1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() != ISD::CopyFromReg)
97       return false;
98     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
99     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
100       return false;
101   }
102   return true;
103 }
104 
105 /// Set CallLoweringInfo attribute flags based on a call instruction
106 /// and called function attributes.
107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
108                                                      unsigned ArgIdx) {
109   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
110   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
111   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
112   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
113   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
114   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
115   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
116   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
117   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
118   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
119   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
120   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
121   Alignment = Call->getParamStackAlign(ArgIdx);
122   ByValType = nullptr;
123   if (IsByVal) {
124     ByValType = Call->getParamByValType(ArgIdx);
125     if (!Alignment)
126       Alignment = Call->getParamAlign(ArgIdx);
127   }
128   PreallocatedType = nullptr;
129   if (IsPreallocated)
130     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
131 }
132 
133 /// Generate a libcall taking the given operands as arguments and returning a
134 /// result of type RetVT.
135 std::pair<SDValue, SDValue>
136 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
137                             ArrayRef<SDValue> Ops,
138                             MakeLibCallOptions CallOptions,
139                             const SDLoc &dl,
140                             SDValue InChain) const {
141   if (!InChain)
142     InChain = DAG.getEntryNode();
143 
144   TargetLowering::ArgListTy Args;
145   Args.reserve(Ops.size());
146 
147   TargetLowering::ArgListEntry Entry;
148   for (unsigned i = 0; i < Ops.size(); ++i) {
149     SDValue NewOp = Ops[i];
150     Entry.Node = NewOp;
151     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
152     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
153                                                  CallOptions.IsSExt);
154     Entry.IsZExt = !Entry.IsSExt;
155 
156     if (CallOptions.IsSoften &&
157         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
158       Entry.IsSExt = Entry.IsZExt = false;
159     }
160     Args.push_back(Entry);
161   }
162 
163   if (LC == RTLIB::UNKNOWN_LIBCALL)
164     report_fatal_error("Unsupported library call operation!");
165   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
166                                          getPointerTy(DAG.getDataLayout()));
167 
168   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
169   TargetLowering::CallLoweringInfo CLI(DAG);
170   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
171   bool zeroExtend = !signExtend;
172 
173   if (CallOptions.IsSoften &&
174       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
175     signExtend = zeroExtend = false;
176   }
177 
178   CLI.setDebugLoc(dl)
179       .setChain(InChain)
180       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
181       .setNoReturn(CallOptions.DoesNotReturn)
182       .setDiscardResult(!CallOptions.IsReturnValueUsed)
183       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
184       .setSExtResult(signExtend)
185       .setZExtResult(zeroExtend);
186   return LowerCallTo(CLI);
187 }
188 
189 bool TargetLowering::findOptimalMemOpLowering(
190     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
191     unsigned SrcAS, const AttributeList &FuncAttributes) const {
192   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
193     return false;
194 
195   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
196 
197   if (VT == MVT::Other) {
198     // Use the largest integer type whose alignment constraints are satisfied.
199     // We only need to check DstAlign here as SrcAlign is always greater or
200     // equal to DstAlign (or zero).
201     VT = MVT::i64;
202     if (Op.isFixedDstAlign())
203       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
204              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
205         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
206     assert(VT.isInteger());
207 
208     // Find the largest legal integer type.
209     MVT LVT = MVT::i64;
210     while (!isTypeLegal(LVT))
211       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
212     assert(LVT.isInteger());
213 
214     // If the type we've chosen is larger than the largest legal integer type
215     // then use that instead.
216     if (VT.bitsGT(LVT))
217       VT = LVT;
218   }
219 
220   unsigned NumMemOps = 0;
221   uint64_t Size = Op.size();
222   while (Size) {
223     unsigned VTSize = VT.getSizeInBits() / 8;
224     while (VTSize > Size) {
225       // For now, only use non-vector load / store's for the left-over pieces.
226       EVT NewVT = VT;
227       unsigned NewVTSize;
228 
229       bool Found = false;
230       if (VT.isVector() || VT.isFloatingPoint()) {
231         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
232         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
233             isSafeMemOpType(NewVT.getSimpleVT()))
234           Found = true;
235         else if (NewVT == MVT::i64 &&
236                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
237                  isSafeMemOpType(MVT::f64)) {
238           // i64 is usually not legal on 32-bit targets, but f64 may be.
239           NewVT = MVT::f64;
240           Found = true;
241         }
242       }
243 
244       if (!Found) {
245         do {
246           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
247           if (NewVT == MVT::i8)
248             break;
249         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
250       }
251       NewVTSize = NewVT.getSizeInBits() / 8;
252 
253       // If the new VT cannot cover all of the remaining bits, then consider
254       // issuing a (or a pair of) unaligned and overlapping load / store.
255       bool Fast;
256       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
257           allowsMisalignedMemoryAccesses(
258               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
259               MachineMemOperand::MONone, &Fast) &&
260           Fast)
261         VTSize = Size;
262       else {
263         VT = NewVT;
264         VTSize = NewVTSize;
265       }
266     }
267 
268     if (++NumMemOps > Limit)
269       return false;
270 
271     MemOps.push_back(VT);
272     Size -= VTSize;
273   }
274 
275   return true;
276 }
277 
278 /// Soften the operands of a comparison. This code is shared among BR_CC,
279 /// SELECT_CC, and SETCC handlers.
280 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
281                                          SDValue &NewLHS, SDValue &NewRHS,
282                                          ISD::CondCode &CCCode,
283                                          const SDLoc &dl, const SDValue OldLHS,
284                                          const SDValue OldRHS) const {
285   SDValue Chain;
286   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
287                              OldRHS, Chain);
288 }
289 
290 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
291                                          SDValue &NewLHS, SDValue &NewRHS,
292                                          ISD::CondCode &CCCode,
293                                          const SDLoc &dl, const SDValue OldLHS,
294                                          const SDValue OldRHS,
295                                          SDValue &Chain,
296                                          bool IsSignaling) const {
297   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
298   // not supporting it. We can update this code when libgcc provides such
299   // functions.
300 
301   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
302          && "Unsupported setcc type!");
303 
304   // Expand into one or more soft-fp libcall(s).
305   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
306   bool ShouldInvertCC = false;
307   switch (CCCode) {
308   case ISD::SETEQ:
309   case ISD::SETOEQ:
310     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
311           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
312           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
313     break;
314   case ISD::SETNE:
315   case ISD::SETUNE:
316     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
317           (VT == MVT::f64) ? RTLIB::UNE_F64 :
318           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
319     break;
320   case ISD::SETGE:
321   case ISD::SETOGE:
322     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
323           (VT == MVT::f64) ? RTLIB::OGE_F64 :
324           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
325     break;
326   case ISD::SETLT:
327   case ISD::SETOLT:
328     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
329           (VT == MVT::f64) ? RTLIB::OLT_F64 :
330           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
331     break;
332   case ISD::SETLE:
333   case ISD::SETOLE:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
335           (VT == MVT::f64) ? RTLIB::OLE_F64 :
336           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
337     break;
338   case ISD::SETGT:
339   case ISD::SETOGT:
340     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
341           (VT == MVT::f64) ? RTLIB::OGT_F64 :
342           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
343     break;
344   case ISD::SETO:
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUO:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     break;
352   case ISD::SETONE:
353     // SETONE = O && UNE
354     ShouldInvertCC = true;
355     LLVM_FALLTHROUGH;
356   case ISD::SETUEQ:
357     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
358           (VT == MVT::f64) ? RTLIB::UO_F64 :
359           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
360     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
361           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
362           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
363     break;
364   default:
365     // Invert CC for unordered comparisons
366     ShouldInvertCC = true;
367     switch (CCCode) {
368     case ISD::SETULT:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
370             (VT == MVT::f64) ? RTLIB::OGE_F64 :
371             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
372       break;
373     case ISD::SETULE:
374       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
375             (VT == MVT::f64) ? RTLIB::OGT_F64 :
376             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
377       break;
378     case ISD::SETUGT:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
380             (VT == MVT::f64) ? RTLIB::OLE_F64 :
381             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
382       break;
383     case ISD::SETUGE:
384       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
385             (VT == MVT::f64) ? RTLIB::OLT_F64 :
386             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
387       break;
388     default: llvm_unreachable("Do not know how to soften this setcc!");
389     }
390   }
391 
392   // Use the target specific return value for comparions lib calls.
393   EVT RetVT = getCmpLibcallReturnType();
394   SDValue Ops[2] = {NewLHS, NewRHS};
395   TargetLowering::MakeLibCallOptions CallOptions;
396   EVT OpsVT[2] = { OldLHS.getValueType(),
397                    OldRHS.getValueType() };
398   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
399   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
400   NewLHS = Call.first;
401   NewRHS = DAG.getConstant(0, dl, RetVT);
402 
403   CCCode = getCmpLibcallCC(LC1);
404   if (ShouldInvertCC) {
405     assert(RetVT.isInteger());
406     CCCode = getSetCCInverse(CCCode, RetVT);
407   }
408 
409   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
410     // Update Chain.
411     Chain = Call.second;
412   } else {
413     EVT SetCCVT =
414         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
415     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
416     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
417     CCCode = getCmpLibcallCC(LC2);
418     if (ShouldInvertCC)
419       CCCode = getSetCCInverse(CCCode, RetVT);
420     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
421     if (Chain)
422       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
423                           Call2.second);
424     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
425                          Tmp.getValueType(), Tmp, NewLHS);
426     NewRHS = SDValue();
427   }
428 }
429 
430 /// Return the entry encoding for a jump table in the current function. The
431 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
432 unsigned TargetLowering::getJumpTableEncoding() const {
433   // In non-pic modes, just use the address of a block.
434   if (!isPositionIndependent())
435     return MachineJumpTableInfo::EK_BlockAddress;
436 
437   // In PIC mode, if the target supports a GPRel32 directive, use it.
438   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
439     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
440 
441   // Otherwise, use a label difference.
442   return MachineJumpTableInfo::EK_LabelDifference32;
443 }
444 
445 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
446                                                  SelectionDAG &DAG) const {
447   // If our PIC model is GP relative, use the global offset table as the base.
448   unsigned JTEncoding = getJumpTableEncoding();
449 
450   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
451       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
452     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
453 
454   return Table;
455 }
456 
457 /// This returns the relocation base for the given PIC jumptable, the same as
458 /// getPICJumpTableRelocBase, but as an MCExpr.
459 const MCExpr *
460 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
461                                              unsigned JTI,MCContext &Ctx) const{
462   // The normal PIC reloc base is the label at the start of the jump table.
463   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
464 }
465 
466 bool
467 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
468   const TargetMachine &TM = getTargetMachine();
469   const GlobalValue *GV = GA->getGlobal();
470 
471   // If the address is not even local to this DSO we will have to load it from
472   // a got and then add the offset.
473   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
474     return false;
475 
476   // If the code is position independent we will have to add a base register.
477   if (isPositionIndependent())
478     return false;
479 
480   // Otherwise we can do it.
481   return true;
482 }
483 
484 //===----------------------------------------------------------------------===//
485 //  Optimization Methods
486 //===----------------------------------------------------------------------===//
487 
488 /// If the specified instruction has a constant integer operand and there are
489 /// bits set in that constant that are not demanded, then clear those bits and
490 /// return true.
491 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
492                                             const APInt &DemandedBits,
493                                             const APInt &DemandedElts,
494                                             TargetLoweringOpt &TLO) const {
495   SDLoc DL(Op);
496   unsigned Opcode = Op.getOpcode();
497 
498   // Do target-specific constant optimization.
499   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
500     return TLO.New.getNode();
501 
502   // FIXME: ISD::SELECT, ISD::SELECT_CC
503   switch (Opcode) {
504   default:
505     break;
506   case ISD::XOR:
507   case ISD::AND:
508   case ISD::OR: {
509     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
510     if (!Op1C)
511       return false;
512 
513     // If this is a 'not' op, don't touch it because that's a canonical form.
514     const APInt &C = Op1C->getAPIntValue();
515     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
516       return false;
517 
518     if (!C.isSubsetOf(DemandedBits)) {
519       EVT VT = Op.getValueType();
520       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
521       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
522       return TLO.CombineTo(Op, NewOp);
523     }
524 
525     break;
526   }
527   }
528 
529   return false;
530 }
531 
532 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
533                                             const APInt &DemandedBits,
534                                             TargetLoweringOpt &TLO) const {
535   EVT VT = Op.getValueType();
536   APInt DemandedElts = VT.isVector()
537                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
538                            : APInt(1, 1);
539   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
540 }
541 
542 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
543 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
544 /// generalized for targets with other types of implicit widening casts.
545 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
546                                       const APInt &Demanded,
547                                       TargetLoweringOpt &TLO) const {
548   assert(Op.getNumOperands() == 2 &&
549          "ShrinkDemandedOp only supports binary operators!");
550   assert(Op.getNode()->getNumValues() == 1 &&
551          "ShrinkDemandedOp only supports nodes with one result!");
552 
553   SelectionDAG &DAG = TLO.DAG;
554   SDLoc dl(Op);
555 
556   // Early return, as this function cannot handle vector types.
557   if (Op.getValueType().isVector())
558     return false;
559 
560   // Don't do this if the node has another user, which may require the
561   // full value.
562   if (!Op.getNode()->hasOneUse())
563     return false;
564 
565   // Search for the smallest integer type with free casts to and from
566   // Op's type. For expedience, just check power-of-2 integer types.
567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
568   unsigned DemandedSize = Demanded.getActiveBits();
569   unsigned SmallVTBits = DemandedSize;
570   if (!isPowerOf2_32(SmallVTBits))
571     SmallVTBits = NextPowerOf2(SmallVTBits);
572   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
573     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
574     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
575         TLI.isZExtFree(SmallVT, Op.getValueType())) {
576       // We found a type with free casts.
577       SDValue X = DAG.getNode(
578           Op.getOpcode(), dl, SmallVT,
579           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
580           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
581       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
582       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
583       return TLO.CombineTo(Op, Z);
584     }
585   }
586   return false;
587 }
588 
589 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
590                                           DAGCombinerInfo &DCI) const {
591   SelectionDAG &DAG = DCI.DAG;
592   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
593                         !DCI.isBeforeLegalizeOps());
594   KnownBits Known;
595 
596   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
597   if (Simplified) {
598     DCI.AddToWorklist(Op.getNode());
599     DCI.CommitTargetLoweringOpt(TLO);
600   }
601   return Simplified;
602 }
603 
604 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
605                                           KnownBits &Known,
606                                           TargetLoweringOpt &TLO,
607                                           unsigned Depth,
608                                           bool AssumeSingleUse) const {
609   EVT VT = Op.getValueType();
610 
611   // TODO: We can probably do more work on calculating the known bits and
612   // simplifying the operations for scalable vectors, but for now we just
613   // bail out.
614   if (VT.isScalableVector()) {
615     // Pretend we don't know anything for now.
616     Known = KnownBits(DemandedBits.getBitWidth());
617     return false;
618   }
619 
620   APInt DemandedElts = VT.isVector()
621                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
622                            : APInt(1, 1);
623   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
624                               AssumeSingleUse);
625 }
626 
627 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
628 // TODO: Under what circumstances can we create nodes? Constant folding?
629 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
630     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
631     SelectionDAG &DAG, unsigned Depth) const {
632   // Limit search depth.
633   if (Depth >= SelectionDAG::MaxRecursionDepth)
634     return SDValue();
635 
636   // Ignore UNDEFs.
637   if (Op.isUndef())
638     return SDValue();
639 
640   // Not demanding any bits/elts from Op.
641   if (DemandedBits == 0 || DemandedElts == 0)
642     return DAG.getUNDEF(Op.getValueType());
643 
644   unsigned NumElts = DemandedElts.getBitWidth();
645   unsigned BitWidth = DemandedBits.getBitWidth();
646   KnownBits LHSKnown, RHSKnown;
647   switch (Op.getOpcode()) {
648   case ISD::BITCAST: {
649     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
650     EVT SrcVT = Src.getValueType();
651     EVT DstVT = Op.getValueType();
652     if (SrcVT == DstVT)
653       return Src;
654 
655     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
656     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
657     if (NumSrcEltBits == NumDstEltBits)
658       if (SDValue V = SimplifyMultipleUseDemandedBits(
659               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
660         return DAG.getBitcast(DstVT, V);
661 
662     // TODO - bigendian once we have test coverage.
663     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
664         DAG.getDataLayout().isLittleEndian()) {
665       unsigned Scale = NumDstEltBits / NumSrcEltBits;
666       unsigned NumSrcElts = SrcVT.getVectorNumElements();
667       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
668       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
669       for (unsigned i = 0; i != Scale; ++i) {
670         unsigned Offset = i * NumSrcEltBits;
671         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
672         if (!Sub.isNullValue()) {
673           DemandedSrcBits |= Sub;
674           for (unsigned j = 0; j != NumElts; ++j)
675             if (DemandedElts[j])
676               DemandedSrcElts.setBit((j * Scale) + i);
677         }
678       }
679 
680       if (SDValue V = SimplifyMultipleUseDemandedBits(
681               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
682         return DAG.getBitcast(DstVT, V);
683     }
684 
685     // TODO - bigendian once we have test coverage.
686     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
687         DAG.getDataLayout().isLittleEndian()) {
688       unsigned Scale = NumSrcEltBits / NumDstEltBits;
689       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
690       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
691       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
692       for (unsigned i = 0; i != NumElts; ++i)
693         if (DemandedElts[i]) {
694           unsigned Offset = (i % Scale) * NumDstEltBits;
695           DemandedSrcBits.insertBits(DemandedBits, Offset);
696           DemandedSrcElts.setBit(i / Scale);
697         }
698 
699       if (SDValue V = SimplifyMultipleUseDemandedBits(
700               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
701         return DAG.getBitcast(DstVT, V);
702     }
703 
704     break;
705   }
706   case ISD::AND: {
707     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
708     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
709 
710     // If all of the demanded bits are known 1 on one side, return the other.
711     // These bits cannot contribute to the result of the 'and' in this
712     // context.
713     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
714       return Op.getOperand(0);
715     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
716       return Op.getOperand(1);
717     break;
718   }
719   case ISD::OR: {
720     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
721     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
722 
723     // If all of the demanded bits are known zero on one side, return the
724     // other.  These bits cannot contribute to the result of the 'or' in this
725     // context.
726     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
727       return Op.getOperand(0);
728     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
729       return Op.getOperand(1);
730     break;
731   }
732   case ISD::XOR: {
733     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
734     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
735 
736     // If all of the demanded bits are known zero on one side, return the
737     // other.
738     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
739       return Op.getOperand(0);
740     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
741       return Op.getOperand(1);
742     break;
743   }
744   case ISD::SHL: {
745     // If we are only demanding sign bits then we can use the shift source
746     // directly.
747     if (const APInt *MaxSA =
748             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
749       SDValue Op0 = Op.getOperand(0);
750       unsigned ShAmt = MaxSA->getZExtValue();
751       unsigned NumSignBits =
752           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
753       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
754       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
755         return Op0;
756     }
757     break;
758   }
759   case ISD::SETCC: {
760     SDValue Op0 = Op.getOperand(0);
761     SDValue Op1 = Op.getOperand(1);
762     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
763     // If (1) we only need the sign-bit, (2) the setcc operands are the same
764     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
765     // -1, we may be able to bypass the setcc.
766     if (DemandedBits.isSignMask() &&
767         Op0.getScalarValueSizeInBits() == BitWidth &&
768         getBooleanContents(Op0.getValueType()) ==
769             BooleanContent::ZeroOrNegativeOneBooleanContent) {
770       // If we're testing X < 0, then this compare isn't needed - just use X!
771       // FIXME: We're limiting to integer types here, but this should also work
772       // if we don't care about FP signed-zero. The use of SETLT with FP means
773       // that we don't care about NaNs.
774       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
775           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
776         return Op0;
777     }
778     break;
779   }
780   case ISD::SIGN_EXTEND_INREG: {
781     // If none of the extended bits are demanded, eliminate the sextinreg.
782     SDValue Op0 = Op.getOperand(0);
783     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
784     unsigned ExBits = ExVT.getScalarSizeInBits();
785     if (DemandedBits.getActiveBits() <= ExBits)
786       return Op0;
787     // If the input is already sign extended, just drop the extension.
788     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
789     if (NumSignBits >= (BitWidth - ExBits + 1))
790       return Op0;
791     break;
792   }
793   case ISD::ANY_EXTEND_VECTOR_INREG:
794   case ISD::SIGN_EXTEND_VECTOR_INREG:
795   case ISD::ZERO_EXTEND_VECTOR_INREG: {
796     // If we only want the lowest element and none of extended bits, then we can
797     // return the bitcasted source vector.
798     SDValue Src = Op.getOperand(0);
799     EVT SrcVT = Src.getValueType();
800     EVT DstVT = Op.getValueType();
801     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
802         DAG.getDataLayout().isLittleEndian() &&
803         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
804       return DAG.getBitcast(DstVT, Src);
805     }
806     break;
807   }
808   case ISD::INSERT_VECTOR_ELT: {
809     // If we don't demand the inserted element, return the base vector.
810     SDValue Vec = Op.getOperand(0);
811     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
812     EVT VecVT = Vec.getValueType();
813     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
814         !DemandedElts[CIdx->getZExtValue()])
815       return Vec;
816     break;
817   }
818   case ISD::INSERT_SUBVECTOR: {
819     // If we don't demand the inserted subvector, return the base vector.
820     SDValue Vec = Op.getOperand(0);
821     SDValue Sub = Op.getOperand(1);
822     uint64_t Idx = Op.getConstantOperandVal(2);
823     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
824     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
825       return Vec;
826     break;
827   }
828   case ISD::VECTOR_SHUFFLE: {
829     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
830 
831     // If all the demanded elts are from one operand and are inline,
832     // then we can use the operand directly.
833     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
834     for (unsigned i = 0; i != NumElts; ++i) {
835       int M = ShuffleMask[i];
836       if (M < 0 || !DemandedElts[i])
837         continue;
838       AllUndef = false;
839       IdentityLHS &= (M == (int)i);
840       IdentityRHS &= ((M - NumElts) == i);
841     }
842 
843     if (AllUndef)
844       return DAG.getUNDEF(Op.getValueType());
845     if (IdentityLHS)
846       return Op.getOperand(0);
847     if (IdentityRHS)
848       return Op.getOperand(1);
849     break;
850   }
851   default:
852     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
853       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
854               Op, DemandedBits, DemandedElts, DAG, Depth))
855         return V;
856     break;
857   }
858   return SDValue();
859 }
860 
861 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
862     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
863     unsigned Depth) const {
864   EVT VT = Op.getValueType();
865   APInt DemandedElts = VT.isVector()
866                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
867                            : APInt(1, 1);
868   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
869                                          Depth);
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
873     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
874     unsigned Depth) const {
875   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
876   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
877                                          Depth);
878 }
879 
880 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
881 /// result of Op are ever used downstream. If we can use this information to
882 /// simplify Op, create a new simplified DAG node and return true, returning the
883 /// original and new nodes in Old and New. Otherwise, analyze the expression and
884 /// return a mask of Known bits for the expression (used to simplify the
885 /// caller).  The Known bits may only be accurate for those bits in the
886 /// OriginalDemandedBits and OriginalDemandedElts.
887 bool TargetLowering::SimplifyDemandedBits(
888     SDValue Op, const APInt &OriginalDemandedBits,
889     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
890     unsigned Depth, bool AssumeSingleUse) const {
891   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
892   assert(Op.getScalarValueSizeInBits() == BitWidth &&
893          "Mask size mismatches value type size!");
894 
895   // Don't know anything.
896   Known = KnownBits(BitWidth);
897 
898   // TODO: We can probably do more work on calculating the known bits and
899   // simplifying the operations for scalable vectors, but for now we just
900   // bail out.
901   if (Op.getValueType().isScalableVector())
902     return false;
903 
904   unsigned NumElts = OriginalDemandedElts.getBitWidth();
905   assert((!Op.getValueType().isVector() ||
906           NumElts == Op.getValueType().getVectorNumElements()) &&
907          "Unexpected vector size");
908 
909   APInt DemandedBits = OriginalDemandedBits;
910   APInt DemandedElts = OriginalDemandedElts;
911   SDLoc dl(Op);
912   auto &DL = TLO.DAG.getDataLayout();
913 
914   // Undef operand.
915   if (Op.isUndef())
916     return false;
917 
918   if (Op.getOpcode() == ISD::Constant) {
919     // We know all of the bits for a constant!
920     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
921     return false;
922   }
923 
924   if (Op.getOpcode() == ISD::ConstantFP) {
925     // We know all of the bits for a floating point constant!
926     Known = KnownBits::makeConstant(
927         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
928     return false;
929   }
930 
931   // Other users may use these bits.
932   EVT VT = Op.getValueType();
933   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
934     if (Depth != 0) {
935       // If not at the root, Just compute the Known bits to
936       // simplify things downstream.
937       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
938       return false;
939     }
940     // If this is the root being simplified, allow it to have multiple uses,
941     // just set the DemandedBits/Elts to all bits.
942     DemandedBits = APInt::getAllOnesValue(BitWidth);
943     DemandedElts = APInt::getAllOnesValue(NumElts);
944   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
945     // Not demanding any bits/elts from Op.
946     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
947   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
948     // Limit search depth.
949     return false;
950   }
951 
952   KnownBits Known2;
953   switch (Op.getOpcode()) {
954   case ISD::TargetConstant:
955     llvm_unreachable("Can't simplify this node");
956   case ISD::SCALAR_TO_VECTOR: {
957     if (!DemandedElts[0])
958       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959 
960     KnownBits SrcKnown;
961     SDValue Src = Op.getOperand(0);
962     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
963     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
964     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
965       return true;
966 
967     // Upper elements are undef, so only get the knownbits if we just demand
968     // the bottom element.
969     if (DemandedElts == 1)
970       Known = SrcKnown.anyextOrTrunc(BitWidth);
971     break;
972   }
973   case ISD::BUILD_VECTOR:
974     // Collect the known bits that are shared by every demanded element.
975     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
976     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
977     return false; // Don't fall through, will infinitely loop.
978   case ISD::LOAD: {
979     auto *LD = cast<LoadSDNode>(Op);
980     if (getTargetConstantFromLoad(LD)) {
981       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
982       return false; // Don't fall through, will infinitely loop.
983     }
984     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
985       // If this is a ZEXTLoad and we are looking at the loaded value.
986       EVT MemVT = LD->getMemoryVT();
987       unsigned MemBits = MemVT.getScalarSizeInBits();
988       Known.Zero.setBitsFrom(MemBits);
989       return false; // Don't fall through, will infinitely loop.
990     }
991     break;
992   }
993   case ISD::INSERT_VECTOR_ELT: {
994     SDValue Vec = Op.getOperand(0);
995     SDValue Scl = Op.getOperand(1);
996     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
997     EVT VecVT = Vec.getValueType();
998 
999     // If index isn't constant, assume we need all vector elements AND the
1000     // inserted element.
1001     APInt DemandedVecElts(DemandedElts);
1002     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1003       unsigned Idx = CIdx->getZExtValue();
1004       DemandedVecElts.clearBit(Idx);
1005 
1006       // Inserted element is not required.
1007       if (!DemandedElts[Idx])
1008         return TLO.CombineTo(Op, Vec);
1009     }
1010 
1011     KnownBits KnownScl;
1012     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1013     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1014     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1015       return true;
1016 
1017     Known = KnownScl.anyextOrTrunc(BitWidth);
1018 
1019     KnownBits KnownVec;
1020     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1021                              Depth + 1))
1022       return true;
1023 
1024     if (!!DemandedVecElts)
1025       Known = KnownBits::commonBits(Known, KnownVec);
1026 
1027     return false;
1028   }
1029   case ISD::INSERT_SUBVECTOR: {
1030     // Demand any elements from the subvector and the remainder from the src its
1031     // inserted into.
1032     SDValue Src = Op.getOperand(0);
1033     SDValue Sub = Op.getOperand(1);
1034     uint64_t Idx = Op.getConstantOperandVal(2);
1035     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1036     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1037     APInt DemandedSrcElts = DemandedElts;
1038     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1039 
1040     KnownBits KnownSub, KnownSrc;
1041     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1042                              Depth + 1))
1043       return true;
1044     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1045                              Depth + 1))
1046       return true;
1047 
1048     Known.Zero.setAllBits();
1049     Known.One.setAllBits();
1050     if (!!DemandedSubElts)
1051       Known = KnownBits::commonBits(Known, KnownSub);
1052     if (!!DemandedSrcElts)
1053       Known = KnownBits::commonBits(Known, KnownSrc);
1054 
1055     // Attempt to avoid multi-use src if we don't need anything from it.
1056     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1057         !DemandedSrcElts.isAllOnesValue()) {
1058       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1059           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1060       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1061           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1062       if (NewSub || NewSrc) {
1063         NewSub = NewSub ? NewSub : Sub;
1064         NewSrc = NewSrc ? NewSrc : Src;
1065         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1066                                         Op.getOperand(2));
1067         return TLO.CombineTo(Op, NewOp);
1068       }
1069     }
1070     break;
1071   }
1072   case ISD::EXTRACT_SUBVECTOR: {
1073     // Offset the demanded elts by the subvector index.
1074     SDValue Src = Op.getOperand(0);
1075     if (Src.getValueType().isScalableVector())
1076       break;
1077     uint64_t Idx = Op.getConstantOperandVal(1);
1078     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1079     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1080 
1081     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1082                              Depth + 1))
1083       return true;
1084 
1085     // Attempt to avoid multi-use src if we don't need anything from it.
1086     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1087       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1088           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1089       if (DemandedSrc) {
1090         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1091                                         Op.getOperand(1));
1092         return TLO.CombineTo(Op, NewOp);
1093       }
1094     }
1095     break;
1096   }
1097   case ISD::CONCAT_VECTORS: {
1098     Known.Zero.setAllBits();
1099     Known.One.setAllBits();
1100     EVT SubVT = Op.getOperand(0).getValueType();
1101     unsigned NumSubVecs = Op.getNumOperands();
1102     unsigned NumSubElts = SubVT.getVectorNumElements();
1103     for (unsigned i = 0; i != NumSubVecs; ++i) {
1104       APInt DemandedSubElts =
1105           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1106       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1107                                Known2, TLO, Depth + 1))
1108         return true;
1109       // Known bits are shared by every demanded subvector element.
1110       if (!!DemandedSubElts)
1111         Known = KnownBits::commonBits(Known, Known2);
1112     }
1113     break;
1114   }
1115   case ISD::VECTOR_SHUFFLE: {
1116     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1117 
1118     // Collect demanded elements from shuffle operands..
1119     APInt DemandedLHS(NumElts, 0);
1120     APInt DemandedRHS(NumElts, 0);
1121     for (unsigned i = 0; i != NumElts; ++i) {
1122       if (!DemandedElts[i])
1123         continue;
1124       int M = ShuffleMask[i];
1125       if (M < 0) {
1126         // For UNDEF elements, we don't know anything about the common state of
1127         // the shuffle result.
1128         DemandedLHS.clearAllBits();
1129         DemandedRHS.clearAllBits();
1130         break;
1131       }
1132       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1133       if (M < (int)NumElts)
1134         DemandedLHS.setBit(M);
1135       else
1136         DemandedRHS.setBit(M - NumElts);
1137     }
1138 
1139     if (!!DemandedLHS || !!DemandedRHS) {
1140       SDValue Op0 = Op.getOperand(0);
1141       SDValue Op1 = Op.getOperand(1);
1142 
1143       Known.Zero.setAllBits();
1144       Known.One.setAllBits();
1145       if (!!DemandedLHS) {
1146         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1147                                  Depth + 1))
1148           return true;
1149         Known = KnownBits::commonBits(Known, Known2);
1150       }
1151       if (!!DemandedRHS) {
1152         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1153                                  Depth + 1))
1154           return true;
1155         Known = KnownBits::commonBits(Known, Known2);
1156       }
1157 
1158       // Attempt to avoid multi-use ops if we don't need anything from them.
1159       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1160           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1161       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1162           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1163       if (DemandedOp0 || DemandedOp1) {
1164         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1165         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1166         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1167         return TLO.CombineTo(Op, NewOp);
1168       }
1169     }
1170     break;
1171   }
1172   case ISD::AND: {
1173     SDValue Op0 = Op.getOperand(0);
1174     SDValue Op1 = Op.getOperand(1);
1175 
1176     // If the RHS is a constant, check to see if the LHS would be zero without
1177     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1178     // simplify the LHS, here we're using information from the LHS to simplify
1179     // the RHS.
1180     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1181       // Do not increment Depth here; that can cause an infinite loop.
1182       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1183       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1184       if ((LHSKnown.Zero & DemandedBits) ==
1185           (~RHSC->getAPIntValue() & DemandedBits))
1186         return TLO.CombineTo(Op, Op0);
1187 
1188       // If any of the set bits in the RHS are known zero on the LHS, shrink
1189       // the constant.
1190       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1191                                  DemandedElts, TLO))
1192         return true;
1193 
1194       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1195       // constant, but if this 'and' is only clearing bits that were just set by
1196       // the xor, then this 'and' can be eliminated by shrinking the mask of
1197       // the xor. For example, for a 32-bit X:
1198       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1199       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1200           LHSKnown.One == ~RHSC->getAPIntValue()) {
1201         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1202         return TLO.CombineTo(Op, Xor);
1203       }
1204     }
1205 
1206     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1207                              Depth + 1))
1208       return true;
1209     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1210     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1211                              Known2, TLO, Depth + 1))
1212       return true;
1213     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1214 
1215     // Attempt to avoid multi-use ops if we don't need anything from them.
1216     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1217       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1218           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1219       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1220           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1221       if (DemandedOp0 || DemandedOp1) {
1222         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1223         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1225         return TLO.CombineTo(Op, NewOp);
1226       }
1227     }
1228 
1229     // If all of the demanded bits are known one on one side, return the other.
1230     // These bits cannot contribute to the result of the 'and'.
1231     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1232       return TLO.CombineTo(Op, Op0);
1233     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1234       return TLO.CombineTo(Op, Op1);
1235     // If all of the demanded bits in the inputs are known zeros, return zero.
1236     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1237       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1238     // If the RHS is a constant, see if we can simplify it.
1239     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1240                                TLO))
1241       return true;
1242     // If the operation can be done in a smaller type, do so.
1243     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1244       return true;
1245 
1246     Known &= Known2;
1247     break;
1248   }
1249   case ISD::OR: {
1250     SDValue Op0 = Op.getOperand(0);
1251     SDValue Op1 = Op.getOperand(1);
1252 
1253     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1254                              Depth + 1))
1255       return true;
1256     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1257     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1258                              Known2, TLO, Depth + 1))
1259       return true;
1260     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1261 
1262     // Attempt to avoid multi-use ops if we don't need anything from them.
1263     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1264       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1265           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1266       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1267           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1268       if (DemandedOp0 || DemandedOp1) {
1269         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1270         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1271         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1272         return TLO.CombineTo(Op, NewOp);
1273       }
1274     }
1275 
1276     // If all of the demanded bits are known zero on one side, return the other.
1277     // These bits cannot contribute to the result of the 'or'.
1278     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1279       return TLO.CombineTo(Op, Op0);
1280     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1281       return TLO.CombineTo(Op, Op1);
1282     // If the RHS is a constant, see if we can simplify it.
1283     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1284       return true;
1285     // If the operation can be done in a smaller type, do so.
1286     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1287       return true;
1288 
1289     Known |= Known2;
1290     break;
1291   }
1292   case ISD::XOR: {
1293     SDValue Op0 = Op.getOperand(0);
1294     SDValue Op1 = Op.getOperand(1);
1295 
1296     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1297                              Depth + 1))
1298       return true;
1299     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1300     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1301                              Depth + 1))
1302       return true;
1303     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1304 
1305     // Attempt to avoid multi-use ops if we don't need anything from them.
1306     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1307       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1308           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1309       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1310           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1311       if (DemandedOp0 || DemandedOp1) {
1312         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1313         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1314         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1315         return TLO.CombineTo(Op, NewOp);
1316       }
1317     }
1318 
1319     // If all of the demanded bits are known zero on one side, return the other.
1320     // These bits cannot contribute to the result of the 'xor'.
1321     if (DemandedBits.isSubsetOf(Known.Zero))
1322       return TLO.CombineTo(Op, Op0);
1323     if (DemandedBits.isSubsetOf(Known2.Zero))
1324       return TLO.CombineTo(Op, Op1);
1325     // If the operation can be done in a smaller type, do so.
1326     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1327       return true;
1328 
1329     // If all of the unknown bits are known to be zero on one side or the other
1330     // turn this into an *inclusive* or.
1331     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1332     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1333       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1334 
1335     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1336     if (C) {
1337       // If one side is a constant, and all of the set bits in the constant are
1338       // also known set on the other side, turn this into an AND, as we know
1339       // the bits will be cleared.
1340       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1341       // NB: it is okay if more bits are known than are requested
1342       if (C->getAPIntValue() == Known2.One) {
1343         SDValue ANDC =
1344             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1345         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1346       }
1347 
1348       // If the RHS is a constant, see if we can change it. Don't alter a -1
1349       // constant because that's a 'not' op, and that is better for combining
1350       // and codegen.
1351       if (!C->isAllOnesValue() &&
1352           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1353         // We're flipping all demanded bits. Flip the undemanded bits too.
1354         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1355         return TLO.CombineTo(Op, New);
1356       }
1357     }
1358 
1359     // If we can't turn this into a 'not', try to shrink the constant.
1360     if (!C || !C->isAllOnesValue())
1361       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1362         return true;
1363 
1364     Known ^= Known2;
1365     break;
1366   }
1367   case ISD::SELECT:
1368     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1369                              Depth + 1))
1370       return true;
1371     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1372                              Depth + 1))
1373       return true;
1374     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1375     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1376 
1377     // If the operands are constants, see if we can simplify them.
1378     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1379       return true;
1380 
1381     // Only known if known in both the LHS and RHS.
1382     Known = KnownBits::commonBits(Known, Known2);
1383     break;
1384   case ISD::SELECT_CC:
1385     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1386                              Depth + 1))
1387       return true;
1388     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1389                              Depth + 1))
1390       return true;
1391     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1392     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1393 
1394     // If the operands are constants, see if we can simplify them.
1395     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1396       return true;
1397 
1398     // Only known if known in both the LHS and RHS.
1399     Known = KnownBits::commonBits(Known, Known2);
1400     break;
1401   case ISD::SETCC: {
1402     SDValue Op0 = Op.getOperand(0);
1403     SDValue Op1 = Op.getOperand(1);
1404     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1405     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1406     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1407     // -1, we may be able to bypass the setcc.
1408     if (DemandedBits.isSignMask() &&
1409         Op0.getScalarValueSizeInBits() == BitWidth &&
1410         getBooleanContents(Op0.getValueType()) ==
1411             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1412       // If we're testing X < 0, then this compare isn't needed - just use X!
1413       // FIXME: We're limiting to integer types here, but this should also work
1414       // if we don't care about FP signed-zero. The use of SETLT with FP means
1415       // that we don't care about NaNs.
1416       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1417           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1418         return TLO.CombineTo(Op, Op0);
1419 
1420       // TODO: Should we check for other forms of sign-bit comparisons?
1421       // Examples: X <= -1, X >= 0
1422     }
1423     if (getBooleanContents(Op0.getValueType()) ==
1424             TargetLowering::ZeroOrOneBooleanContent &&
1425         BitWidth > 1)
1426       Known.Zero.setBitsFrom(1);
1427     break;
1428   }
1429   case ISD::SHL: {
1430     SDValue Op0 = Op.getOperand(0);
1431     SDValue Op1 = Op.getOperand(1);
1432     EVT ShiftVT = Op1.getValueType();
1433 
1434     if (const APInt *SA =
1435             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1436       unsigned ShAmt = SA->getZExtValue();
1437       if (ShAmt == 0)
1438         return TLO.CombineTo(Op, Op0);
1439 
1440       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1441       // single shift.  We can do this if the bottom bits (which are shifted
1442       // out) are never demanded.
1443       // TODO - support non-uniform vector amounts.
1444       if (Op0.getOpcode() == ISD::SRL) {
1445         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1446           if (const APInt *SA2 =
1447                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1448             unsigned C1 = SA2->getZExtValue();
1449             unsigned Opc = ISD::SHL;
1450             int Diff = ShAmt - C1;
1451             if (Diff < 0) {
1452               Diff = -Diff;
1453               Opc = ISD::SRL;
1454             }
1455             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1456             return TLO.CombineTo(
1457                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1458           }
1459         }
1460       }
1461 
1462       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1463       // are not demanded. This will likely allow the anyext to be folded away.
1464       // TODO - support non-uniform vector amounts.
1465       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1466         SDValue InnerOp = Op0.getOperand(0);
1467         EVT InnerVT = InnerOp.getValueType();
1468         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1469         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1470             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1471           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1472           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1473             ShTy = InnerVT;
1474           SDValue NarrowShl =
1475               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1476                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1477           return TLO.CombineTo(
1478               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1479         }
1480 
1481         // Repeat the SHL optimization above in cases where an extension
1482         // intervenes: (shl (anyext (shr x, c1)), c2) to
1483         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1484         // aren't demanded (as above) and that the shifted upper c1 bits of
1485         // x aren't demanded.
1486         // TODO - support non-uniform vector amounts.
1487         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1488             InnerOp.hasOneUse()) {
1489           if (const APInt *SA2 =
1490                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1491             unsigned InnerShAmt = SA2->getZExtValue();
1492             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1493                 DemandedBits.getActiveBits() <=
1494                     (InnerBits - InnerShAmt + ShAmt) &&
1495                 DemandedBits.countTrailingZeros() >= ShAmt) {
1496               SDValue NewSA =
1497                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1498               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1499                                                InnerOp.getOperand(0));
1500               return TLO.CombineTo(
1501                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1502             }
1503           }
1504         }
1505       }
1506 
1507       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1508       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1509                                Depth + 1))
1510         return true;
1511       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1512       Known.Zero <<= ShAmt;
1513       Known.One <<= ShAmt;
1514       // low bits known zero.
1515       Known.Zero.setLowBits(ShAmt);
1516 
1517       // Try shrinking the operation as long as the shift amount will still be
1518       // in range.
1519       if ((ShAmt < DemandedBits.getActiveBits()) &&
1520           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1521         return true;
1522     }
1523 
1524     // If we are only demanding sign bits then we can use the shift source
1525     // directly.
1526     if (const APInt *MaxSA =
1527             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1528       unsigned ShAmt = MaxSA->getZExtValue();
1529       unsigned NumSignBits =
1530           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1531       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1532       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1533         return TLO.CombineTo(Op, Op0);
1534     }
1535     break;
1536   }
1537   case ISD::SRL: {
1538     SDValue Op0 = Op.getOperand(0);
1539     SDValue Op1 = Op.getOperand(1);
1540     EVT ShiftVT = Op1.getValueType();
1541 
1542     if (const APInt *SA =
1543             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1544       unsigned ShAmt = SA->getZExtValue();
1545       if (ShAmt == 0)
1546         return TLO.CombineTo(Op, Op0);
1547 
1548       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1549       // single shift.  We can do this if the top bits (which are shifted out)
1550       // are never demanded.
1551       // TODO - support non-uniform vector amounts.
1552       if (Op0.getOpcode() == ISD::SHL) {
1553         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1554           if (const APInt *SA2 =
1555                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1556             unsigned C1 = SA2->getZExtValue();
1557             unsigned Opc = ISD::SRL;
1558             int Diff = ShAmt - C1;
1559             if (Diff < 0) {
1560               Diff = -Diff;
1561               Opc = ISD::SHL;
1562             }
1563             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1564             return TLO.CombineTo(
1565                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1566           }
1567         }
1568       }
1569 
1570       APInt InDemandedMask = (DemandedBits << ShAmt);
1571 
1572       // If the shift is exact, then it does demand the low bits (and knows that
1573       // they are zero).
1574       if (Op->getFlags().hasExact())
1575         InDemandedMask.setLowBits(ShAmt);
1576 
1577       // Compute the new bits that are at the top now.
1578       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1579                                Depth + 1))
1580         return true;
1581       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1582       Known.Zero.lshrInPlace(ShAmt);
1583       Known.One.lshrInPlace(ShAmt);
1584       // High bits known zero.
1585       Known.Zero.setHighBits(ShAmt);
1586     }
1587     break;
1588   }
1589   case ISD::SRA: {
1590     SDValue Op0 = Op.getOperand(0);
1591     SDValue Op1 = Op.getOperand(1);
1592     EVT ShiftVT = Op1.getValueType();
1593 
1594     // If we only want bits that already match the signbit then we don't need
1595     // to shift.
1596     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1597     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1598         NumHiDemandedBits)
1599       return TLO.CombineTo(Op, Op0);
1600 
1601     // If this is an arithmetic shift right and only the low-bit is set, we can
1602     // always convert this into a logical shr, even if the shift amount is
1603     // variable.  The low bit of the shift cannot be an input sign bit unless
1604     // the shift amount is >= the size of the datatype, which is undefined.
1605     if (DemandedBits.isOneValue())
1606       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1607 
1608     if (const APInt *SA =
1609             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1610       unsigned ShAmt = SA->getZExtValue();
1611       if (ShAmt == 0)
1612         return TLO.CombineTo(Op, Op0);
1613 
1614       APInt InDemandedMask = (DemandedBits << ShAmt);
1615 
1616       // If the shift is exact, then it does demand the low bits (and knows that
1617       // they are zero).
1618       if (Op->getFlags().hasExact())
1619         InDemandedMask.setLowBits(ShAmt);
1620 
1621       // If any of the demanded bits are produced by the sign extension, we also
1622       // demand the input sign bit.
1623       if (DemandedBits.countLeadingZeros() < ShAmt)
1624         InDemandedMask.setSignBit();
1625 
1626       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1627                                Depth + 1))
1628         return true;
1629       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1630       Known.Zero.lshrInPlace(ShAmt);
1631       Known.One.lshrInPlace(ShAmt);
1632 
1633       // If the input sign bit is known to be zero, or if none of the top bits
1634       // are demanded, turn this into an unsigned shift right.
1635       if (Known.Zero[BitWidth - ShAmt - 1] ||
1636           DemandedBits.countLeadingZeros() >= ShAmt) {
1637         SDNodeFlags Flags;
1638         Flags.setExact(Op->getFlags().hasExact());
1639         return TLO.CombineTo(
1640             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1641       }
1642 
1643       int Log2 = DemandedBits.exactLogBase2();
1644       if (Log2 >= 0) {
1645         // The bit must come from the sign.
1646         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1647         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1648       }
1649 
1650       if (Known.One[BitWidth - ShAmt - 1])
1651         // New bits are known one.
1652         Known.One.setHighBits(ShAmt);
1653 
1654       // Attempt to avoid multi-use ops if we don't need anything from them.
1655       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1656         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1657             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1658         if (DemandedOp0) {
1659           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1660           return TLO.CombineTo(Op, NewOp);
1661         }
1662       }
1663     }
1664     break;
1665   }
1666   case ISD::FSHL:
1667   case ISD::FSHR: {
1668     SDValue Op0 = Op.getOperand(0);
1669     SDValue Op1 = Op.getOperand(1);
1670     SDValue Op2 = Op.getOperand(2);
1671     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1672 
1673     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1674       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1675 
1676       // For fshl, 0-shift returns the 1st arg.
1677       // For fshr, 0-shift returns the 2nd arg.
1678       if (Amt == 0) {
1679         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1680                                  Known, TLO, Depth + 1))
1681           return true;
1682         break;
1683       }
1684 
1685       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1686       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1687       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1688       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1689       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1690                                Depth + 1))
1691         return true;
1692       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1693                                Depth + 1))
1694         return true;
1695 
1696       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1697       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1698       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1699       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1700       Known.One |= Known2.One;
1701       Known.Zero |= Known2.Zero;
1702     }
1703 
1704     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1705     if (isPowerOf2_32(BitWidth)) {
1706       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1707       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1708                                Known2, TLO, Depth + 1))
1709         return true;
1710     }
1711     break;
1712   }
1713   case ISD::ROTL:
1714   case ISD::ROTR: {
1715     SDValue Op0 = Op.getOperand(0);
1716     SDValue Op1 = Op.getOperand(1);
1717 
1718     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1719     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1720       return TLO.CombineTo(Op, Op0);
1721 
1722     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1723     if (isPowerOf2_32(BitWidth)) {
1724       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1725       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1726                                Depth + 1))
1727         return true;
1728     }
1729     break;
1730   }
1731   case ISD::UMIN: {
1732     // Check if one arg is always less than (or equal) to the other arg.
1733     SDValue Op0 = Op.getOperand(0);
1734     SDValue Op1 = Op.getOperand(1);
1735     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1736     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1737     Known = KnownBits::umin(Known0, Known1);
1738     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1739       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1740     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1741       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1742     break;
1743   }
1744   case ISD::UMAX: {
1745     // Check if one arg is always greater than (or equal) to the other arg.
1746     SDValue Op0 = Op.getOperand(0);
1747     SDValue Op1 = Op.getOperand(1);
1748     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1749     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1750     Known = KnownBits::umax(Known0, Known1);
1751     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1752       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1753     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1754       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1755     break;
1756   }
1757   case ISD::BITREVERSE: {
1758     SDValue Src = Op.getOperand(0);
1759     APInt DemandedSrcBits = DemandedBits.reverseBits();
1760     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1761                              Depth + 1))
1762       return true;
1763     Known.One = Known2.One.reverseBits();
1764     Known.Zero = Known2.Zero.reverseBits();
1765     break;
1766   }
1767   case ISD::BSWAP: {
1768     SDValue Src = Op.getOperand(0);
1769     APInt DemandedSrcBits = DemandedBits.byteSwap();
1770     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1771                              Depth + 1))
1772       return true;
1773     Known.One = Known2.One.byteSwap();
1774     Known.Zero = Known2.Zero.byteSwap();
1775     break;
1776   }
1777   case ISD::CTPOP: {
1778     // If only 1 bit is demanded, replace with PARITY as long as we're before
1779     // op legalization.
1780     // FIXME: Limit to scalars for now.
1781     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1782       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1783                                                Op.getOperand(0)));
1784 
1785     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1786     break;
1787   }
1788   case ISD::SIGN_EXTEND_INREG: {
1789     SDValue Op0 = Op.getOperand(0);
1790     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1791     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1792 
1793     // If we only care about the highest bit, don't bother shifting right.
1794     if (DemandedBits.isSignMask()) {
1795       unsigned NumSignBits =
1796           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1797       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1798       // However if the input is already sign extended we expect the sign
1799       // extension to be dropped altogether later and do not simplify.
1800       if (!AlreadySignExtended) {
1801         // Compute the correct shift amount type, which must be getShiftAmountTy
1802         // for scalar types after legalization.
1803         EVT ShiftAmtTy = VT;
1804         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1805           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1806 
1807         SDValue ShiftAmt =
1808             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1809         return TLO.CombineTo(Op,
1810                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1811       }
1812     }
1813 
1814     // If none of the extended bits are demanded, eliminate the sextinreg.
1815     if (DemandedBits.getActiveBits() <= ExVTBits)
1816       return TLO.CombineTo(Op, Op0);
1817 
1818     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1819 
1820     // Since the sign extended bits are demanded, we know that the sign
1821     // bit is demanded.
1822     InputDemandedBits.setBit(ExVTBits - 1);
1823 
1824     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1825       return true;
1826     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1827 
1828     // If the sign bit of the input is known set or clear, then we know the
1829     // top bits of the result.
1830 
1831     // If the input sign bit is known zero, convert this into a zero extension.
1832     if (Known.Zero[ExVTBits - 1])
1833       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1834 
1835     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1836     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1837       Known.One.setBitsFrom(ExVTBits);
1838       Known.Zero &= Mask;
1839     } else { // Input sign bit unknown
1840       Known.Zero &= Mask;
1841       Known.One &= Mask;
1842     }
1843     break;
1844   }
1845   case ISD::BUILD_PAIR: {
1846     EVT HalfVT = Op.getOperand(0).getValueType();
1847     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1848 
1849     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1850     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1851 
1852     KnownBits KnownLo, KnownHi;
1853 
1854     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1855       return true;
1856 
1857     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1858       return true;
1859 
1860     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1861                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1862 
1863     Known.One = KnownLo.One.zext(BitWidth) |
1864                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1865     break;
1866   }
1867   case ISD::ZERO_EXTEND:
1868   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1869     SDValue Src = Op.getOperand(0);
1870     EVT SrcVT = Src.getValueType();
1871     unsigned InBits = SrcVT.getScalarSizeInBits();
1872     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1873     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1874 
1875     // If none of the top bits are demanded, convert this into an any_extend.
1876     if (DemandedBits.getActiveBits() <= InBits) {
1877       // If we only need the non-extended bits of the bottom element
1878       // then we can just bitcast to the result.
1879       if (IsVecInReg && DemandedElts == 1 &&
1880           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1881           TLO.DAG.getDataLayout().isLittleEndian())
1882         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1883 
1884       unsigned Opc =
1885           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1886       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1887         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1888     }
1889 
1890     APInt InDemandedBits = DemandedBits.trunc(InBits);
1891     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1892     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1893                              Depth + 1))
1894       return true;
1895     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1896     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1897     Known = Known.zext(BitWidth);
1898 
1899     // Attempt to avoid multi-use ops if we don't need anything from them.
1900     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1901             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1902       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1903     break;
1904   }
1905   case ISD::SIGN_EXTEND:
1906   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1907     SDValue Src = Op.getOperand(0);
1908     EVT SrcVT = Src.getValueType();
1909     unsigned InBits = SrcVT.getScalarSizeInBits();
1910     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1911     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1912 
1913     // If none of the top bits are demanded, convert this into an any_extend.
1914     if (DemandedBits.getActiveBits() <= InBits) {
1915       // If we only need the non-extended bits of the bottom element
1916       // then we can just bitcast to the result.
1917       if (IsVecInReg && DemandedElts == 1 &&
1918           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1919           TLO.DAG.getDataLayout().isLittleEndian())
1920         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1921 
1922       unsigned Opc =
1923           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1924       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1925         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1926     }
1927 
1928     APInt InDemandedBits = DemandedBits.trunc(InBits);
1929     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1930 
1931     // Since some of the sign extended bits are demanded, we know that the sign
1932     // bit is demanded.
1933     InDemandedBits.setBit(InBits - 1);
1934 
1935     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1936                              Depth + 1))
1937       return true;
1938     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1939     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1940 
1941     // If the sign bit is known one, the top bits match.
1942     Known = Known.sext(BitWidth);
1943 
1944     // If the sign bit is known zero, convert this to a zero extend.
1945     if (Known.isNonNegative()) {
1946       unsigned Opc =
1947           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1948       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1949         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1950     }
1951 
1952     // Attempt to avoid multi-use ops if we don't need anything from them.
1953     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1954             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1955       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1956     break;
1957   }
1958   case ISD::ANY_EXTEND:
1959   case ISD::ANY_EXTEND_VECTOR_INREG: {
1960     SDValue Src = Op.getOperand(0);
1961     EVT SrcVT = Src.getValueType();
1962     unsigned InBits = SrcVT.getScalarSizeInBits();
1963     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1964     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1965 
1966     // If we only need the bottom element then we can just bitcast.
1967     // TODO: Handle ANY_EXTEND?
1968     if (IsVecInReg && DemandedElts == 1 &&
1969         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1970         TLO.DAG.getDataLayout().isLittleEndian())
1971       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1972 
1973     APInt InDemandedBits = DemandedBits.trunc(InBits);
1974     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1975     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1976                              Depth + 1))
1977       return true;
1978     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1979     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1980     Known = Known.anyext(BitWidth);
1981 
1982     // Attempt to avoid multi-use ops if we don't need anything from them.
1983     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1984             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1985       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1986     break;
1987   }
1988   case ISD::TRUNCATE: {
1989     SDValue Src = Op.getOperand(0);
1990 
1991     // Simplify the input, using demanded bit information, and compute the known
1992     // zero/one bits live out.
1993     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1994     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1995     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1996                              Depth + 1))
1997       return true;
1998     Known = Known.trunc(BitWidth);
1999 
2000     // Attempt to avoid multi-use ops if we don't need anything from them.
2001     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2002             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2003       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2004 
2005     // If the input is only used by this truncate, see if we can shrink it based
2006     // on the known demanded bits.
2007     if (Src.getNode()->hasOneUse()) {
2008       switch (Src.getOpcode()) {
2009       default:
2010         break;
2011       case ISD::SRL:
2012         // Shrink SRL by a constant if none of the high bits shifted in are
2013         // demanded.
2014         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2015           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2016           // undesirable.
2017           break;
2018 
2019         const APInt *ShAmtC =
2020             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2021         if (!ShAmtC || ShAmtC->uge(BitWidth))
2022           break;
2023         uint64_t ShVal = ShAmtC->getZExtValue();
2024 
2025         APInt HighBits =
2026             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2027         HighBits.lshrInPlace(ShVal);
2028         HighBits = HighBits.trunc(BitWidth);
2029 
2030         if (!(HighBits & DemandedBits)) {
2031           // None of the shifted in bits are needed.  Add a truncate of the
2032           // shift input, then shift it.
2033           SDValue NewShAmt = TLO.DAG.getConstant(
2034               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2035           SDValue NewTrunc =
2036               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2037           return TLO.CombineTo(
2038               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2039         }
2040         break;
2041       }
2042     }
2043 
2044     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2045     break;
2046   }
2047   case ISD::AssertZext: {
2048     // AssertZext demands all of the high bits, plus any of the low bits
2049     // demanded by its users.
2050     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2051     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2052     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2053                              TLO, Depth + 1))
2054       return true;
2055     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2056 
2057     Known.Zero |= ~InMask;
2058     break;
2059   }
2060   case ISD::EXTRACT_VECTOR_ELT: {
2061     SDValue Src = Op.getOperand(0);
2062     SDValue Idx = Op.getOperand(1);
2063     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2064     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2065 
2066     if (SrcEltCnt.isScalable())
2067       return false;
2068 
2069     // Demand the bits from every vector element without a constant index.
2070     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2071     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2072     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2073       if (CIdx->getAPIntValue().ult(NumSrcElts))
2074         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2075 
2076     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2077     // anything about the extended bits.
2078     APInt DemandedSrcBits = DemandedBits;
2079     if (BitWidth > EltBitWidth)
2080       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2081 
2082     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2083                              Depth + 1))
2084       return true;
2085 
2086     // Attempt to avoid multi-use ops if we don't need anything from them.
2087     if (!DemandedSrcBits.isAllOnesValue() ||
2088         !DemandedSrcElts.isAllOnesValue()) {
2089       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2090               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2091         SDValue NewOp =
2092             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2093         return TLO.CombineTo(Op, NewOp);
2094       }
2095     }
2096 
2097     Known = Known2;
2098     if (BitWidth > EltBitWidth)
2099       Known = Known.anyext(BitWidth);
2100     break;
2101   }
2102   case ISD::BITCAST: {
2103     SDValue Src = Op.getOperand(0);
2104     EVT SrcVT = Src.getValueType();
2105     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2106 
2107     // If this is an FP->Int bitcast and if the sign bit is the only
2108     // thing demanded, turn this into a FGETSIGN.
2109     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2110         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2111         SrcVT.isFloatingPoint()) {
2112       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2113       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2114       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2115           SrcVT != MVT::f128) {
2116         // Cannot eliminate/lower SHL for f128 yet.
2117         EVT Ty = OpVTLegal ? VT : MVT::i32;
2118         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2119         // place.  We expect the SHL to be eliminated by other optimizations.
2120         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2121         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2122         if (!OpVTLegal && OpVTSizeInBits > 32)
2123           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2124         unsigned ShVal = Op.getValueSizeInBits() - 1;
2125         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2126         return TLO.CombineTo(Op,
2127                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2128       }
2129     }
2130 
2131     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2132     // Demand the elt/bit if any of the original elts/bits are demanded.
2133     // TODO - bigendian once we have test coverage.
2134     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2135         TLO.DAG.getDataLayout().isLittleEndian()) {
2136       unsigned Scale = BitWidth / NumSrcEltBits;
2137       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2138       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2139       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2140       for (unsigned i = 0; i != Scale; ++i) {
2141         unsigned Offset = i * NumSrcEltBits;
2142         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2143         if (!Sub.isNullValue()) {
2144           DemandedSrcBits |= Sub;
2145           for (unsigned j = 0; j != NumElts; ++j)
2146             if (DemandedElts[j])
2147               DemandedSrcElts.setBit((j * Scale) + i);
2148         }
2149       }
2150 
2151       APInt KnownSrcUndef, KnownSrcZero;
2152       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2153                                      KnownSrcZero, TLO, Depth + 1))
2154         return true;
2155 
2156       KnownBits KnownSrcBits;
2157       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2158                                KnownSrcBits, TLO, Depth + 1))
2159         return true;
2160     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2161                TLO.DAG.getDataLayout().isLittleEndian()) {
2162       unsigned Scale = NumSrcEltBits / BitWidth;
2163       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2164       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2165       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2166       for (unsigned i = 0; i != NumElts; ++i)
2167         if (DemandedElts[i]) {
2168           unsigned Offset = (i % Scale) * BitWidth;
2169           DemandedSrcBits.insertBits(DemandedBits, Offset);
2170           DemandedSrcElts.setBit(i / Scale);
2171         }
2172 
2173       if (SrcVT.isVector()) {
2174         APInt KnownSrcUndef, KnownSrcZero;
2175         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2176                                        KnownSrcZero, TLO, Depth + 1))
2177           return true;
2178       }
2179 
2180       KnownBits KnownSrcBits;
2181       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2182                                KnownSrcBits, TLO, Depth + 1))
2183         return true;
2184     }
2185 
2186     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2187     // recursive call where Known may be useful to the caller.
2188     if (Depth > 0) {
2189       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2190       return false;
2191     }
2192     break;
2193   }
2194   case ISD::ADD:
2195   case ISD::MUL:
2196   case ISD::SUB: {
2197     // Add, Sub, and Mul don't demand any bits in positions beyond that
2198     // of the highest bit demanded of them.
2199     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2200     SDNodeFlags Flags = Op.getNode()->getFlags();
2201     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2202     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2203     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2204                              Depth + 1) ||
2205         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2206                              Depth + 1) ||
2207         // See if the operation should be performed at a smaller bit width.
2208         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2209       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2210         // Disable the nsw and nuw flags. We can no longer guarantee that we
2211         // won't wrap after simplification.
2212         Flags.setNoSignedWrap(false);
2213         Flags.setNoUnsignedWrap(false);
2214         SDValue NewOp =
2215             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2216         return TLO.CombineTo(Op, NewOp);
2217       }
2218       return true;
2219     }
2220 
2221     // Attempt to avoid multi-use ops if we don't need anything from them.
2222     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2223       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2224           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2225       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2226           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2227       if (DemandedOp0 || DemandedOp1) {
2228         Flags.setNoSignedWrap(false);
2229         Flags.setNoUnsignedWrap(false);
2230         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2231         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2232         SDValue NewOp =
2233             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2234         return TLO.CombineTo(Op, NewOp);
2235       }
2236     }
2237 
2238     // If we have a constant operand, we may be able to turn it into -1 if we
2239     // do not demand the high bits. This can make the constant smaller to
2240     // encode, allow more general folding, or match specialized instruction
2241     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2242     // is probably not useful (and could be detrimental).
2243     ConstantSDNode *C = isConstOrConstSplat(Op1);
2244     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2245     if (C && !C->isAllOnesValue() && !C->isOne() &&
2246         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2247       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2248       // Disable the nsw and nuw flags. We can no longer guarantee that we
2249       // won't wrap after simplification.
2250       Flags.setNoSignedWrap(false);
2251       Flags.setNoUnsignedWrap(false);
2252       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2253       return TLO.CombineTo(Op, NewOp);
2254     }
2255 
2256     LLVM_FALLTHROUGH;
2257   }
2258   default:
2259     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2260       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2261                                             Known, TLO, Depth))
2262         return true;
2263       break;
2264     }
2265 
2266     // Just use computeKnownBits to compute output bits.
2267     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2268     break;
2269   }
2270 
2271   // If we know the value of all of the demanded bits, return this as a
2272   // constant.
2273   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2274     // Avoid folding to a constant if any OpaqueConstant is involved.
2275     const SDNode *N = Op.getNode();
2276     for (SDNode *Op :
2277          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2278       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2279         if (C->isOpaque())
2280           return false;
2281     }
2282     if (VT.isInteger())
2283       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2284     if (VT.isFloatingPoint())
2285       return TLO.CombineTo(
2286           Op,
2287           TLO.DAG.getConstantFP(
2288               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2289   }
2290 
2291   return false;
2292 }
2293 
2294 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2295                                                 const APInt &DemandedElts,
2296                                                 APInt &KnownUndef,
2297                                                 APInt &KnownZero,
2298                                                 DAGCombinerInfo &DCI) const {
2299   SelectionDAG &DAG = DCI.DAG;
2300   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2301                         !DCI.isBeforeLegalizeOps());
2302 
2303   bool Simplified =
2304       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2305   if (Simplified) {
2306     DCI.AddToWorklist(Op.getNode());
2307     DCI.CommitTargetLoweringOpt(TLO);
2308   }
2309 
2310   return Simplified;
2311 }
2312 
2313 /// Given a vector binary operation and known undefined elements for each input
2314 /// operand, compute whether each element of the output is undefined.
2315 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2316                                          const APInt &UndefOp0,
2317                                          const APInt &UndefOp1) {
2318   EVT VT = BO.getValueType();
2319   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2320          "Vector binop only");
2321 
2322   EVT EltVT = VT.getVectorElementType();
2323   unsigned NumElts = VT.getVectorNumElements();
2324   assert(UndefOp0.getBitWidth() == NumElts &&
2325          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2326 
2327   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2328                                    const APInt &UndefVals) {
2329     if (UndefVals[Index])
2330       return DAG.getUNDEF(EltVT);
2331 
2332     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2333       // Try hard to make sure that the getNode() call is not creating temporary
2334       // nodes. Ignore opaque integers because they do not constant fold.
2335       SDValue Elt = BV->getOperand(Index);
2336       auto *C = dyn_cast<ConstantSDNode>(Elt);
2337       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2338         return Elt;
2339     }
2340 
2341     return SDValue();
2342   };
2343 
2344   APInt KnownUndef = APInt::getNullValue(NumElts);
2345   for (unsigned i = 0; i != NumElts; ++i) {
2346     // If both inputs for this element are either constant or undef and match
2347     // the element type, compute the constant/undef result for this element of
2348     // the vector.
2349     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2350     // not handle FP constants. The code within getNode() should be refactored
2351     // to avoid the danger of creating a bogus temporary node here.
2352     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2353     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2354     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2355       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2356         KnownUndef.setBit(i);
2357   }
2358   return KnownUndef;
2359 }
2360 
2361 bool TargetLowering::SimplifyDemandedVectorElts(
2362     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2363     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2364     bool AssumeSingleUse) const {
2365   EVT VT = Op.getValueType();
2366   unsigned Opcode = Op.getOpcode();
2367   APInt DemandedElts = OriginalDemandedElts;
2368   unsigned NumElts = DemandedElts.getBitWidth();
2369   assert(VT.isVector() && "Expected vector op");
2370 
2371   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2372 
2373   // TODO: For now we assume we know nothing about scalable vectors.
2374   if (VT.isScalableVector())
2375     return false;
2376 
2377   assert(VT.getVectorNumElements() == NumElts &&
2378          "Mask size mismatches value type element count!");
2379 
2380   // Undef operand.
2381   if (Op.isUndef()) {
2382     KnownUndef.setAllBits();
2383     return false;
2384   }
2385 
2386   // If Op has other users, assume that all elements are needed.
2387   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2388     DemandedElts.setAllBits();
2389 
2390   // Not demanding any elements from Op.
2391   if (DemandedElts == 0) {
2392     KnownUndef.setAllBits();
2393     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2394   }
2395 
2396   // Limit search depth.
2397   if (Depth >= SelectionDAG::MaxRecursionDepth)
2398     return false;
2399 
2400   SDLoc DL(Op);
2401   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2402 
2403   // Helper for demanding the specified elements and all the bits of both binary
2404   // operands.
2405   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2406     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2407                                                            TLO.DAG, Depth + 1);
2408     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2409                                                            TLO.DAG, Depth + 1);
2410     if (NewOp0 || NewOp1) {
2411       SDValue NewOp = TLO.DAG.getNode(
2412           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2413       return TLO.CombineTo(Op, NewOp);
2414     }
2415     return false;
2416   };
2417 
2418   switch (Opcode) {
2419   case ISD::SCALAR_TO_VECTOR: {
2420     if (!DemandedElts[0]) {
2421       KnownUndef.setAllBits();
2422       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2423     }
2424     KnownUndef.setHighBits(NumElts - 1);
2425     break;
2426   }
2427   case ISD::BITCAST: {
2428     SDValue Src = Op.getOperand(0);
2429     EVT SrcVT = Src.getValueType();
2430 
2431     // We only handle vectors here.
2432     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2433     if (!SrcVT.isVector())
2434       break;
2435 
2436     // Fast handling of 'identity' bitcasts.
2437     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2438     if (NumSrcElts == NumElts)
2439       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2440                                         KnownZero, TLO, Depth + 1);
2441 
2442     APInt SrcZero, SrcUndef;
2443     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2444 
2445     // Bitcast from 'large element' src vector to 'small element' vector, we
2446     // must demand a source element if any DemandedElt maps to it.
2447     if ((NumElts % NumSrcElts) == 0) {
2448       unsigned Scale = NumElts / NumSrcElts;
2449       for (unsigned i = 0; i != NumElts; ++i)
2450         if (DemandedElts[i])
2451           SrcDemandedElts.setBit(i / Scale);
2452 
2453       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2454                                      TLO, Depth + 1))
2455         return true;
2456 
2457       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2458       // of the large element.
2459       // TODO - bigendian once we have test coverage.
2460       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2461         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2462         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2463         for (unsigned i = 0; i != NumElts; ++i)
2464           if (DemandedElts[i]) {
2465             unsigned Ofs = (i % Scale) * EltSizeInBits;
2466             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2467           }
2468 
2469         KnownBits Known;
2470         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2471                                  TLO, Depth + 1))
2472           return true;
2473       }
2474 
2475       // If the src element is zero/undef then all the output elements will be -
2476       // only demanded elements are guaranteed to be correct.
2477       for (unsigned i = 0; i != NumSrcElts; ++i) {
2478         if (SrcDemandedElts[i]) {
2479           if (SrcZero[i])
2480             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2481           if (SrcUndef[i])
2482             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2483         }
2484       }
2485     }
2486 
2487     // Bitcast from 'small element' src vector to 'large element' vector, we
2488     // demand all smaller source elements covered by the larger demanded element
2489     // of this vector.
2490     if ((NumSrcElts % NumElts) == 0) {
2491       unsigned Scale = NumSrcElts / NumElts;
2492       for (unsigned i = 0; i != NumElts; ++i)
2493         if (DemandedElts[i])
2494           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2495 
2496       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2497                                      TLO, Depth + 1))
2498         return true;
2499 
2500       // If all the src elements covering an output element are zero/undef, then
2501       // the output element will be as well, assuming it was demanded.
2502       for (unsigned i = 0; i != NumElts; ++i) {
2503         if (DemandedElts[i]) {
2504           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2505             KnownZero.setBit(i);
2506           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2507             KnownUndef.setBit(i);
2508         }
2509       }
2510     }
2511     break;
2512   }
2513   case ISD::BUILD_VECTOR: {
2514     // Check all elements and simplify any unused elements with UNDEF.
2515     if (!DemandedElts.isAllOnesValue()) {
2516       // Don't simplify BROADCASTS.
2517       if (llvm::any_of(Op->op_values(),
2518                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2519         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2520         bool Updated = false;
2521         for (unsigned i = 0; i != NumElts; ++i) {
2522           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2523             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2524             KnownUndef.setBit(i);
2525             Updated = true;
2526           }
2527         }
2528         if (Updated)
2529           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2530       }
2531     }
2532     for (unsigned i = 0; i != NumElts; ++i) {
2533       SDValue SrcOp = Op.getOperand(i);
2534       if (SrcOp.isUndef()) {
2535         KnownUndef.setBit(i);
2536       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2537                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2538         KnownZero.setBit(i);
2539       }
2540     }
2541     break;
2542   }
2543   case ISD::CONCAT_VECTORS: {
2544     EVT SubVT = Op.getOperand(0).getValueType();
2545     unsigned NumSubVecs = Op.getNumOperands();
2546     unsigned NumSubElts = SubVT.getVectorNumElements();
2547     for (unsigned i = 0; i != NumSubVecs; ++i) {
2548       SDValue SubOp = Op.getOperand(i);
2549       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2550       APInt SubUndef, SubZero;
2551       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2552                                      Depth + 1))
2553         return true;
2554       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2555       KnownZero.insertBits(SubZero, i * NumSubElts);
2556     }
2557     break;
2558   }
2559   case ISD::INSERT_SUBVECTOR: {
2560     // Demand any elements from the subvector and the remainder from the src its
2561     // inserted into.
2562     SDValue Src = Op.getOperand(0);
2563     SDValue Sub = Op.getOperand(1);
2564     uint64_t Idx = Op.getConstantOperandVal(2);
2565     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2566     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2567     APInt DemandedSrcElts = DemandedElts;
2568     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2569 
2570     APInt SubUndef, SubZero;
2571     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2572                                    Depth + 1))
2573       return true;
2574 
2575     // If none of the src operand elements are demanded, replace it with undef.
2576     if (!DemandedSrcElts && !Src.isUndef())
2577       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2578                                                TLO.DAG.getUNDEF(VT), Sub,
2579                                                Op.getOperand(2)));
2580 
2581     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2582                                    TLO, Depth + 1))
2583       return true;
2584     KnownUndef.insertBits(SubUndef, Idx);
2585     KnownZero.insertBits(SubZero, Idx);
2586 
2587     // Attempt to avoid multi-use ops if we don't need anything from them.
2588     if (!DemandedSrcElts.isAllOnesValue() ||
2589         !DemandedSubElts.isAllOnesValue()) {
2590       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2591           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2592       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2593           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2594       if (NewSrc || NewSub) {
2595         NewSrc = NewSrc ? NewSrc : Src;
2596         NewSub = NewSub ? NewSub : Sub;
2597         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2598                                         NewSub, Op.getOperand(2));
2599         return TLO.CombineTo(Op, NewOp);
2600       }
2601     }
2602     break;
2603   }
2604   case ISD::EXTRACT_SUBVECTOR: {
2605     // Offset the demanded elts by the subvector index.
2606     SDValue Src = Op.getOperand(0);
2607     if (Src.getValueType().isScalableVector())
2608       break;
2609     uint64_t Idx = Op.getConstantOperandVal(1);
2610     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2611     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2612 
2613     APInt SrcUndef, SrcZero;
2614     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2615                                    Depth + 1))
2616       return true;
2617     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2618     KnownZero = SrcZero.extractBits(NumElts, Idx);
2619 
2620     // Attempt to avoid multi-use ops if we don't need anything from them.
2621     if (!DemandedElts.isAllOnesValue()) {
2622       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2623           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2624       if (NewSrc) {
2625         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2626                                         Op.getOperand(1));
2627         return TLO.CombineTo(Op, NewOp);
2628       }
2629     }
2630     break;
2631   }
2632   case ISD::INSERT_VECTOR_ELT: {
2633     SDValue Vec = Op.getOperand(0);
2634     SDValue Scl = Op.getOperand(1);
2635     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2636 
2637     // For a legal, constant insertion index, if we don't need this insertion
2638     // then strip it, else remove it from the demanded elts.
2639     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2640       unsigned Idx = CIdx->getZExtValue();
2641       if (!DemandedElts[Idx])
2642         return TLO.CombineTo(Op, Vec);
2643 
2644       APInt DemandedVecElts(DemandedElts);
2645       DemandedVecElts.clearBit(Idx);
2646       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2647                                      KnownZero, TLO, Depth + 1))
2648         return true;
2649 
2650       KnownUndef.setBitVal(Idx, Scl.isUndef());
2651 
2652       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2653       break;
2654     }
2655 
2656     APInt VecUndef, VecZero;
2657     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2658                                    Depth + 1))
2659       return true;
2660     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2661     break;
2662   }
2663   case ISD::VSELECT: {
2664     // Try to transform the select condition based on the current demanded
2665     // elements.
2666     // TODO: If a condition element is undef, we can choose from one arm of the
2667     //       select (and if one arm is undef, then we can propagate that to the
2668     //       result).
2669     // TODO - add support for constant vselect masks (see IR version of this).
2670     APInt UnusedUndef, UnusedZero;
2671     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2672                                    UnusedZero, TLO, Depth + 1))
2673       return true;
2674 
2675     // See if we can simplify either vselect operand.
2676     APInt DemandedLHS(DemandedElts);
2677     APInt DemandedRHS(DemandedElts);
2678     APInt UndefLHS, ZeroLHS;
2679     APInt UndefRHS, ZeroRHS;
2680     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2681                                    ZeroLHS, TLO, Depth + 1))
2682       return true;
2683     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2684                                    ZeroRHS, TLO, Depth + 1))
2685       return true;
2686 
2687     KnownUndef = UndefLHS & UndefRHS;
2688     KnownZero = ZeroLHS & ZeroRHS;
2689     break;
2690   }
2691   case ISD::VECTOR_SHUFFLE: {
2692     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2693 
2694     // Collect demanded elements from shuffle operands..
2695     APInt DemandedLHS(NumElts, 0);
2696     APInt DemandedRHS(NumElts, 0);
2697     for (unsigned i = 0; i != NumElts; ++i) {
2698       int M = ShuffleMask[i];
2699       if (M < 0 || !DemandedElts[i])
2700         continue;
2701       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2702       if (M < (int)NumElts)
2703         DemandedLHS.setBit(M);
2704       else
2705         DemandedRHS.setBit(M - NumElts);
2706     }
2707 
2708     // See if we can simplify either shuffle operand.
2709     APInt UndefLHS, ZeroLHS;
2710     APInt UndefRHS, ZeroRHS;
2711     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2712                                    ZeroLHS, TLO, Depth + 1))
2713       return true;
2714     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2715                                    ZeroRHS, TLO, Depth + 1))
2716       return true;
2717 
2718     // Simplify mask using undef elements from LHS/RHS.
2719     bool Updated = false;
2720     bool IdentityLHS = true, IdentityRHS = true;
2721     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2722     for (unsigned i = 0; i != NumElts; ++i) {
2723       int &M = NewMask[i];
2724       if (M < 0)
2725         continue;
2726       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2727           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2728         Updated = true;
2729         M = -1;
2730       }
2731       IdentityLHS &= (M < 0) || (M == (int)i);
2732       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2733     }
2734 
2735     // Update legal shuffle masks based on demanded elements if it won't reduce
2736     // to Identity which can cause premature removal of the shuffle mask.
2737     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2738       SDValue LegalShuffle =
2739           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2740                                   NewMask, TLO.DAG);
2741       if (LegalShuffle)
2742         return TLO.CombineTo(Op, LegalShuffle);
2743     }
2744 
2745     // Propagate undef/zero elements from LHS/RHS.
2746     for (unsigned i = 0; i != NumElts; ++i) {
2747       int M = ShuffleMask[i];
2748       if (M < 0) {
2749         KnownUndef.setBit(i);
2750       } else if (M < (int)NumElts) {
2751         if (UndefLHS[M])
2752           KnownUndef.setBit(i);
2753         if (ZeroLHS[M])
2754           KnownZero.setBit(i);
2755       } else {
2756         if (UndefRHS[M - NumElts])
2757           KnownUndef.setBit(i);
2758         if (ZeroRHS[M - NumElts])
2759           KnownZero.setBit(i);
2760       }
2761     }
2762     break;
2763   }
2764   case ISD::ANY_EXTEND_VECTOR_INREG:
2765   case ISD::SIGN_EXTEND_VECTOR_INREG:
2766   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2767     APInt SrcUndef, SrcZero;
2768     SDValue Src = Op.getOperand(0);
2769     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2770     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2771     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2772                                    Depth + 1))
2773       return true;
2774     KnownZero = SrcZero.zextOrTrunc(NumElts);
2775     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2776 
2777     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2778         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2779         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2780       // aext - if we just need the bottom element then we can bitcast.
2781       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2782     }
2783 
2784     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2785       // zext(undef) upper bits are guaranteed to be zero.
2786       if (DemandedElts.isSubsetOf(KnownUndef))
2787         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2788       KnownUndef.clearAllBits();
2789     }
2790     break;
2791   }
2792 
2793   // TODO: There are more binop opcodes that could be handled here - MIN,
2794   // MAX, saturated math, etc.
2795   case ISD::OR:
2796   case ISD::XOR:
2797   case ISD::ADD:
2798   case ISD::SUB:
2799   case ISD::FADD:
2800   case ISD::FSUB:
2801   case ISD::FMUL:
2802   case ISD::FDIV:
2803   case ISD::FREM: {
2804     SDValue Op0 = Op.getOperand(0);
2805     SDValue Op1 = Op.getOperand(1);
2806 
2807     APInt UndefRHS, ZeroRHS;
2808     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2809                                    Depth + 1))
2810       return true;
2811     APInt UndefLHS, ZeroLHS;
2812     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2813                                    Depth + 1))
2814       return true;
2815 
2816     KnownZero = ZeroLHS & ZeroRHS;
2817     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2818 
2819     // Attempt to avoid multi-use ops if we don't need anything from them.
2820     // TODO - use KnownUndef to relax the demandedelts?
2821     if (!DemandedElts.isAllOnesValue())
2822       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2823         return true;
2824     break;
2825   }
2826   case ISD::SHL:
2827   case ISD::SRL:
2828   case ISD::SRA:
2829   case ISD::ROTL:
2830   case ISD::ROTR: {
2831     SDValue Op0 = Op.getOperand(0);
2832     SDValue Op1 = Op.getOperand(1);
2833 
2834     APInt UndefRHS, ZeroRHS;
2835     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2836                                    Depth + 1))
2837       return true;
2838     APInt UndefLHS, ZeroLHS;
2839     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2840                                    Depth + 1))
2841       return true;
2842 
2843     KnownZero = ZeroLHS;
2844     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2845 
2846     // Attempt to avoid multi-use ops if we don't need anything from them.
2847     // TODO - use KnownUndef to relax the demandedelts?
2848     if (!DemandedElts.isAllOnesValue())
2849       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2850         return true;
2851     break;
2852   }
2853   case ISD::MUL:
2854   case ISD::AND: {
2855     SDValue Op0 = Op.getOperand(0);
2856     SDValue Op1 = Op.getOperand(1);
2857 
2858     APInt SrcUndef, SrcZero;
2859     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2860                                    Depth + 1))
2861       return true;
2862     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2863                                    TLO, Depth + 1))
2864       return true;
2865 
2866     // If either side has a zero element, then the result element is zero, even
2867     // if the other is an UNDEF.
2868     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2869     // and then handle 'and' nodes with the rest of the binop opcodes.
2870     KnownZero |= SrcZero;
2871     KnownUndef &= SrcUndef;
2872     KnownUndef &= ~KnownZero;
2873 
2874     // Attempt to avoid multi-use ops if we don't need anything from them.
2875     // TODO - use KnownUndef to relax the demandedelts?
2876     if (!DemandedElts.isAllOnesValue())
2877       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2878         return true;
2879     break;
2880   }
2881   case ISD::TRUNCATE:
2882   case ISD::SIGN_EXTEND:
2883   case ISD::ZERO_EXTEND:
2884     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2885                                    KnownZero, TLO, Depth + 1))
2886       return true;
2887 
2888     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2889       // zext(undef) upper bits are guaranteed to be zero.
2890       if (DemandedElts.isSubsetOf(KnownUndef))
2891         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2892       KnownUndef.clearAllBits();
2893     }
2894     break;
2895   default: {
2896     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2897       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2898                                                   KnownZero, TLO, Depth))
2899         return true;
2900     } else {
2901       KnownBits Known;
2902       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2903       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2904                                TLO, Depth, AssumeSingleUse))
2905         return true;
2906     }
2907     break;
2908   }
2909   }
2910   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2911 
2912   // Constant fold all undef cases.
2913   // TODO: Handle zero cases as well.
2914   if (DemandedElts.isSubsetOf(KnownUndef))
2915     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2916 
2917   return false;
2918 }
2919 
2920 /// Determine which of the bits specified in Mask are known to be either zero or
2921 /// one and return them in the Known.
2922 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2923                                                    KnownBits &Known,
2924                                                    const APInt &DemandedElts,
2925                                                    const SelectionDAG &DAG,
2926                                                    unsigned Depth) const {
2927   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2928           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2929           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2930           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2931          "Should use MaskedValueIsZero if you don't know whether Op"
2932          " is a target node!");
2933   Known.resetAll();
2934 }
2935 
2936 void TargetLowering::computeKnownBitsForTargetInstr(
2937     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2938     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2939     unsigned Depth) const {
2940   Known.resetAll();
2941 }
2942 
2943 void TargetLowering::computeKnownBitsForFrameIndex(
2944   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2945   // The low bits are known zero if the pointer is aligned.
2946   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2947 }
2948 
2949 Align TargetLowering::computeKnownAlignForTargetInstr(
2950   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2951   unsigned Depth) const {
2952   return Align(1);
2953 }
2954 
2955 /// This method can be implemented by targets that want to expose additional
2956 /// information about sign bits to the DAG Combiner.
2957 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2958                                                          const APInt &,
2959                                                          const SelectionDAG &,
2960                                                          unsigned Depth) const {
2961   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2962           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2963           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2964           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2965          "Should use ComputeNumSignBits if you don't know whether Op"
2966          " is a target node!");
2967   return 1;
2968 }
2969 
2970 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2971   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2972   const MachineRegisterInfo &MRI, unsigned Depth) const {
2973   return 1;
2974 }
2975 
2976 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2977     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2978     TargetLoweringOpt &TLO, unsigned Depth) const {
2979   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2980           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2981           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2982           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2983          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2984          " is a target node!");
2985   return false;
2986 }
2987 
2988 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2989     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2990     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2991   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2992           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2993           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2994           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2995          "Should use SimplifyDemandedBits if you don't know whether Op"
2996          " is a target node!");
2997   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2998   return false;
2999 }
3000 
3001 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3002     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3003     SelectionDAG &DAG, unsigned Depth) const {
3004   assert(
3005       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3006        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3007        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3008        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3009       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3010       " is a target node!");
3011   return SDValue();
3012 }
3013 
3014 SDValue
3015 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3016                                         SDValue N1, MutableArrayRef<int> Mask,
3017                                         SelectionDAG &DAG) const {
3018   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3019   if (!LegalMask) {
3020     std::swap(N0, N1);
3021     ShuffleVectorSDNode::commuteMask(Mask);
3022     LegalMask = isShuffleMaskLegal(Mask, VT);
3023   }
3024 
3025   if (!LegalMask)
3026     return SDValue();
3027 
3028   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3029 }
3030 
3031 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3032   return nullptr;
3033 }
3034 
3035 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3036                                                   const SelectionDAG &DAG,
3037                                                   bool SNaN,
3038                                                   unsigned Depth) const {
3039   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3040           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3041           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3042           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3043          "Should use isKnownNeverNaN if you don't know whether Op"
3044          " is a target node!");
3045   return false;
3046 }
3047 
3048 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3049 // work with truncating build vectors and vectors with elements of less than
3050 // 8 bits.
3051 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3052   if (!N)
3053     return false;
3054 
3055   APInt CVal;
3056   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3057     CVal = CN->getAPIntValue();
3058   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3059     auto *CN = BV->getConstantSplatNode();
3060     if (!CN)
3061       return false;
3062 
3063     // If this is a truncating build vector, truncate the splat value.
3064     // Otherwise, we may fail to match the expected values below.
3065     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3066     CVal = CN->getAPIntValue();
3067     if (BVEltWidth < CVal.getBitWidth())
3068       CVal = CVal.trunc(BVEltWidth);
3069   } else {
3070     return false;
3071   }
3072 
3073   switch (getBooleanContents(N->getValueType(0))) {
3074   case UndefinedBooleanContent:
3075     return CVal[0];
3076   case ZeroOrOneBooleanContent:
3077     return CVal.isOneValue();
3078   case ZeroOrNegativeOneBooleanContent:
3079     return CVal.isAllOnesValue();
3080   }
3081 
3082   llvm_unreachable("Invalid boolean contents");
3083 }
3084 
3085 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3086   if (!N)
3087     return false;
3088 
3089   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3090   if (!CN) {
3091     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3092     if (!BV)
3093       return false;
3094 
3095     // Only interested in constant splats, we don't care about undef
3096     // elements in identifying boolean constants and getConstantSplatNode
3097     // returns NULL if all ops are undef;
3098     CN = BV->getConstantSplatNode();
3099     if (!CN)
3100       return false;
3101   }
3102 
3103   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3104     return !CN->getAPIntValue()[0];
3105 
3106   return CN->isNullValue();
3107 }
3108 
3109 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3110                                        bool SExt) const {
3111   if (VT == MVT::i1)
3112     return N->isOne();
3113 
3114   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3115   switch (Cnt) {
3116   case TargetLowering::ZeroOrOneBooleanContent:
3117     // An extended value of 1 is always true, unless its original type is i1,
3118     // in which case it will be sign extended to -1.
3119     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3120   case TargetLowering::UndefinedBooleanContent:
3121   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3122     return N->isAllOnesValue() && SExt;
3123   }
3124   llvm_unreachable("Unexpected enumeration.");
3125 }
3126 
3127 /// This helper function of SimplifySetCC tries to optimize the comparison when
3128 /// either operand of the SetCC node is a bitwise-and instruction.
3129 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3130                                          ISD::CondCode Cond, const SDLoc &DL,
3131                                          DAGCombinerInfo &DCI) const {
3132   // Match these patterns in any of their permutations:
3133   // (X & Y) == Y
3134   // (X & Y) != Y
3135   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3136     std::swap(N0, N1);
3137 
3138   EVT OpVT = N0.getValueType();
3139   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3140       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3141     return SDValue();
3142 
3143   SDValue X, Y;
3144   if (N0.getOperand(0) == N1) {
3145     X = N0.getOperand(1);
3146     Y = N0.getOperand(0);
3147   } else if (N0.getOperand(1) == N1) {
3148     X = N0.getOperand(0);
3149     Y = N0.getOperand(1);
3150   } else {
3151     return SDValue();
3152   }
3153 
3154   SelectionDAG &DAG = DCI.DAG;
3155   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3156   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3157     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3158     // Note that where Y is variable and is known to have at most one bit set
3159     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3160     // equivalent when Y == 0.
3161     assert(OpVT.isInteger());
3162     Cond = ISD::getSetCCInverse(Cond, OpVT);
3163     if (DCI.isBeforeLegalizeOps() ||
3164         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3165       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3166   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3167     // If the target supports an 'and-not' or 'and-complement' logic operation,
3168     // try to use that to make a comparison operation more efficient.
3169     // But don't do this transform if the mask is a single bit because there are
3170     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3171     // 'rlwinm' on PPC).
3172 
3173     // Bail out if the compare operand that we want to turn into a zero is
3174     // already a zero (otherwise, infinite loop).
3175     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3176     if (YConst && YConst->isNullValue())
3177       return SDValue();
3178 
3179     // Transform this into: ~X & Y == 0.
3180     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3181     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3182     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3183   }
3184 
3185   return SDValue();
3186 }
3187 
3188 /// There are multiple IR patterns that could be checking whether certain
3189 /// truncation of a signed number would be lossy or not. The pattern which is
3190 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3191 /// We are looking for the following pattern: (KeptBits is a constant)
3192 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3193 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3194 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3195 /// We will unfold it into the natural trunc+sext pattern:
3196 ///   ((%x << C) a>> C) dstcond %x
3197 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3198 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3199     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3200     const SDLoc &DL) const {
3201   // We must be comparing with a constant.
3202   ConstantSDNode *C1;
3203   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3204     return SDValue();
3205 
3206   // N0 should be:  add %x, (1 << (KeptBits-1))
3207   if (N0->getOpcode() != ISD::ADD)
3208     return SDValue();
3209 
3210   // And we must be 'add'ing a constant.
3211   ConstantSDNode *C01;
3212   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3213     return SDValue();
3214 
3215   SDValue X = N0->getOperand(0);
3216   EVT XVT = X.getValueType();
3217 
3218   // Validate constants ...
3219 
3220   APInt I1 = C1->getAPIntValue();
3221 
3222   ISD::CondCode NewCond;
3223   if (Cond == ISD::CondCode::SETULT) {
3224     NewCond = ISD::CondCode::SETEQ;
3225   } else if (Cond == ISD::CondCode::SETULE) {
3226     NewCond = ISD::CondCode::SETEQ;
3227     // But need to 'canonicalize' the constant.
3228     I1 += 1;
3229   } else if (Cond == ISD::CondCode::SETUGT) {
3230     NewCond = ISD::CondCode::SETNE;
3231     // But need to 'canonicalize' the constant.
3232     I1 += 1;
3233   } else if (Cond == ISD::CondCode::SETUGE) {
3234     NewCond = ISD::CondCode::SETNE;
3235   } else
3236     return SDValue();
3237 
3238   APInt I01 = C01->getAPIntValue();
3239 
3240   auto checkConstants = [&I1, &I01]() -> bool {
3241     // Both of them must be power-of-two, and the constant from setcc is bigger.
3242     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3243   };
3244 
3245   if (checkConstants()) {
3246     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3247   } else {
3248     // What if we invert constants? (and the target predicate)
3249     I1.negate();
3250     I01.negate();
3251     assert(XVT.isInteger());
3252     NewCond = getSetCCInverse(NewCond, XVT);
3253     if (!checkConstants())
3254       return SDValue();
3255     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3256   }
3257 
3258   // They are power-of-two, so which bit is set?
3259   const unsigned KeptBits = I1.logBase2();
3260   const unsigned KeptBitsMinusOne = I01.logBase2();
3261 
3262   // Magic!
3263   if (KeptBits != (KeptBitsMinusOne + 1))
3264     return SDValue();
3265   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3266 
3267   // We don't want to do this in every single case.
3268   SelectionDAG &DAG = DCI.DAG;
3269   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3270           XVT, KeptBits))
3271     return SDValue();
3272 
3273   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3274   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3275 
3276   // Unfold into:  ((%x << C) a>> C) cond %x
3277   // Where 'cond' will be either 'eq' or 'ne'.
3278   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3279   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3280   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3281   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3282 
3283   return T2;
3284 }
3285 
3286 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3287 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3288     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3289     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3290   assert(isConstOrConstSplat(N1C) &&
3291          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3292          "Should be a comparison with 0.");
3293   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3294          "Valid only for [in]equality comparisons.");
3295 
3296   unsigned NewShiftOpcode;
3297   SDValue X, C, Y;
3298 
3299   SelectionDAG &DAG = DCI.DAG;
3300   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3301 
3302   // Look for '(C l>>/<< Y)'.
3303   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3304     // The shift should be one-use.
3305     if (!V.hasOneUse())
3306       return false;
3307     unsigned OldShiftOpcode = V.getOpcode();
3308     switch (OldShiftOpcode) {
3309     case ISD::SHL:
3310       NewShiftOpcode = ISD::SRL;
3311       break;
3312     case ISD::SRL:
3313       NewShiftOpcode = ISD::SHL;
3314       break;
3315     default:
3316       return false; // must be a logical shift.
3317     }
3318     // We should be shifting a constant.
3319     // FIXME: best to use isConstantOrConstantVector().
3320     C = V.getOperand(0);
3321     ConstantSDNode *CC =
3322         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3323     if (!CC)
3324       return false;
3325     Y = V.getOperand(1);
3326 
3327     ConstantSDNode *XC =
3328         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3329     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3330         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3331   };
3332 
3333   // LHS of comparison should be an one-use 'and'.
3334   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3335     return SDValue();
3336 
3337   X = N0.getOperand(0);
3338   SDValue Mask = N0.getOperand(1);
3339 
3340   // 'and' is commutative!
3341   if (!Match(Mask)) {
3342     std::swap(X, Mask);
3343     if (!Match(Mask))
3344       return SDValue();
3345   }
3346 
3347   EVT VT = X.getValueType();
3348 
3349   // Produce:
3350   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3351   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3352   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3353   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3354   return T2;
3355 }
3356 
3357 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3358 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3359 /// handle the commuted versions of these patterns.
3360 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3361                                            ISD::CondCode Cond, const SDLoc &DL,
3362                                            DAGCombinerInfo &DCI) const {
3363   unsigned BOpcode = N0.getOpcode();
3364   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3365          "Unexpected binop");
3366   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3367 
3368   // (X + Y) == X --> Y == 0
3369   // (X - Y) == X --> Y == 0
3370   // (X ^ Y) == X --> Y == 0
3371   SelectionDAG &DAG = DCI.DAG;
3372   EVT OpVT = N0.getValueType();
3373   SDValue X = N0.getOperand(0);
3374   SDValue Y = N0.getOperand(1);
3375   if (X == N1)
3376     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3377 
3378   if (Y != N1)
3379     return SDValue();
3380 
3381   // (X + Y) == Y --> X == 0
3382   // (X ^ Y) == Y --> X == 0
3383   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3384     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3385 
3386   // The shift would not be valid if the operands are boolean (i1).
3387   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3388     return SDValue();
3389 
3390   // (X - Y) == Y --> X == Y << 1
3391   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3392                                  !DCI.isBeforeLegalize());
3393   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3394   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3395   if (!DCI.isCalledByLegalizer())
3396     DCI.AddToWorklist(YShl1.getNode());
3397   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3398 }
3399 
3400 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3401                                       SDValue N0, const APInt &C1,
3402                                       ISD::CondCode Cond, const SDLoc &dl,
3403                                       SelectionDAG &DAG) {
3404   // Look through truncs that don't change the value of a ctpop.
3405   // FIXME: Add vector support? Need to be careful with setcc result type below.
3406   SDValue CTPOP = N0;
3407   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3408       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3409     CTPOP = N0.getOperand(0);
3410 
3411   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3412     return SDValue();
3413 
3414   EVT CTVT = CTPOP.getValueType();
3415   SDValue CTOp = CTPOP.getOperand(0);
3416 
3417   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3418   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3419   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3420     return SDValue();
3421 
3422   // (ctpop x) u< 2 -> (x & x-1) == 0
3423   // (ctpop x) u> 1 -> (x & x-1) != 0
3424   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3425     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3426     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3427       return SDValue();
3428     if (C1 == 0 && (Cond == ISD::SETULT))
3429       return SDValue(); // This is handled elsewhere.
3430 
3431     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3432 
3433     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3434     SDValue Result = CTOp;
3435     for (unsigned i = 0; i < Passes; i++) {
3436       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3437       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3438     }
3439     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3440     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3441   }
3442 
3443   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3444   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3445     // For scalars, keep CTPOP if it is legal or custom.
3446     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3447       return SDValue();
3448     // This is based on X86's custom lowering for CTPOP which produces more
3449     // instructions than the expansion here.
3450 
3451     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3452     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3453     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3454     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3455     assert(CTVT.isInteger());
3456     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3457     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3458     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3459     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3460     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3461     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3462     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3463   }
3464 
3465   return SDValue();
3466 }
3467 
3468 /// Try to simplify a setcc built with the specified operands and cc. If it is
3469 /// unable to simplify it, return a null SDValue.
3470 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3471                                       ISD::CondCode Cond, bool foldBooleans,
3472                                       DAGCombinerInfo &DCI,
3473                                       const SDLoc &dl) const {
3474   SelectionDAG &DAG = DCI.DAG;
3475   const DataLayout &Layout = DAG.getDataLayout();
3476   EVT OpVT = N0.getValueType();
3477 
3478   // Constant fold or commute setcc.
3479   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3480     return Fold;
3481 
3482   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3483   // TODO: Handle non-splat vector constants. All undef causes trouble.
3484   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3485   // infinite loop here when we encounter one.
3486   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3487   if (isConstOrConstSplat(N0) &&
3488       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3489       (DCI.isBeforeLegalizeOps() ||
3490        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3491     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3492 
3493   // If we have a subtract with the same 2 non-constant operands as this setcc
3494   // -- but in reverse order -- then try to commute the operands of this setcc
3495   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3496   // instruction on some targets.
3497   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3498       (DCI.isBeforeLegalizeOps() ||
3499        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3500       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3501       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3502     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3503 
3504   if (auto *N1C = isConstOrConstSplat(N1)) {
3505     const APInt &C1 = N1C->getAPIntValue();
3506 
3507     // Optimize some CTPOP cases.
3508     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3509       return V;
3510 
3511     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3512     // equality comparison, then we're just comparing whether X itself is
3513     // zero.
3514     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3515         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3516         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3517       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3518         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3519             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3520           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3521             // (srl (ctlz x), 5) == 0  -> X != 0
3522             // (srl (ctlz x), 5) != 1  -> X != 0
3523             Cond = ISD::SETNE;
3524           } else {
3525             // (srl (ctlz x), 5) != 0  -> X == 0
3526             // (srl (ctlz x), 5) == 1  -> X == 0
3527             Cond = ISD::SETEQ;
3528           }
3529           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3530           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3531                               Cond);
3532         }
3533       }
3534     }
3535   }
3536 
3537   // FIXME: Support vectors.
3538   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3539     const APInt &C1 = N1C->getAPIntValue();
3540 
3541     // (zext x) == C --> x == (trunc C)
3542     // (sext x) == C --> x == (trunc C)
3543     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3544         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3545       unsigned MinBits = N0.getValueSizeInBits();
3546       SDValue PreExt;
3547       bool Signed = false;
3548       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3549         // ZExt
3550         MinBits = N0->getOperand(0).getValueSizeInBits();
3551         PreExt = N0->getOperand(0);
3552       } else if (N0->getOpcode() == ISD::AND) {
3553         // DAGCombine turns costly ZExts into ANDs
3554         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3555           if ((C->getAPIntValue()+1).isPowerOf2()) {
3556             MinBits = C->getAPIntValue().countTrailingOnes();
3557             PreExt = N0->getOperand(0);
3558           }
3559       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3560         // SExt
3561         MinBits = N0->getOperand(0).getValueSizeInBits();
3562         PreExt = N0->getOperand(0);
3563         Signed = true;
3564       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3565         // ZEXTLOAD / SEXTLOAD
3566         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3567           MinBits = LN0->getMemoryVT().getSizeInBits();
3568           PreExt = N0;
3569         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3570           Signed = true;
3571           MinBits = LN0->getMemoryVT().getSizeInBits();
3572           PreExt = N0;
3573         }
3574       }
3575 
3576       // Figure out how many bits we need to preserve this constant.
3577       unsigned ReqdBits = Signed ?
3578         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3579         C1.getActiveBits();
3580 
3581       // Make sure we're not losing bits from the constant.
3582       if (MinBits > 0 &&
3583           MinBits < C1.getBitWidth() &&
3584           MinBits >= ReqdBits) {
3585         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3586         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3587           // Will get folded away.
3588           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3589           if (MinBits == 1 && C1 == 1)
3590             // Invert the condition.
3591             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3592                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3593           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3594           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3595         }
3596 
3597         // If truncating the setcc operands is not desirable, we can still
3598         // simplify the expression in some cases:
3599         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3600         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3601         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3602         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3603         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3604         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3605         SDValue TopSetCC = N0->getOperand(0);
3606         unsigned N0Opc = N0->getOpcode();
3607         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3608         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3609             TopSetCC.getOpcode() == ISD::SETCC &&
3610             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3611             (isConstFalseVal(N1C) ||
3612              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3613 
3614           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3615                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3616 
3617           if (!Inverse)
3618             return TopSetCC;
3619 
3620           ISD::CondCode InvCond = ISD::getSetCCInverse(
3621               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3622               TopSetCC.getOperand(0).getValueType());
3623           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3624                                       TopSetCC.getOperand(1),
3625                                       InvCond);
3626         }
3627       }
3628     }
3629 
3630     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3631     // equality or unsigned, and all 1 bits of the const are in the same
3632     // partial word, see if we can shorten the load.
3633     if (DCI.isBeforeLegalize() &&
3634         !ISD::isSignedIntSetCC(Cond) &&
3635         N0.getOpcode() == ISD::AND && C1 == 0 &&
3636         N0.getNode()->hasOneUse() &&
3637         isa<LoadSDNode>(N0.getOperand(0)) &&
3638         N0.getOperand(0).getNode()->hasOneUse() &&
3639         isa<ConstantSDNode>(N0.getOperand(1))) {
3640       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3641       APInt bestMask;
3642       unsigned bestWidth = 0, bestOffset = 0;
3643       if (Lod->isSimple() && Lod->isUnindexed()) {
3644         unsigned origWidth = N0.getValueSizeInBits();
3645         unsigned maskWidth = origWidth;
3646         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3647         // 8 bits, but have to be careful...
3648         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3649           origWidth = Lod->getMemoryVT().getSizeInBits();
3650         const APInt &Mask = N0.getConstantOperandAPInt(1);
3651         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3652           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3653           for (unsigned offset=0; offset<origWidth/width; offset++) {
3654             if (Mask.isSubsetOf(newMask)) {
3655               if (Layout.isLittleEndian())
3656                 bestOffset = (uint64_t)offset * (width/8);
3657               else
3658                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3659               bestMask = Mask.lshr(offset * (width/8) * 8);
3660               bestWidth = width;
3661               break;
3662             }
3663             newMask <<= width;
3664           }
3665         }
3666       }
3667       if (bestWidth) {
3668         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3669         if (newVT.isRound() &&
3670             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3671           SDValue Ptr = Lod->getBasePtr();
3672           if (bestOffset != 0)
3673             Ptr =
3674                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3675           SDValue NewLoad =
3676               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3677                           Lod->getPointerInfo().getWithOffset(bestOffset),
3678                           Lod->getOriginalAlign());
3679           return DAG.getSetCC(dl, VT,
3680                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3681                                       DAG.getConstant(bestMask.trunc(bestWidth),
3682                                                       dl, newVT)),
3683                               DAG.getConstant(0LL, dl, newVT), Cond);
3684         }
3685       }
3686     }
3687 
3688     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3689     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3690       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3691 
3692       // If the comparison constant has bits in the upper part, the
3693       // zero-extended value could never match.
3694       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3695                                               C1.getBitWidth() - InSize))) {
3696         switch (Cond) {
3697         case ISD::SETUGT:
3698         case ISD::SETUGE:
3699         case ISD::SETEQ:
3700           return DAG.getConstant(0, dl, VT);
3701         case ISD::SETULT:
3702         case ISD::SETULE:
3703         case ISD::SETNE:
3704           return DAG.getConstant(1, dl, VT);
3705         case ISD::SETGT:
3706         case ISD::SETGE:
3707           // True if the sign bit of C1 is set.
3708           return DAG.getConstant(C1.isNegative(), dl, VT);
3709         case ISD::SETLT:
3710         case ISD::SETLE:
3711           // True if the sign bit of C1 isn't set.
3712           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3713         default:
3714           break;
3715         }
3716       }
3717 
3718       // Otherwise, we can perform the comparison with the low bits.
3719       switch (Cond) {
3720       case ISD::SETEQ:
3721       case ISD::SETNE:
3722       case ISD::SETUGT:
3723       case ISD::SETUGE:
3724       case ISD::SETULT:
3725       case ISD::SETULE: {
3726         EVT newVT = N0.getOperand(0).getValueType();
3727         if (DCI.isBeforeLegalizeOps() ||
3728             (isOperationLegal(ISD::SETCC, newVT) &&
3729              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3730           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3731           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3732 
3733           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3734                                           NewConst, Cond);
3735           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3736         }
3737         break;
3738       }
3739       default:
3740         break; // todo, be more careful with signed comparisons
3741       }
3742     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3743                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3744                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3745                                       OpVT)) {
3746       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3747       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3748       EVT ExtDstTy = N0.getValueType();
3749       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3750 
3751       // If the constant doesn't fit into the number of bits for the source of
3752       // the sign extension, it is impossible for both sides to be equal.
3753       if (C1.getMinSignedBits() > ExtSrcTyBits)
3754         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3755 
3756       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3757              ExtDstTy != ExtSrcTy && "Unexpected types!");
3758       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3759       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3760                                    DAG.getConstant(Imm, dl, ExtDstTy));
3761       if (!DCI.isCalledByLegalizer())
3762         DCI.AddToWorklist(ZextOp.getNode());
3763       // Otherwise, make this a use of a zext.
3764       return DAG.getSetCC(dl, VT, ZextOp,
3765                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3766     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3767                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3768       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3769       if (N0.getOpcode() == ISD::SETCC &&
3770           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3771           (N0.getValueType() == MVT::i1 ||
3772            getBooleanContents(N0.getOperand(0).getValueType()) ==
3773                        ZeroOrOneBooleanContent)) {
3774         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3775         if (TrueWhenTrue)
3776           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3777         // Invert the condition.
3778         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3779         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3780         if (DCI.isBeforeLegalizeOps() ||
3781             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3782           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3783       }
3784 
3785       if ((N0.getOpcode() == ISD::XOR ||
3786            (N0.getOpcode() == ISD::AND &&
3787             N0.getOperand(0).getOpcode() == ISD::XOR &&
3788             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3789           isOneConstant(N0.getOperand(1))) {
3790         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3791         // can only do this if the top bits are known zero.
3792         unsigned BitWidth = N0.getValueSizeInBits();
3793         if (DAG.MaskedValueIsZero(N0,
3794                                   APInt::getHighBitsSet(BitWidth,
3795                                                         BitWidth-1))) {
3796           // Okay, get the un-inverted input value.
3797           SDValue Val;
3798           if (N0.getOpcode() == ISD::XOR) {
3799             Val = N0.getOperand(0);
3800           } else {
3801             assert(N0.getOpcode() == ISD::AND &&
3802                     N0.getOperand(0).getOpcode() == ISD::XOR);
3803             // ((X^1)&1)^1 -> X & 1
3804             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3805                               N0.getOperand(0).getOperand(0),
3806                               N0.getOperand(1));
3807           }
3808 
3809           return DAG.getSetCC(dl, VT, Val, N1,
3810                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3811         }
3812       } else if (N1C->isOne()) {
3813         SDValue Op0 = N0;
3814         if (Op0.getOpcode() == ISD::TRUNCATE)
3815           Op0 = Op0.getOperand(0);
3816 
3817         if ((Op0.getOpcode() == ISD::XOR) &&
3818             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3819             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3820           SDValue XorLHS = Op0.getOperand(0);
3821           SDValue XorRHS = Op0.getOperand(1);
3822           // Ensure that the input setccs return an i1 type or 0/1 value.
3823           if (Op0.getValueType() == MVT::i1 ||
3824               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3825                       ZeroOrOneBooleanContent &&
3826                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3827                         ZeroOrOneBooleanContent)) {
3828             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3829             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3830             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3831           }
3832         }
3833         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3834           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3835           if (Op0.getValueType().bitsGT(VT))
3836             Op0 = DAG.getNode(ISD::AND, dl, VT,
3837                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3838                           DAG.getConstant(1, dl, VT));
3839           else if (Op0.getValueType().bitsLT(VT))
3840             Op0 = DAG.getNode(ISD::AND, dl, VT,
3841                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3842                         DAG.getConstant(1, dl, VT));
3843 
3844           return DAG.getSetCC(dl, VT, Op0,
3845                               DAG.getConstant(0, dl, Op0.getValueType()),
3846                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3847         }
3848         if (Op0.getOpcode() == ISD::AssertZext &&
3849             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3850           return DAG.getSetCC(dl, VT, Op0,
3851                               DAG.getConstant(0, dl, Op0.getValueType()),
3852                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3853       }
3854     }
3855 
3856     // Given:
3857     //   icmp eq/ne (urem %x, %y), 0
3858     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3859     //   icmp eq/ne %x, 0
3860     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3861         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3862       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3863       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3864       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3865         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3866     }
3867 
3868     if (SDValue V =
3869             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3870       return V;
3871   }
3872 
3873   // These simplifications apply to splat vectors as well.
3874   // TODO: Handle more splat vector cases.
3875   if (auto *N1C = isConstOrConstSplat(N1)) {
3876     const APInt &C1 = N1C->getAPIntValue();
3877 
3878     APInt MinVal, MaxVal;
3879     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3880     if (ISD::isSignedIntSetCC(Cond)) {
3881       MinVal = APInt::getSignedMinValue(OperandBitSize);
3882       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3883     } else {
3884       MinVal = APInt::getMinValue(OperandBitSize);
3885       MaxVal = APInt::getMaxValue(OperandBitSize);
3886     }
3887 
3888     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3889     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3890       // X >= MIN --> true
3891       if (C1 == MinVal)
3892         return DAG.getBoolConstant(true, dl, VT, OpVT);
3893 
3894       if (!VT.isVector()) { // TODO: Support this for vectors.
3895         // X >= C0 --> X > (C0 - 1)
3896         APInt C = C1 - 1;
3897         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3898         if ((DCI.isBeforeLegalizeOps() ||
3899              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3900             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3901                                   isLegalICmpImmediate(C.getSExtValue())))) {
3902           return DAG.getSetCC(dl, VT, N0,
3903                               DAG.getConstant(C, dl, N1.getValueType()),
3904                               NewCC);
3905         }
3906       }
3907     }
3908 
3909     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3910       // X <= MAX --> true
3911       if (C1 == MaxVal)
3912         return DAG.getBoolConstant(true, dl, VT, OpVT);
3913 
3914       // X <= C0 --> X < (C0 + 1)
3915       if (!VT.isVector()) { // TODO: Support this for vectors.
3916         APInt C = C1 + 1;
3917         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3918         if ((DCI.isBeforeLegalizeOps() ||
3919              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3920             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3921                                   isLegalICmpImmediate(C.getSExtValue())))) {
3922           return DAG.getSetCC(dl, VT, N0,
3923                               DAG.getConstant(C, dl, N1.getValueType()),
3924                               NewCC);
3925         }
3926       }
3927     }
3928 
3929     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3930       if (C1 == MinVal)
3931         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3932 
3933       // TODO: Support this for vectors after legalize ops.
3934       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3935         // Canonicalize setlt X, Max --> setne X, Max
3936         if (C1 == MaxVal)
3937           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3938 
3939         // If we have setult X, 1, turn it into seteq X, 0
3940         if (C1 == MinVal+1)
3941           return DAG.getSetCC(dl, VT, N0,
3942                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3943                               ISD::SETEQ);
3944       }
3945     }
3946 
3947     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3948       if (C1 == MaxVal)
3949         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3950 
3951       // TODO: Support this for vectors after legalize ops.
3952       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3953         // Canonicalize setgt X, Min --> setne X, Min
3954         if (C1 == MinVal)
3955           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3956 
3957         // If we have setugt X, Max-1, turn it into seteq X, Max
3958         if (C1 == MaxVal-1)
3959           return DAG.getSetCC(dl, VT, N0,
3960                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3961                               ISD::SETEQ);
3962       }
3963     }
3964 
3965     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3966       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3967       if (C1.isNullValue())
3968         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3969                 VT, N0, N1, Cond, DCI, dl))
3970           return CC;
3971 
3972       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3973       // For example, when high 32-bits of i64 X are known clear:
3974       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3975       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3976       bool CmpZero = N1C->getAPIntValue().isNullValue();
3977       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3978       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3979         // Match or(lo,shl(hi,bw/2)) pattern.
3980         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3981           unsigned EltBits = V.getScalarValueSizeInBits();
3982           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3983             return false;
3984           SDValue LHS = V.getOperand(0);
3985           SDValue RHS = V.getOperand(1);
3986           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3987           // Unshifted element must have zero upperbits.
3988           if (RHS.getOpcode() == ISD::SHL &&
3989               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3990               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3991               DAG.MaskedValueIsZero(LHS, HiBits)) {
3992             Lo = LHS;
3993             Hi = RHS.getOperand(0);
3994             return true;
3995           }
3996           if (LHS.getOpcode() == ISD::SHL &&
3997               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3998               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3999               DAG.MaskedValueIsZero(RHS, HiBits)) {
4000             Lo = RHS;
4001             Hi = LHS.getOperand(0);
4002             return true;
4003           }
4004           return false;
4005         };
4006 
4007         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4008           unsigned EltBits = N0.getScalarValueSizeInBits();
4009           unsigned HalfBits = EltBits / 2;
4010           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4011           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4012           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4013           SDValue NewN0 =
4014               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4015           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4016           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4017         };
4018 
4019         SDValue Lo, Hi;
4020         if (IsConcat(N0, Lo, Hi))
4021           return MergeConcat(Lo, Hi);
4022 
4023         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4024           SDValue Lo0, Lo1, Hi0, Hi1;
4025           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4026               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4027             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4028                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4029           }
4030         }
4031       }
4032     }
4033 
4034     // If we have "setcc X, C0", check to see if we can shrink the immediate
4035     // by changing cc.
4036     // TODO: Support this for vectors after legalize ops.
4037     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4038       // SETUGT X, SINTMAX  -> SETLT X, 0
4039       // SETUGE X, SINTMIN -> SETLT X, 0
4040       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4041           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4042         return DAG.getSetCC(dl, VT, N0,
4043                             DAG.getConstant(0, dl, N1.getValueType()),
4044                             ISD::SETLT);
4045 
4046       // SETULT X, SINTMIN  -> SETGT X, -1
4047       // SETULE X, SINTMAX  -> SETGT X, -1
4048       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4049           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4050         return DAG.getSetCC(dl, VT, N0,
4051                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4052                             ISD::SETGT);
4053     }
4054   }
4055 
4056   // Back to non-vector simplifications.
4057   // TODO: Can we do these for vector splats?
4058   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4059     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4060     const APInt &C1 = N1C->getAPIntValue();
4061     EVT ShValTy = N0.getValueType();
4062 
4063     // Fold bit comparisons when we can. This will result in an
4064     // incorrect value when boolean false is negative one, unless
4065     // the bitsize is 1 in which case the false value is the same
4066     // in practice regardless of the representation.
4067     if ((VT.getSizeInBits() == 1 ||
4068          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4069         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4070         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4071         N0.getOpcode() == ISD::AND) {
4072       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4073         EVT ShiftTy =
4074             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4075         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4076           // Perform the xform if the AND RHS is a single bit.
4077           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4078           if (AndRHS->getAPIntValue().isPowerOf2() &&
4079               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4080             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4081                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4082                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4083           }
4084         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4085           // (X & 8) == 8  -->  (X & 8) >> 3
4086           // Perform the xform if C1 is a single bit.
4087           unsigned ShCt = C1.logBase2();
4088           if (C1.isPowerOf2() &&
4089               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4090             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4091                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4092                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4093           }
4094         }
4095       }
4096     }
4097 
4098     if (C1.getMinSignedBits() <= 64 &&
4099         !isLegalICmpImmediate(C1.getSExtValue())) {
4100       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4101       // (X & -256) == 256 -> (X >> 8) == 1
4102       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4103           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4104         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4105           const APInt &AndRHSC = AndRHS->getAPIntValue();
4106           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4107             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4108             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4109               SDValue Shift =
4110                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4111                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4112               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4113               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4114             }
4115           }
4116         }
4117       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4118                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4119         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4120         // X <  0x100000000 -> (X >> 32) <  1
4121         // X >= 0x100000000 -> (X >> 32) >= 1
4122         // X <= 0x0ffffffff -> (X >> 32) <  1
4123         // X >  0x0ffffffff -> (X >> 32) >= 1
4124         unsigned ShiftBits;
4125         APInt NewC = C1;
4126         ISD::CondCode NewCond = Cond;
4127         if (AdjOne) {
4128           ShiftBits = C1.countTrailingOnes();
4129           NewC = NewC + 1;
4130           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4131         } else {
4132           ShiftBits = C1.countTrailingZeros();
4133         }
4134         NewC.lshrInPlace(ShiftBits);
4135         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4136             isLegalICmpImmediate(NewC.getSExtValue()) &&
4137             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4138           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4139                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4140           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4141           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4142         }
4143       }
4144     }
4145   }
4146 
4147   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4148     auto *CFP = cast<ConstantFPSDNode>(N1);
4149     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4150 
4151     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4152     // constant if knowing that the operand is non-nan is enough.  We prefer to
4153     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4154     // materialize 0.0.
4155     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4156       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4157 
4158     // setcc (fneg x), C -> setcc swap(pred) x, -C
4159     if (N0.getOpcode() == ISD::FNEG) {
4160       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4161       if (DCI.isBeforeLegalizeOps() ||
4162           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4163         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4164         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4165       }
4166     }
4167 
4168     // If the condition is not legal, see if we can find an equivalent one
4169     // which is legal.
4170     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4171       // If the comparison was an awkward floating-point == or != and one of
4172       // the comparison operands is infinity or negative infinity, convert the
4173       // condition to a less-awkward <= or >=.
4174       if (CFP->getValueAPF().isInfinity()) {
4175         bool IsNegInf = CFP->getValueAPF().isNegative();
4176         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4177         switch (Cond) {
4178         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4179         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4180         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4181         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4182         default: break;
4183         }
4184         if (NewCond != ISD::SETCC_INVALID &&
4185             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4186           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4187       }
4188     }
4189   }
4190 
4191   if (N0 == N1) {
4192     // The sext(setcc()) => setcc() optimization relies on the appropriate
4193     // constant being emitted.
4194     assert(!N0.getValueType().isInteger() &&
4195            "Integer types should be handled by FoldSetCC");
4196 
4197     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4198     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4199     if (UOF == 2) // FP operators that are undefined on NaNs.
4200       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4201     if (UOF == unsigned(EqTrue))
4202       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4203     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4204     // if it is not already.
4205     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4206     if (NewCond != Cond &&
4207         (DCI.isBeforeLegalizeOps() ||
4208                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4209       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4210   }
4211 
4212   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4213       N0.getValueType().isInteger()) {
4214     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4215         N0.getOpcode() == ISD::XOR) {
4216       // Simplify (X+Y) == (X+Z) -->  Y == Z
4217       if (N0.getOpcode() == N1.getOpcode()) {
4218         if (N0.getOperand(0) == N1.getOperand(0))
4219           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4220         if (N0.getOperand(1) == N1.getOperand(1))
4221           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4222         if (isCommutativeBinOp(N0.getOpcode())) {
4223           // If X op Y == Y op X, try other combinations.
4224           if (N0.getOperand(0) == N1.getOperand(1))
4225             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4226                                 Cond);
4227           if (N0.getOperand(1) == N1.getOperand(0))
4228             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4229                                 Cond);
4230         }
4231       }
4232 
4233       // If RHS is a legal immediate value for a compare instruction, we need
4234       // to be careful about increasing register pressure needlessly.
4235       bool LegalRHSImm = false;
4236 
4237       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4238         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4239           // Turn (X+C1) == C2 --> X == C2-C1
4240           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4241             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4242                                 DAG.getConstant(RHSC->getAPIntValue()-
4243                                                 LHSR->getAPIntValue(),
4244                                 dl, N0.getValueType()), Cond);
4245           }
4246 
4247           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4248           if (N0.getOpcode() == ISD::XOR)
4249             // If we know that all of the inverted bits are zero, don't bother
4250             // performing the inversion.
4251             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4252               return
4253                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4254                              DAG.getConstant(LHSR->getAPIntValue() ^
4255                                                RHSC->getAPIntValue(),
4256                                              dl, N0.getValueType()),
4257                              Cond);
4258         }
4259 
4260         // Turn (C1-X) == C2 --> X == C1-C2
4261         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4262           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4263             return
4264               DAG.getSetCC(dl, VT, N0.getOperand(1),
4265                            DAG.getConstant(SUBC->getAPIntValue() -
4266                                              RHSC->getAPIntValue(),
4267                                            dl, N0.getValueType()),
4268                            Cond);
4269           }
4270         }
4271 
4272         // Could RHSC fold directly into a compare?
4273         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4274           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4275       }
4276 
4277       // (X+Y) == X --> Y == 0 and similar folds.
4278       // Don't do this if X is an immediate that can fold into a cmp
4279       // instruction and X+Y has other uses. It could be an induction variable
4280       // chain, and the transform would increase register pressure.
4281       if (!LegalRHSImm || N0.hasOneUse())
4282         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4283           return V;
4284     }
4285 
4286     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4287         N1.getOpcode() == ISD::XOR)
4288       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4289         return V;
4290 
4291     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4292       return V;
4293   }
4294 
4295   // Fold remainder of division by a constant.
4296   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4297       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4298     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4299 
4300     // When division is cheap or optimizing for minimum size,
4301     // fall through to DIVREM creation by skipping this fold.
4302     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4303       if (N0.getOpcode() == ISD::UREM) {
4304         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4305           return Folded;
4306       } else if (N0.getOpcode() == ISD::SREM) {
4307         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4308           return Folded;
4309       }
4310     }
4311   }
4312 
4313   // Fold away ALL boolean setcc's.
4314   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4315     SDValue Temp;
4316     switch (Cond) {
4317     default: llvm_unreachable("Unknown integer setcc!");
4318     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4319       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4320       N0 = DAG.getNOT(dl, Temp, OpVT);
4321       if (!DCI.isCalledByLegalizer())
4322         DCI.AddToWorklist(Temp.getNode());
4323       break;
4324     case ISD::SETNE:  // X != Y   -->  (X^Y)
4325       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4326       break;
4327     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4328     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4329       Temp = DAG.getNOT(dl, N0, OpVT);
4330       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4331       if (!DCI.isCalledByLegalizer())
4332         DCI.AddToWorklist(Temp.getNode());
4333       break;
4334     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4335     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4336       Temp = DAG.getNOT(dl, N1, OpVT);
4337       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4338       if (!DCI.isCalledByLegalizer())
4339         DCI.AddToWorklist(Temp.getNode());
4340       break;
4341     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4342     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4343       Temp = DAG.getNOT(dl, N0, OpVT);
4344       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4345       if (!DCI.isCalledByLegalizer())
4346         DCI.AddToWorklist(Temp.getNode());
4347       break;
4348     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4349     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4350       Temp = DAG.getNOT(dl, N1, OpVT);
4351       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4352       break;
4353     }
4354     if (VT.getScalarType() != MVT::i1) {
4355       if (!DCI.isCalledByLegalizer())
4356         DCI.AddToWorklist(N0.getNode());
4357       // FIXME: If running after legalize, we probably can't do this.
4358       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4359       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4360     }
4361     return N0;
4362   }
4363 
4364   // Could not fold it.
4365   return SDValue();
4366 }
4367 
4368 /// Returns true (and the GlobalValue and the offset) if the node is a
4369 /// GlobalAddress + offset.
4370 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4371                                     int64_t &Offset) const {
4372 
4373   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4374 
4375   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4376     GA = GASD->getGlobal();
4377     Offset += GASD->getOffset();
4378     return true;
4379   }
4380 
4381   if (N->getOpcode() == ISD::ADD) {
4382     SDValue N1 = N->getOperand(0);
4383     SDValue N2 = N->getOperand(1);
4384     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4385       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4386         Offset += V->getSExtValue();
4387         return true;
4388       }
4389     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4390       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4391         Offset += V->getSExtValue();
4392         return true;
4393       }
4394     }
4395   }
4396 
4397   return false;
4398 }
4399 
4400 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4401                                           DAGCombinerInfo &DCI) const {
4402   // Default implementation: no optimization.
4403   return SDValue();
4404 }
4405 
4406 //===----------------------------------------------------------------------===//
4407 //  Inline Assembler Implementation Methods
4408 //===----------------------------------------------------------------------===//
4409 
4410 TargetLowering::ConstraintType
4411 TargetLowering::getConstraintType(StringRef Constraint) const {
4412   unsigned S = Constraint.size();
4413 
4414   if (S == 1) {
4415     switch (Constraint[0]) {
4416     default: break;
4417     case 'r':
4418       return C_RegisterClass;
4419     case 'm': // memory
4420     case 'o': // offsetable
4421     case 'V': // not offsetable
4422       return C_Memory;
4423     case 'n': // Simple Integer
4424     case 'E': // Floating Point Constant
4425     case 'F': // Floating Point Constant
4426       return C_Immediate;
4427     case 'i': // Simple Integer or Relocatable Constant
4428     case 's': // Relocatable Constant
4429     case 'p': // Address.
4430     case 'X': // Allow ANY value.
4431     case 'I': // Target registers.
4432     case 'J':
4433     case 'K':
4434     case 'L':
4435     case 'M':
4436     case 'N':
4437     case 'O':
4438     case 'P':
4439     case '<':
4440     case '>':
4441       return C_Other;
4442     }
4443   }
4444 
4445   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4446     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4447       return C_Memory;
4448     return C_Register;
4449   }
4450   return C_Unknown;
4451 }
4452 
4453 /// Try to replace an X constraint, which matches anything, with another that
4454 /// has more specific requirements based on the type of the corresponding
4455 /// operand.
4456 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4457   if (ConstraintVT.isInteger())
4458     return "r";
4459   if (ConstraintVT.isFloatingPoint())
4460     return "f"; // works for many targets
4461   return nullptr;
4462 }
4463 
4464 SDValue TargetLowering::LowerAsmOutputForConstraint(
4465     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4466     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4467   return SDValue();
4468 }
4469 
4470 /// Lower the specified operand into the Ops vector.
4471 /// If it is invalid, don't add anything to Ops.
4472 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4473                                                   std::string &Constraint,
4474                                                   std::vector<SDValue> &Ops,
4475                                                   SelectionDAG &DAG) const {
4476 
4477   if (Constraint.length() > 1) return;
4478 
4479   char ConstraintLetter = Constraint[0];
4480   switch (ConstraintLetter) {
4481   default: break;
4482   case 'X':     // Allows any operand; labels (basic block) use this.
4483     if (Op.getOpcode() == ISD::BasicBlock ||
4484         Op.getOpcode() == ISD::TargetBlockAddress) {
4485       Ops.push_back(Op);
4486       return;
4487     }
4488     LLVM_FALLTHROUGH;
4489   case 'i':    // Simple Integer or Relocatable Constant
4490   case 'n':    // Simple Integer
4491   case 's': {  // Relocatable Constant
4492 
4493     GlobalAddressSDNode *GA;
4494     ConstantSDNode *C;
4495     BlockAddressSDNode *BA;
4496     uint64_t Offset = 0;
4497 
4498     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4499     // etc., since getelementpointer is variadic. We can't use
4500     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4501     // while in this case the GA may be furthest from the root node which is
4502     // likely an ISD::ADD.
4503     while (1) {
4504       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4505         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4506                                                  GA->getValueType(0),
4507                                                  Offset + GA->getOffset()));
4508         return;
4509       }
4510       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4511         // gcc prints these as sign extended.  Sign extend value to 64 bits
4512         // now; without this it would get ZExt'd later in
4513         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4514         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4515         BooleanContent BCont = getBooleanContents(MVT::i64);
4516         ISD::NodeType ExtOpc =
4517             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4518         int64_t ExtVal =
4519             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4520         Ops.push_back(
4521             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4522         return;
4523       }
4524       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4525         Ops.push_back(DAG.getTargetBlockAddress(
4526             BA->getBlockAddress(), BA->getValueType(0),
4527             Offset + BA->getOffset(), BA->getTargetFlags()));
4528         return;
4529       }
4530       const unsigned OpCode = Op.getOpcode();
4531       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4532         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4533           Op = Op.getOperand(1);
4534         // Subtraction is not commutative.
4535         else if (OpCode == ISD::ADD &&
4536                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4537           Op = Op.getOperand(0);
4538         else
4539           return;
4540         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4541         continue;
4542       }
4543       return;
4544     }
4545     break;
4546   }
4547   }
4548 }
4549 
4550 std::pair<unsigned, const TargetRegisterClass *>
4551 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4552                                              StringRef Constraint,
4553                                              MVT VT) const {
4554   if (Constraint.empty() || Constraint[0] != '{')
4555     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4556   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4557 
4558   // Remove the braces from around the name.
4559   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4560 
4561   std::pair<unsigned, const TargetRegisterClass *> R =
4562       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4563 
4564   // Figure out which register class contains this reg.
4565   for (const TargetRegisterClass *RC : RI->regclasses()) {
4566     // If none of the value types for this register class are valid, we
4567     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4568     if (!isLegalRC(*RI, *RC))
4569       continue;
4570 
4571     for (const MCPhysReg &PR : *RC) {
4572       if (RegName.equals_lower(RI->getRegAsmName(PR))) {
4573         std::pair<unsigned, const TargetRegisterClass *> S =
4574             std::make_pair(PR, RC);
4575 
4576         // If this register class has the requested value type, return it,
4577         // otherwise keep searching and return the first class found
4578         // if no other is found which explicitly has the requested type.
4579         if (RI->isTypeLegalForClass(*RC, VT))
4580           return S;
4581         if (!R.second)
4582           R = S;
4583       }
4584     }
4585   }
4586 
4587   return R;
4588 }
4589 
4590 //===----------------------------------------------------------------------===//
4591 // Constraint Selection.
4592 
4593 /// Return true of this is an input operand that is a matching constraint like
4594 /// "4".
4595 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4596   assert(!ConstraintCode.empty() && "No known constraint!");
4597   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4598 }
4599 
4600 /// If this is an input matching constraint, this method returns the output
4601 /// operand it matches.
4602 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4603   assert(!ConstraintCode.empty() && "No known constraint!");
4604   return atoi(ConstraintCode.c_str());
4605 }
4606 
4607 /// Split up the constraint string from the inline assembly value into the
4608 /// specific constraints and their prefixes, and also tie in the associated
4609 /// operand values.
4610 /// If this returns an empty vector, and if the constraint string itself
4611 /// isn't empty, there was an error parsing.
4612 TargetLowering::AsmOperandInfoVector
4613 TargetLowering::ParseConstraints(const DataLayout &DL,
4614                                  const TargetRegisterInfo *TRI,
4615                                  const CallBase &Call) const {
4616   /// Information about all of the constraints.
4617   AsmOperandInfoVector ConstraintOperands;
4618   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4619   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4620 
4621   // Do a prepass over the constraints, canonicalizing them, and building up the
4622   // ConstraintOperands list.
4623   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4624   unsigned ResNo = 0; // ResNo - The result number of the next output.
4625 
4626   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4627     ConstraintOperands.emplace_back(std::move(CI));
4628     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4629 
4630     // Update multiple alternative constraint count.
4631     if (OpInfo.multipleAlternatives.size() > maCount)
4632       maCount = OpInfo.multipleAlternatives.size();
4633 
4634     OpInfo.ConstraintVT = MVT::Other;
4635 
4636     // Compute the value type for each operand.
4637     switch (OpInfo.Type) {
4638     case InlineAsm::isOutput:
4639       // Indirect outputs just consume an argument.
4640       if (OpInfo.isIndirect) {
4641         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4642         break;
4643       }
4644 
4645       // The return value of the call is this value.  As such, there is no
4646       // corresponding argument.
4647       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4648       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4649         OpInfo.ConstraintVT =
4650             getSimpleValueType(DL, STy->getElementType(ResNo));
4651       } else {
4652         assert(ResNo == 0 && "Asm only has one result!");
4653         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4654       }
4655       ++ResNo;
4656       break;
4657     case InlineAsm::isInput:
4658       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4659       break;
4660     case InlineAsm::isClobber:
4661       // Nothing to do.
4662       break;
4663     }
4664 
4665     if (OpInfo.CallOperandVal) {
4666       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4667       if (OpInfo.isIndirect) {
4668         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4669         if (!PtrTy)
4670           report_fatal_error("Indirect operand for inline asm not a pointer!");
4671         OpTy = PtrTy->getElementType();
4672       }
4673 
4674       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4675       if (StructType *STy = dyn_cast<StructType>(OpTy))
4676         if (STy->getNumElements() == 1)
4677           OpTy = STy->getElementType(0);
4678 
4679       // If OpTy is not a single value, it may be a struct/union that we
4680       // can tile with integers.
4681       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4682         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4683         switch (BitSize) {
4684         default: break;
4685         case 1:
4686         case 8:
4687         case 16:
4688         case 32:
4689         case 64:
4690         case 128:
4691           OpInfo.ConstraintVT =
4692               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4693           break;
4694         }
4695       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4696         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4697         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4698       } else {
4699         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4700       }
4701     }
4702   }
4703 
4704   // If we have multiple alternative constraints, select the best alternative.
4705   if (!ConstraintOperands.empty()) {
4706     if (maCount) {
4707       unsigned bestMAIndex = 0;
4708       int bestWeight = -1;
4709       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4710       int weight = -1;
4711       unsigned maIndex;
4712       // Compute the sums of the weights for each alternative, keeping track
4713       // of the best (highest weight) one so far.
4714       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4715         int weightSum = 0;
4716         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4717              cIndex != eIndex; ++cIndex) {
4718           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4719           if (OpInfo.Type == InlineAsm::isClobber)
4720             continue;
4721 
4722           // If this is an output operand with a matching input operand,
4723           // look up the matching input. If their types mismatch, e.g. one
4724           // is an integer, the other is floating point, or their sizes are
4725           // different, flag it as an maCantMatch.
4726           if (OpInfo.hasMatchingInput()) {
4727             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4728             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4729               if ((OpInfo.ConstraintVT.isInteger() !=
4730                    Input.ConstraintVT.isInteger()) ||
4731                   (OpInfo.ConstraintVT.getSizeInBits() !=
4732                    Input.ConstraintVT.getSizeInBits())) {
4733                 weightSum = -1; // Can't match.
4734                 break;
4735               }
4736             }
4737           }
4738           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4739           if (weight == -1) {
4740             weightSum = -1;
4741             break;
4742           }
4743           weightSum += weight;
4744         }
4745         // Update best.
4746         if (weightSum > bestWeight) {
4747           bestWeight = weightSum;
4748           bestMAIndex = maIndex;
4749         }
4750       }
4751 
4752       // Now select chosen alternative in each constraint.
4753       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4754            cIndex != eIndex; ++cIndex) {
4755         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4756         if (cInfo.Type == InlineAsm::isClobber)
4757           continue;
4758         cInfo.selectAlternative(bestMAIndex);
4759       }
4760     }
4761   }
4762 
4763   // Check and hook up tied operands, choose constraint code to use.
4764   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4765        cIndex != eIndex; ++cIndex) {
4766     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4767 
4768     // If this is an output operand with a matching input operand, look up the
4769     // matching input. If their types mismatch, e.g. one is an integer, the
4770     // other is floating point, or their sizes are different, flag it as an
4771     // error.
4772     if (OpInfo.hasMatchingInput()) {
4773       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4774 
4775       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4776         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4777             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4778                                          OpInfo.ConstraintVT);
4779         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4780             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4781                                          Input.ConstraintVT);
4782         if ((OpInfo.ConstraintVT.isInteger() !=
4783              Input.ConstraintVT.isInteger()) ||
4784             (MatchRC.second != InputRC.second)) {
4785           report_fatal_error("Unsupported asm: input constraint"
4786                              " with a matching output constraint of"
4787                              " incompatible type!");
4788         }
4789       }
4790     }
4791   }
4792 
4793   return ConstraintOperands;
4794 }
4795 
4796 /// Return an integer indicating how general CT is.
4797 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4798   switch (CT) {
4799   case TargetLowering::C_Immediate:
4800   case TargetLowering::C_Other:
4801   case TargetLowering::C_Unknown:
4802     return 0;
4803   case TargetLowering::C_Register:
4804     return 1;
4805   case TargetLowering::C_RegisterClass:
4806     return 2;
4807   case TargetLowering::C_Memory:
4808     return 3;
4809   }
4810   llvm_unreachable("Invalid constraint type");
4811 }
4812 
4813 /// Examine constraint type and operand type and determine a weight value.
4814 /// This object must already have been set up with the operand type
4815 /// and the current alternative constraint selected.
4816 TargetLowering::ConstraintWeight
4817   TargetLowering::getMultipleConstraintMatchWeight(
4818     AsmOperandInfo &info, int maIndex) const {
4819   InlineAsm::ConstraintCodeVector *rCodes;
4820   if (maIndex >= (int)info.multipleAlternatives.size())
4821     rCodes = &info.Codes;
4822   else
4823     rCodes = &info.multipleAlternatives[maIndex].Codes;
4824   ConstraintWeight BestWeight = CW_Invalid;
4825 
4826   // Loop over the options, keeping track of the most general one.
4827   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4828     ConstraintWeight weight =
4829       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4830     if (weight > BestWeight)
4831       BestWeight = weight;
4832   }
4833 
4834   return BestWeight;
4835 }
4836 
4837 /// Examine constraint type and operand type and determine a weight value.
4838 /// This object must already have been set up with the operand type
4839 /// and the current alternative constraint selected.
4840 TargetLowering::ConstraintWeight
4841   TargetLowering::getSingleConstraintMatchWeight(
4842     AsmOperandInfo &info, const char *constraint) const {
4843   ConstraintWeight weight = CW_Invalid;
4844   Value *CallOperandVal = info.CallOperandVal;
4845     // If we don't have a value, we can't do a match,
4846     // but allow it at the lowest weight.
4847   if (!CallOperandVal)
4848     return CW_Default;
4849   // Look at the constraint type.
4850   switch (*constraint) {
4851     case 'i': // immediate integer.
4852     case 'n': // immediate integer with a known value.
4853       if (isa<ConstantInt>(CallOperandVal))
4854         weight = CW_Constant;
4855       break;
4856     case 's': // non-explicit intregal immediate.
4857       if (isa<GlobalValue>(CallOperandVal))
4858         weight = CW_Constant;
4859       break;
4860     case 'E': // immediate float if host format.
4861     case 'F': // immediate float.
4862       if (isa<ConstantFP>(CallOperandVal))
4863         weight = CW_Constant;
4864       break;
4865     case '<': // memory operand with autodecrement.
4866     case '>': // memory operand with autoincrement.
4867     case 'm': // memory operand.
4868     case 'o': // offsettable memory operand
4869     case 'V': // non-offsettable memory operand
4870       weight = CW_Memory;
4871       break;
4872     case 'r': // general register.
4873     case 'g': // general register, memory operand or immediate integer.
4874               // note: Clang converts "g" to "imr".
4875       if (CallOperandVal->getType()->isIntegerTy())
4876         weight = CW_Register;
4877       break;
4878     case 'X': // any operand.
4879   default:
4880     weight = CW_Default;
4881     break;
4882   }
4883   return weight;
4884 }
4885 
4886 /// If there are multiple different constraints that we could pick for this
4887 /// operand (e.g. "imr") try to pick the 'best' one.
4888 /// This is somewhat tricky: constraints fall into four classes:
4889 ///    Other         -> immediates and magic values
4890 ///    Register      -> one specific register
4891 ///    RegisterClass -> a group of regs
4892 ///    Memory        -> memory
4893 /// Ideally, we would pick the most specific constraint possible: if we have
4894 /// something that fits into a register, we would pick it.  The problem here
4895 /// is that if we have something that could either be in a register or in
4896 /// memory that use of the register could cause selection of *other*
4897 /// operands to fail: they might only succeed if we pick memory.  Because of
4898 /// this the heuristic we use is:
4899 ///
4900 ///  1) If there is an 'other' constraint, and if the operand is valid for
4901 ///     that constraint, use it.  This makes us take advantage of 'i'
4902 ///     constraints when available.
4903 ///  2) Otherwise, pick the most general constraint present.  This prefers
4904 ///     'm' over 'r', for example.
4905 ///
4906 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4907                              const TargetLowering &TLI,
4908                              SDValue Op, SelectionDAG *DAG) {
4909   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4910   unsigned BestIdx = 0;
4911   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4912   int BestGenerality = -1;
4913 
4914   // Loop over the options, keeping track of the most general one.
4915   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4916     TargetLowering::ConstraintType CType =
4917       TLI.getConstraintType(OpInfo.Codes[i]);
4918 
4919     // Indirect 'other' or 'immediate' constraints are not allowed.
4920     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4921                                CType == TargetLowering::C_Register ||
4922                                CType == TargetLowering::C_RegisterClass))
4923       continue;
4924 
4925     // If this is an 'other' or 'immediate' constraint, see if the operand is
4926     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4927     // the operand is an integer in the range [0..31] we want to use I (saving a
4928     // load of a register), otherwise we must use 'r'.
4929     if ((CType == TargetLowering::C_Other ||
4930          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4931       assert(OpInfo.Codes[i].size() == 1 &&
4932              "Unhandled multi-letter 'other' constraint");
4933       std::vector<SDValue> ResultOps;
4934       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4935                                        ResultOps, *DAG);
4936       if (!ResultOps.empty()) {
4937         BestType = CType;
4938         BestIdx = i;
4939         break;
4940       }
4941     }
4942 
4943     // Things with matching constraints can only be registers, per gcc
4944     // documentation.  This mainly affects "g" constraints.
4945     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4946       continue;
4947 
4948     // This constraint letter is more general than the previous one, use it.
4949     int Generality = getConstraintGenerality(CType);
4950     if (Generality > BestGenerality) {
4951       BestType = CType;
4952       BestIdx = i;
4953       BestGenerality = Generality;
4954     }
4955   }
4956 
4957   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4958   OpInfo.ConstraintType = BestType;
4959 }
4960 
4961 /// Determines the constraint code and constraint type to use for the specific
4962 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4963 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4964                                             SDValue Op,
4965                                             SelectionDAG *DAG) const {
4966   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4967 
4968   // Single-letter constraints ('r') are very common.
4969   if (OpInfo.Codes.size() == 1) {
4970     OpInfo.ConstraintCode = OpInfo.Codes[0];
4971     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4972   } else {
4973     ChooseConstraint(OpInfo, *this, Op, DAG);
4974   }
4975 
4976   // 'X' matches anything.
4977   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4978     // Labels and constants are handled elsewhere ('X' is the only thing
4979     // that matches labels).  For Functions, the type here is the type of
4980     // the result, which is not what we want to look at; leave them alone.
4981     Value *v = OpInfo.CallOperandVal;
4982     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4983       OpInfo.CallOperandVal = v;
4984       return;
4985     }
4986 
4987     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4988       return;
4989 
4990     // Otherwise, try to resolve it to something we know about by looking at
4991     // the actual operand type.
4992     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4993       OpInfo.ConstraintCode = Repl;
4994       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4995     }
4996   }
4997 }
4998 
4999 /// Given an exact SDIV by a constant, create a multiplication
5000 /// with the multiplicative inverse of the constant.
5001 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5002                               const SDLoc &dl, SelectionDAG &DAG,
5003                               SmallVectorImpl<SDNode *> &Created) {
5004   SDValue Op0 = N->getOperand(0);
5005   SDValue Op1 = N->getOperand(1);
5006   EVT VT = N->getValueType(0);
5007   EVT SVT = VT.getScalarType();
5008   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5009   EVT ShSVT = ShVT.getScalarType();
5010 
5011   bool UseSRA = false;
5012   SmallVector<SDValue, 16> Shifts, Factors;
5013 
5014   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5015     if (C->isNullValue())
5016       return false;
5017     APInt Divisor = C->getAPIntValue();
5018     unsigned Shift = Divisor.countTrailingZeros();
5019     if (Shift) {
5020       Divisor.ashrInPlace(Shift);
5021       UseSRA = true;
5022     }
5023     // Calculate the multiplicative inverse, using Newton's method.
5024     APInt t;
5025     APInt Factor = Divisor;
5026     while ((t = Divisor * Factor) != 1)
5027       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5028     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5029     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5030     return true;
5031   };
5032 
5033   // Collect all magic values from the build vector.
5034   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5035     return SDValue();
5036 
5037   SDValue Shift, Factor;
5038   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5039     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5040     Factor = DAG.getBuildVector(VT, dl, Factors);
5041   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5042     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5043            "Expected matchUnaryPredicate to return one element for scalable "
5044            "vectors");
5045     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5046     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5047   } else {
5048     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5049     Shift = Shifts[0];
5050     Factor = Factors[0];
5051   }
5052 
5053   SDValue Res = Op0;
5054 
5055   // Shift the value upfront if it is even, so the LSB is one.
5056   if (UseSRA) {
5057     // TODO: For UDIV use SRL instead of SRA.
5058     SDNodeFlags Flags;
5059     Flags.setExact(true);
5060     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5061     Created.push_back(Res.getNode());
5062   }
5063 
5064   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5065 }
5066 
5067 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5068                               SelectionDAG &DAG,
5069                               SmallVectorImpl<SDNode *> &Created) const {
5070   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5071   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5072   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5073     return SDValue(N, 0); // Lower SDIV as SDIV
5074   return SDValue();
5075 }
5076 
5077 /// Given an ISD::SDIV node expressing a divide by constant,
5078 /// return a DAG expression to select that will generate the same value by
5079 /// multiplying by a magic number.
5080 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5081 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5082                                   bool IsAfterLegalization,
5083                                   SmallVectorImpl<SDNode *> &Created) const {
5084   SDLoc dl(N);
5085   EVT VT = N->getValueType(0);
5086   EVT SVT = VT.getScalarType();
5087   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5088   EVT ShSVT = ShVT.getScalarType();
5089   unsigned EltBits = VT.getScalarSizeInBits();
5090   EVT MulVT;
5091 
5092   // Check to see if we can do this.
5093   // FIXME: We should be more aggressive here.
5094   if (!isTypeLegal(VT)) {
5095     // Limit this to simple scalars for now.
5096     if (VT.isVector() || !VT.isSimple())
5097       return SDValue();
5098 
5099     // If this type will be promoted to a large enough type with a legal
5100     // multiply operation, we can go ahead and do this transform.
5101     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5102       return SDValue();
5103 
5104     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5105     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5106         !isOperationLegal(ISD::MUL, MulVT))
5107       return SDValue();
5108   }
5109 
5110   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5111   if (N->getFlags().hasExact())
5112     return BuildExactSDIV(*this, N, dl, DAG, Created);
5113 
5114   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5115 
5116   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5117     if (C->isNullValue())
5118       return false;
5119 
5120     const APInt &Divisor = C->getAPIntValue();
5121     APInt::ms magics = Divisor.magic();
5122     int NumeratorFactor = 0;
5123     int ShiftMask = -1;
5124 
5125     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5126       // If d is +1/-1, we just multiply the numerator by +1/-1.
5127       NumeratorFactor = Divisor.getSExtValue();
5128       magics.m = 0;
5129       magics.s = 0;
5130       ShiftMask = 0;
5131     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5132       // If d > 0 and m < 0, add the numerator.
5133       NumeratorFactor = 1;
5134     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5135       // If d < 0 and m > 0, subtract the numerator.
5136       NumeratorFactor = -1;
5137     }
5138 
5139     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5140     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5141     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5142     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5143     return true;
5144   };
5145 
5146   SDValue N0 = N->getOperand(0);
5147   SDValue N1 = N->getOperand(1);
5148 
5149   // Collect the shifts / magic values from each element.
5150   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5151     return SDValue();
5152 
5153   SDValue MagicFactor, Factor, Shift, ShiftMask;
5154   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5155     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5156     Factor = DAG.getBuildVector(VT, dl, Factors);
5157     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5158     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5159   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5160     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5161            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5162            "Expected matchUnaryPredicate to return one element for scalable "
5163            "vectors");
5164     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5165     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5166     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5167     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5168   } else {
5169     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5170     MagicFactor = MagicFactors[0];
5171     Factor = Factors[0];
5172     Shift = Shifts[0];
5173     ShiftMask = ShiftMasks[0];
5174   }
5175 
5176   // Multiply the numerator (operand 0) by the magic value.
5177   // FIXME: We should support doing a MUL in a wider type.
5178   auto GetMULHS = [&](SDValue X, SDValue Y) {
5179     // If the type isn't legal, use a wider mul of the the type calculated
5180     // earlier.
5181     if (!isTypeLegal(VT)) {
5182       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5183       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5184       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5185       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5186                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5187       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5188     }
5189 
5190     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5191       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5192     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5193       SDValue LoHi =
5194           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5195       return SDValue(LoHi.getNode(), 1);
5196     }
5197     return SDValue();
5198   };
5199 
5200   SDValue Q = GetMULHS(N0, MagicFactor);
5201   if (!Q)
5202     return SDValue();
5203 
5204   Created.push_back(Q.getNode());
5205 
5206   // (Optionally) Add/subtract the numerator using Factor.
5207   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5208   Created.push_back(Factor.getNode());
5209   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5210   Created.push_back(Q.getNode());
5211 
5212   // Shift right algebraic by shift value.
5213   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5214   Created.push_back(Q.getNode());
5215 
5216   // Extract the sign bit, mask it and add it to the quotient.
5217   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5218   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5219   Created.push_back(T.getNode());
5220   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5221   Created.push_back(T.getNode());
5222   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5223 }
5224 
5225 /// Given an ISD::UDIV node expressing a divide by constant,
5226 /// return a DAG expression to select that will generate the same value by
5227 /// multiplying by a magic number.
5228 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5229 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5230                                   bool IsAfterLegalization,
5231                                   SmallVectorImpl<SDNode *> &Created) const {
5232   SDLoc dl(N);
5233   EVT VT = N->getValueType(0);
5234   EVT SVT = VT.getScalarType();
5235   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5236   EVT ShSVT = ShVT.getScalarType();
5237   unsigned EltBits = VT.getScalarSizeInBits();
5238   EVT MulVT;
5239 
5240   // Check to see if we can do this.
5241   // FIXME: We should be more aggressive here.
5242   if (!isTypeLegal(VT)) {
5243     // Limit this to simple scalars for now.
5244     if (VT.isVector() || !VT.isSimple())
5245       return SDValue();
5246 
5247     // If this type will be promoted to a large enough type with a legal
5248     // multiply operation, we can go ahead and do this transform.
5249     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5250       return SDValue();
5251 
5252     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5253     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5254         !isOperationLegal(ISD::MUL, MulVT))
5255       return SDValue();
5256   }
5257 
5258   bool UseNPQ = false;
5259   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5260 
5261   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5262     if (C->isNullValue())
5263       return false;
5264     // FIXME: We should use a narrower constant when the upper
5265     // bits are known to be zero.
5266     const APInt& Divisor = C->getAPIntValue();
5267     APInt::mu magics = Divisor.magicu();
5268     unsigned PreShift = 0, PostShift = 0;
5269 
5270     // If the divisor is even, we can avoid using the expensive fixup by
5271     // shifting the divided value upfront.
5272     if (magics.a != 0 && !Divisor[0]) {
5273       PreShift = Divisor.countTrailingZeros();
5274       // Get magic number for the shifted divisor.
5275       magics = Divisor.lshr(PreShift).magicu(PreShift);
5276       assert(magics.a == 0 && "Should use cheap fixup now");
5277     }
5278 
5279     APInt Magic = magics.m;
5280 
5281     unsigned SelNPQ;
5282     if (magics.a == 0 || Divisor.isOneValue()) {
5283       assert(magics.s < Divisor.getBitWidth() &&
5284              "We shouldn't generate an undefined shift!");
5285       PostShift = magics.s;
5286       SelNPQ = false;
5287     } else {
5288       PostShift = magics.s - 1;
5289       SelNPQ = true;
5290     }
5291 
5292     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5293     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5294     NPQFactors.push_back(
5295         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5296                                : APInt::getNullValue(EltBits),
5297                         dl, SVT));
5298     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5299     UseNPQ |= SelNPQ;
5300     return true;
5301   };
5302 
5303   SDValue N0 = N->getOperand(0);
5304   SDValue N1 = N->getOperand(1);
5305 
5306   // Collect the shifts/magic values from each element.
5307   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5308     return SDValue();
5309 
5310   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5311   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5312     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5313     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5314     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5315     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5316   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5317     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5318            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5319            "Expected matchUnaryPredicate to return one for scalable vectors");
5320     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5321     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5322     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5323     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5324   } else {
5325     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5326     PreShift = PreShifts[0];
5327     MagicFactor = MagicFactors[0];
5328     PostShift = PostShifts[0];
5329   }
5330 
5331   SDValue Q = N0;
5332   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5333   Created.push_back(Q.getNode());
5334 
5335   // FIXME: We should support doing a MUL in a wider type.
5336   auto GetMULHU = [&](SDValue X, SDValue Y) {
5337     // If the type isn't legal, use a wider mul of the the type calculated
5338     // earlier.
5339     if (!isTypeLegal(VT)) {
5340       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5341       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5342       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5343       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5344                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5345       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5346     }
5347 
5348     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5349       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5350     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5351       SDValue LoHi =
5352           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5353       return SDValue(LoHi.getNode(), 1);
5354     }
5355     return SDValue(); // No mulhu or equivalent
5356   };
5357 
5358   // Multiply the numerator (operand 0) by the magic value.
5359   Q = GetMULHU(Q, MagicFactor);
5360   if (!Q)
5361     return SDValue();
5362 
5363   Created.push_back(Q.getNode());
5364 
5365   if (UseNPQ) {
5366     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5367     Created.push_back(NPQ.getNode());
5368 
5369     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5370     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5371     if (VT.isVector())
5372       NPQ = GetMULHU(NPQ, NPQFactor);
5373     else
5374       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5375 
5376     Created.push_back(NPQ.getNode());
5377 
5378     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5379     Created.push_back(Q.getNode());
5380   }
5381 
5382   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5383   Created.push_back(Q.getNode());
5384 
5385   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5386 
5387   SDValue One = DAG.getConstant(1, dl, VT);
5388   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5389   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5390 }
5391 
5392 /// If all values in Values that *don't* match the predicate are same 'splat'
5393 /// value, then replace all values with that splat value.
5394 /// Else, if AlternativeReplacement was provided, then replace all values that
5395 /// do match predicate with AlternativeReplacement value.
5396 static void
5397 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5398                           std::function<bool(SDValue)> Predicate,
5399                           SDValue AlternativeReplacement = SDValue()) {
5400   SDValue Replacement;
5401   // Is there a value for which the Predicate does *NOT* match? What is it?
5402   auto SplatValue = llvm::find_if_not(Values, Predicate);
5403   if (SplatValue != Values.end()) {
5404     // Does Values consist only of SplatValue's and values matching Predicate?
5405     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5406           return Value == *SplatValue || Predicate(Value);
5407         })) // Then we shall replace values matching predicate with SplatValue.
5408       Replacement = *SplatValue;
5409   }
5410   if (!Replacement) {
5411     // Oops, we did not find the "baseline" splat value.
5412     if (!AlternativeReplacement)
5413       return; // Nothing to do.
5414     // Let's replace with provided value then.
5415     Replacement = AlternativeReplacement;
5416   }
5417   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5418 }
5419 
5420 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5421 /// where the divisor is constant and the comparison target is zero,
5422 /// return a DAG expression that will generate the same comparison result
5423 /// using only multiplications, additions and shifts/rotations.
5424 /// Ref: "Hacker's Delight" 10-17.
5425 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5426                                         SDValue CompTargetNode,
5427                                         ISD::CondCode Cond,
5428                                         DAGCombinerInfo &DCI,
5429                                         const SDLoc &DL) const {
5430   SmallVector<SDNode *, 5> Built;
5431   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5432                                          DCI, DL, Built)) {
5433     for (SDNode *N : Built)
5434       DCI.AddToWorklist(N);
5435     return Folded;
5436   }
5437 
5438   return SDValue();
5439 }
5440 
5441 SDValue
5442 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5443                                   SDValue CompTargetNode, ISD::CondCode Cond,
5444                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5445                                   SmallVectorImpl<SDNode *> &Created) const {
5446   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5447   // - D must be constant, with D = D0 * 2^K where D0 is odd
5448   // - P is the multiplicative inverse of D0 modulo 2^W
5449   // - Q = floor(((2^W) - 1) / D)
5450   // where W is the width of the common type of N and D.
5451   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5452          "Only applicable for (in)equality comparisons.");
5453 
5454   SelectionDAG &DAG = DCI.DAG;
5455 
5456   EVT VT = REMNode.getValueType();
5457   EVT SVT = VT.getScalarType();
5458   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5459   EVT ShSVT = ShVT.getScalarType();
5460 
5461   // If MUL is unavailable, we cannot proceed in any case.
5462   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5463     return SDValue();
5464 
5465   bool ComparingWithAllZeros = true;
5466   bool AllComparisonsWithNonZerosAreTautological = true;
5467   bool HadTautologicalLanes = false;
5468   bool AllLanesAreTautological = true;
5469   bool HadEvenDivisor = false;
5470   bool AllDivisorsArePowerOfTwo = true;
5471   bool HadTautologicalInvertedLanes = false;
5472   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5473 
5474   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5475     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5476     if (CDiv->isNullValue())
5477       return false;
5478 
5479     const APInt &D = CDiv->getAPIntValue();
5480     const APInt &Cmp = CCmp->getAPIntValue();
5481 
5482     ComparingWithAllZeros &= Cmp.isNullValue();
5483 
5484     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5485     // if C2 is not less than C1, the comparison is always false.
5486     // But we will only be able to produce the comparison that will give the
5487     // opposive tautological answer. So this lane would need to be fixed up.
5488     bool TautologicalInvertedLane = D.ule(Cmp);
5489     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5490 
5491     // If all lanes are tautological (either all divisors are ones, or divisor
5492     // is not greater than the constant we are comparing with),
5493     // we will prefer to avoid the fold.
5494     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5495     HadTautologicalLanes |= TautologicalLane;
5496     AllLanesAreTautological &= TautologicalLane;
5497 
5498     // If we are comparing with non-zero, we need'll need  to subtract said
5499     // comparison value from the LHS. But there is no point in doing that if
5500     // every lane where we are comparing with non-zero is tautological..
5501     if (!Cmp.isNullValue())
5502       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5503 
5504     // Decompose D into D0 * 2^K
5505     unsigned K = D.countTrailingZeros();
5506     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5507     APInt D0 = D.lshr(K);
5508 
5509     // D is even if it has trailing zeros.
5510     HadEvenDivisor |= (K != 0);
5511     // D is a power-of-two if D0 is one.
5512     // If all divisors are power-of-two, we will prefer to avoid the fold.
5513     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5514 
5515     // P = inv(D0, 2^W)
5516     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5517     unsigned W = D.getBitWidth();
5518     APInt P = D0.zext(W + 1)
5519                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5520                   .trunc(W);
5521     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5522     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5523 
5524     // Q = floor((2^W - 1) u/ D)
5525     // R = ((2^W - 1) u% D)
5526     APInt Q, R;
5527     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5528 
5529     // If we are comparing with zero, then that comparison constant is okay,
5530     // else it may need to be one less than that.
5531     if (Cmp.ugt(R))
5532       Q -= 1;
5533 
5534     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5535            "We are expecting that K is always less than all-ones for ShSVT");
5536 
5537     // If the lane is tautological the result can be constant-folded.
5538     if (TautologicalLane) {
5539       // Set P and K amount to a bogus values so we can try to splat them.
5540       P = 0;
5541       K = -1;
5542       // And ensure that comparison constant is tautological,
5543       // it will always compare true/false.
5544       Q = -1;
5545     }
5546 
5547     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5548     KAmts.push_back(
5549         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5550     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5551     return true;
5552   };
5553 
5554   SDValue N = REMNode.getOperand(0);
5555   SDValue D = REMNode.getOperand(1);
5556 
5557   // Collect the values from each element.
5558   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5559     return SDValue();
5560 
5561   // If all lanes are tautological, the result can be constant-folded.
5562   if (AllLanesAreTautological)
5563     return SDValue();
5564 
5565   // If this is a urem by a powers-of-two, avoid the fold since it can be
5566   // best implemented as a bit test.
5567   if (AllDivisorsArePowerOfTwo)
5568     return SDValue();
5569 
5570   SDValue PVal, KVal, QVal;
5571   if (VT.isVector()) {
5572     if (HadTautologicalLanes) {
5573       // Try to turn PAmts into a splat, since we don't care about the values
5574       // that are currently '0'. If we can't, just keep '0'`s.
5575       turnVectorIntoSplatVector(PAmts, isNullConstant);
5576       // Try to turn KAmts into a splat, since we don't care about the values
5577       // that are currently '-1'. If we can't, change them to '0'`s.
5578       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5579                                 DAG.getConstant(0, DL, ShSVT));
5580     }
5581 
5582     PVal = DAG.getBuildVector(VT, DL, PAmts);
5583     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5584     QVal = DAG.getBuildVector(VT, DL, QAmts);
5585   } else {
5586     PVal = PAmts[0];
5587     KVal = KAmts[0];
5588     QVal = QAmts[0];
5589   }
5590 
5591   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5592     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5593       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5594     assert(CompTargetNode.getValueType() == N.getValueType() &&
5595            "Expecting that the types on LHS and RHS of comparisons match.");
5596     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5597   }
5598 
5599   // (mul N, P)
5600   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5601   Created.push_back(Op0.getNode());
5602 
5603   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5604   // divisors as a performance improvement, since rotating by 0 is a no-op.
5605   if (HadEvenDivisor) {
5606     // We need ROTR to do this.
5607     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5608       return SDValue();
5609     SDNodeFlags Flags;
5610     Flags.setExact(true);
5611     // UREM: (rotr (mul N, P), K)
5612     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5613     Created.push_back(Op0.getNode());
5614   }
5615 
5616   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5617   SDValue NewCC =
5618       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5619                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5620   if (!HadTautologicalInvertedLanes)
5621     return NewCC;
5622 
5623   // If any lanes previously compared always-false, the NewCC will give
5624   // always-true result for them, so we need to fixup those lanes.
5625   // Or the other way around for inequality predicate.
5626   assert(VT.isVector() && "Can/should only get here for vectors.");
5627   Created.push_back(NewCC.getNode());
5628 
5629   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5630   // if C2 is not less than C1, the comparison is always false.
5631   // But we have produced the comparison that will give the
5632   // opposive tautological answer. So these lanes would need to be fixed up.
5633   SDValue TautologicalInvertedChannels =
5634       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5635   Created.push_back(TautologicalInvertedChannels.getNode());
5636 
5637   // NOTE: we avoid letting illegal types through even if we're before legalize
5638   // ops – legalization has a hard time producing good code for this.
5639   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5640     // If we have a vector select, let's replace the comparison results in the
5641     // affected lanes with the correct tautological result.
5642     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5643                                               DL, SETCCVT, SETCCVT);
5644     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5645                        Replacement, NewCC);
5646   }
5647 
5648   // Else, we can just invert the comparison result in the appropriate lanes.
5649   //
5650   // NOTE: see the note above VSELECT above.
5651   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5652     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5653                        TautologicalInvertedChannels);
5654 
5655   return SDValue(); // Don't know how to lower.
5656 }
5657 
5658 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5659 /// where the divisor is constant and the comparison target is zero,
5660 /// return a DAG expression that will generate the same comparison result
5661 /// using only multiplications, additions and shifts/rotations.
5662 /// Ref: "Hacker's Delight" 10-17.
5663 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5664                                         SDValue CompTargetNode,
5665                                         ISD::CondCode Cond,
5666                                         DAGCombinerInfo &DCI,
5667                                         const SDLoc &DL) const {
5668   SmallVector<SDNode *, 7> Built;
5669   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5670                                          DCI, DL, Built)) {
5671     assert(Built.size() <= 7 && "Max size prediction failed.");
5672     for (SDNode *N : Built)
5673       DCI.AddToWorklist(N);
5674     return Folded;
5675   }
5676 
5677   return SDValue();
5678 }
5679 
5680 SDValue
5681 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5682                                   SDValue CompTargetNode, ISD::CondCode Cond,
5683                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5684                                   SmallVectorImpl<SDNode *> &Created) const {
5685   // Fold:
5686   //   (seteq/ne (srem N, D), 0)
5687   // To:
5688   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5689   //
5690   // - D must be constant, with D = D0 * 2^K where D0 is odd
5691   // - P is the multiplicative inverse of D0 modulo 2^W
5692   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5693   // - Q = floor((2 * A) / (2^K))
5694   // where W is the width of the common type of N and D.
5695   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5696          "Only applicable for (in)equality comparisons.");
5697 
5698   SelectionDAG &DAG = DCI.DAG;
5699 
5700   EVT VT = REMNode.getValueType();
5701   EVT SVT = VT.getScalarType();
5702   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5703   EVT ShSVT = ShVT.getScalarType();
5704 
5705   // If we are after ops legalization, and MUL is unavailable, we can not
5706   // proceed.
5707   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5708     return SDValue();
5709 
5710   // TODO: Could support comparing with non-zero too.
5711   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5712   if (!CompTarget || !CompTarget->isNullValue())
5713     return SDValue();
5714 
5715   bool HadIntMinDivisor = false;
5716   bool HadOneDivisor = false;
5717   bool AllDivisorsAreOnes = true;
5718   bool HadEvenDivisor = false;
5719   bool NeedToApplyOffset = false;
5720   bool AllDivisorsArePowerOfTwo = true;
5721   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5722 
5723   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5724     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5725     if (C->isNullValue())
5726       return false;
5727 
5728     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5729 
5730     // WARNING: this fold is only valid for positive divisors!
5731     APInt D = C->getAPIntValue();
5732     if (D.isNegative())
5733       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5734 
5735     HadIntMinDivisor |= D.isMinSignedValue();
5736 
5737     // If all divisors are ones, we will prefer to avoid the fold.
5738     HadOneDivisor |= D.isOneValue();
5739     AllDivisorsAreOnes &= D.isOneValue();
5740 
5741     // Decompose D into D0 * 2^K
5742     unsigned K = D.countTrailingZeros();
5743     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5744     APInt D0 = D.lshr(K);
5745 
5746     if (!D.isMinSignedValue()) {
5747       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5748       // we don't care about this lane in this fold, we'll special-handle it.
5749       HadEvenDivisor |= (K != 0);
5750     }
5751 
5752     // D is a power-of-two if D0 is one. This includes INT_MIN.
5753     // If all divisors are power-of-two, we will prefer to avoid the fold.
5754     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5755 
5756     // P = inv(D0, 2^W)
5757     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5758     unsigned W = D.getBitWidth();
5759     APInt P = D0.zext(W + 1)
5760                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5761                   .trunc(W);
5762     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5763     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5764 
5765     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5766     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5767     A.clearLowBits(K);
5768 
5769     if (!D.isMinSignedValue()) {
5770       // If divisor INT_MIN, then we don't care about this lane in this fold,
5771       // we'll special-handle it.
5772       NeedToApplyOffset |= A != 0;
5773     }
5774 
5775     // Q = floor((2 * A) / (2^K))
5776     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5777 
5778     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5779            "We are expecting that A is always less than all-ones for SVT");
5780     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5781            "We are expecting that K is always less than all-ones for ShSVT");
5782 
5783     // If the divisor is 1 the result can be constant-folded. Likewise, we
5784     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5785     if (D.isOneValue()) {
5786       // Set P, A and K to a bogus values so we can try to splat them.
5787       P = 0;
5788       A = -1;
5789       K = -1;
5790 
5791       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5792       Q = -1;
5793     }
5794 
5795     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5796     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5797     KAmts.push_back(
5798         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5799     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5800     return true;
5801   };
5802 
5803   SDValue N = REMNode.getOperand(0);
5804   SDValue D = REMNode.getOperand(1);
5805 
5806   // Collect the values from each element.
5807   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5808     return SDValue();
5809 
5810   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5811   if (AllDivisorsAreOnes)
5812     return SDValue();
5813 
5814   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5815   // since it can be best implemented as a bit test.
5816   if (AllDivisorsArePowerOfTwo)
5817     return SDValue();
5818 
5819   SDValue PVal, AVal, KVal, QVal;
5820   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5821     if (HadOneDivisor) {
5822       // Try to turn PAmts into a splat, since we don't care about the values
5823       // that are currently '0'. If we can't, just keep '0'`s.
5824       turnVectorIntoSplatVector(PAmts, isNullConstant);
5825       // Try to turn AAmts into a splat, since we don't care about the
5826       // values that are currently '-1'. If we can't, change them to '0'`s.
5827       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5828                                 DAG.getConstant(0, DL, SVT));
5829       // Try to turn KAmts into a splat, since we don't care about the values
5830       // that are currently '-1'. If we can't, change them to '0'`s.
5831       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5832                                 DAG.getConstant(0, DL, ShSVT));
5833     }
5834 
5835     PVal = DAG.getBuildVector(VT, DL, PAmts);
5836     AVal = DAG.getBuildVector(VT, DL, AAmts);
5837     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5838     QVal = DAG.getBuildVector(VT, DL, QAmts);
5839   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5840     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5841            QAmts.size() == 1 &&
5842            "Expected matchUnaryPredicate to return one element for scalable "
5843            "vectors");
5844     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5845     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5846     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5847     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5848   } else {
5849     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5850     PVal = PAmts[0];
5851     AVal = AAmts[0];
5852     KVal = KAmts[0];
5853     QVal = QAmts[0];
5854   }
5855 
5856   // (mul N, P)
5857   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5858   Created.push_back(Op0.getNode());
5859 
5860   if (NeedToApplyOffset) {
5861     // We need ADD to do this.
5862     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5863       return SDValue();
5864 
5865     // (add (mul N, P), A)
5866     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5867     Created.push_back(Op0.getNode());
5868   }
5869 
5870   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5871   // divisors as a performance improvement, since rotating by 0 is a no-op.
5872   if (HadEvenDivisor) {
5873     // We need ROTR to do this.
5874     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5875       return SDValue();
5876     SDNodeFlags Flags;
5877     Flags.setExact(true);
5878     // SREM: (rotr (add (mul N, P), A), K)
5879     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5880     Created.push_back(Op0.getNode());
5881   }
5882 
5883   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5884   SDValue Fold =
5885       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5886                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5887 
5888   // If we didn't have lanes with INT_MIN divisor, then we're done.
5889   if (!HadIntMinDivisor)
5890     return Fold;
5891 
5892   // That fold is only valid for positive divisors. Which effectively means,
5893   // it is invalid for INT_MIN divisors. So if we have such a lane,
5894   // we must fix-up results for said lanes.
5895   assert(VT.isVector() && "Can/should only get here for vectors.");
5896 
5897   // NOTE: we avoid letting illegal types through even if we're before legalize
5898   // ops – legalization has a hard time producing good code for the code that
5899   // follows.
5900   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5901       !isOperationLegalOrCustom(ISD::AND, VT) ||
5902       !isOperationLegalOrCustom(Cond, VT) ||
5903       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5904     return SDValue();
5905 
5906   Created.push_back(Fold.getNode());
5907 
5908   SDValue IntMin = DAG.getConstant(
5909       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5910   SDValue IntMax = DAG.getConstant(
5911       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5912   SDValue Zero =
5913       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5914 
5915   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5916   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5917   Created.push_back(DivisorIsIntMin.getNode());
5918 
5919   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5920   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5921   Created.push_back(Masked.getNode());
5922   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5923   Created.push_back(MaskedIsZero.getNode());
5924 
5925   // To produce final result we need to blend 2 vectors: 'SetCC' and
5926   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5927   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5928   // constant-folded, select can get lowered to a shuffle with constant mask.
5929   SDValue Blended =
5930       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5931 
5932   return Blended;
5933 }
5934 
5935 bool TargetLowering::
5936 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5937   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5938     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5939                                 "be a constant integer");
5940     return true;
5941   }
5942 
5943   return false;
5944 }
5945 
5946 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5947                                          const DenormalMode &Mode) const {
5948   SDLoc DL(Op);
5949   EVT VT = Op.getValueType();
5950   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5951   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5952   // Testing it with denormal inputs to avoid wrong estimate.
5953   if (Mode.Input == DenormalMode::IEEE) {
5954     // This is specifically a check for the handling of denormal inputs,
5955     // not the result.
5956 
5957     // Test = fabs(X) < SmallestNormal
5958     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5959     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5960     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5961     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5962     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5963   }
5964   // Test = X == 0.0
5965   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5966 }
5967 
5968 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5969                                              bool LegalOps, bool OptForSize,
5970                                              NegatibleCost &Cost,
5971                                              unsigned Depth) const {
5972   // fneg is removable even if it has multiple uses.
5973   if (Op.getOpcode() == ISD::FNEG) {
5974     Cost = NegatibleCost::Cheaper;
5975     return Op.getOperand(0);
5976   }
5977 
5978   // Don't recurse exponentially.
5979   if (Depth > SelectionDAG::MaxRecursionDepth)
5980     return SDValue();
5981 
5982   // Pre-increment recursion depth for use in recursive calls.
5983   ++Depth;
5984   const SDNodeFlags Flags = Op->getFlags();
5985   const TargetOptions &Options = DAG.getTarget().Options;
5986   EVT VT = Op.getValueType();
5987   unsigned Opcode = Op.getOpcode();
5988 
5989   // Don't allow anything with multiple uses unless we know it is free.
5990   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5991     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5992                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5993     if (!IsFreeExtend)
5994       return SDValue();
5995   }
5996 
5997   auto RemoveDeadNode = [&](SDValue N) {
5998     if (N && N.getNode()->use_empty())
5999       DAG.RemoveDeadNode(N.getNode());
6000   };
6001 
6002   SDLoc DL(Op);
6003 
6004   // Because getNegatedExpression can delete nodes we need a handle to keep
6005   // temporary nodes alive in case the recursion manages to create an identical
6006   // node.
6007   std::list<HandleSDNode> Handles;
6008 
6009   switch (Opcode) {
6010   case ISD::ConstantFP: {
6011     // Don't invert constant FP values after legalization unless the target says
6012     // the negated constant is legal.
6013     bool IsOpLegal =
6014         isOperationLegal(ISD::ConstantFP, VT) ||
6015         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6016                      OptForSize);
6017 
6018     if (LegalOps && !IsOpLegal)
6019       break;
6020 
6021     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6022     V.changeSign();
6023     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6024 
6025     // If we already have the use of the negated floating constant, it is free
6026     // to negate it even it has multiple uses.
6027     if (!Op.hasOneUse() && CFP.use_empty())
6028       break;
6029     Cost = NegatibleCost::Neutral;
6030     return CFP;
6031   }
6032   case ISD::BUILD_VECTOR: {
6033     // Only permit BUILD_VECTOR of constants.
6034     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6035           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6036         }))
6037       break;
6038 
6039     bool IsOpLegal =
6040         (isOperationLegal(ISD::ConstantFP, VT) &&
6041          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6042         llvm::all_of(Op->op_values(), [&](SDValue N) {
6043           return N.isUndef() ||
6044                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6045                               OptForSize);
6046         });
6047 
6048     if (LegalOps && !IsOpLegal)
6049       break;
6050 
6051     SmallVector<SDValue, 4> Ops;
6052     for (SDValue C : Op->op_values()) {
6053       if (C.isUndef()) {
6054         Ops.push_back(C);
6055         continue;
6056       }
6057       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6058       V.changeSign();
6059       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6060     }
6061     Cost = NegatibleCost::Neutral;
6062     return DAG.getBuildVector(VT, DL, Ops);
6063   }
6064   case ISD::FADD: {
6065     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6066       break;
6067 
6068     // After operation legalization, it might not be legal to create new FSUBs.
6069     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6070       break;
6071     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6072 
6073     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6074     NegatibleCost CostX = NegatibleCost::Expensive;
6075     SDValue NegX =
6076         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6077     // Prevent this node from being deleted by the next call.
6078     if (NegX)
6079       Handles.emplace_back(NegX);
6080 
6081     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6082     NegatibleCost CostY = NegatibleCost::Expensive;
6083     SDValue NegY =
6084         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6085 
6086     // We're done with the handles.
6087     Handles.clear();
6088 
6089     // Negate the X if its cost is less or equal than Y.
6090     if (NegX && (CostX <= CostY)) {
6091       Cost = CostX;
6092       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6093       if (NegY != N)
6094         RemoveDeadNode(NegY);
6095       return N;
6096     }
6097 
6098     // Negate the Y if it is not expensive.
6099     if (NegY) {
6100       Cost = CostY;
6101       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6102       if (NegX != N)
6103         RemoveDeadNode(NegX);
6104       return N;
6105     }
6106     break;
6107   }
6108   case ISD::FSUB: {
6109     // We can't turn -(A-B) into B-A when we honor signed zeros.
6110     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6111       break;
6112 
6113     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6114     // fold (fneg (fsub 0, Y)) -> Y
6115     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6116       if (C->isZero()) {
6117         Cost = NegatibleCost::Cheaper;
6118         return Y;
6119       }
6120 
6121     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6122     Cost = NegatibleCost::Neutral;
6123     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6124   }
6125   case ISD::FMUL:
6126   case ISD::FDIV: {
6127     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6128 
6129     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6130     NegatibleCost CostX = NegatibleCost::Expensive;
6131     SDValue NegX =
6132         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6133     // Prevent this node from being deleted by the next call.
6134     if (NegX)
6135       Handles.emplace_back(NegX);
6136 
6137     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6138     NegatibleCost CostY = NegatibleCost::Expensive;
6139     SDValue NegY =
6140         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6141 
6142     // We're done with the handles.
6143     Handles.clear();
6144 
6145     // Negate the X if its cost is less or equal than Y.
6146     if (NegX && (CostX <= CostY)) {
6147       Cost = CostX;
6148       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6149       if (NegY != N)
6150         RemoveDeadNode(NegY);
6151       return N;
6152     }
6153 
6154     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6155     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6156       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6157         break;
6158 
6159     // Negate the Y if it is not expensive.
6160     if (NegY) {
6161       Cost = CostY;
6162       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6163       if (NegX != N)
6164         RemoveDeadNode(NegX);
6165       return N;
6166     }
6167     break;
6168   }
6169   case ISD::FMA:
6170   case ISD::FMAD: {
6171     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6172       break;
6173 
6174     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6175     NegatibleCost CostZ = NegatibleCost::Expensive;
6176     SDValue NegZ =
6177         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6178     // Give up if fail to negate the Z.
6179     if (!NegZ)
6180       break;
6181 
6182     // Prevent this node from being deleted by the next two calls.
6183     Handles.emplace_back(NegZ);
6184 
6185     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6186     NegatibleCost CostX = NegatibleCost::Expensive;
6187     SDValue NegX =
6188         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6189     // Prevent this node from being deleted by the next call.
6190     if (NegX)
6191       Handles.emplace_back(NegX);
6192 
6193     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6194     NegatibleCost CostY = NegatibleCost::Expensive;
6195     SDValue NegY =
6196         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6197 
6198     // We're done with the handles.
6199     Handles.clear();
6200 
6201     // Negate the X if its cost is less or equal than Y.
6202     if (NegX && (CostX <= CostY)) {
6203       Cost = std::min(CostX, CostZ);
6204       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6205       if (NegY != N)
6206         RemoveDeadNode(NegY);
6207       return N;
6208     }
6209 
6210     // Negate the Y if it is not expensive.
6211     if (NegY) {
6212       Cost = std::min(CostY, CostZ);
6213       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6214       if (NegX != N)
6215         RemoveDeadNode(NegX);
6216       return N;
6217     }
6218     break;
6219   }
6220 
6221   case ISD::FP_EXTEND:
6222   case ISD::FSIN:
6223     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6224                                             OptForSize, Cost, Depth))
6225       return DAG.getNode(Opcode, DL, VT, NegV);
6226     break;
6227   case ISD::FP_ROUND:
6228     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6229                                             OptForSize, Cost, Depth))
6230       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6231     break;
6232   }
6233 
6234   return SDValue();
6235 }
6236 
6237 //===----------------------------------------------------------------------===//
6238 // Legalization Utilities
6239 //===----------------------------------------------------------------------===//
6240 
6241 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6242                                     SDValue LHS, SDValue RHS,
6243                                     SmallVectorImpl<SDValue> &Result,
6244                                     EVT HiLoVT, SelectionDAG &DAG,
6245                                     MulExpansionKind Kind, SDValue LL,
6246                                     SDValue LH, SDValue RL, SDValue RH) const {
6247   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6248          Opcode == ISD::SMUL_LOHI);
6249 
6250   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6251                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6252   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6253                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6254   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6255                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6256   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6257                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6258 
6259   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6260     return false;
6261 
6262   unsigned OuterBitSize = VT.getScalarSizeInBits();
6263   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6264 
6265   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6266   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6267          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6268 
6269   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6270   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6271                           bool Signed) -> bool {
6272     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6273       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6274       Hi = SDValue(Lo.getNode(), 1);
6275       return true;
6276     }
6277     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6278       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6279       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6280       return true;
6281     }
6282     return false;
6283   };
6284 
6285   SDValue Lo, Hi;
6286 
6287   if (!LL.getNode() && !RL.getNode() &&
6288       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6289     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6290     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6291   }
6292 
6293   if (!LL.getNode())
6294     return false;
6295 
6296   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6297   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6298       DAG.MaskedValueIsZero(RHS, HighMask)) {
6299     // The inputs are both zero-extended.
6300     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6301       Result.push_back(Lo);
6302       Result.push_back(Hi);
6303       if (Opcode != ISD::MUL) {
6304         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6305         Result.push_back(Zero);
6306         Result.push_back(Zero);
6307       }
6308       return true;
6309     }
6310   }
6311 
6312   if (!VT.isVector() && Opcode == ISD::MUL &&
6313       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6314       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6315     // The input values are both sign-extended.
6316     // TODO non-MUL case?
6317     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6318       Result.push_back(Lo);
6319       Result.push_back(Hi);
6320       return true;
6321     }
6322   }
6323 
6324   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6325   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6326   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6327     // FIXME getShiftAmountTy does not always return a sensible result when VT
6328     // is an illegal type, and so the type may be too small to fit the shift
6329     // amount. Override it with i32. The shift will have to be legalized.
6330     ShiftAmountTy = MVT::i32;
6331   }
6332   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6333 
6334   if (!LH.getNode() && !RH.getNode() &&
6335       isOperationLegalOrCustom(ISD::SRL, VT) &&
6336       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6337     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6338     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6339     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6340     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6341   }
6342 
6343   if (!LH.getNode())
6344     return false;
6345 
6346   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6347     return false;
6348 
6349   Result.push_back(Lo);
6350 
6351   if (Opcode == ISD::MUL) {
6352     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6353     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6354     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6355     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6356     Result.push_back(Hi);
6357     return true;
6358   }
6359 
6360   // Compute the full width result.
6361   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6362     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6363     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6364     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6365     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6366   };
6367 
6368   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6369   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6370     return false;
6371 
6372   // This is effectively the add part of a multiply-add of half-sized operands,
6373   // so it cannot overflow.
6374   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6375 
6376   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6377     return false;
6378 
6379   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6380   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6381 
6382   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6383                   isOperationLegalOrCustom(ISD::ADDE, VT));
6384   if (UseGlue)
6385     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6386                        Merge(Lo, Hi));
6387   else
6388     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6389                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6390 
6391   SDValue Carry = Next.getValue(1);
6392   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6393   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6394 
6395   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6396     return false;
6397 
6398   if (UseGlue)
6399     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6400                      Carry);
6401   else
6402     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6403                      Zero, Carry);
6404 
6405   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6406 
6407   if (Opcode == ISD::SMUL_LOHI) {
6408     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6409                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6410     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6411 
6412     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6413                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6414     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6415   }
6416 
6417   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6418   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6419   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6420   return true;
6421 }
6422 
6423 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6424                                SelectionDAG &DAG, MulExpansionKind Kind,
6425                                SDValue LL, SDValue LH, SDValue RL,
6426                                SDValue RH) const {
6427   SmallVector<SDValue, 2> Result;
6428   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6429                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6430                            DAG, Kind, LL, LH, RL, RH);
6431   if (Ok) {
6432     assert(Result.size() == 2);
6433     Lo = Result[0];
6434     Hi = Result[1];
6435   }
6436   return Ok;
6437 }
6438 
6439 // Check that (every element of) Z is undef or not an exact multiple of BW.
6440 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6441   return ISD::matchUnaryPredicate(
6442       Z,
6443       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6444       true);
6445 }
6446 
6447 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6448                                        SelectionDAG &DAG) const {
6449   EVT VT = Node->getValueType(0);
6450 
6451   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6452                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6453                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6454                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6455     return false;
6456 
6457   SDValue X = Node->getOperand(0);
6458   SDValue Y = Node->getOperand(1);
6459   SDValue Z = Node->getOperand(2);
6460 
6461   unsigned BW = VT.getScalarSizeInBits();
6462   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6463   SDLoc DL(SDValue(Node, 0));
6464 
6465   EVT ShVT = Z.getValueType();
6466 
6467   // If a funnel shift in the other direction is more supported, use it.
6468   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6469   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6470       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6471     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6472       // fshl X, Y, Z -> fshr X, Y, -Z
6473       // fshr X, Y, Z -> fshl X, Y, -Z
6474       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6475       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6476     } else {
6477       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6478       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6479       SDValue One = DAG.getConstant(1, DL, ShVT);
6480       if (IsFSHL) {
6481         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6482         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6483       } else {
6484         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6485         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6486       }
6487       Z = DAG.getNOT(DL, Z, ShVT);
6488     }
6489     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6490     return true;
6491   }
6492 
6493   SDValue ShX, ShY;
6494   SDValue ShAmt, InvShAmt;
6495   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6496     // fshl: X << C | Y >> (BW - C)
6497     // fshr: X << (BW - C) | Y >> C
6498     // where C = Z % BW is not zero
6499     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6500     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6501     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6502     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6503     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6504   } else {
6505     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6506     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6507     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6508     if (isPowerOf2_32(BW)) {
6509       // Z % BW -> Z & (BW - 1)
6510       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6511       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6512       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6513     } else {
6514       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6515       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6516       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6517     }
6518 
6519     SDValue One = DAG.getConstant(1, DL, ShVT);
6520     if (IsFSHL) {
6521       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6522       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6523       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6524     } else {
6525       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6526       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6527       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6528     }
6529   }
6530   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6531   return true;
6532 }
6533 
6534 // TODO: Merge with expandFunnelShift.
6535 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6536                                SDValue &Result, SelectionDAG &DAG) const {
6537   EVT VT = Node->getValueType(0);
6538   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6539   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6540   SDValue Op0 = Node->getOperand(0);
6541   SDValue Op1 = Node->getOperand(1);
6542   SDLoc DL(SDValue(Node, 0));
6543 
6544   EVT ShVT = Op1.getValueType();
6545   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6546 
6547   // If a rotate in the other direction is supported, use it.
6548   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6549   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6550     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6551     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6552     return true;
6553   }
6554 
6555   if (!AllowVectorOps && VT.isVector() &&
6556       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6557        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6558        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6559        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6560        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6561     return false;
6562 
6563   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6564   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6565   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6566   SDValue ShVal;
6567   SDValue HsVal;
6568   if (isPowerOf2_32(EltSizeInBits)) {
6569     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6570     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6571     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6572     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6573     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6574     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6575     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6576   } else {
6577     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6578     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6579     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6580     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6581     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6582     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6583     SDValue One = DAG.getConstant(1, DL, ShVT);
6584     HsVal =
6585         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6586   }
6587   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6588   return true;
6589 }
6590 
6591 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6592                                       SelectionDAG &DAG) const {
6593   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6594   EVT VT = Node->getValueType(0);
6595   unsigned VTBits = VT.getScalarSizeInBits();
6596   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6597 
6598   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6599   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6600   SDValue ShOpLo = Node->getOperand(0);
6601   SDValue ShOpHi = Node->getOperand(1);
6602   SDValue ShAmt = Node->getOperand(2);
6603   EVT ShAmtVT = ShAmt.getValueType();
6604   EVT ShAmtCCVT =
6605       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6606   SDLoc dl(Node);
6607 
6608   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6609   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6610   // away during isel.
6611   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6612                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6613   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6614                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6615                        : DAG.getConstant(0, dl, VT);
6616 
6617   SDValue Tmp2, Tmp3;
6618   if (IsSHL) {
6619     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6620     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6621   } else {
6622     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6623     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6624   }
6625 
6626   // If the shift amount is larger or equal than the width of a part we don't
6627   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6628   // values for large shift amounts.
6629   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6630                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6631   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6632                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6633 
6634   if (IsSHL) {
6635     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6636     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6637   } else {
6638     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6639     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6640   }
6641 }
6642 
6643 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6644                                       SelectionDAG &DAG) const {
6645   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6646   SDValue Src = Node->getOperand(OpNo);
6647   EVT SrcVT = Src.getValueType();
6648   EVT DstVT = Node->getValueType(0);
6649   SDLoc dl(SDValue(Node, 0));
6650 
6651   // FIXME: Only f32 to i64 conversions are supported.
6652   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6653     return false;
6654 
6655   if (Node->isStrictFPOpcode())
6656     // When a NaN is converted to an integer a trap is allowed. We can't
6657     // use this expansion here because it would eliminate that trap. Other
6658     // traps are also allowed and cannot be eliminated. See
6659     // IEEE 754-2008 sec 5.8.
6660     return false;
6661 
6662   // Expand f32 -> i64 conversion
6663   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6664   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6665   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6666   EVT IntVT = SrcVT.changeTypeToInteger();
6667   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6668 
6669   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6670   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6671   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6672   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6673   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6674   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6675 
6676   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6677 
6678   SDValue ExponentBits = DAG.getNode(
6679       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6680       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6681   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6682 
6683   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6684                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6685                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6686   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6687 
6688   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6689                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6690                           DAG.getConstant(0x00800000, dl, IntVT));
6691 
6692   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6693 
6694   R = DAG.getSelectCC(
6695       dl, Exponent, ExponentLoBit,
6696       DAG.getNode(ISD::SHL, dl, DstVT, R,
6697                   DAG.getZExtOrTrunc(
6698                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6699                       dl, IntShVT)),
6700       DAG.getNode(ISD::SRL, dl, DstVT, R,
6701                   DAG.getZExtOrTrunc(
6702                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6703                       dl, IntShVT)),
6704       ISD::SETGT);
6705 
6706   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6707                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6708 
6709   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6710                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6711   return true;
6712 }
6713 
6714 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6715                                       SDValue &Chain,
6716                                       SelectionDAG &DAG) const {
6717   SDLoc dl(SDValue(Node, 0));
6718   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6719   SDValue Src = Node->getOperand(OpNo);
6720 
6721   EVT SrcVT = Src.getValueType();
6722   EVT DstVT = Node->getValueType(0);
6723   EVT SetCCVT =
6724       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6725   EVT DstSetCCVT =
6726       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6727 
6728   // Only expand vector types if we have the appropriate vector bit operations.
6729   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6730                                                    ISD::FP_TO_SINT;
6731   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6732                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6733     return false;
6734 
6735   // If the maximum float value is smaller then the signed integer range,
6736   // the destination signmask can't be represented by the float, so we can
6737   // just use FP_TO_SINT directly.
6738   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6739   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6740   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6741   if (APFloat::opOverflow &
6742       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6743     if (Node->isStrictFPOpcode()) {
6744       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6745                            { Node->getOperand(0), Src });
6746       Chain = Result.getValue(1);
6747     } else
6748       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6749     return true;
6750   }
6751 
6752   // Don't expand it if there isn't cheap fsub instruction.
6753   if (!isOperationLegalOrCustom(
6754           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6755     return false;
6756 
6757   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6758   SDValue Sel;
6759 
6760   if (Node->isStrictFPOpcode()) {
6761     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6762                        Node->getOperand(0), /*IsSignaling*/ true);
6763     Chain = Sel.getValue(1);
6764   } else {
6765     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6766   }
6767 
6768   bool Strict = Node->isStrictFPOpcode() ||
6769                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6770 
6771   if (Strict) {
6772     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6773     // signmask then offset (the result of which should be fully representable).
6774     // Sel = Src < 0x8000000000000000
6775     // FltOfs = select Sel, 0, 0x8000000000000000
6776     // IntOfs = select Sel, 0, 0x8000000000000000
6777     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6778 
6779     // TODO: Should any fast-math-flags be set for the FSUB?
6780     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6781                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6782     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6783     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6784                                    DAG.getConstant(0, dl, DstVT),
6785                                    DAG.getConstant(SignMask, dl, DstVT));
6786     SDValue SInt;
6787     if (Node->isStrictFPOpcode()) {
6788       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6789                                 { Chain, Src, FltOfs });
6790       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6791                          { Val.getValue(1), Val });
6792       Chain = SInt.getValue(1);
6793     } else {
6794       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6795       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6796     }
6797     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6798   } else {
6799     // Expand based on maximum range of FP_TO_SINT:
6800     // True = fp_to_sint(Src)
6801     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6802     // Result = select (Src < 0x8000000000000000), True, False
6803 
6804     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6805     // TODO: Should any fast-math-flags be set for the FSUB?
6806     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6807                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6808     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6809                         DAG.getConstant(SignMask, dl, DstVT));
6810     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6811     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6812   }
6813   return true;
6814 }
6815 
6816 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6817                                       SDValue &Chain,
6818                                       SelectionDAG &DAG) const {
6819   // This transform is not correct for converting 0 when rounding mode is set
6820   // to round toward negative infinity which will produce -0.0. So disable under
6821   // strictfp.
6822   if (Node->isStrictFPOpcode())
6823     return false;
6824 
6825   SDValue Src = Node->getOperand(0);
6826   EVT SrcVT = Src.getValueType();
6827   EVT DstVT = Node->getValueType(0);
6828 
6829   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6830     return false;
6831 
6832   // Only expand vector types if we have the appropriate vector bit operations.
6833   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6834                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6835                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6836                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6837                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6838     return false;
6839 
6840   SDLoc dl(SDValue(Node, 0));
6841   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6842 
6843   // Implementation of unsigned i64 to f64 following the algorithm in
6844   // __floatundidf in compiler_rt.  This implementation performs rounding
6845   // correctly in all rounding modes with the exception of converting 0
6846   // when rounding toward negative infinity. In that case the fsub will produce
6847   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6848   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6849   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6850       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6851   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6852   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6853   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6854 
6855   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6856   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6857   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6858   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6859   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6860   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6861   SDValue HiSub =
6862       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6863   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6864   return true;
6865 }
6866 
6867 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6868                                               SelectionDAG &DAG) const {
6869   SDLoc dl(Node);
6870   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6871     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6872   EVT VT = Node->getValueType(0);
6873 
6874   if (VT.isScalableVector())
6875     report_fatal_error(
6876         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6877 
6878   if (isOperationLegalOrCustom(NewOp, VT)) {
6879     SDValue Quiet0 = Node->getOperand(0);
6880     SDValue Quiet1 = Node->getOperand(1);
6881 
6882     if (!Node->getFlags().hasNoNaNs()) {
6883       // Insert canonicalizes if it's possible we need to quiet to get correct
6884       // sNaN behavior.
6885       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6886         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6887                              Node->getFlags());
6888       }
6889       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6890         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6891                              Node->getFlags());
6892       }
6893     }
6894 
6895     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6896   }
6897 
6898   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6899   // instead if there are no NaNs.
6900   if (Node->getFlags().hasNoNaNs()) {
6901     unsigned IEEE2018Op =
6902         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6903     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6904       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6905                          Node->getOperand(1), Node->getFlags());
6906     }
6907   }
6908 
6909   // If none of the above worked, but there are no NaNs, then expand to
6910   // a compare/select sequence.  This is required for correctness since
6911   // InstCombine might have canonicalized a fcmp+select sequence to a
6912   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6913   // expansion to libcall, we might introduce a link-time dependency
6914   // on libm into a file that originally did not have one.
6915   if (Node->getFlags().hasNoNaNs()) {
6916     ISD::CondCode Pred =
6917         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6918     SDValue Op1 = Node->getOperand(0);
6919     SDValue Op2 = Node->getOperand(1);
6920     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6921     // Copy FMF flags, but always set the no-signed-zeros flag
6922     // as this is implied by the FMINNUM/FMAXNUM semantics.
6923     SDNodeFlags Flags = Node->getFlags();
6924     Flags.setNoSignedZeros(true);
6925     SelCC->setFlags(Flags);
6926     return SelCC;
6927   }
6928 
6929   return SDValue();
6930 }
6931 
6932 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6933                                  SelectionDAG &DAG) const {
6934   SDLoc dl(Node);
6935   EVT VT = Node->getValueType(0);
6936   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6937   SDValue Op = Node->getOperand(0);
6938   unsigned Len = VT.getScalarSizeInBits();
6939   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6940 
6941   // TODO: Add support for irregular type lengths.
6942   if (!(Len <= 128 && Len % 8 == 0))
6943     return false;
6944 
6945   // Only expand vector types if we have the appropriate vector bit operations.
6946   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6947                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6948                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6949                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6950                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6951     return false;
6952 
6953   // This is the "best" algorithm from
6954   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6955   SDValue Mask55 =
6956       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6957   SDValue Mask33 =
6958       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6959   SDValue Mask0F =
6960       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6961   SDValue Mask01 =
6962       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6963 
6964   // v = v - ((v >> 1) & 0x55555555...)
6965   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6966                    DAG.getNode(ISD::AND, dl, VT,
6967                                DAG.getNode(ISD::SRL, dl, VT, Op,
6968                                            DAG.getConstant(1, dl, ShVT)),
6969                                Mask55));
6970   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6971   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6972                    DAG.getNode(ISD::AND, dl, VT,
6973                                DAG.getNode(ISD::SRL, dl, VT, Op,
6974                                            DAG.getConstant(2, dl, ShVT)),
6975                                Mask33));
6976   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6977   Op = DAG.getNode(ISD::AND, dl, VT,
6978                    DAG.getNode(ISD::ADD, dl, VT, Op,
6979                                DAG.getNode(ISD::SRL, dl, VT, Op,
6980                                            DAG.getConstant(4, dl, ShVT))),
6981                    Mask0F);
6982   // v = (v * 0x01010101...) >> (Len - 8)
6983   if (Len > 8)
6984     Op =
6985         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6986                     DAG.getConstant(Len - 8, dl, ShVT));
6987 
6988   Result = Op;
6989   return true;
6990 }
6991 
6992 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6993                                 SelectionDAG &DAG) const {
6994   SDLoc dl(Node);
6995   EVT VT = Node->getValueType(0);
6996   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6997   SDValue Op = Node->getOperand(0);
6998   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6999 
7000   // If the non-ZERO_UNDEF version is supported we can use that instead.
7001   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7002       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
7003     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
7004     return true;
7005   }
7006 
7007   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7008   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7009     EVT SetCCVT =
7010         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7011     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7012     SDValue Zero = DAG.getConstant(0, dl, VT);
7013     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7014     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7015                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7016     return true;
7017   }
7018 
7019   // Only expand vector types if we have the appropriate vector bit operations.
7020   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7021                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
7022                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7023                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7024     return false;
7025 
7026   // for now, we do this:
7027   // x = x | (x >> 1);
7028   // x = x | (x >> 2);
7029   // ...
7030   // x = x | (x >>16);
7031   // x = x | (x >>32); // for 64-bit input
7032   // return popcount(~x);
7033   //
7034   // Ref: "Hacker's Delight" by Henry Warren
7035   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7036     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7037     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7038                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7039   }
7040   Op = DAG.getNOT(dl, Op, VT);
7041   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
7042   return true;
7043 }
7044 
7045 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
7046                                 SelectionDAG &DAG) const {
7047   SDLoc dl(Node);
7048   EVT VT = Node->getValueType(0);
7049   SDValue Op = Node->getOperand(0);
7050   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7051 
7052   // If the non-ZERO_UNDEF version is supported we can use that instead.
7053   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7054       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
7055     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
7056     return true;
7057   }
7058 
7059   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7060   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7061     EVT SetCCVT =
7062         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7063     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7064     SDValue Zero = DAG.getConstant(0, dl, VT);
7065     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7066     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7067                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7068     return true;
7069   }
7070 
7071   // Only expand vector types if we have the appropriate vector bit operations.
7072   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7073                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7074                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7075                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7076                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7077                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7078     return false;
7079 
7080   // for now, we use: { return popcount(~x & (x - 1)); }
7081   // unless the target has ctlz but not ctpop, in which case we use:
7082   // { return 32 - nlz(~x & (x-1)); }
7083   // Ref: "Hacker's Delight" by Henry Warren
7084   SDValue Tmp = DAG.getNode(
7085       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7086       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7087 
7088   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7089   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7090     Result =
7091         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7092                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7093     return true;
7094   }
7095 
7096   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7097   return true;
7098 }
7099 
7100 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7101                                SelectionDAG &DAG, bool IsNegative) const {
7102   SDLoc dl(N);
7103   EVT VT = N->getValueType(0);
7104   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7105   SDValue Op = N->getOperand(0);
7106 
7107   // abs(x) -> smax(x,sub(0,x))
7108   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7109       isOperationLegal(ISD::SMAX, VT)) {
7110     SDValue Zero = DAG.getConstant(0, dl, VT);
7111     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7112                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7113     return true;
7114   }
7115 
7116   // abs(x) -> umin(x,sub(0,x))
7117   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7118       isOperationLegal(ISD::UMIN, VT)) {
7119     SDValue Zero = DAG.getConstant(0, dl, VT);
7120     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7121                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7122     return true;
7123   }
7124 
7125   // 0 - abs(x) -> smin(x, sub(0,x))
7126   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7127       isOperationLegal(ISD::SMIN, VT)) {
7128     SDValue Zero = DAG.getConstant(0, dl, VT);
7129     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7130                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7131     return true;
7132   }
7133 
7134   // Only expand vector types if we have the appropriate vector operations.
7135   if (VT.isVector() &&
7136       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7137        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7138        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7139        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7140     return false;
7141 
7142   SDValue Shift =
7143       DAG.getNode(ISD::SRA, dl, VT, Op,
7144                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7145   if (!IsNegative) {
7146     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7147     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7148   } else {
7149     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7150     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7151     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7152   }
7153   return true;
7154 }
7155 
7156 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7157   SDLoc dl(N);
7158   EVT VT = N->getValueType(0);
7159   SDValue Op = N->getOperand(0);
7160 
7161   if (!VT.isSimple())
7162     return SDValue();
7163 
7164   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7165   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7166   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7167   default:
7168     return SDValue();
7169   case MVT::i16:
7170     // Use a rotate by 8. This can be further expanded if necessary.
7171     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7172   case MVT::i32:
7173     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7174     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7175     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7176     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7177     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7178                        DAG.getConstant(0xFF0000, dl, VT));
7179     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7180     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7181     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7182     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7183   case MVT::i64:
7184     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7185     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7186     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7187     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7188     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7189     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7190     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7191     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7192     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7193                        DAG.getConstant(255ULL<<48, dl, VT));
7194     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7195                        DAG.getConstant(255ULL<<40, dl, VT));
7196     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7197                        DAG.getConstant(255ULL<<32, dl, VT));
7198     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7199                        DAG.getConstant(255ULL<<24, dl, VT));
7200     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7201                        DAG.getConstant(255ULL<<16, dl, VT));
7202     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7203                        DAG.getConstant(255ULL<<8 , dl, VT));
7204     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7205     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7206     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7207     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7208     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7209     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7210     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7211   }
7212 }
7213 
7214 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7215   SDLoc dl(N);
7216   EVT VT = N->getValueType(0);
7217   SDValue Op = N->getOperand(0);
7218   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7219   unsigned Sz = VT.getScalarSizeInBits();
7220 
7221   SDValue Tmp, Tmp2, Tmp3;
7222 
7223   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7224   // and finally the i1 pairs.
7225   // TODO: We can easily support i4/i2 legal types if any target ever does.
7226   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7227     // Create the masks - repeating the pattern every byte.
7228     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7229     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7230     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7231     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7232     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7233     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7234 
7235     // BSWAP if the type is wider than a single byte.
7236     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7237 
7238     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7239     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7240     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7241     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7242     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7243     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7244 
7245     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7246     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7247     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7248     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7249     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7250     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7251 
7252     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7253     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7254     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7255     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7256     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7257     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7258     return Tmp;
7259   }
7260 
7261   Tmp = DAG.getConstant(0, dl, VT);
7262   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7263     if (I < J)
7264       Tmp2 =
7265           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7266     else
7267       Tmp2 =
7268           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7269 
7270     APInt Shift(Sz, 1);
7271     Shift <<= J;
7272     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7273     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7274   }
7275 
7276   return Tmp;
7277 }
7278 
7279 std::pair<SDValue, SDValue>
7280 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7281                                     SelectionDAG &DAG) const {
7282   SDLoc SL(LD);
7283   SDValue Chain = LD->getChain();
7284   SDValue BasePTR = LD->getBasePtr();
7285   EVT SrcVT = LD->getMemoryVT();
7286   EVT DstVT = LD->getValueType(0);
7287   ISD::LoadExtType ExtType = LD->getExtensionType();
7288 
7289   if (SrcVT.isScalableVector())
7290     report_fatal_error("Cannot scalarize scalable vector loads");
7291 
7292   unsigned NumElem = SrcVT.getVectorNumElements();
7293 
7294   EVT SrcEltVT = SrcVT.getScalarType();
7295   EVT DstEltVT = DstVT.getScalarType();
7296 
7297   // A vector must always be stored in memory as-is, i.e. without any padding
7298   // between the elements, since various code depend on it, e.g. in the
7299   // handling of a bitcast of a vector type to int, which may be done with a
7300   // vector store followed by an integer load. A vector that does not have
7301   // elements that are byte-sized must therefore be stored as an integer
7302   // built out of the extracted vector elements.
7303   if (!SrcEltVT.isByteSized()) {
7304     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7305     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7306 
7307     unsigned NumSrcBits = SrcVT.getSizeInBits();
7308     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7309 
7310     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7311     SDValue SrcEltBitMask = DAG.getConstant(
7312         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7313 
7314     // Load the whole vector and avoid masking off the top bits as it makes
7315     // the codegen worse.
7316     SDValue Load =
7317         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7318                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7319                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7320 
7321     SmallVector<SDValue, 8> Vals;
7322     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7323       unsigned ShiftIntoIdx =
7324           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7325       SDValue ShiftAmount =
7326           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7327                                      LoadVT, SL, /*LegalTypes=*/false);
7328       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7329       SDValue Elt =
7330           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7331       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7332 
7333       if (ExtType != ISD::NON_EXTLOAD) {
7334         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7335         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7336       }
7337 
7338       Vals.push_back(Scalar);
7339     }
7340 
7341     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7342     return std::make_pair(Value, Load.getValue(1));
7343   }
7344 
7345   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7346   assert(SrcEltVT.isByteSized());
7347 
7348   SmallVector<SDValue, 8> Vals;
7349   SmallVector<SDValue, 8> LoadChains;
7350 
7351   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7352     SDValue ScalarLoad =
7353         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7354                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7355                        SrcEltVT, LD->getOriginalAlign(),
7356                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7357 
7358     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7359 
7360     Vals.push_back(ScalarLoad.getValue(0));
7361     LoadChains.push_back(ScalarLoad.getValue(1));
7362   }
7363 
7364   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7365   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7366 
7367   return std::make_pair(Value, NewChain);
7368 }
7369 
7370 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7371                                              SelectionDAG &DAG) const {
7372   SDLoc SL(ST);
7373 
7374   SDValue Chain = ST->getChain();
7375   SDValue BasePtr = ST->getBasePtr();
7376   SDValue Value = ST->getValue();
7377   EVT StVT = ST->getMemoryVT();
7378 
7379   if (StVT.isScalableVector())
7380     report_fatal_error("Cannot scalarize scalable vector stores");
7381 
7382   // The type of the data we want to save
7383   EVT RegVT = Value.getValueType();
7384   EVT RegSclVT = RegVT.getScalarType();
7385 
7386   // The type of data as saved in memory.
7387   EVT MemSclVT = StVT.getScalarType();
7388 
7389   unsigned NumElem = StVT.getVectorNumElements();
7390 
7391   // A vector must always be stored in memory as-is, i.e. without any padding
7392   // between the elements, since various code depend on it, e.g. in the
7393   // handling of a bitcast of a vector type to int, which may be done with a
7394   // vector store followed by an integer load. A vector that does not have
7395   // elements that are byte-sized must therefore be stored as an integer
7396   // built out of the extracted vector elements.
7397   if (!MemSclVT.isByteSized()) {
7398     unsigned NumBits = StVT.getSizeInBits();
7399     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7400 
7401     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7402 
7403     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7404       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7405                                 DAG.getVectorIdxConstant(Idx, SL));
7406       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7407       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7408       unsigned ShiftIntoIdx =
7409           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7410       SDValue ShiftAmount =
7411           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7412       SDValue ShiftedElt =
7413           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7414       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7415     }
7416 
7417     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7418                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7419                         ST->getAAInfo());
7420   }
7421 
7422   // Store Stride in bytes
7423   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7424   assert(Stride && "Zero stride!");
7425   // Extract each of the elements from the original vector and save them into
7426   // memory individually.
7427   SmallVector<SDValue, 8> Stores;
7428   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7429     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7430                               DAG.getVectorIdxConstant(Idx, SL));
7431 
7432     SDValue Ptr =
7433         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7434 
7435     // This scalar TruncStore may be illegal, but we legalize it later.
7436     SDValue Store = DAG.getTruncStore(
7437         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7438         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7439         ST->getAAInfo());
7440 
7441     Stores.push_back(Store);
7442   }
7443 
7444   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7445 }
7446 
7447 std::pair<SDValue, SDValue>
7448 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7449   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7450          "unaligned indexed loads not implemented!");
7451   SDValue Chain = LD->getChain();
7452   SDValue Ptr = LD->getBasePtr();
7453   EVT VT = LD->getValueType(0);
7454   EVT LoadedVT = LD->getMemoryVT();
7455   SDLoc dl(LD);
7456   auto &MF = DAG.getMachineFunction();
7457 
7458   if (VT.isFloatingPoint() || VT.isVector()) {
7459     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7460     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7461       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7462           LoadedVT.isVector()) {
7463         // Scalarize the load and let the individual components be handled.
7464         return scalarizeVectorLoad(LD, DAG);
7465       }
7466 
7467       // Expand to a (misaligned) integer load of the same size,
7468       // then bitconvert to floating point or vector.
7469       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7470                                     LD->getMemOperand());
7471       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7472       if (LoadedVT != VT)
7473         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7474                              ISD::ANY_EXTEND, dl, VT, Result);
7475 
7476       return std::make_pair(Result, newLoad.getValue(1));
7477     }
7478 
7479     // Copy the value to a (aligned) stack slot using (unaligned) integer
7480     // loads and stores, then do a (aligned) load from the stack slot.
7481     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7482     unsigned LoadedBytes = LoadedVT.getStoreSize();
7483     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7484     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7485 
7486     // Make sure the stack slot is also aligned for the register type.
7487     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7488     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7489     SmallVector<SDValue, 8> Stores;
7490     SDValue StackPtr = StackBase;
7491     unsigned Offset = 0;
7492 
7493     EVT PtrVT = Ptr.getValueType();
7494     EVT StackPtrVT = StackPtr.getValueType();
7495 
7496     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7497     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7498 
7499     // Do all but one copies using the full register width.
7500     for (unsigned i = 1; i < NumRegs; i++) {
7501       // Load one integer register's worth from the original location.
7502       SDValue Load = DAG.getLoad(
7503           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7504           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7505           LD->getAAInfo());
7506       // Follow the load with a store to the stack slot.  Remember the store.
7507       Stores.push_back(DAG.getStore(
7508           Load.getValue(1), dl, Load, StackPtr,
7509           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7510       // Increment the pointers.
7511       Offset += RegBytes;
7512 
7513       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7514       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7515     }
7516 
7517     // The last copy may be partial.  Do an extending load.
7518     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7519                                   8 * (LoadedBytes - Offset));
7520     SDValue Load =
7521         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7522                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7523                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7524                        LD->getAAInfo());
7525     // Follow the load with a store to the stack slot.  Remember the store.
7526     // On big-endian machines this requires a truncating store to ensure
7527     // that the bits end up in the right place.
7528     Stores.push_back(DAG.getTruncStore(
7529         Load.getValue(1), dl, Load, StackPtr,
7530         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7531 
7532     // The order of the stores doesn't matter - say it with a TokenFactor.
7533     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7534 
7535     // Finally, perform the original load only redirected to the stack slot.
7536     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7537                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7538                           LoadedVT);
7539 
7540     // Callers expect a MERGE_VALUES node.
7541     return std::make_pair(Load, TF);
7542   }
7543 
7544   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7545          "Unaligned load of unsupported type.");
7546 
7547   // Compute the new VT that is half the size of the old one.  This is an
7548   // integer MVT.
7549   unsigned NumBits = LoadedVT.getSizeInBits();
7550   EVT NewLoadedVT;
7551   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7552   NumBits >>= 1;
7553 
7554   Align Alignment = LD->getOriginalAlign();
7555   unsigned IncrementSize = NumBits / 8;
7556   ISD::LoadExtType HiExtType = LD->getExtensionType();
7557 
7558   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7559   if (HiExtType == ISD::NON_EXTLOAD)
7560     HiExtType = ISD::ZEXTLOAD;
7561 
7562   // Load the value in two parts
7563   SDValue Lo, Hi;
7564   if (DAG.getDataLayout().isLittleEndian()) {
7565     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7566                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7567                         LD->getAAInfo());
7568 
7569     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7570     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7571                         LD->getPointerInfo().getWithOffset(IncrementSize),
7572                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7573                         LD->getAAInfo());
7574   } else {
7575     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7576                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7577                         LD->getAAInfo());
7578 
7579     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7580     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7581                         LD->getPointerInfo().getWithOffset(IncrementSize),
7582                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7583                         LD->getAAInfo());
7584   }
7585 
7586   // aggregate the two parts
7587   SDValue ShiftAmount =
7588       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7589                                                     DAG.getDataLayout()));
7590   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7591   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7592 
7593   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7594                              Hi.getValue(1));
7595 
7596   return std::make_pair(Result, TF);
7597 }
7598 
7599 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7600                                              SelectionDAG &DAG) const {
7601   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7602          "unaligned indexed stores not implemented!");
7603   SDValue Chain = ST->getChain();
7604   SDValue Ptr = ST->getBasePtr();
7605   SDValue Val = ST->getValue();
7606   EVT VT = Val.getValueType();
7607   Align Alignment = ST->getOriginalAlign();
7608   auto &MF = DAG.getMachineFunction();
7609   EVT StoreMemVT = ST->getMemoryVT();
7610 
7611   SDLoc dl(ST);
7612   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7613     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7614     if (isTypeLegal(intVT)) {
7615       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7616           StoreMemVT.isVector()) {
7617         // Scalarize the store and let the individual components be handled.
7618         SDValue Result = scalarizeVectorStore(ST, DAG);
7619         return Result;
7620       }
7621       // Expand to a bitconvert of the value to the integer type of the
7622       // same size, then a (misaligned) int store.
7623       // FIXME: Does not handle truncating floating point stores!
7624       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7625       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7626                             Alignment, ST->getMemOperand()->getFlags());
7627       return Result;
7628     }
7629     // Do a (aligned) store to a stack slot, then copy from the stack slot
7630     // to the final destination using (unaligned) integer loads and stores.
7631     MVT RegVT = getRegisterType(
7632         *DAG.getContext(),
7633         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7634     EVT PtrVT = Ptr.getValueType();
7635     unsigned StoredBytes = StoreMemVT.getStoreSize();
7636     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7637     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7638 
7639     // Make sure the stack slot is also aligned for the register type.
7640     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7641     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7642 
7643     // Perform the original store, only redirected to the stack slot.
7644     SDValue Store = DAG.getTruncStore(
7645         Chain, dl, Val, StackPtr,
7646         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7647 
7648     EVT StackPtrVT = StackPtr.getValueType();
7649 
7650     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7651     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7652     SmallVector<SDValue, 8> Stores;
7653     unsigned Offset = 0;
7654 
7655     // Do all but one copies using the full register width.
7656     for (unsigned i = 1; i < NumRegs; i++) {
7657       // Load one integer register's worth from the stack slot.
7658       SDValue Load = DAG.getLoad(
7659           RegVT, dl, Store, StackPtr,
7660           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7661       // Store it to the final location.  Remember the store.
7662       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7663                                     ST->getPointerInfo().getWithOffset(Offset),
7664                                     ST->getOriginalAlign(),
7665                                     ST->getMemOperand()->getFlags()));
7666       // Increment the pointers.
7667       Offset += RegBytes;
7668       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7669       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7670     }
7671 
7672     // The last store may be partial.  Do a truncating store.  On big-endian
7673     // machines this requires an extending load from the stack slot to ensure
7674     // that the bits are in the right place.
7675     EVT LoadMemVT =
7676         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7677 
7678     // Load from the stack slot.
7679     SDValue Load = DAG.getExtLoad(
7680         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7681         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7682 
7683     Stores.push_back(
7684         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7685                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7686                           ST->getOriginalAlign(),
7687                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7688     // The order of the stores doesn't matter - say it with a TokenFactor.
7689     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7690     return Result;
7691   }
7692 
7693   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7694          "Unaligned store of unknown type.");
7695   // Get the half-size VT
7696   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7697   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7698   unsigned IncrementSize = NumBits / 8;
7699 
7700   // Divide the stored value in two parts.
7701   SDValue ShiftAmount = DAG.getConstant(
7702       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7703   SDValue Lo = Val;
7704   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7705 
7706   // Store the two parts
7707   SDValue Store1, Store2;
7708   Store1 = DAG.getTruncStore(Chain, dl,
7709                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7710                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7711                              ST->getMemOperand()->getFlags());
7712 
7713   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7714   Store2 = DAG.getTruncStore(
7715       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7716       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7717       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7718 
7719   SDValue Result =
7720       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7721   return Result;
7722 }
7723 
7724 SDValue
7725 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7726                                        const SDLoc &DL, EVT DataVT,
7727                                        SelectionDAG &DAG,
7728                                        bool IsCompressedMemory) const {
7729   SDValue Increment;
7730   EVT AddrVT = Addr.getValueType();
7731   EVT MaskVT = Mask.getValueType();
7732   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7733          "Incompatible types of Data and Mask");
7734   if (IsCompressedMemory) {
7735     if (DataVT.isScalableVector())
7736       report_fatal_error(
7737           "Cannot currently handle compressed memory with scalable vectors");
7738     // Incrementing the pointer according to number of '1's in the mask.
7739     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7740     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7741     if (MaskIntVT.getSizeInBits() < 32) {
7742       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7743       MaskIntVT = MVT::i32;
7744     }
7745 
7746     // Count '1's with POPCNT.
7747     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7748     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7749     // Scale is an element size in bytes.
7750     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7751                                     AddrVT);
7752     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7753   } else if (DataVT.isScalableVector()) {
7754     Increment = DAG.getVScale(DL, AddrVT,
7755                               APInt(AddrVT.getFixedSizeInBits(),
7756                                     DataVT.getStoreSize().getKnownMinSize()));
7757   } else
7758     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7759 
7760   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7761 }
7762 
7763 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7764                                        SDValue Idx,
7765                                        EVT VecVT,
7766                                        const SDLoc &dl) {
7767   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7768     return Idx;
7769 
7770   EVT IdxVT = Idx.getValueType();
7771   unsigned NElts = VecVT.getVectorMinNumElements();
7772   if (VecVT.isScalableVector()) {
7773     // If this is a constant index and we know the value is less than the
7774     // minimum number of elements then it's safe to return Idx.
7775     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7776       if (IdxCst->getZExtValue() < NElts)
7777         return Idx;
7778     SDValue VS =
7779         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7780     SDValue Sub =
7781         DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT));
7782     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7783   }
7784   if (isPowerOf2_32(NElts)) {
7785     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7786     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7787                        DAG.getConstant(Imm, dl, IdxVT));
7788   }
7789   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7790                      DAG.getConstant(NElts - 1, dl, IdxVT));
7791 }
7792 
7793 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7794                                                 SDValue VecPtr, EVT VecVT,
7795                                                 SDValue Index) const {
7796   SDLoc dl(Index);
7797   // Make sure the index type is big enough to compute in.
7798   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7799 
7800   EVT EltVT = VecVT.getVectorElementType();
7801 
7802   // Calculate the element offset and add it to the pointer.
7803   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7804   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7805          "Converting bits to bytes lost precision");
7806 
7807   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7808 
7809   EVT IdxVT = Index.getValueType();
7810 
7811   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7812                       DAG.getConstant(EltSize, dl, IdxVT));
7813   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7814 }
7815 
7816 //===----------------------------------------------------------------------===//
7817 // Implementation of Emulated TLS Model
7818 //===----------------------------------------------------------------------===//
7819 
7820 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7821                                                 SelectionDAG &DAG) const {
7822   // Access to address of TLS varialbe xyz is lowered to a function call:
7823   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7824   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7825   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7826   SDLoc dl(GA);
7827 
7828   ArgListTy Args;
7829   ArgListEntry Entry;
7830   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7831   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7832   StringRef EmuTlsVarName(NameString);
7833   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7834   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7835   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7836   Entry.Ty = VoidPtrType;
7837   Args.push_back(Entry);
7838 
7839   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7840 
7841   TargetLowering::CallLoweringInfo CLI(DAG);
7842   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7843   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7844   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7845 
7846   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7847   // At last for X86 targets, maybe good for other targets too?
7848   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7849   MFI.setAdjustsStack(true); // Is this only for X86 target?
7850   MFI.setHasCalls(true);
7851 
7852   assert((GA->getOffset() == 0) &&
7853          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7854   return CallResult.first;
7855 }
7856 
7857 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7858                                                 SelectionDAG &DAG) const {
7859   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7860   if (!isCtlzFast())
7861     return SDValue();
7862   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7863   SDLoc dl(Op);
7864   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7865     if (C->isNullValue() && CC == ISD::SETEQ) {
7866       EVT VT = Op.getOperand(0).getValueType();
7867       SDValue Zext = Op.getOperand(0);
7868       if (VT.bitsLT(MVT::i32)) {
7869         VT = MVT::i32;
7870         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7871       }
7872       unsigned Log2b = Log2_32(VT.getSizeInBits());
7873       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7874       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7875                                 DAG.getConstant(Log2b, dl, MVT::i32));
7876       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7877     }
7878   }
7879   return SDValue();
7880 }
7881 
7882 // Convert redundant addressing modes (e.g. scaling is redundant
7883 // when accessing bytes).
7884 ISD::MemIndexType
7885 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7886                                       SDValue Offsets) const {
7887   bool IsScaledIndex =
7888       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7889   bool IsSignedIndex =
7890       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7891 
7892   // Scaling is unimportant for bytes, canonicalize to unscaled.
7893   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7894     IsScaledIndex = false;
7895     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7896   }
7897 
7898   return IndexType;
7899 }
7900 
7901 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7902   SDValue Op0 = Node->getOperand(0);
7903   SDValue Op1 = Node->getOperand(1);
7904   EVT VT = Op0.getValueType();
7905   unsigned Opcode = Node->getOpcode();
7906   SDLoc DL(Node);
7907 
7908   // umin(x,y) -> sub(x,usubsat(x,y))
7909   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7910       isOperationLegal(ISD::USUBSAT, VT)) {
7911     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7912                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7913   }
7914 
7915   // umax(x,y) -> add(x,usubsat(y,x))
7916   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7917       isOperationLegal(ISD::USUBSAT, VT)) {
7918     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7919                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7920   }
7921 
7922   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7923   ISD::CondCode CC;
7924   switch (Opcode) {
7925   default: llvm_unreachable("How did we get here?");
7926   case ISD::SMAX: CC = ISD::SETGT; break;
7927   case ISD::SMIN: CC = ISD::SETLT; break;
7928   case ISD::UMAX: CC = ISD::SETUGT; break;
7929   case ISD::UMIN: CC = ISD::SETULT; break;
7930   }
7931 
7932   // FIXME: Should really try to split the vector in case it's legal on a
7933   // subvector.
7934   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7935     return DAG.UnrollVectorOp(Node);
7936 
7937   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7938   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7939 }
7940 
7941 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7942   unsigned Opcode = Node->getOpcode();
7943   SDValue LHS = Node->getOperand(0);
7944   SDValue RHS = Node->getOperand(1);
7945   EVT VT = LHS.getValueType();
7946   SDLoc dl(Node);
7947 
7948   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7949   assert(VT.isInteger() && "Expected operands to be integers");
7950 
7951   // usub.sat(a, b) -> umax(a, b) - b
7952   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7953     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7954     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7955   }
7956 
7957   // uadd.sat(a, b) -> umin(a, ~b) + b
7958   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7959     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7960     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7961     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7962   }
7963 
7964   unsigned OverflowOp;
7965   switch (Opcode) {
7966   case ISD::SADDSAT:
7967     OverflowOp = ISD::SADDO;
7968     break;
7969   case ISD::UADDSAT:
7970     OverflowOp = ISD::UADDO;
7971     break;
7972   case ISD::SSUBSAT:
7973     OverflowOp = ISD::SSUBO;
7974     break;
7975   case ISD::USUBSAT:
7976     OverflowOp = ISD::USUBO;
7977     break;
7978   default:
7979     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7980                      "addition or subtraction node.");
7981   }
7982 
7983   // FIXME: Should really try to split the vector in case it's legal on a
7984   // subvector.
7985   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7986     return DAG.UnrollVectorOp(Node);
7987 
7988   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7989   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7990   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7991   SDValue SumDiff = Result.getValue(0);
7992   SDValue Overflow = Result.getValue(1);
7993   SDValue Zero = DAG.getConstant(0, dl, VT);
7994   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7995 
7996   if (Opcode == ISD::UADDSAT) {
7997     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7998       // (LHS + RHS) | OverflowMask
7999       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8000       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8001     }
8002     // Overflow ? 0xffff.... : (LHS + RHS)
8003     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8004   }
8005 
8006   if (Opcode == ISD::USUBSAT) {
8007     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8008       // (LHS - RHS) & ~OverflowMask
8009       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8010       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8011       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8012     }
8013     // Overflow ? 0 : (LHS - RHS)
8014     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8015   }
8016 
8017   // SatMax -> Overflow && SumDiff < 0
8018   // SatMin -> Overflow && SumDiff >= 0
8019   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8020   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
8021   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8022   SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8023   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
8024   Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
8025   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8026 }
8027 
8028 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8029   unsigned Opcode = Node->getOpcode();
8030   bool IsSigned = Opcode == ISD::SSHLSAT;
8031   SDValue LHS = Node->getOperand(0);
8032   SDValue RHS = Node->getOperand(1);
8033   EVT VT = LHS.getValueType();
8034   SDLoc dl(Node);
8035 
8036   assert((Node->getOpcode() == ISD::SSHLSAT ||
8037           Node->getOpcode() == ISD::USHLSAT) &&
8038           "Expected a SHLSAT opcode");
8039   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8040   assert(VT.isInteger() && "Expected operands to be integers");
8041 
8042   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8043 
8044   unsigned BW = VT.getScalarSizeInBits();
8045   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8046   SDValue Orig =
8047       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8048 
8049   SDValue SatVal;
8050   if (IsSigned) {
8051     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8052     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8053     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8054                              SatMin, SatMax, ISD::SETLT);
8055   } else {
8056     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8057   }
8058   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8059 
8060   return Result;
8061 }
8062 
8063 SDValue
8064 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8065   assert((Node->getOpcode() == ISD::SMULFIX ||
8066           Node->getOpcode() == ISD::UMULFIX ||
8067           Node->getOpcode() == ISD::SMULFIXSAT ||
8068           Node->getOpcode() == ISD::UMULFIXSAT) &&
8069          "Expected a fixed point multiplication opcode");
8070 
8071   SDLoc dl(Node);
8072   SDValue LHS = Node->getOperand(0);
8073   SDValue RHS = Node->getOperand(1);
8074   EVT VT = LHS.getValueType();
8075   unsigned Scale = Node->getConstantOperandVal(2);
8076   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8077                      Node->getOpcode() == ISD::UMULFIXSAT);
8078   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8079                  Node->getOpcode() == ISD::SMULFIXSAT);
8080   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8081   unsigned VTSize = VT.getScalarSizeInBits();
8082 
8083   if (!Scale) {
8084     // [us]mul.fix(a, b, 0) -> mul(a, b)
8085     if (!Saturating) {
8086       if (isOperationLegalOrCustom(ISD::MUL, VT))
8087         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8088     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8089       SDValue Result =
8090           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8091       SDValue Product = Result.getValue(0);
8092       SDValue Overflow = Result.getValue(1);
8093       SDValue Zero = DAG.getConstant(0, dl, VT);
8094 
8095       APInt MinVal = APInt::getSignedMinValue(VTSize);
8096       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8097       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8098       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8099       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8100       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8101       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8102     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8103       SDValue Result =
8104           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8105       SDValue Product = Result.getValue(0);
8106       SDValue Overflow = Result.getValue(1);
8107 
8108       APInt MaxVal = APInt::getMaxValue(VTSize);
8109       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8110       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8111     }
8112   }
8113 
8114   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8115          "Expected scale to be less than the number of bits if signed or at "
8116          "most the number of bits if unsigned.");
8117   assert(LHS.getValueType() == RHS.getValueType() &&
8118          "Expected both operands to be the same type");
8119 
8120   // Get the upper and lower bits of the result.
8121   SDValue Lo, Hi;
8122   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8123   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8124   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8125     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8126     Lo = Result.getValue(0);
8127     Hi = Result.getValue(1);
8128   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8129     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8130     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8131   } else if (VT.isVector()) {
8132     return SDValue();
8133   } else {
8134     report_fatal_error("Unable to expand fixed point multiplication.");
8135   }
8136 
8137   if (Scale == VTSize)
8138     // Result is just the top half since we'd be shifting by the width of the
8139     // operand. Overflow impossible so this works for both UMULFIX and
8140     // UMULFIXSAT.
8141     return Hi;
8142 
8143   // The result will need to be shifted right by the scale since both operands
8144   // are scaled. The result is given to us in 2 halves, so we only want part of
8145   // both in the result.
8146   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8147   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8148                                DAG.getConstant(Scale, dl, ShiftTy));
8149   if (!Saturating)
8150     return Result;
8151 
8152   if (!Signed) {
8153     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8154     // widened multiplication) aren't all zeroes.
8155 
8156     // Saturate to max if ((Hi >> Scale) != 0),
8157     // which is the same as if (Hi > ((1 << Scale) - 1))
8158     APInt MaxVal = APInt::getMaxValue(VTSize);
8159     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8160                                       dl, VT);
8161     Result = DAG.getSelectCC(dl, Hi, LowMask,
8162                              DAG.getConstant(MaxVal, dl, VT), Result,
8163                              ISD::SETUGT);
8164 
8165     return Result;
8166   }
8167 
8168   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8169   // widened multiplication) aren't all ones or all zeroes.
8170 
8171   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8172   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8173 
8174   if (Scale == 0) {
8175     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8176                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8177     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8178     // Saturated to SatMin if wide product is negative, and SatMax if wide
8179     // product is positive ...
8180     SDValue Zero = DAG.getConstant(0, dl, VT);
8181     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8182                                                ISD::SETLT);
8183     // ... but only if we overflowed.
8184     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8185   }
8186 
8187   //  We handled Scale==0 above so all the bits to examine is in Hi.
8188 
8189   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8190   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8191   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8192                                     dl, VT);
8193   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8194   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8195   // which is the same as if (HI < (-1 << (Scale - 1))
8196   SDValue HighMask =
8197       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8198                       dl, VT);
8199   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8200   return Result;
8201 }
8202 
8203 SDValue
8204 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8205                                     SDValue LHS, SDValue RHS,
8206                                     unsigned Scale, SelectionDAG &DAG) const {
8207   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8208           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8209          "Expected a fixed point division opcode");
8210 
8211   EVT VT = LHS.getValueType();
8212   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8213   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8214   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8215 
8216   // If there is enough room in the type to upscale the LHS or downscale the
8217   // RHS before the division, we can perform it in this type without having to
8218   // resize. For signed operations, the LHS headroom is the number of
8219   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8220   // The headroom for the RHS is the number of trailing zeroes.
8221   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8222                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8223   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8224 
8225   // For signed saturating operations, we need to be able to detect true integer
8226   // division overflow; that is, when you have MIN / -EPS. However, this
8227   // is undefined behavior and if we emit divisions that could take such
8228   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8229   // example).
8230   // Avoid this by requiring an extra bit so that we never get this case.
8231   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8232   // signed saturating division, we need to emit a whopping 32-bit division.
8233   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8234     return SDValue();
8235 
8236   unsigned LHSShift = std::min(LHSLead, Scale);
8237   unsigned RHSShift = Scale - LHSShift;
8238 
8239   // At this point, we know that if we shift the LHS up by LHSShift and the
8240   // RHS down by RHSShift, we can emit a regular division with a final scaling
8241   // factor of Scale.
8242 
8243   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8244   if (LHSShift)
8245     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8246                       DAG.getConstant(LHSShift, dl, ShiftTy));
8247   if (RHSShift)
8248     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8249                       DAG.getConstant(RHSShift, dl, ShiftTy));
8250 
8251   SDValue Quot;
8252   if (Signed) {
8253     // For signed operations, if the resulting quotient is negative and the
8254     // remainder is nonzero, subtract 1 from the quotient to round towards
8255     // negative infinity.
8256     SDValue Rem;
8257     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8258     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8259     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8260     if (isTypeLegal(VT) &&
8261         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8262       Quot = DAG.getNode(ISD::SDIVREM, dl,
8263                          DAG.getVTList(VT, VT),
8264                          LHS, RHS);
8265       Rem = Quot.getValue(1);
8266       Quot = Quot.getValue(0);
8267     } else {
8268       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8269                          LHS, RHS);
8270       Rem = DAG.getNode(ISD::SREM, dl, VT,
8271                         LHS, RHS);
8272     }
8273     SDValue Zero = DAG.getConstant(0, dl, VT);
8274     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8275     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8276     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8277     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8278     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8279                                DAG.getConstant(1, dl, VT));
8280     Quot = DAG.getSelect(dl, VT,
8281                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8282                          Sub1, Quot);
8283   } else
8284     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8285                        LHS, RHS);
8286 
8287   return Quot;
8288 }
8289 
8290 void TargetLowering::expandUADDSUBO(
8291     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8292   SDLoc dl(Node);
8293   SDValue LHS = Node->getOperand(0);
8294   SDValue RHS = Node->getOperand(1);
8295   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8296 
8297   // If ADD/SUBCARRY is legal, use that instead.
8298   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8299   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8300     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8301     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8302                                     { LHS, RHS, CarryIn });
8303     Result = SDValue(NodeCarry.getNode(), 0);
8304     Overflow = SDValue(NodeCarry.getNode(), 1);
8305     return;
8306   }
8307 
8308   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8309                             LHS.getValueType(), LHS, RHS);
8310 
8311   EVT ResultType = Node->getValueType(1);
8312   EVT SetCCType = getSetCCResultType(
8313       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8314   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8315   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8316   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8317 }
8318 
8319 void TargetLowering::expandSADDSUBO(
8320     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8321   SDLoc dl(Node);
8322   SDValue LHS = Node->getOperand(0);
8323   SDValue RHS = Node->getOperand(1);
8324   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8325 
8326   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8327                             LHS.getValueType(), LHS, RHS);
8328 
8329   EVT ResultType = Node->getValueType(1);
8330   EVT OType = getSetCCResultType(
8331       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8332 
8333   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8334   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8335   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8336     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8337     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8338     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8339     return;
8340   }
8341 
8342   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8343 
8344   // For an addition, the result should be less than one of the operands (LHS)
8345   // if and only if the other operand (RHS) is negative, otherwise there will
8346   // be overflow.
8347   // For a subtraction, the result should be less than one of the operands
8348   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8349   // otherwise there will be overflow.
8350   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8351   SDValue ConditionRHS =
8352       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8353 
8354   Overflow = DAG.getBoolExtOrTrunc(
8355       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8356       ResultType, ResultType);
8357 }
8358 
8359 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8360                                 SDValue &Overflow, SelectionDAG &DAG) const {
8361   SDLoc dl(Node);
8362   EVT VT = Node->getValueType(0);
8363   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8364   SDValue LHS = Node->getOperand(0);
8365   SDValue RHS = Node->getOperand(1);
8366   bool isSigned = Node->getOpcode() == ISD::SMULO;
8367 
8368   // For power-of-two multiplications we can use a simpler shift expansion.
8369   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8370     const APInt &C = RHSC->getAPIntValue();
8371     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8372     if (C.isPowerOf2()) {
8373       // smulo(x, signed_min) is same as umulo(x, signed_min).
8374       bool UseArithShift = isSigned && !C.isMinSignedValue();
8375       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8376       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8377       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8378       Overflow = DAG.getSetCC(dl, SetCCVT,
8379           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8380                       dl, VT, Result, ShiftAmt),
8381           LHS, ISD::SETNE);
8382       return true;
8383     }
8384   }
8385 
8386   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8387   if (VT.isVector())
8388     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8389                               VT.getVectorNumElements());
8390 
8391   SDValue BottomHalf;
8392   SDValue TopHalf;
8393   static const unsigned Ops[2][3] =
8394       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8395         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8396   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8397     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8398     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8399   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8400     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8401                              RHS);
8402     TopHalf = BottomHalf.getValue(1);
8403   } else if (isTypeLegal(WideVT)) {
8404     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8405     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8406     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8407     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8408     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8409         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8410     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8411                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8412   } else {
8413     if (VT.isVector())
8414       return false;
8415 
8416     // We can fall back to a libcall with an illegal type for the MUL if we
8417     // have a libcall big enough.
8418     // Also, we can fall back to a division in some cases, but that's a big
8419     // performance hit in the general case.
8420     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8421     if (WideVT == MVT::i16)
8422       LC = RTLIB::MUL_I16;
8423     else if (WideVT == MVT::i32)
8424       LC = RTLIB::MUL_I32;
8425     else if (WideVT == MVT::i64)
8426       LC = RTLIB::MUL_I64;
8427     else if (WideVT == MVT::i128)
8428       LC = RTLIB::MUL_I128;
8429     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8430 
8431     SDValue HiLHS;
8432     SDValue HiRHS;
8433     if (isSigned) {
8434       // The high part is obtained by SRA'ing all but one of the bits of low
8435       // part.
8436       unsigned LoSize = VT.getFixedSizeInBits();
8437       HiLHS =
8438           DAG.getNode(ISD::SRA, dl, VT, LHS,
8439                       DAG.getConstant(LoSize - 1, dl,
8440                                       getPointerTy(DAG.getDataLayout())));
8441       HiRHS =
8442           DAG.getNode(ISD::SRA, dl, VT, RHS,
8443                       DAG.getConstant(LoSize - 1, dl,
8444                                       getPointerTy(DAG.getDataLayout())));
8445     } else {
8446         HiLHS = DAG.getConstant(0, dl, VT);
8447         HiRHS = DAG.getConstant(0, dl, VT);
8448     }
8449 
8450     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8451     // pre-lowered to the correct types. This all depends upon WideVT not
8452     // being a legal type for the architecture and thus has to be split to
8453     // two arguments.
8454     SDValue Ret;
8455     TargetLowering::MakeLibCallOptions CallOptions;
8456     CallOptions.setSExt(isSigned);
8457     CallOptions.setIsPostTypeLegalization(true);
8458     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8459       // Halves of WideVT are packed into registers in different order
8460       // depending on platform endianness. This is usually handled by
8461       // the C calling convention, but we can't defer to it in
8462       // the legalizer.
8463       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8464       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8465     } else {
8466       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8467       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8468     }
8469     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8470            "Ret value is a collection of constituent nodes holding result.");
8471     if (DAG.getDataLayout().isLittleEndian()) {
8472       // Same as above.
8473       BottomHalf = Ret.getOperand(0);
8474       TopHalf = Ret.getOperand(1);
8475     } else {
8476       BottomHalf = Ret.getOperand(1);
8477       TopHalf = Ret.getOperand(0);
8478     }
8479   }
8480 
8481   Result = BottomHalf;
8482   if (isSigned) {
8483     SDValue ShiftAmt = DAG.getConstant(
8484         VT.getScalarSizeInBits() - 1, dl,
8485         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8486     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8487     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8488   } else {
8489     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8490                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8491   }
8492 
8493   // Truncate the result if SetCC returns a larger type than needed.
8494   EVT RType = Node->getValueType(1);
8495   if (RType.bitsLT(Overflow.getValueType()))
8496     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8497 
8498   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8499          "Unexpected result type for S/UMULO legalization");
8500   return true;
8501 }
8502 
8503 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8504   SDLoc dl(Node);
8505   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8506   SDValue Op = Node->getOperand(0);
8507   EVT VT = Op.getValueType();
8508 
8509   if (VT.isScalableVector())
8510     report_fatal_error(
8511         "Expanding reductions for scalable vectors is undefined.");
8512 
8513   // Try to use a shuffle reduction for power of two vectors.
8514   if (VT.isPow2VectorType()) {
8515     while (VT.getVectorNumElements() > 1) {
8516       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8517       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8518         break;
8519 
8520       SDValue Lo, Hi;
8521       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8522       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8523       VT = HalfVT;
8524     }
8525   }
8526 
8527   EVT EltVT = VT.getVectorElementType();
8528   unsigned NumElts = VT.getVectorNumElements();
8529 
8530   SmallVector<SDValue, 8> Ops;
8531   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8532 
8533   SDValue Res = Ops[0];
8534   for (unsigned i = 1; i < NumElts; i++)
8535     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8536 
8537   // Result type may be wider than element type.
8538   if (EltVT != Node->getValueType(0))
8539     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8540   return Res;
8541 }
8542 
8543 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8544   SDLoc dl(Node);
8545   SDValue AccOp = Node->getOperand(0);
8546   SDValue VecOp = Node->getOperand(1);
8547   SDNodeFlags Flags = Node->getFlags();
8548 
8549   EVT VT = VecOp.getValueType();
8550   EVT EltVT = VT.getVectorElementType();
8551 
8552   if (VT.isScalableVector())
8553     report_fatal_error(
8554         "Expanding reductions for scalable vectors is undefined.");
8555 
8556   unsigned NumElts = VT.getVectorNumElements();
8557 
8558   SmallVector<SDValue, 8> Ops;
8559   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8560 
8561   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8562 
8563   SDValue Res = AccOp;
8564   for (unsigned i = 0; i < NumElts; i++)
8565     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8566 
8567   return Res;
8568 }
8569 
8570 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8571                                SelectionDAG &DAG) const {
8572   EVT VT = Node->getValueType(0);
8573   SDLoc dl(Node);
8574   bool isSigned = Node->getOpcode() == ISD::SREM;
8575   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8576   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8577   SDValue Dividend = Node->getOperand(0);
8578   SDValue Divisor = Node->getOperand(1);
8579   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8580     SDVTList VTs = DAG.getVTList(VT, VT);
8581     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8582     return true;
8583   }
8584   if (isOperationLegalOrCustom(DivOpc, VT)) {
8585     // X % Y -> X-X/Y*Y
8586     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8587     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8588     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8589     return true;
8590   }
8591   return false;
8592 }
8593 
8594 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8595                                             SelectionDAG &DAG) const {
8596   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8597   SDLoc dl(SDValue(Node, 0));
8598   SDValue Src = Node->getOperand(0);
8599 
8600   // DstVT is the result type, while SatVT is the size to which we saturate
8601   EVT SrcVT = Src.getValueType();
8602   EVT DstVT = Node->getValueType(0);
8603 
8604   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8605   unsigned SatWidth = SatVT.getScalarSizeInBits();
8606   unsigned DstWidth = DstVT.getScalarSizeInBits();
8607   assert(SatWidth <= DstWidth &&
8608          "Expected saturation width smaller than result width");
8609 
8610   // Determine minimum and maximum integer values and their corresponding
8611   // floating-point values.
8612   APInt MinInt, MaxInt;
8613   if (IsSigned) {
8614     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8615     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8616   } else {
8617     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8618     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8619   }
8620 
8621   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8622   // libcall emission cannot handle this. Large result types will fail.
8623   if (SrcVT == MVT::f16) {
8624     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8625     SrcVT = Src.getValueType();
8626   }
8627 
8628   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8629   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8630 
8631   APFloat::opStatus MinStatus =
8632       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8633   APFloat::opStatus MaxStatus =
8634       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8635   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8636                              !(MaxStatus & APFloat::opStatus::opInexact);
8637 
8638   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8639   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8640 
8641   // If the integer bounds are exactly representable as floats and min/max are
8642   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8643   // of comparisons and selects.
8644   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8645                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8646   if (AreExactFloatBounds && MinMaxLegal) {
8647     SDValue Clamped = Src;
8648 
8649     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8650     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8651     // Clamp by MaxFloat from above. NaN cannot occur.
8652     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8653     // Convert clamped value to integer.
8654     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8655                                   dl, DstVT, Clamped);
8656 
8657     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8658     // which will cast to zero.
8659     if (!IsSigned)
8660       return FpToInt;
8661 
8662     // Otherwise, select 0 if Src is NaN.
8663     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8664     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8665                            ISD::CondCode::SETUO);
8666   }
8667 
8668   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8669   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8670 
8671   // Result of direct conversion. The assumption here is that the operation is
8672   // non-trapping and it's fine to apply it to an out-of-range value if we
8673   // select it away later.
8674   SDValue FpToInt =
8675       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8676 
8677   SDValue Select = FpToInt;
8678 
8679   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8680   // MinInt if Src is NaN.
8681   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8682                            ISD::CondCode::SETULT);
8683   // If Src OGT MaxFloat, select MaxInt.
8684   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8685                            ISD::CondCode::SETOGT);
8686 
8687   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8688   // is already zero.
8689   if (!IsSigned)
8690     return Select;
8691 
8692   // Otherwise, select 0 if Src is NaN.
8693   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8694   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8695 }
8696 
8697 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8698                                            SelectionDAG &DAG) const {
8699   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8700   assert(Node->getValueType(0).isScalableVector() &&
8701          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8702 
8703   EVT VT = Node->getValueType(0);
8704   SDValue V1 = Node->getOperand(0);
8705   SDValue V2 = Node->getOperand(1);
8706   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8707   SDLoc DL(Node);
8708 
8709   // Expand through memory thusly:
8710   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8711   //  Store V1, Ptr
8712   //  Store V2, Ptr + sizeof(V1)
8713   //  If (Imm < 0)
8714   //    TrailingElts = -Imm
8715   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8716   //  else
8717   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8718   //  Res = Load Ptr
8719 
8720   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8721 
8722   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8723                                VT.getVectorElementCount() * 2);
8724   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8725   EVT PtrVT = StackPtr.getValueType();
8726   auto &MF = DAG.getMachineFunction();
8727   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8728   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8729 
8730   // Store the lo part of CONCAT_VECTORS(V1, V2)
8731   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8732   // Store the hi part of CONCAT_VECTORS(V1, V2)
8733   SDValue OffsetToV2 = DAG.getVScale(
8734       DL, PtrVT,
8735       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8736   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8737   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8738 
8739   if (Imm >= 0) {
8740     // Load back the required element. getVectorElementPointer takes care of
8741     // clamping the index if it's out-of-bounds.
8742     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8743     // Load the spliced result
8744     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8745                        MachinePointerInfo::getUnknownStack(MF));
8746   }
8747 
8748   uint64_t TrailingElts = -Imm;
8749 
8750   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8751   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8752   SDValue TrailingBytes =
8753       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8754 
8755   if (TrailingElts > VT.getVectorMinNumElements()) {
8756     SDValue VLBytes = DAG.getVScale(
8757         DL, PtrVT,
8758         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8759     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8760   }
8761 
8762   // Calculate the start address of the spliced result.
8763   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8764 
8765   // Load the spliced result
8766   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8767                      MachinePointerInfo::getUnknownStack(MF));
8768 }
8769 
8770 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8771                                            SDValue &LHS, SDValue &RHS,
8772                                            SDValue &CC, bool &NeedInvert,
8773                                            const SDLoc &dl, SDValue &Chain,
8774                                            bool IsSignaling) const {
8775   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8776   MVT OpVT = LHS.getSimpleValueType();
8777   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8778   NeedInvert = false;
8779   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8780   default:
8781     llvm_unreachable("Unknown condition code action!");
8782   case TargetLowering::Legal:
8783     // Nothing to do.
8784     break;
8785   case TargetLowering::Expand: {
8786     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8787     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8788       std::swap(LHS, RHS);
8789       CC = DAG.getCondCode(InvCC);
8790       return true;
8791     }
8792     // Swapping operands didn't work. Try inverting the condition.
8793     bool NeedSwap = false;
8794     InvCC = getSetCCInverse(CCCode, OpVT);
8795     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8796       // If inverting the condition is not enough, try swapping operands
8797       // on top of it.
8798       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8799       NeedSwap = true;
8800     }
8801     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8802       CC = DAG.getCondCode(InvCC);
8803       NeedInvert = true;
8804       if (NeedSwap)
8805         std::swap(LHS, RHS);
8806       return true;
8807     }
8808 
8809     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8810     unsigned Opc = 0;
8811     switch (CCCode) {
8812     default:
8813       llvm_unreachable("Don't know how to expand this condition!");
8814     case ISD::SETUO:
8815       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8816         CC1 = ISD::SETUNE;
8817         CC2 = ISD::SETUNE;
8818         Opc = ISD::OR;
8819         break;
8820       }
8821       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8822              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8823       NeedInvert = true;
8824       LLVM_FALLTHROUGH;
8825     case ISD::SETO:
8826       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8827              "If SETO is expanded, SETOEQ must be legal!");
8828       CC1 = ISD::SETOEQ;
8829       CC2 = ISD::SETOEQ;
8830       Opc = ISD::AND;
8831       break;
8832     case ISD::SETONE:
8833     case ISD::SETUEQ:
8834       // If the SETUO or SETO CC isn't legal, we might be able to use
8835       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8836       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8837       // the operands.
8838       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8839       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8840           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8841            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8842         CC1 = ISD::SETOGT;
8843         CC2 = ISD::SETOLT;
8844         Opc = ISD::OR;
8845         NeedInvert = ((unsigned)CCCode & 0x8U);
8846         break;
8847       }
8848       LLVM_FALLTHROUGH;
8849     case ISD::SETOEQ:
8850     case ISD::SETOGT:
8851     case ISD::SETOGE:
8852     case ISD::SETOLT:
8853     case ISD::SETOLE:
8854     case ISD::SETUNE:
8855     case ISD::SETUGT:
8856     case ISD::SETUGE:
8857     case ISD::SETULT:
8858     case ISD::SETULE:
8859       // If we are floating point, assign and break, otherwise fall through.
8860       if (!OpVT.isInteger()) {
8861         // We can use the 4th bit to tell if we are the unordered
8862         // or ordered version of the opcode.
8863         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8864         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8865         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8866         break;
8867       }
8868       // Fallthrough if we are unsigned integer.
8869       LLVM_FALLTHROUGH;
8870     case ISD::SETLE:
8871     case ISD::SETGT:
8872     case ISD::SETGE:
8873     case ISD::SETLT:
8874     case ISD::SETNE:
8875     case ISD::SETEQ:
8876       // If all combinations of inverting the condition and swapping operands
8877       // didn't work then we have no means to expand the condition.
8878       llvm_unreachable("Don't know how to expand this condition!");
8879     }
8880 
8881     SDValue SetCC1, SetCC2;
8882     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8883       // If we aren't the ordered or unorder operation,
8884       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8885       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8886       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8887     } else {
8888       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8889       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8890       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8891     }
8892     if (Chain)
8893       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8894                           SetCC2.getValue(1));
8895     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8896     RHS = SDValue();
8897     CC = SDValue();
8898     return true;
8899   }
8900   }
8901   return false;
8902 }
8903