 163 TargetLowering::CallLoweringInfo CLI(DAG); 164 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 165 bool zeroExtend = !signExtend; 166 167 if (CallOptions.IsSoften && 168 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 169 signExtend = zeroExtend = false; 170 } 171 172 CLI.setDebugLoc(dl) 173 .setChain(InChain) 174 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 175 .setNoReturn(CallOptions.DoesNotReturn) 176 .setDiscardResult(!CallOptions.IsReturnValueUsed) 177 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 178 .setSExtResult(signExtend) 179 .setZExtResult(zeroExtend); 180 return LowerCallTo(CLI); 181 } 182 183 bool TargetLowering::findOptimalMemOpLowering( 184 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 185 unsigned SrcAS, const AttributeList &FuncAttributes) const { 186 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 187 return false; 188 189 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 190 191 if (VT == MVT::Other) { 192 // Use the largest integer type whose alignment constraints are satisfied. 193 // We only need to check DstAlign here as SrcAlign is always greater or 194 // equal to DstAlign (or zero). 195 VT = MVT::i64; 196 if (Op.isFixedDstAlign()) 197 while ( 198 Op.getDstAlign() < (VT.getSizeInBits() / 8) && 199 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value())) 200 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 201 assert(VT.isInteger()); 202 203 // Find the largest legal integer type. 204 MVT LVT = MVT::i64; 205 while (!isTypeLegal(LVT)) 206 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 207 assert(LVT.isInteger()); 208 209 // If the type we've chosen is larger than the largest legal integer type 210 // then use that instead. 211 if (VT.bitsGT(LVT)) 212 VT = LVT; 213 } 214 215 unsigned NumMemOps = 0; 216 uint64_t Size = Op.size(); 217 while (Size) { 218 unsigned VTSize = VT.getSizeInBits() / 8; 219 while (VTSize > Size) { 220 // For now, only use non-vector load / store's for the left-over pieces. 221 EVT NewVT = VT; 222 unsigned NewVTSize; 223 224 bool Found = false; 225 if (VT.isVector() || VT.isFloatingPoint()) { 226 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 227 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 228 isSafeMemOpType(NewVT.getSimpleVT())) 229 Found = true; 230 else if (NewVT == MVT::i64 && 231 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 232 isSafeMemOpType(MVT::f64)) { 233 // i64 is usually not legal on 32-bit targets, but f64 may be. 234 NewVT = MVT::f64; 235 Found = true; 236 } 237 } 238 239 if (!Found) { 240 do { 241 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 242 if (NewVT == MVT::i8) 243 break; 244 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 245 } 246 NewVTSize = NewVT.getSizeInBits() / 8; 247 248 // If the new VT cannot cover all of the remaining bits, then consider 249 // issuing a (or a pair of) unaligned and overlapping load / store. 250 bool Fast; 251 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 252 allowsMisalignedMemoryAccesses( 253 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 1, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 SDValue Chain; 281 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 282 OldRHS, Chain); 283 } 284 285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 286 SDValue &NewLHS, SDValue &NewRHS, 287 ISD::CondCode &CCCode, 288 const SDLoc &dl, const SDValue OldLHS, 289 const SDValue OldRHS, 290 SDValue &Chain, 291 bool IsSignaling) const { 292 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 293 // not supporting it. We can update this code when libgcc provides such 294 // functions. 295 296 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 297 && "Unsupported setcc type!"); 298 299 // Expand into one or more soft-fp libcall(s). 300 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 301 bool ShouldInvertCC = false; 302 switch (CCCode) { 303 case ISD::SETEQ: 304 case ISD::SETOEQ: 305 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 306 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 307 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 308 break; 309 case ISD::SETNE: 310 case ISD::SETUNE: 311 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 312 (VT == MVT::f64) ? RTLIB::UNE_F64 : 313 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 314 break; 315 case ISD::SETGE: 316 case ISD::SETOGE: 317 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 318 (VT == MVT::f64) ? RTLIB::OGE_F64 : 319 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 320 break; 321 case ISD::SETLT: 322 case ISD::SETOLT: 323 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 324 (VT == MVT::f64) ? RTLIB::OLT_F64 : 325 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 326 break; 327 case ISD::SETLE: 328 case ISD::SETOLE: 329 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 330 (VT == MVT::f64) ? RTLIB::OLE_F64 : 331 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 332 break; 333 case ISD::SETGT: 334 case ISD::SETOGT: 335 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 336 (VT == MVT::f64) ? RTLIB::OGT_F64 : 337 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 338 break; 339 case ISD::SETO: 340 ShouldInvertCC = true; 341 LLVM_FALLTHROUGH; 342 case ISD::SETUO: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 break; 347 case ISD::SETONE: 348 // SETONE = O && UNE 349 ShouldInvertCC = true; 350 LLVM_FALLTHROUGH; 351 case ISD::SETUEQ: 352 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 353 (VT == MVT::f64) ? RTLIB::UO_F64 : 354 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 355 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 356 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 357 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 358 break; 359 default: 360 // Invert CC for unordered comparisons 361 ShouldInvertCC = true; 362 switch (CCCode) { 363 case ISD::SETULT: 364 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 365 (VT == MVT::f64) ? RTLIB::OGE_F64 : 366 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 367 break; 368 case ISD::SETULE: 369 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 370 (VT == MVT::f64) ? RTLIB::OGT_F64 : 371 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 372 break; 373 case ISD::SETUGT: 374 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 375 (VT == MVT::f64) ? RTLIB::OLE_F64 : 376 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 377 break; 378 case ISD::SETUGE: 379 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 380 (VT == MVT::f64) ? RTLIB::OLT_F64 : 381 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 382 break; 383 default: llvm_unreachable("Do not know how to soften this setcc!"); 384 } 385 } 386 387 // Use the target specific return value for comparions lib calls. 388 EVT RetVT = getCmpLibcallReturnType(); 389 SDValue Ops[2] = {NewLHS, NewRHS}; 390 TargetLowering::MakeLibCallOptions CallOptions; 391 EVT OpsVT[2] = { OldLHS.getValueType(), 392 OldRHS.getValueType() }; 393 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 394 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 395 NewLHS = Call.first; 396 NewRHS = DAG.getConstant(0, dl, RetVT); 397 398 CCCode = getCmpLibcallCC(LC1); 399 if (ShouldInvertCC) { 400 assert(RetVT.isInteger()); 401 CCCode = getSetCCInverse(CCCode, RetVT); 402 } 403 404 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 405 // Update Chain. 406 Chain = Call.second; 407 } else { 408 EVT SetCCVT = 409 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 410 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 411 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 412 CCCode = getCmpLibcallCC(LC2); 413 if (ShouldInvertCC) 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 416 if (Chain) 417 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 418 Call2.second); 419 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 420 Tmp.getValueType(), Tmp, NewLHS); 421 NewRHS = SDValue(); 422 } 423 } 424 425 /// Return the entry encoding for a jump table in the current function. The 426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 427 unsigned TargetLowering::getJumpTableEncoding() const { 428 // In non-pic modes, just use the address of a block. 429 if (!isPositionIndependent()) 430 return MachineJumpTableInfo::EK_BlockAddress; 431 432 // In PIC mode, if the target supports a GPRel32 directive, use it. 433 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 434 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 435 436 // Otherwise, use a label difference. 437 return MachineJumpTableInfo::EK_LabelDifference32; 438 } 439 440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 441 SelectionDAG &DAG) const { 442 // If our PIC model is GP relative, use the global offset table as the base. 443 unsigned JTEncoding = getJumpTableEncoding(); 444 445 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 446 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 447 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 448 449 return Table; 450 } 451 452 /// This returns the relocation base for the given PIC jumptable, the same as 453 /// getPICJumpTableRelocBase, but as an MCExpr. 454 const MCExpr * 455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 456 unsigned JTI,MCContext &Ctx) const{ 457 // The normal PIC reloc base is the label at the start of the jump table. 458 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 459 } 460 461 bool 462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 463 const TargetMachine &TM = getTargetMachine(); 464 const GlobalValue *GV = GA->getGlobal(); 465 466 // If the address is not even local to this DSO we will have to load it from 467 // a got and then add the offset. 468 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 469 return false; 470 471 // If the code is position independent we will have to add a base register. 472 if (isPositionIndependent()) 473 return false; 474 475 // Otherwise we can do it. 476 return true; 477 } 478 479 //===----------------------------------------------------------------------===// 480 // Optimization Methods 481 //===----------------------------------------------------------------------===// 482 483 /// If the specified instruction has a constant integer operand and there are 484 /// bits set in that constant that are not demanded, then clear those bits and 485 /// return true. 486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 487 const APInt &DemandedBits, 488 const APInt &DemandedElts, 489 TargetLoweringOpt &TLO) const { 490 SDLoc DL(Op); 491 unsigned Opcode = Op.getOpcode(); 492 493 // Do target-specific constant optimization. 494 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 495 return TLO.New.getNode(); 496 497 // FIXME: ISD::SELECT, ISD::SELECT_CC 498 switch (Opcode) { 499 default: 500 break; 501 case ISD::XOR: 502 case ISD::AND: 503 case ISD::OR: { 504 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 505 if (!Op1C) 506 return false; 507 508 // If this is a 'not' op, don't touch it because that's a canonical form. 509 const APInt &C = Op1C->getAPIntValue(); 510 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 511 return false; 512 513 if (!C.isSubsetOf(DemandedBits)) { 514 EVT VT = Op.getValueType(); 515 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 516 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 517 return TLO.CombineTo(Op, NewOp); 518 } 519 520 break; 521 } 522 } 523 524 return false; 525 } 526 527 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 528 const APInt &DemandedBits, 529 TargetLoweringOpt &TLO) const { 530 EVT VT = Op.getValueType(); 531 APInt DemandedElts = VT.isVector() 532 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 533 : APInt(1, 1); 534 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 535 } 536 537 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 538 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 539 /// generalized for targets with other types of implicit widening casts. 540 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 541 const APInt &Demanded, 542 TargetLoweringOpt &TLO) const { 543 assert(Op.getNumOperands() == 2 && 544 "ShrinkDemandedOp only supports binary operators!"); 545 assert(Op.getNode()->getNumValues() == 1 && 546 "ShrinkDemandedOp only supports nodes with one result!"); 547 548 SelectionDAG &DAG = TLO.DAG; 549 SDLoc dl(Op); 550 551 // Early return, as this function cannot handle vector types. 552 if (Op.getValueType().isVector()) 553 return false; 554 555 // Don't do this if the node has another user, which may require the 556 // full value. 557 if (!Op.getNode()->hasOneUse()) 558 return false; 559 560 // Search for the smallest integer type with free casts to and from 561 // Op's type. For expedience, just check power-of-2 integer types. 562 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 563 unsigned DemandedSize = Demanded.getActiveBits(); 564 unsigned SmallVTBits = DemandedSize; 565 if (!isPowerOf2_32(SmallVTBits)) 566 SmallVTBits = NextPowerOf2(SmallVTBits); 567 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 568 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 569 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 570 TLI.isZExtFree(SmallVT, Op.getValueType())) { 571 // We found a type with free casts. 572 SDValue X = DAG.getNode( 573 Op.getOpcode(), dl, SmallVT, 574 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 575 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 576 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 577 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 578 return TLO.CombineTo(Op, Z); 579 } 580 } 581 return false; 582 } 583 584 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 585 DAGCombinerInfo &DCI) const { 586 SelectionDAG &DAG = DCI.DAG; 587 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 588 !DCI.isBeforeLegalizeOps()); 589 KnownBits Known; 590 591 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 592 if (Simplified) { 593 DCI.AddToWorklist(Op.getNode()); 594 DCI.CommitTargetLoweringOpt(TLO); 595 } 596 return Simplified; 597 } 598 599 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 600 KnownBits &Known, 601 TargetLoweringOpt &TLO, 602 unsigned Depth, 603 bool AssumeSingleUse) const { 604 EVT VT = Op.getValueType(); 605 606 // TODO: We can probably do more work on calculating the known bits and 607 // simplifying the operations for scalable vectors, but for now we just 608 // bail out. 609 if (VT.isScalableVector()) { 610 // Pretend we don't know anything for now. 611 Known = KnownBits(DemandedBits.getBitWidth()); 612 return false; 613 } 614 615 APInt DemandedElts = VT.isVector() 616 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 617 : APInt(1, 1); 618 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 619 AssumeSingleUse); 620 } 621 622 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 623 // TODO: Under what circumstances can we create nodes? Constant folding? 624 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 625 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 626 SelectionDAG &DAG, unsigned Depth) const { 627 // Limit search depth. 628 if (Depth >= SelectionDAG::MaxRecursionDepth) 629 return SDValue(); 630 631 // Ignore UNDEFs. 632 if (Op.isUndef()) 633 return SDValue(); 634 635 // Not demanding any bits/elts from Op. 636 if (DemandedBits == 0 || DemandedElts == 0) 637 return DAG.getUNDEF(Op.getValueType()); 638 639 unsigned NumElts = DemandedElts.getBitWidth(); 640 unsigned BitWidth = DemandedBits.getBitWidth(); 641 KnownBits LHSKnown, RHSKnown; 642 switch (Op.getOpcode()) { 643 case ISD::BITCAST: { 644 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 645 EVT SrcVT = Src.getValueType(); 646 EVT DstVT = Op.getValueType(); 647 if (SrcVT == DstVT) 648 return Src; 649 650 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 651 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 652 if (NumSrcEltBits == NumDstEltBits) 653 if (SDValue V = SimplifyMultipleUseDemandedBits( 654 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 655 return DAG.getBitcast(DstVT, V); 656 657 // TODO - bigendian once we have test coverage. 658 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 659 DAG.getDataLayout().isLittleEndian()) { 660 unsigned Scale = NumDstEltBits / NumSrcEltBits; 661 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 662 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 663 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 664 for (unsigned i = 0; i != Scale; ++i) { 665 unsigned Offset = i * NumSrcEltBits; 666 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 667 if (!Sub.isNullValue()) { 668 DemandedSrcBits |= Sub; 669 for (unsigned j = 0; j != NumElts; ++j) 670 if (DemandedElts[j]) 671 DemandedSrcElts.setBit((j * Scale) + i); 672 } 673 } 674 675 if (SDValue V = SimplifyMultipleUseDemandedBits( 676 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 677 return DAG.getBitcast(DstVT, V); 678 } 679 680 // TODO - bigendian once we have test coverage. 681 if ((NumSrcEltBits % NumDstEltBits) == 0 && 682 DAG.getDataLayout().isLittleEndian()) { 683 unsigned Scale = NumSrcEltBits / NumDstEltBits; 684 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 685 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 686 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 687 for (unsigned i = 0; i != NumElts; ++i) 688 if (DemandedElts[i]) { 689 unsigned Offset = (i % Scale) * NumDstEltBits; 690 DemandedSrcBits.insertBits(DemandedBits, Offset); 691 DemandedSrcElts.setBit(i / Scale); 692 } 693 694 if (SDValue V = SimplifyMultipleUseDemandedBits( 695 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 696 return DAG.getBitcast(DstVT, V); 697 } 698 699 break; 700 } 701 case ISD::AND: { 702 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 703 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 704 705 // If all of the demanded bits are known 1 on one side, return the other. 706 // These bits cannot contribute to the result of the 'and' in this 707 // context. 708 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 709 return Op.getOperand(0); 710 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 711 return Op.getOperand(1); 712 break; 713 } 714 case ISD::OR: { 715 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 716 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 717 718 // If all of the demanded bits are known zero on one side, return the 719 // other. These bits cannot contribute to the result of the 'or' in this 720 // context. 721 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 722 return Op.getOperand(0); 723 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 724 return Op.getOperand(1); 725 break; 726 } 727 case ISD::XOR: { 728 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 729 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 730 731 // If all of the demanded bits are known zero on one side, return the 732 // other. 733 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 734 return Op.getOperand(0); 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 736 return Op.getOperand(1); 737 break; 738 } 739 case ISD::SHL: { 740 // If we are only demanding sign bits then we can use the shift source 741 // directly. 742 if (const APInt *MaxSA = 743 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 744 SDValue Op0 = Op.getOperand(0); 745 unsigned ShAmt = MaxSA->getZExtValue(); 746 unsigned NumSignBits = 747 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 748 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 749 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 750 return Op0; 751 } 752 break; 753 } 754 case ISD::SETCC: { 755 SDValue Op0 = Op.getOperand(0); 756 SDValue Op1 = Op.getOperand(1); 757 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 758 // If (1) we only need the sign-bit, (2) the setcc operands are the same 759 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 760 // -1, we may be able to bypass the setcc. 761 if (DemandedBits.isSignMask() && 762 Op0.getScalarValueSizeInBits() == BitWidth && 763 getBooleanContents(Op0.getValueType()) == 764 BooleanContent::ZeroOrNegativeOneBooleanContent) { 765 // If we're testing X < 0, then this compare isn't needed - just use X! 766 // FIXME: We're limiting to integer types here, but this should also work 767 // if we don't care about FP signed-zero. The use of SETLT with FP means 768 // that we don't care about NaNs. 769 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 770 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 771 return Op0; 772 } 773 break; 774 } 775 case ISD::SIGN_EXTEND_INREG: { 776 // If none of the extended bits are demanded, eliminate the sextinreg. 777 SDValue Op0 = Op.getOperand(0); 778 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 779 unsigned ExBits = ExVT.getScalarSizeInBits(); 780 if (DemandedBits.getActiveBits() <= ExBits) 781 return Op0; 782 // If the input is already sign extended, just drop the extension. 783 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 784 if (NumSignBits >= (BitWidth - ExBits + 1)) 785 return Op0; 786 break; 787 } 788 case ISD::ANY_EXTEND_VECTOR_INREG: 789 case ISD::SIGN_EXTEND_VECTOR_INREG: 790 case ISD::ZERO_EXTEND_VECTOR_INREG: { 791 // If we only want the lowest element and none of extended bits, then we can 792 // return the bitcasted source vector. 793 SDValue Src = Op.getOperand(0); 794 EVT SrcVT = Src.getValueType(); 795 EVT DstVT = Op.getValueType(); 796 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 797 DAG.getDataLayout().isLittleEndian() && 798 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 799 return DAG.getBitcast(DstVT, Src); 800 } 801 break; 802 } 803 case ISD::INSERT_VECTOR_ELT: { 804 // If we don't demand the inserted element, return the base vector. 805 SDValue Vec = Op.getOperand(0); 806 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 807 EVT VecVT = Vec.getValueType(); 808 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 809 !DemandedElts[CIdx->getZExtValue()]) 810 return Vec; 811 break; 812 } 813 case ISD::INSERT_SUBVECTOR: { 814 // If we don't demand the inserted subvector, return the base vector. 815 SDValue Vec = Op.getOperand(0); 816 SDValue Sub = Op.getOperand(1); 817 uint64_t Idx = Op.getConstantOperandVal(2); 818 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 819 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 820 return Vec; 821 break; 822 } 823 case ISD::VECTOR_SHUFFLE: { 824 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 825 826 // If all the demanded elts are from one operand and are inline, 827 // then we can use the operand directly. 828 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 829 for (unsigned i = 0; i != NumElts; ++i) { 830 int M = ShuffleMask[i]; 831 if (M < 0 || !DemandedElts[i]) 832 continue; 833 AllUndef = false; 834 IdentityLHS &= (M == (int)i); 835 IdentityRHS &= ((M - NumElts) == i); 836 } 837 838 if (AllUndef) 839 return DAG.getUNDEF(Op.getValueType()); 840 if (IdentityLHS) 841 return Op.getOperand(0); 842 if (IdentityRHS) 843 return Op.getOperand(1); 844 break; 845 } 846 default: 847 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 848 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 849 Op, DemandedBits, DemandedElts, DAG, Depth)) 850 return V; 851 break; 852 } 853 return SDValue(); 854 } 855 856 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 857 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 858 unsigned Depth) const { 859 EVT VT = Op.getValueType(); 860 APInt DemandedElts = VT.isVector() 861 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 862 : APInt(1, 1); 863 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 864 Depth); 865 } 866 867 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 868 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 869 unsigned Depth) const { 870 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 876 /// result of Op are ever used downstream. If we can use this information to 877 /// simplify Op, create a new simplified DAG node and return true, returning the 878 /// original and new nodes in Old and New. Otherwise, analyze the expression and 879 /// return a mask of Known bits for the expression (used to simplify the 880 /// caller). The Known bits may only be accurate for those bits in the 881 /// OriginalDemandedBits and OriginalDemandedElts. 882 bool TargetLowering::SimplifyDemandedBits( 883 SDValue Op, const APInt &OriginalDemandedBits, 884 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 885 unsigned Depth, bool AssumeSingleUse) const { 886 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 887 assert(Op.getScalarValueSizeInBits() == BitWidth && 888 "Mask size mismatches value type size!"); 889 890 // Don't know anything. 891 Known = KnownBits(BitWidth); 892 893 // TODO: We can probably do more work on calculating the known bits and 894 // simplifying the operations for scalable vectors, but for now we just 895 // bail out. 896 if (Op.getValueType().isScalableVector()) 897 return false; 898 899 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 900 assert((!Op.getValueType().isVector() || 901 NumElts == Op.getValueType().getVectorNumElements()) && 902 "Unexpected vector size"); 903 904 APInt DemandedBits = OriginalDemandedBits; 905 APInt DemandedElts = OriginalDemandedElts; 906 SDLoc dl(Op); 907 auto &DL = TLO.DAG.getDataLayout(); 908 909 // Undef operand. 910 if (Op.isUndef()) 911 return false; 912 913 if (Op.getOpcode() == ISD::Constant) { 914 // We know all of the bits for a constant! 915 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 916 Known.Zero = ~Known.One; 917 return false; 918 } 919 920 if (Op.getOpcode() == ISD::ConstantFP) { 921 // We know all of the bits for a floating point constant! 922 Known.One = cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt(); 923 Known.Zero = ~Known.One; 924 return false; 925 } 926 927 // Other users may use these bits. 928 EVT VT = Op.getValueType(); 929 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 930 if (Depth != 0) { 931 // If not at the root, Just compute the Known bits to 932 // simplify things downstream. 933 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 934 return false; 935 } 936 // If this is the root being simplified, allow it to have multiple uses, 937 // just set the DemandedBits/Elts to all bits. 938 DemandedBits = APInt::getAllOnesValue(BitWidth); 939 DemandedElts = APInt::getAllOnesValue(NumElts); 940 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 941 // Not demanding any bits/elts from Op. 942 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 943 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 944 // Limit search depth. 945 return false; 946 } 947 948 KnownBits Known2; 949 switch (Op.getOpcode()) { 950 case ISD::TargetConstant: 951 llvm_unreachable("Can't simplify this node"); 952 case ISD::SCALAR_TO_VECTOR: { 953 if (!DemandedElts[0]) 954 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 955 956 KnownBits SrcKnown; 957 SDValue Src = Op.getOperand(0); 958 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 959 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 960 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 961 return true; 962 963 // Upper elements are undef, so only get the knownbits if we just demand 964 // the bottom element. 965 if (DemandedElts == 1) 966 Known = SrcKnown.anyextOrTrunc(BitWidth); 967 break; 968 } 969 case ISD::BUILD_VECTOR: 970 // Collect the known bits that are shared by every demanded element. 971 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 972 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 973 return false; // Don't fall through, will infinitely loop. 974 case ISD::LOAD: { 975 LoadSDNode *LD = cast<LoadSDNode>(Op); 976 if (getTargetConstantFromLoad(LD)) { 977 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 978 return false; // Don't fall through, will infinitely loop. 979 } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 980 // If this is a ZEXTLoad and we are looking at the loaded value. 981 EVT MemVT = LD->getMemoryVT(); 982 unsigned MemBits = MemVT.getScalarSizeInBits(); 983 Known.Zero.setBitsFrom(MemBits); 984 return false; // Don't fall through, will infinitely loop. 985 } 986 break; 987 } 988 case ISD::INSERT_VECTOR_ELT: { 989 SDValue Vec = Op.getOperand(0); 990 SDValue Scl = Op.getOperand(1); 991 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 992 EVT VecVT = Vec.getValueType(); 993 994 // If index isn't constant, assume we need all vector elements AND the 995 // inserted element. 996 APInt DemandedVecElts(DemandedElts); 997 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 998 unsigned Idx = CIdx->getZExtValue(); 999 DemandedVecElts.clearBit(Idx); 1000 1001 // Inserted element is not required. 1002 if (!DemandedElts[Idx]) 1003 return TLO.CombineTo(Op, Vec); 1004 } 1005 1006 KnownBits KnownScl; 1007 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1008 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1009 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1010 return true; 1011 1012 Known = KnownScl.anyextOrTrunc(BitWidth); 1013 1014 KnownBits KnownVec; 1015 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1016 Depth + 1)) 1017 return true; 1018 1019 if (!!DemandedVecElts) { 1020 Known.One &= KnownVec.One; 1021 Known.Zero &= KnownVec.Zero; 1022 } 1023 1024 return false; 1025 } 1026 case ISD::INSERT_SUBVECTOR: { 1027 // Demand any elements from the subvector and the remainder from the src its 1028 // inserted into. 1029 SDValue Src = Op.getOperand(0); 1030 SDValue Sub = Op.getOperand(1); 1031 uint64_t Idx = Op.getConstantOperandVal(2); 1032 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1033 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1034 APInt DemandedSrcElts = DemandedElts; 1035 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1036 1037 KnownBits KnownSub, KnownSrc; 1038 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1039 Depth + 1)) 1040 return true; 1041 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1042 Depth + 1)) 1043 return true; 1044 1045 Known.Zero.setAllBits(); 1046 Known.One.setAllBits(); 1047 if (!!DemandedSubElts) { 1048 Known.One &= KnownSub.One; 1049 Known.Zero &= KnownSub.Zero; 1050 } 1051 if (!!DemandedSrcElts) { 1052 Known.One &= KnownSrc.One; 1053 Known.Zero &= KnownSrc.Zero; 1054 } 1055 1056 // Attempt to avoid multi-use src if we don't need anything from it. 1057 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1058 !DemandedSrcElts.isAllOnesValue()) { 1059 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1060 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1061 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1062 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1063 if (NewSub || NewSrc) { 1064 NewSub = NewSub ? NewSub : Sub; 1065 NewSrc = NewSrc ? NewSrc : Src; 1066 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1067 Op.getOperand(2)); 1068 return TLO.CombineTo(Op, NewOp); 1069 } 1070 } 1071 break; 1072 } 1073 case ISD::EXTRACT_SUBVECTOR: { 1074 // Offset the demanded elts by the subvector index. 1075 SDValue Src = Op.getOperand(0); 1076 if (Src.getValueType().isScalableVector()) 1077 break; 1078 uint64_t Idx = Op.getConstantOperandVal(1); 1079 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1080 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1081 1082 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1083 Depth + 1)) 1084 return true; 1085 1086 // Attempt to avoid multi-use src if we don't need anything from it. 1087 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1088 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1089 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1090 if (DemandedSrc) { 1091 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1092 Op.getOperand(1)); 1093 return TLO.CombineTo(Op, NewOp); 1094 } 1095 } 1096 break; 1097 } 1098 case ISD::CONCAT_VECTORS: { 1099 Known.Zero.setAllBits(); 1100 Known.One.setAllBits(); 1101 EVT SubVT = Op.getOperand(0).getValueType(); 1102 unsigned NumSubVecs = Op.getNumOperands(); 1103 unsigned NumSubElts = SubVT.getVectorNumElements(); 1104 for (unsigned i = 0; i != NumSubVecs; ++i) { 1105 APInt DemandedSubElts = 1106 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1107 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1108 Known2, TLO, Depth + 1)) 1109 return true; 1110 // Known bits are shared by every demanded subvector element. 1111 if (!!DemandedSubElts) { 1112 Known.One &= Known2.One; 1113 Known.Zero &= Known2.Zero; 1114 } 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known.One &= Known2.One; 1153 Known.Zero &= Known2.Zero; 1154 } 1155 if (!!DemandedRHS) { 1156 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1157 Depth + 1)) 1158 return true; 1159 Known.One &= Known2.One; 1160 Known.Zero &= Known2.Zero; 1161 } 1162 1163 // Attempt to avoid multi-use ops if we don't need anything from them. 1164 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1165 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1166 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1167 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1168 if (DemandedOp0 || DemandedOp1) { 1169 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1170 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1171 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1172 return TLO.CombineTo(Op, NewOp); 1173 } 1174 } 1175 break; 1176 } 1177 case ISD::AND: { 1178 SDValue Op0 = Op.getOperand(0); 1179 SDValue Op1 = Op.getOperand(1); 1180 1181 // If the RHS is a constant, check to see if the LHS would be zero without 1182 // using the bits from the RHS. Below, we use knowledge about the RHS to 1183 // simplify the LHS, here we're using information from the LHS to simplify 1184 // the RHS. 1185 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1186 // Do not increment Depth here; that can cause an infinite loop. 1187 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1188 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1189 if ((LHSKnown.Zero & DemandedBits) == 1190 (~RHSC->getAPIntValue() & DemandedBits)) 1191 return TLO.CombineTo(Op, Op0); 1192 1193 // If any of the set bits in the RHS are known zero on the LHS, shrink 1194 // the constant. 1195 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1196 DemandedElts, TLO)) 1197 return true; 1198 1199 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1200 // constant, but if this 'and' is only clearing bits that were just set by 1201 // the xor, then this 'and' can be eliminated by shrinking the mask of 1202 // the xor. For example, for a 32-bit X: 1203 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1204 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1205 LHSKnown.One == ~RHSC->getAPIntValue()) { 1206 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1207 return TLO.CombineTo(Op, Xor); 1208 } 1209 } 1210 1211 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1212 Depth + 1)) 1213 return true; 1214 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1215 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1216 Known2, TLO, Depth + 1)) 1217 return true; 1218 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1219 1220 // Attempt to avoid multi-use ops if we don't need anything from them. 1221 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1222 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1223 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1225 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1226 if (DemandedOp0 || DemandedOp1) { 1227 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1228 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1229 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1230 return TLO.CombineTo(Op, NewOp); 1231 } 1232 } 1233 1234 // If all of the demanded bits are known one on one side, return the other. 1235 // These bits cannot contribute to the result of the 'and'. 1236 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1237 return TLO.CombineTo(Op, Op0); 1238 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1239 return TLO.CombineTo(Op, Op1); 1240 // If all of the demanded bits in the inputs are known zeros, return zero. 1241 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1242 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1243 // If the RHS is a constant, see if we can simplify it. 1244 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1245 TLO)) 1246 return true; 1247 // If the operation can be done in a smaller type, do so. 1248 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1249 return true; 1250 1251 Known &= Known2; 1252 break; 1253 } 1254 case ISD::OR: { 1255 SDValue Op0 = Op.getOperand(0); 1256 SDValue Op1 = Op.getOperand(1); 1257 1258 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1259 Depth + 1)) 1260 return true; 1261 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1262 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1263 Known2, TLO, Depth + 1)) 1264 return true; 1265 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1266 1267 // Attempt to avoid multi-use ops if we don't need anything from them. 1268 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1269 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1270 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1272 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1273 if (DemandedOp0 || DemandedOp1) { 1274 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1275 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1276 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1277 return TLO.CombineTo(Op, NewOp); 1278 } 1279 } 1280 1281 // If all of the demanded bits are known zero on one side, return the other. 1282 // These bits cannot contribute to the result of the 'or'. 1283 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1284 return TLO.CombineTo(Op, Op0); 1285 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1286 return TLO.CombineTo(Op, Op1); 1287 // If the RHS is a constant, see if we can simplify it. 1288 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1289 return true; 1290 // If the operation can be done in a smaller type, do so. 1291 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1292 return true; 1293 1294 Known |= Known2; 1295 break; 1296 } 1297 case ISD::XOR: { 1298 SDValue Op0 = Op.getOperand(0); 1299 SDValue Op1 = Op.getOperand(1); 1300 1301 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1302 Depth + 1)) 1303 return true; 1304 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1309 1310 // Attempt to avoid multi-use ops if we don't need anything from them. 1311 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1312 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1313 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1315 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1316 if (DemandedOp0 || DemandedOp1) { 1317 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1318 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1319 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1320 return TLO.CombineTo(Op, NewOp); 1321 } 1322 } 1323 1324 // If all of the demanded bits are known zero on one side, return the other. 1325 // These bits cannot contribute to the result of the 'xor'. 1326 if (DemandedBits.isSubsetOf(Known.Zero)) 1327 return TLO.CombineTo(Op, Op0); 1328 if (DemandedBits.isSubsetOf(Known2.Zero)) 1329 return TLO.CombineTo(Op, Op1); 1330 // If the operation can be done in a smaller type, do so. 1331 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1332 return true; 1333 1334 // If all of the unknown bits are known to be zero on one side or the other 1335 // turn this into an *inclusive* or. 1336 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1337 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1338 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1339 1340 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1341 if (C) { 1342 // If one side is a constant, and all of the set bits in the constant are 1343 // also known set on the other side, turn this into an AND, as we know 1344 // the bits will be cleared. 1345 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1346 // NB: it is okay if more bits are known than are requested 1347 if (C->getAPIntValue() == Known2.One) { 1348 SDValue ANDC = 1349 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1350 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1351 } 1352 1353 // If the RHS is a constant, see if we can change it. Don't alter a -1 1354 // constant because that's a 'not' op, and that is better for combining 1355 // and codegen. 1356 if (!C->isAllOnesValue() && 1357 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1358 // We're flipping all demanded bits. Flip the undemanded bits too. 1359 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1360 return TLO.CombineTo(Op, New); 1361 } 1362 } 1363 1364 // If we can't turn this into a 'not', try to shrink the constant. 1365 if (!C || !C->isAllOnesValue()) 1366 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1367 return true; 1368 1369 Known ^= Known2; 1370 break; 1371 } 1372 case ISD::SELECT: 1373 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1374 Depth + 1)) 1375 return true; 1376 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1377 Depth + 1)) 1378 return true; 1379 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1380 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1381 1382 // If the operands are constants, see if we can simplify them. 1383 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1384 return true; 1385 1386 // Only known if known in both the LHS and RHS. 1387 Known.One &= Known2.One; 1388 Known.Zero &= Known2.Zero; 1389 break; 1390 case ISD::SELECT_CC: 1391 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1392 Depth + 1)) 1393 return true; 1394 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1395 Depth + 1)) 1396 return true; 1397 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1398 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1399 1400 // If the operands are constants, see if we can simplify them. 1401 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1402 return true; 1403 1404 // Only known if known in both the LHS and RHS. 1405 Known.One &= Known2.One; 1406 Known.Zero &= Known2.Zero; 1407 break; 1408 case ISD::SETCC: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1412 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1413 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1414 // -1, we may be able to bypass the setcc. 1415 if (DemandedBits.isSignMask() && 1416 Op0.getScalarValueSizeInBits() == BitWidth && 1417 getBooleanContents(Op0.getValueType()) == 1418 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1419 // If we're testing X < 0, then this compare isn't needed - just use X! 1420 // FIXME: We're limiting to integer types here, but this should also work 1421 // if we don't care about FP signed-zero. The use of SETLT with FP means 1422 // that we don't care about NaNs. 1423 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1424 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1425 return TLO.CombineTo(Op, Op0); 1426 1427 // TODO: Should we check for other forms of sign-bit comparisons? 1428 // Examples: X <= -1, X >= 0 1429 } 1430 if (getBooleanContents(Op0.getValueType()) == 1431 TargetLowering::ZeroOrOneBooleanContent && 1432 BitWidth > 1) 1433 Known.Zero.setBitsFrom(1); 1434 break; 1435 } 1436 case ISD::SHL: { 1437 SDValue Op0 = Op.getOperand(0); 1438 SDValue Op1 = Op.getOperand(1); 1439 EVT ShiftVT = Op1.getValueType(); 1440 1441 if (const APInt *SA = 1442 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1443 unsigned ShAmt = SA->getZExtValue(); 1444 if (ShAmt == 0) 1445 return TLO.CombineTo(Op, Op0); 1446 1447 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1448 // single shift. We can do this if the bottom bits (which are shifted 1449 // out) are never demanded. 1450 // TODO - support non-uniform vector amounts. 1451 if (Op0.getOpcode() == ISD::SRL) { 1452 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1453 if (const APInt *SA2 = 1454 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1455 unsigned C1 = SA2->getZExtValue(); 1456 unsigned Opc = ISD::SHL; 1457 int Diff = ShAmt - C1; 1458 if (Diff < 0) { 1459 Diff = -Diff; 1460 Opc = ISD::SRL; 1461 } 1462 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1463 return TLO.CombineTo( 1464 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1465 } 1466 } 1467 } 1468 1469 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1470 // are not demanded. This will likely allow the anyext to be folded away. 1471 // TODO - support non-uniform vector amounts. 1472 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1473 SDValue InnerOp = Op0.getOperand(0); 1474 EVT InnerVT = InnerOp.getValueType(); 1475 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1476 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1477 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1478 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1479 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1480 ShTy = InnerVT; 1481 SDValue NarrowShl = 1482 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1483 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1484 return TLO.CombineTo( 1485 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1486 } 1487 1488 // Repeat the SHL optimization above in cases where an extension 1489 // intervenes: (shl (anyext (shr x, c1)), c2) to 1490 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1491 // aren't demanded (as above) and that the shifted upper c1 bits of 1492 // x aren't demanded. 1493 // TODO - support non-uniform vector amounts. 1494 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1495 InnerOp.hasOneUse()) { 1496 if (const APInt *SA2 = 1497 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1498 unsigned InnerShAmt = SA2->getZExtValue(); 1499 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1500 DemandedBits.getActiveBits() <= 1501 (InnerBits - InnerShAmt + ShAmt) && 1502 DemandedBits.countTrailingZeros() >= ShAmt) { 1503 SDValue NewSA = 1504 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1505 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1506 InnerOp.getOperand(0)); 1507 return TLO.CombineTo( 1508 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1509 } 1510 } 1511 } 1512 } 1513 1514 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1515 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1516 Depth + 1)) 1517 return true; 1518 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1519 Known.Zero <<= ShAmt; 1520 Known.One <<= ShAmt; 1521 // low bits known zero. 1522 Known.Zero.setLowBits(ShAmt); 1523 1524 // Try shrinking the operation as long as the shift amount will still be 1525 // in range. 1526 if ((ShAmt < DemandedBits.getActiveBits()) && 1527 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1528 return true; 1529 } 1530 1531 // If we are only demanding sign bits then we can use the shift source 1532 // directly. 1533 if (const APInt *MaxSA = 1534 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1535 unsigned ShAmt = MaxSA->getZExtValue(); 1536 unsigned NumSignBits = 1537 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1538 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1539 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1540 return TLO.CombineTo(Op, Op0); 1541 } 1542 break; 1543 } 1544 case ISD::SRL: { 1545 SDValue Op0 = Op.getOperand(0); 1546 SDValue Op1 = Op.getOperand(1); 1547 EVT ShiftVT = Op1.getValueType(); 1548 1549 if (const APInt *SA = 1550 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1551 unsigned ShAmt = SA->getZExtValue(); 1552 if (ShAmt == 0) 1553 return TLO.CombineTo(Op, Op0); 1554 1555 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1556 // single shift. We can do this if the top bits (which are shifted out) 1557 // are never demanded. 1558 // TODO - support non-uniform vector amounts. 1559 if (Op0.getOpcode() == ISD::SHL) { 1560 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1561 if (const APInt *SA2 = 1562 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1563 unsigned C1 = SA2->getZExtValue(); 1564 unsigned Opc = ISD::SRL; 1565 int Diff = ShAmt - C1; 1566 if (Diff < 0) { 1567 Diff = -Diff; 1568 Opc = ISD::SHL; 1569 } 1570 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1571 return TLO.CombineTo( 1572 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1573 } 1574 } 1575 } 1576 1577 APInt InDemandedMask = (DemandedBits << ShAmt); 1578 1579 // If the shift is exact, then it does demand the low bits (and knows that 1580 // they are zero). 1581 if (Op->getFlags().hasExact()) 1582 InDemandedMask.setLowBits(ShAmt); 1583 1584 // Compute the new bits that are at the top now. 1585 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1586 Depth + 1)) 1587 return true; 1588 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1589 Known.Zero.lshrInPlace(ShAmt); 1590 Known.One.lshrInPlace(ShAmt); 1591 // High bits known zero. 1592 Known.Zero.setHighBits(ShAmt); 1593 } 1594 break; 1595 } 1596 case ISD::SRA: { 1597 SDValue Op0 = Op.getOperand(0); 1598 SDValue Op1 = Op.getOperand(1); 1599 EVT ShiftVT = Op1.getValueType(); 1600 1601 // If we only want bits that already match the signbit then we don't need 1602 // to shift. 1603 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1604 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1605 NumHiDemandedBits) 1606 return TLO.CombineTo(Op, Op0); 1607 1608 // If this is an arithmetic shift right and only the low-bit is set, we can 1609 // always convert this into a logical shr, even if the shift amount is 1610 // variable. The low bit of the shift cannot be an input sign bit unless 1611 // the shift amount is >= the size of the datatype, which is undefined. 1612 if (DemandedBits.isOneValue()) 1613 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1614 1615 if (const APInt *SA = 1616 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1617 unsigned ShAmt = SA->getZExtValue(); 1618 if (ShAmt == 0) 1619 return TLO.CombineTo(Op, Op0); 1620 1621 APInt InDemandedMask = (DemandedBits << ShAmt); 1622 1623 // If the shift is exact, then it does demand the low bits (and knows that 1624 // they are zero). 1625 if (Op->getFlags().hasExact()) 1626 InDemandedMask.setLowBits(ShAmt); 1627 1628 // If any of the demanded bits are produced by the sign extension, we also 1629 // demand the input sign bit. 1630 if (DemandedBits.countLeadingZeros() < ShAmt) 1631 InDemandedMask.setSignBit(); 1632 1633 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1634 Depth + 1)) 1635 return true; 1636 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1637 Known.Zero.lshrInPlace(ShAmt); 1638 Known.One.lshrInPlace(ShAmt); 1639 1640 // If the input sign bit is known to be zero, or if none of the top bits 1641 // are demanded, turn this into an unsigned shift right. 1642 if (Known.Zero[BitWidth - ShAmt - 1] || 1643 DemandedBits.countLeadingZeros() >= ShAmt) { 1644 SDNodeFlags Flags; 1645 Flags.setExact(Op->getFlags().hasExact()); 1646 return TLO.CombineTo( 1647 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1648 } 1649 1650 int Log2 = DemandedBits.exactLogBase2(); 1651 if (Log2 >= 0) { 1652 // The bit must come from the sign. 1653 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1654 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1655 } 1656 1657 if (Known.One[BitWidth - ShAmt - 1]) 1658 // New bits are known one. 1659 Known.One.setHighBits(ShAmt); 1660 1661 // Attempt to avoid multi-use ops if we don't need anything from them. 1662 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1663 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1664 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1665 if (DemandedOp0) { 1666 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1667 return TLO.CombineTo(Op, NewOp); 1668 } 1669 } 1670 } 1671 break; 1672 } 1673 case ISD::FSHL: 1674 case ISD::FSHR: { 1675 SDValue Op0 = Op.getOperand(0); 1676 SDValue Op1 = Op.getOperand(1); 1677 SDValue Op2 = Op.getOperand(2); 1678 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1679 1680 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1681 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1682 1683 // For fshl, 0-shift returns the 1st arg. 1684 // For fshr, 0-shift returns the 2nd arg. 1685 if (Amt == 0) { 1686 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1687 Known, TLO, Depth + 1)) 1688 return true; 1689 break; 1690 } 1691 1692 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1693 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1694 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1695 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1696 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1697 Depth + 1)) 1698 return true; 1699 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 1703 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1704 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1705 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1706 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1707 Known.One |= Known2.One; 1708 Known.Zero |= Known2.Zero; 1709 } 1710 1711 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1712 if (isPowerOf2_32(BitWidth)) { 1713 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1714 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1715 Known2, TLO, Depth + 1)) 1716 return true; 1717 } 1718 break; 1719 } 1720 case ISD::ROTL: 1721 case ISD::ROTR: { 1722 SDValue Op0 = Op.getOperand(0); 1723 SDValue Op1 = Op.getOperand(1); 1724 1725 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1726 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1727 return TLO.CombineTo(Op, Op0); 1728 1729 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1730 if (isPowerOf2_32(BitWidth)) { 1731 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1732 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1733 Depth + 1)) 1734 return true; 1735 } 1736 break; 1737 } 1738 case ISD::BITREVERSE: { 1739 SDValue Src = Op.getOperand(0); 1740 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1741 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1742 Depth + 1)) 1743 return true; 1744 Known.One = Known2.One.reverseBits(); 1745 Known.Zero = Known2.Zero.reverseBits(); 1746 break; 1747 } 1748 case ISD::BSWAP: { 1749 SDValue Src = Op.getOperand(0); 1750 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1751 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1752 Depth + 1)) 1753 return true; 1754 Known.One = Known2.One.byteSwap(); 1755 Known.Zero = Known2.Zero.byteSwap(); 1756 break; 1757 } 1758 case ISD::CTPOP: { 1759 // If only 1 bit is demanded, replace with PARITY as long as we're before 1760 // op legalization. 1761 // FIXME: Limit to scalars for now. 1762 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1763 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1764 Op.getOperand(0))); 1765 1766 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1767 break; 1768 } 1769 case ISD::SIGN_EXTEND_INREG: { 1770 SDValue Op0 = Op.getOperand(0); 1771 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1772 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1773 1774 // If we only care about the highest bit, don't bother shifting right. 1775 if (DemandedBits.isSignMask()) { 1776 unsigned NumSignBits = 1777 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1778 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1779 // However if the input is already sign extended we expect the sign 1780 // extension to be dropped altogether later and do not simplify. 1781 if (!AlreadySignExtended) { 1782 // Compute the correct shift amount type, which must be getShiftAmountTy 1783 // for scalar types after legalization. 1784 EVT ShiftAmtTy = VT; 1785 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1786 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1787 1788 SDValue ShiftAmt = 1789 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1790 return TLO.CombineTo(Op, 1791 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1792 } 1793 } 1794 1795 // If none of the extended bits are demanded, eliminate the sextinreg. 1796 if (DemandedBits.getActiveBits() <= ExVTBits) 1797 return TLO.CombineTo(Op, Op0); 1798 1799 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1800 1801 // Since the sign extended bits are demanded, we know that the sign 1802 // bit is demanded. 1803 InputDemandedBits.setBit(ExVTBits - 1); 1804 1805 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1806 return true; 1807 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1808 1809 // If the sign bit of the input is known set or clear, then we know the 1810 // top bits of the result. 1811 1812 // If the input sign bit is known zero, convert this into a zero extension. 1813 if (Known.Zero[ExVTBits - 1]) 1814 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1815 1816 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1817 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1818 Known.One.setBitsFrom(ExVTBits); 1819 Known.Zero &= Mask; 1820 } else { // Input sign bit unknown 1821 Known.Zero &= Mask; 1822 Known.One &= Mask; 1823 } 1824 break; 1825 } 1826 case ISD::BUILD_PAIR: { 1827 EVT HalfVT = Op.getOperand(0).getValueType(); 1828 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1829 1830 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1831 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1832 1833 KnownBits KnownLo, KnownHi; 1834 1835 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1836 return true; 1837 1838 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1839 return true; 1840 1841 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1842 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1843 1844 Known.One = KnownLo.One.zext(BitWidth) | 1845 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1846 break; 1847 } 1848 case ISD::ZERO_EXTEND: 1849 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1850 SDValue Src = Op.getOperand(0); 1851 EVT SrcVT = Src.getValueType(); 1852 unsigned InBits = SrcVT.getScalarSizeInBits(); 1853 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1854 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1855 1856 // If none of the top bits are demanded, convert this into an any_extend. 1857 if (DemandedBits.getActiveBits() <= InBits) { 1858 // If we only need the non-extended bits of the bottom element 1859 // then we can just bitcast to the result. 1860 if (IsVecInReg && DemandedElts == 1 && 1861 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1862 TLO.DAG.getDataLayout().isLittleEndian()) 1863 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1864 1865 unsigned Opc = 1866 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1867 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1868 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1869 } 1870 1871 APInt InDemandedBits = DemandedBits.trunc(InBits); 1872 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1873 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1874 Depth + 1)) 1875 return true; 1876 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1877 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1878 Known = Known.zext(BitWidth); 1879 1880 // Attempt to avoid multi-use ops if we don't need anything from them. 1881 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1882 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1883 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1884 break; 1885 } 1886 case ISD::SIGN_EXTEND: 1887 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1888 SDValue Src = Op.getOperand(0); 1889 EVT SrcVT = Src.getValueType(); 1890 unsigned InBits = SrcVT.getScalarSizeInBits(); 1891 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1892 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1893 1894 // If none of the top bits are demanded, convert this into an any_extend. 1895 if (DemandedBits.getActiveBits() <= InBits) { 1896 // If we only need the non-extended bits of the bottom element 1897 // then we can just bitcast to the result. 1898 if (IsVecInReg && DemandedElts == 1 && 1899 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1900 TLO.DAG.getDataLayout().isLittleEndian()) 1901 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1902 1903 unsigned Opc = 1904 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1905 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1906 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1907 } 1908 1909 APInt InDemandedBits = DemandedBits.trunc(InBits); 1910 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1911 1912 // Since some of the sign extended bits are demanded, we know that the sign 1913 // bit is demanded. 1914 InDemandedBits.setBit(InBits - 1); 1915 1916 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1917 Depth + 1)) 1918 return true; 1919 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1920 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1921 1922 // If the sign bit is known one, the top bits match. 1923 Known = Known.sext(BitWidth); 1924 1925 // If the sign bit is known zero, convert this to a zero extend. 1926 if (Known.isNonNegative()) { 1927 unsigned Opc = 1928 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1929 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1930 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1931 } 1932 1933 // Attempt to avoid multi-use ops if we don't need anything from them. 1934 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1935 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1937 break; 1938 } 1939 case ISD::ANY_EXTEND: 1940 case ISD::ANY_EXTEND_VECTOR_INREG: { 1941 SDValue Src = Op.getOperand(0); 1942 EVT SrcVT = Src.getValueType(); 1943 unsigned InBits = SrcVT.getScalarSizeInBits(); 1944 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1945 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1946 1947 // If we only need the bottom element then we can just bitcast. 1948 // TODO: Handle ANY_EXTEND? 1949 if (IsVecInReg && DemandedElts == 1 && 1950 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1951 TLO.DAG.getDataLayout().isLittleEndian()) 1952 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1953 1954 APInt InDemandedBits = DemandedBits.trunc(InBits); 1955 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1956 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1957 Depth + 1)) 1958 return true; 1959 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1960 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1961 Known = Known.anyext(BitWidth); 1962 1963 // Attempt to avoid multi-use ops if we don't need anything from them. 1964 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1965 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1966 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1967 break; 1968 } 1969 case ISD::TRUNCATE: { 1970 SDValue Src = Op.getOperand(0); 1971 1972 // Simplify the input, using demanded bit information, and compute the known 1973 // zero/one bits live out. 1974 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1975 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1976 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1977 return true; 1978 Known = Known.trunc(BitWidth); 1979 1980 // Attempt to avoid multi-use ops if we don't need anything from them. 1981 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1982 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1983 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1984 1985 // If the input is only used by this truncate, see if we can shrink it based 1986 // on the known demanded bits. 1987 if (Src.getNode()->hasOneUse()) { 1988 switch (Src.getOpcode()) { 1989 default: 1990 break; 1991 case ISD::SRL: 1992 // Shrink SRL by a constant if none of the high bits shifted in are 1993 // demanded. 1994 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1995 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1996 // undesirable. 1997 break; 1998 1999 SDValue ShAmt = Src.getOperand(1); 2000 auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt); 2001 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 2002 break; 2003 uint64_t ShVal = ShAmtC->getZExtValue(); 2004 2005 APInt HighBits = 2006 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2007 HighBits.lshrInPlace(ShVal); 2008 HighBits = HighBits.trunc(BitWidth); 2009 2010 if (!(HighBits & DemandedBits)) { 2011 // None of the shifted in bits are needed. Add a truncate of the 2012 // shift input, then shift it. 2013 if (TLO.LegalTypes()) 2014 ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 2015 SDValue NewTrunc = 2016 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2017 return TLO.CombineTo( 2018 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt)); 2019 } 2020 break; 2021 } 2022 } 2023 2024 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2025 break; 2026 } 2027 case ISD::AssertZext: { 2028 // AssertZext demands all of the high bits, plus any of the low bits 2029 // demanded by its users. 2030 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2031 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2032 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2033 TLO, Depth + 1)) 2034 return true; 2035 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2036 2037 Known.Zero |= ~InMask; 2038 break; 2039 } 2040 case ISD::EXTRACT_VECTOR_ELT: { 2041 SDValue Src = Op.getOperand(0); 2042 SDValue Idx = Op.getOperand(1); 2043 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2044 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2045 2046 if (SrcEltCnt.isScalable()) 2047 return false; 2048 2049 // Demand the bits from every vector element without a constant index. 2050 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2051 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2052 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2053 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2054 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2055 2056 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2057 // anything about the extended bits. 2058 APInt DemandedSrcBits = DemandedBits; 2059 if (BitWidth > EltBitWidth) 2060 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2061 2062 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2063 Depth + 1)) 2064 return true; 2065 2066 // Attempt to avoid multi-use ops if we don't need anything from them. 2067 if (!DemandedSrcBits.isAllOnesValue() || 2068 !DemandedSrcElts.isAllOnesValue()) { 2069 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2070 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2071 SDValue NewOp = 2072 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2073 return TLO.CombineTo(Op, NewOp); 2074 } 2075 } 2076 2077 Known = Known2; 2078 if (BitWidth > EltBitWidth) 2079 Known = Known.anyext(BitWidth); 2080 break; 2081 } 2082 case ISD::BITCAST: { 2083 SDValue Src = Op.getOperand(0); 2084 EVT SrcVT = Src.getValueType(); 2085 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2086 2087 // If this is an FP->Int bitcast and if the sign bit is the only 2088 // thing demanded, turn this into a FGETSIGN. 2089 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2090 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2091 SrcVT.isFloatingPoint()) { 2092 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2093 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2094 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2095 SrcVT != MVT::f128) { 2096 // Cannot eliminate/lower SHL for f128 yet. 2097 EVT Ty = OpVTLegal ? VT : MVT::i32; 2098 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2099 // place. We expect the SHL to be eliminated by other optimizations. 2100 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2101 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2102 if (!OpVTLegal && OpVTSizeInBits > 32) 2103 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2104 unsigned ShVal = Op.getValueSizeInBits() - 1; 2105 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2106 return TLO.CombineTo(Op, 2107 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2108 } 2109 } 2110 2111 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2112 // Demand the elt/bit if any of the original elts/bits are demanded. 2113 // TODO - bigendian once we have test coverage. 2114 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2115 TLO.DAG.getDataLayout().isLittleEndian()) { 2116 unsigned Scale = BitWidth / NumSrcEltBits; 2117 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2118 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2119 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2120 for (unsigned i = 0; i != Scale; ++i) { 2121 unsigned Offset = i * NumSrcEltBits; 2122 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2123 if (!Sub.isNullValue()) { 2124 DemandedSrcBits |= Sub; 2125 for (unsigned j = 0; j != NumElts; ++j) 2126 if (DemandedElts[j]) 2127 DemandedSrcElts.setBit((j * Scale) + i); 2128 } 2129 } 2130 2131 APInt KnownSrcUndef, KnownSrcZero; 2132 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2133 KnownSrcZero, TLO, Depth + 1)) 2134 return true; 2135 2136 KnownBits KnownSrcBits; 2137 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2138 KnownSrcBits, TLO, Depth + 1)) 2139 return true; 2140 } else if ((NumSrcEltBits % BitWidth) == 0 && 2141 TLO.DAG.getDataLayout().isLittleEndian()) { 2142 unsigned Scale = NumSrcEltBits / BitWidth; 2143 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2144 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2145 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2146 for (unsigned i = 0; i != NumElts; ++i) 2147 if (DemandedElts[i]) { 2148 unsigned Offset = (i % Scale) * BitWidth; 2149 DemandedSrcBits.insertBits(DemandedBits, Offset); 2150 DemandedSrcElts.setBit(i / Scale); 2151 } 2152 2153 if (SrcVT.isVector()) { 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 } 2159 2160 KnownBits KnownSrcBits; 2161 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2162 KnownSrcBits, TLO, Depth + 1)) 2163 return true; 2164 } 2165 2166 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2167 // recursive call where Known may be useful to the caller. 2168 if (Depth > 0) { 2169 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2170 return false; 2171 } 2172 break; 2173 } 2174 case ISD::ADD: 2175 case ISD::MUL: 2176 case ISD::SUB: { 2177 // Add, Sub, and Mul don't demand any bits in positions beyond that 2178 // of the highest bit demanded of them. 2179 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2180 SDNodeFlags Flags = Op.getNode()->getFlags(); 2181 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2182 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2183 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2184 Depth + 1) || 2185 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2186 Depth + 1) || 2187 // See if the operation should be performed at a smaller bit width. 2188 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2189 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2190 // Disable the nsw and nuw flags. We can no longer guarantee that we 2191 // won't wrap after simplification. 2192 Flags.setNoSignedWrap(false); 2193 Flags.setNoUnsignedWrap(false); 2194 SDValue NewOp = 2195 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2196 return TLO.CombineTo(Op, NewOp); 2197 } 2198 return true; 2199 } 2200 2201 // Attempt to avoid multi-use ops if we don't need anything from them. 2202 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2203 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2204 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2205 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2206 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2207 if (DemandedOp0 || DemandedOp1) { 2208 Flags.setNoSignedWrap(false); 2209 Flags.setNoUnsignedWrap(false); 2210 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2211 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2212 SDValue NewOp = 2213 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2214 return TLO.CombineTo(Op, NewOp); 2215 } 2216 } 2217 2218 // If we have a constant operand, we may be able to turn it into -1 if we 2219 // do not demand the high bits. This can make the constant smaller to 2220 // encode, allow more general folding, or match specialized instruction 2221 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2222 // is probably not useful (and could be detrimental). 2223 ConstantSDNode *C = isConstOrConstSplat(Op1); 2224 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2225 if (C && !C->isAllOnesValue() && !C->isOne() && 2226 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2227 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2228 // Disable the nsw and nuw flags. We can no longer guarantee that we 2229 // won't wrap after simplification. 2230 Flags.setNoSignedWrap(false); 2231 Flags.setNoUnsignedWrap(false); 2232 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2233 return TLO.CombineTo(Op, NewOp); 2234 } 2235 2236 LLVM_FALLTHROUGH; 2237 } 2238 default: 2239 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2240 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2241 Known, TLO, Depth)) 2242 return true; 2243 break; 2244 } 2245 2246 // Just use computeKnownBits to compute output bits. 2247 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2248 break; 2249 } 2250 2251 // If we know the value of all of the demanded bits, return this as a 2252 // constant. 2253 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2254 // Avoid folding to a constant if any OpaqueConstant is involved. 2255 const SDNode *N = Op.getNode(); 2256 for (SDNodeIterator I = SDNodeIterator::begin(N), 2257 E = SDNodeIterator::end(N); 2258 I != E; ++I) { 2259 SDNode *Op = *I; 2260 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2261 if (C->isOpaque()) 2262 return false; 2263 } 2264 if (VT.isInteger()) 2265 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2266 if (VT.isFloatingPoint()) 2267 return TLO.CombineTo( 2268 Op, 2269 TLO.DAG.getConstantFP( 2270 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2271 } 2272 2273 return false; 2274 } 2275 2276 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2277 const APInt &DemandedElts, 2278 APInt &KnownUndef, 2279 APInt &KnownZero, 2280 DAGCombinerInfo &DCI) const { 2281 SelectionDAG &DAG = DCI.DAG; 2282 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2283 !DCI.isBeforeLegalizeOps()); 2284 2285 bool Simplified = 2286 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2287 if (Simplified) { 2288 DCI.AddToWorklist(Op.getNode()); 2289 DCI.CommitTargetLoweringOpt(TLO); 2290 } 2291 2292 return Simplified; 2293 } 2294 2295 /// Given a vector binary operation and known undefined elements for each input 2296 /// operand, compute whether each element of the output is undefined. 2297 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2298 const APInt &UndefOp0, 2299 const APInt &UndefOp1) { 2300 EVT VT = BO.getValueType(); 2301 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2302 "Vector binop only"); 2303 2304 EVT EltVT = VT.getVectorElementType(); 2305 unsigned NumElts = VT.getVectorNumElements(); 2306 assert(UndefOp0.getBitWidth() == NumElts && 2307 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2308 2309 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2310 const APInt &UndefVals) { 2311 if (UndefVals[Index]) 2312 return DAG.getUNDEF(EltVT); 2313 2314 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2315 // Try hard to make sure that the getNode() call is not creating temporary 2316 // nodes. Ignore opaque integers because they do not constant fold. 2317 SDValue Elt = BV->getOperand(Index); 2318 auto *C = dyn_cast<ConstantSDNode>(Elt); 2319 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2320 return Elt; 2321 } 2322 2323 return SDValue(); 2324 }; 2325 2326 APInt KnownUndef = APInt::getNullValue(NumElts); 2327 for (unsigned i = 0; i != NumElts; ++i) { 2328 // If both inputs for this element are either constant or undef and match 2329 // the element type, compute the constant/undef result for this element of 2330 // the vector. 2331 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2332 // not handle FP constants. The code within getNode() should be refactored 2333 // to avoid the danger of creating a bogus temporary node here. 2334 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2335 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2336 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2337 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2338 KnownUndef.setBit(i); 2339 } 2340 return KnownUndef; 2341 } 2342 2343 bool TargetLowering::SimplifyDemandedVectorElts( 2344 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2345 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2346 bool AssumeSingleUse) const { 2347 EVT VT = Op.getValueType(); 2348 unsigned Opcode = Op.getOpcode(); 2349 APInt DemandedElts = OriginalDemandedElts; 2350 unsigned NumElts = DemandedElts.getBitWidth(); 2351 assert(VT.isVector() && "Expected vector op"); 2352 2353 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2354 2355 // TODO: For now we assume we know nothing about scalable vectors. 2356 if (VT.isScalableVector()) 2357 return false; 2358 2359 assert(VT.getVectorNumElements() == NumElts && 2360 "Mask size mismatches value type element count!"); 2361 2362 // Undef operand. 2363 if (Op.isUndef()) { 2364 KnownUndef.setAllBits(); 2365 return false; 2366 } 2367 2368 // If Op has other users, assume that all elements are needed. 2369 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2370 DemandedElts.setAllBits(); 2371 2372 // Not demanding any elements from Op. 2373 if (DemandedElts == 0) { 2374 KnownUndef.setAllBits(); 2375 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2376 } 2377 2378 // Limit search depth. 2379 if (Depth >= SelectionDAG::MaxRecursionDepth) 2380 return false; 2381 2382 SDLoc DL(Op); 2383 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2384 2385 // Helper for demanding the specified elements and all the bits of both binary 2386 // operands. 2387 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2388 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2389 TLO.DAG, Depth + 1); 2390 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2391 TLO.DAG, Depth + 1); 2392 if (NewOp0 || NewOp1) { 2393 SDValue NewOp = TLO.DAG.getNode( 2394 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2395 return TLO.CombineTo(Op, NewOp); 2396 } 2397 return false; 2398 }; 2399 2400 switch (Opcode) { 2401 case ISD::SCALAR_TO_VECTOR: { 2402 if (!DemandedElts[0]) { 2403 KnownUndef.setAllBits(); 2404 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2405 } 2406 KnownUndef.setHighBits(NumElts - 1); 2407 break; 2408 } 2409 case ISD::BITCAST: { 2410 SDValue Src = Op.getOperand(0); 2411 EVT SrcVT = Src.getValueType(); 2412 2413 // We only handle vectors here. 2414 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2415 if (!SrcVT.isVector()) 2416 break; 2417 2418 // Fast handling of 'identity' bitcasts. 2419 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2420 if (NumSrcElts == NumElts) 2421 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2422 KnownZero, TLO, Depth + 1); 2423 2424 APInt SrcZero, SrcUndef; 2425 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2426 2427 // Bitcast from 'large element' src vector to 'small element' vector, we 2428 // must demand a source element if any DemandedElt maps to it. 2429 if ((NumElts % NumSrcElts) == 0) { 2430 unsigned Scale = NumElts / NumSrcElts; 2431 for (unsigned i = 0; i != NumElts; ++i) 2432 if (DemandedElts[i]) 2433 SrcDemandedElts.setBit(i / Scale); 2434 2435 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2436 TLO, Depth + 1)) 2437 return true; 2438 2439 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2440 // of the large element. 2441 // TODO - bigendian once we have test coverage. 2442 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2443 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2444 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2445 for (unsigned i = 0; i != NumElts; ++i) 2446 if (DemandedElts[i]) { 2447 unsigned Ofs = (i % Scale) * EltSizeInBits; 2448 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2449 } 2450 2451 KnownBits Known; 2452 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2453 TLO, Depth + 1)) 2454 return true; 2455 } 2456 2457 // If the src element is zero/undef then all the output elements will be - 2458 // only demanded elements are guaranteed to be correct. 2459 for (unsigned i = 0; i != NumSrcElts; ++i) { 2460 if (SrcDemandedElts[i]) { 2461 if (SrcZero[i]) 2462 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2463 if (SrcUndef[i]) 2464 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2465 } 2466 } 2467 } 2468 2469 // Bitcast from 'small element' src vector to 'large element' vector, we 2470 // demand all smaller source elements covered by the larger demanded element 2471 // of this vector. 2472 if ((NumSrcElts % NumElts) == 0) { 2473 unsigned Scale = NumSrcElts / NumElts; 2474 for (unsigned i = 0; i != NumElts; ++i) 2475 if (DemandedElts[i]) 2476 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2477 2478 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2479 TLO, Depth + 1)) 2480 return true; 2481 2482 // If all the src elements covering an output element are zero/undef, then 2483 // the output element will be as well, assuming it was demanded. 2484 for (unsigned i = 0; i != NumElts; ++i) { 2485 if (DemandedElts[i]) { 2486 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2487 KnownZero.setBit(i); 2488 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2489 KnownUndef.setBit(i); 2490 } 2491 } 2492 } 2493 break; 2494 } 2495 case ISD::BUILD_VECTOR: { 2496 // Check all elements and simplify any unused elements with UNDEF. 2497 if (!DemandedElts.isAllOnesValue()) { 2498 // Don't simplify BROADCASTS. 2499 if (llvm::any_of(Op->op_values(), 2500 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2501 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2502 bool Updated = false; 2503 for (unsigned i = 0; i != NumElts; ++i) { 2504 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2505 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2506 KnownUndef.setBit(i); 2507 Updated = true; 2508 } 2509 } 2510 if (Updated) 2511 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2512 } 2513 } 2514 for (unsigned i = 0; i != NumElts; ++i) { 2515 SDValue SrcOp = Op.getOperand(i); 2516 if (SrcOp.isUndef()) { 2517 KnownUndef.setBit(i); 2518 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2519 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2520 KnownZero.setBit(i); 2521 } 2522 } 2523 break; 2524 } 2525 case ISD::CONCAT_VECTORS: { 2526 EVT SubVT = Op.getOperand(0).getValueType(); 2527 unsigned NumSubVecs = Op.getNumOperands(); 2528 unsigned NumSubElts = SubVT.getVectorNumElements(); 2529 for (unsigned i = 0; i != NumSubVecs; ++i) { 2530 SDValue SubOp = Op.getOperand(i); 2531 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2532 APInt SubUndef, SubZero; 2533 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2534 Depth + 1)) 2535 return true; 2536 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2537 KnownZero.insertBits(SubZero, i * NumSubElts); 2538 } 2539 break; 2540 } 2541 case ISD::INSERT_SUBVECTOR: { 2542 // Demand any elements from the subvector and the remainder from the src its 2543 // inserted into. 2544 SDValue Src = Op.getOperand(0); 2545 SDValue Sub = Op.getOperand(1); 2546 uint64_t Idx = Op.getConstantOperandVal(2); 2547 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2548 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2549 APInt DemandedSrcElts = DemandedElts; 2550 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2551 2552 APInt SubUndef, SubZero; 2553 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2554 Depth + 1)) 2555 return true; 2556 2557 // If none of the src operand elements are demanded, replace it with undef. 2558 if (!DemandedSrcElts && !Src.isUndef()) 2559 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2560 TLO.DAG.getUNDEF(VT), Sub, 2561 Op.getOperand(2))); 2562 2563 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2564 TLO, Depth + 1)) 2565 return true; 2566 KnownUndef.insertBits(SubUndef, Idx); 2567 KnownZero.insertBits(SubZero, Idx); 2568 2569 // Attempt to avoid multi-use ops if we don't need anything from them. 2570 if (!DemandedSrcElts.isAllOnesValue() || 2571 !DemandedSubElts.isAllOnesValue()) { 2572 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2573 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2574 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2575 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2576 if (NewSrc || NewSub) { 2577 NewSrc = NewSrc ? NewSrc : Src; 2578 NewSub = NewSub ? NewSub : Sub; 2579 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2580 NewSub, Op.getOperand(2)); 2581 return TLO.CombineTo(Op, NewOp); 2582 } 2583 } 2584 break; 2585 } 2586 case ISD::EXTRACT_SUBVECTOR: { 2587 // Offset the demanded elts by the subvector index. 2588 SDValue Src = Op.getOperand(0); 2589 if (Src.getValueType().isScalableVector()) 2590 break; 2591 uint64_t Idx = Op.getConstantOperandVal(1); 2592 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2593 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2594 2595 APInt SrcUndef, SrcZero; 2596 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2597 Depth + 1)) 2598 return true; 2599 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2600 KnownZero = SrcZero.extractBits(NumElts, Idx); 2601 2602 // Attempt to avoid multi-use ops if we don't need anything from them. 2603 if (!DemandedElts.isAllOnesValue()) { 2604 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2605 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2606 if (NewSrc) { 2607 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2608 Op.getOperand(1)); 2609 return TLO.CombineTo(Op, NewOp); 2610 } 2611 } 2612 break; 2613 } 2614 case ISD::INSERT_VECTOR_ELT: { 2615 SDValue Vec = Op.getOperand(0); 2616 SDValue Scl = Op.getOperand(1); 2617 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2618 2619 // For a legal, constant insertion index, if we don't need this insertion 2620 // then strip it, else remove it from the demanded elts. 2621 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2622 unsigned Idx = CIdx->getZExtValue(); 2623 if (!DemandedElts[Idx]) 2624 return TLO.CombineTo(Op, Vec); 2625 2626 APInt DemandedVecElts(DemandedElts); 2627 DemandedVecElts.clearBit(Idx); 2628 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2629 KnownZero, TLO, Depth + 1)) 2630 return true; 2631 2632 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2633 2634 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2635 break; 2636 } 2637 2638 APInt VecUndef, VecZero; 2639 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2640 Depth + 1)) 2641 return true; 2642 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2643 break; 2644 } 2645 case ISD::VSELECT: { 2646 // Try to transform the select condition based on the current demanded 2647 // elements. 2648 // TODO: If a condition element is undef, we can choose from one arm of the 2649 // select (and if one arm is undef, then we can propagate that to the 2650 // result). 2651 // TODO - add support for constant vselect masks (see IR version of this). 2652 APInt UnusedUndef, UnusedZero; 2653 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2654 UnusedZero, TLO, Depth + 1)) 2655 return true; 2656 2657 // See if we can simplify either vselect operand. 2658 APInt DemandedLHS(DemandedElts); 2659 APInt DemandedRHS(DemandedElts); 2660 APInt UndefLHS, ZeroLHS; 2661 APInt UndefRHS, ZeroRHS; 2662 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2663 ZeroLHS, TLO, Depth + 1)) 2664 return true; 2665 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2666 ZeroRHS, TLO, Depth + 1)) 2667 return true; 2668 2669 KnownUndef = UndefLHS & UndefRHS; 2670 KnownZero = ZeroLHS & ZeroRHS; 2671 break; 2672 } 2673 case ISD::VECTOR_SHUFFLE: { 2674 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2675 2676 // Collect demanded elements from shuffle operands.. 2677 APInt DemandedLHS(NumElts, 0); 2678 APInt DemandedRHS(NumElts, 0); 2679 for (unsigned i = 0; i != NumElts; ++i) { 2680 int M = ShuffleMask[i]; 2681 if (M < 0 || !DemandedElts[i]) 2682 continue; 2683 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2684 if (M < (int)NumElts) 2685 DemandedLHS.setBit(M); 2686 else 2687 DemandedRHS.setBit(M - NumElts); 2688 } 2689 2690 // See if we can simplify either shuffle operand. 2691 APInt UndefLHS, ZeroLHS; 2692 APInt UndefRHS, ZeroRHS; 2693 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2694 ZeroLHS, TLO, Depth + 1)) 2695 return true; 2696 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2697 ZeroRHS, TLO, Depth + 1)) 2698 return true; 2699 2700 // Simplify mask using undef elements from LHS/RHS. 2701 bool Updated = false; 2702 bool IdentityLHS = true, IdentityRHS = true; 2703 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2704 for (unsigned i = 0; i != NumElts; ++i) { 2705 int &M = NewMask[i]; 2706 if (M < 0) 2707 continue; 2708 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2709 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2710 Updated = true; 2711 M = -1; 2712 } 2713 IdentityLHS &= (M < 0) || (M == (int)i); 2714 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2715 } 2716 2717 // Update legal shuffle masks based on demanded elements if it won't reduce 2718 // to Identity which can cause premature removal of the shuffle mask. 2719 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2720 SDValue LegalShuffle = 2721 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2722 NewMask, TLO.DAG); 2723 if (LegalShuffle) 2724 return TLO.CombineTo(Op, LegalShuffle); 2725 } 2726 2727 // Propagate undef/zero elements from LHS/RHS. 2728 for (unsigned i = 0; i != NumElts; ++i) { 2729 int M = ShuffleMask[i]; 2730 if (M < 0) { 2731 KnownUndef.setBit(i); 2732 } else if (M < (int)NumElts) { 2733 if (UndefLHS[M]) 2734 KnownUndef.setBit(i); 2735 if (ZeroLHS[M]) 2736 KnownZero.setBit(i); 2737 } else { 2738 if (UndefRHS[M - NumElts]) 2739 KnownUndef.setBit(i); 2740 if (ZeroRHS[M - NumElts]) 2741 KnownZero.setBit(i); 2742 } 2743 } 2744 break; 2745 } 2746 case ISD::ANY_EXTEND_VECTOR_INREG: 2747 case ISD::SIGN_EXTEND_VECTOR_INREG: 2748 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2749 APInt SrcUndef, SrcZero; 2750 SDValue Src = Op.getOperand(0); 2751 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2752 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2753 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2754 Depth + 1)) 2755 return true; 2756 KnownZero = SrcZero.zextOrTrunc(NumElts); 2757 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2758 2759 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2760 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2761 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2762 // aext - if we just need the bottom element then we can bitcast. 2763 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2764 } 2765 2766 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2767 // zext(undef) upper bits are guaranteed to be zero. 2768 if (DemandedElts.isSubsetOf(KnownUndef)) 2769 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2770 KnownUndef.clearAllBits(); 2771 } 2772 break; 2773 } 2774 2775 // TODO: There are more binop opcodes that could be handled here - MIN, 2776 // MAX, saturated math, etc. 2777 case ISD::OR: 2778 case ISD::XOR: 2779 case ISD::ADD: 2780 case ISD::SUB: 2781 case ISD::FADD: 2782 case ISD::FSUB: 2783 case ISD::FMUL: 2784 case ISD::FDIV: 2785 case ISD::FREM: { 2786 SDValue Op0 = Op.getOperand(0); 2787 SDValue Op1 = Op.getOperand(1); 2788 2789 APInt UndefRHS, ZeroRHS; 2790 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2791 Depth + 1)) 2792 return true; 2793 APInt UndefLHS, ZeroLHS; 2794 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2795 Depth + 1)) 2796 return true; 2797 2798 KnownZero = ZeroLHS & ZeroRHS; 2799 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2800 2801 // Attempt to avoid multi-use ops if we don't need anything from them. 2802 // TODO - use KnownUndef to relax the demandedelts? 2803 if (!DemandedElts.isAllOnesValue()) 2804 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2805 return true; 2806 break; 2807 } 2808 case ISD::SHL: 2809 case ISD::SRL: 2810 case ISD::SRA: 2811 case ISD::ROTL: 2812 case ISD::ROTR: { 2813 SDValue Op0 = Op.getOperand(0); 2814 SDValue Op1 = Op.getOperand(1); 2815 2816 APInt UndefRHS, ZeroRHS; 2817 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2818 Depth + 1)) 2819 return true; 2820 APInt UndefLHS, ZeroLHS; 2821 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2822 Depth + 1)) 2823 return true; 2824 2825 KnownZero = ZeroLHS; 2826 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2827 2828 // Attempt to avoid multi-use ops if we don't need anything from them. 2829 // TODO - use KnownUndef to relax the demandedelts? 2830 if (!DemandedElts.isAllOnesValue()) 2831 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2832 return true; 2833 break; 2834 } 2835 case ISD::MUL: 2836 case ISD::AND: { 2837 SDValue Op0 = Op.getOperand(0); 2838 SDValue Op1 = Op.getOperand(1); 2839 2840 APInt SrcUndef, SrcZero; 2841 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2842 Depth + 1)) 2843 return true; 2844 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2845 TLO, Depth + 1)) 2846 return true; 2847 2848 // If either side has a zero element, then the result element is zero, even 2849 // if the other is an UNDEF. 2850 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2851 // and then handle 'and' nodes with the rest of the binop opcodes. 2852 KnownZero |= SrcZero; 2853 KnownUndef &= SrcUndef; 2854 KnownUndef &= ~KnownZero; 2855 2856 // Attempt to avoid multi-use ops if we don't need anything from them. 2857 // TODO - use KnownUndef to relax the demandedelts? 2858 if (!DemandedElts.isAllOnesValue()) 2859 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2860 return true; 2861 break; 2862 } 2863 case ISD::TRUNCATE: 2864 case ISD::SIGN_EXTEND: 2865 case ISD::ZERO_EXTEND: 2866 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2867 KnownZero, TLO, Depth + 1)) 2868 return true; 2869 2870 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2871 // zext(undef) upper bits are guaranteed to be zero. 2872 if (DemandedElts.isSubsetOf(KnownUndef)) 2873 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2874 KnownUndef.clearAllBits(); 2875 } 2876 break; 2877 default: { 2878 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2879 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2880 KnownZero, TLO, Depth)) 2881 return true; 2882 } else { 2883 KnownBits Known; 2884 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2885 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2886 TLO, Depth, AssumeSingleUse)) 2887 return true; 2888 } 2889 break; 2890 } 2891 } 2892 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2893 2894 // Constant fold all undef cases. 2895 // TODO: Handle zero cases as well. 2896 if (DemandedElts.isSubsetOf(KnownUndef)) 2897 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2898 2899 return false; 2900 } 2901 2902 /// Determine which of the bits specified in Mask are known to be either zero or 2903 /// one and return them in the Known. 2904 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2905 KnownBits &Known, 2906 const APInt &DemandedElts, 2907 const SelectionDAG &DAG, 2908 unsigned Depth) const { 2909 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2910 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2911 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2912 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2913 "Should use MaskedValueIsZero if you don't know whether Op" 2914 " is a target node!"); 2915 Known.resetAll(); 2916 } 2917 2918 void TargetLowering::computeKnownBitsForTargetInstr( 2919 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2920 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2921 unsigned Depth) const { 2922 Known.resetAll(); 2923 } 2924 2925 void TargetLowering::computeKnownBitsForFrameIndex( 2926 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2927 // The low bits are known zero if the pointer is aligned. 2928 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2929 } 2930 2931 Align TargetLowering::computeKnownAlignForTargetInstr( 2932 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2933 unsigned Depth) const { 2934 return Align(1); 2935 } 2936 2937 /// This method can be implemented by targets that want to expose additional 2938 /// information about sign bits to the DAG Combiner. 2939 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2940 const APInt &, 2941 const SelectionDAG &, 2942 unsigned Depth) const { 2943 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2944 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2945 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2946 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2947 "Should use ComputeNumSignBits if you don't know whether Op" 2948 " is a target node!"); 2949 return 1; 2950 } 2951 2952 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2953 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2954 const MachineRegisterInfo &MRI, unsigned Depth) const { 2955 return 1; 2956 } 2957 2958 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2959 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2960 TargetLoweringOpt &TLO, unsigned Depth) const { 2961 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2962 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2963 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2964 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2965 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2966 " is a target node!"); 2967 return false; 2968 } 2969 2970 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2971 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2972 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2973 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2974 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2975 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2976 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2977 "Should use SimplifyDemandedBits if you don't know whether Op" 2978 " is a target node!"); 2979 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2980 return false; 2981 } 2982 2983 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2984 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2985 SelectionDAG &DAG, unsigned Depth) const { 2986 assert( 2987 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2988 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2989 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2990 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2991 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2992 " is a target node!"); 2993 return SDValue(); 2994 } 2995 2996 SDValue 2997 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2998 SDValue N1, MutableArrayRef<int> Mask, 2999 SelectionDAG &DAG) const { 3000 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3001 if (!LegalMask) { 3002 std::swap(N0, N1); 3003 ShuffleVectorSDNode::commuteMask(Mask); 3004 LegalMask = isShuffleMaskLegal(Mask, VT); 3005 } 3006 3007 if (!LegalMask) 3008 return SDValue(); 3009 3010 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3011 } 3012 3013 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3014 return nullptr; 3015 } 3016 3017 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3018 const SelectionDAG &DAG, 3019 bool SNaN, 3020 unsigned Depth) const { 3021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3025 "Should use isKnownNeverNaN if you don't know whether Op" 3026 " is a target node!"); 3027 return false; 3028 } 3029 3030 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3031 // work with truncating build vectors and vectors with elements of less than 3032 // 8 bits. 3033 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3034 if (!N) 3035 return false; 3036 3037 APInt CVal; 3038 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3039 CVal = CN->getAPIntValue(); 3040 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3041 auto *CN = BV->getConstantSplatNode(); 3042 if (!CN) 3043 return false; 3044 3045 // If this is a truncating build vector, truncate the splat value. 3046 // Otherwise, we may fail to match the expected values below. 3047 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3048 CVal = CN->getAPIntValue(); 3049 if (BVEltWidth < CVal.getBitWidth()) 3050 CVal = CVal.trunc(BVEltWidth); 3051 } else { 3052 return false; 3053 } 3054 3055 switch (getBooleanContents(N->getValueType(0))) { 3056 case UndefinedBooleanContent: 3057 return CVal[0]; 3058 case ZeroOrOneBooleanContent: 3059 return CVal.isOneValue(); 3060 case ZeroOrNegativeOneBooleanContent: 3061 return CVal.isAllOnesValue(); 3062 } 3063 3064 llvm_unreachable("Invalid boolean contents"); 3065 } 3066 3067 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3068 if (!N) 3069 return false; 3070 3071 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3072 if (!CN) { 3073 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3074 if (!BV) 3075 return false; 3076 3077 // Only interested in constant splats, we don't care about undef 3078 // elements in identifying boolean constants and getConstantSplatNode 3079 // returns NULL if all ops are undef; 3080 CN = BV->getConstantSplatNode(); 3081 if (!CN) 3082 return false; 3083 } 3084 3085 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3086 return !CN->getAPIntValue()[0]; 3087 3088 return CN->isNullValue(); 3089 } 3090 3091 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3092 bool SExt) const { 3093 if (VT == MVT::i1) 3094 return N->isOne(); 3095 3096 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3097 switch (Cnt) { 3098 case TargetLowering::ZeroOrOneBooleanContent: 3099 // An extended value of 1 is always true, unless its original type is i1, 3100 // in which case it will be sign extended to -1. 3101 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3102 case TargetLowering::UndefinedBooleanContent: 3103 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3104 return N->isAllOnesValue() && SExt; 3105 } 3106 llvm_unreachable("Unexpected enumeration."); 3107 } 3108 3109 /// This helper function of SimplifySetCC tries to optimize the comparison when 3110 /// either operand of the SetCC node is a bitwise-and instruction. 3111 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3112 ISD::CondCode Cond, const SDLoc &DL, 3113 DAGCombinerInfo &DCI) const { 3114 // Match these patterns in any of their permutations: 3115 // (X & Y) == Y 3116 // (X & Y) != Y 3117 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3118 std::swap(N0, N1); 3119 3120 EVT OpVT = N0.getValueType(); 3121 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3122 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3123 return SDValue(); 3124 3125 SDValue X, Y; 3126 if (N0.getOperand(0) == N1) { 3127 X = N0.getOperand(1); 3128 Y = N0.getOperand(0); 3129 } else if (N0.getOperand(1) == N1) { 3130 X = N0.getOperand(0); 3131 Y = N0.getOperand(1); 3132 } else { 3133 return SDValue(); 3134 } 3135 3136 SelectionDAG &DAG = DCI.DAG; 3137 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3138 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3139 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3140 // Note that where Y is variable and is known to have at most one bit set 3141 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3142 // equivalent when Y == 0. 3143 assert(OpVT.isInteger()); 3144 Cond = ISD::getSetCCInverse(Cond, OpVT); 3145 if (DCI.isBeforeLegalizeOps() || 3146 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3147 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3148 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3149 // If the target supports an 'and-not' or 'and-complement' logic operation, 3150 // try to use that to make a comparison operation more efficient. 3151 // But don't do this transform if the mask is a single bit because there are 3152 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3153 // 'rlwinm' on PPC). 3154 3155 // Bail out if the compare operand that we want to turn into a zero is 3156 // already a zero (otherwise, infinite loop). 3157 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3158 if (YConst && YConst->isNullValue()) 3159 return SDValue(); 3160 3161 // Transform this into: ~X & Y == 0. 3162 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3163 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3164 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3165 } 3166 3167 return SDValue(); 3168 } 3169 3170 /// There are multiple IR patterns that could be checking whether certain 3171 /// truncation of a signed number would be lossy or not. The pattern which is 3172 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3173 /// We are looking for the following pattern: (KeptBits is a constant) 3174 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3175 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3176 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3177 /// We will unfold it into the natural trunc+sext pattern: 3178 /// ((%x << C) a>> C) dstcond %x 3179 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3180 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3181 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3182 const SDLoc &DL) const { 3183 // We must be comparing with a constant. 3184 ConstantSDNode *C1; 3185 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3186 return SDValue(); 3187 3188 // N0 should be: add %x, (1 << (KeptBits-1)) 3189 if (N0->getOpcode() != ISD::ADD) 3190 return SDValue(); 3191 3192 // And we must be 'add'ing a constant. 3193 ConstantSDNode *C01; 3194 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3195 return SDValue(); 3196 3197 SDValue X = N0->getOperand(0); 3198 EVT XVT = X.getValueType(); 3199 3200 // Validate constants ... 3201 3202 APInt I1 = C1->getAPIntValue(); 3203 3204 ISD::CondCode NewCond; 3205 if (Cond == ISD::CondCode::SETULT) { 3206 NewCond = ISD::CondCode::SETEQ; 3207 } else if (Cond == ISD::CondCode::SETULE) { 3208 NewCond = ISD::CondCode::SETEQ; 3209 // But need to 'canonicalize' the constant. 3210 I1 += 1; 3211 } else if (Cond == ISD::CondCode::SETUGT) { 3212 NewCond = ISD::CondCode::SETNE; 3213 // But need to 'canonicalize' the constant. 3214 I1 += 1; 3215 } else if (Cond == ISD::CondCode::SETUGE) { 3216 NewCond = ISD::CondCode::SETNE; 3217 } else 3218 return SDValue(); 3219 3220 APInt I01 = C01->getAPIntValue(); 3221 3222 auto checkConstants = [&I1, &I01]() -> bool { 3223 // Both of them must be power-of-two, and the constant from setcc is bigger. 3224 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3225 }; 3226 3227 if (checkConstants()) { 3228 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3229 } else { 3230 // What if we invert constants? (and the target predicate) 3231 I1.negate(); 3232 I01.negate(); 3233 assert(XVT.isInteger()); 3234 NewCond = getSetCCInverse(NewCond, XVT); 3235 if (!checkConstants()) 3236 return SDValue(); 3237 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3238 } 3239 3240 // They are power-of-two, so which bit is set? 3241 const unsigned KeptBits = I1.logBase2(); 3242 const unsigned KeptBitsMinusOne = I01.logBase2(); 3243 3244 // Magic! 3245 if (KeptBits != (KeptBitsMinusOne + 1)) 3246 return SDValue(); 3247 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3248 3249 // We don't want to do this in every single case. 3250 SelectionDAG &DAG = DCI.DAG; 3251 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3252 XVT, KeptBits)) 3253 return SDValue(); 3254 3255 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3256 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3257 3258 // Unfold into: ((%x << C) a>> C) cond %x 3259 // Where 'cond' will be either 'eq' or 'ne'. 3260 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3261 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3262 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3263 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3264 3265 return T2; 3266 } 3267 3268 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3269 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3270 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3271 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3272 assert(isConstOrConstSplat(N1C) && 3273 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3274 "Should be a comparison with 0."); 3275 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3276 "Valid only for [in]equality comparisons."); 3277 3278 unsigned NewShiftOpcode; 3279 SDValue X, C, Y; 3280 3281 SelectionDAG &DAG = DCI.DAG; 3282 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3283 3284 // Look for '(C l>>/<< Y)'. 3285 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3286 // The shift should be one-use. 3287 if (!V.hasOneUse()) 3288 return false; 3289 unsigned OldShiftOpcode = V.getOpcode(); 3290 switch (OldShiftOpcode) { 3291 case ISD::SHL: 3292 NewShiftOpcode = ISD::SRL; 3293 break; 3294 case ISD::SRL: 3295 NewShiftOpcode = ISD::SHL; 3296 break; 3297 default: 3298 return false; // must be a logical shift. 3299 } 3300 // We should be shifting a constant. 3301 // FIXME: best to use isConstantOrConstantVector(). 3302 C = V.getOperand(0); 3303 ConstantSDNode *CC = 3304 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3305 if (!CC) 3306 return false; 3307 Y = V.getOperand(1); 3308 3309 ConstantSDNode *XC = 3310 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3311 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3312 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3313 }; 3314 3315 // LHS of comparison should be an one-use 'and'. 3316 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3317 return SDValue(); 3318 3319 X = N0.getOperand(0); 3320 SDValue Mask = N0.getOperand(1); 3321 3322 // 'and' is commutative! 3323 if (!Match(Mask)) { 3324 std::swap(X, Mask); 3325 if (!Match(Mask)) 3326 return SDValue(); 3327 } 3328 3329 EVT VT = X.getValueType(); 3330 3331 // Produce: 3332 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3333 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3334 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3335 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3336 return T2; 3337 } 3338 3339 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3340 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3341 /// handle the commuted versions of these patterns. 3342 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3343 ISD::CondCode Cond, const SDLoc &DL, 3344 DAGCombinerInfo &DCI) const { 3345 unsigned BOpcode = N0.getOpcode(); 3346 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3347 "Unexpected binop"); 3348 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3349 3350 // (X + Y) == X --> Y == 0 3351 // (X - Y) == X --> Y == 0 3352 // (X ^ Y) == X --> Y == 0 3353 SelectionDAG &DAG = DCI.DAG; 3354 EVT OpVT = N0.getValueType(); 3355 SDValue X = N0.getOperand(0); 3356 SDValue Y = N0.getOperand(1); 3357 if (X == N1) 3358 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3359 3360 if (Y != N1) 3361 return SDValue(); 3362 3363 // (X + Y) == Y --> X == 0 3364 // (X ^ Y) == Y --> X == 0 3365 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3366 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3367 3368 // The shift would not be valid if the operands are boolean (i1). 3369 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3370 return SDValue(); 3371 3372 // (X - Y) == Y --> X == Y << 1 3373 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3374 !DCI.isBeforeLegalize()); 3375 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3376 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3377 if (!DCI.isCalledByLegalizer()) 3378 DCI.AddToWorklist(YShl1.getNode()); 3379 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3380 } 3381 3382 /// Try to simplify a setcc built with the specified operands and cc. If it is 3383 /// unable to simplify it, return a null SDValue. 3384 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3385 ISD::CondCode Cond, bool foldBooleans, 3386 DAGCombinerInfo &DCI, 3387 const SDLoc &dl) const { 3388 SelectionDAG &DAG = DCI.DAG; 3389 const DataLayout &Layout = DAG.getDataLayout(); 3390 EVT OpVT = N0.getValueType(); 3391 3392 // Constant fold or commute setcc. 3393 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3394 return Fold; 3395 3396 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3397 // TODO: Handle non-splat vector constants. All undef causes trouble. 3398 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3399 if (isConstOrConstSplat(N0) && 3400 (DCI.isBeforeLegalizeOps() || 3401 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3402 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3403 3404 // If we have a subtract with the same 2 non-constant operands as this setcc 3405 // -- but in reverse order -- then try to commute the operands of this setcc 3406 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3407 // instruction on some targets. 3408 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3409 (DCI.isBeforeLegalizeOps() || 3410 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3411 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3412 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3413 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3414 3415 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3416 const APInt &C1 = N1C->getAPIntValue(); 3417 3418 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3419 // equality comparison, then we're just comparing whether X itself is 3420 // zero. 3421 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3422 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3423 N0.getOperand(1).getOpcode() == ISD::Constant) { 3424 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3425 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3426 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3427 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3428 // (srl (ctlz x), 5) == 0 -> X != 0 3429 // (srl (ctlz x), 5) != 1 -> X != 0 3430 Cond = ISD::SETNE; 3431 } else { 3432 // (srl (ctlz x), 5) != 0 -> X == 0 3433 // (srl (ctlz x), 5) == 1 -> X == 0 3434 Cond = ISD::SETEQ; 3435 } 3436 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3437 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3438 Zero, Cond); 3439 } 3440 } 3441 3442 SDValue CTPOP = N0; 3443 // Look through truncs that don't change the value of a ctpop. 3444 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3445 CTPOP = N0.getOperand(0); 3446 3447 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3448 (N0 == CTPOP || 3449 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3450 EVT CTVT = CTPOP.getValueType(); 3451 SDValue CTOp = CTPOP.getOperand(0); 3452 3453 // (ctpop x) u< 2 -> (x & x-1) == 0 3454 // (ctpop x) u> 1 -> (x & x-1) != 0 3455 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3456 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3457 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3458 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3459 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3460 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3461 } 3462 3463 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3464 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3465 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3466 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3467 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3468 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3469 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3470 assert(CTVT.isInteger()); 3471 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3472 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3473 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3474 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3475 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3476 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3477 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3478 } 3479 } 3480 3481 // (zext x) == C --> x == (trunc C) 3482 // (sext x) == C --> x == (trunc C) 3483 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3484 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3485 unsigned MinBits = N0.getValueSizeInBits(); 3486 SDValue PreExt; 3487 bool Signed = false; 3488 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3489 // ZExt 3490 MinBits = N0->getOperand(0).getValueSizeInBits(); 3491 PreExt = N0->getOperand(0); 3492 } else if (N0->getOpcode() == ISD::AND) { 3493 // DAGCombine turns costly ZExts into ANDs 3494 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3495 if ((C->getAPIntValue()+1).isPowerOf2()) { 3496 MinBits = C->getAPIntValue().countTrailingOnes(); 3497 PreExt = N0->getOperand(0); 3498 } 3499 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3500 // SExt 3501 MinBits = N0->getOperand(0).getValueSizeInBits(); 3502 PreExt = N0->getOperand(0); 3503 Signed = true; 3504 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3505 // ZEXTLOAD / SEXTLOAD 3506 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3507 MinBits = LN0->getMemoryVT().getSizeInBits(); 3508 PreExt = N0; 3509 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3510 Signed = true; 3511 MinBits = LN0->getMemoryVT().getSizeInBits(); 3512 PreExt = N0; 3513 } 3514 } 3515 3516 // Figure out how many bits we need to preserve this constant. 3517 unsigned ReqdBits = Signed ? 3518 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3519 C1.getActiveBits(); 3520 3521 // Make sure we're not losing bits from the constant. 3522 if (MinBits > 0 && 3523 MinBits < C1.getBitWidth() && 3524 MinBits >= ReqdBits) { 3525 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3526 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3527 // Will get folded away. 3528 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3529 if (MinBits == 1 && C1 == 1) 3530 // Invert the condition. 3531 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3532 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3533 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3534 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3535 } 3536 3537 // If truncating the setcc operands is not desirable, we can still 3538 // simplify the expression in some cases: 3539 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3540 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3541 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3542 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3543 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3544 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3545 SDValue TopSetCC = N0->getOperand(0); 3546 unsigned N0Opc = N0->getOpcode(); 3547 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3548 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3549 TopSetCC.getOpcode() == ISD::SETCC && 3550 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3551 (isConstFalseVal(N1C) || 3552 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3553 3554 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3555 (!N1C->isNullValue() && Cond == ISD::SETNE); 3556 3557 if (!Inverse) 3558 return TopSetCC; 3559 3560 ISD::CondCode InvCond = ISD::getSetCCInverse( 3561 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3562 TopSetCC.getOperand(0).getValueType()); 3563 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3564 TopSetCC.getOperand(1), 3565 InvCond); 3566 } 3567 } 3568 } 3569 3570 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3571 // equality or unsigned, and all 1 bits of the const are in the same 3572 // partial word, see if we can shorten the load. 3573 if (DCI.isBeforeLegalize() && 3574 !ISD::isSignedIntSetCC(Cond) && 3575 N0.getOpcode() == ISD::AND && C1 == 0 && 3576 N0.getNode()->hasOneUse() && 3577 isa<LoadSDNode>(N0.getOperand(0)) && 3578 N0.getOperand(0).getNode()->hasOneUse() && 3579 isa<ConstantSDNode>(N0.getOperand(1))) { 3580 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3581 APInt bestMask; 3582 unsigned bestWidth = 0, bestOffset = 0; 3583 if (Lod->isSimple() && Lod->isUnindexed()) { 3584 unsigned origWidth = N0.getValueSizeInBits(); 3585 unsigned maskWidth = origWidth; 3586 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3587 // 8 bits, but have to be careful... 3588 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3589 origWidth = Lod->getMemoryVT().getSizeInBits(); 3590 const APInt &Mask = N0.getConstantOperandAPInt(1); 3591 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3592 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3593 for (unsigned offset=0; offset<origWidth/width; offset++) { 3594 if (Mask.isSubsetOf(newMask)) { 3595 if (Layout.isLittleEndian()) 3596 bestOffset = (uint64_t)offset * (width/8); 3597 else 3598 bestOffset = (origWidth/width - offset - 1) * (width/8); 3599 bestMask = Mask.lshr(offset * (width/8) * 8); 3600 bestWidth = width; 3601 break; 3602 } 3603 newMask <<= width; 3604 } 3605 } 3606 } 3607 if (bestWidth) { 3608 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3609 if (newVT.isRound() && 3610 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3611 SDValue Ptr = Lod->getBasePtr(); 3612 if (bestOffset != 0) 3613 Ptr = 3614 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3615 SDValue NewLoad = 3616 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3617 Lod->getPointerInfo().getWithOffset(bestOffset), 3618 Lod->getOriginalAlign()); 3619 return DAG.getSetCC(dl, VT, 3620 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3621 DAG.getConstant(bestMask.trunc(bestWidth), 3622 dl, newVT)), 3623 DAG.getConstant(0LL, dl, newVT), Cond); 3624 } 3625 } 3626 } 3627 3628 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3629 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3630 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3631 3632 // If the comparison constant has bits in the upper part, the 3633 // zero-extended value could never match. 3634 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3635 C1.getBitWidth() - InSize))) { 3636 switch (Cond) { 3637 case ISD::SETUGT: 3638 case ISD::SETUGE: 3639 case ISD::SETEQ: 3640 return DAG.getConstant(0, dl, VT); 3641 case ISD::SETULT: 3642 case ISD::SETULE: 3643 case ISD::SETNE: 3644 return DAG.getConstant(1, dl, VT); 3645 case ISD::SETGT: 3646 case ISD::SETGE: 3647 // True if the sign bit of C1 is set. 3648 return DAG.getConstant(C1.isNegative(), dl, VT); 3649 case ISD::SETLT: 3650 case ISD::SETLE: 3651 // True if the sign bit of C1 isn't set. 3652 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3653 default: 3654 break; 3655 } 3656 } 3657 3658 // Otherwise, we can perform the comparison with the low bits. 3659 switch (Cond) { 3660 case ISD::SETEQ: 3661 case ISD::SETNE: 3662 case ISD::SETUGT: 3663 case ISD::SETUGE: 3664 case ISD::SETULT: 3665 case ISD::SETULE: { 3666 EVT newVT = N0.getOperand(0).getValueType(); 3667 if (DCI.isBeforeLegalizeOps() || 3668 (isOperationLegal(ISD::SETCC, newVT) && 3669 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3670 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3671 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3672 3673 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3674 NewConst, Cond); 3675 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3676 } 3677 break; 3678 } 3679 default: 3680 break; // todo, be more careful with signed comparisons 3681 } 3682 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3683 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3684 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3685 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3686 EVT ExtDstTy = N0.getValueType(); 3687 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3688 3689 // If the constant doesn't fit into the number of bits for the source of 3690 // the sign extension, it is impossible for both sides to be equal. 3691 if (C1.getMinSignedBits() > ExtSrcTyBits) 3692 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3693 3694 SDValue ZextOp; 3695 EVT Op0Ty = N0.getOperand(0).getValueType(); 3696 if (Op0Ty == ExtSrcTy) { 3697 ZextOp = N0.getOperand(0); 3698 } else { 3699 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3700 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3701 DAG.getConstant(Imm, dl, Op0Ty)); 3702 } 3703 if (!DCI.isCalledByLegalizer()) 3704 DCI.AddToWorklist(ZextOp.getNode()); 3705 // Otherwise, make this a use of a zext. 3706 return DAG.getSetCC(dl, VT, ZextOp, 3707 DAG.getConstant(C1 & APInt::getLowBitsSet( 3708 ExtDstTyBits, 3709 ExtSrcTyBits), 3710 dl, ExtDstTy), 3711 Cond); 3712 } else if ((N1C->isNullValue() || N1C->isOne()) && 3713 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3714 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3715 if (N0.getOpcode() == ISD::SETCC && 3716 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3717 (N0.getValueType() == MVT::i1 || 3718 getBooleanContents(N0.getOperand(0).getValueType()) == 3719 ZeroOrOneBooleanContent)) { 3720 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3721 if (TrueWhenTrue) 3722 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3723 // Invert the condition. 3724 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3725 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3726 if (DCI.isBeforeLegalizeOps() || 3727 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3728 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3729 } 3730 3731 if ((N0.getOpcode() == ISD::XOR || 3732 (N0.getOpcode() == ISD::AND && 3733 N0.getOperand(0).getOpcode() == ISD::XOR && 3734 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3735 isa<ConstantSDNode>(N0.getOperand(1)) && 3736 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3737 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3738 // can only do this if the top bits are known zero. 3739 unsigned BitWidth = N0.getValueSizeInBits(); 3740 if (DAG.MaskedValueIsZero(N0, 3741 APInt::getHighBitsSet(BitWidth, 3742 BitWidth-1))) { 3743 // Okay, get the un-inverted input value. 3744 SDValue Val; 3745 if (N0.getOpcode() == ISD::XOR) { 3746 Val = N0.getOperand(0); 3747 } else { 3748 assert(N0.getOpcode() == ISD::AND && 3749 N0.getOperand(0).getOpcode() == ISD::XOR); 3750 // ((X^1)&1)^1 -> X & 1 3751 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3752 N0.getOperand(0).getOperand(0), 3753 N0.getOperand(1)); 3754 } 3755 3756 return DAG.getSetCC(dl, VT, Val, N1, 3757 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3758 } 3759 } else if (N1C->isOne()) { 3760 SDValue Op0 = N0; 3761 if (Op0.getOpcode() == ISD::TRUNCATE) 3762 Op0 = Op0.getOperand(0); 3763 3764 if ((Op0.getOpcode() == ISD::XOR) && 3765 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3766 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3767 SDValue XorLHS = Op0.getOperand(0); 3768 SDValue XorRHS = Op0.getOperand(1); 3769 // Ensure that the input setccs return an i1 type or 0/1 value. 3770 if (Op0.getValueType() == MVT::i1 || 3771 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3772 ZeroOrOneBooleanContent && 3773 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3774 ZeroOrOneBooleanContent)) { 3775 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3776 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3777 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3778 } 3779 } 3780 if (Op0.getOpcode() == ISD::AND && 3781 isa<ConstantSDNode>(Op0.getOperand(1)) && 3782 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3783 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3784 if (Op0.getValueType().bitsGT(VT)) 3785 Op0 = DAG.getNode(ISD::AND, dl, VT, 3786 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3787 DAG.getConstant(1, dl, VT)); 3788 else if (Op0.getValueType().bitsLT(VT)) 3789 Op0 = DAG.getNode(ISD::AND, dl, VT, 3790 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3791 DAG.getConstant(1, dl, VT)); 3792 3793 return DAG.getSetCC(dl, VT, Op0, 3794 DAG.getConstant(0, dl, Op0.getValueType()), 3795 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3796 } 3797 if (Op0.getOpcode() == ISD::AssertZext && 3798 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3799 return DAG.getSetCC(dl, VT, Op0, 3800 DAG.getConstant(0, dl, Op0.getValueType()), 3801 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3802 } 3803 } 3804 3805 // Given: 3806 // icmp eq/ne (urem %x, %y), 0 3807 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3808 // icmp eq/ne %x, 0 3809 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3810 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3811 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3812 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3813 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3814 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3815 } 3816 3817 if (SDValue V = 3818 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3819 return V; 3820 } 3821 3822 // These simplifications apply to splat vectors as well. 3823 // TODO: Handle more splat vector cases. 3824 if (auto *N1C = isConstOrConstSplat(N1)) { 3825 const APInt &C1 = N1C->getAPIntValue(); 3826 3827 APInt MinVal, MaxVal; 3828 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3829 if (ISD::isSignedIntSetCC(Cond)) { 3830 MinVal = APInt::getSignedMinValue(OperandBitSize); 3831 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3832 } else { 3833 MinVal = APInt::getMinValue(OperandBitSize); 3834 MaxVal = APInt::getMaxValue(OperandBitSize); 3835 } 3836 3837 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3838 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3839 // X >= MIN --> true 3840 if (C1 == MinVal) 3841 return DAG.getBoolConstant(true, dl, VT, OpVT); 3842 3843 if (!VT.isVector()) { // TODO: Support this for vectors. 3844 // X >= C0 --> X > (C0 - 1) 3845 APInt C = C1 - 1; 3846 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3847 if ((DCI.isBeforeLegalizeOps() || 3848 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3849 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3850 isLegalICmpImmediate(C.getSExtValue())))) { 3851 return DAG.getSetCC(dl, VT, N0, 3852 DAG.getConstant(C, dl, N1.getValueType()), 3853 NewCC); 3854 } 3855 } 3856 } 3857 3858 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3859 // X <= MAX --> true 3860 if (C1 == MaxVal) 3861 return DAG.getBoolConstant(true, dl, VT, OpVT); 3862 3863 // X <= C0 --> X < (C0 + 1) 3864 if (!VT.isVector()) { // TODO: Support this for vectors. 3865 APInt C = C1 + 1; 3866 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3867 if ((DCI.isBeforeLegalizeOps() || 3868 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3869 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3870 isLegalICmpImmediate(C.getSExtValue())))) { 3871 return DAG.getSetCC(dl, VT, N0, 3872 DAG.getConstant(C, dl, N1.getValueType()), 3873 NewCC); 3874 } 3875 } 3876 } 3877 3878 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3879 if (C1 == MinVal) 3880 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3881 3882 // TODO: Support this for vectors after legalize ops. 3883 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3884 // Canonicalize setlt X, Max --> setne X, Max 3885 if (C1 == MaxVal) 3886 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3887 3888 // If we have setult X, 1, turn it into seteq X, 0 3889 if (C1 == MinVal+1) 3890 return DAG.getSetCC(dl, VT, N0, 3891 DAG.getConstant(MinVal, dl, N0.getValueType()), 3892 ISD::SETEQ); 3893 } 3894 } 3895 3896 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3897 if (C1 == MaxVal) 3898 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3899 3900 // TODO: Support this for vectors after legalize ops. 3901 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3902 // Canonicalize setgt X, Min --> setne X, Min 3903 if (C1 == MinVal) 3904 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3905 3906 // If we have setugt X, Max-1, turn it into seteq X, Max 3907 if (C1 == MaxVal-1) 3908 return DAG.getSetCC(dl, VT, N0, 3909 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3910 ISD::SETEQ); 3911 } 3912 } 3913 3914 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3915 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3916 if (C1.isNullValue()) 3917 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3918 VT, N0, N1, Cond, DCI, dl)) 3919 return CC; 3920 } 3921 3922 // If we have "setcc X, C0", check to see if we can shrink the immediate 3923 // by changing cc. 3924 // TODO: Support this for vectors after legalize ops. 3925 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3926 // SETUGT X, SINTMAX -> SETLT X, 0 3927 // SETUGE X, SINTMIN -> SETLT X, 0 3928 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 3929 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 3930 return DAG.getSetCC(dl, VT, N0, 3931 DAG.getConstant(0, dl, N1.getValueType()), 3932 ISD::SETLT); 3933 3934 // SETULT X, SINTMIN -> SETGT X, -1 3935 // SETULE X, SINTMAX -> SETGT X, -1 3936 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 3937 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 3938 return DAG.getSetCC(dl, VT, N0, 3939 DAG.getAllOnesConstant(dl, N1.getValueType()), 3940 ISD::SETGT); 3941 } 3942 } 3943 3944 // Back to non-vector simplifications. 3945 // TODO: Can we do these for vector splats? 3946 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3947 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3948 const APInt &C1 = N1C->getAPIntValue(); 3949 EVT ShValTy = N0.getValueType(); 3950 3951 // Fold bit comparisons when we can. 3952 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3953 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 3954 N0.getOpcode() == ISD::AND) { 3955 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3956 EVT ShiftTy = 3957 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3958 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3959 // Perform the xform if the AND RHS is a single bit. 3960 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 3961 if (AndRHS->getAPIntValue().isPowerOf2() && 3962 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3963 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3964 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3965 DAG.getConstant(ShCt, dl, ShiftTy))); 3966 } 3967 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3968 // (X & 8) == 8 --> (X & 8) >> 3 3969 // Perform the xform if C1 is a single bit. 3970 unsigned ShCt = C1.logBase2(); 3971 if (C1.isPowerOf2() && 3972 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 3973 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3974 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 3975 DAG.getConstant(ShCt, dl, ShiftTy))); 3976 } 3977 } 3978 } 3979 } 3980 3981 if (C1.getMinSignedBits() <= 64 && 3982 !isLegalICmpImmediate(C1.getSExtValue())) { 3983 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 3984 // (X & -256) == 256 -> (X >> 8) == 1 3985 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3986 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3987 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3988 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3989 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3990 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3991 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 3992 SDValue Shift = 3993 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 3994 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3995 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 3996 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3997 } 3998 } 3999 } 4000 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4001 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4002 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4003 // X < 0x100000000 -> (X >> 32) < 1 4004 // X >= 0x100000000 -> (X >> 32) >= 1 4005 // X <= 0x0ffffffff -> (X >> 32) < 1 4006 // X > 0x0ffffffff -> (X >> 32) >= 1 4007 unsigned ShiftBits; 4008 APInt NewC = C1; 4009 ISD::CondCode NewCond = Cond; 4010 if (AdjOne) { 4011 ShiftBits = C1.countTrailingOnes(); 4012 NewC = NewC + 1; 4013 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4014 } else { 4015 ShiftBits = C1.countTrailingZeros(); 4016 } 4017 NewC.lshrInPlace(ShiftBits); 4018 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4019 isLegalICmpImmediate(NewC.getSExtValue()) && 4020 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4021 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4022 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4023 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4024 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4025 } 4026 } 4027 } 4028 } 4029 4030 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4031 auto *CFP = cast<ConstantFPSDNode>(N1); 4032 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4033 4034 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4035 // constant if knowing that the operand is non-nan is enough. We prefer to 4036 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4037 // materialize 0.0. 4038 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4039 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4040 4041 // setcc (fneg x), C -> setcc swap(pred) x, -C 4042 if (N0.getOpcode() == ISD::FNEG) { 4043 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4044 if (DCI.isBeforeLegalizeOps() || 4045 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4046 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4047 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4048 } 4049 } 4050 4051 // If the condition is not legal, see if we can find an equivalent one 4052 // which is legal. 4053 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4054 // If the comparison was an awkward floating-point == or != and one of 4055 // the comparison operands is infinity or negative infinity, convert the 4056 // condition to a less-awkward <= or >=. 4057 if (CFP->getValueAPF().isInfinity()) { 4058 bool IsNegInf = CFP->getValueAPF().isNegative(); 4059 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4060 switch (Cond) { 4061 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4062 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4063 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4064 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4065 default: break; 4066 } 4067 if (NewCond != ISD::SETCC_INVALID && 4068 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4069 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4070 } 4071 } 4072 } 4073 4074 if (N0 == N1) { 4075 // The sext(setcc()) => setcc() optimization relies on the appropriate 4076 // constant being emitted. 4077 assert(!N0.getValueType().isInteger() && 4078 "Integer types should be handled by FoldSetCC"); 4079 4080 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4081 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4082 if (UOF == 2) // FP operators that are undefined on NaNs. 4083 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4084 if (UOF == unsigned(EqTrue)) 4085 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4086 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4087 // if it is not already. 4088 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4089 if (NewCond != Cond && 4090 (DCI.isBeforeLegalizeOps() || 4091 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4092 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4093 } 4094 4095 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4096 N0.getValueType().isInteger()) { 4097 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4098 N0.getOpcode() == ISD::XOR) { 4099 // Simplify (X+Y) == (X+Z) --> Y == Z 4100 if (N0.getOpcode() == N1.getOpcode()) { 4101 if (N0.getOperand(0) == N1.getOperand(0)) 4102 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4103 if (N0.getOperand(1) == N1.getOperand(1)) 4104 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4105 if (isCommutativeBinOp(N0.getOpcode())) { 4106 // If X op Y == Y op X, try other combinations. 4107 if (N0.getOperand(0) == N1.getOperand(1)) 4108 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4109 Cond); 4110 if (N0.getOperand(1) == N1.getOperand(0)) 4111 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4112 Cond); 4113 } 4114 } 4115 4116 // If RHS is a legal immediate value for a compare instruction, we need 4117 // to be careful about increasing register pressure needlessly. 4118 bool LegalRHSImm = false; 4119 4120 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4121 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4122 // Turn (X+C1) == C2 --> X == C2-C1 4123 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4124 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4125 DAG.getConstant(RHSC->getAPIntValue()- 4126 LHSR->getAPIntValue(), 4127 dl, N0.getValueType()), Cond); 4128 } 4129 4130 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4131 if (N0.getOpcode() == ISD::XOR) 4132 // If we know that all of the inverted bits are zero, don't bother 4133 // performing the inversion. 4134 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4135 return 4136 DAG.getSetCC(dl, VT, N0.getOperand(0), 4137 DAG.getConstant(LHSR->getAPIntValue() ^ 4138 RHSC->getAPIntValue(), 4139 dl, N0.getValueType()), 4140 Cond); 4141 } 4142 4143 // Turn (C1-X) == C2 --> X == C1-C2 4144 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4145 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4146 return 4147 DAG.getSetCC(dl, VT, N0.getOperand(1), 4148 DAG.getConstant(SUBC->getAPIntValue() - 4149 RHSC->getAPIntValue(), 4150 dl, N0.getValueType()), 4151 Cond); 4152 } 4153 } 4154 4155 // Could RHSC fold directly into a compare? 4156 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4157 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4158 } 4159 4160 // (X+Y) == X --> Y == 0 and similar folds. 4161 // Don't do this if X is an immediate that can fold into a cmp 4162 // instruction and X+Y has other uses. It could be an induction variable 4163 // chain, and the transform would increase register pressure. 4164 if (!LegalRHSImm || N0.hasOneUse()) 4165 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4166 return V; 4167 } 4168 4169 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4170 N1.getOpcode() == ISD::XOR) 4171 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4172 return V; 4173 4174 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4175 return V; 4176 } 4177 4178 // Fold remainder of division by a constant. 4179 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4180 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4181 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4182 4183 // When division is cheap or optimizing for minimum size, 4184 // fall through to DIVREM creation by skipping this fold. 4185 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4186 if (N0.getOpcode() == ISD::UREM) { 4187 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4188 return Folded; 4189 } else if (N0.getOpcode() == ISD::SREM) { 4190 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4191 return Folded; 4192 } 4193 } 4194 } 4195 4196 // Fold away ALL boolean setcc's. 4197 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4198 SDValue Temp; 4199 switch (Cond) { 4200 default: llvm_unreachable("Unknown integer setcc!"); 4201 case ISD::SETEQ: // X == Y -> ~(X^Y) 4202 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4203 N0 = DAG.getNOT(dl, Temp, OpVT); 4204 if (!DCI.isCalledByLegalizer()) 4205 DCI.AddToWorklist(Temp.getNode()); 4206 break; 4207 case ISD::SETNE: // X != Y --> (X^Y) 4208 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4209 break; 4210 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4211 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4212 Temp = DAG.getNOT(dl, N0, OpVT); 4213 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4214 if (!DCI.isCalledByLegalizer()) 4215 DCI.AddToWorklist(Temp.getNode()); 4216 break; 4217 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4218 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4219 Temp = DAG.getNOT(dl, N1, OpVT); 4220 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4221 if (!DCI.isCalledByLegalizer()) 4222 DCI.AddToWorklist(Temp.getNode()); 4223 break; 4224 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4225 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4226 Temp = DAG.getNOT(dl, N0, OpVT); 4227 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4228 if (!DCI.isCalledByLegalizer()) 4229 DCI.AddToWorklist(Temp.getNode()); 4230 break; 4231 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4232 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4233 Temp = DAG.getNOT(dl, N1, OpVT); 4234 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4235 break; 4236 } 4237 if (VT.getScalarType() != MVT::i1) { 4238 if (!DCI.isCalledByLegalizer()) 4239 DCI.AddToWorklist(N0.getNode()); 4240 // FIXME: If running after legalize, we probably can't do this. 4241 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4242 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4243 } 4244 return N0; 4245 } 4246 4247 // Could not fold it. 4248 return SDValue(); 4249 } 4250 4251 /// Returns true (and the GlobalValue and the offset) if the node is a 4252 /// GlobalAddress + offset. 4253 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4254 int64_t &Offset) const { 4255 4256 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4257 4258 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4259 GA = GASD->getGlobal(); 4260 Offset += GASD->getOffset(); 4261 return true; 4262 } 4263 4264 if (N->getOpcode() == ISD::ADD) { 4265 SDValue N1 = N->getOperand(0); 4266 SDValue N2 = N->getOperand(1); 4267 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4268 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4269 Offset += V->getSExtValue(); 4270 return true; 4271 } 4272 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4273 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4274 Offset += V->getSExtValue(); 4275 return true; 4276 } 4277 } 4278 } 4279 4280 return false; 4281 } 4282 4283 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4284 DAGCombinerInfo &DCI) const { 4285 // Default implementation: no optimization. 4286 return SDValue(); 4287 } 4288 4289 //===----------------------------------------------------------------------===// 4290 // Inline Assembler Implementation Methods 4291 //===----------------------------------------------------------------------===// 4292 4293 TargetLowering::ConstraintType 4294 TargetLowering::getConstraintType(StringRef Constraint) const { 4295 unsigned S = Constraint.size(); 4296 4297 if (S == 1) { 4298 switch (Constraint[0]) { 4299 default: break; 4300 case 'r': 4301 return C_RegisterClass; 4302 case 'm': // memory 4303 case 'o': // offsetable 4304 case 'V': // not offsetable 4305 return C_Memory; 4306 case 'n': // Simple Integer 4307 case 'E': // Floating Point Constant 4308 case 'F': // Floating Point Constant 4309 return C_Immediate; 4310 case 'i': // Simple Integer or Relocatable Constant 4311 case 's': // Relocatable Constant 4312 case 'p': // Address. 4313 case 'X': // Allow ANY value. 4314 case 'I': // Target registers. 4315 case 'J': 4316 case 'K': 4317 case 'L': 4318 case 'M': 4319 case 'N': 4320 case 'O': 4321 case 'P': 4322 case '<': 4323 case '>': 4324 return C_Other; 4325 } 4326 } 4327 4328 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4329 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4330 return C_Memory; 4331 return C_Register; 4332 } 4333 return C_Unknown; 4334 } 4335 4336 /// Try to replace an X constraint, which matches anything, with another that 4337 /// has more specific requirements based on the type of the corresponding 4338 /// operand. 4339 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4340 if (ConstraintVT.isInteger()) 4341 return "r"; 4342 if (ConstraintVT.isFloatingPoint()) 4343 return "f"; // works for many targets 4344 return nullptr; 4345 } 4346 4347 SDValue TargetLowering::LowerAsmOutputForConstraint( 4348 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4349 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4350 return SDValue(); 4351 } 4352 4353 /// Lower the specified operand into the Ops vector. 4354 /// If it is invalid, don't add anything to Ops. 4355 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4356 std::string &Constraint, 4357 std::vector<SDValue> &Ops, 4358 SelectionDAG &DAG) const { 4359 4360 if (Constraint.length() > 1) return; 4361 4362 char ConstraintLetter = Constraint[0]; 4363 switch (ConstraintLetter) { 4364 default: break; 4365 case 'X': // Allows any operand; labels (basic block) use this. 4366 if (Op.getOpcode() == ISD::BasicBlock || 4367 Op.getOpcode() == ISD::TargetBlockAddress) { 4368 Ops.push_back(Op); 4369 return; 4370 } 4371 LLVM_FALLTHROUGH; 4372 case 'i': // Simple Integer or Relocatable Constant 4373 case 'n': // Simple Integer 4374 case 's': { // Relocatable Constant 4375 4376 GlobalAddressSDNode *GA; 4377 ConstantSDNode *C; 4378 BlockAddressSDNode *BA; 4379 uint64_t Offset = 0; 4380 4381 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4382 // etc., since getelementpointer is variadic. We can't use 4383 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4384 // while in this case the GA may be furthest from the root node which is 4385 // likely an ISD::ADD. 4386 while (1) { 4387 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4388 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4389 GA->getValueType(0), 4390 Offset + GA->getOffset())); 4391 return; 4392 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4393 ConstraintLetter != 's') { 4394 // gcc prints these as sign extended. Sign extend value to 64 bits 4395 // now; without this it would get ZExt'd later in 4396 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4397 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4398 BooleanContent BCont = getBooleanContents(MVT::i64); 4399 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4400 : ISD::SIGN_EXTEND; 4401 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4402 : C->getSExtValue(); 4403 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4404 SDLoc(C), MVT::i64)); 4405 return; 4406 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4407 ConstraintLetter != 'n') { 4408 Ops.push_back(DAG.getTargetBlockAddress( 4409 BA->getBlockAddress(), BA->getValueType(0), 4410 Offset + BA->getOffset(), BA->getTargetFlags())); 4411 return; 4412 } else { 4413 const unsigned OpCode = Op.getOpcode(); 4414 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4415 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4416 Op = Op.getOperand(1); 4417 // Subtraction is not commutative. 4418 else if (OpCode == ISD::ADD && 4419 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4420 Op = Op.getOperand(0); 4421 else 4422 return; 4423 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4424 continue; 4425 } 4426 } 4427 return; 4428 } 4429 break; 4430 } 4431 } 4432 } 4433 4434 std::pair<unsigned, const TargetRegisterClass *> 4435 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4436 StringRef Constraint, 4437 MVT VT) const { 4438 if (Constraint.empty() || Constraint[0] != '{') 4439 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4440 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4441 4442 // Remove the braces from around the name. 4443 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4444 4445 std::pair<unsigned, const TargetRegisterClass *> R = 4446 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4447 4448 // Figure out which register class contains this reg. 4449 for (const TargetRegisterClass *RC : RI->regclasses()) { 4450 // If none of the value types for this register class are valid, we 4451 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4452 if (!isLegalRC(*RI, *RC)) 4453 continue; 4454 4455 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4456 I != E; ++I) { 4457 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4458 std::pair<unsigned, const TargetRegisterClass *> S = 4459 std::make_pair(*I, RC); 4460 4461 // If this register class has the requested value type, return it, 4462 // otherwise keep searching and return the first class found 4463 // if no other is found which explicitly has the requested type. 4464 if (RI->isTypeLegalForClass(*RC, VT)) 4465 return S; 4466 if (!R.second) 4467 R = S; 4468 } 4469 } 4470 } 4471 4472 return R; 4473 } 4474 4475 //===----------------------------------------------------------------------===// 4476 // Constraint Selection. 4477 4478 /// Return true of this is an input operand that is a matching constraint like 4479 /// "4". 4480 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4481 assert(!ConstraintCode.empty() && "No known constraint!"); 4482 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4483 } 4484 4485 /// If this is an input matching constraint, this method returns the output 4486 /// operand it matches. 4487 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4488 assert(!ConstraintCode.empty() && "No known constraint!"); 4489 return atoi(ConstraintCode.c_str()); 4490 } 4491 4492 /// Split up the constraint string from the inline assembly value into the 4493 /// specific constraints and their prefixes, and also tie in the associated 4494 /// operand values. 4495 /// If this returns an empty vector, and if the constraint string itself 4496 /// isn't empty, there was an error parsing. 4497 TargetLowering::AsmOperandInfoVector 4498 TargetLowering::ParseConstraints(const DataLayout &DL, 4499 const TargetRegisterInfo *TRI, 4500 const CallBase &Call) const { 4501 /// Information about all of the constraints. 4502 AsmOperandInfoVector ConstraintOperands; 4503 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4504 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4505 4506 // Do a prepass over the constraints, canonicalizing them, and building up the 4507 // ConstraintOperands list. 4508 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4509 unsigned ResNo = 0; // ResNo - The result number of the next output. 4510 4511 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4512 ConstraintOperands.emplace_back(std::move(CI)); 4513 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4514 4515 // Update multiple alternative constraint count. 4516 if (OpInfo.multipleAlternatives.size() > maCount) 4517 maCount = OpInfo.multipleAlternatives.size(); 4518 4519 OpInfo.ConstraintVT = MVT::Other; 4520 4521 // Compute the value type for each operand. 4522 switch (OpInfo.Type) { 4523 case InlineAsm::isOutput: 4524 // Indirect outputs just consume an argument. 4525 if (OpInfo.isIndirect) { 4526 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4527 break; 4528 } 4529 4530 // The return value of the call is this value. As such, there is no 4531 // corresponding argument. 4532 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4533 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4534 OpInfo.ConstraintVT = 4535 getSimpleValueType(DL, STy->getElementType(ResNo)); 4536 } else { 4537 assert(ResNo == 0 && "Asm only has one result!"); 4538 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4539 } 4540 ++ResNo; 4541 break; 4542 case InlineAsm::isInput: 4543 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4544 break; 4545 case InlineAsm::isClobber: 4546 // Nothing to do. 4547 break; 4548 } 4549 4550 if (OpInfo.CallOperandVal) { 4551 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4552 if (OpInfo.isIndirect) { 4553 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4554 if (!PtrTy) 4555 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4556 OpTy = PtrTy->getElementType(); 4557 } 4558 4559 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4560 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4561 if (STy->getNumElements() == 1) 4562 OpTy = STy->getElementType(0); 4563 4564 // If OpTy is not a single value, it may be a struct/union that we 4565 // can tile with integers. 4566 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4567 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4568 switch (BitSize) { 4569 default: break; 4570 case 1: 4571 case 8: 4572 case 16: 4573 case 32: 4574 case 64: 4575 case 128: 4576 OpInfo.ConstraintVT = 4577 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4578 break; 4579 } 4580 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4581 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4582 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4583 } else { 4584 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4585 } 4586 } 4587 } 4588 4589 // If we have multiple alternative constraints, select the best alternative. 4590 if (!ConstraintOperands.empty()) { 4591 if (maCount) { 4592 unsigned bestMAIndex = 0; 4593 int bestWeight = -1; 4594 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4595 int weight = -1; 4596 unsigned maIndex; 4597 // Compute the sums of the weights for each alternative, keeping track 4598 // of the best (highest weight) one so far. 4599 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4600 int weightSum = 0; 4601 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4602 cIndex != eIndex; ++cIndex) { 4603 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4604 if (OpInfo.Type == InlineAsm::isClobber) 4605 continue; 4606 4607 // If this is an output operand with a matching input operand, 4608 // look up the matching input. If their types mismatch, e.g. one 4609 // is an integer, the other is floating point, or their sizes are 4610 // different, flag it as an maCantMatch. 4611 if (OpInfo.hasMatchingInput()) { 4612 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4613 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4614 if ((OpInfo.ConstraintVT.isInteger() != 4615 Input.ConstraintVT.isInteger()) || 4616 (OpInfo.ConstraintVT.getSizeInBits() != 4617 Input.ConstraintVT.getSizeInBits())) { 4618 weightSum = -1; // Can't match. 4619 break; 4620 } 4621 } 4622 } 4623 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4624 if (weight == -1) { 4625 weightSum = -1; 4626 break; 4627 } 4628 weightSum += weight; 4629 } 4630 // Update best. 4631 if (weightSum > bestWeight) { 4632 bestWeight = weightSum; 4633 bestMAIndex = maIndex; 4634 } 4635 } 4636 4637 // Now select chosen alternative in each constraint. 4638 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4639 cIndex != eIndex; ++cIndex) { 4640 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4641 if (cInfo.Type == InlineAsm::isClobber) 4642 continue; 4643 cInfo.selectAlternative(bestMAIndex); 4644 } 4645 } 4646 } 4647 4648 // Check and hook up tied operands, choose constraint code to use. 4649 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4650 cIndex != eIndex; ++cIndex) { 4651 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4652 4653 // If this is an output operand with a matching input operand, look up the 4654 // matching input. If their types mismatch, e.g. one is an integer, the 4655 // other is floating point, or their sizes are different, flag it as an 4656 // error. 4657 if (OpInfo.hasMatchingInput()) { 4658 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4659 4660 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4661 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4662 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4663 OpInfo.ConstraintVT); 4664 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4665 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4666 Input.ConstraintVT); 4667 if ((OpInfo.ConstraintVT.isInteger() != 4668 Input.ConstraintVT.isInteger()) || 4669 (MatchRC.second != InputRC.second)) { 4670 report_fatal_error("Unsupported asm: input constraint" 4671 " with a matching output constraint of" 4672 " incompatible type!"); 4673 } 4674 } 4675 } 4676 } 4677 4678 return ConstraintOperands; 4679 } 4680 4681 /// Return an integer indicating how general CT is. 4682 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4683 switch (CT) { 4684 case TargetLowering::C_Immediate: 4685 case TargetLowering::C_Other: 4686 case TargetLowering::C_Unknown: 4687 return 0; 4688 case TargetLowering::C_Register: 4689 return 1; 4690 case TargetLowering::C_RegisterClass: 4691 return 2; 4692 case TargetLowering::C_Memory: 4693 return 3; 4694 } 4695 llvm_unreachable("Invalid constraint type"); 4696 } 4697 4698 /// Examine constraint type and operand type and determine a weight value. 4699 /// This object must already have been set up with the operand type 4700 /// and the current alternative constraint selected. 4701 TargetLowering::ConstraintWeight 4702 TargetLowering::getMultipleConstraintMatchWeight( 4703 AsmOperandInfo &info, int maIndex) const { 4704 InlineAsm::ConstraintCodeVector *rCodes; 4705 if (maIndex >= (int)info.multipleAlternatives.size()) 4706 rCodes = &info.Codes; 4707 else 4708 rCodes = &info.multipleAlternatives[maIndex].Codes; 4709 ConstraintWeight BestWeight = CW_Invalid; 4710 4711 // Loop over the options, keeping track of the most general one. 4712 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4713 ConstraintWeight weight = 4714 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4715 if (weight > BestWeight) 4716 BestWeight = weight; 4717 } 4718 4719 return BestWeight; 4720 } 4721 4722 /// Examine constraint type and operand type and determine a weight value. 4723 /// This object must already have been set up with the operand type 4724 /// and the current alternative constraint selected. 4725 TargetLowering::ConstraintWeight 4726 TargetLowering::getSingleConstraintMatchWeight( 4727 AsmOperandInfo &info, const char *constraint) const { 4728 ConstraintWeight weight = CW_Invalid; 4729 Value *CallOperandVal = info.CallOperandVal; 4730 // If we don't have a value, we can't do a match, 4731 // but allow it at the lowest weight. 4732 if (!CallOperandVal) 4733 return CW_Default; 4734 // Look at the constraint type. 4735 switch (*constraint) { 4736 case 'i': // immediate integer. 4737 case 'n': // immediate integer with a known value. 4738 if (isa<ConstantInt>(CallOperandVal)) 4739 weight = CW_Constant; 4740 break; 4741 case 's': // non-explicit intregal immediate. 4742 if (isa<GlobalValue>(CallOperandVal)) 4743 weight = CW_Constant; 4744 break; 4745 case 'E': // immediate float if host format. 4746 case 'F': // immediate float. 4747 if (isa<ConstantFP>(CallOperandVal)) 4748 weight = CW_Constant; 4749 break; 4750 case '<': // memory operand with autodecrement. 4751 case '>': // memory operand with autoincrement. 4752 case 'm': // memory operand. 4753 case 'o': // offsettable memory operand 4754 case 'V': // non-offsettable memory operand 4755 weight = CW_Memory; 4756 break; 4757 case 'r': // general register. 4758 case 'g': // general register, memory operand or immediate integer. 4759 // note: Clang converts "g" to "imr". 4760 if (CallOperandVal->getType()->isIntegerTy()) 4761 weight = CW_Register; 4762 break; 4763 case 'X': // any operand. 4764 default: 4765 weight = CW_Default; 4766 break; 4767 } 4768 return weight; 4769 } 4770 4771 /// If there are multiple different constraints that we could pick for this 4772 /// operand (e.g. "imr") try to pick the 'best' one. 4773 /// This is somewhat tricky: constraints fall into four classes: 4774 /// Other -> immediates and magic values 4775 /// Register -> one specific register 4776 /// RegisterClass -> a group of regs 4777 /// Memory -> memory 4778 /// Ideally, we would pick the most specific constraint possible: if we have 4779 /// something that fits into a register, we would pick it. The problem here 4780 /// is that if we have something that could either be in a register or in 4781 /// memory that use of the register could cause selection of *other* 4782 /// operands to fail: they might only succeed if we pick memory. Because of 4783 /// this the heuristic we use is: 4784 /// 4785 /// 1) If there is an 'other' constraint, and if the operand is valid for 4786 /// that constraint, use it. This makes us take advantage of 'i' 4787 /// constraints when available. 4788 /// 2) Otherwise, pick the most general constraint present. This prefers 4789 /// 'm' over 'r', for example. 4790 /// 4791 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4792 const TargetLowering &TLI, 4793 SDValue Op, SelectionDAG *DAG) { 4794 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4795 unsigned BestIdx = 0; 4796 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4797 int BestGenerality = -1; 4798 4799 // Loop over the options, keeping track of the most general one. 4800 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4801 TargetLowering::ConstraintType CType = 4802 TLI.getConstraintType(OpInfo.Codes[i]); 4803 4804 // Indirect 'other' or 'immediate' constraints are not allowed. 4805 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4806 CType == TargetLowering::C_Register || 4807 CType == TargetLowering::C_RegisterClass)) 4808 continue; 4809 4810 // If this is an 'other' or 'immediate' constraint, see if the operand is 4811 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4812 // the operand is an integer in the range [0..31] we want to use I (saving a 4813 // load of a register), otherwise we must use 'r'. 4814 if ((CType == TargetLowering::C_Other || 4815 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4816 assert(OpInfo.Codes[i].size() == 1 && 4817 "Unhandled multi-letter 'other' constraint"); 4818 std::vector<SDValue> ResultOps; 4819 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4820 ResultOps, *DAG); 4821 if (!ResultOps.empty()) { 4822 BestType = CType; 4823 BestIdx = i; 4824 break; 4825 } 4826 } 4827 4828 // Things with matching constraints can only be registers, per gcc 4829 // documentation. This mainly affects "g" constraints. 4830 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4831 continue; 4832 4833 // This constraint letter is more general than the previous one, use it. 4834 int Generality = getConstraintGenerality(CType); 4835 if (Generality > BestGenerality) { 4836 BestType = CType; 4837 BestIdx = i; 4838 BestGenerality = Generality; 4839 } 4840 } 4841 4842 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4843 OpInfo.ConstraintType = BestType; 4844 } 4845 4846 /// Determines the constraint code and constraint type to use for the specific 4847 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4848 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4849 SDValue Op, 4850 SelectionDAG *DAG) const { 4851 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4852 4853 // Single-letter constraints ('r') are very common. 4854 if (OpInfo.Codes.size() == 1) { 4855 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4856 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4857 } else { 4858 ChooseConstraint(OpInfo, *this, Op, DAG); 4859 } 4860 4861 // 'X' matches anything. 4862 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4863 // Labels and constants are handled elsewhere ('X' is the only thing 4864 // that matches labels). For Functions, the type here is the type of 4865 // the result, which is not what we want to look at; leave them alone. 4866 Value *v = OpInfo.CallOperandVal; 4867 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4868 OpInfo.CallOperandVal = v; 4869 return; 4870 } 4871 4872 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4873 return; 4874 4875 // Otherwise, try to resolve it to something we know about by looking at 4876 // the actual operand type. 4877 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4878 OpInfo.ConstraintCode = Repl; 4879 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4880 } 4881 } 4882 } 4883 4884 /// Given an exact SDIV by a constant, create a multiplication 4885 /// with the multiplicative inverse of the constant. 4886 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4887 const SDLoc &dl, SelectionDAG &DAG, 4888 SmallVectorImpl<SDNode *> &Created) { 4889 SDValue Op0 = N->getOperand(0); 4890 SDValue Op1 = N->getOperand(1); 4891 EVT VT = N->getValueType(0); 4892 EVT SVT = VT.getScalarType(); 4893 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4894 EVT ShSVT = ShVT.getScalarType(); 4895 4896 bool UseSRA = false; 4897 SmallVector<SDValue, 16> Shifts, Factors; 4898 4899 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4900 if (C->isNullValue()) 4901 return false; 4902 APInt Divisor = C->getAPIntValue(); 4903 unsigned Shift = Divisor.countTrailingZeros(); 4904 if (Shift) { 4905 Divisor.ashrInPlace(Shift); 4906 UseSRA = true; 4907 } 4908 // Calculate the multiplicative inverse, using Newton's method. 4909 APInt t; 4910 APInt Factor = Divisor; 4911 while ((t = Divisor * Factor) != 1) 4912 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4913 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4914 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4915 return true; 4916 }; 4917 4918 // Collect all magic values from the build vector. 4919 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4920 return SDValue(); 4921 4922 SDValue Shift, Factor; 4923 if (VT.isVector()) { 4924 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4925 Factor = DAG.getBuildVector(VT, dl, Factors); 4926 } else { 4927 Shift = Shifts[0]; 4928 Factor = Factors[0]; 4929 } 4930 4931 SDValue Res = Op0; 4932 4933 // Shift the value upfront if it is even, so the LSB is one. 4934 if (UseSRA) { 4935 // TODO: For UDIV use SRL instead of SRA. 4936 SDNodeFlags Flags; 4937 Flags.setExact(true); 4938 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4939 Created.push_back(Res.getNode()); 4940 } 4941 4942 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4943 } 4944 4945 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4946 SelectionDAG &DAG, 4947 SmallVectorImpl<SDNode *> &Created) const { 4948 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4949 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4950 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4951 return SDValue(N, 0); // Lower SDIV as SDIV 4952 return SDValue(); 4953 } 4954 4955 /// Given an ISD::SDIV node expressing a divide by constant, 4956 /// return a DAG expression to select that will generate the same value by 4957 /// multiplying by a magic number. 4958 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4959 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4960 bool IsAfterLegalization, 4961 SmallVectorImpl<SDNode *> &Created) const { 4962 SDLoc dl(N); 4963 EVT VT = N->getValueType(0); 4964 EVT SVT = VT.getScalarType(); 4965 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4966 EVT ShSVT = ShVT.getScalarType(); 4967 unsigned EltBits = VT.getScalarSizeInBits(); 4968 4969 // Check to see if we can do this. 4970 // FIXME: We should be more aggressive here. 4971 if (!isTypeLegal(VT)) 4972 return SDValue(); 4973 4974 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4975 if (N->getFlags().hasExact()) 4976 return BuildExactSDIV(*this, N, dl, DAG, Created); 4977 4978 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4979 4980 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4981 if (C->isNullValue()) 4982 return false; 4983 4984 const APInt &Divisor = C->getAPIntValue(); 4985 APInt::ms magics = Divisor.magic(); 4986 int NumeratorFactor = 0; 4987 int ShiftMask = -1; 4988 4989 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4990 // If d is +1/-1, we just multiply the numerator by +1/-1. 4991 NumeratorFactor = Divisor.getSExtValue(); 4992 magics.m = 0; 4993 magics.s = 0; 4994 ShiftMask = 0; 4995 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4996 // If d > 0 and m < 0, add the numerator. 4997 NumeratorFactor = 1; 4998 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4999 // If d < 0 and m > 0, subtract the numerator. 5000 NumeratorFactor = -1; 5001 } 5002 5003 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5004 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5005 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5006 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5007 return true; 5008 }; 5009 5010 SDValue N0 = N->getOperand(0); 5011 SDValue N1 = N->getOperand(1); 5012 5013 // Collect the shifts / magic values from each element. 5014 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5015 return SDValue(); 5016 5017 SDValue MagicFactor, Factor, Shift, ShiftMask; 5018 if (VT.isVector()) { 5019 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5020 Factor = DAG.getBuildVector(VT, dl, Factors); 5021 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5022 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5023 } else { 5024 MagicFactor = MagicFactors[0]; 5025 Factor = Factors[0]; 5026 Shift = Shifts[0]; 5027 ShiftMask = ShiftMasks[0]; 5028 } 5029 5030 // Multiply the numerator (operand 0) by the magic value. 5031 // FIXME: We should support doing a MUL in a wider type. 5032 SDValue Q; 5033 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 5034 : isOperationLegalOrCustom(ISD::MULHS, VT)) 5035 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 5036 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 5037 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5038 SDValue LoHi = 5039 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 5040 Q = SDValue(LoHi.getNode(), 1); 5041 } else 5042 return SDValue(); // No mulhs or equivalent. 5043 Created.push_back(Q.getNode()); 5044 5045 // (Optionally) Add/subtract the numerator using Factor. 5046 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5047 Created.push_back(Factor.getNode()); 5048 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5049 Created.push_back(Q.getNode()); 5050 5051 // Shift right algebraic by shift value. 5052 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5053 Created.push_back(Q.getNode()); 5054 5055 // Extract the sign bit, mask it and add it to the quotient. 5056 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5057 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5058 Created.push_back(T.getNode()); 5059 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5060 Created.push_back(T.getNode()); 5061 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5062 } 5063 5064 /// Given an ISD::UDIV node expressing a divide by constant, 5065 /// return a DAG expression to select that will generate the same value by 5066 /// multiplying by a magic number. 5067 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5068 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5069 bool IsAfterLegalization, 5070 SmallVectorImpl<SDNode *> &Created) const { 5071 SDLoc dl(N); 5072 EVT VT = N->getValueType(0); 5073 EVT SVT = VT.getScalarType(); 5074 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5075 EVT ShSVT = ShVT.getScalarType(); 5076 unsigned EltBits = VT.getScalarSizeInBits(); 5077 5078 // Check to see if we can do this. 5079 // FIXME: We should be more aggressive here. 5080 if (!isTypeLegal(VT)) 5081 return SDValue(); 5082 5083 bool UseNPQ = false; 5084 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5085 5086 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5087 if (C->isNullValue()) 5088 return false; 5089 // FIXME: We should use a narrower constant when the upper 5090 // bits are known to be zero. 5091 APInt Divisor = C->getAPIntValue(); 5092 APInt::mu magics = Divisor.magicu(); 5093 unsigned PreShift = 0, PostShift = 0; 5094 5095 // If the divisor is even, we can avoid using the expensive fixup by 5096 // shifting the divided value upfront. 5097 if (magics.a != 0 && !Divisor[0]) { 5098 PreShift = Divisor.countTrailingZeros(); 5099 // Get magic number for the shifted divisor. 5100 magics = Divisor.lshr(PreShift).magicu(PreShift); 5101 assert(magics.a == 0 && "Should use cheap fixup now"); 5102 } 5103 5104 APInt Magic = magics.m; 5105 5106 unsigned SelNPQ; 5107 if (magics.a == 0 || Divisor.isOneValue()) { 5108 assert(magics.s < Divisor.getBitWidth() && 5109 "We shouldn't generate an undefined shift!"); 5110 PostShift = magics.s; 5111 SelNPQ = false; 5112 } else { 5113 PostShift = magics.s - 1; 5114 SelNPQ = true; 5115 } 5116 5117 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5118 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5119 NPQFactors.push_back( 5120 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5121 : APInt::getNullValue(EltBits), 5122 dl, SVT)); 5123 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5124 UseNPQ |= SelNPQ; 5125 return true; 5126 }; 5127 5128 SDValue N0 = N->getOperand(0); 5129 SDValue N1 = N->getOperand(1); 5130 5131 // Collect the shifts/magic values from each element. 5132 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5133 return SDValue(); 5134 5135 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5136 if (VT.isVector()) { 5137 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5138 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5139 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5140 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5141 } else { 5142 PreShift = PreShifts[0]; 5143 MagicFactor = MagicFactors[0]; 5144 PostShift = PostShifts[0]; 5145 } 5146 5147 SDValue Q = N0; 5148 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5149 Created.push_back(Q.getNode()); 5150 5151 // FIXME: We should support doing a MUL in a wider type. 5152 auto GetMULHU = [&](SDValue X, SDValue Y) { 5153 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 5154 : isOperationLegalOrCustom(ISD::MULHU, VT)) 5155 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5156 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 5157 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 5158 SDValue LoHi = 5159 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5160 return SDValue(LoHi.getNode(), 1); 5161 } 5162 return SDValue(); // No mulhu or equivalent 5163 }; 5164 5165 // Multiply the numerator (operand 0) by the magic value. 5166 Q = GetMULHU(Q, MagicFactor); 5167 if (!Q) 5168 return SDValue(); 5169 5170 Created.push_back(Q.getNode()); 5171 5172 if (UseNPQ) { 5173 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5174 Created.push_back(NPQ.getNode()); 5175 5176 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5177 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5178 if (VT.isVector()) 5179 NPQ = GetMULHU(NPQ, NPQFactor); 5180 else 5181 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5182 5183 Created.push_back(NPQ.getNode()); 5184 5185 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5186 Created.push_back(Q.getNode()); 5187 } 5188 5189 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5190 Created.push_back(Q.getNode()); 5191 5192 SDValue One = DAG.getConstant(1, dl, VT); 5193 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 5194 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5195 } 5196 5197 /// If all values in Values that *don't* match the predicate are same 'splat' 5198 /// value, then replace all values with that splat value. 5199 /// Else, if AlternativeReplacement was provided, then replace all values that 5200 /// do match predicate with AlternativeReplacement value. 5201 static void 5202 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5203 std::function<bool(SDValue)> Predicate, 5204 SDValue AlternativeReplacement = SDValue()) { 5205 SDValue Replacement; 5206 // Is there a value for which the Predicate does *NOT* match? What is it? 5207 auto SplatValue = llvm::find_if_not(Values, Predicate); 5208 if (SplatValue != Values.end()) { 5209 // Does Values consist only of SplatValue's and values matching Predicate? 5210 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5211 return Value == *SplatValue || Predicate(Value); 5212 })) // Then we shall replace values matching predicate with SplatValue. 5213 Replacement = *SplatValue; 5214 } 5215 if (!Replacement) { 5216 // Oops, we did not find the "baseline" splat value. 5217 if (!AlternativeReplacement) 5218 return; // Nothing to do. 5219 // Let's replace with provided value then. 5220 Replacement = AlternativeReplacement; 5221 } 5222 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5223 } 5224 5225 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5226 /// where the divisor is constant and the comparison target is zero, 5227 /// return a DAG expression that will generate the same comparison result 5228 /// using only multiplications, additions and shifts/rotations. 5229 /// Ref: "Hacker's Delight" 10-17. 5230 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5231 SDValue CompTargetNode, 5232 ISD::CondCode Cond, 5233 DAGCombinerInfo &DCI, 5234 const SDLoc &DL) const { 5235 SmallVector<SDNode *, 5> Built; 5236 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5237 DCI, DL, Built)) { 5238 for (SDNode *N : Built) 5239 DCI.AddToWorklist(N); 5240 return Folded; 5241 } 5242 5243 return SDValue(); 5244 } 5245 5246 SDValue 5247 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5248 SDValue CompTargetNode, ISD::CondCode Cond, 5249 DAGCombinerInfo &DCI, const SDLoc &DL, 5250 SmallVectorImpl<SDNode *> &Created) const { 5251 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5252 // - D must be constant, with D = D0 * 2^K where D0 is odd 5253 // - P is the multiplicative inverse of D0 modulo 2^W 5254 // - Q = floor(((2^W) - 1) / D) 5255 // where W is the width of the common type of N and D. 5256 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5257 "Only applicable for (in)equality comparisons."); 5258 5259 SelectionDAG &DAG = DCI.DAG; 5260 5261 EVT VT = REMNode.getValueType(); 5262 EVT SVT = VT.getScalarType(); 5263 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5264 EVT ShSVT = ShVT.getScalarType(); 5265 5266 // If MUL is unavailable, we cannot proceed in any case. 5267 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5268 return SDValue(); 5269 5270 bool ComparingWithAllZeros = true; 5271 bool AllComparisonsWithNonZerosAreTautological = true; 5272 bool HadTautologicalLanes = false; 5273 bool AllLanesAreTautological = true; 5274 bool HadEvenDivisor = false; 5275 bool AllDivisorsArePowerOfTwo = true; 5276 bool HadTautologicalInvertedLanes = false; 5277 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5278 5279 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5280 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5281 if (CDiv->isNullValue()) 5282 return false; 5283 5284 const APInt &D = CDiv->getAPIntValue(); 5285 const APInt &Cmp = CCmp->getAPIntValue(); 5286 5287 ComparingWithAllZeros &= Cmp.isNullValue(); 5288 5289 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5290 // if C2 is not less than C1, the comparison is always false. 5291 // But we will only be able to produce the comparison that will give the 5292 // opposive tautological answer. So this lane would need to be fixed up. 5293 bool TautologicalInvertedLane = D.ule(Cmp); 5294 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5295 5296 // If all lanes are tautological (either all divisors are ones, or divisor 5297 // is not greater than the constant we are comparing with), 5298 // we will prefer to avoid the fold. 5299 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5300 HadTautologicalLanes |= TautologicalLane; 5301 AllLanesAreTautological &= TautologicalLane; 5302 5303 // If we are comparing with non-zero, we need'll need to subtract said 5304 // comparison value from the LHS. But there is no point in doing that if 5305 // every lane where we are comparing with non-zero is tautological.. 5306 if (!Cmp.isNullValue()) 5307 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5308 5309 // Decompose D into D0 * 2^K 5310 unsigned K = D.countTrailingZeros(); 5311 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5312 APInt D0 = D.lshr(K); 5313 5314 // D is even if it has trailing zeros. 5315 HadEvenDivisor |= (K != 0); 5316 // D is a power-of-two if D0 is one. 5317 // If all divisors are power-of-two, we will prefer to avoid the fold. 5318 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5319 5320 // P = inv(D0, 2^W) 5321 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5322 unsigned W = D.getBitWidth(); 5323 APInt P = D0.zext(W + 1) 5324 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5325 .trunc(W); 5326 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5327 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5328 5329 // Q = floor((2^W - 1) u/ D) 5330 // R = ((2^W - 1) u% D) 5331 APInt Q, R; 5332 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5333 5334 // If we are comparing with zero, then that comparison constant is okay, 5335 // else it may need to be one less than that. 5336 if (Cmp.ugt(R)) 5337 Q -= 1; 5338 5339 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5340 "We are expecting that K is always less than all-ones for ShSVT"); 5341 5342 // If the lane is tautological the result can be constant-folded. 5343 if (TautologicalLane) { 5344 // Set P and K amount to a bogus values so we can try to splat them. 5345 P = 0; 5346 K = -1; 5347 // And ensure that comparison constant is tautological, 5348 // it will always compare true/false. 5349 Q = -1; 5350 } 5351 5352 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5353 KAmts.push_back( 5354 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5355 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5356 return true; 5357 }; 5358 5359 SDValue N = REMNode.getOperand(0); 5360 SDValue D = REMNode.getOperand(1); 5361 5362 // Collect the values from each element. 5363 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5364 return SDValue(); 5365 5366 // If all lanes are tautological, the result can be constant-folded. 5367 if (AllLanesAreTautological) 5368 return SDValue(); 5369 5370 // If this is a urem by a powers-of-two, avoid the fold since it can be 5371 // best implemented as a bit test. 5372 if (AllDivisorsArePowerOfTwo) 5373 return SDValue(); 5374 5375 SDValue PVal, KVal, QVal; 5376 if (VT.isVector()) { 5377 if (HadTautologicalLanes) { 5378 // Try to turn PAmts into a splat, since we don't care about the values 5379 // that are currently '0'. If we can't, just keep '0'`s. 5380 turnVectorIntoSplatVector(PAmts, isNullConstant); 5381 // Try to turn KAmts into a splat, since we don't care about the values 5382 // that are currently '-1'. If we can't, change them to '0'`s. 5383 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5384 DAG.getConstant(0, DL, ShSVT)); 5385 } 5386 5387 PVal = DAG.getBuildVector(VT, DL, PAmts); 5388 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5389 QVal = DAG.getBuildVector(VT, DL, QAmts); 5390 } else { 5391 PVal = PAmts[0]; 5392 KVal = KAmts[0]; 5393 QVal = QAmts[0]; 5394 } 5395 5396 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5397 if (!isOperationLegalOrCustom(ISD::SUB, VT)) 5398 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5399 assert(CompTargetNode.getValueType() == N.getValueType() && 5400 "Expecting that the types on LHS and RHS of comparisons match."); 5401 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5402 } 5403 5404 // (mul N, P) 5405 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5406 Created.push_back(Op0.getNode()); 5407 5408 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5409 // divisors as a performance improvement, since rotating by 0 is a no-op. 5410 if (HadEvenDivisor) { 5411 // We need ROTR to do this. 5412 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5413 return SDValue(); 5414 SDNodeFlags Flags; 5415 Flags.setExact(true); 5416 // UREM: (rotr (mul N, P), K) 5417 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5418 Created.push_back(Op0.getNode()); 5419 } 5420 5421 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5422 SDValue NewCC = 5423 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5424 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5425 if (!HadTautologicalInvertedLanes) 5426 return NewCC; 5427 5428 // If any lanes previously compared always-false, the NewCC will give 5429 // always-true result for them, so we need to fixup those lanes. 5430 // Or the other way around for inequality predicate. 5431 assert(VT.isVector() && "Can/should only get here for vectors."); 5432 Created.push_back(NewCC.getNode()); 5433 5434 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5435 // if C2 is not less than C1, the comparison is always false. 5436 // But we have produced the comparison that will give the 5437 // opposive tautological answer. So these lanes would need to be fixed up. 5438 SDValue TautologicalInvertedChannels = 5439 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5440 Created.push_back(TautologicalInvertedChannels.getNode()); 5441 5442 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5443 // If we have a vector select, let's replace the comparison results in the 5444 // affected lanes with the correct tautological result. 5445 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5446 DL, SETCCVT, SETCCVT); 5447 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5448 Replacement, NewCC); 5449 } 5450 5451 // Else, we can just invert the comparison result in the appropriate lanes. 5452 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5453 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5454 TautologicalInvertedChannels); 5455 5456 return SDValue(); // Don't know how to lower. 5457 } 5458 5459 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5460 /// where the divisor is constant and the comparison target is zero, 5461 /// return a DAG expression that will generate the same comparison result 5462 /// using only multiplications, additions and shifts/rotations. 5463 /// Ref: "Hacker's Delight" 10-17. 5464 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5465 SDValue CompTargetNode, 5466 ISD::CondCode Cond, 5467 DAGCombinerInfo &DCI, 5468 const SDLoc &DL) const { 5469 SmallVector<SDNode *, 7> Built; 5470 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5471 DCI, DL, Built)) { 5472 assert(Built.size() <= 7 && "Max size prediction failed."); 5473 for (SDNode *N : Built) 5474 DCI.AddToWorklist(N); 5475 return Folded; 5476 } 5477 5478 return SDValue(); 5479 } 5480 5481 SDValue 5482 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5483 SDValue CompTargetNode, ISD::CondCode Cond, 5484 DAGCombinerInfo &DCI, const SDLoc &DL, 5485 SmallVectorImpl<SDNode *> &Created) const { 5486 // Fold: 5487 // (seteq/ne (srem N, D), 0) 5488 // To: 5489 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5490 // 5491 // - D must be constant, with D = D0 * 2^K where D0 is odd 5492 // - P is the multiplicative inverse of D0 modulo 2^W 5493 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5494 // - Q = floor((2 * A) / (2^K)) 5495 // where W is the width of the common type of N and D. 5496 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5497 "Only applicable for (in)equality comparisons."); 5498 5499 SelectionDAG &DAG = DCI.DAG; 5500 5501 EVT VT = REMNode.getValueType(); 5502 EVT SVT = VT.getScalarType(); 5503 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5504 EVT ShSVT = ShVT.getScalarType(); 5505 5506 // If MUL is unavailable, we cannot proceed in any case. 5507 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5508 return SDValue(); 5509 5510 // TODO: Could support comparing with non-zero too. 5511 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5512 if (!CompTarget || !CompTarget->isNullValue()) 5513 return SDValue(); 5514 5515 bool HadIntMinDivisor = false; 5516 bool HadOneDivisor = false; 5517 bool AllDivisorsAreOnes = true; 5518 bool HadEvenDivisor = false; 5519 bool NeedToApplyOffset = false; 5520 bool AllDivisorsArePowerOfTwo = true; 5521 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5522 5523 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5524 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5525 if (C->isNullValue()) 5526 return false; 5527 5528 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5529 5530 // WARNING: this fold is only valid for positive divisors! 5531 APInt D = C->getAPIntValue(); 5532 if (D.isNegative()) 5533 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5534 5535 HadIntMinDivisor |= D.isMinSignedValue(); 5536 5537 // If all divisors are ones, we will prefer to avoid the fold. 5538 HadOneDivisor |= D.isOneValue(); 5539 AllDivisorsAreOnes &= D.isOneValue(); 5540 5541 // Decompose D into D0 * 2^K 5542 unsigned K = D.countTrailingZeros(); 5543 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5544 APInt D0 = D.lshr(K); 5545 5546 if (!D.isMinSignedValue()) { 5547 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5548 // we don't care about this lane in this fold, we'll special-handle it. 5549 HadEvenDivisor |= (K != 0); 5550 } 5551 5552 // D is a power-of-two if D0 is one. This includes INT_MIN. 5553 // If all divisors are power-of-two, we will prefer to avoid the fold. 5554 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5555 5556 // P = inv(D0, 2^W) 5557 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5558 unsigned W = D.getBitWidth(); 5559 APInt P = D0.zext(W + 1) 5560 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5561 .trunc(W); 5562 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5563 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5564 5565 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5566 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5567 A.clearLowBits(K); 5568 5569 if (!D.isMinSignedValue()) { 5570 // If divisor INT_MIN, then we don't care about this lane in this fold, 5571 // we'll special-handle it. 5572 NeedToApplyOffset |= A != 0; 5573 } 5574 5575 // Q = floor((2 * A) / (2^K)) 5576 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5577 5578 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5579 "We are expecting that A is always less than all-ones for SVT"); 5580 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5581 "We are expecting that K is always less than all-ones for ShSVT"); 5582 5583 // If the divisor is 1 the result can be constant-folded. Likewise, we 5584 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5585 if (D.isOneValue()) { 5586 // Set P, A and K to a bogus values so we can try to splat them. 5587 P = 0; 5588 A = -1; 5589 K = -1; 5590 5591 // x ?% 1 == 0 <--> true <--> x u<= -1 5592 Q = -1; 5593 } 5594 5595 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5596 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5597 KAmts.push_back( 5598 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5599 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5600 return true; 5601 }; 5602 5603 SDValue N = REMNode.getOperand(0); 5604 SDValue D = REMNode.getOperand(1); 5605 5606 // Collect the values from each element. 5607 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5608 return SDValue(); 5609 5610 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5611 if (AllDivisorsAreOnes) 5612 return SDValue(); 5613 5614 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5615 // since it can be best implemented as a bit test. 5616 if (AllDivisorsArePowerOfTwo) 5617 return SDValue(); 5618 5619 SDValue PVal, AVal, KVal, QVal; 5620 if (VT.isVector()) { 5621 if (HadOneDivisor) { 5622 // Try to turn PAmts into a splat, since we don't care about the values 5623 // that are currently '0'. If we can't, just keep '0'`s. 5624 turnVectorIntoSplatVector(PAmts, isNullConstant); 5625 // Try to turn AAmts into a splat, since we don't care about the 5626 // values that are currently '-1'. If we can't, change them to '0'`s. 5627 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5628 DAG.getConstant(0, DL, SVT)); 5629 // Try to turn KAmts into a splat, since we don't care about the values 5630 // that are currently '-1'. If we can't, change them to '0'`s. 5631 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5632 DAG.getConstant(0, DL, ShSVT)); 5633 } 5634 5635 PVal = DAG.getBuildVector(VT, DL, PAmts); 5636 AVal = DAG.getBuildVector(VT, DL, AAmts); 5637 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5638 QVal = DAG.getBuildVector(VT, DL, QAmts); 5639 } else { 5640 PVal = PAmts[0]; 5641 AVal = AAmts[0]; 5642 KVal = KAmts[0]; 5643 QVal = QAmts[0]; 5644 } 5645 5646 // (mul N, P) 5647 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5648 Created.push_back(Op0.getNode()); 5649 5650 if (NeedToApplyOffset) { 5651 // We need ADD to do this. 5652 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5653 return SDValue(); 5654 5655 // (add (mul N, P), A) 5656 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5657 Created.push_back(Op0.getNode()); 5658 } 5659 5660 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5661 // divisors as a performance improvement, since rotating by 0 is a no-op. 5662 if (HadEvenDivisor) { 5663 // We need ROTR to do this. 5664 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5665 return SDValue(); 5666 SDNodeFlags Flags; 5667 Flags.setExact(true); 5668 // SREM: (rotr (add (mul N, P), A), K) 5669 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5670 Created.push_back(Op0.getNode()); 5671 } 5672 5673 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5674 SDValue Fold = 5675 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5676 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5677 5678 // If we didn't have lanes with INT_MIN divisor, then we're done. 5679 if (!HadIntMinDivisor) 5680 return Fold; 5681 5682 // That fold is only valid for positive divisors. Which effectively means, 5683 // it is invalid for INT_MIN divisors. So if we have such a lane, 5684 // we must fix-up results for said lanes. 5685 assert(VT.isVector() && "Can/should only get here for vectors."); 5686 5687 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5688 !isOperationLegalOrCustom(ISD::AND, VT) || 5689 !isOperationLegalOrCustom(Cond, VT) || 5690 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5691 return SDValue(); 5692 5693 Created.push_back(Fold.getNode()); 5694 5695 SDValue IntMin = DAG.getConstant( 5696 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5697 SDValue IntMax = DAG.getConstant( 5698 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5699 SDValue Zero = 5700 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5701 5702 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5703 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5704 Created.push_back(DivisorIsIntMin.getNode()); 5705 5706 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5707 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5708 Created.push_back(Masked.getNode()); 5709 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5710 Created.push_back(MaskedIsZero.getNode()); 5711 5712 // To produce final result we need to blend 2 vectors: 'SetCC' and 5713 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5714 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5715 // constant-folded, select can get lowered to a shuffle with constant mask. 5716 SDValue Blended = 5717 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5718 5719 return Blended; 5720 } 5721 5722 bool TargetLowering:: 5723 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5724 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5725 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5726 "be a constant integer"); 5727 return true; 5728 } 5729 5730 return false; 5731 } 5732 5733 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5734 bool LegalOps, bool OptForSize, 5735 NegatibleCost &Cost, 5736 unsigned Depth) const { 5737 // fneg is removable even if it has multiple uses. 5738 if (Op.getOpcode() == ISD::FNEG) { 5739 Cost = NegatibleCost::Cheaper; 5740 return Op.getOperand(0); 5741 } 5742 5743 // Don't recurse exponentially. 5744 if (Depth > SelectionDAG::MaxRecursionDepth) 5745 return SDValue(); 5746 5747 // Pre-increment recursion depth for use in recursive calls. 5748 ++Depth; 5749 const SDNodeFlags Flags = Op->getFlags(); 5750 const TargetOptions &Options = DAG.getTarget().Options; 5751 EVT VT = Op.getValueType(); 5752 unsigned Opcode = Op.getOpcode(); 5753 5754 // Don't allow anything with multiple uses unless we know it is free. 5755 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5756 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5757 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5758 if (!IsFreeExtend) 5759 return SDValue(); 5760 } 5761 5762 auto RemoveDeadNode = [&](SDValue N) { 5763 if (N && N.getNode()->use_empty()) 5764 DAG.RemoveDeadNode(N.getNode()); 5765 }; 5766 5767 SDLoc DL(Op); 5768 5769 switch (Opcode) { 5770 case ISD::ConstantFP: { 5771 // Don't invert constant FP values after legalization unless the target says 5772 // the negated constant is legal. 5773 bool IsOpLegal = 5774 isOperationLegal(ISD::ConstantFP, VT) || 5775 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 5776 OptForSize); 5777 5778 if (LegalOps && !IsOpLegal) 5779 break; 5780 5781 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 5782 V.changeSign(); 5783 SDValue CFP = DAG.getConstantFP(V, DL, VT); 5784 5785 // If we already have the use of the negated floating constant, it is free 5786 // to negate it even it has multiple uses. 5787 if (!Op.hasOneUse() && CFP.use_empty()) 5788 break; 5789 Cost = NegatibleCost::Neutral; 5790 return CFP; 5791 } 5792 case ISD::BUILD_VECTOR: { 5793 // Only permit BUILD_VECTOR of constants. 5794 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 5795 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 5796 })) 5797 break; 5798 5799 bool IsOpLegal = 5800 (isOperationLegal(ISD::ConstantFP, VT) && 5801 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 5802 llvm::all_of(Op->op_values(), [&](SDValue N) { 5803 return N.isUndef() || 5804 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 5805 OptForSize); 5806 }); 5807 5808 if (LegalOps && !IsOpLegal) 5809 break; 5810 5811 SmallVector<SDValue, 4> Ops; 5812 for (SDValue C : Op->op_values()) { 5813 if (C.isUndef()) { 5814 Ops.push_back(C); 5815 continue; 5816 } 5817 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 5818 V.changeSign(); 5819 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 5820 } 5821 Cost = NegatibleCost::Neutral; 5822 return DAG.getBuildVector(VT, DL, Ops); 5823 } 5824 case ISD::FADD: { 5825 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5826 break; 5827 5828 // After operation legalization, it might not be legal to create new FSUBs. 5829 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 5830 break; 5831 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5832 5833 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 5834 NegatibleCost CostX = NegatibleCost::Expensive; 5835 SDValue NegX = 5836 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5837 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 5838 NegatibleCost CostY = NegatibleCost::Expensive; 5839 SDValue NegY = 5840 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5841 5842 // Negate the X if its cost is less or equal than Y. 5843 if (NegX && (CostX <= CostY)) { 5844 Cost = CostX; 5845 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 5846 if (NegY != N) 5847 RemoveDeadNode(NegY); 5848 return N; 5849 } 5850 5851 // Negate the Y if it is not expensive. 5852 if (NegY) { 5853 Cost = CostY; 5854 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 5855 if (NegX != N) 5856 RemoveDeadNode(NegX); 5857 return N; 5858 } 5859 break; 5860 } 5861 case ISD::FSUB: { 5862 // We can't turn -(A-B) into B-A when we honor signed zeros. 5863 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5864 break; 5865 5866 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5867 // fold (fneg (fsub 0, Y)) -> Y 5868 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 5869 if (C->isZero()) { 5870 Cost = NegatibleCost::Cheaper; 5871 return Y; 5872 } 5873 5874 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 5875 Cost = NegatibleCost::Neutral; 5876 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 5877 } 5878 case ISD::FMUL: 5879 case ISD::FDIV: { 5880 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 5881 5882 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 5883 NegatibleCost CostX = NegatibleCost::Expensive; 5884 SDValue NegX = 5885 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5886 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 5887 NegatibleCost CostY = NegatibleCost::Expensive; 5888 SDValue NegY = 5889 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5890 5891 // Negate the X if its cost is less or equal than Y. 5892 if (NegX && (CostX <= CostY)) { 5893 Cost = CostX; 5894 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 5895 if (NegY != N) 5896 RemoveDeadNode(NegY); 5897 return N; 5898 } 5899 5900 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 5901 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 5902 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 5903 break; 5904 5905 // Negate the Y if it is not expensive. 5906 if (NegY) { 5907 Cost = CostY; 5908 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 5909 if (NegX != N) 5910 RemoveDeadNode(NegX); 5911 return N; 5912 } 5913 break; 5914 } 5915 case ISD::FMA: 5916 case ISD::FMAD: { 5917 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 5918 break; 5919 5920 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 5921 NegatibleCost CostZ = NegatibleCost::Expensive; 5922 SDValue NegZ = 5923 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 5924 // Give up if fail to negate the Z. 5925 if (!NegZ) 5926 break; 5927 5928 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 5929 NegatibleCost CostX = NegatibleCost::Expensive; 5930 SDValue NegX = 5931 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 5932 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 5933 NegatibleCost CostY = NegatibleCost::Expensive; 5934 SDValue NegY = 5935 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 5936 5937 // Negate the X if its cost is less or equal than Y. 5938 if (NegX && (CostX <= CostY)) { 5939 Cost = std::min(CostX, CostZ); 5940 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 5941 if (NegY != N) 5942 RemoveDeadNode(NegY); 5943 return N; 5944 } 5945 5946 // Negate the Y if it is not expensive. 5947 if (NegY) { 5948 Cost = std::min(CostY, CostZ); 5949 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 5950 if (NegX != N) 5951 RemoveDeadNode(NegX); 5952 return N; 5953 } 5954 break; 5955 } 5956 5957 case ISD::FP_EXTEND: 5958 case ISD::FSIN: 5959 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5960 OptForSize, Cost, Depth)) 5961 return DAG.getNode(Opcode, DL, VT, NegV); 5962 break; 5963 case ISD::FP_ROUND: 5964 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 5965 OptForSize, Cost, Depth)) 5966 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 5967 break; 5968 } 5969 5970 return SDValue(); 5971 } 5972 5973 //===----------------------------------------------------------------------===// 5974 // Legalization Utilities 5975 //===----------------------------------------------------------------------===// 5976 5977 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 5978 SDValue LHS, SDValue RHS, 5979 SmallVectorImpl<SDValue> &Result, 5980 EVT HiLoVT, SelectionDAG &DAG, 5981 MulExpansionKind Kind, SDValue LL, 5982 SDValue LH, SDValue RL, SDValue RH) const { 5983 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5984 Opcode == ISD::SMUL_LOHI); 5985 5986 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5987 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5988 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5989 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5990 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5991 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5992 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5993 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5994 5995 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5996 return false; 5997 5998 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5999 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6000 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 6001 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 6002 6003 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6004 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6005 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6006 6007 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6008 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6009 bool Signed) -> bool { 6010 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6011 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6012 Hi = SDValue(Lo.getNode(), 1); 6013 return true; 6014 } 6015 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6016 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6017 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6018 return true; 6019 } 6020 return false; 6021 }; 6022 6023 SDValue Lo, Hi; 6024 6025 if (!LL.getNode() && !RL.getNode() && 6026 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6027 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6028 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6029 } 6030 6031 if (!LL.getNode()) 6032 return false; 6033 6034 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6035 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6036 DAG.MaskedValueIsZero(RHS, HighMask)) { 6037 // The inputs are both zero-extended. 6038 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6039 Result.push_back(Lo); 6040 Result.push_back(Hi); 6041 if (Opcode != ISD::MUL) { 6042 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6043 Result.push_back(Zero); 6044 Result.push_back(Zero); 6045 } 6046 return true; 6047 } 6048 } 6049 6050 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 6051 RHSSB > InnerBitSize) { 6052 // The input values are both sign-extended. 6053 // TODO non-MUL case? 6054 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6055 Result.push_back(Lo); 6056 Result.push_back(Hi); 6057 return true; 6058 } 6059 } 6060 6061 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6062 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6063 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6064 // FIXME getShiftAmountTy does not always return a sensible result when VT 6065 // is an illegal type, and so the type may be too small to fit the shift 6066 // amount. Override it with i32. The shift will have to be legalized. 6067 ShiftAmountTy = MVT::i32; 6068 } 6069 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6070 6071 if (!LH.getNode() && !RH.getNode() && 6072 isOperationLegalOrCustom(ISD::SRL, VT) && 6073 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6074 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6075 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6076 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6077 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6078 } 6079 6080 if (!LH.getNode()) 6081 return false; 6082 6083 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6084 return false; 6085 6086 Result.push_back(Lo); 6087 6088 if (Opcode == ISD::MUL) { 6089 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6090 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6091 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6092 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6093 Result.push_back(Hi); 6094 return true; 6095 } 6096 6097 // Compute the full width result. 6098 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6099 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6100 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6101 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6102 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6103 }; 6104 6105 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6106 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6107 return false; 6108 6109 // This is effectively the add part of a multiply-add of half-sized operands, 6110 // so it cannot overflow. 6111 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6112 6113 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6114 return false; 6115 6116 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6117 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6118 6119 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6120 isOperationLegalOrCustom(ISD::ADDE, VT)); 6121 if (UseGlue) 6122 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6123 Merge(Lo, Hi)); 6124 else 6125 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6126 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6127 6128 SDValue Carry = Next.getValue(1); 6129 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6130 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6131 6132 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6133 return false; 6134 6135 if (UseGlue) 6136 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6137 Carry); 6138 else 6139 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6140 Zero, Carry); 6141 6142 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6143 6144 if (Opcode == ISD::SMUL_LOHI) { 6145 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6146 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6147 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6148 6149 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6150 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6151 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6152 } 6153 6154 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6155 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6156 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6157 return true; 6158 } 6159 6160 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6161 SelectionDAG &DAG, MulExpansionKind Kind, 6162 SDValue LL, SDValue LH, SDValue RL, 6163 SDValue RH) const { 6164 SmallVector<SDValue, 2> Result; 6165 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6166 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6167 DAG, Kind, LL, LH, RL, RH); 6168 if (Ok) { 6169 assert(Result.size() == 2); 6170 Lo = Result[0]; 6171 Hi = Result[1]; 6172 } 6173 return Ok; 6174 } 6175 6176 // Check that (every element of) Z is undef or not an exact multiple of BW. 6177 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6178 return ISD::matchUnaryPredicate( 6179 Z, 6180 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6181 true); 6182 } 6183 6184 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6185 SelectionDAG &DAG) const { 6186 EVT VT = Node->getValueType(0); 6187 6188 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6189 !isOperationLegalOrCustom(ISD::SRL, VT) || 6190 !isOperationLegalOrCustom(ISD::SUB, VT) || 6191 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6192 return false; 6193 6194 SDValue X = Node->getOperand(0); 6195 SDValue Y = Node->getOperand(1); 6196 SDValue Z = Node->getOperand(2); 6197 6198 unsigned BW = VT.getScalarSizeInBits(); 6199 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6200 SDLoc DL(SDValue(Node, 0)); 6201 6202 EVT ShVT = Z.getValueType(); 6203 6204 // If a funnel shift in the other direction is more supported, use it. 6205 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6206 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6207 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6208 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6209 // fshl X, Y, Z -> fshr X, Y, -Z 6210 // fshr X, Y, Z -> fshl X, Y, -Z 6211 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6212 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6213 } else { 6214 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6215 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6216 SDValue One = DAG.getConstant(1, DL, ShVT); 6217 if (IsFSHL) { 6218 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6219 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6220 } else { 6221 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6222 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6223 } 6224 Z = DAG.getNOT(DL, Z, ShVT); 6225 } 6226 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6227 return true; 6228 } 6229 6230 SDValue ShX, ShY; 6231 SDValue ShAmt, InvShAmt; 6232 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6233 // fshl: X << C | Y >> (BW - C) 6234 // fshr: X << (BW - C) | Y >> C 6235 // where C = Z % BW is not zero 6236 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6237 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6238 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6239 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6240 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6241 } else { 6242 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6243 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6244 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6245 if (isPowerOf2_32(BW)) { 6246 // Z % BW -> Z & (BW - 1) 6247 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6248 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6249 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6250 } else { 6251 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6252 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6253 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6254 } 6255 6256 SDValue One = DAG.getConstant(1, DL, ShVT); 6257 if (IsFSHL) { 6258 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6259 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6260 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6261 } else { 6262 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6263 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6264 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6265 } 6266 } 6267 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6268 return true; 6269 } 6270 6271 // TODO: Merge with expandFunnelShift. 6272 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 6273 SelectionDAG &DAG) const { 6274 EVT VT = Node->getValueType(0); 6275 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6276 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6277 SDValue Op0 = Node->getOperand(0); 6278 SDValue Op1 = Node->getOperand(1); 6279 SDLoc DL(SDValue(Node, 0)); 6280 6281 EVT ShVT = Op1.getValueType(); 6282 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6283 6284 // If a rotate in the other direction is supported, use it. 6285 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6286 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6287 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6288 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6289 return true; 6290 } 6291 6292 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6293 !isOperationLegalOrCustom(ISD::SRL, VT) || 6294 !isOperationLegalOrCustom(ISD::SUB, VT) || 6295 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6296 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6297 return false; 6298 6299 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6300 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6301 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6302 SDValue ShVal; 6303 SDValue HsVal; 6304 if (isPowerOf2_32(EltSizeInBits)) { 6305 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6306 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6307 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6308 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6309 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6310 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6311 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6312 } else { 6313 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6314 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6315 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6316 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6317 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6318 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6319 SDValue One = DAG.getConstant(1, DL, ShVT); 6320 HsVal = 6321 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6322 } 6323 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6324 return true; 6325 } 6326 6327 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6328 SelectionDAG &DAG) const { 6329 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6330 SDValue Src = Node->getOperand(OpNo); 6331 EVT SrcVT = Src.getValueType(); 6332 EVT DstVT = Node->getValueType(0); 6333 SDLoc dl(SDValue(Node, 0)); 6334 6335 // FIXME: Only f32 to i64 conversions are supported. 6336 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6337 return false; 6338 6339 if (Node->isStrictFPOpcode()) 6340 // When a NaN is converted to an integer a trap is allowed. We can't 6341 // use this expansion here because it would eliminate that trap. Other 6342 // traps are also allowed and cannot be eliminated. See 6343 // IEEE 754-2008 sec 5.8. 6344 return false; 6345 6346 // Expand f32 -> i64 conversion 6347 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6348 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 6349 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6350 EVT IntVT = SrcVT.changeTypeToInteger(); 6351 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6352 6353 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6354 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6355 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6356 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6357 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6358 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6359 6360 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6361 6362 SDValue ExponentBits = DAG.getNode( 6363 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6364 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6365 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6366 6367 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6368 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6369 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6370 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6371 6372 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6373 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6374 DAG.getConstant(0x00800000, dl, IntVT)); 6375 6376 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6377 6378 R = DAG.getSelectCC( 6379 dl, Exponent, ExponentLoBit, 6380 DAG.getNode(ISD::SHL, dl, DstVT, R, 6381 DAG.getZExtOrTrunc( 6382 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6383 dl, IntShVT)), 6384 DAG.getNode(ISD::SRL, dl, DstVT, R, 6385 DAG.getZExtOrTrunc( 6386 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6387 dl, IntShVT)), 6388 ISD::SETGT); 6389 6390 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6391 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6392 6393 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6394 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6395 return true; 6396 } 6397 6398 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6399 SDValue &Chain, 6400 SelectionDAG &DAG) const { 6401 SDLoc dl(SDValue(Node, 0)); 6402 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6403 SDValue Src = Node->getOperand(OpNo); 6404 6405 EVT SrcVT = Src.getValueType(); 6406 EVT DstVT = Node->getValueType(0); 6407 EVT SetCCVT = 6408 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6409 EVT DstSetCCVT = 6410 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6411 6412 // Only expand vector types if we have the appropriate vector bit operations. 6413 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6414 ISD::FP_TO_SINT; 6415 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6416 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6417 return false; 6418 6419 // If the maximum float value is smaller then the signed integer range, 6420 // the destination signmask can't be represented by the float, so we can 6421 // just use FP_TO_SINT directly. 6422 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6423 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6424 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6425 if (APFloat::opOverflow & 6426 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6427 if (Node->isStrictFPOpcode()) { 6428 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6429 { Node->getOperand(0), Src }); 6430 Chain = Result.getValue(1); 6431 } else 6432 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6433 return true; 6434 } 6435 6436 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6437 SDValue Sel; 6438 6439 if (Node->isStrictFPOpcode()) { 6440 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6441 Node->getOperand(0), /*IsSignaling*/ true); 6442 Chain = Sel.getValue(1); 6443 } else { 6444 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6445 } 6446 6447 bool Strict = Node->isStrictFPOpcode() || 6448 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6449 6450 if (Strict) { 6451 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6452 // signmask then offset (the result of which should be fully representable). 6453 // Sel = Src < 0x8000000000000000 6454 // FltOfs = select Sel, 0, 0x8000000000000000 6455 // IntOfs = select Sel, 0, 0x8000000000000000 6456 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6457 6458 // TODO: Should any fast-math-flags be set for the FSUB? 6459 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6460 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6461 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6462 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6463 DAG.getConstant(0, dl, DstVT), 6464 DAG.getConstant(SignMask, dl, DstVT)); 6465 SDValue SInt; 6466 if (Node->isStrictFPOpcode()) { 6467 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6468 { Chain, Src, FltOfs }); 6469 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6470 { Val.getValue(1), Val }); 6471 Chain = SInt.getValue(1); 6472 } else { 6473 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6474 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6475 } 6476 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6477 } else { 6478 // Expand based on maximum range of FP_TO_SINT: 6479 // True = fp_to_sint(Src) 6480 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6481 // Result = select (Src < 0x8000000000000000), True, False 6482 6483 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6484 // TODO: Should any fast-math-flags be set for the FSUB? 6485 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6486 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6487 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6488 DAG.getConstant(SignMask, dl, DstVT)); 6489 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6490 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6491 } 6492 return true; 6493 } 6494 6495 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6496 SDValue &Chain, 6497 SelectionDAG &DAG) const { 6498 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6499 SDValue Src = Node->getOperand(OpNo); 6500 EVT SrcVT = Src.getValueType(); 6501 EVT DstVT = Node->getValueType(0); 6502 6503 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6504 return false; 6505 6506 // Only expand vector types if we have the appropriate vector bit operations. 6507 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6508 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6509 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6510 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6511 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6512 return false; 6513 6514 SDLoc dl(SDValue(Node, 0)); 6515 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6516 6517 // Implementation of unsigned i64 to f64 following the algorithm in 6518 // __floatundidf in compiler_rt. This implementation has the advantage 6519 // of performing rounding correctly, both in the default rounding mode 6520 // and in all alternate rounding modes. 6521 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6522 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6523 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6524 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6525 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6526 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6527 6528 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6529 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6530 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6531 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6532 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6533 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6534 if (Node->isStrictFPOpcode()) { 6535 SDValue HiSub = 6536 DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other}, 6537 {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52}); 6538 Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other}, 6539 {HiSub.getValue(1), LoFlt, HiSub}); 6540 Chain = Result.getValue(1); 6541 } else { 6542 SDValue HiSub = 6543 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6544 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6545 } 6546 return true; 6547 } 6548 6549 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6550 SelectionDAG &DAG) const { 6551 SDLoc dl(Node); 6552 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6553 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6554 EVT VT = Node->getValueType(0); 6555 if (isOperationLegalOrCustom(NewOp, VT)) { 6556 SDValue Quiet0 = Node->getOperand(0); 6557 SDValue Quiet1 = Node->getOperand(1); 6558 6559 if (!Node->getFlags().hasNoNaNs()) { 6560 // Insert canonicalizes if it's possible we need to quiet to get correct 6561 // sNaN behavior. 6562 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6563 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6564 Node->getFlags()); 6565 } 6566 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6567 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6568 Node->getFlags()); 6569 } 6570 } 6571 6572 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6573 } 6574 6575 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6576 // instead if there are no NaNs. 6577 if (Node->getFlags().hasNoNaNs()) { 6578 unsigned IEEE2018Op = 6579 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6580 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6581 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6582 Node->getOperand(1), Node->getFlags()); 6583 } 6584 } 6585 6586 // If none of the above worked, but there are no NaNs, then expand to 6587 // a compare/select sequence. This is required for correctness since 6588 // InstCombine might have canonicalized a fcmp+select sequence to a 6589 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6590 // expansion to libcall, we might introduce a link-time dependency 6591 // on libm into a file that originally did not have one. 6592 if (Node->getFlags().hasNoNaNs()) { 6593 ISD::CondCode Pred = 6594 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6595 SDValue Op1 = Node->getOperand(0); 6596 SDValue Op2 = Node->getOperand(1); 6597 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6598 // Copy FMF flags, but always set the no-signed-zeros flag 6599 // as this is implied by the FMINNUM/FMAXNUM semantics. 6600 SDNodeFlags Flags = Node->getFlags(); 6601 Flags.setNoSignedZeros(true); 6602 SelCC->setFlags(Flags); 6603 return SelCC; 6604 } 6605 6606 return SDValue(); 6607 } 6608 6609 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6610 SelectionDAG &DAG) const { 6611 SDLoc dl(Node); 6612 EVT VT = Node->getValueType(0); 6613 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6614 SDValue Op = Node->getOperand(0); 6615 unsigned Len = VT.getScalarSizeInBits(); 6616 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6617 6618 // TODO: Add support for irregular type lengths. 6619 if (!(Len <= 128 && Len % 8 == 0)) 6620 return false; 6621 6622 // Only expand vector types if we have the appropriate vector bit operations. 6623 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6624 !isOperationLegalOrCustom(ISD::SUB, VT) || 6625 !isOperationLegalOrCustom(ISD::SRL, VT) || 6626 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6627 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6628 return false; 6629 6630 // This is the "best" algorithm from 6631 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6632 SDValue Mask55 = 6633 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6634 SDValue Mask33 = 6635 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6636 SDValue Mask0F = 6637 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6638 SDValue Mask01 = 6639 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6640 6641 // v = v - ((v >> 1) & 0x55555555...) 6642 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6643 DAG.getNode(ISD::AND, dl, VT, 6644 DAG.getNode(ISD::SRL, dl, VT, Op, 6645 DAG.getConstant(1, dl, ShVT)), 6646 Mask55)); 6647 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6648 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6649 DAG.getNode(ISD::AND, dl, VT, 6650 DAG.getNode(ISD::SRL, dl, VT, Op, 6651 DAG.getConstant(2, dl, ShVT)), 6652 Mask33)); 6653 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6654 Op = DAG.getNode(ISD::AND, dl, VT, 6655 DAG.getNode(ISD::ADD, dl, VT, Op, 6656 DAG.getNode(ISD::SRL, dl, VT, Op, 6657 DAG.getConstant(4, dl, ShVT))), 6658 Mask0F); 6659 // v = (v * 0x01010101...) >> (Len - 8) 6660 if (Len > 8) 6661 Op = 6662 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6663 DAG.getConstant(Len - 8, dl, ShVT)); 6664 6665 Result = Op; 6666 return true; 6667 } 6668 6669 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6670 SelectionDAG &DAG) const { 6671 SDLoc dl(Node); 6672 EVT VT = Node->getValueType(0); 6673 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6674 SDValue Op = Node->getOperand(0); 6675 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6676 6677 // If the non-ZERO_UNDEF version is supported we can use that instead. 6678 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 6679 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 6680 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 6681 return true; 6682 } 6683 6684 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6685 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 6686 EVT SetCCVT = 6687 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6688 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 6689 SDValue Zero = DAG.getConstant(0, dl, VT); 6690 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6691 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6692 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 6693 return true; 6694 } 6695 6696 // Only expand vector types if we have the appropriate vector bit operations. 6697 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6698 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 6699 !isOperationLegalOrCustom(ISD::SRL, VT) || 6700 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6701 return false; 6702 6703 // for now, we do this: 6704 // x = x | (x >> 1); 6705 // x = x | (x >> 2); 6706 // ... 6707 // x = x | (x >>16); 6708 // x = x | (x >>32); // for 64-bit input 6709 // return popcount(~x); 6710 // 6711 // Ref: "Hacker's Delight" by Henry Warren 6712 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 6713 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 6714 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6715 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6716 } 6717 Op = DAG.getNOT(dl, Op, VT); 6718 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6719 return true; 6720 } 6721 6722 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6723 SelectionDAG &DAG) const { 6724 SDLoc dl(Node); 6725 EVT VT = Node->getValueType(0); 6726 SDValue Op = Node->getOperand(0); 6727 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6728 6729 // If the non-ZERO_UNDEF version is supported we can use that instead. 6730 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6731 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6732 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6733 return true; 6734 } 6735 6736 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6737 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6738 EVT SetCCVT = 6739 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6740 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6741 SDValue Zero = DAG.getConstant(0, dl, VT); 6742 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6743 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6744 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6745 return true; 6746 } 6747 6748 // Only expand vector types if we have the appropriate vector bit operations. 6749 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6750 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6751 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6752 !isOperationLegalOrCustom(ISD::SUB, VT) || 6753 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6754 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6755 return false; 6756 6757 // for now, we use: { return popcount(~x & (x - 1)); } 6758 // unless the target has ctlz but not ctpop, in which case we use: 6759 // { return 32 - nlz(~x & (x-1)); } 6760 // Ref: "Hacker's Delight" by Henry Warren 6761 SDValue Tmp = DAG.getNode( 6762 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6763 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6764 6765 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6766 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6767 Result = 6768 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6769 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6770 return true; 6771 } 6772 6773 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6774 return true; 6775 } 6776 6777 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6778 SelectionDAG &DAG) const { 6779 SDLoc dl(N); 6780 EVT VT = N->getValueType(0); 6781 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6782 SDValue Op = N->getOperand(0); 6783 6784 // Only expand vector types if we have the appropriate vector operations. 6785 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6786 !isOperationLegalOrCustom(ISD::ADD, VT) || 6787 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6788 return false; 6789 6790 SDValue Shift = 6791 DAG.getNode(ISD::SRA, dl, VT, Op, 6792 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6793 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6794 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6795 return true; 6796 } 6797 6798 std::pair<SDValue, SDValue> 6799 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6800 SelectionDAG &DAG) const { 6801 SDLoc SL(LD); 6802 SDValue Chain = LD->getChain(); 6803 SDValue BasePTR = LD->getBasePtr(); 6804 EVT SrcVT = LD->getMemoryVT(); 6805 EVT DstVT = LD->getValueType(0); 6806 ISD::LoadExtType ExtType = LD->getExtensionType(); 6807 6808 if (SrcVT.isScalableVector()) 6809 report_fatal_error("Cannot scalarize scalable vector loads"); 6810 6811 unsigned NumElem = SrcVT.getVectorNumElements(); 6812 6813 EVT SrcEltVT = SrcVT.getScalarType(); 6814 EVT DstEltVT = DstVT.getScalarType(); 6815 6816 // A vector must always be stored in memory as-is, i.e. without any padding 6817 // between the elements, since various code depend on it, e.g. in the 6818 // handling of a bitcast of a vector type to int, which may be done with a 6819 // vector store followed by an integer load. A vector that does not have 6820 // elements that are byte-sized must therefore be stored as an integer 6821 // built out of the extracted vector elements. 6822 if (!SrcEltVT.isByteSized()) { 6823 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 6824 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 6825 6826 unsigned NumSrcBits = SrcVT.getSizeInBits(); 6827 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 6828 6829 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 6830 SDValue SrcEltBitMask = DAG.getConstant( 6831 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 6832 6833 // Load the whole vector and avoid masking off the top bits as it makes 6834 // the codegen worse. 6835 SDValue Load = 6836 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 6837 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 6838 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6839 6840 SmallVector<SDValue, 8> Vals; 6841 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6842 unsigned ShiftIntoIdx = 6843 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6844 SDValue ShiftAmount = 6845 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 6846 LoadVT, SL, /*LegalTypes=*/false); 6847 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 6848 SDValue Elt = 6849 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 6850 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 6851 6852 if (ExtType != ISD::NON_EXTLOAD) { 6853 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 6854 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 6855 } 6856 6857 Vals.push_back(Scalar); 6858 } 6859 6860 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6861 return std::make_pair(Value, Load.getValue(1)); 6862 } 6863 6864 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6865 assert(SrcEltVT.isByteSized()); 6866 6867 SmallVector<SDValue, 8> Vals; 6868 SmallVector<SDValue, 8> LoadChains; 6869 6870 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6871 SDValue ScalarLoad = 6872 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6873 LD->getPointerInfo().getWithOffset(Idx * Stride), 6874 SrcEltVT, LD->getOriginalAlign(), 6875 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6876 6877 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 6878 6879 Vals.push_back(ScalarLoad.getValue(0)); 6880 LoadChains.push_back(ScalarLoad.getValue(1)); 6881 } 6882 6883 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6884 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 6885 6886 return std::make_pair(Value, NewChain); 6887 } 6888 6889 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6890 SelectionDAG &DAG) const { 6891 SDLoc SL(ST); 6892 6893 SDValue Chain = ST->getChain(); 6894 SDValue BasePtr = ST->getBasePtr(); 6895 SDValue Value = ST->getValue(); 6896 EVT StVT = ST->getMemoryVT(); 6897 6898 if (StVT.isScalableVector()) 6899 report_fatal_error("Cannot scalarize scalable vector stores"); 6900 6901 // The type of the data we want to save 6902 EVT RegVT = Value.getValueType(); 6903 EVT RegSclVT = RegVT.getScalarType(); 6904 6905 // The type of data as saved in memory. 6906 EVT MemSclVT = StVT.getScalarType(); 6907 6908 unsigned NumElem = StVT.getVectorNumElements(); 6909 6910 // A vector must always be stored in memory as-is, i.e. without any padding 6911 // between the elements, since various code depend on it, e.g. in the 6912 // handling of a bitcast of a vector type to int, which may be done with a 6913 // vector store followed by an integer load. A vector that does not have 6914 // elements that are byte-sized must therefore be stored as an integer 6915 // built out of the extracted vector elements. 6916 if (!MemSclVT.isByteSized()) { 6917 unsigned NumBits = StVT.getSizeInBits(); 6918 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6919 6920 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6921 6922 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6923 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6924 DAG.getVectorIdxConstant(Idx, SL)); 6925 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6926 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6927 unsigned ShiftIntoIdx = 6928 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6929 SDValue ShiftAmount = 6930 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6931 SDValue ShiftedElt = 6932 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6933 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6934 } 6935 6936 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6937 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 6938 ST->getAAInfo()); 6939 } 6940 6941 // Store Stride in bytes 6942 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6943 assert(Stride && "Zero stride!"); 6944 // Extract each of the elements from the original vector and save them into 6945 // memory individually. 6946 SmallVector<SDValue, 8> Stores; 6947 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6948 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6949 DAG.getVectorIdxConstant(Idx, SL)); 6950 6951 SDValue Ptr = 6952 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 6953 6954 // This scalar TruncStore may be illegal, but we legalize it later. 6955 SDValue Store = DAG.getTruncStore( 6956 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6957 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 6958 ST->getAAInfo()); 6959 6960 Stores.push_back(Store); 6961 } 6962 6963 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6964 } 6965 6966 std::pair<SDValue, SDValue> 6967 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6968 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6969 "unaligned indexed loads not implemented!"); 6970 SDValue Chain = LD->getChain(); 6971 SDValue Ptr = LD->getBasePtr(); 6972 EVT VT = LD->getValueType(0); 6973 EVT LoadedVT = LD->getMemoryVT(); 6974 SDLoc dl(LD); 6975 auto &MF = DAG.getMachineFunction(); 6976 6977 if (VT.isFloatingPoint() || VT.isVector()) { 6978 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6979 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6980 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6981 LoadedVT.isVector()) { 6982 // Scalarize the load and let the individual components be handled. 6983 return scalarizeVectorLoad(LD, DAG); 6984 } 6985 6986 // Expand to a (misaligned) integer load of the same size, 6987 // then bitconvert to floating point or vector. 6988 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6989 LD->getMemOperand()); 6990 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6991 if (LoadedVT != VT) 6992 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6993 ISD::ANY_EXTEND, dl, VT, Result); 6994 6995 return std::make_pair(Result, newLoad.getValue(1)); 6996 } 6997 6998 // Copy the value to a (aligned) stack slot using (unaligned) integer 6999 // loads and stores, then do a (aligned) load from the stack slot. 7000 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7001 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7002 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7003 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7004 7005 // Make sure the stack slot is also aligned for the register type. 7006 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7007 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7008 SmallVector<SDValue, 8> Stores; 7009 SDValue StackPtr = StackBase; 7010 unsigned Offset = 0; 7011 7012 EVT PtrVT = Ptr.getValueType(); 7013 EVT StackPtrVT = StackPtr.getValueType(); 7014 7015 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7016 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7017 7018 // Do all but one copies using the full register width. 7019 for (unsigned i = 1; i < NumRegs; i++) { 7020 // Load one integer register's worth from the original location. 7021 SDValue Load = DAG.getLoad( 7022 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7023 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7024 LD->getAAInfo()); 7025 // Follow the load with a store to the stack slot. Remember the store. 7026 Stores.push_back(DAG.getStore( 7027 Load.getValue(1), dl, Load, StackPtr, 7028 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7029 // Increment the pointers. 7030 Offset += RegBytes; 7031 7032 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7033 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7034 } 7035 7036 // The last copy may be partial. Do an extending load. 7037 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7038 8 * (LoadedBytes - Offset)); 7039 SDValue Load = 7040 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7041 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7042 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7043 LD->getAAInfo()); 7044 // Follow the load with a store to the stack slot. Remember the store. 7045 // On big-endian machines this requires a truncating store to ensure 7046 // that the bits end up in the right place. 7047 Stores.push_back(DAG.getTruncStore( 7048 Load.getValue(1), dl, Load, StackPtr, 7049 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7050 7051 // The order of the stores doesn't matter - say it with a TokenFactor. 7052 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7053 7054 // Finally, perform the original load only redirected to the stack slot. 7055 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7056 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7057 LoadedVT); 7058 7059 // Callers expect a MERGE_VALUES node. 7060 return std::make_pair(Load, TF); 7061 } 7062 7063 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7064 "Unaligned load of unsupported type."); 7065 7066 // Compute the new VT that is half the size of the old one. This is an 7067 // integer MVT. 7068 unsigned NumBits = LoadedVT.getSizeInBits(); 7069 EVT NewLoadedVT; 7070 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7071 NumBits >>= 1; 7072 7073 Align Alignment = LD->getOriginalAlign(); 7074 unsigned IncrementSize = NumBits / 8; 7075 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7076 7077 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7078 if (HiExtType == ISD::NON_EXTLOAD) 7079 HiExtType = ISD::ZEXTLOAD; 7080 7081 // Load the value in two parts 7082 SDValue Lo, Hi; 7083 if (DAG.getDataLayout().isLittleEndian()) { 7084 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7085 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7086 LD->getAAInfo()); 7087 7088 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7089 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7090 LD->getPointerInfo().getWithOffset(IncrementSize), 7091 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7092 LD->getAAInfo()); 7093 } else { 7094 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7095 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7096 LD->getAAInfo()); 7097 7098 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7099 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7100 LD->getPointerInfo().getWithOffset(IncrementSize), 7101 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7102 LD->getAAInfo()); 7103 } 7104 7105 // aggregate the two parts 7106 SDValue ShiftAmount = 7107 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7108 DAG.getDataLayout())); 7109 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7110 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7111 7112 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7113 Hi.getValue(1)); 7114 7115 return std::make_pair(Result, TF); 7116 } 7117 7118 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7119 SelectionDAG &DAG) const { 7120 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7121 "unaligned indexed stores not implemented!"); 7122 SDValue Chain = ST->getChain(); 7123 SDValue Ptr = ST->getBasePtr(); 7124 SDValue Val = ST->getValue(); 7125 EVT VT = Val.getValueType(); 7126 Align Alignment = ST->getOriginalAlign(); 7127 auto &MF = DAG.getMachineFunction(); 7128 EVT StoreMemVT = ST->getMemoryVT(); 7129 7130 SDLoc dl(ST); 7131 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7132 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7133 if (isTypeLegal(intVT)) { 7134 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7135 StoreMemVT.isVector()) { 7136 // Scalarize the store and let the individual components be handled. 7137 SDValue Result = scalarizeVectorStore(ST, DAG); 7138 return Result; 7139 } 7140 // Expand to a bitconvert of the value to the integer type of the 7141 // same size, then a (misaligned) int store. 7142 // FIXME: Does not handle truncating floating point stores! 7143 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7144 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7145 Alignment, ST->getMemOperand()->getFlags()); 7146 return Result; 7147 } 7148 // Do a (aligned) store to a stack slot, then copy from the stack slot 7149 // to the final destination using (unaligned) integer loads and stores. 7150 MVT RegVT = getRegisterType( 7151 *DAG.getContext(), 7152 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7153 EVT PtrVT = Ptr.getValueType(); 7154 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7155 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7156 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7157 7158 // Make sure the stack slot is also aligned for the register type. 7159 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7160 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7161 7162 // Perform the original store, only redirected to the stack slot. 7163 SDValue Store = DAG.getTruncStore( 7164 Chain, dl, Val, StackPtr, 7165 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7166 7167 EVT StackPtrVT = StackPtr.getValueType(); 7168 7169 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7170 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7171 SmallVector<SDValue, 8> Stores; 7172 unsigned Offset = 0; 7173 7174 // Do all but one copies using the full register width. 7175 for (unsigned i = 1; i < NumRegs; i++) { 7176 // Load one integer register's worth from the stack slot. 7177 SDValue Load = DAG.getLoad( 7178 RegVT, dl, Store, StackPtr, 7179 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7180 // Store it to the final location. Remember the store. 7181 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7182 ST->getPointerInfo().getWithOffset(Offset), 7183 ST->getOriginalAlign(), 7184 ST->getMemOperand()->getFlags())); 7185 // Increment the pointers. 7186 Offset += RegBytes; 7187 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7188 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7189 } 7190 7191 // The last store may be partial. Do a truncating store. On big-endian 7192 // machines this requires an extending load from the stack slot to ensure 7193 // that the bits are in the right place. 7194 EVT LoadMemVT = 7195 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7196 7197 // Load from the stack slot. 7198 SDValue Load = DAG.getExtLoad( 7199 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7200 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7201 7202 Stores.push_back( 7203 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7204 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7205 ST->getOriginalAlign(), 7206 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7207 // The order of the stores doesn't matter - say it with a TokenFactor. 7208 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7209 return Result; 7210 } 7211 7212 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7213 "Unaligned store of unknown type."); 7214 // Get the half-size VT 7215 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7216 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7217 unsigned IncrementSize = NumBits / 8; 7218 7219 // Divide the stored value in two parts. 7220 SDValue ShiftAmount = DAG.getConstant( 7221 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7222 SDValue Lo = Val; 7223 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7224 7225 // Store the two parts 7226 SDValue Store1, Store2; 7227 Store1 = DAG.getTruncStore(Chain, dl, 7228 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7229 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7230 ST->getMemOperand()->getFlags()); 7231 7232 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7233 Store2 = DAG.getTruncStore( 7234 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7235 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7236 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7237 7238 SDValue Result = 7239 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7240 return Result; 7241 } 7242 7243 SDValue 7244 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7245 const SDLoc &DL, EVT DataVT, 7246 SelectionDAG &DAG, 7247 bool IsCompressedMemory) const { 7248 SDValue Increment; 7249 EVT AddrVT = Addr.getValueType(); 7250 EVT MaskVT = Mask.getValueType(); 7251 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7252 "Incompatible types of Data and Mask"); 7253 if (IsCompressedMemory) { 7254 if (DataVT.isScalableVector()) 7255 report_fatal_error( 7256 "Cannot currently handle compressed memory with scalable vectors"); 7257 // Incrementing the pointer according to number of '1's in the mask. 7258 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7259 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7260 if (MaskIntVT.getSizeInBits() < 32) { 7261 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7262 MaskIntVT = MVT::i32; 7263 } 7264 7265 // Count '1's with POPCNT. 7266 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7267 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7268 // Scale is an element size in bytes. 7269 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7270 AddrVT); 7271 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7272 } else if (DataVT.isScalableVector()) { 7273 Increment = DAG.getVScale(DL, AddrVT, 7274 APInt(AddrVT.getFixedSizeInBits(), 7275 DataVT.getStoreSize().getKnownMinSize())); 7276 } else 7277 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7278 7279 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7280 } 7281 7282 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7283 SDValue Idx, 7284 EVT VecVT, 7285 const SDLoc &dl) { 7286 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7287 return Idx; 7288 7289 EVT IdxVT = Idx.getValueType(); 7290 unsigned NElts = VecVT.getVectorMinNumElements(); 7291 if (VecVT.isScalableVector()) { 7292 SDValue VS = DAG.getVScale(dl, IdxVT, 7293 APInt(IdxVT.getFixedSizeInBits(), 7294 NElts)); 7295 SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS, 7296 DAG.getConstant(1, dl, IdxVT)); 7297 7298 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7299 } else { 7300 if (isPowerOf2_32(NElts)) { 7301 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 7302 Log2_32(NElts)); 7303 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7304 DAG.getConstant(Imm, dl, IdxVT)); 7305 } 7306 } 7307 7308 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7309 DAG.getConstant(NElts - 1, dl, IdxVT)); 7310 } 7311 7312 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7313 SDValue VecPtr, EVT VecVT, 7314 SDValue Index) const { 7315 SDLoc dl(Index); 7316 // Make sure the index type is big enough to compute in. 7317 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7318 7319 EVT EltVT = VecVT.getVectorElementType(); 7320 7321 // Calculate the element offset and add it to the pointer. 7322 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7323 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7324 "Converting bits to bytes lost precision"); 7325 7326 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7327 7328 EVT IdxVT = Index.getValueType(); 7329 7330 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7331 DAG.getConstant(EltSize, dl, IdxVT)); 7332 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7333 } 7334 7335 //===----------------------------------------------------------------------===// 7336 // Implementation of Emulated TLS Model 7337 //===----------------------------------------------------------------------===// 7338 7339 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7340 SelectionDAG &DAG) const { 7341 // Access to address of TLS varialbe xyz is lowered to a function call: 7342 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7343 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7344 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7345 SDLoc dl(GA); 7346 7347 ArgListTy Args; 7348 ArgListEntry Entry; 7349 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7350 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7351 StringRef EmuTlsVarName(NameString); 7352 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7353 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7354 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7355 Entry.Ty = VoidPtrType; 7356 Args.push_back(Entry); 7357 7358 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7359 7360 TargetLowering::CallLoweringInfo CLI(DAG); 7361 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7362 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7363 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7364 7365 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7366 // At last for X86 targets, maybe good for other targets too? 7367 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7368 MFI.setAdjustsStack(true); // Is this only for X86 target? 7369 MFI.setHasCalls(true); 7370 7371 assert((GA->getOffset() == 0) && 7372 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7373 return CallResult.first; 7374 } 7375 7376 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7377 SelectionDAG &DAG) const { 7378 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7379 if (!isCtlzFast()) 7380 return SDValue(); 7381 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7382 SDLoc dl(Op); 7383 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7384 if (C->isNullValue() && CC == ISD::SETEQ) { 7385 EVT VT = Op.getOperand(0).getValueType(); 7386 SDValue Zext = Op.getOperand(0); 7387 if (VT.bitsLT(MVT::i32)) { 7388 VT = MVT::i32; 7389 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7390 } 7391 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7392 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7393 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7394 DAG.getConstant(Log2b, dl, MVT::i32)); 7395 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7396 } 7397 } 7398 return SDValue(); 7399 } 7400 7401 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7402 unsigned Opcode = Node->getOpcode(); 7403 SDValue LHS = Node->getOperand(0); 7404 SDValue RHS = Node->getOperand(1); 7405 EVT VT = LHS.getValueType(); 7406 SDLoc dl(Node); 7407 7408 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7409 assert(VT.isInteger() && "Expected operands to be integers"); 7410 7411 // usub.sat(a, b) -> umax(a, b) - b 7412 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 7413 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7414 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7415 } 7416 7417 // uadd.sat(a, b) -> umin(a, ~b) + b 7418 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 7419 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7420 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7421 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7422 } 7423 7424 unsigned OverflowOp; 7425 switch (Opcode) { 7426 case ISD::SADDSAT: 7427 OverflowOp = ISD::SADDO; 7428 break; 7429 case ISD::UADDSAT: 7430 OverflowOp = ISD::UADDO; 7431 break; 7432 case ISD::SSUBSAT: 7433 OverflowOp = ISD::SSUBO; 7434 break; 7435 case ISD::USUBSAT: 7436 OverflowOp = ISD::USUBO; 7437 break; 7438 default: 7439 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7440 "addition or subtraction node."); 7441 } 7442 7443 // FIXME: Should really try to split the vector in case it's legal on a 7444 // subvector. 7445 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7446 return DAG.UnrollVectorOp(Node); 7447 7448 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7449 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7450 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 7451 LHS, RHS); 7452 SDValue SumDiff = Result.getValue(0); 7453 SDValue Overflow = Result.getValue(1); 7454 SDValue Zero = DAG.getConstant(0, dl, VT); 7455 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7456 7457 if (Opcode == ISD::UADDSAT) { 7458 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7459 // (LHS + RHS) | OverflowMask 7460 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7461 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 7462 } 7463 // Overflow ? 0xffff.... : (LHS + RHS) 7464 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 7465 } else if (Opcode == ISD::USUBSAT) { 7466 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 7467 // (LHS - RHS) & ~OverflowMask 7468 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 7469 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 7470 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 7471 } 7472 // Overflow ? 0 : (LHS - RHS) 7473 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 7474 } else { 7475 // SatMax -> Overflow && SumDiff < 0 7476 // SatMin -> Overflow && SumDiff >= 0 7477 APInt MinVal = APInt::getSignedMinValue(BitWidth); 7478 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 7479 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7480 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7481 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 7482 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 7483 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 7484 } 7485 } 7486 7487 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 7488 unsigned Opcode = Node->getOpcode(); 7489 bool IsSigned = Opcode == ISD::SSHLSAT; 7490 SDValue LHS = Node->getOperand(0); 7491 SDValue RHS = Node->getOperand(1); 7492 EVT VT = LHS.getValueType(); 7493 SDLoc dl(Node); 7494 7495 assert((Node->getOpcode() == ISD::SSHLSAT || 7496 Node->getOpcode() == ISD::USHLSAT) && 7497 "Expected a SHLSAT opcode"); 7498 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7499 assert(VT.isInteger() && "Expected operands to be integers"); 7500 7501 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 7502 7503 unsigned BW = VT.getScalarSizeInBits(); 7504 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 7505 SDValue Orig = 7506 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 7507 7508 SDValue SatVal; 7509 if (IsSigned) { 7510 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 7511 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 7512 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 7513 SatMin, SatMax, ISD::SETLT); 7514 } else { 7515 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 7516 } 7517 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 7518 7519 return Result; 7520 } 7521 7522 SDValue 7523 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 7524 assert((Node->getOpcode() == ISD::SMULFIX || 7525 Node->getOpcode() == ISD::UMULFIX || 7526 Node->getOpcode() == ISD::SMULFIXSAT || 7527 Node->getOpcode() == ISD::UMULFIXSAT) && 7528 "Expected a fixed point multiplication opcode"); 7529 7530 SDLoc dl(Node); 7531 SDValue LHS = Node->getOperand(0); 7532 SDValue RHS = Node->getOperand(1); 7533 EVT VT = LHS.getValueType(); 7534 unsigned Scale = Node->getConstantOperandVal(2); 7535 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 7536 Node->getOpcode() == ISD::UMULFIXSAT); 7537 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 7538 Node->getOpcode() == ISD::SMULFIXSAT); 7539 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7540 unsigned VTSize = VT.getScalarSizeInBits(); 7541 7542 if (!Scale) { 7543 // [us]mul.fix(a, b, 0) -> mul(a, b) 7544 if (!Saturating) { 7545 if (isOperationLegalOrCustom(ISD::MUL, VT)) 7546 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7547 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 7548 SDValue Result = 7549 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7550 SDValue Product = Result.getValue(0); 7551 SDValue Overflow = Result.getValue(1); 7552 SDValue Zero = DAG.getConstant(0, dl, VT); 7553 7554 APInt MinVal = APInt::getSignedMinValue(VTSize); 7555 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 7556 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 7557 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7558 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 7559 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 7560 return DAG.getSelect(dl, VT, Overflow, Result, Product); 7561 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 7562 SDValue Result = 7563 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7564 SDValue Product = Result.getValue(0); 7565 SDValue Overflow = Result.getValue(1); 7566 7567 APInt MaxVal = APInt::getMaxValue(VTSize); 7568 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 7569 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 7570 } 7571 } 7572 7573 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 7574 "Expected scale to be less than the number of bits if signed or at " 7575 "most the number of bits if unsigned."); 7576 assert(LHS.getValueType() == RHS.getValueType() && 7577 "Expected both operands to be the same type"); 7578 7579 // Get the upper and lower bits of the result. 7580 SDValue Lo, Hi; 7581 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 7582 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 7583 if (isOperationLegalOrCustom(LoHiOp, VT)) { 7584 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 7585 Lo = Result.getValue(0); 7586 Hi = Result.getValue(1); 7587 } else if (isOperationLegalOrCustom(HiOp, VT)) { 7588 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7589 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 7590 } else if (VT.isVector()) { 7591 return SDValue(); 7592 } else { 7593 report_fatal_error("Unable to expand fixed point multiplication."); 7594 } 7595 7596 if (Scale == VTSize) 7597 // Result is just the top half since we'd be shifting by the width of the 7598 // operand. Overflow impossible so this works for both UMULFIX and 7599 // UMULFIXSAT. 7600 return Hi; 7601 7602 // The result will need to be shifted right by the scale since both operands 7603 // are scaled. The result is given to us in 2 halves, so we only want part of 7604 // both in the result. 7605 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7606 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 7607 DAG.getConstant(Scale, dl, ShiftTy)); 7608 if (!Saturating) 7609 return Result; 7610 7611 if (!Signed) { 7612 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 7613 // widened multiplication) aren't all zeroes. 7614 7615 // Saturate to max if ((Hi >> Scale) != 0), 7616 // which is the same as if (Hi > ((1 << Scale) - 1)) 7617 APInt MaxVal = APInt::getMaxValue(VTSize); 7618 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 7619 dl, VT); 7620 Result = DAG.getSelectCC(dl, Hi, LowMask, 7621 DAG.getConstant(MaxVal, dl, VT), Result, 7622 ISD::SETUGT); 7623 7624 return Result; 7625 } 7626 7627 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 7628 // widened multiplication) aren't all ones or all zeroes. 7629 7630 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 7631 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 7632 7633 if (Scale == 0) { 7634 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 7635 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 7636 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 7637 // Saturated to SatMin if wide product is negative, and SatMax if wide 7638 // product is positive ... 7639 SDValue Zero = DAG.getConstant(0, dl, VT); 7640 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 7641 ISD::SETLT); 7642 // ... but only if we overflowed. 7643 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 7644 } 7645 7646 // We handled Scale==0 above so all the bits to examine is in Hi. 7647 7648 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 7649 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 7650 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 7651 dl, VT); 7652 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 7653 // Saturate to min if (Hi >> (Scale - 1)) < -1), 7654 // which is the same as if (HI < (-1 << (Scale - 1)) 7655 SDValue HighMask = 7656 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 7657 dl, VT); 7658 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 7659 return Result; 7660 } 7661 7662 SDValue 7663 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 7664 SDValue LHS, SDValue RHS, 7665 unsigned Scale, SelectionDAG &DAG) const { 7666 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 7667 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 7668 "Expected a fixed point division opcode"); 7669 7670 EVT VT = LHS.getValueType(); 7671 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 7672 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 7673 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7674 7675 // If there is enough room in the type to upscale the LHS or downscale the 7676 // RHS before the division, we can perform it in this type without having to 7677 // resize. For signed operations, the LHS headroom is the number of 7678 // redundant sign bits, and for unsigned ones it is the number of zeroes. 7679 // The headroom for the RHS is the number of trailing zeroes. 7680 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 7681 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 7682 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 7683 7684 // For signed saturating operations, we need to be able to detect true integer 7685 // division overflow; that is, when you have MIN / -EPS. However, this 7686 // is undefined behavior and if we emit divisions that could take such 7687 // values it may cause undesired behavior (arithmetic exceptions on x86, for 7688 // example). 7689 // Avoid this by requiring an extra bit so that we never get this case. 7690 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 7691 // signed saturating division, we need to emit a whopping 32-bit division. 7692 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 7693 return SDValue(); 7694 7695 unsigned LHSShift = std::min(LHSLead, Scale); 7696 unsigned RHSShift = Scale - LHSShift; 7697 7698 // At this point, we know that if we shift the LHS up by LHSShift and the 7699 // RHS down by RHSShift, we can emit a regular division with a final scaling 7700 // factor of Scale. 7701 7702 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7703 if (LHSShift) 7704 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 7705 DAG.getConstant(LHSShift, dl, ShiftTy)); 7706 if (RHSShift) 7707 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 7708 DAG.getConstant(RHSShift, dl, ShiftTy)); 7709 7710 SDValue Quot; 7711 if (Signed) { 7712 // For signed operations, if the resulting quotient is negative and the 7713 // remainder is nonzero, subtract 1 from the quotient to round towards 7714 // negative infinity. 7715 SDValue Rem; 7716 // FIXME: Ideally we would always produce an SDIVREM here, but if the 7717 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 7718 // we couldn't just form a libcall, but the type legalizer doesn't do it. 7719 if (isTypeLegal(VT) && 7720 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 7721 Quot = DAG.getNode(ISD::SDIVREM, dl, 7722 DAG.getVTList(VT, VT), 7723 LHS, RHS); 7724 Rem = Quot.getValue(1); 7725 Quot = Quot.getValue(0); 7726 } else { 7727 Quot = DAG.getNode(ISD::SDIV, dl, VT, 7728 LHS, RHS); 7729 Rem = DAG.getNode(ISD::SREM, dl, VT, 7730 LHS, RHS); 7731 } 7732 SDValue Zero = DAG.getConstant(0, dl, VT); 7733 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 7734 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 7735 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 7736 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 7737 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 7738 DAG.getConstant(1, dl, VT)); 7739 Quot = DAG.getSelect(dl, VT, 7740 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 7741 Sub1, Quot); 7742 } else 7743 Quot = DAG.getNode(ISD::UDIV, dl, VT, 7744 LHS, RHS); 7745 7746 return Quot; 7747 } 7748 7749 void TargetLowering::expandUADDSUBO( 7750 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7751 SDLoc dl(Node); 7752 SDValue LHS = Node->getOperand(0); 7753 SDValue RHS = Node->getOperand(1); 7754 bool IsAdd = Node->getOpcode() == ISD::UADDO; 7755 7756 // If ADD/SUBCARRY is legal, use that instead. 7757 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 7758 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 7759 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 7760 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 7761 { LHS, RHS, CarryIn }); 7762 Result = SDValue(NodeCarry.getNode(), 0); 7763 Overflow = SDValue(NodeCarry.getNode(), 1); 7764 return; 7765 } 7766 7767 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7768 LHS.getValueType(), LHS, RHS); 7769 7770 EVT ResultType = Node->getValueType(1); 7771 EVT SetCCType = getSetCCResultType( 7772 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7773 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 7774 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 7775 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7776 } 7777 7778 void TargetLowering::expandSADDSUBO( 7779 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 7780 SDLoc dl(Node); 7781 SDValue LHS = Node->getOperand(0); 7782 SDValue RHS = Node->getOperand(1); 7783 bool IsAdd = Node->getOpcode() == ISD::SADDO; 7784 7785 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 7786 LHS.getValueType(), LHS, RHS); 7787 7788 EVT ResultType = Node->getValueType(1); 7789 EVT OType = getSetCCResultType( 7790 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 7791 7792 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 7793 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 7794 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 7795 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 7796 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 7797 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 7798 return; 7799 } 7800 7801 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 7802 7803 // For an addition, the result should be less than one of the operands (LHS) 7804 // if and only if the other operand (RHS) is negative, otherwise there will 7805 // be overflow. 7806 // For a subtraction, the result should be less than one of the operands 7807 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 7808 // otherwise there will be overflow. 7809 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 7810 SDValue ConditionRHS = 7811 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 7812 7813 Overflow = DAG.getBoolExtOrTrunc( 7814 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 7815 ResultType, ResultType); 7816 } 7817 7818 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 7819 SDValue &Overflow, SelectionDAG &DAG) const { 7820 SDLoc dl(Node); 7821 EVT VT = Node->getValueType(0); 7822 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7823 SDValue LHS = Node->getOperand(0); 7824 SDValue RHS = Node->getOperand(1); 7825 bool isSigned = Node->getOpcode() == ISD::SMULO; 7826 7827 // For power-of-two multiplications we can use a simpler shift expansion. 7828 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 7829 const APInt &C = RHSC->getAPIntValue(); 7830 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 7831 if (C.isPowerOf2()) { 7832 // smulo(x, signed_min) is same as umulo(x, signed_min). 7833 bool UseArithShift = isSigned && !C.isMinSignedValue(); 7834 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 7835 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 7836 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 7837 Overflow = DAG.getSetCC(dl, SetCCVT, 7838 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 7839 dl, VT, Result, ShiftAmt), 7840 LHS, ISD::SETNE); 7841 return true; 7842 } 7843 } 7844 7845 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 7846 if (VT.isVector()) 7847 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 7848 VT.getVectorNumElements()); 7849 7850 SDValue BottomHalf; 7851 SDValue TopHalf; 7852 static const unsigned Ops[2][3] = 7853 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 7854 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 7855 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 7856 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 7857 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 7858 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 7859 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 7860 RHS); 7861 TopHalf = BottomHalf.getValue(1); 7862 } else if (isTypeLegal(WideVT)) { 7863 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 7864 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 7865 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 7866 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 7867 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 7868 getShiftAmountTy(WideVT, DAG.getDataLayout())); 7869 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 7870 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 7871 } else { 7872 if (VT.isVector()) 7873 return false; 7874 7875 // We can fall back to a libcall with an illegal type for the MUL if we 7876 // have a libcall big enough. 7877 // Also, we can fall back to a division in some cases, but that's a big 7878 // performance hit in the general case. 7879 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 7880 if (WideVT == MVT::i16) 7881 LC = RTLIB::MUL_I16; 7882 else if (WideVT == MVT::i32) 7883 LC = RTLIB::MUL_I32; 7884 else if (WideVT == MVT::i64) 7885 LC = RTLIB::MUL_I64; 7886 else if (WideVT == MVT::i128) 7887 LC = RTLIB::MUL_I128; 7888 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 7889 7890 SDValue HiLHS; 7891 SDValue HiRHS; 7892 if (isSigned) { 7893 // The high part is obtained by SRA'ing all but one of the bits of low 7894 // part. 7895 unsigned LoSize = VT.getSizeInBits(); 7896 HiLHS = 7897 DAG.getNode(ISD::SRA, dl, VT, LHS, 7898 DAG.getConstant(LoSize - 1, dl, 7899 getPointerTy(DAG.getDataLayout()))); 7900 HiRHS = 7901 DAG.getNode(ISD::SRA, dl, VT, RHS, 7902 DAG.getConstant(LoSize - 1, dl, 7903 getPointerTy(DAG.getDataLayout()))); 7904 } else { 7905 HiLHS = DAG.getConstant(0, dl, VT); 7906 HiRHS = DAG.getConstant(0, dl, VT); 7907 } 7908 7909 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7910 // pre-lowered to the correct types. This all depends upon WideVT not 7911 // being a legal type for the architecture and thus has to be split to 7912 // two arguments. 7913 SDValue Ret; 7914 TargetLowering::MakeLibCallOptions CallOptions; 7915 CallOptions.setSExt(isSigned); 7916 CallOptions.setIsPostTypeLegalization(true); 7917 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7918 // Halves of WideVT are packed into registers in different order 7919 // depending on platform endianness. This is usually handled by 7920 // the C calling convention, but we can't defer to it in 7921 // the legalizer. 7922 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7923 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7924 } else { 7925 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7926 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7927 } 7928 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7929 "Ret value is a collection of constituent nodes holding result."); 7930 if (DAG.getDataLayout().isLittleEndian()) { 7931 // Same as above. 7932 BottomHalf = Ret.getOperand(0); 7933 TopHalf = Ret.getOperand(1); 7934 } else { 7935 BottomHalf = Ret.getOperand(1); 7936 TopHalf = Ret.getOperand(0); 7937 } 7938 } 7939 7940 Result = BottomHalf; 7941 if (isSigned) { 7942 SDValue ShiftAmt = DAG.getConstant( 7943 VT.getScalarSizeInBits() - 1, dl, 7944 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7945 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7946 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7947 } else { 7948 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7949 DAG.getConstant(0, dl, VT), ISD::SETNE); 7950 } 7951 7952 // Truncate the result if SetCC returns a larger type than needed. 7953 EVT RType = Node->getValueType(1); 7954 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7955 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7956 7957 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7958 "Unexpected result type for S/UMULO legalization"); 7959 return true; 7960 } 7961 7962 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7963 SDLoc dl(Node); 7964 unsigned BaseOpcode = 0; 7965 switch (Node->getOpcode()) { 7966 default: llvm_unreachable("Expected VECREDUCE opcode"); 7967 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7968 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7969 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7970 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7971 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7972 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7973 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7974 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7975 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7976 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7977 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7978 case ISD::VECREDUCE_FMAX: BaseOpcode = ISD::FMAXNUM; break; 7979 case ISD::VECREDUCE_FMIN: BaseOpcode = ISD::FMINNUM; break; 7980 } 7981 7982 SDValue Op = Node->getOperand(0); 7983 EVT VT = Op.getValueType(); 7984 7985 // Try to use a shuffle reduction for power of two vectors. 7986 if (VT.isPow2VectorType()) { 7987 while (VT.getVectorNumElements() > 1) { 7988 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7989 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7990 break; 7991 7992 SDValue Lo, Hi; 7993 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7994 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7995 VT = HalfVT; 7996 } 7997 } 7998 7999 EVT EltVT = VT.getVectorElementType(); 8000 unsigned NumElts = VT.getVectorNumElements(); 8001 8002 SmallVector<SDValue, 8> Ops; 8003 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8004 8005 SDValue Res = Ops[0]; 8006 for (unsigned i = 1; i < NumElts; i++) 8007 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8008 8009 // Result type may be wider than element type. 8010 if (EltVT != Node->getValueType(0)) 8011 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8012 return Res; 8013 } 8014 8015 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8016 SelectionDAG &DAG) const { 8017 EVT VT = Node->getValueType(0); 8018 SDLoc dl(Node); 8019 bool isSigned = Node->getOpcode() == ISD::SREM; 8020 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8021 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8022 SDValue Dividend = Node->getOperand(0); 8023 SDValue Divisor = Node->getOperand(1); 8024 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8025 SDVTList VTs = DAG.getVTList(VT, VT); 8026 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8027 return true; 8028 } else if (isOperationLegalOrCustom(DivOpc, VT)) { 8029 // X % Y -> X-X/Y*Y 8030 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8031 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8032 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8033 return true; 8034 } 8035 return false; 8036 } 8037