1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
31 #include "llvm/Target/TargetLoweringObjectFile.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetRegisterInfo.h"
34 #include "llvm/Target/TargetSubtargetInfo.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function *F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore noalias because it doesn't affect the call sequence.
58   AttributeSet CallerAttrs = F->getAttributes();
59   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
60       .removeAttribute(Attribute::NoAlias).hasAttributes())
61     return false;
62 
63   // It's not safe to eliminate the sign / zero extension of the return value.
64   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
65       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
66     return false;
67 
68   // Check if the only use is a function return node.
69   return isUsedByReturnOnly(Node, Chain);
70 }
71 
72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
73     const uint32_t *CallerPreservedMask,
74     const SmallVectorImpl<CCValAssign> &ArgLocs,
75     const SmallVectorImpl<SDValue> &OutVals) const {
76   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
77     const CCValAssign &ArgLoc = ArgLocs[I];
78     if (!ArgLoc.isRegLoc())
79       continue;
80     unsigned Reg = ArgLoc.getLocReg();
81     // Only look at callee saved registers.
82     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
83       continue;
84     // Check that we pass the value used for the caller.
85     // (We look for a CopyFromReg reading a virtual register that is used
86     //  for the function live-in value of register Reg)
87     SDValue Value = OutVals[I];
88     if (Value->getOpcode() != ISD::CopyFromReg)
89       return false;
90     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
91     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
92       return false;
93   }
94   return true;
95 }
96 
97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
98 /// and called function attributes.
99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
100                                                  unsigned AttrIdx) {
101   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
102   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
103   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
104   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
105   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
106   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
107   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
108   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
109   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
110   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
111   Alignment  = CS->getParamAlignment(AttrIdx);
112 }
113 
114 /// Generate a libcall taking the given operands as arguments and returning a
115 /// result of type RetVT.
116 std::pair<SDValue, SDValue>
117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
118                             ArrayRef<SDValue> Ops, bool isSigned,
119                             const SDLoc &dl, bool doesNotReturn,
120                             bool isReturnValueUsed) const {
121   TargetLowering::ArgListTy Args;
122   Args.reserve(Ops.size());
123 
124   TargetLowering::ArgListEntry Entry;
125   for (SDValue Op : Ops) {
126     Entry.Node = Op;
127     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
128     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
130     Args.push_back(Entry);
131   }
132 
133   if (LC == RTLIB::UNKNOWN_LIBCALL)
134     report_fatal_error("Unsupported library call operation!");
135   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
136                                          getPointerTy(DAG.getDataLayout()));
137 
138   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
139   TargetLowering::CallLoweringInfo CLI(DAG);
140   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
141   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
142     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
143     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
144     .setSExtResult(signExtend).setZExtResult(!signExtend);
145   return LowerCallTo(CLI);
146 }
147 
148 /// Soften the operands of a comparison. This code is shared among BR_CC,
149 /// SELECT_CC, and SETCC handlers.
150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
151                                          SDValue &NewLHS, SDValue &NewRHS,
152                                          ISD::CondCode &CCCode,
153                                          const SDLoc &dl) const {
154   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
155          && "Unsupported setcc type!");
156 
157   // Expand into one or more soft-fp libcall(s).
158   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
159   bool ShouldInvertCC = false;
160   switch (CCCode) {
161   case ISD::SETEQ:
162   case ISD::SETOEQ:
163     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
164           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
165           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
166     break;
167   case ISD::SETNE:
168   case ISD::SETUNE:
169     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
170           (VT == MVT::f64) ? RTLIB::UNE_F64 :
171           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
172     break;
173   case ISD::SETGE:
174   case ISD::SETOGE:
175     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
176           (VT == MVT::f64) ? RTLIB::OGE_F64 :
177           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
178     break;
179   case ISD::SETLT:
180   case ISD::SETOLT:
181     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
182           (VT == MVT::f64) ? RTLIB::OLT_F64 :
183           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
184     break;
185   case ISD::SETLE:
186   case ISD::SETOLE:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
188           (VT == MVT::f64) ? RTLIB::OLE_F64 :
189           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
190     break;
191   case ISD::SETGT:
192   case ISD::SETOGT:
193     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
194           (VT == MVT::f64) ? RTLIB::OGT_F64 :
195           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
196     break;
197   case ISD::SETUO:
198     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
199           (VT == MVT::f64) ? RTLIB::UO_F64 :
200           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
201     break;
202   case ISD::SETO:
203     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
204           (VT == MVT::f64) ? RTLIB::O_F64 :
205           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
206     break;
207   case ISD::SETONE:
208     // SETONE = SETOLT | SETOGT
209     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
210           (VT == MVT::f64) ? RTLIB::OLT_F64 :
211           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
212     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
213           (VT == MVT::f64) ? RTLIB::OGT_F64 :
214           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
215     break;
216   case ISD::SETUEQ:
217     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
218           (VT == MVT::f64) ? RTLIB::UO_F64 :
219           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
220     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
221           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
222           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
223     break;
224   default:
225     // Invert CC for unordered comparisons
226     ShouldInvertCC = true;
227     switch (CCCode) {
228     case ISD::SETULT:
229       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
230             (VT == MVT::f64) ? RTLIB::OGE_F64 :
231             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
232       break;
233     case ISD::SETULE:
234       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
235             (VT == MVT::f64) ? RTLIB::OGT_F64 :
236             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
237       break;
238     case ISD::SETUGT:
239       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
240             (VT == MVT::f64) ? RTLIB::OLE_F64 :
241             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
242       break;
243     case ISD::SETUGE:
244       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
245             (VT == MVT::f64) ? RTLIB::OLT_F64 :
246             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
247       break;
248     default: llvm_unreachable("Do not know how to soften this setcc!");
249     }
250   }
251 
252   // Use the target specific return value for comparions lib calls.
253   EVT RetVT = getCmpLibcallReturnType();
254   SDValue Ops[2] = {NewLHS, NewRHS};
255   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
256                        dl).first;
257   NewRHS = DAG.getConstant(0, dl, RetVT);
258 
259   CCCode = getCmpLibcallCC(LC1);
260   if (ShouldInvertCC)
261     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
262 
263   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
264     SDValue Tmp = DAG.getNode(
265         ISD::SETCC, dl,
266         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
267         NewLHS, NewRHS, DAG.getCondCode(CCCode));
268     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
269                          dl).first;
270     NewLHS = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
274     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
275     NewRHS = SDValue();
276   }
277 }
278 
279 /// Return the entry encoding for a jump table in the current function. The
280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
281 unsigned TargetLowering::getJumpTableEncoding() const {
282   // In non-pic modes, just use the address of a block.
283   if (!isPositionIndependent())
284     return MachineJumpTableInfo::EK_BlockAddress;
285 
286   // In PIC mode, if the target supports a GPRel32 directive, use it.
287   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
288     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
289 
290   // Otherwise, use a label difference.
291   return MachineJumpTableInfo::EK_LabelDifference32;
292 }
293 
294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
295                                                  SelectionDAG &DAG) const {
296   // If our PIC model is GP relative, use the global offset table as the base.
297   unsigned JTEncoding = getJumpTableEncoding();
298 
299   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
300       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
301     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
302 
303   return Table;
304 }
305 
306 /// This returns the relocation base for the given PIC jumptable, the same as
307 /// getPICJumpTableRelocBase, but as an MCExpr.
308 const MCExpr *
309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
310                                              unsigned JTI,MCContext &Ctx) const{
311   // The normal PIC reloc base is the label at the start of the jump table.
312   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
313 }
314 
315 bool
316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
317   const TargetMachine &TM = getTargetMachine();
318   const GlobalValue *GV = GA->getGlobal();
319 
320   // If the address is not even local to this DSO we will have to load it from
321   // a got and then add the offset.
322   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
323     return false;
324 
325   // If the code is position independent we will have to add a base register.
326   if (isPositionIndependent())
327     return false;
328 
329   // Otherwise we can do it.
330   return true;
331 }
332 
333 //===----------------------------------------------------------------------===//
334 //  Optimization Methods
335 //===----------------------------------------------------------------------===//
336 
337 /// If the specified instruction has a constant integer operand and there are
338 /// bits set in that constant that are not demanded, then clear those bits and
339 /// return true.
340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(
341     SDValue Op, const APInt &Demanded) {
342   SDLoc DL(Op);
343   unsigned Opcode = Op.getOpcode();
344 
345   // FIXME: ISD::SELECT, ISD::SELECT_CC
346   switch (Opcode) {
347   default:
348     break;
349   case ISD::XOR:
350   case ISD::AND:
351   case ISD::OR: {
352     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
353     if (!Op1C)
354       return false;
355 
356     // If this is a 'not' op, don't touch it because that's a canonical form.
357     const APInt &C = Op1C->getAPIntValue();
358     if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue())
359       return false;
360 
361     if (C.intersects(~Demanded)) {
362       EVT VT = Op.getValueType();
363       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
364       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
365       return CombineTo(Op, NewOp);
366     }
367 
368     break;
369   }
370   }
371 
372   return false;
373 }
374 
375 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
376 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
377 /// generalized for targets with other types of implicit widening casts.
378 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
379                                                          unsigned BitWidth,
380                                                          const APInt &Demanded,
381                                                          const SDLoc &dl) {
382   assert(Op.getNumOperands() == 2 &&
383          "ShrinkDemandedOp only supports binary operators!");
384   assert(Op.getNode()->getNumValues() == 1 &&
385          "ShrinkDemandedOp only supports nodes with one result!");
386 
387   // Early return, as this function cannot handle vector types.
388   if (Op.getValueType().isVector())
389     return false;
390 
391   // Don't do this if the node has another user, which may require the
392   // full value.
393   if (!Op.getNode()->hasOneUse())
394     return false;
395 
396   // Search for the smallest integer type with free casts to and from
397   // Op's type. For expedience, just check power-of-2 integer types.
398   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
399   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
400   unsigned SmallVTBits = DemandedSize;
401   if (!isPowerOf2_32(SmallVTBits))
402     SmallVTBits = NextPowerOf2(SmallVTBits);
403   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
404     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
405     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
406         TLI.isZExtFree(SmallVT, Op.getValueType())) {
407       // We found a type with free casts.
408       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
409                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
410                                           Op.getNode()->getOperand(0)),
411                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
412                                           Op.getNode()->getOperand(1)));
413       bool NeedZext = DemandedSize > SmallVTBits;
414       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
415                               dl, Op.getValueType(), X);
416       return CombineTo(Op, Z);
417     }
418   }
419   return false;
420 }
421 
422 bool
423 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
424                                                         unsigned OpIdx,
425                                                         const APInt &Demanded,
426                                                         DAGCombinerInfo &DCI) {
427   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
428   SDValue Op = User->getOperand(OpIdx);
429   APInt KnownZero, KnownOne;
430 
431   if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
432                                 *this, 0, true))
433     return false;
434 
435 
436   // Old will not always be the same as Op.  For example:
437   //
438   // Demanded = 0xffffff
439   // Op = i64 truncate (i32 and x, 0xffffff)
440   // In this case simplify demand bits will want to replace the 'and' node
441   // with the value 'x', which will give us:
442   // Old = i32 and x, 0xffffff
443   // New = x
444   if (Old.hasOneUse()) {
445     // For the one use case, we just commit the change.
446     DCI.CommitTargetLoweringOpt(*this);
447     return true;
448   }
449 
450   // If Old has more than one use then it must be Op, because the
451   // AssumeSingleUse flag is not propogated to recursive calls of
452   // SimplifyDemanded bits, so the only node with multiple use that
453   // it will attempt to combine will be opt.
454   assert(Old == Op);
455 
456   SmallVector <SDValue, 4> NewOps;
457   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
458     if (i == OpIdx) {
459       NewOps.push_back(New);
460       continue;
461     }
462     NewOps.push_back(User->getOperand(i));
463   }
464   DAG.UpdateNodeOperands(User, NewOps);
465   // Op has less users now, so we may be able to perform additional combines
466   // with it.
467   DCI.AddToWorklist(Op.getNode());
468   // User's operands have been updated, so we may be able to do new combines
469   // with it.
470   DCI.AddToWorklist(User);
471   return true;
472 }
473 
474 /// Look at Op. At this point, we know that only the DemandedMask bits of the
475 /// result of Op are ever used downstream. If we can use this information to
476 /// simplify Op, create a new simplified DAG node and return true, returning the
477 /// original and new nodes in Old and New. Otherwise, analyze the expression and
478 /// return a mask of KnownOne and KnownZero bits for the expression (used to
479 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
480 /// bits in the DemandedMask.
481 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
482                                           const APInt &DemandedMask,
483                                           APInt &KnownZero,
484                                           APInt &KnownOne,
485                                           TargetLoweringOpt &TLO,
486                                           unsigned Depth,
487                                           bool AssumeSingleUse) const {
488   unsigned BitWidth = DemandedMask.getBitWidth();
489   assert(Op.getScalarValueSizeInBits() == BitWidth &&
490          "Mask size mismatches value type size!");
491   APInt NewMask = DemandedMask;
492   SDLoc dl(Op);
493   auto &DL = TLO.DAG.getDataLayout();
494 
495   // Don't know anything.
496   KnownZero = KnownOne = APInt(BitWidth, 0);
497 
498   // Other users may use these bits.
499   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
500     if (Depth != 0) {
501       // If not at the root, Just compute the KnownZero/KnownOne bits to
502       // simplify things downstream.
503       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
504       return false;
505     }
506     // If this is the root being simplified, allow it to have multiple uses,
507     // just set the NewMask to all bits.
508     NewMask = APInt::getAllOnesValue(BitWidth);
509   } else if (DemandedMask == 0) {
510     // Not demanding any bits from Op.
511     if (!Op.isUndef())
512       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
513     return false;
514   } else if (Depth == 6) {        // Limit search depth.
515     return false;
516   }
517 
518   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
519   switch (Op.getOpcode()) {
520   case ISD::Constant:
521     // We know all of the bits for a constant!
522     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
523     KnownZero = ~KnownOne;
524     return false;   // Don't fall through, will infinitely loop.
525   case ISD::BUILD_VECTOR:
526     // Collect the known bits that are shared by every constant vector element.
527     KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
528     for (SDValue SrcOp : Op->ops()) {
529       if (!isa<ConstantSDNode>(SrcOp)) {
530         // We can only handle all constant values - bail out with no known bits.
531         KnownZero = KnownOne = APInt(BitWidth, 0);
532         return false;
533       }
534       KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
535       KnownZero2 = ~KnownOne2;
536 
537       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
538       if (KnownOne2.getBitWidth() != BitWidth) {
539         assert(KnownOne2.getBitWidth() > BitWidth &&
540                KnownZero2.getBitWidth() > BitWidth &&
541                "Expected BUILD_VECTOR implicit truncation");
542         KnownOne2 = KnownOne2.trunc(BitWidth);
543         KnownZero2 = KnownZero2.trunc(BitWidth);
544       }
545 
546       // Known bits are the values that are shared by every element.
547       // TODO: support per-element known bits.
548       KnownOne &= KnownOne2;
549       KnownZero &= KnownZero2;
550     }
551     return false;   // Don't fall through, will infinitely loop.
552   case ISD::AND:
553     // If the RHS is a constant, check to see if the LHS would be zero without
554     // using the bits from the RHS.  Below, we use knowledge about the RHS to
555     // simplify the LHS, here we're using information from the LHS to simplify
556     // the RHS.
557     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
558       SDValue Op0 = Op.getOperand(0);
559       APInt LHSZero, LHSOne;
560       // Do not increment Depth here; that can cause an infinite loop.
561       TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth);
562       // If the LHS already has zeros where RHSC does, this and is dead.
563       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
564         return TLO.CombineTo(Op, Op0);
565 
566       // If any of the set bits in the RHS are known zero on the LHS, shrink
567       // the constant.
568       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
569         return true;
570 
571       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
572       // constant, but if this 'and' is only clearing bits that were just set by
573       // the xor, then this 'and' can be eliminated by shrinking the mask of
574       // the xor. For example, for a 32-bit X:
575       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
576       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
577           LHSOne == ~RHSC->getAPIntValue()) {
578         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(),
579                                       Op0.getOperand(0), Op.getOperand(1));
580         return TLO.CombineTo(Op, Xor);
581       }
582     }
583 
584     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
585                              KnownOne, TLO, Depth+1))
586       return true;
587     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
588     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
589                              KnownZero2, KnownOne2, TLO, Depth+1))
590       return true;
591     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
592 
593     // If all of the demanded bits are known one on one side, return the other.
594     // These bits cannot contribute to the result of the 'and'.
595     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
596       return TLO.CombineTo(Op, Op.getOperand(0));
597     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
598       return TLO.CombineTo(Op, Op.getOperand(1));
599     // If all of the demanded bits in the inputs are known zeros, return zero.
600     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
601       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
602     // If the RHS is a constant, see if we can simplify it.
603     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
604       return true;
605     // If the operation can be done in a smaller type, do so.
606     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
607       return true;
608 
609     // Output known-1 bits are only known if set in both the LHS & RHS.
610     KnownOne &= KnownOne2;
611     // Output known-0 are known to be clear if zero in either the LHS | RHS.
612     KnownZero |= KnownZero2;
613     break;
614   case ISD::OR:
615     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
616                              KnownOne, TLO, Depth+1))
617       return true;
618     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
619     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
620                              KnownZero2, KnownOne2, TLO, Depth+1))
621       return true;
622     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
623 
624     // If all of the demanded bits are known zero on one side, return the other.
625     // These bits cannot contribute to the result of the 'or'.
626     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
627       return TLO.CombineTo(Op, Op.getOperand(0));
628     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
629       return TLO.CombineTo(Op, Op.getOperand(1));
630     // If all of the potentially set bits on one side are known to be set on
631     // the other side, just use the 'other' side.
632     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
633       return TLO.CombineTo(Op, Op.getOperand(0));
634     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
635       return TLO.CombineTo(Op, Op.getOperand(1));
636     // If the RHS is a constant, see if we can simplify it.
637     if (TLO.ShrinkDemandedConstant(Op, NewMask))
638       return true;
639     // If the operation can be done in a smaller type, do so.
640     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
641       return true;
642 
643     // Output known-0 bits are only known if clear in both the LHS & RHS.
644     KnownZero &= KnownZero2;
645     // Output known-1 are known to be set if set in either the LHS | RHS.
646     KnownOne |= KnownOne2;
647     break;
648   case ISD::XOR:
649     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
650                              KnownOne, TLO, Depth+1))
651       return true;
652     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
653     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
654                              KnownOne2, TLO, Depth+1))
655       return true;
656     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
657 
658     // If all of the demanded bits are known zero on one side, return the other.
659     // These bits cannot contribute to the result of the 'xor'.
660     if ((KnownZero & NewMask) == NewMask)
661       return TLO.CombineTo(Op, Op.getOperand(0));
662     if ((KnownZero2 & NewMask) == NewMask)
663       return TLO.CombineTo(Op, Op.getOperand(1));
664     // If the operation can be done in a smaller type, do so.
665     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
666       return true;
667 
668     // If all of the unknown bits are known to be zero on one side or the other
669     // (but not both) turn this into an *inclusive* or.
670     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
671     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
672       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
673                                                Op.getOperand(0),
674                                                Op.getOperand(1)));
675 
676     // Output known-0 bits are known if clear or set in both the LHS & RHS.
677     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
678     // Output known-1 are known to be set if set in only one of the LHS, RHS.
679     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
680 
681     // If all of the demanded bits on one side are known, and all of the set
682     // bits on that side are also known to be set on the other side, turn this
683     // into an AND, as we know the bits will be cleared.
684     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
685     // NB: it is okay if more bits are known than are requested
686     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
687       if (KnownOne == KnownOne2) { // set bits are the same on both sides
688         EVT VT = Op.getValueType();
689         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
690         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
691                                                  Op.getOperand(0), ANDC));
692       }
693     }
694 
695     // If the RHS is a constant, see if we can simplify it.
696     // for XOR, we prefer to force bits to 1 if they will make a -1.
697     // If we can't force bits, try to shrink the constant.
698     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
699       APInt Expanded = C->getAPIntValue() | (~NewMask);
700       // If we can expand it to have all bits set, do it.
701       if (Expanded.isAllOnesValue()) {
702         if (Expanded != C->getAPIntValue()) {
703           EVT VT = Op.getValueType();
704           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
705                                         TLO.DAG.getConstant(Expanded, dl, VT));
706           return TLO.CombineTo(Op, New);
707         }
708         // If it already has all the bits set, nothing to change
709         // but don't shrink either!
710       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
711         return true;
712       }
713     }
714 
715     KnownZero = KnownZeroOut;
716     KnownOne  = KnownOneOut;
717     break;
718   case ISD::SELECT:
719     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
720                              KnownOne, TLO, Depth+1))
721       return true;
722     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
723                              KnownOne2, TLO, Depth+1))
724       return true;
725     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
726     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
727 
728     // If the operands are constants, see if we can simplify them.
729     if (TLO.ShrinkDemandedConstant(Op, NewMask))
730       return true;
731 
732     // Only known if known in both the LHS and RHS.
733     KnownOne &= KnownOne2;
734     KnownZero &= KnownZero2;
735     break;
736   case ISD::SELECT_CC:
737     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
738                              KnownOne, TLO, Depth+1))
739       return true;
740     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
741                              KnownOne2, TLO, Depth+1))
742       return true;
743     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
744     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
745 
746     // If the operands are constants, see if we can simplify them.
747     if (TLO.ShrinkDemandedConstant(Op, NewMask))
748       return true;
749 
750     // Only known if known in both the LHS and RHS.
751     KnownOne &= KnownOne2;
752     KnownZero &= KnownZero2;
753     break;
754   case ISD::SETCC: {
755     SDValue Op0 = Op.getOperand(0);
756     SDValue Op1 = Op.getOperand(1);
757     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
758     // If (1) we only need the sign-bit, (2) the setcc operands are the same
759     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
760     // -1, we may be able to bypass the setcc.
761     if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth &&
762         getBooleanContents(Op.getValueType()) ==
763             BooleanContent::ZeroOrNegativeOneBooleanContent) {
764       // If we're testing X < 0, then this compare isn't needed - just use X!
765       // FIXME: We're limiting to integer types here, but this should also work
766       // if we don't care about FP signed-zero. The use of SETLT with FP means
767       // that we don't care about NaNs.
768       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
769           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
770         return TLO.CombineTo(Op, Op0);
771 
772       // TODO: Should we check for other forms of sign-bit comparisons?
773       // Examples: X <= -1, X >= 0
774     }
775     break;
776   }
777   case ISD::SHL:
778     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
779       unsigned ShAmt = SA->getZExtValue();
780       SDValue InOp = Op.getOperand(0);
781 
782       // If the shift count is an invalid immediate, don't do anything.
783       if (ShAmt >= BitWidth)
784         break;
785 
786       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
787       // single shift.  We can do this if the bottom bits (which are shifted
788       // out) are never demanded.
789       if (InOp.getOpcode() == ISD::SRL &&
790           isa<ConstantSDNode>(InOp.getOperand(1))) {
791         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
792           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
793           unsigned Opc = ISD::SHL;
794           int Diff = ShAmt-C1;
795           if (Diff < 0) {
796             Diff = -Diff;
797             Opc = ISD::SRL;
798           }
799 
800           SDValue NewSA =
801             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
802           EVT VT = Op.getValueType();
803           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
804                                                    InOp.getOperand(0), NewSA));
805         }
806       }
807 
808       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
809                                KnownZero, KnownOne, TLO, Depth+1))
810         return true;
811 
812       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
813       // are not demanded. This will likely allow the anyext to be folded away.
814       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
815         SDValue InnerOp = InOp.getNode()->getOperand(0);
816         EVT InnerVT = InnerOp.getValueType();
817         unsigned InnerBits = InnerVT.getSizeInBits();
818         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
819             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
820           EVT ShTy = getShiftAmountTy(InnerVT, DL);
821           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
822             ShTy = InnerVT;
823           SDValue NarrowShl =
824             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
825                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
826           return
827             TLO.CombineTo(Op,
828                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
829                                           NarrowShl));
830         }
831         // Repeat the SHL optimization above in cases where an extension
832         // intervenes: (shl (anyext (shr x, c1)), c2) to
833         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
834         // aren't demanded (as above) and that the shifted upper c1 bits of
835         // x aren't demanded.
836         if (InOp.hasOneUse() &&
837             InnerOp.getOpcode() == ISD::SRL &&
838             InnerOp.hasOneUse() &&
839             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
840           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
841             ->getZExtValue();
842           if (InnerShAmt < ShAmt &&
843               InnerShAmt < InnerBits &&
844               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
845               NewMask.trunc(ShAmt) == 0) {
846             SDValue NewSA =
847               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
848                                   Op.getOperand(1).getValueType());
849             EVT VT = Op.getValueType();
850             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
851                                              InnerOp.getOperand(0));
852             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
853                                                      NewExt, NewSA));
854           }
855         }
856       }
857 
858       KnownZero <<= SA->getZExtValue();
859       KnownOne  <<= SA->getZExtValue();
860       // low bits known zero.
861       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
862     }
863     break;
864   case ISD::SRL:
865     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
866       EVT VT = Op.getValueType();
867       unsigned ShAmt = SA->getZExtValue();
868       unsigned VTSize = VT.getSizeInBits();
869       SDValue InOp = Op.getOperand(0);
870 
871       // If the shift count is an invalid immediate, don't do anything.
872       if (ShAmt >= BitWidth)
873         break;
874 
875       APInt InDemandedMask = (NewMask << ShAmt);
876 
877       // If the shift is exact, then it does demand the low bits (and knows that
878       // they are zero).
879       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
880         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
881 
882       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
883       // single shift.  We can do this if the top bits (which are shifted out)
884       // are never demanded.
885       if (InOp.getOpcode() == ISD::SHL &&
886           isa<ConstantSDNode>(InOp.getOperand(1))) {
887         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
888           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
889           unsigned Opc = ISD::SRL;
890           int Diff = ShAmt-C1;
891           if (Diff < 0) {
892             Diff = -Diff;
893             Opc = ISD::SHL;
894           }
895 
896           SDValue NewSA =
897             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
898           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
899                                                    InOp.getOperand(0), NewSA));
900         }
901       }
902 
903       // Compute the new bits that are at the top now.
904       if (SimplifyDemandedBits(InOp, InDemandedMask,
905                                KnownZero, KnownOne, TLO, Depth+1))
906         return true;
907       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
908       KnownZero = KnownZero.lshr(ShAmt);
909       KnownOne  = KnownOne.lshr(ShAmt);
910 
911       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
912       KnownZero |= HighBits;  // High bits known zero.
913     }
914     break;
915   case ISD::SRA:
916     // If this is an arithmetic shift right and only the low-bit is set, we can
917     // always convert this into a logical shr, even if the shift amount is
918     // variable.  The low bit of the shift cannot be an input sign bit unless
919     // the shift amount is >= the size of the datatype, which is undefined.
920     if (NewMask == 1)
921       return TLO.CombineTo(Op,
922                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
923                                            Op.getOperand(0), Op.getOperand(1)));
924 
925     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
926       EVT VT = Op.getValueType();
927       unsigned ShAmt = SA->getZExtValue();
928 
929       // If the shift count is an invalid immediate, don't do anything.
930       if (ShAmt >= BitWidth)
931         break;
932 
933       APInt InDemandedMask = (NewMask << ShAmt);
934 
935       // If the shift is exact, then it does demand the low bits (and knows that
936       // they are zero).
937       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
938         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
939 
940       // If any of the demanded bits are produced by the sign extension, we also
941       // demand the input sign bit.
942       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
943       if (HighBits.intersects(NewMask))
944         InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits());
945 
946       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
947                                KnownZero, KnownOne, TLO, Depth+1))
948         return true;
949       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
950       KnownZero = KnownZero.lshr(ShAmt);
951       KnownOne  = KnownOne.lshr(ShAmt);
952 
953       // Handle the sign bit, adjusted to where it is now in the mask.
954       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
955 
956       // If the input sign bit is known to be zero, or if none of the top bits
957       // are demanded, turn this into an unsigned shift right.
958       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
959         SDNodeFlags Flags;
960         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
961         return TLO.CombineTo(Op,
962                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
963                                              Op.getOperand(1), &Flags));
964       }
965 
966       int Log2 = NewMask.exactLogBase2();
967       if (Log2 >= 0) {
968         // The bit must come from the sign.
969         SDValue NewSA =
970           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
971                               Op.getOperand(1).getValueType());
972         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
973                                                  Op.getOperand(0), NewSA));
974       }
975 
976       if (KnownOne.intersects(SignBit))
977         // New bits are known one.
978         KnownOne |= HighBits;
979     }
980     break;
981   case ISD::SIGN_EXTEND_INREG: {
982     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
983 
984     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
985     // If we only care about the highest bit, don't bother shifting right.
986     if (MsbMask == NewMask) {
987       unsigned ShAmt = ExVT.getScalarSizeInBits();
988       SDValue InOp = Op.getOperand(0);
989       unsigned VTBits = Op->getValueType(0).getScalarSizeInBits();
990       bool AlreadySignExtended =
991         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
992       // However if the input is already sign extended we expect the sign
993       // extension to be dropped altogether later and do not simplify.
994       if (!AlreadySignExtended) {
995         // Compute the correct shift amount type, which must be getShiftAmountTy
996         // for scalar types after legalization.
997         EVT ShiftAmtTy = Op.getValueType();
998         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
999           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1000 
1001         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
1002                                                ShiftAmtTy);
1003         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1004                                                  Op.getValueType(), InOp,
1005                                                  ShiftAmt));
1006       }
1007     }
1008 
1009     // Sign extension.  Compute the demanded bits in the result that are not
1010     // present in the input.
1011     APInt NewBits =
1012       APInt::getHighBitsSet(BitWidth,
1013                             BitWidth - ExVT.getScalarSizeInBits());
1014 
1015     // If none of the extended bits are demanded, eliminate the sextinreg.
1016     if ((NewBits & NewMask) == 0)
1017       return TLO.CombineTo(Op, Op.getOperand(0));
1018 
1019     APInt InSignBit =
1020       APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth);
1021     APInt InputDemandedBits =
1022       APInt::getLowBitsSet(BitWidth,
1023                            ExVT.getScalarSizeInBits()) &
1024       NewMask;
1025 
1026     // Since the sign extended bits are demanded, we know that the sign
1027     // bit is demanded.
1028     InputDemandedBits |= InSignBit;
1029 
1030     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1031                              KnownZero, KnownOne, TLO, Depth+1))
1032       return true;
1033     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1034 
1035     // If the sign bit of the input is known set or clear, then we know the
1036     // top bits of the result.
1037 
1038     // If the input sign bit is known zero, convert this into a zero extension.
1039     if (KnownZero.intersects(InSignBit))
1040       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(
1041                                    Op.getOperand(0), dl, ExVT.getScalarType()));
1042 
1043     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
1044       KnownOne |= NewBits;
1045       KnownZero &= ~NewBits;
1046     } else {                       // Input sign bit unknown
1047       KnownZero &= ~NewBits;
1048       KnownOne &= ~NewBits;
1049     }
1050     break;
1051   }
1052   case ISD::BUILD_PAIR: {
1053     EVT HalfVT = Op.getOperand(0).getValueType();
1054     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1055 
1056     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1057     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1058 
1059     APInt KnownZeroLo, KnownOneLo;
1060     APInt KnownZeroHi, KnownOneHi;
1061 
1062     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
1063                              KnownOneLo, TLO, Depth + 1))
1064       return true;
1065 
1066     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
1067                              KnownOneHi, TLO, Depth + 1))
1068       return true;
1069 
1070     KnownZero = KnownZeroLo.zext(BitWidth) |
1071                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
1072 
1073     KnownOne = KnownOneLo.zext(BitWidth) |
1074                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
1075     break;
1076   }
1077   case ISD::ZERO_EXTEND: {
1078     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1079     APInt InMask = NewMask.trunc(OperandBitWidth);
1080 
1081     // If none of the top bits are demanded, convert this into an any_extend.
1082     APInt NewBits =
1083       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1084     if (!NewBits.intersects(NewMask))
1085       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1086                                                Op.getValueType(),
1087                                                Op.getOperand(0)));
1088 
1089     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1090                              KnownZero, KnownOne, TLO, Depth+1))
1091       return true;
1092     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1093     KnownZero = KnownZero.zext(BitWidth);
1094     KnownOne = KnownOne.zext(BitWidth);
1095     KnownZero |= NewBits;
1096     break;
1097   }
1098   case ISD::SIGN_EXTEND: {
1099     EVT InVT = Op.getOperand(0).getValueType();
1100     unsigned InBits = InVT.getScalarSizeInBits();
1101     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
1102     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1103     APInt NewBits   = ~InMask & NewMask;
1104 
1105     // If none of the top bits are demanded, convert this into an any_extend.
1106     if (NewBits == 0)
1107       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1108                                               Op.getValueType(),
1109                                               Op.getOperand(0)));
1110 
1111     // Since some of the sign extended bits are demanded, we know that the sign
1112     // bit is demanded.
1113     APInt InDemandedBits = InMask & NewMask;
1114     InDemandedBits |= InSignBit;
1115     InDemandedBits = InDemandedBits.trunc(InBits);
1116 
1117     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1118                              KnownOne, TLO, Depth+1))
1119       return true;
1120     KnownZero = KnownZero.zext(BitWidth);
1121     KnownOne = KnownOne.zext(BitWidth);
1122 
1123     // If the sign bit is known zero, convert this to a zero extend.
1124     if (KnownZero.intersects(InSignBit))
1125       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1126                                                Op.getValueType(),
1127                                                Op.getOperand(0)));
1128 
1129     // If the sign bit is known one, the top bits match.
1130     if (KnownOne.intersects(InSignBit)) {
1131       KnownOne |= NewBits;
1132       assert((KnownZero & NewBits) == 0);
1133     } else {   // Otherwise, top bits aren't known.
1134       assert((KnownOne & NewBits) == 0);
1135       assert((KnownZero & NewBits) == 0);
1136     }
1137     break;
1138   }
1139   case ISD::ANY_EXTEND: {
1140     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1141     APInt InMask = NewMask.trunc(OperandBitWidth);
1142     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1143                              KnownZero, KnownOne, TLO, Depth+1))
1144       return true;
1145     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1146     KnownZero = KnownZero.zext(BitWidth);
1147     KnownOne = KnownOne.zext(BitWidth);
1148     break;
1149   }
1150   case ISD::TRUNCATE: {
1151     // Simplify the input, using demanded bit information, and compute the known
1152     // zero/one bits live out.
1153     unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits();
1154     APInt TruncMask = NewMask.zext(OperandBitWidth);
1155     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1156                              KnownZero, KnownOne, TLO, Depth+1))
1157       return true;
1158     KnownZero = KnownZero.trunc(BitWidth);
1159     KnownOne = KnownOne.trunc(BitWidth);
1160 
1161     // If the input is only used by this truncate, see if we can shrink it based
1162     // on the known demanded bits.
1163     if (Op.getOperand(0).getNode()->hasOneUse()) {
1164       SDValue In = Op.getOperand(0);
1165       switch (In.getOpcode()) {
1166       default: break;
1167       case ISD::SRL:
1168         // Shrink SRL by a constant if none of the high bits shifted in are
1169         // demanded.
1170         if (TLO.LegalTypes() &&
1171             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1172           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1173           // undesirable.
1174           break;
1175         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1176         if (!ShAmt)
1177           break;
1178         SDValue Shift = In.getOperand(1);
1179         if (TLO.LegalTypes()) {
1180           uint64_t ShVal = ShAmt->getZExtValue();
1181           Shift = TLO.DAG.getConstant(ShVal, dl,
1182                                       getShiftAmountTy(Op.getValueType(), DL));
1183         }
1184 
1185         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1186                                                OperandBitWidth - BitWidth);
1187         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1188 
1189         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1190           // None of the shifted in bits are needed.  Add a truncate of the
1191           // shift input, then shift it.
1192           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1193                                              Op.getValueType(),
1194                                              In.getOperand(0));
1195           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1196                                                    Op.getValueType(),
1197                                                    NewTrunc,
1198                                                    Shift));
1199         }
1200         break;
1201       }
1202     }
1203 
1204     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1205     break;
1206   }
1207   case ISD::AssertZext: {
1208     // AssertZext demands all of the high bits, plus any of the low bits
1209     // demanded by its users.
1210     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1211     APInt InMask = APInt::getLowBitsSet(BitWidth,
1212                                         VT.getSizeInBits());
1213     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1214                              KnownZero, KnownOne, TLO, Depth+1))
1215       return true;
1216     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1217 
1218     KnownZero |= ~InMask & NewMask;
1219     break;
1220   }
1221   case ISD::BITCAST:
1222     // If this is an FP->Int bitcast and if the sign bit is the only
1223     // thing demanded, turn this into a FGETSIGN.
1224     if (!TLO.LegalOperations() &&
1225         !Op.getValueType().isVector() &&
1226         !Op.getOperand(0).getValueType().isVector() &&
1227         NewMask == APInt::getSignBit(Op.getValueSizeInBits()) &&
1228         Op.getOperand(0).getValueType().isFloatingPoint()) {
1229       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1230       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1231       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1232            Op.getOperand(0).getValueType() != MVT::f128) {
1233         // Cannot eliminate/lower SHL for f128 yet.
1234         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1235         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1236         // place.  We expect the SHL to be eliminated by other optimizations.
1237         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1238         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1239         if (!OpVTLegal && OpVTSizeInBits > 32)
1240           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1241         unsigned ShVal = Op.getValueSizeInBits() - 1;
1242         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1243         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1244                                                  Op.getValueType(),
1245                                                  Sign, ShAmt));
1246       }
1247     }
1248     break;
1249   case ISD::ADD:
1250   case ISD::MUL:
1251   case ISD::SUB: {
1252     // Add, Sub, and Mul don't demand any bits in positions beyond that
1253     // of the highest bit demanded of them.
1254     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1255                                         BitWidth - NewMask.countLeadingZeros());
1256     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1257                              KnownOne2, TLO, Depth+1) ||
1258         SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1259                              KnownOne2, TLO, Depth+1) ||
1260         // See if the operation should be performed at a smaller bit width.
1261         TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
1262       const SDNodeFlags *Flags = Op.getNode()->getFlags();
1263       if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
1264         // Disable the nsw and nuw flags. We can no longer guarantee that we
1265         // won't wrap after simplification.
1266         SDNodeFlags NewFlags = *Flags;
1267         NewFlags.setNoSignedWrap(false);
1268         NewFlags.setNoUnsignedWrap(false);
1269         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(),
1270                                         Op.getOperand(0), Op.getOperand(1),
1271                                         &NewFlags);
1272         return TLO.CombineTo(Op, NewOp);
1273       }
1274       return true;
1275     }
1276     LLVM_FALLTHROUGH;
1277   }
1278   default:
1279     // Just use computeKnownBits to compute output bits.
1280     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1281     break;
1282   }
1283 
1284   // If we know the value of all of the demanded bits, return this as a
1285   // constant.
1286   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1287     // Avoid folding to a constant if any OpaqueConstant is involved.
1288     const SDNode *N = Op.getNode();
1289     for (SDNodeIterator I = SDNodeIterator::begin(N),
1290          E = SDNodeIterator::end(N); I != E; ++I) {
1291       SDNode *Op = *I;
1292       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1293         if (C->isOpaque())
1294           return false;
1295     }
1296     return TLO.CombineTo(Op,
1297                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1298   }
1299 
1300   return false;
1301 }
1302 
1303 /// Determine which of the bits specified in Mask are known to be either zero or
1304 /// one and return them in the KnownZero/KnownOne bitsets.
1305 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1306                                                    APInt &KnownZero,
1307                                                    APInt &KnownOne,
1308                                                    const SelectionDAG &DAG,
1309                                                    unsigned Depth) const {
1310   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1311           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1312           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1313           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1314          "Should use MaskedValueIsZero if you don't know whether Op"
1315          " is a target node!");
1316   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1317 }
1318 
1319 /// This method can be implemented by targets that want to expose additional
1320 /// information about sign bits to the DAG Combiner.
1321 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1322                                                          const SelectionDAG &,
1323                                                          unsigned Depth) const {
1324   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1325           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1326           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1327           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1328          "Should use ComputeNumSignBits if you don't know whether Op"
1329          " is a target node!");
1330   return 1;
1331 }
1332 
1333 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1334   if (!N)
1335     return false;
1336 
1337   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1338   if (!CN) {
1339     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1340     if (!BV)
1341       return false;
1342 
1343     // Only interested in constant splats, we don't care about undef
1344     // elements in identifying boolean constants and getConstantSplatNode
1345     // returns NULL if all ops are undef;
1346     CN = BV->getConstantSplatNode();
1347     if (!CN)
1348       return false;
1349   }
1350 
1351   switch (getBooleanContents(N->getValueType(0))) {
1352   case UndefinedBooleanContent:
1353     return CN->getAPIntValue()[0];
1354   case ZeroOrOneBooleanContent:
1355     return CN->isOne();
1356   case ZeroOrNegativeOneBooleanContent:
1357     return CN->isAllOnesValue();
1358   }
1359 
1360   llvm_unreachable("Invalid boolean contents");
1361 }
1362 
1363 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT,
1364                                         const SDLoc &DL) const {
1365   unsigned ElementWidth = VT.getScalarSizeInBits();
1366   APInt TrueInt =
1367       getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent
1368           ? APInt(ElementWidth, 1)
1369           : APInt::getAllOnesValue(ElementWidth);
1370   return DAG.getConstant(TrueInt, DL, VT);
1371 }
1372 
1373 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1374   if (!N)
1375     return false;
1376 
1377   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1378   if (!CN) {
1379     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1380     if (!BV)
1381       return false;
1382 
1383     // Only interested in constant splats, we don't care about undef
1384     // elements in identifying boolean constants and getConstantSplatNode
1385     // returns NULL if all ops are undef;
1386     CN = BV->getConstantSplatNode();
1387     if (!CN)
1388       return false;
1389   }
1390 
1391   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1392     return !CN->getAPIntValue()[0];
1393 
1394   return CN->isNullValue();
1395 }
1396 
1397 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1398                                        bool SExt) const {
1399   if (VT == MVT::i1)
1400     return N->isOne();
1401 
1402   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1403   switch (Cnt) {
1404   case TargetLowering::ZeroOrOneBooleanContent:
1405     // An extended value of 1 is always true, unless its original type is i1,
1406     // in which case it will be sign extended to -1.
1407     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1408   case TargetLowering::UndefinedBooleanContent:
1409   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1410     return N->isAllOnesValue() && SExt;
1411   }
1412   llvm_unreachable("Unexpected enumeration.");
1413 }
1414 
1415 /// This helper function of SimplifySetCC tries to optimize the comparison when
1416 /// either operand of the SetCC node is a bitwise-and instruction.
1417 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1418                                              ISD::CondCode Cond,
1419                                              DAGCombinerInfo &DCI,
1420                                              const SDLoc &DL) const {
1421   // Match these patterns in any of their permutations:
1422   // (X & Y) == Y
1423   // (X & Y) != Y
1424   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1425     std::swap(N0, N1);
1426 
1427   EVT OpVT = N0.getValueType();
1428   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1429       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1430     return SDValue();
1431 
1432   SDValue X, Y;
1433   if (N0.getOperand(0) == N1) {
1434     X = N0.getOperand(1);
1435     Y = N0.getOperand(0);
1436   } else if (N0.getOperand(1) == N1) {
1437     X = N0.getOperand(0);
1438     Y = N0.getOperand(1);
1439   } else {
1440     return SDValue();
1441   }
1442 
1443   SelectionDAG &DAG = DCI.DAG;
1444   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1445   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1446     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1447     // Note that where Y is variable and is known to have at most one bit set
1448     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1449     // equivalent when Y == 0.
1450     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1451     if (DCI.isBeforeLegalizeOps() ||
1452         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1453       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1454   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1455     // If the target supports an 'and-not' or 'and-complement' logic operation,
1456     // try to use that to make a comparison operation more efficient.
1457     // But don't do this transform if the mask is a single bit because there are
1458     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1459     // 'rlwinm' on PPC).
1460 
1461     // Bail out if the compare operand that we want to turn into a zero is
1462     // already a zero (otherwise, infinite loop).
1463     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1464     if (YConst && YConst->isNullValue())
1465       return SDValue();
1466 
1467     // Transform this into: ~X & Y == 0.
1468     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1469     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1470     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1471   }
1472 
1473   return SDValue();
1474 }
1475 
1476 /// Try to simplify a setcc built with the specified operands and cc. If it is
1477 /// unable to simplify it, return a null SDValue.
1478 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1479                                       ISD::CondCode Cond, bool foldBooleans,
1480                                       DAGCombinerInfo &DCI,
1481                                       const SDLoc &dl) const {
1482   SelectionDAG &DAG = DCI.DAG;
1483 
1484   // These setcc operations always fold.
1485   switch (Cond) {
1486   default: break;
1487   case ISD::SETFALSE:
1488   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1489   case ISD::SETTRUE:
1490   case ISD::SETTRUE2: {
1491     TargetLowering::BooleanContent Cnt =
1492         getBooleanContents(N0->getValueType(0));
1493     return DAG.getConstant(
1494         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1495         VT);
1496   }
1497   }
1498 
1499   // Ensure that the constant occurs on the RHS, and fold constant
1500   // comparisons.
1501   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1502   if (isa<ConstantSDNode>(N0.getNode()) &&
1503       (DCI.isBeforeLegalizeOps() ||
1504        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1505     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1506 
1507   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1508     const APInt &C1 = N1C->getAPIntValue();
1509 
1510     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1511     // equality comparison, then we're just comparing whether X itself is
1512     // zero.
1513     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1514         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1515         N0.getOperand(1).getOpcode() == ISD::Constant) {
1516       const APInt &ShAmt
1517         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1518       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1519           ShAmt == Log2_32(N0.getValueSizeInBits())) {
1520         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1521           // (srl (ctlz x), 5) == 0  -> X != 0
1522           // (srl (ctlz x), 5) != 1  -> X != 0
1523           Cond = ISD::SETNE;
1524         } else {
1525           // (srl (ctlz x), 5) != 0  -> X == 0
1526           // (srl (ctlz x), 5) == 1  -> X == 0
1527           Cond = ISD::SETEQ;
1528         }
1529         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1530         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1531                             Zero, Cond);
1532       }
1533     }
1534 
1535     SDValue CTPOP = N0;
1536     // Look through truncs that don't change the value of a ctpop.
1537     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1538       CTPOP = N0.getOperand(0);
1539 
1540     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1541         (N0 == CTPOP ||
1542          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
1543       EVT CTVT = CTPOP.getValueType();
1544       SDValue CTOp = CTPOP.getOperand(0);
1545 
1546       // (ctpop x) u< 2 -> (x & x-1) == 0
1547       // (ctpop x) u> 1 -> (x & x-1) != 0
1548       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1549         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1550                                   DAG.getConstant(1, dl, CTVT));
1551         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1552         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1553         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1554       }
1555 
1556       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1557     }
1558 
1559     // (zext x) == C --> x == (trunc C)
1560     // (sext x) == C --> x == (trunc C)
1561     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1562         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1563       unsigned MinBits = N0.getValueSizeInBits();
1564       SDValue PreExt;
1565       bool Signed = false;
1566       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1567         // ZExt
1568         MinBits = N0->getOperand(0).getValueSizeInBits();
1569         PreExt = N0->getOperand(0);
1570       } else if (N0->getOpcode() == ISD::AND) {
1571         // DAGCombine turns costly ZExts into ANDs
1572         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1573           if ((C->getAPIntValue()+1).isPowerOf2()) {
1574             MinBits = C->getAPIntValue().countTrailingOnes();
1575             PreExt = N0->getOperand(0);
1576           }
1577       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1578         // SExt
1579         MinBits = N0->getOperand(0).getValueSizeInBits();
1580         PreExt = N0->getOperand(0);
1581         Signed = true;
1582       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1583         // ZEXTLOAD / SEXTLOAD
1584         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1585           MinBits = LN0->getMemoryVT().getSizeInBits();
1586           PreExt = N0;
1587         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1588           Signed = true;
1589           MinBits = LN0->getMemoryVT().getSizeInBits();
1590           PreExt = N0;
1591         }
1592       }
1593 
1594       // Figure out how many bits we need to preserve this constant.
1595       unsigned ReqdBits = Signed ?
1596         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1597         C1.getActiveBits();
1598 
1599       // Make sure we're not losing bits from the constant.
1600       if (MinBits > 0 &&
1601           MinBits < C1.getBitWidth() &&
1602           MinBits >= ReqdBits) {
1603         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1604         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1605           // Will get folded away.
1606           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1607           if (MinBits == 1 && C1 == 1)
1608             // Invert the condition.
1609             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
1610                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1611           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1612           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1613         }
1614 
1615         // If truncating the setcc operands is not desirable, we can still
1616         // simplify the expression in some cases:
1617         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1618         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1619         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1620         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1621         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1622         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1623         SDValue TopSetCC = N0->getOperand(0);
1624         unsigned N0Opc = N0->getOpcode();
1625         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1626         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1627             TopSetCC.getOpcode() == ISD::SETCC &&
1628             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1629             (isConstFalseVal(N1C) ||
1630              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1631 
1632           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1633                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1634 
1635           if (!Inverse)
1636             return TopSetCC;
1637 
1638           ISD::CondCode InvCond = ISD::getSetCCInverse(
1639               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1640               TopSetCC.getOperand(0).getValueType().isInteger());
1641           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1642                                       TopSetCC.getOperand(1),
1643                                       InvCond);
1644 
1645         }
1646       }
1647     }
1648 
1649     // If the LHS is '(and load, const)', the RHS is 0,
1650     // the test is for equality or unsigned, and all 1 bits of the const are
1651     // in the same partial word, see if we can shorten the load.
1652     if (DCI.isBeforeLegalize() &&
1653         !ISD::isSignedIntSetCC(Cond) &&
1654         N0.getOpcode() == ISD::AND && C1 == 0 &&
1655         N0.getNode()->hasOneUse() &&
1656         isa<LoadSDNode>(N0.getOperand(0)) &&
1657         N0.getOperand(0).getNode()->hasOneUse() &&
1658         isa<ConstantSDNode>(N0.getOperand(1))) {
1659       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1660       APInt bestMask;
1661       unsigned bestWidth = 0, bestOffset = 0;
1662       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1663         unsigned origWidth = N0.getValueSizeInBits();
1664         unsigned maskWidth = origWidth;
1665         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1666         // 8 bits, but have to be careful...
1667         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1668           origWidth = Lod->getMemoryVT().getSizeInBits();
1669         const APInt &Mask =
1670           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1671         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1672           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1673           for (unsigned offset=0; offset<origWidth/width; offset++) {
1674             if ((newMask & Mask) == Mask) {
1675               if (!DAG.getDataLayout().isLittleEndian())
1676                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1677               else
1678                 bestOffset = (uint64_t)offset * (width/8);
1679               bestMask = Mask.lshr(offset * (width/8) * 8);
1680               bestWidth = width;
1681               break;
1682             }
1683             newMask = newMask << width;
1684           }
1685         }
1686       }
1687       if (bestWidth) {
1688         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1689         if (newVT.isRound()) {
1690           EVT PtrType = Lod->getOperand(1).getValueType();
1691           SDValue Ptr = Lod->getBasePtr();
1692           if (bestOffset != 0)
1693             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1694                               DAG.getConstant(bestOffset, dl, PtrType));
1695           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1696           SDValue NewLoad = DAG.getLoad(
1697               newVT, dl, Lod->getChain(), Ptr,
1698               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
1699           return DAG.getSetCC(dl, VT,
1700                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1701                                       DAG.getConstant(bestMask.trunc(bestWidth),
1702                                                       dl, newVT)),
1703                               DAG.getConstant(0LL, dl, newVT), Cond);
1704         }
1705       }
1706     }
1707 
1708     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1709     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1710       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
1711 
1712       // If the comparison constant has bits in the upper part, the
1713       // zero-extended value could never match.
1714       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1715                                               C1.getBitWidth() - InSize))) {
1716         switch (Cond) {
1717         case ISD::SETUGT:
1718         case ISD::SETUGE:
1719         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1720         case ISD::SETULT:
1721         case ISD::SETULE:
1722         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1723         case ISD::SETGT:
1724         case ISD::SETGE:
1725           // True if the sign bit of C1 is set.
1726           return DAG.getConstant(C1.isNegative(), dl, VT);
1727         case ISD::SETLT:
1728         case ISD::SETLE:
1729           // True if the sign bit of C1 isn't set.
1730           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1731         default:
1732           break;
1733         }
1734       }
1735 
1736       // Otherwise, we can perform the comparison with the low bits.
1737       switch (Cond) {
1738       case ISD::SETEQ:
1739       case ISD::SETNE:
1740       case ISD::SETUGT:
1741       case ISD::SETUGE:
1742       case ISD::SETULT:
1743       case ISD::SETULE: {
1744         EVT newVT = N0.getOperand(0).getValueType();
1745         if (DCI.isBeforeLegalizeOps() ||
1746             (isOperationLegal(ISD::SETCC, newVT) &&
1747              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1748           EVT NewSetCCVT =
1749               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1750           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1751 
1752           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1753                                           NewConst, Cond);
1754           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1755         }
1756         break;
1757       }
1758       default:
1759         break;   // todo, be more careful with signed comparisons
1760       }
1761     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1762                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1763       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1764       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1765       EVT ExtDstTy = N0.getValueType();
1766       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1767 
1768       // If the constant doesn't fit into the number of bits for the source of
1769       // the sign extension, it is impossible for both sides to be equal.
1770       if (C1.getMinSignedBits() > ExtSrcTyBits)
1771         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1772 
1773       SDValue ZextOp;
1774       EVT Op0Ty = N0.getOperand(0).getValueType();
1775       if (Op0Ty == ExtSrcTy) {
1776         ZextOp = N0.getOperand(0);
1777       } else {
1778         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1779         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1780                               DAG.getConstant(Imm, dl, Op0Ty));
1781       }
1782       if (!DCI.isCalledByLegalizer())
1783         DCI.AddToWorklist(ZextOp.getNode());
1784       // Otherwise, make this a use of a zext.
1785       return DAG.getSetCC(dl, VT, ZextOp,
1786                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1787                                                               ExtDstTyBits,
1788                                                               ExtSrcTyBits),
1789                                           dl, ExtDstTy),
1790                           Cond);
1791     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1792                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1793       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1794       if (N0.getOpcode() == ISD::SETCC &&
1795           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1796         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1797         if (TrueWhenTrue)
1798           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1799         // Invert the condition.
1800         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1801         CC = ISD::getSetCCInverse(CC,
1802                                   N0.getOperand(0).getValueType().isInteger());
1803         if (DCI.isBeforeLegalizeOps() ||
1804             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1805           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1806       }
1807 
1808       if ((N0.getOpcode() == ISD::XOR ||
1809            (N0.getOpcode() == ISD::AND &&
1810             N0.getOperand(0).getOpcode() == ISD::XOR &&
1811             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1812           isa<ConstantSDNode>(N0.getOperand(1)) &&
1813           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1814         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1815         // can only do this if the top bits are known zero.
1816         unsigned BitWidth = N0.getValueSizeInBits();
1817         if (DAG.MaskedValueIsZero(N0,
1818                                   APInt::getHighBitsSet(BitWidth,
1819                                                         BitWidth-1))) {
1820           // Okay, get the un-inverted input value.
1821           SDValue Val;
1822           if (N0.getOpcode() == ISD::XOR)
1823             Val = N0.getOperand(0);
1824           else {
1825             assert(N0.getOpcode() == ISD::AND &&
1826                     N0.getOperand(0).getOpcode() == ISD::XOR);
1827             // ((X^1)&1)^1 -> X & 1
1828             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1829                               N0.getOperand(0).getOperand(0),
1830                               N0.getOperand(1));
1831           }
1832 
1833           return DAG.getSetCC(dl, VT, Val, N1,
1834                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1835         }
1836       } else if (N1C->getAPIntValue() == 1 &&
1837                  (VT == MVT::i1 ||
1838                   getBooleanContents(N0->getValueType(0)) ==
1839                       ZeroOrOneBooleanContent)) {
1840         SDValue Op0 = N0;
1841         if (Op0.getOpcode() == ISD::TRUNCATE)
1842           Op0 = Op0.getOperand(0);
1843 
1844         if ((Op0.getOpcode() == ISD::XOR) &&
1845             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1846             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1847           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1848           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1849           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1850                               Cond);
1851         }
1852         if (Op0.getOpcode() == ISD::AND &&
1853             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1854             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1855           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1856           if (Op0.getValueType().bitsGT(VT))
1857             Op0 = DAG.getNode(ISD::AND, dl, VT,
1858                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1859                           DAG.getConstant(1, dl, VT));
1860           else if (Op0.getValueType().bitsLT(VT))
1861             Op0 = DAG.getNode(ISD::AND, dl, VT,
1862                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1863                         DAG.getConstant(1, dl, VT));
1864 
1865           return DAG.getSetCC(dl, VT, Op0,
1866                               DAG.getConstant(0, dl, Op0.getValueType()),
1867                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1868         }
1869         if (Op0.getOpcode() == ISD::AssertZext &&
1870             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1871           return DAG.getSetCC(dl, VT, Op0,
1872                               DAG.getConstant(0, dl, Op0.getValueType()),
1873                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1874       }
1875     }
1876 
1877     APInt MinVal, MaxVal;
1878     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1879     if (ISD::isSignedIntSetCC(Cond)) {
1880       MinVal = APInt::getSignedMinValue(OperandBitSize);
1881       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1882     } else {
1883       MinVal = APInt::getMinValue(OperandBitSize);
1884       MaxVal = APInt::getMaxValue(OperandBitSize);
1885     }
1886 
1887     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1888     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1889       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1890       // X >= C0 --> X > (C0 - 1)
1891       APInt C = C1 - 1;
1892       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1893       if ((DCI.isBeforeLegalizeOps() ||
1894            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1895           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1896                                 isLegalICmpImmediate(C.getSExtValue())))) {
1897         return DAG.getSetCC(dl, VT, N0,
1898                             DAG.getConstant(C, dl, N1.getValueType()),
1899                             NewCC);
1900       }
1901     }
1902 
1903     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1904       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1905       // X <= C0 --> X < (C0 + 1)
1906       APInt C = C1 + 1;
1907       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1908       if ((DCI.isBeforeLegalizeOps() ||
1909            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1910           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1911                                 isLegalICmpImmediate(C.getSExtValue())))) {
1912         return DAG.getSetCC(dl, VT, N0,
1913                             DAG.getConstant(C, dl, N1.getValueType()),
1914                             NewCC);
1915       }
1916     }
1917 
1918     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1919       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1920     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1921       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1922     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1923       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1924     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1925       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1926 
1927     // Canonicalize setgt X, Min --> setne X, Min
1928     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1929       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1930     // Canonicalize setlt X, Max --> setne X, Max
1931     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1932       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1933 
1934     // If we have setult X, 1, turn it into seteq X, 0
1935     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1936       return DAG.getSetCC(dl, VT, N0,
1937                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1938                           ISD::SETEQ);
1939     // If we have setugt X, Max-1, turn it into seteq X, Max
1940     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1941       return DAG.getSetCC(dl, VT, N0,
1942                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1943                           ISD::SETEQ);
1944 
1945     // If we have "setcc X, C0", check to see if we can shrink the immediate
1946     // by changing cc.
1947 
1948     // SETUGT X, SINTMAX  -> SETLT X, 0
1949     if (Cond == ISD::SETUGT &&
1950         C1 == APInt::getSignedMaxValue(OperandBitSize))
1951       return DAG.getSetCC(dl, VT, N0,
1952                           DAG.getConstant(0, dl, N1.getValueType()),
1953                           ISD::SETLT);
1954 
1955     // SETULT X, SINTMIN  -> SETGT X, -1
1956     if (Cond == ISD::SETULT &&
1957         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1958       SDValue ConstMinusOne =
1959           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1960                           N1.getValueType());
1961       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1962     }
1963 
1964     // Fold bit comparisons when we can.
1965     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1966         (VT == N0.getValueType() ||
1967          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1968         N0.getOpcode() == ISD::AND) {
1969       auto &DL = DAG.getDataLayout();
1970       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1971         EVT ShiftTy = DCI.isBeforeLegalize()
1972                           ? getPointerTy(DL)
1973                           : getShiftAmountTy(N0.getValueType(), DL);
1974         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1975           // Perform the xform if the AND RHS is a single bit.
1976           if (AndRHS->getAPIntValue().isPowerOf2()) {
1977             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1978                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1979                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1980                                    ShiftTy)));
1981           }
1982         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1983           // (X & 8) == 8  -->  (X & 8) >> 3
1984           // Perform the xform if C1 is a single bit.
1985           if (C1.isPowerOf2()) {
1986             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1987                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1988                                       DAG.getConstant(C1.logBase2(), dl,
1989                                                       ShiftTy)));
1990           }
1991         }
1992       }
1993     }
1994 
1995     if (C1.getMinSignedBits() <= 64 &&
1996         !isLegalICmpImmediate(C1.getSExtValue())) {
1997       // (X & -256) == 256 -> (X >> 8) == 1
1998       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1999           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2000         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2001           const APInt &AndRHSC = AndRHS->getAPIntValue();
2002           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2003             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2004             auto &DL = DAG.getDataLayout();
2005             EVT ShiftTy = DCI.isBeforeLegalize()
2006                               ? getPointerTy(DL)
2007                               : getShiftAmountTy(N0.getValueType(), DL);
2008             EVT CmpTy = N0.getValueType();
2009             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2010                                         DAG.getConstant(ShiftBits, dl,
2011                                                         ShiftTy));
2012             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2013             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2014           }
2015         }
2016       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2017                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2018         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2019         // X <  0x100000000 -> (X >> 32) <  1
2020         // X >= 0x100000000 -> (X >> 32) >= 1
2021         // X <= 0x0ffffffff -> (X >> 32) <  1
2022         // X >  0x0ffffffff -> (X >> 32) >= 1
2023         unsigned ShiftBits;
2024         APInt NewC = C1;
2025         ISD::CondCode NewCond = Cond;
2026         if (AdjOne) {
2027           ShiftBits = C1.countTrailingOnes();
2028           NewC = NewC + 1;
2029           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2030         } else {
2031           ShiftBits = C1.countTrailingZeros();
2032         }
2033         NewC = NewC.lshr(ShiftBits);
2034         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2035           isLegalICmpImmediate(NewC.getSExtValue())) {
2036           auto &DL = DAG.getDataLayout();
2037           EVT ShiftTy = DCI.isBeforeLegalize()
2038                             ? getPointerTy(DL)
2039                             : getShiftAmountTy(N0.getValueType(), DL);
2040           EVT CmpTy = N0.getValueType();
2041           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2042                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2043           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2044           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2045         }
2046       }
2047     }
2048   }
2049 
2050   if (isa<ConstantFPSDNode>(N0.getNode())) {
2051     // Constant fold or commute setcc.
2052     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2053     if (O.getNode()) return O;
2054   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2055     // If the RHS of an FP comparison is a constant, simplify it away in
2056     // some cases.
2057     if (CFP->getValueAPF().isNaN()) {
2058       // If an operand is known to be a nan, we can fold it.
2059       switch (ISD::getUnorderedFlavor(Cond)) {
2060       default: llvm_unreachable("Unknown flavor!");
2061       case 0:  // Known false.
2062         return DAG.getConstant(0, dl, VT);
2063       case 1:  // Known true.
2064         return DAG.getConstant(1, dl, VT);
2065       case 2:  // Undefined.
2066         return DAG.getUNDEF(VT);
2067       }
2068     }
2069 
2070     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2071     // constant if knowing that the operand is non-nan is enough.  We prefer to
2072     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2073     // materialize 0.0.
2074     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2075       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2076 
2077     // setcc (fneg x), C -> setcc swap(pred) x, -C
2078     if (N0.getOpcode() == ISD::FNEG) {
2079       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2080       if (DCI.isBeforeLegalizeOps() ||
2081           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2082         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2083         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2084       }
2085     }
2086 
2087     // If the condition is not legal, see if we can find an equivalent one
2088     // which is legal.
2089     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2090       // If the comparison was an awkward floating-point == or != and one of
2091       // the comparison operands is infinity or negative infinity, convert the
2092       // condition to a less-awkward <= or >=.
2093       if (CFP->getValueAPF().isInfinity()) {
2094         if (CFP->getValueAPF().isNegative()) {
2095           if (Cond == ISD::SETOEQ &&
2096               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2097             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2098           if (Cond == ISD::SETUEQ &&
2099               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2100             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2101           if (Cond == ISD::SETUNE &&
2102               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2103             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2104           if (Cond == ISD::SETONE &&
2105               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2106             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2107         } else {
2108           if (Cond == ISD::SETOEQ &&
2109               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2110             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2111           if (Cond == ISD::SETUEQ &&
2112               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2113             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2114           if (Cond == ISD::SETUNE &&
2115               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2116             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2117           if (Cond == ISD::SETONE &&
2118               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2119             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2120         }
2121       }
2122     }
2123   }
2124 
2125   if (N0 == N1) {
2126     // The sext(setcc()) => setcc() optimization relies on the appropriate
2127     // constant being emitted.
2128     uint64_t EqVal = 0;
2129     switch (getBooleanContents(N0.getValueType())) {
2130     case UndefinedBooleanContent:
2131     case ZeroOrOneBooleanContent:
2132       EqVal = ISD::isTrueWhenEqual(Cond);
2133       break;
2134     case ZeroOrNegativeOneBooleanContent:
2135       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
2136       break;
2137     }
2138 
2139     // We can always fold X == X for integer setcc's.
2140     if (N0.getValueType().isInteger()) {
2141       return DAG.getConstant(EqVal, dl, VT);
2142     }
2143     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2144     if (UOF == 2)   // FP operators that are undefined on NaNs.
2145       return DAG.getConstant(EqVal, dl, VT);
2146     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
2147       return DAG.getConstant(EqVal, dl, VT);
2148     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2149     // if it is not already.
2150     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2151     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
2152           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2153       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2154   }
2155 
2156   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2157       N0.getValueType().isInteger()) {
2158     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2159         N0.getOpcode() == ISD::XOR) {
2160       // Simplify (X+Y) == (X+Z) -->  Y == Z
2161       if (N0.getOpcode() == N1.getOpcode()) {
2162         if (N0.getOperand(0) == N1.getOperand(0))
2163           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2164         if (N0.getOperand(1) == N1.getOperand(1))
2165           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2166         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2167           // If X op Y == Y op X, try other combinations.
2168           if (N0.getOperand(0) == N1.getOperand(1))
2169             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2170                                 Cond);
2171           if (N0.getOperand(1) == N1.getOperand(0))
2172             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2173                                 Cond);
2174         }
2175       }
2176 
2177       // If RHS is a legal immediate value for a compare instruction, we need
2178       // to be careful about increasing register pressure needlessly.
2179       bool LegalRHSImm = false;
2180 
2181       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2182         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2183           // Turn (X+C1) == C2 --> X == C2-C1
2184           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2185             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2186                                 DAG.getConstant(RHSC->getAPIntValue()-
2187                                                 LHSR->getAPIntValue(),
2188                                 dl, N0.getValueType()), Cond);
2189           }
2190 
2191           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2192           if (N0.getOpcode() == ISD::XOR)
2193             // If we know that all of the inverted bits are zero, don't bother
2194             // performing the inversion.
2195             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2196               return
2197                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2198                              DAG.getConstant(LHSR->getAPIntValue() ^
2199                                                RHSC->getAPIntValue(),
2200                                              dl, N0.getValueType()),
2201                              Cond);
2202         }
2203 
2204         // Turn (C1-X) == C2 --> X == C1-C2
2205         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2206           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2207             return
2208               DAG.getSetCC(dl, VT, N0.getOperand(1),
2209                            DAG.getConstant(SUBC->getAPIntValue() -
2210                                              RHSC->getAPIntValue(),
2211                                            dl, N0.getValueType()),
2212                            Cond);
2213           }
2214         }
2215 
2216         // Could RHSC fold directly into a compare?
2217         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2218           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2219       }
2220 
2221       // Simplify (X+Z) == X -->  Z == 0
2222       // Don't do this if X is an immediate that can fold into a cmp
2223       // instruction and X+Z has other uses. It could be an induction variable
2224       // chain, and the transform would increase register pressure.
2225       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2226         if (N0.getOperand(0) == N1)
2227           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2228                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2229         if (N0.getOperand(1) == N1) {
2230           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2231             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2232                                 DAG.getConstant(0, dl, N0.getValueType()),
2233                                 Cond);
2234           if (N0.getNode()->hasOneUse()) {
2235             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2236             auto &DL = DAG.getDataLayout();
2237             // (Z-X) == X  --> Z == X<<1
2238             SDValue SH = DAG.getNode(
2239                 ISD::SHL, dl, N1.getValueType(), N1,
2240                 DAG.getConstant(1, dl,
2241                                 getShiftAmountTy(N1.getValueType(), DL)));
2242             if (!DCI.isCalledByLegalizer())
2243               DCI.AddToWorklist(SH.getNode());
2244             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2245           }
2246         }
2247       }
2248     }
2249 
2250     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2251         N1.getOpcode() == ISD::XOR) {
2252       // Simplify  X == (X+Z) -->  Z == 0
2253       if (N1.getOperand(0) == N0)
2254         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2255                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2256       if (N1.getOperand(1) == N0) {
2257         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2258           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2259                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2260         if (N1.getNode()->hasOneUse()) {
2261           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2262           auto &DL = DAG.getDataLayout();
2263           // X == (Z-X)  --> X<<1 == Z
2264           SDValue SH = DAG.getNode(
2265               ISD::SHL, dl, N1.getValueType(), N0,
2266               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2267           if (!DCI.isCalledByLegalizer())
2268             DCI.AddToWorklist(SH.getNode());
2269           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2270         }
2271       }
2272     }
2273 
2274     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2275       return V;
2276   }
2277 
2278   // Fold away ALL boolean setcc's.
2279   SDValue Temp;
2280   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2281     switch (Cond) {
2282     default: llvm_unreachable("Unknown integer setcc!");
2283     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2284       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2285       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2286       if (!DCI.isCalledByLegalizer())
2287         DCI.AddToWorklist(Temp.getNode());
2288       break;
2289     case ISD::SETNE:  // X != Y   -->  (X^Y)
2290       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2291       break;
2292     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2293     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2294       Temp = DAG.getNOT(dl, N0, MVT::i1);
2295       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2296       if (!DCI.isCalledByLegalizer())
2297         DCI.AddToWorklist(Temp.getNode());
2298       break;
2299     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2300     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2301       Temp = DAG.getNOT(dl, N1, MVT::i1);
2302       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2303       if (!DCI.isCalledByLegalizer())
2304         DCI.AddToWorklist(Temp.getNode());
2305       break;
2306     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2307     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2308       Temp = DAG.getNOT(dl, N0, MVT::i1);
2309       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2310       if (!DCI.isCalledByLegalizer())
2311         DCI.AddToWorklist(Temp.getNode());
2312       break;
2313     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2314     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2315       Temp = DAG.getNOT(dl, N1, MVT::i1);
2316       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2317       break;
2318     }
2319     if (VT != MVT::i1) {
2320       if (!DCI.isCalledByLegalizer())
2321         DCI.AddToWorklist(N0.getNode());
2322       // FIXME: If running after legalize, we probably can't do this.
2323       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2324     }
2325     return N0;
2326   }
2327 
2328   // Could not fold it.
2329   return SDValue();
2330 }
2331 
2332 /// Returns true (and the GlobalValue and the offset) if the node is a
2333 /// GlobalAddress + offset.
2334 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2335                                     int64_t &Offset) const {
2336   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2337     GA = GASD->getGlobal();
2338     Offset += GASD->getOffset();
2339     return true;
2340   }
2341 
2342   if (N->getOpcode() == ISD::ADD) {
2343     SDValue N1 = N->getOperand(0);
2344     SDValue N2 = N->getOperand(1);
2345     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2346       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2347         Offset += V->getSExtValue();
2348         return true;
2349       }
2350     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2351       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2352         Offset += V->getSExtValue();
2353         return true;
2354       }
2355     }
2356   }
2357 
2358   return false;
2359 }
2360 
2361 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2362                                           DAGCombinerInfo &DCI) const {
2363   // Default implementation: no optimization.
2364   return SDValue();
2365 }
2366 
2367 //===----------------------------------------------------------------------===//
2368 //  Inline Assembler Implementation Methods
2369 //===----------------------------------------------------------------------===//
2370 
2371 TargetLowering::ConstraintType
2372 TargetLowering::getConstraintType(StringRef Constraint) const {
2373   unsigned S = Constraint.size();
2374 
2375   if (S == 1) {
2376     switch (Constraint[0]) {
2377     default: break;
2378     case 'r': return C_RegisterClass;
2379     case 'm':    // memory
2380     case 'o':    // offsetable
2381     case 'V':    // not offsetable
2382       return C_Memory;
2383     case 'i':    // Simple Integer or Relocatable Constant
2384     case 'n':    // Simple Integer
2385     case 'E':    // Floating Point Constant
2386     case 'F':    // Floating Point Constant
2387     case 's':    // Relocatable Constant
2388     case 'p':    // Address.
2389     case 'X':    // Allow ANY value.
2390     case 'I':    // Target registers.
2391     case 'J':
2392     case 'K':
2393     case 'L':
2394     case 'M':
2395     case 'N':
2396     case 'O':
2397     case 'P':
2398     case '<':
2399     case '>':
2400       return C_Other;
2401     }
2402   }
2403 
2404   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2405     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2406       return C_Memory;
2407     return C_Register;
2408   }
2409   return C_Unknown;
2410 }
2411 
2412 /// Try to replace an X constraint, which matches anything, with another that
2413 /// has more specific requirements based on the type of the corresponding
2414 /// operand.
2415 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2416   if (ConstraintVT.isInteger())
2417     return "r";
2418   if (ConstraintVT.isFloatingPoint())
2419     return "f";      // works for many targets
2420   return nullptr;
2421 }
2422 
2423 /// Lower the specified operand into the Ops vector.
2424 /// If it is invalid, don't add anything to Ops.
2425 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2426                                                   std::string &Constraint,
2427                                                   std::vector<SDValue> &Ops,
2428                                                   SelectionDAG &DAG) const {
2429 
2430   if (Constraint.length() > 1) return;
2431 
2432   char ConstraintLetter = Constraint[0];
2433   switch (ConstraintLetter) {
2434   default: break;
2435   case 'X':     // Allows any operand; labels (basic block) use this.
2436     if (Op.getOpcode() == ISD::BasicBlock) {
2437       Ops.push_back(Op);
2438       return;
2439     }
2440     LLVM_FALLTHROUGH;
2441   case 'i':    // Simple Integer or Relocatable Constant
2442   case 'n':    // Simple Integer
2443   case 's': {  // Relocatable Constant
2444     // These operands are interested in values of the form (GV+C), where C may
2445     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2446     // is possible and fine if either GV or C are missing.
2447     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2448     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2449 
2450     // If we have "(add GV, C)", pull out GV/C
2451     if (Op.getOpcode() == ISD::ADD) {
2452       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2453       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2454       if (!C || !GA) {
2455         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2456         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2457       }
2458       if (!C || !GA) {
2459         C = nullptr;
2460         GA = nullptr;
2461       }
2462     }
2463 
2464     // If we find a valid operand, map to the TargetXXX version so that the
2465     // value itself doesn't get selected.
2466     if (GA) {   // Either &GV   or   &GV+C
2467       if (ConstraintLetter != 'n') {
2468         int64_t Offs = GA->getOffset();
2469         if (C) Offs += C->getZExtValue();
2470         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2471                                                  C ? SDLoc(C) : SDLoc(),
2472                                                  Op.getValueType(), Offs));
2473       }
2474       return;
2475     }
2476     if (C) {   // just C, no GV.
2477       // Simple constants are not allowed for 's'.
2478       if (ConstraintLetter != 's') {
2479         // gcc prints these as sign extended.  Sign extend value to 64 bits
2480         // now; without this it would get ZExt'd later in
2481         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2482         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2483                                             SDLoc(C), MVT::i64));
2484       }
2485       return;
2486     }
2487     break;
2488   }
2489   }
2490 }
2491 
2492 std::pair<unsigned, const TargetRegisterClass *>
2493 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2494                                              StringRef Constraint,
2495                                              MVT VT) const {
2496   if (Constraint.empty() || Constraint[0] != '{')
2497     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2498   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2499 
2500   // Remove the braces from around the name.
2501   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2502 
2503   std::pair<unsigned, const TargetRegisterClass*> R =
2504     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2505 
2506   // Figure out which register class contains this reg.
2507   for (const TargetRegisterClass *RC : RI->regclasses()) {
2508     // If none of the value types for this register class are valid, we
2509     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2510     if (!isLegalRC(RC))
2511       continue;
2512 
2513     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2514          I != E; ++I) {
2515       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2516         std::pair<unsigned, const TargetRegisterClass*> S =
2517           std::make_pair(*I, RC);
2518 
2519         // If this register class has the requested value type, return it,
2520         // otherwise keep searching and return the first class found
2521         // if no other is found which explicitly has the requested type.
2522         if (RC->hasType(VT))
2523           return S;
2524         else if (!R.second)
2525           R = S;
2526       }
2527     }
2528   }
2529 
2530   return R;
2531 }
2532 
2533 //===----------------------------------------------------------------------===//
2534 // Constraint Selection.
2535 
2536 /// Return true of this is an input operand that is a matching constraint like
2537 /// "4".
2538 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2539   assert(!ConstraintCode.empty() && "No known constraint!");
2540   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2541 }
2542 
2543 /// If this is an input matching constraint, this method returns the output
2544 /// operand it matches.
2545 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2546   assert(!ConstraintCode.empty() && "No known constraint!");
2547   return atoi(ConstraintCode.c_str());
2548 }
2549 
2550 /// Split up the constraint string from the inline assembly value into the
2551 /// specific constraints and their prefixes, and also tie in the associated
2552 /// operand values.
2553 /// If this returns an empty vector, and if the constraint string itself
2554 /// isn't empty, there was an error parsing.
2555 TargetLowering::AsmOperandInfoVector
2556 TargetLowering::ParseConstraints(const DataLayout &DL,
2557                                  const TargetRegisterInfo *TRI,
2558                                  ImmutableCallSite CS) const {
2559   /// Information about all of the constraints.
2560   AsmOperandInfoVector ConstraintOperands;
2561   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2562   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2563 
2564   // Do a prepass over the constraints, canonicalizing them, and building up the
2565   // ConstraintOperands list.
2566   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2567   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2568 
2569   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2570     ConstraintOperands.emplace_back(std::move(CI));
2571     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2572 
2573     // Update multiple alternative constraint count.
2574     if (OpInfo.multipleAlternatives.size() > maCount)
2575       maCount = OpInfo.multipleAlternatives.size();
2576 
2577     OpInfo.ConstraintVT = MVT::Other;
2578 
2579     // Compute the value type for each operand.
2580     switch (OpInfo.Type) {
2581     case InlineAsm::isOutput:
2582       // Indirect outputs just consume an argument.
2583       if (OpInfo.isIndirect) {
2584         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2585         break;
2586       }
2587 
2588       // The return value of the call is this value.  As such, there is no
2589       // corresponding argument.
2590       assert(!CS.getType()->isVoidTy() &&
2591              "Bad inline asm!");
2592       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2593         OpInfo.ConstraintVT =
2594             getSimpleValueType(DL, STy->getElementType(ResNo));
2595       } else {
2596         assert(ResNo == 0 && "Asm only has one result!");
2597         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2598       }
2599       ++ResNo;
2600       break;
2601     case InlineAsm::isInput:
2602       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2603       break;
2604     case InlineAsm::isClobber:
2605       // Nothing to do.
2606       break;
2607     }
2608 
2609     if (OpInfo.CallOperandVal) {
2610       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2611       if (OpInfo.isIndirect) {
2612         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2613         if (!PtrTy)
2614           report_fatal_error("Indirect operand for inline asm not a pointer!");
2615         OpTy = PtrTy->getElementType();
2616       }
2617 
2618       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2619       if (StructType *STy = dyn_cast<StructType>(OpTy))
2620         if (STy->getNumElements() == 1)
2621           OpTy = STy->getElementType(0);
2622 
2623       // If OpTy is not a single value, it may be a struct/union that we
2624       // can tile with integers.
2625       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2626         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2627         switch (BitSize) {
2628         default: break;
2629         case 1:
2630         case 8:
2631         case 16:
2632         case 32:
2633         case 64:
2634         case 128:
2635           OpInfo.ConstraintVT =
2636             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2637           break;
2638         }
2639       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2640         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2641         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2642       } else {
2643         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2644       }
2645     }
2646   }
2647 
2648   // If we have multiple alternative constraints, select the best alternative.
2649   if (!ConstraintOperands.empty()) {
2650     if (maCount) {
2651       unsigned bestMAIndex = 0;
2652       int bestWeight = -1;
2653       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2654       int weight = -1;
2655       unsigned maIndex;
2656       // Compute the sums of the weights for each alternative, keeping track
2657       // of the best (highest weight) one so far.
2658       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2659         int weightSum = 0;
2660         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2661             cIndex != eIndex; ++cIndex) {
2662           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2663           if (OpInfo.Type == InlineAsm::isClobber)
2664             continue;
2665 
2666           // If this is an output operand with a matching input operand,
2667           // look up the matching input. If their types mismatch, e.g. one
2668           // is an integer, the other is floating point, or their sizes are
2669           // different, flag it as an maCantMatch.
2670           if (OpInfo.hasMatchingInput()) {
2671             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2672             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2673               if ((OpInfo.ConstraintVT.isInteger() !=
2674                    Input.ConstraintVT.isInteger()) ||
2675                   (OpInfo.ConstraintVT.getSizeInBits() !=
2676                    Input.ConstraintVT.getSizeInBits())) {
2677                 weightSum = -1;  // Can't match.
2678                 break;
2679               }
2680             }
2681           }
2682           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2683           if (weight == -1) {
2684             weightSum = -1;
2685             break;
2686           }
2687           weightSum += weight;
2688         }
2689         // Update best.
2690         if (weightSum > bestWeight) {
2691           bestWeight = weightSum;
2692           bestMAIndex = maIndex;
2693         }
2694       }
2695 
2696       // Now select chosen alternative in each constraint.
2697       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2698           cIndex != eIndex; ++cIndex) {
2699         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2700         if (cInfo.Type == InlineAsm::isClobber)
2701           continue;
2702         cInfo.selectAlternative(bestMAIndex);
2703       }
2704     }
2705   }
2706 
2707   // Check and hook up tied operands, choose constraint code to use.
2708   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2709       cIndex != eIndex; ++cIndex) {
2710     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2711 
2712     // If this is an output operand with a matching input operand, look up the
2713     // matching input. If their types mismatch, e.g. one is an integer, the
2714     // other is floating point, or their sizes are different, flag it as an
2715     // error.
2716     if (OpInfo.hasMatchingInput()) {
2717       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2718 
2719       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2720         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2721             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2722                                          OpInfo.ConstraintVT);
2723         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2724             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2725                                          Input.ConstraintVT);
2726         if ((OpInfo.ConstraintVT.isInteger() !=
2727              Input.ConstraintVT.isInteger()) ||
2728             (MatchRC.second != InputRC.second)) {
2729           report_fatal_error("Unsupported asm: input constraint"
2730                              " with a matching output constraint of"
2731                              " incompatible type!");
2732         }
2733       }
2734     }
2735   }
2736 
2737   return ConstraintOperands;
2738 }
2739 
2740 /// Return an integer indicating how general CT is.
2741 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2742   switch (CT) {
2743   case TargetLowering::C_Other:
2744   case TargetLowering::C_Unknown:
2745     return 0;
2746   case TargetLowering::C_Register:
2747     return 1;
2748   case TargetLowering::C_RegisterClass:
2749     return 2;
2750   case TargetLowering::C_Memory:
2751     return 3;
2752   }
2753   llvm_unreachable("Invalid constraint type");
2754 }
2755 
2756 /// Examine constraint type and operand type and determine a weight value.
2757 /// This object must already have been set up with the operand type
2758 /// and the current alternative constraint selected.
2759 TargetLowering::ConstraintWeight
2760   TargetLowering::getMultipleConstraintMatchWeight(
2761     AsmOperandInfo &info, int maIndex) const {
2762   InlineAsm::ConstraintCodeVector *rCodes;
2763   if (maIndex >= (int)info.multipleAlternatives.size())
2764     rCodes = &info.Codes;
2765   else
2766     rCodes = &info.multipleAlternatives[maIndex].Codes;
2767   ConstraintWeight BestWeight = CW_Invalid;
2768 
2769   // Loop over the options, keeping track of the most general one.
2770   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2771     ConstraintWeight weight =
2772       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2773     if (weight > BestWeight)
2774       BestWeight = weight;
2775   }
2776 
2777   return BestWeight;
2778 }
2779 
2780 /// Examine constraint type and operand type and determine a weight value.
2781 /// This object must already have been set up with the operand type
2782 /// and the current alternative constraint selected.
2783 TargetLowering::ConstraintWeight
2784   TargetLowering::getSingleConstraintMatchWeight(
2785     AsmOperandInfo &info, const char *constraint) const {
2786   ConstraintWeight weight = CW_Invalid;
2787   Value *CallOperandVal = info.CallOperandVal;
2788     // If we don't have a value, we can't do a match,
2789     // but allow it at the lowest weight.
2790   if (!CallOperandVal)
2791     return CW_Default;
2792   // Look at the constraint type.
2793   switch (*constraint) {
2794     case 'i': // immediate integer.
2795     case 'n': // immediate integer with a known value.
2796       if (isa<ConstantInt>(CallOperandVal))
2797         weight = CW_Constant;
2798       break;
2799     case 's': // non-explicit intregal immediate.
2800       if (isa<GlobalValue>(CallOperandVal))
2801         weight = CW_Constant;
2802       break;
2803     case 'E': // immediate float if host format.
2804     case 'F': // immediate float.
2805       if (isa<ConstantFP>(CallOperandVal))
2806         weight = CW_Constant;
2807       break;
2808     case '<': // memory operand with autodecrement.
2809     case '>': // memory operand with autoincrement.
2810     case 'm': // memory operand.
2811     case 'o': // offsettable memory operand
2812     case 'V': // non-offsettable memory operand
2813       weight = CW_Memory;
2814       break;
2815     case 'r': // general register.
2816     case 'g': // general register, memory operand or immediate integer.
2817               // note: Clang converts "g" to "imr".
2818       if (CallOperandVal->getType()->isIntegerTy())
2819         weight = CW_Register;
2820       break;
2821     case 'X': // any operand.
2822     default:
2823       weight = CW_Default;
2824       break;
2825   }
2826   return weight;
2827 }
2828 
2829 /// If there are multiple different constraints that we could pick for this
2830 /// operand (e.g. "imr") try to pick the 'best' one.
2831 /// This is somewhat tricky: constraints fall into four classes:
2832 ///    Other         -> immediates and magic values
2833 ///    Register      -> one specific register
2834 ///    RegisterClass -> a group of regs
2835 ///    Memory        -> memory
2836 /// Ideally, we would pick the most specific constraint possible: if we have
2837 /// something that fits into a register, we would pick it.  The problem here
2838 /// is that if we have something that could either be in a register or in
2839 /// memory that use of the register could cause selection of *other*
2840 /// operands to fail: they might only succeed if we pick memory.  Because of
2841 /// this the heuristic we use is:
2842 ///
2843 ///  1) If there is an 'other' constraint, and if the operand is valid for
2844 ///     that constraint, use it.  This makes us take advantage of 'i'
2845 ///     constraints when available.
2846 ///  2) Otherwise, pick the most general constraint present.  This prefers
2847 ///     'm' over 'r', for example.
2848 ///
2849 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2850                              const TargetLowering &TLI,
2851                              SDValue Op, SelectionDAG *DAG) {
2852   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2853   unsigned BestIdx = 0;
2854   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2855   int BestGenerality = -1;
2856 
2857   // Loop over the options, keeping track of the most general one.
2858   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2859     TargetLowering::ConstraintType CType =
2860       TLI.getConstraintType(OpInfo.Codes[i]);
2861 
2862     // If this is an 'other' constraint, see if the operand is valid for it.
2863     // For example, on X86 we might have an 'rI' constraint.  If the operand
2864     // is an integer in the range [0..31] we want to use I (saving a load
2865     // of a register), otherwise we must use 'r'.
2866     if (CType == TargetLowering::C_Other && Op.getNode()) {
2867       assert(OpInfo.Codes[i].size() == 1 &&
2868              "Unhandled multi-letter 'other' constraint");
2869       std::vector<SDValue> ResultOps;
2870       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2871                                        ResultOps, *DAG);
2872       if (!ResultOps.empty()) {
2873         BestType = CType;
2874         BestIdx = i;
2875         break;
2876       }
2877     }
2878 
2879     // Things with matching constraints can only be registers, per gcc
2880     // documentation.  This mainly affects "g" constraints.
2881     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2882       continue;
2883 
2884     // This constraint letter is more general than the previous one, use it.
2885     int Generality = getConstraintGenerality(CType);
2886     if (Generality > BestGenerality) {
2887       BestType = CType;
2888       BestIdx = i;
2889       BestGenerality = Generality;
2890     }
2891   }
2892 
2893   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2894   OpInfo.ConstraintType = BestType;
2895 }
2896 
2897 /// Determines the constraint code and constraint type to use for the specific
2898 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2899 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2900                                             SDValue Op,
2901                                             SelectionDAG *DAG) const {
2902   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2903 
2904   // Single-letter constraints ('r') are very common.
2905   if (OpInfo.Codes.size() == 1) {
2906     OpInfo.ConstraintCode = OpInfo.Codes[0];
2907     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2908   } else {
2909     ChooseConstraint(OpInfo, *this, Op, DAG);
2910   }
2911 
2912   // 'X' matches anything.
2913   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2914     // Labels and constants are handled elsewhere ('X' is the only thing
2915     // that matches labels).  For Functions, the type here is the type of
2916     // the result, which is not what we want to look at; leave them alone.
2917     Value *v = OpInfo.CallOperandVal;
2918     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2919       OpInfo.CallOperandVal = v;
2920       return;
2921     }
2922 
2923     // Otherwise, try to resolve it to something we know about by looking at
2924     // the actual operand type.
2925     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2926       OpInfo.ConstraintCode = Repl;
2927       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2928     }
2929   }
2930 }
2931 
2932 /// \brief Given an exact SDIV by a constant, create a multiplication
2933 /// with the multiplicative inverse of the constant.
2934 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2935                               const SDLoc &dl, SelectionDAG &DAG,
2936                               std::vector<SDNode *> &Created) {
2937   assert(d != 0 && "Division by zero!");
2938 
2939   // Shift the value upfront if it is even, so the LSB is one.
2940   unsigned ShAmt = d.countTrailingZeros();
2941   if (ShAmt) {
2942     // TODO: For UDIV use SRL instead of SRA.
2943     SDValue Amt =
2944         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2945                                                         DAG.getDataLayout()));
2946     SDNodeFlags Flags;
2947     Flags.setExact(true);
2948     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2949     Created.push_back(Op1.getNode());
2950     d = d.ashr(ShAmt);
2951   }
2952 
2953   // Calculate the multiplicative inverse, using Newton's method.
2954   APInt t, xn = d;
2955   while ((t = d*xn) != 1)
2956     xn *= APInt(d.getBitWidth(), 2) - t;
2957 
2958   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2959   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2960   Created.push_back(Mul.getNode());
2961   return Mul;
2962 }
2963 
2964 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2965                                       SelectionDAG &DAG,
2966                                       std::vector<SDNode *> *Created) const {
2967   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2968   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2969   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2970     return SDValue(N,0); // Lower SDIV as SDIV
2971   return SDValue();
2972 }
2973 
2974 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2975 /// return a DAG expression to select that will generate the same value by
2976 /// multiplying by a magic number.
2977 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2978 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2979                                   SelectionDAG &DAG, bool IsAfterLegalization,
2980                                   std::vector<SDNode *> *Created) const {
2981   assert(Created && "No vector to hold sdiv ops.");
2982 
2983   EVT VT = N->getValueType(0);
2984   SDLoc dl(N);
2985 
2986   // Check to see if we can do this.
2987   // FIXME: We should be more aggressive here.
2988   if (!isTypeLegal(VT))
2989     return SDValue();
2990 
2991   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2992   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2993     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2994 
2995   APInt::ms magics = Divisor.magic();
2996 
2997   // Multiply the numerator (operand 0) by the magic value
2998   // FIXME: We should support doing a MUL in a wider type
2999   SDValue Q;
3000   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
3001                             isOperationLegalOrCustom(ISD::MULHS, VT))
3002     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
3003                     DAG.getConstant(magics.m, dl, VT));
3004   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
3005                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
3006     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
3007                               N->getOperand(0),
3008                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3009   else
3010     return SDValue();       // No mulhs or equvialent
3011   // If d > 0 and m < 0, add the numerator
3012   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3013     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
3014     Created->push_back(Q.getNode());
3015   }
3016   // If d < 0 and m > 0, subtract the numerator.
3017   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3018     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
3019     Created->push_back(Q.getNode());
3020   }
3021   auto &DL = DAG.getDataLayout();
3022   // Shift right algebraic if shift value is nonzero
3023   if (magics.s > 0) {
3024     Q = DAG.getNode(
3025         ISD::SRA, dl, VT, Q,
3026         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3027     Created->push_back(Q.getNode());
3028   }
3029   // Extract the sign bit and add it to the quotient
3030   SDValue T =
3031       DAG.getNode(ISD::SRL, dl, VT, Q,
3032                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
3033                                   getShiftAmountTy(Q.getValueType(), DL)));
3034   Created->push_back(T.getNode());
3035   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3036 }
3037 
3038 /// \brief Given an ISD::UDIV node expressing a divide by constant,
3039 /// return a DAG expression to select that will generate the same value by
3040 /// multiplying by a magic number.
3041 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3042 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
3043                                   SelectionDAG &DAG, bool IsAfterLegalization,
3044                                   std::vector<SDNode *> *Created) const {
3045   assert(Created && "No vector to hold udiv ops.");
3046 
3047   EVT VT = N->getValueType(0);
3048   SDLoc dl(N);
3049   auto &DL = DAG.getDataLayout();
3050 
3051   // Check to see if we can do this.
3052   // FIXME: We should be more aggressive here.
3053   if (!isTypeLegal(VT))
3054     return SDValue();
3055 
3056   // FIXME: We should use a narrower constant when the upper
3057   // bits are known to be zero.
3058   APInt::mu magics = Divisor.magicu();
3059 
3060   SDValue Q = N->getOperand(0);
3061 
3062   // If the divisor is even, we can avoid using the expensive fixup by shifting
3063   // the divided value upfront.
3064   if (magics.a != 0 && !Divisor[0]) {
3065     unsigned Shift = Divisor.countTrailingZeros();
3066     Q = DAG.getNode(
3067         ISD::SRL, dl, VT, Q,
3068         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
3069     Created->push_back(Q.getNode());
3070 
3071     // Get magic number for the shifted divisor.
3072     magics = Divisor.lshr(Shift).magicu(Shift);
3073     assert(magics.a == 0 && "Should use cheap fixup now");
3074   }
3075 
3076   // Multiply the numerator (operand 0) by the magic value
3077   // FIXME: We should support doing a MUL in a wider type
3078   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
3079                             isOperationLegalOrCustom(ISD::MULHU, VT))
3080     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
3081   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
3082                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
3083     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
3084                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
3085   else
3086     return SDValue();       // No mulhu or equivalent
3087 
3088   Created->push_back(Q.getNode());
3089 
3090   if (magics.a == 0) {
3091     assert(magics.s < Divisor.getBitWidth() &&
3092            "We shouldn't generate an undefined shift!");
3093     return DAG.getNode(
3094         ISD::SRL, dl, VT, Q,
3095         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
3096   } else {
3097     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
3098     Created->push_back(NPQ.getNode());
3099     NPQ = DAG.getNode(
3100         ISD::SRL, dl, VT, NPQ,
3101         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
3102     Created->push_back(NPQ.getNode());
3103     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3104     Created->push_back(NPQ.getNode());
3105     return DAG.getNode(
3106         ISD::SRL, dl, VT, NPQ,
3107         DAG.getConstant(magics.s - 1, dl,
3108                         getShiftAmountTy(NPQ.getValueType(), DL)));
3109   }
3110 }
3111 
3112 bool TargetLowering::
3113 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3114   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3115     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3116                                 "be a constant integer");
3117     return true;
3118   }
3119 
3120   return false;
3121 }
3122 
3123 //===----------------------------------------------------------------------===//
3124 // Legalization Utilities
3125 //===----------------------------------------------------------------------===//
3126 
3127 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3128                                     SDValue LHS, SDValue RHS,
3129                                     SmallVectorImpl<SDValue> &Result,
3130                                     EVT HiLoVT, SelectionDAG &DAG,
3131                                     MulExpansionKind Kind, SDValue LL,
3132                                     SDValue LH, SDValue RL, SDValue RH) const {
3133   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3134          Opcode == ISD::SMUL_LOHI);
3135 
3136   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3137                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3138   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3139                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3140   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3141                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3142   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3143                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3144 
3145   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3146     return false;
3147 
3148   unsigned OuterBitSize = VT.getScalarSizeInBits();
3149   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3150   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3151   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3152 
3153   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3154   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3155          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3156 
3157   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3158   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3159                           bool Signed) -> bool {
3160     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3161       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3162       Hi = SDValue(Lo.getNode(), 1);
3163       return true;
3164     }
3165     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3166       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3167       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3168       return true;
3169     }
3170     return false;
3171   };
3172 
3173   SDValue Lo, Hi;
3174 
3175   if (!LL.getNode() && !RL.getNode() &&
3176       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3177     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3178     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3179   }
3180 
3181   if (!LL.getNode())
3182     return false;
3183 
3184   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3185   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3186       DAG.MaskedValueIsZero(RHS, HighMask)) {
3187     // The inputs are both zero-extended.
3188     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3189       Result.push_back(Lo);
3190       Result.push_back(Hi);
3191       if (Opcode != ISD::MUL) {
3192         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3193         Result.push_back(Zero);
3194         Result.push_back(Zero);
3195       }
3196       return true;
3197     }
3198   }
3199 
3200   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3201       RHSSB > InnerBitSize) {
3202     // The input values are both sign-extended.
3203     // TODO non-MUL case?
3204     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3205       Result.push_back(Lo);
3206       Result.push_back(Hi);
3207       return true;
3208     }
3209   }
3210 
3211   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3212   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3213   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3214     // FIXME getShiftAmountTy does not always return a sensible result when VT
3215     // is an illegal type, and so the type may be too small to fit the shift
3216     // amount. Override it with i32. The shift will have to be legalized.
3217     ShiftAmountTy = MVT::i32;
3218   }
3219   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
3220 
3221   if (!LH.getNode() && !RH.getNode() &&
3222       isOperationLegalOrCustom(ISD::SRL, VT) &&
3223       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3224     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
3225     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3226     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
3227     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3228   }
3229 
3230   if (!LH.getNode())
3231     return false;
3232 
3233   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
3234     return false;
3235 
3236   Result.push_back(Lo);
3237 
3238   if (Opcode == ISD::MUL) {
3239     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3240     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3241     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3242     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3243     Result.push_back(Hi);
3244     return true;
3245   }
3246 
3247   // Compute the full width result.
3248   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
3249     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
3250     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3251     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
3252     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
3253   };
3254 
3255   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
3256   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
3257     return false;
3258 
3259   // This is effectively the add part of a multiply-add of half-sized operands,
3260   // so it cannot overflow.
3261   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3262 
3263   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
3264     return false;
3265 
3266   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
3267                      Merge(Lo, Hi));
3268 
3269   SDValue Carry = Next.getValue(1);
3270   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3271   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3272 
3273   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
3274     return false;
3275 
3276   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3277   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
3278                    Carry);
3279   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
3280 
3281   if (Opcode == ISD::SMUL_LOHI) {
3282     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3283                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
3284     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
3285 
3286     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
3287                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
3288     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
3289   }
3290 
3291   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3292   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
3293   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
3294   return true;
3295 }
3296 
3297 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
3298                                SelectionDAG &DAG, MulExpansionKind Kind,
3299                                SDValue LL, SDValue LH, SDValue RL,
3300                                SDValue RH) const {
3301   SmallVector<SDValue, 2> Result;
3302   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
3303                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
3304                            DAG, Kind, LL, LH, RL, RH);
3305   if (Ok) {
3306     assert(Result.size() == 2);
3307     Lo = Result[0];
3308     Hi = Result[1];
3309   }
3310   return Ok;
3311 }
3312 
3313 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3314                                SelectionDAG &DAG) const {
3315   EVT VT = Node->getOperand(0).getValueType();
3316   EVT NVT = Node->getValueType(0);
3317   SDLoc dl(SDValue(Node, 0));
3318 
3319   // FIXME: Only f32 to i64 conversions are supported.
3320   if (VT != MVT::f32 || NVT != MVT::i64)
3321     return false;
3322 
3323   // Expand f32 -> i64 conversion
3324   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3325   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3326   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3327                                 VT.getSizeInBits());
3328   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3329   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3330   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3331   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3332                                      IntVT);
3333   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3334   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3335 
3336   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3337 
3338   auto &DL = DAG.getDataLayout();
3339   SDValue ExponentBits = DAG.getNode(
3340       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3341       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3342   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3343 
3344   SDValue Sign = DAG.getNode(
3345       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3346       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3347   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3348 
3349   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3350       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3351       DAG.getConstant(0x00800000, dl, IntVT));
3352 
3353   R = DAG.getZExtOrTrunc(R, dl, NVT);
3354 
3355   R = DAG.getSelectCC(
3356       dl, Exponent, ExponentLoBit,
3357       DAG.getNode(ISD::SHL, dl, NVT, R,
3358                   DAG.getZExtOrTrunc(
3359                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3360                       dl, getShiftAmountTy(IntVT, DL))),
3361       DAG.getNode(ISD::SRL, dl, NVT, R,
3362                   DAG.getZExtOrTrunc(
3363                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3364                       dl, getShiftAmountTy(IntVT, DL))),
3365       ISD::SETGT);
3366 
3367   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3368       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3369       Sign);
3370 
3371   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3372       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3373   return true;
3374 }
3375 
3376 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3377                                             SelectionDAG &DAG) const {
3378   SDLoc SL(LD);
3379   SDValue Chain = LD->getChain();
3380   SDValue BasePTR = LD->getBasePtr();
3381   EVT SrcVT = LD->getMemoryVT();
3382   ISD::LoadExtType ExtType = LD->getExtensionType();
3383 
3384   unsigned NumElem = SrcVT.getVectorNumElements();
3385 
3386   EVT SrcEltVT = SrcVT.getScalarType();
3387   EVT DstEltVT = LD->getValueType(0).getScalarType();
3388 
3389   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3390   assert(SrcEltVT.isByteSized());
3391 
3392   EVT PtrVT = BasePTR.getValueType();
3393 
3394   SmallVector<SDValue, 8> Vals;
3395   SmallVector<SDValue, 8> LoadChains;
3396 
3397   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3398     SDValue ScalarLoad =
3399         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
3400                        LD->getPointerInfo().getWithOffset(Idx * Stride),
3401                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
3402                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3403 
3404     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3405                           DAG.getConstant(Stride, SL, PtrVT));
3406 
3407     Vals.push_back(ScalarLoad.getValue(0));
3408     LoadChains.push_back(ScalarLoad.getValue(1));
3409   }
3410 
3411   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3412   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
3413 
3414   return DAG.getMergeValues({ Value, NewChain }, SL);
3415 }
3416 
3417 // FIXME: This relies on each element having a byte size, otherwise the stride
3418 // is 0 and just overwrites the same location. ExpandStore currently expects
3419 // this broken behavior.
3420 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3421                                              SelectionDAG &DAG) const {
3422   SDLoc SL(ST);
3423 
3424   SDValue Chain = ST->getChain();
3425   SDValue BasePtr = ST->getBasePtr();
3426   SDValue Value = ST->getValue();
3427   EVT StVT = ST->getMemoryVT();
3428 
3429   // The type of the data we want to save
3430   EVT RegVT = Value.getValueType();
3431   EVT RegSclVT = RegVT.getScalarType();
3432 
3433   // The type of data as saved in memory.
3434   EVT MemSclVT = StVT.getScalarType();
3435 
3436   EVT PtrVT = BasePtr.getValueType();
3437 
3438   // Store Stride in bytes
3439   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3440   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3441   unsigned NumElem = StVT.getVectorNumElements();
3442 
3443   // Extract each of the elements from the original vector and save them into
3444   // memory individually.
3445   SmallVector<SDValue, 8> Stores;
3446   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3447     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3448                               DAG.getConstant(Idx, SL, IdxVT));
3449 
3450     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3451                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3452 
3453     // This scalar TruncStore may be illegal, but we legalize it later.
3454     SDValue Store = DAG.getTruncStore(
3455         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
3456         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
3457         ST->getMemOperand()->getFlags(), ST->getAAInfo());
3458 
3459     Stores.push_back(Store);
3460   }
3461 
3462   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3463 }
3464 
3465 std::pair<SDValue, SDValue>
3466 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3467   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3468          "unaligned indexed loads not implemented!");
3469   SDValue Chain = LD->getChain();
3470   SDValue Ptr = LD->getBasePtr();
3471   EVT VT = LD->getValueType(0);
3472   EVT LoadedVT = LD->getMemoryVT();
3473   SDLoc dl(LD);
3474   if (VT.isFloatingPoint() || VT.isVector()) {
3475     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3476     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3477       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3478         // Scalarize the load and let the individual components be handled.
3479         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3480         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3481       }
3482 
3483       // Expand to a (misaligned) integer load of the same size,
3484       // then bitconvert to floating point or vector.
3485       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3486                                     LD->getMemOperand());
3487       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3488       if (LoadedVT != VT)
3489         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3490                              ISD::ANY_EXTEND, dl, VT, Result);
3491 
3492       return std::make_pair(Result, newLoad.getValue(1));
3493     }
3494 
3495     // Copy the value to a (aligned) stack slot using (unaligned) integer
3496     // loads and stores, then do a (aligned) load from the stack slot.
3497     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3498     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3499     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3500     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3501 
3502     // Make sure the stack slot is also aligned for the register type.
3503     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3504 
3505     SmallVector<SDValue, 8> Stores;
3506     SDValue StackPtr = StackBase;
3507     unsigned Offset = 0;
3508 
3509     EVT PtrVT = Ptr.getValueType();
3510     EVT StackPtrVT = StackPtr.getValueType();
3511 
3512     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3513     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3514 
3515     // Do all but one copies using the full register width.
3516     for (unsigned i = 1; i < NumRegs; i++) {
3517       // Load one integer register's worth from the original location.
3518       SDValue Load = DAG.getLoad(
3519           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
3520           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
3521           LD->getAAInfo());
3522       // Follow the load with a store to the stack slot.  Remember the store.
3523       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3524                                     MachinePointerInfo()));
3525       // Increment the pointers.
3526       Offset += RegBytes;
3527       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3528       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3529                              StackPtrIncrement);
3530     }
3531 
3532     // The last copy may be partial.  Do an extending load.
3533     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3534                                   8 * (LoadedBytes - Offset));
3535     SDValue Load =
3536         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3537                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
3538                        MinAlign(LD->getAlignment(), Offset),
3539                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
3540     // Follow the load with a store to the stack slot.  Remember the store.
3541     // On big-endian machines this requires a truncating store to ensure
3542     // that the bits end up in the right place.
3543     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3544                                        MachinePointerInfo(), MemVT));
3545 
3546     // The order of the stores doesn't matter - say it with a TokenFactor.
3547     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3548 
3549     // Finally, perform the original load only redirected to the stack slot.
3550     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3551                           MachinePointerInfo(), LoadedVT);
3552 
3553     // Callers expect a MERGE_VALUES node.
3554     return std::make_pair(Load, TF);
3555   }
3556 
3557   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3558          "Unaligned load of unsupported type.");
3559 
3560   // Compute the new VT that is half the size of the old one.  This is an
3561   // integer MVT.
3562   unsigned NumBits = LoadedVT.getSizeInBits();
3563   EVT NewLoadedVT;
3564   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3565   NumBits >>= 1;
3566 
3567   unsigned Alignment = LD->getAlignment();
3568   unsigned IncrementSize = NumBits / 8;
3569   ISD::LoadExtType HiExtType = LD->getExtensionType();
3570 
3571   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3572   if (HiExtType == ISD::NON_EXTLOAD)
3573     HiExtType = ISD::ZEXTLOAD;
3574 
3575   // Load the value in two parts
3576   SDValue Lo, Hi;
3577   if (DAG.getDataLayout().isLittleEndian()) {
3578     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3579                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3580                         LD->getAAInfo());
3581     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3582                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3583     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3584                         LD->getPointerInfo().getWithOffset(IncrementSize),
3585                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3586                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3587   } else {
3588     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3589                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
3590                         LD->getAAInfo());
3591     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3592                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3593     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3594                         LD->getPointerInfo().getWithOffset(IncrementSize),
3595                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
3596                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
3597   }
3598 
3599   // aggregate the two parts
3600   SDValue ShiftAmount =
3601       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3602                                                     DAG.getDataLayout()));
3603   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3604   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3605 
3606   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3607                              Hi.getValue(1));
3608 
3609   return std::make_pair(Result, TF);
3610 }
3611 
3612 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3613                                              SelectionDAG &DAG) const {
3614   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3615          "unaligned indexed stores not implemented!");
3616   SDValue Chain = ST->getChain();
3617   SDValue Ptr = ST->getBasePtr();
3618   SDValue Val = ST->getValue();
3619   EVT VT = Val.getValueType();
3620   int Alignment = ST->getAlignment();
3621 
3622   SDLoc dl(ST);
3623   if (ST->getMemoryVT().isFloatingPoint() ||
3624       ST->getMemoryVT().isVector()) {
3625     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3626     if (isTypeLegal(intVT)) {
3627       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3628         // Scalarize the store and let the individual components be handled.
3629         SDValue Result = scalarizeVectorStore(ST, DAG);
3630 
3631         return Result;
3632       }
3633       // Expand to a bitconvert of the value to the integer type of the
3634       // same size, then a (misaligned) int store.
3635       // FIXME: Does not handle truncating floating point stores!
3636       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3637       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3638                             Alignment, ST->getMemOperand()->getFlags());
3639       return Result;
3640     }
3641     // Do a (aligned) store to a stack slot, then copy from the stack slot
3642     // to the final destination using (unaligned) integer loads and stores.
3643     EVT StoredVT = ST->getMemoryVT();
3644     MVT RegVT =
3645       getRegisterType(*DAG.getContext(),
3646                       EVT::getIntegerVT(*DAG.getContext(),
3647                                         StoredVT.getSizeInBits()));
3648     EVT PtrVT = Ptr.getValueType();
3649     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3650     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3651     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3652 
3653     // Make sure the stack slot is also aligned for the register type.
3654     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3655 
3656     // Perform the original store, only redirected to the stack slot.
3657     SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr,
3658                                       MachinePointerInfo(), StoredVT);
3659 
3660     EVT StackPtrVT = StackPtr.getValueType();
3661 
3662     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3663     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3664     SmallVector<SDValue, 8> Stores;
3665     unsigned Offset = 0;
3666 
3667     // Do all but one copies using the full register width.
3668     for (unsigned i = 1; i < NumRegs; i++) {
3669       // Load one integer register's worth from the stack slot.
3670       SDValue Load =
3671           DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo());
3672       // Store it to the final location.  Remember the store.
3673       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3674                                     ST->getPointerInfo().getWithOffset(Offset),
3675                                     MinAlign(ST->getAlignment(), Offset),
3676                                     ST->getMemOperand()->getFlags()));
3677       // Increment the pointers.
3678       Offset += RegBytes;
3679       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3680                              StackPtr, StackPtrIncrement);
3681       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3682     }
3683 
3684     // The last store may be partial.  Do a truncating store.  On big-endian
3685     // machines this requires an extending load from the stack slot to ensure
3686     // that the bits are in the right place.
3687     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3688                                   8 * (StoredBytes - Offset));
3689 
3690     // Load from the stack slot.
3691     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3692                                   MachinePointerInfo(), MemVT);
3693 
3694     Stores.push_back(
3695         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3696                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
3697                           MinAlign(ST->getAlignment(), Offset),
3698                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
3699     // The order of the stores doesn't matter - say it with a TokenFactor.
3700     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3701     return Result;
3702   }
3703 
3704   assert(ST->getMemoryVT().isInteger() &&
3705          !ST->getMemoryVT().isVector() &&
3706          "Unaligned store of unknown type.");
3707   // Get the half-size VT
3708   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3709   int NumBits = NewStoredVT.getSizeInBits();
3710   int IncrementSize = NumBits / 8;
3711 
3712   // Divide the stored value in two parts.
3713   SDValue ShiftAmount =
3714       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3715                                                     DAG.getDataLayout()));
3716   SDValue Lo = Val;
3717   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3718 
3719   // Store the two parts
3720   SDValue Store1, Store2;
3721   Store1 = DAG.getTruncStore(Chain, dl,
3722                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3723                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
3724                              ST->getMemOperand()->getFlags());
3725 
3726   EVT PtrVT = Ptr.getValueType();
3727   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3728                     DAG.getConstant(IncrementSize, dl, PtrVT));
3729   Alignment = MinAlign(Alignment, IncrementSize);
3730   Store2 = DAG.getTruncStore(
3731       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3732       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
3733       ST->getMemOperand()->getFlags(), ST->getAAInfo());
3734 
3735   SDValue Result =
3736     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3737   return Result;
3738 }
3739 
3740 SDValue
3741 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
3742                                        const SDLoc &DL, EVT DataVT,
3743                                        SelectionDAG &DAG,
3744                                        bool IsCompressedMemory) const {
3745   SDValue Increment;
3746   EVT AddrVT = Addr.getValueType();
3747   EVT MaskVT = Mask.getValueType();
3748   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
3749          "Incompatible types of Data and Mask");
3750   if (IsCompressedMemory) {
3751     // Incrementing the pointer according to number of '1's in the mask.
3752     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
3753     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
3754     if (MaskIntVT.getSizeInBits() < 32) {
3755       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
3756       MaskIntVT = MVT::i32;
3757     }
3758 
3759     // Count '1's with POPCNT.
3760     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
3761     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
3762     // Scale is an element size in bytes.
3763     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
3764                                     AddrVT);
3765     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
3766   } else
3767     Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT);
3768 
3769   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
3770 }
3771 
3772 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
3773                                        SDValue Idx,
3774                                        EVT VecVT,
3775                                        const SDLoc &dl) {
3776   if (isa<ConstantSDNode>(Idx))
3777     return Idx;
3778 
3779   EVT IdxVT = Idx.getValueType();
3780   unsigned NElts = VecVT.getVectorNumElements();
3781   if (isPowerOf2_32(NElts)) {
3782     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
3783                                      Log2_32(NElts));
3784     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
3785                        DAG.getConstant(Imm, dl, IdxVT));
3786   }
3787 
3788   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
3789                      DAG.getConstant(NElts - 1, dl, IdxVT));
3790 }
3791 
3792 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
3793                                                 SDValue VecPtr, EVT VecVT,
3794                                                 SDValue Index) const {
3795   SDLoc dl(Index);
3796   // Make sure the index type is big enough to compute in.
3797   Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout()));
3798 
3799   EVT EltVT = VecVT.getVectorElementType();
3800 
3801   // Calculate the element offset and add it to the pointer.
3802   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
3803   assert(EltSize * 8 == EltVT.getSizeInBits() &&
3804          "Converting bits to bytes lost precision");
3805 
3806   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
3807 
3808   EVT IdxVT = Index.getValueType();
3809 
3810   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
3811                       DAG.getConstant(EltSize, dl, IdxVT));
3812   return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr);
3813 }
3814 
3815 //===----------------------------------------------------------------------===//
3816 // Implementation of Emulated TLS Model
3817 //===----------------------------------------------------------------------===//
3818 
3819 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3820                                                 SelectionDAG &DAG) const {
3821   // Access to address of TLS varialbe xyz is lowered to a function call:
3822   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3823   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3824   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3825   SDLoc dl(GA);
3826 
3827   ArgListTy Args;
3828   ArgListEntry Entry;
3829   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3830   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3831   StringRef EmuTlsVarName(NameString);
3832   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3833   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3834   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3835   Entry.Ty = VoidPtrType;
3836   Args.push_back(Entry);
3837 
3838   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3839 
3840   TargetLowering::CallLoweringInfo CLI(DAG);
3841   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3842   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
3843   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3844 
3845   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3846   // At last for X86 targets, maybe good for other targets too?
3847   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
3848   MFI.setAdjustsStack(true);  // Is this only for X86 target?
3849   MFI.setHasCalls(true);
3850 
3851   assert((GA->getOffset() == 0) &&
3852          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3853   return CallResult.first;
3854 }
3855 
3856 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
3857                                                 SelectionDAG &DAG) const {
3858   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
3859   if (!isCtlzFast())
3860     return SDValue();
3861   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
3862   SDLoc dl(Op);
3863   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
3864     if (C->isNullValue() && CC == ISD::SETEQ) {
3865       EVT VT = Op.getOperand(0).getValueType();
3866       SDValue Zext = Op.getOperand(0);
3867       if (VT.bitsLT(MVT::i32)) {
3868         VT = MVT::i32;
3869         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
3870       }
3871       unsigned Log2b = Log2_32(VT.getSizeInBits());
3872       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
3873       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
3874                                 DAG.getConstant(Log2b, dl, MVT::i32));
3875       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
3876     }
3877   }
3878   return SDValue();
3879 }
3880