1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::SCALAR_TO_VECTOR: { 523 if (!DemandedElts[0]) 524 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 525 526 KnownBits SrcKnown; 527 SDValue Src = Op.getOperand(0); 528 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 529 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 530 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 531 return true; 532 Known = SrcKnown.zextOrTrunc(BitWidth, false); 533 break; 534 } 535 case ISD::BUILD_VECTOR: 536 // Collect the known bits that are shared by every constant vector element. 537 Known.Zero.setAllBits(); Known.One.setAllBits(); 538 for (SDValue SrcOp : Op->ops()) { 539 if (!isa<ConstantSDNode>(SrcOp)) { 540 // We can only handle all constant values - bail out with no known bits. 541 Known = KnownBits(BitWidth); 542 return false; 543 } 544 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 545 Known2.Zero = ~Known2.One; 546 547 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 548 if (Known2.One.getBitWidth() != BitWidth) { 549 assert(Known2.getBitWidth() > BitWidth && 550 "Expected BUILD_VECTOR implicit truncation"); 551 Known2 = Known2.trunc(BitWidth); 552 } 553 554 // Known bits are the values that are shared by every element. 555 // TODO: support per-element known bits. 556 Known.One &= Known2.One; 557 Known.Zero &= Known2.Zero; 558 } 559 return false; // Don't fall through, will infinitely loop. 560 case ISD::INSERT_VECTOR_ELT: { 561 SDValue Vec = Op.getOperand(0); 562 SDValue Scl = Op.getOperand(1); 563 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 564 EVT VecVT = Vec.getValueType(); 565 566 // If index isn't constant, assume we need all vector elements AND the 567 // inserted element. 568 APInt DemandedVecElts(OriginalDemandedElts); 569 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 570 unsigned Idx = CIdx->getZExtValue(); 571 DemandedVecElts.clearBit(Idx); 572 573 // Inserted element is not required. 574 if (!OriginalDemandedElts[Idx]) 575 return TLO.CombineTo(Op, Vec); 576 } 577 578 KnownBits KnownScl; 579 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 580 APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits); 581 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 582 return true; 583 584 Known = KnownScl.zextOrTrunc(BitWidth, false); 585 586 KnownBits KnownVec; 587 if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts, 588 KnownVec, TLO, Depth + 1)) 589 return true; 590 591 if (!!DemandedVecElts) { 592 Known.One &= KnownVec.One; 593 Known.Zero &= KnownVec.Zero; 594 } 595 596 return false; 597 } 598 case ISD::INSERT_SUBVECTOR: { 599 SDValue Base = Op.getOperand(0); 600 SDValue Sub = Op.getOperand(1); 601 EVT SubVT = Sub.getValueType(); 602 unsigned NumSubElts = SubVT.getVectorNumElements(); 603 604 // If index isn't constant, assume we need the original demanded base 605 // elements and ALL the inserted subvector elements. 606 APInt BaseElts = DemandedElts; 607 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 608 if (isa<ConstantSDNode>(Op.getOperand(2))) { 609 const APInt &Idx = Op.getConstantOperandAPInt(2); 610 if (Idx.ule(NumElts - NumSubElts)) { 611 unsigned SubIdx = Idx.getZExtValue(); 612 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 613 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 614 } 615 } 616 617 KnownBits KnownSub, KnownBase; 618 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 619 Depth + 1)) 620 return true; 621 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 622 Depth + 1)) 623 return true; 624 625 Known.Zero.setAllBits(); 626 Known.One.setAllBits(); 627 if (!!SubElts) { 628 Known.One &= KnownSub.One; 629 Known.Zero &= KnownSub.Zero; 630 } 631 if (!!BaseElts) { 632 Known.One &= KnownBase.One; 633 Known.Zero &= KnownBase.Zero; 634 } 635 break; 636 } 637 case ISD::CONCAT_VECTORS: { 638 Known.Zero.setAllBits(); 639 Known.One.setAllBits(); 640 EVT SubVT = Op.getOperand(0).getValueType(); 641 unsigned NumSubVecs = Op.getNumOperands(); 642 unsigned NumSubElts = SubVT.getVectorNumElements(); 643 for (unsigned i = 0; i != NumSubVecs; ++i) { 644 APInt DemandedSubElts = 645 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 646 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 647 Known2, TLO, Depth + 1)) 648 return true; 649 // Known bits are shared by every demanded subvector element. 650 if (!!DemandedSubElts) { 651 Known.One &= Known2.One; 652 Known.Zero &= Known2.Zero; 653 } 654 } 655 break; 656 } 657 case ISD::VECTOR_SHUFFLE: { 658 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 659 660 // Collect demanded elements from shuffle operands.. 661 APInt DemandedLHS(NumElts, 0); 662 APInt DemandedRHS(NumElts, 0); 663 for (unsigned i = 0; i != NumElts; ++i) { 664 if (!DemandedElts[i]) 665 continue; 666 int M = ShuffleMask[i]; 667 if (M < 0) { 668 // For UNDEF elements, we don't know anything about the common state of 669 // the shuffle result. 670 DemandedLHS.clearAllBits(); 671 DemandedRHS.clearAllBits(); 672 break; 673 } 674 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 675 if (M < (int)NumElts) 676 DemandedLHS.setBit(M); 677 else 678 DemandedRHS.setBit(M - NumElts); 679 } 680 681 if (!!DemandedLHS || !!DemandedRHS) { 682 Known.Zero.setAllBits(); 683 Known.One.setAllBits(); 684 if (!!DemandedLHS) { 685 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 686 Known2, TLO, Depth + 1)) 687 return true; 688 Known.One &= Known2.One; 689 Known.Zero &= Known2.Zero; 690 } 691 if (!!DemandedRHS) { 692 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 693 Known2, TLO, Depth + 1)) 694 return true; 695 Known.One &= Known2.One; 696 Known.Zero &= Known2.Zero; 697 } 698 } 699 break; 700 } 701 case ISD::AND: { 702 SDValue Op0 = Op.getOperand(0); 703 SDValue Op1 = Op.getOperand(1); 704 705 // If the RHS is a constant, check to see if the LHS would be zero without 706 // using the bits from the RHS. Below, we use knowledge about the RHS to 707 // simplify the LHS, here we're using information from the LHS to simplify 708 // the RHS. 709 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 710 // Do not increment Depth here; that can cause an infinite loop. 711 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 712 // If the LHS already has zeros where RHSC does, this 'and' is dead. 713 if ((LHSKnown.Zero & DemandedBits) == 714 (~RHSC->getAPIntValue() & DemandedBits)) 715 return TLO.CombineTo(Op, Op0); 716 717 // If any of the set bits in the RHS are known zero on the LHS, shrink 718 // the constant. 719 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 720 return true; 721 722 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 723 // constant, but if this 'and' is only clearing bits that were just set by 724 // the xor, then this 'and' can be eliminated by shrinking the mask of 725 // the xor. For example, for a 32-bit X: 726 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 727 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 728 LHSKnown.One == ~RHSC->getAPIntValue()) { 729 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 730 return TLO.CombineTo(Op, Xor); 731 } 732 } 733 734 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 735 Depth + 1)) 736 return true; 737 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 738 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 739 Known2, TLO, Depth + 1)) 740 return true; 741 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 742 743 // If all of the demanded bits are known one on one side, return the other. 744 // These bits cannot contribute to the result of the 'and'. 745 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 746 return TLO.CombineTo(Op, Op0); 747 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 748 return TLO.CombineTo(Op, Op1); 749 // If all of the demanded bits in the inputs are known zeros, return zero. 750 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 751 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 752 // If the RHS is a constant, see if we can simplify it. 753 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 754 return true; 755 // If the operation can be done in a smaller type, do so. 756 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 757 return true; 758 759 // Output known-1 bits are only known if set in both the LHS & RHS. 760 Known.One &= Known2.One; 761 // Output known-0 are known to be clear if zero in either the LHS | RHS. 762 Known.Zero |= Known2.Zero; 763 break; 764 } 765 case ISD::OR: { 766 SDValue Op0 = Op.getOperand(0); 767 SDValue Op1 = Op.getOperand(1); 768 769 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 770 Depth + 1)) 771 return true; 772 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 773 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 774 Known2, TLO, Depth + 1)) 775 return true; 776 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 777 778 // If all of the demanded bits are known zero on one side, return the other. 779 // These bits cannot contribute to the result of the 'or'. 780 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 781 return TLO.CombineTo(Op, Op0); 782 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 783 return TLO.CombineTo(Op, Op1); 784 // If the RHS is a constant, see if we can simplify it. 785 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 786 return true; 787 // If the operation can be done in a smaller type, do so. 788 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 789 return true; 790 791 // Output known-0 bits are only known if clear in both the LHS & RHS. 792 Known.Zero &= Known2.Zero; 793 // Output known-1 are known to be set if set in either the LHS | RHS. 794 Known.One |= Known2.One; 795 break; 796 } 797 case ISD::XOR: { 798 SDValue Op0 = Op.getOperand(0); 799 SDValue Op1 = Op.getOperand(1); 800 801 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 802 Depth + 1)) 803 return true; 804 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 805 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 806 Depth + 1)) 807 return true; 808 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 809 810 // If all of the demanded bits are known zero on one side, return the other. 811 // These bits cannot contribute to the result of the 'xor'. 812 if (DemandedBits.isSubsetOf(Known.Zero)) 813 return TLO.CombineTo(Op, Op0); 814 if (DemandedBits.isSubsetOf(Known2.Zero)) 815 return TLO.CombineTo(Op, Op1); 816 // If the operation can be done in a smaller type, do so. 817 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 818 return true; 819 820 // If all of the unknown bits are known to be zero on one side or the other 821 // (but not both) turn this into an *inclusive* or. 822 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 823 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 824 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 825 826 // Output known-0 bits are known if clear or set in both the LHS & RHS. 827 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 828 // Output known-1 are known to be set if set in only one of the LHS, RHS. 829 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 830 831 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 832 // If one side is a constant, and all of the known set bits on the other 833 // side are also set in the constant, turn this into an AND, as we know 834 // the bits will be cleared. 835 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 836 // NB: it is okay if more bits are known than are requested 837 if (C->getAPIntValue() == Known2.One) { 838 SDValue ANDC = 839 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 840 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 841 } 842 843 // If the RHS is a constant, see if we can change it. Don't alter a -1 844 // constant because that's a 'not' op, and that is better for combining 845 // and codegen. 846 if (!C->isAllOnesValue()) { 847 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 848 // We're flipping all demanded bits. Flip the undemanded bits too. 849 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 850 return TLO.CombineTo(Op, New); 851 } 852 // If we can't turn this into a 'not', try to shrink the constant. 853 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 854 return true; 855 } 856 } 857 858 Known = std::move(KnownOut); 859 break; 860 } 861 case ISD::SELECT: 862 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 863 Depth + 1)) 864 return true; 865 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 866 Depth + 1)) 867 return true; 868 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 869 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 870 871 // If the operands are constants, see if we can simplify them. 872 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 873 return true; 874 875 // Only known if known in both the LHS and RHS. 876 Known.One &= Known2.One; 877 Known.Zero &= Known2.Zero; 878 break; 879 case ISD::SELECT_CC: 880 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 881 Depth + 1)) 882 return true; 883 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 884 Depth + 1)) 885 return true; 886 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 887 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 888 889 // If the operands are constants, see if we can simplify them. 890 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 891 return true; 892 893 // Only known if known in both the LHS and RHS. 894 Known.One &= Known2.One; 895 Known.Zero &= Known2.Zero; 896 break; 897 case ISD::SETCC: { 898 SDValue Op0 = Op.getOperand(0); 899 SDValue Op1 = Op.getOperand(1); 900 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 901 // If (1) we only need the sign-bit, (2) the setcc operands are the same 902 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 903 // -1, we may be able to bypass the setcc. 904 if (DemandedBits.isSignMask() && 905 Op0.getScalarValueSizeInBits() == BitWidth && 906 getBooleanContents(VT) == 907 BooleanContent::ZeroOrNegativeOneBooleanContent) { 908 // If we're testing X < 0, then this compare isn't needed - just use X! 909 // FIXME: We're limiting to integer types here, but this should also work 910 // if we don't care about FP signed-zero. The use of SETLT with FP means 911 // that we don't care about NaNs. 912 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 913 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 914 return TLO.CombineTo(Op, Op0); 915 916 // TODO: Should we check for other forms of sign-bit comparisons? 917 // Examples: X <= -1, X >= 0 918 } 919 if (getBooleanContents(Op0.getValueType()) == 920 TargetLowering::ZeroOrOneBooleanContent && 921 BitWidth > 1) 922 Known.Zero.setBitsFrom(1); 923 break; 924 } 925 case ISD::SHL: { 926 SDValue Op0 = Op.getOperand(0); 927 SDValue Op1 = Op.getOperand(1); 928 929 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 930 // If the shift count is an invalid immediate, don't do anything. 931 if (SA->getAPIntValue().uge(BitWidth)) 932 break; 933 934 unsigned ShAmt = SA->getZExtValue(); 935 936 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 937 // single shift. We can do this if the bottom bits (which are shifted 938 // out) are never demanded. 939 if (Op0.getOpcode() == ISD::SRL) { 940 if (ShAmt && 941 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 942 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 943 if (SA2->getAPIntValue().ult(BitWidth)) { 944 unsigned C1 = SA2->getZExtValue(); 945 unsigned Opc = ISD::SHL; 946 int Diff = ShAmt - C1; 947 if (Diff < 0) { 948 Diff = -Diff; 949 Opc = ISD::SRL; 950 } 951 952 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 953 return TLO.CombineTo( 954 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 955 } 956 } 957 } 958 } 959 960 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 961 Known, TLO, Depth + 1)) 962 return true; 963 964 // Try shrinking the operation as long as the shift amount will still be 965 // in range. 966 if ((ShAmt < DemandedBits.getActiveBits()) && 967 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 968 return true; 969 970 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 971 // are not demanded. This will likely allow the anyext to be folded away. 972 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 973 SDValue InnerOp = Op0.getOperand(0); 974 EVT InnerVT = InnerOp.getValueType(); 975 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 976 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 977 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 978 EVT ShTy = getShiftAmountTy(InnerVT, DL); 979 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 980 ShTy = InnerVT; 981 SDValue NarrowShl = 982 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 983 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 984 return TLO.CombineTo( 985 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 986 } 987 // Repeat the SHL optimization above in cases where an extension 988 // intervenes: (shl (anyext (shr x, c1)), c2) to 989 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 990 // aren't demanded (as above) and that the shifted upper c1 bits of 991 // x aren't demanded. 992 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 993 InnerOp.hasOneUse()) { 994 if (ConstantSDNode *SA2 = 995 isConstOrConstSplat(InnerOp.getOperand(1))) { 996 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 997 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 998 DemandedBits.getActiveBits() <= 999 (InnerBits - InnerShAmt + ShAmt) && 1000 DemandedBits.countTrailingZeros() >= ShAmt) { 1001 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1002 Op1.getValueType()); 1003 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1004 InnerOp.getOperand(0)); 1005 return TLO.CombineTo( 1006 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1007 } 1008 } 1009 } 1010 } 1011 1012 Known.Zero <<= ShAmt; 1013 Known.One <<= ShAmt; 1014 // low bits known zero. 1015 Known.Zero.setLowBits(ShAmt); 1016 } 1017 break; 1018 } 1019 case ISD::SRL: { 1020 SDValue Op0 = Op.getOperand(0); 1021 SDValue Op1 = Op.getOperand(1); 1022 1023 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1024 // If the shift count is an invalid immediate, don't do anything. 1025 if (SA->getAPIntValue().uge(BitWidth)) 1026 break; 1027 1028 unsigned ShAmt = SA->getZExtValue(); 1029 APInt InDemandedMask = (DemandedBits << ShAmt); 1030 1031 // If the shift is exact, then it does demand the low bits (and knows that 1032 // they are zero). 1033 if (Op->getFlags().hasExact()) 1034 InDemandedMask.setLowBits(ShAmt); 1035 1036 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1037 // single shift. We can do this if the top bits (which are shifted out) 1038 // are never demanded. 1039 if (Op0.getOpcode() == ISD::SHL) { 1040 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1041 if (ShAmt && 1042 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1043 if (SA2->getAPIntValue().ult(BitWidth)) { 1044 unsigned C1 = SA2->getZExtValue(); 1045 unsigned Opc = ISD::SRL; 1046 int Diff = ShAmt - C1; 1047 if (Diff < 0) { 1048 Diff = -Diff; 1049 Opc = ISD::SHL; 1050 } 1051 1052 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1053 return TLO.CombineTo( 1054 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1055 } 1056 } 1057 } 1058 } 1059 1060 // Compute the new bits that are at the top now. 1061 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1062 Depth + 1)) 1063 return true; 1064 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1065 Known.Zero.lshrInPlace(ShAmt); 1066 Known.One.lshrInPlace(ShAmt); 1067 1068 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1069 } 1070 break; 1071 } 1072 case ISD::SRA: { 1073 SDValue Op0 = Op.getOperand(0); 1074 SDValue Op1 = Op.getOperand(1); 1075 1076 // If this is an arithmetic shift right and only the low-bit is set, we can 1077 // always convert this into a logical shr, even if the shift amount is 1078 // variable. The low bit of the shift cannot be an input sign bit unless 1079 // the shift amount is >= the size of the datatype, which is undefined. 1080 if (DemandedBits.isOneValue()) 1081 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1082 1083 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1084 // If the shift count is an invalid immediate, don't do anything. 1085 if (SA->getAPIntValue().uge(BitWidth)) 1086 break; 1087 1088 unsigned ShAmt = SA->getZExtValue(); 1089 APInt InDemandedMask = (DemandedBits << ShAmt); 1090 1091 // If the shift is exact, then it does demand the low bits (and knows that 1092 // they are zero). 1093 if (Op->getFlags().hasExact()) 1094 InDemandedMask.setLowBits(ShAmt); 1095 1096 // If any of the demanded bits are produced by the sign extension, we also 1097 // demand the input sign bit. 1098 if (DemandedBits.countLeadingZeros() < ShAmt) 1099 InDemandedMask.setSignBit(); 1100 1101 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1102 Depth + 1)) 1103 return true; 1104 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1105 Known.Zero.lshrInPlace(ShAmt); 1106 Known.One.lshrInPlace(ShAmt); 1107 1108 // If the input sign bit is known to be zero, or if none of the top bits 1109 // are demanded, turn this into an unsigned shift right. 1110 if (Known.Zero[BitWidth - ShAmt - 1] || 1111 DemandedBits.countLeadingZeros() >= ShAmt) { 1112 SDNodeFlags Flags; 1113 Flags.setExact(Op->getFlags().hasExact()); 1114 return TLO.CombineTo( 1115 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1116 } 1117 1118 int Log2 = DemandedBits.exactLogBase2(); 1119 if (Log2 >= 0) { 1120 // The bit must come from the sign. 1121 SDValue NewSA = 1122 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1123 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1124 } 1125 1126 if (Known.One[BitWidth - ShAmt - 1]) 1127 // New bits are known one. 1128 Known.One.setHighBits(ShAmt); 1129 } 1130 break; 1131 } 1132 case ISD::FSHL: 1133 case ISD::FSHR: { 1134 SDValue Op0 = Op.getOperand(0); 1135 SDValue Op1 = Op.getOperand(1); 1136 SDValue Op2 = Op.getOperand(2); 1137 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1138 1139 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1140 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1141 1142 // For fshl, 0-shift returns the 1st arg. 1143 // For fshr, 0-shift returns the 2nd arg. 1144 if (Amt == 0) { 1145 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1146 Known, TLO, Depth + 1)) 1147 return true; 1148 break; 1149 } 1150 1151 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1152 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1153 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1154 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1155 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1156 Depth + 1)) 1157 return true; 1158 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1159 Depth + 1)) 1160 return true; 1161 1162 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1163 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1164 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1165 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1166 Known.One |= Known2.One; 1167 Known.Zero |= Known2.Zero; 1168 } 1169 break; 1170 } 1171 case ISD::SIGN_EXTEND_INREG: { 1172 SDValue Op0 = Op.getOperand(0); 1173 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1174 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1175 1176 // If we only care about the highest bit, don't bother shifting right. 1177 if (DemandedBits.isSignMask()) { 1178 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1179 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1180 // However if the input is already sign extended we expect the sign 1181 // extension to be dropped altogether later and do not simplify. 1182 if (!AlreadySignExtended) { 1183 // Compute the correct shift amount type, which must be getShiftAmountTy 1184 // for scalar types after legalization. 1185 EVT ShiftAmtTy = VT; 1186 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1187 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1188 1189 SDValue ShiftAmt = 1190 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1191 return TLO.CombineTo(Op, 1192 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1193 } 1194 } 1195 1196 // If none of the extended bits are demanded, eliminate the sextinreg. 1197 if (DemandedBits.getActiveBits() <= ExVTBits) 1198 return TLO.CombineTo(Op, Op0); 1199 1200 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1201 1202 // Since the sign extended bits are demanded, we know that the sign 1203 // bit is demanded. 1204 InputDemandedBits.setBit(ExVTBits - 1); 1205 1206 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1207 return true; 1208 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1209 1210 // If the sign bit of the input is known set or clear, then we know the 1211 // top bits of the result. 1212 1213 // If the input sign bit is known zero, convert this into a zero extension. 1214 if (Known.Zero[ExVTBits - 1]) 1215 return TLO.CombineTo( 1216 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1217 1218 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1219 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1220 Known.One.setBitsFrom(ExVTBits); 1221 Known.Zero &= Mask; 1222 } else { // Input sign bit unknown 1223 Known.Zero &= Mask; 1224 Known.One &= Mask; 1225 } 1226 break; 1227 } 1228 case ISD::BUILD_PAIR: { 1229 EVT HalfVT = Op.getOperand(0).getValueType(); 1230 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1231 1232 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1233 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1234 1235 KnownBits KnownLo, KnownHi; 1236 1237 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1238 return true; 1239 1240 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1241 return true; 1242 1243 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1244 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1245 1246 Known.One = KnownLo.One.zext(BitWidth) | 1247 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1248 break; 1249 } 1250 case ISD::ZERO_EXTEND: { 1251 SDValue Src = Op.getOperand(0); 1252 unsigned InBits = Src.getScalarValueSizeInBits(); 1253 1254 // If none of the top bits are demanded, convert this into an any_extend. 1255 if (DemandedBits.getActiveBits() <= InBits) 1256 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1257 1258 APInt InDemandedBits = DemandedBits.trunc(InBits); 1259 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1260 return true; 1261 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1262 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1263 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1264 break; 1265 } 1266 case ISD::SIGN_EXTEND: { 1267 SDValue Src = Op.getOperand(0); 1268 unsigned InBits = Src.getScalarValueSizeInBits(); 1269 1270 // If none of the top bits are demanded, convert this into an any_extend. 1271 if (DemandedBits.getActiveBits() <= InBits) 1272 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1273 1274 // Since some of the sign extended bits are demanded, we know that the sign 1275 // bit is demanded. 1276 APInt InDemandedBits = DemandedBits.trunc(InBits); 1277 InDemandedBits.setBit(InBits - 1); 1278 1279 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1280 return true; 1281 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1282 // If the sign bit is known one, the top bits match. 1283 Known = Known.sext(BitWidth); 1284 1285 // If the sign bit is known zero, convert this to a zero extend. 1286 if (Known.isNonNegative()) 1287 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1288 break; 1289 } 1290 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1291 // TODO - merge this with SIGN_EXTEND above? 1292 SDValue Src = Op.getOperand(0); 1293 unsigned InBits = Src.getScalarValueSizeInBits(); 1294 1295 APInt InDemandedBits = DemandedBits.trunc(InBits); 1296 1297 // If some of the sign extended bits are demanded, we know that the sign 1298 // bit is demanded. 1299 if (InBits < DemandedBits.getActiveBits()) 1300 InDemandedBits.setBit(InBits - 1); 1301 1302 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1303 return true; 1304 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1305 // If the sign bit is known one, the top bits match. 1306 Known = Known.sext(BitWidth); 1307 break; 1308 } 1309 case ISD::ANY_EXTEND: { 1310 SDValue Src = Op.getOperand(0); 1311 unsigned InBits = Src.getScalarValueSizeInBits(); 1312 APInt InDemandedBits = DemandedBits.trunc(InBits); 1313 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1314 return true; 1315 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1316 Known = Known.zext(BitWidth, false /* => any extend */); 1317 break; 1318 } 1319 case ISD::TRUNCATE: { 1320 SDValue Src = Op.getOperand(0); 1321 1322 // Simplify the input, using demanded bit information, and compute the known 1323 // zero/one bits live out. 1324 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1325 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1326 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1327 return true; 1328 Known = Known.trunc(BitWidth); 1329 1330 // If the input is only used by this truncate, see if we can shrink it based 1331 // on the known demanded bits. 1332 if (Src.getNode()->hasOneUse()) { 1333 switch (Src.getOpcode()) { 1334 default: 1335 break; 1336 case ISD::SRL: 1337 // Shrink SRL by a constant if none of the high bits shifted in are 1338 // demanded. 1339 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1340 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1341 // undesirable. 1342 break; 1343 1344 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1345 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1346 break; 1347 1348 SDValue Shift = Src.getOperand(1); 1349 uint64_t ShVal = ShAmt->getZExtValue(); 1350 1351 if (TLO.LegalTypes()) 1352 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1353 1354 APInt HighBits = 1355 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1356 HighBits.lshrInPlace(ShVal); 1357 HighBits = HighBits.trunc(BitWidth); 1358 1359 if (!(HighBits & DemandedBits)) { 1360 // None of the shifted in bits are needed. Add a truncate of the 1361 // shift input, then shift it. 1362 SDValue NewTrunc = 1363 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1364 return TLO.CombineTo( 1365 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1366 } 1367 break; 1368 } 1369 } 1370 1371 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1372 break; 1373 } 1374 case ISD::AssertZext: { 1375 // AssertZext demands all of the high bits, plus any of the low bits 1376 // demanded by its users. 1377 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1378 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1379 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1380 TLO, Depth + 1)) 1381 return true; 1382 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1383 1384 Known.Zero |= ~InMask; 1385 break; 1386 } 1387 case ISD::EXTRACT_VECTOR_ELT: { 1388 SDValue Src = Op.getOperand(0); 1389 SDValue Idx = Op.getOperand(1); 1390 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1391 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1392 1393 // Demand the bits from every vector element without a constant index. 1394 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1395 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1396 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1397 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1398 1399 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1400 // anything about the extended bits. 1401 APInt DemandedSrcBits = DemandedBits; 1402 if (BitWidth > EltBitWidth) 1403 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1404 1405 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1406 Depth + 1)) 1407 return true; 1408 1409 Known = Known2; 1410 if (BitWidth > EltBitWidth) 1411 Known = Known.zext(BitWidth, false /* => any extend */); 1412 break; 1413 } 1414 case ISD::BITCAST: { 1415 SDValue Src = Op.getOperand(0); 1416 EVT SrcVT = Src.getValueType(); 1417 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1418 1419 // If this is an FP->Int bitcast and if the sign bit is the only 1420 // thing demanded, turn this into a FGETSIGN. 1421 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1422 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1423 SrcVT.isFloatingPoint()) { 1424 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1425 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1426 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1427 SrcVT != MVT::f128) { 1428 // Cannot eliminate/lower SHL for f128 yet. 1429 EVT Ty = OpVTLegal ? VT : MVT::i32; 1430 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1431 // place. We expect the SHL to be eliminated by other optimizations. 1432 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1433 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1434 if (!OpVTLegal && OpVTSizeInBits > 32) 1435 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1436 unsigned ShVal = Op.getValueSizeInBits() - 1; 1437 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1438 return TLO.CombineTo(Op, 1439 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1440 } 1441 } 1442 1443 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1444 // Demand the elt/bit if any of the original elts/bits are demanded. 1445 // TODO - bigendian once we have test coverage. 1446 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1447 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1448 (BitWidth % NumSrcEltBits) == 0 && 1449 TLO.DAG.getDataLayout().isLittleEndian()) { 1450 unsigned Scale = BitWidth / NumSrcEltBits; 1451 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1452 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1453 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1454 for (unsigned i = 0; i != Scale; ++i) { 1455 unsigned Offset = i * NumSrcEltBits; 1456 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1457 if (!Sub.isNullValue()) { 1458 DemandedSrcBits |= Sub; 1459 for (unsigned j = 0; j != NumElts; ++j) 1460 if (DemandedElts[j]) 1461 DemandedSrcElts.setBit((j * Scale) + i); 1462 } 1463 } 1464 1465 APInt KnownSrcUndef, KnownSrcZero; 1466 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1467 KnownSrcZero, TLO, Depth + 1)) 1468 return true; 1469 1470 KnownBits KnownSrcBits; 1471 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1472 KnownSrcBits, TLO, Depth + 1)) 1473 return true; 1474 } 1475 1476 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1477 // recursive call where Known may be useful to the caller. 1478 if (Depth > 0) { 1479 Known = TLO.DAG.computeKnownBits(Op, Depth); 1480 return false; 1481 } 1482 break; 1483 } 1484 case ISD::ADD: 1485 case ISD::MUL: 1486 case ISD::SUB: { 1487 // Add, Sub, and Mul don't demand any bits in positions beyond that 1488 // of the highest bit demanded of them. 1489 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1490 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1491 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1492 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1493 Depth + 1) || 1494 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1495 Depth + 1) || 1496 // See if the operation should be performed at a smaller bit width. 1497 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1498 SDNodeFlags Flags = Op.getNode()->getFlags(); 1499 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1500 // Disable the nsw and nuw flags. We can no longer guarantee that we 1501 // won't wrap after simplification. 1502 Flags.setNoSignedWrap(false); 1503 Flags.setNoUnsignedWrap(false); 1504 SDValue NewOp = 1505 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1506 return TLO.CombineTo(Op, NewOp); 1507 } 1508 return true; 1509 } 1510 1511 // If we have a constant operand, we may be able to turn it into -1 if we 1512 // do not demand the high bits. This can make the constant smaller to 1513 // encode, allow more general folding, or match specialized instruction 1514 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1515 // is probably not useful (and could be detrimental). 1516 ConstantSDNode *C = isConstOrConstSplat(Op1); 1517 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1518 if (C && !C->isAllOnesValue() && !C->isOne() && 1519 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1520 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1521 // We can't guarantee that the new math op doesn't wrap, so explicitly 1522 // clear those flags to prevent folding with a potential existing node 1523 // that has those flags set. 1524 SDNodeFlags Flags; 1525 Flags.setNoSignedWrap(false); 1526 Flags.setNoUnsignedWrap(false); 1527 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1528 return TLO.CombineTo(Op, NewOp); 1529 } 1530 1531 LLVM_FALLTHROUGH; 1532 } 1533 default: 1534 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1535 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1536 Known, TLO, Depth)) 1537 return true; 1538 break; 1539 } 1540 1541 // Just use computeKnownBits to compute output bits. 1542 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1543 break; 1544 } 1545 1546 // If we know the value of all of the demanded bits, return this as a 1547 // constant. 1548 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1549 // Avoid folding to a constant if any OpaqueConstant is involved. 1550 const SDNode *N = Op.getNode(); 1551 for (SDNodeIterator I = SDNodeIterator::begin(N), 1552 E = SDNodeIterator::end(N); 1553 I != E; ++I) { 1554 SDNode *Op = *I; 1555 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1556 if (C->isOpaque()) 1557 return false; 1558 } 1559 // TODO: Handle float bits as well. 1560 if (VT.isInteger()) 1561 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1562 } 1563 1564 return false; 1565 } 1566 1567 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1568 const APInt &DemandedElts, 1569 APInt &KnownUndef, 1570 APInt &KnownZero, 1571 DAGCombinerInfo &DCI) const { 1572 SelectionDAG &DAG = DCI.DAG; 1573 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1574 !DCI.isBeforeLegalizeOps()); 1575 1576 bool Simplified = 1577 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1578 if (Simplified) { 1579 DCI.AddToWorklist(Op.getNode()); 1580 DCI.CommitTargetLoweringOpt(TLO); 1581 } 1582 return Simplified; 1583 } 1584 1585 /// Given a vector binary operation and known undefined elements for each input 1586 /// operand, compute whether each element of the output is undefined. 1587 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1588 const APInt &UndefOp0, 1589 const APInt &UndefOp1) { 1590 EVT VT = BO.getValueType(); 1591 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1592 1593 EVT EltVT = VT.getVectorElementType(); 1594 unsigned NumElts = VT.getVectorNumElements(); 1595 assert(UndefOp0.getBitWidth() == NumElts && 1596 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1597 1598 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1599 const APInt &UndefVals) { 1600 if (UndefVals[Index]) 1601 return DAG.getUNDEF(EltVT); 1602 1603 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1604 // Try hard to make sure that the getNode() call is not creating temporary 1605 // nodes. Ignore opaque integers because they do not constant fold. 1606 SDValue Elt = BV->getOperand(Index); 1607 auto *C = dyn_cast<ConstantSDNode>(Elt); 1608 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1609 return Elt; 1610 } 1611 1612 return SDValue(); 1613 }; 1614 1615 APInt KnownUndef = APInt::getNullValue(NumElts); 1616 for (unsigned i = 0; i != NumElts; ++i) { 1617 // If both inputs for this element are either constant or undef and match 1618 // the element type, compute the constant/undef result for this element of 1619 // the vector. 1620 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1621 // not handle FP constants. The code within getNode() should be refactored 1622 // to avoid the danger of creating a bogus temporary node here. 1623 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1624 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1625 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1626 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1627 KnownUndef.setBit(i); 1628 } 1629 return KnownUndef; 1630 } 1631 1632 bool TargetLowering::SimplifyDemandedVectorElts( 1633 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1634 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1635 bool AssumeSingleUse) const { 1636 EVT VT = Op.getValueType(); 1637 APInt DemandedElts = DemandedEltMask; 1638 unsigned NumElts = DemandedElts.getBitWidth(); 1639 assert(VT.isVector() && "Expected vector op"); 1640 assert(VT.getVectorNumElements() == NumElts && 1641 "Mask size mismatches value type element count!"); 1642 1643 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1644 1645 // Undef operand. 1646 if (Op.isUndef()) { 1647 KnownUndef.setAllBits(); 1648 return false; 1649 } 1650 1651 // If Op has other users, assume that all elements are needed. 1652 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1653 DemandedElts.setAllBits(); 1654 1655 // Not demanding any elements from Op. 1656 if (DemandedElts == 0) { 1657 KnownUndef.setAllBits(); 1658 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1659 } 1660 1661 // Limit search depth. 1662 if (Depth >= 6) 1663 return false; 1664 1665 SDLoc DL(Op); 1666 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1667 1668 switch (Op.getOpcode()) { 1669 case ISD::SCALAR_TO_VECTOR: { 1670 if (!DemandedElts[0]) { 1671 KnownUndef.setAllBits(); 1672 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1673 } 1674 KnownUndef.setHighBits(NumElts - 1); 1675 break; 1676 } 1677 case ISD::BITCAST: { 1678 SDValue Src = Op.getOperand(0); 1679 EVT SrcVT = Src.getValueType(); 1680 1681 // We only handle vectors here. 1682 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1683 if (!SrcVT.isVector()) 1684 break; 1685 1686 // Fast handling of 'identity' bitcasts. 1687 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1688 if (NumSrcElts == NumElts) 1689 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1690 KnownZero, TLO, Depth + 1); 1691 1692 APInt SrcZero, SrcUndef; 1693 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1694 1695 // Bitcast from 'large element' src vector to 'small element' vector, we 1696 // must demand a source element if any DemandedElt maps to it. 1697 if ((NumElts % NumSrcElts) == 0) { 1698 unsigned Scale = NumElts / NumSrcElts; 1699 for (unsigned i = 0; i != NumElts; ++i) 1700 if (DemandedElts[i]) 1701 SrcDemandedElts.setBit(i / Scale); 1702 1703 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1704 TLO, Depth + 1)) 1705 return true; 1706 1707 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1708 // of the large element. 1709 // TODO - bigendian once we have test coverage. 1710 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1711 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1712 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1713 for (unsigned i = 0; i != NumElts; ++i) 1714 if (DemandedElts[i]) { 1715 unsigned Ofs = (i % Scale) * EltSizeInBits; 1716 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1717 } 1718 1719 KnownBits Known; 1720 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1721 return true; 1722 } 1723 1724 // If the src element is zero/undef then all the output elements will be - 1725 // only demanded elements are guaranteed to be correct. 1726 for (unsigned i = 0; i != NumSrcElts; ++i) { 1727 if (SrcDemandedElts[i]) { 1728 if (SrcZero[i]) 1729 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1730 if (SrcUndef[i]) 1731 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1732 } 1733 } 1734 } 1735 1736 // Bitcast from 'small element' src vector to 'large element' vector, we 1737 // demand all smaller source elements covered by the larger demanded element 1738 // of this vector. 1739 if ((NumSrcElts % NumElts) == 0) { 1740 unsigned Scale = NumSrcElts / NumElts; 1741 for (unsigned i = 0; i != NumElts; ++i) 1742 if (DemandedElts[i]) 1743 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1744 1745 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1746 TLO, Depth + 1)) 1747 return true; 1748 1749 // If all the src elements covering an output element are zero/undef, then 1750 // the output element will be as well, assuming it was demanded. 1751 for (unsigned i = 0; i != NumElts; ++i) { 1752 if (DemandedElts[i]) { 1753 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1754 KnownZero.setBit(i); 1755 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1756 KnownUndef.setBit(i); 1757 } 1758 } 1759 } 1760 break; 1761 } 1762 case ISD::BUILD_VECTOR: { 1763 // Check all elements and simplify any unused elements with UNDEF. 1764 if (!DemandedElts.isAllOnesValue()) { 1765 // Don't simplify BROADCASTS. 1766 if (llvm::any_of(Op->op_values(), 1767 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1768 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1769 bool Updated = false; 1770 for (unsigned i = 0; i != NumElts; ++i) { 1771 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1772 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1773 KnownUndef.setBit(i); 1774 Updated = true; 1775 } 1776 } 1777 if (Updated) 1778 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1779 } 1780 } 1781 for (unsigned i = 0; i != NumElts; ++i) { 1782 SDValue SrcOp = Op.getOperand(i); 1783 if (SrcOp.isUndef()) { 1784 KnownUndef.setBit(i); 1785 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1786 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1787 KnownZero.setBit(i); 1788 } 1789 } 1790 break; 1791 } 1792 case ISD::CONCAT_VECTORS: { 1793 EVT SubVT = Op.getOperand(0).getValueType(); 1794 unsigned NumSubVecs = Op.getNumOperands(); 1795 unsigned NumSubElts = SubVT.getVectorNumElements(); 1796 for (unsigned i = 0; i != NumSubVecs; ++i) { 1797 SDValue SubOp = Op.getOperand(i); 1798 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1799 APInt SubUndef, SubZero; 1800 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1801 Depth + 1)) 1802 return true; 1803 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1804 KnownZero.insertBits(SubZero, i * NumSubElts); 1805 } 1806 break; 1807 } 1808 case ISD::INSERT_SUBVECTOR: { 1809 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1810 break; 1811 SDValue Base = Op.getOperand(0); 1812 SDValue Sub = Op.getOperand(1); 1813 EVT SubVT = Sub.getValueType(); 1814 unsigned NumSubElts = SubVT.getVectorNumElements(); 1815 const APInt &Idx = Op.getConstantOperandAPInt(2); 1816 if (Idx.ugt(NumElts - NumSubElts)) 1817 break; 1818 unsigned SubIdx = Idx.getZExtValue(); 1819 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1820 APInt SubUndef, SubZero; 1821 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1822 Depth + 1)) 1823 return true; 1824 APInt BaseElts = DemandedElts; 1825 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1826 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1827 Depth + 1)) 1828 return true; 1829 KnownUndef.insertBits(SubUndef, SubIdx); 1830 KnownZero.insertBits(SubZero, SubIdx); 1831 break; 1832 } 1833 case ISD::EXTRACT_SUBVECTOR: { 1834 SDValue Src = Op.getOperand(0); 1835 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1836 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1837 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1838 // Offset the demanded elts by the subvector index. 1839 uint64_t Idx = SubIdx->getZExtValue(); 1840 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1841 APInt SrcUndef, SrcZero; 1842 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1843 Depth + 1)) 1844 return true; 1845 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1846 KnownZero = SrcZero.extractBits(NumElts, Idx); 1847 } 1848 break; 1849 } 1850 case ISD::INSERT_VECTOR_ELT: { 1851 SDValue Vec = Op.getOperand(0); 1852 SDValue Scl = Op.getOperand(1); 1853 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1854 1855 // For a legal, constant insertion index, if we don't need this insertion 1856 // then strip it, else remove it from the demanded elts. 1857 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1858 unsigned Idx = CIdx->getZExtValue(); 1859 if (!DemandedElts[Idx]) 1860 return TLO.CombineTo(Op, Vec); 1861 1862 APInt DemandedVecElts(DemandedElts); 1863 DemandedVecElts.clearBit(Idx); 1864 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1865 KnownZero, TLO, Depth + 1)) 1866 return true; 1867 1868 KnownUndef.clearBit(Idx); 1869 if (Scl.isUndef()) 1870 KnownUndef.setBit(Idx); 1871 1872 KnownZero.clearBit(Idx); 1873 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1874 KnownZero.setBit(Idx); 1875 break; 1876 } 1877 1878 APInt VecUndef, VecZero; 1879 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1880 Depth + 1)) 1881 return true; 1882 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1883 break; 1884 } 1885 case ISD::VSELECT: { 1886 // Try to transform the select condition based on the current demanded 1887 // elements. 1888 // TODO: If a condition element is undef, we can choose from one arm of the 1889 // select (and if one arm is undef, then we can propagate that to the 1890 // result). 1891 // TODO - add support for constant vselect masks (see IR version of this). 1892 APInt UnusedUndef, UnusedZero; 1893 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1894 UnusedZero, TLO, Depth + 1)) 1895 return true; 1896 1897 // See if we can simplify either vselect operand. 1898 APInt DemandedLHS(DemandedElts); 1899 APInt DemandedRHS(DemandedElts); 1900 APInt UndefLHS, ZeroLHS; 1901 APInt UndefRHS, ZeroRHS; 1902 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1903 ZeroLHS, TLO, Depth + 1)) 1904 return true; 1905 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1906 ZeroRHS, TLO, Depth + 1)) 1907 return true; 1908 1909 KnownUndef = UndefLHS & UndefRHS; 1910 KnownZero = ZeroLHS & ZeroRHS; 1911 break; 1912 } 1913 case ISD::VECTOR_SHUFFLE: { 1914 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1915 1916 // Collect demanded elements from shuffle operands.. 1917 APInt DemandedLHS(NumElts, 0); 1918 APInt DemandedRHS(NumElts, 0); 1919 for (unsigned i = 0; i != NumElts; ++i) { 1920 int M = ShuffleMask[i]; 1921 if (M < 0 || !DemandedElts[i]) 1922 continue; 1923 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1924 if (M < (int)NumElts) 1925 DemandedLHS.setBit(M); 1926 else 1927 DemandedRHS.setBit(M - NumElts); 1928 } 1929 1930 // See if we can simplify either shuffle operand. 1931 APInt UndefLHS, ZeroLHS; 1932 APInt UndefRHS, ZeroRHS; 1933 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1934 ZeroLHS, TLO, Depth + 1)) 1935 return true; 1936 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1937 ZeroRHS, TLO, Depth + 1)) 1938 return true; 1939 1940 // Simplify mask using undef elements from LHS/RHS. 1941 bool Updated = false; 1942 bool IdentityLHS = true, IdentityRHS = true; 1943 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1944 for (unsigned i = 0; i != NumElts; ++i) { 1945 int &M = NewMask[i]; 1946 if (M < 0) 1947 continue; 1948 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1949 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1950 Updated = true; 1951 M = -1; 1952 } 1953 IdentityLHS &= (M < 0) || (M == (int)i); 1954 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1955 } 1956 1957 // Update legal shuffle masks based on demanded elements if it won't reduce 1958 // to Identity which can cause premature removal of the shuffle mask. 1959 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1960 isShuffleMaskLegal(NewMask, VT)) 1961 return TLO.CombineTo(Op, 1962 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1963 Op.getOperand(1), NewMask)); 1964 1965 // Propagate undef/zero elements from LHS/RHS. 1966 for (unsigned i = 0; i != NumElts; ++i) { 1967 int M = ShuffleMask[i]; 1968 if (M < 0) { 1969 KnownUndef.setBit(i); 1970 } else if (M < (int)NumElts) { 1971 if (UndefLHS[M]) 1972 KnownUndef.setBit(i); 1973 if (ZeroLHS[M]) 1974 KnownZero.setBit(i); 1975 } else { 1976 if (UndefRHS[M - NumElts]) 1977 KnownUndef.setBit(i); 1978 if (ZeroRHS[M - NumElts]) 1979 KnownZero.setBit(i); 1980 } 1981 } 1982 break; 1983 } 1984 case ISD::SIGN_EXTEND_VECTOR_INREG: 1985 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1986 APInt SrcUndef, SrcZero; 1987 SDValue Src = Op.getOperand(0); 1988 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1989 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1990 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 1991 Depth + 1)) 1992 return true; 1993 KnownZero = SrcZero.zextOrTrunc(NumElts); 1994 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1995 1996 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1997 // zext(undef) upper bits are guaranteed to be zero. 1998 if (DemandedElts.isSubsetOf(KnownUndef)) 1999 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2000 KnownUndef.clearAllBits(); 2001 } 2002 break; 2003 } 2004 2005 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2006 // MAX, saturated math, etc. 2007 case ISD::OR: 2008 case ISD::XOR: 2009 case ISD::ADD: 2010 case ISD::SUB: 2011 case ISD::FADD: 2012 case ISD::FSUB: 2013 case ISD::FMUL: 2014 case ISD::FDIV: 2015 case ISD::FREM: { 2016 APInt UndefRHS, ZeroRHS; 2017 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2018 ZeroRHS, TLO, Depth + 1)) 2019 return true; 2020 APInt UndefLHS, ZeroLHS; 2021 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2022 ZeroLHS, TLO, Depth + 1)) 2023 return true; 2024 2025 KnownZero = ZeroLHS & ZeroRHS; 2026 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2027 break; 2028 } 2029 case ISD::AND: { 2030 APInt SrcUndef, SrcZero; 2031 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2032 SrcZero, TLO, Depth + 1)) 2033 return true; 2034 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2035 KnownZero, TLO, Depth + 1)) 2036 return true; 2037 2038 // If either side has a zero element, then the result element is zero, even 2039 // if the other is an UNDEF. 2040 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2041 // and then handle 'and' nodes with the rest of the binop opcodes. 2042 KnownZero |= SrcZero; 2043 KnownUndef &= SrcUndef; 2044 KnownUndef &= ~KnownZero; 2045 break; 2046 } 2047 case ISD::TRUNCATE: 2048 case ISD::SIGN_EXTEND: 2049 case ISD::ZERO_EXTEND: 2050 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2051 KnownZero, TLO, Depth + 1)) 2052 return true; 2053 2054 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2055 // zext(undef) upper bits are guaranteed to be zero. 2056 if (DemandedElts.isSubsetOf(KnownUndef)) 2057 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2058 KnownUndef.clearAllBits(); 2059 } 2060 break; 2061 default: { 2062 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2063 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2064 KnownZero, TLO, Depth)) 2065 return true; 2066 } else { 2067 KnownBits Known; 2068 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2069 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 2070 Depth, AssumeSingleUse)) 2071 return true; 2072 } 2073 break; 2074 } 2075 } 2076 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2077 2078 // Constant fold all undef cases. 2079 // TODO: Handle zero cases as well. 2080 if (DemandedElts.isSubsetOf(KnownUndef)) 2081 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2082 2083 return false; 2084 } 2085 2086 /// Determine which of the bits specified in Mask are known to be either zero or 2087 /// one and return them in the Known. 2088 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2089 KnownBits &Known, 2090 const APInt &DemandedElts, 2091 const SelectionDAG &DAG, 2092 unsigned Depth) const { 2093 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2094 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2095 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2096 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2097 "Should use MaskedValueIsZero if you don't know whether Op" 2098 " is a target node!"); 2099 Known.resetAll(); 2100 } 2101 2102 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2103 KnownBits &Known, 2104 const APInt &DemandedElts, 2105 const SelectionDAG &DAG, 2106 unsigned Depth) const { 2107 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2108 2109 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2110 // The low bits are known zero if the pointer is aligned. 2111 Known.Zero.setLowBits(Log2_32(Align)); 2112 } 2113 } 2114 2115 /// This method can be implemented by targets that want to expose additional 2116 /// information about sign bits to the DAG Combiner. 2117 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2118 const APInt &, 2119 const SelectionDAG &, 2120 unsigned Depth) const { 2121 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2122 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2123 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2124 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2125 "Should use ComputeNumSignBits if you don't know whether Op" 2126 " is a target node!"); 2127 return 1; 2128 } 2129 2130 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2131 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2132 TargetLoweringOpt &TLO, unsigned Depth) const { 2133 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2134 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2135 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2136 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2137 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2138 " is a target node!"); 2139 return false; 2140 } 2141 2142 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2143 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2144 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2145 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2146 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2147 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2148 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2149 "Should use SimplifyDemandedBits if you don't know whether Op" 2150 " is a target node!"); 2151 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2152 return false; 2153 } 2154 2155 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2156 const SelectionDAG &DAG, 2157 bool SNaN, 2158 unsigned Depth) const { 2159 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2160 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2161 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2162 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2163 "Should use isKnownNeverNaN if you don't know whether Op" 2164 " is a target node!"); 2165 return false; 2166 } 2167 2168 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2169 // work with truncating build vectors and vectors with elements of less than 2170 // 8 bits. 2171 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2172 if (!N) 2173 return false; 2174 2175 APInt CVal; 2176 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2177 CVal = CN->getAPIntValue(); 2178 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2179 auto *CN = BV->getConstantSplatNode(); 2180 if (!CN) 2181 return false; 2182 2183 // If this is a truncating build vector, truncate the splat value. 2184 // Otherwise, we may fail to match the expected values below. 2185 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2186 CVal = CN->getAPIntValue(); 2187 if (BVEltWidth < CVal.getBitWidth()) 2188 CVal = CVal.trunc(BVEltWidth); 2189 } else { 2190 return false; 2191 } 2192 2193 switch (getBooleanContents(N->getValueType(0))) { 2194 case UndefinedBooleanContent: 2195 return CVal[0]; 2196 case ZeroOrOneBooleanContent: 2197 return CVal.isOneValue(); 2198 case ZeroOrNegativeOneBooleanContent: 2199 return CVal.isAllOnesValue(); 2200 } 2201 2202 llvm_unreachable("Invalid boolean contents"); 2203 } 2204 2205 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2206 if (!N) 2207 return false; 2208 2209 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2210 if (!CN) { 2211 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2212 if (!BV) 2213 return false; 2214 2215 // Only interested in constant splats, we don't care about undef 2216 // elements in identifying boolean constants and getConstantSplatNode 2217 // returns NULL if all ops are undef; 2218 CN = BV->getConstantSplatNode(); 2219 if (!CN) 2220 return false; 2221 } 2222 2223 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2224 return !CN->getAPIntValue()[0]; 2225 2226 return CN->isNullValue(); 2227 } 2228 2229 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2230 bool SExt) const { 2231 if (VT == MVT::i1) 2232 return N->isOne(); 2233 2234 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2235 switch (Cnt) { 2236 case TargetLowering::ZeroOrOneBooleanContent: 2237 // An extended value of 1 is always true, unless its original type is i1, 2238 // in which case it will be sign extended to -1. 2239 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2240 case TargetLowering::UndefinedBooleanContent: 2241 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2242 return N->isAllOnesValue() && SExt; 2243 } 2244 llvm_unreachable("Unexpected enumeration."); 2245 } 2246 2247 /// This helper function of SimplifySetCC tries to optimize the comparison when 2248 /// either operand of the SetCC node is a bitwise-and instruction. 2249 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2250 ISD::CondCode Cond, const SDLoc &DL, 2251 DAGCombinerInfo &DCI) const { 2252 // Match these patterns in any of their permutations: 2253 // (X & Y) == Y 2254 // (X & Y) != Y 2255 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2256 std::swap(N0, N1); 2257 2258 EVT OpVT = N0.getValueType(); 2259 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2260 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2261 return SDValue(); 2262 2263 SDValue X, Y; 2264 if (N0.getOperand(0) == N1) { 2265 X = N0.getOperand(1); 2266 Y = N0.getOperand(0); 2267 } else if (N0.getOperand(1) == N1) { 2268 X = N0.getOperand(0); 2269 Y = N0.getOperand(1); 2270 } else { 2271 return SDValue(); 2272 } 2273 2274 SelectionDAG &DAG = DCI.DAG; 2275 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2276 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2277 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2278 // Note that where Y is variable and is known to have at most one bit set 2279 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2280 // equivalent when Y == 0. 2281 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2282 if (DCI.isBeforeLegalizeOps() || 2283 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2284 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2285 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2286 // If the target supports an 'and-not' or 'and-complement' logic operation, 2287 // try to use that to make a comparison operation more efficient. 2288 // But don't do this transform if the mask is a single bit because there are 2289 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2290 // 'rlwinm' on PPC). 2291 2292 // Bail out if the compare operand that we want to turn into a zero is 2293 // already a zero (otherwise, infinite loop). 2294 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2295 if (YConst && YConst->isNullValue()) 2296 return SDValue(); 2297 2298 // Transform this into: ~X & Y == 0. 2299 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2300 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2301 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2302 } 2303 2304 return SDValue(); 2305 } 2306 2307 /// There are multiple IR patterns that could be checking whether certain 2308 /// truncation of a signed number would be lossy or not. The pattern which is 2309 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2310 /// We are looking for the following pattern: (KeptBits is a constant) 2311 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2312 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2313 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2314 /// We will unfold it into the natural trunc+sext pattern: 2315 /// ((%x << C) a>> C) dstcond %x 2316 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2317 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2318 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2319 const SDLoc &DL) const { 2320 // We must be comparing with a constant. 2321 ConstantSDNode *C1; 2322 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2323 return SDValue(); 2324 2325 // N0 should be: add %x, (1 << (KeptBits-1)) 2326 if (N0->getOpcode() != ISD::ADD) 2327 return SDValue(); 2328 2329 // And we must be 'add'ing a constant. 2330 ConstantSDNode *C01; 2331 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2332 return SDValue(); 2333 2334 SDValue X = N0->getOperand(0); 2335 EVT XVT = X.getValueType(); 2336 2337 // Validate constants ... 2338 2339 APInt I1 = C1->getAPIntValue(); 2340 2341 ISD::CondCode NewCond; 2342 if (Cond == ISD::CondCode::SETULT) { 2343 NewCond = ISD::CondCode::SETEQ; 2344 } else if (Cond == ISD::CondCode::SETULE) { 2345 NewCond = ISD::CondCode::SETEQ; 2346 // But need to 'canonicalize' the constant. 2347 I1 += 1; 2348 } else if (Cond == ISD::CondCode::SETUGT) { 2349 NewCond = ISD::CondCode::SETNE; 2350 // But need to 'canonicalize' the constant. 2351 I1 += 1; 2352 } else if (Cond == ISD::CondCode::SETUGE) { 2353 NewCond = ISD::CondCode::SETNE; 2354 } else 2355 return SDValue(); 2356 2357 APInt I01 = C01->getAPIntValue(); 2358 2359 auto checkConstants = [&I1, &I01]() -> bool { 2360 // Both of them must be power-of-two, and the constant from setcc is bigger. 2361 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2362 }; 2363 2364 if (checkConstants()) { 2365 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2366 } else { 2367 // What if we invert constants? (and the target predicate) 2368 I1.negate(); 2369 I01.negate(); 2370 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2371 if (!checkConstants()) 2372 return SDValue(); 2373 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2374 } 2375 2376 // They are power-of-two, so which bit is set? 2377 const unsigned KeptBits = I1.logBase2(); 2378 const unsigned KeptBitsMinusOne = I01.logBase2(); 2379 2380 // Magic! 2381 if (KeptBits != (KeptBitsMinusOne + 1)) 2382 return SDValue(); 2383 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2384 2385 // We don't want to do this in every single case. 2386 SelectionDAG &DAG = DCI.DAG; 2387 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2388 XVT, KeptBits)) 2389 return SDValue(); 2390 2391 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2392 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2393 2394 // Unfold into: ((%x << C) a>> C) cond %x 2395 // Where 'cond' will be either 'eq' or 'ne'. 2396 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2397 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2398 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2399 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2400 2401 return T2; 2402 } 2403 2404 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2405 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2406 /// handle the commuted versions of these patterns. 2407 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2408 ISD::CondCode Cond, const SDLoc &DL, 2409 DAGCombinerInfo &DCI) const { 2410 unsigned BOpcode = N0.getOpcode(); 2411 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2412 "Unexpected binop"); 2413 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2414 2415 // (X + Y) == X --> Y == 0 2416 // (X - Y) == X --> Y == 0 2417 // (X ^ Y) == X --> Y == 0 2418 SelectionDAG &DAG = DCI.DAG; 2419 EVT OpVT = N0.getValueType(); 2420 SDValue X = N0.getOperand(0); 2421 SDValue Y = N0.getOperand(1); 2422 if (X == N1) 2423 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2424 2425 if (Y != N1) 2426 return SDValue(); 2427 2428 // (X + Y) == Y --> X == 0 2429 // (X ^ Y) == Y --> X == 0 2430 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2431 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2432 2433 // The shift would not be valid if the operands are boolean (i1). 2434 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2435 return SDValue(); 2436 2437 // (X - Y) == Y --> X == Y << 1 2438 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2439 !DCI.isBeforeLegalize()); 2440 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2441 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2442 if (!DCI.isCalledByLegalizer()) 2443 DCI.AddToWorklist(YShl1.getNode()); 2444 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2445 } 2446 2447 /// Try to simplify a setcc built with the specified operands and cc. If it is 2448 /// unable to simplify it, return a null SDValue. 2449 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2450 ISD::CondCode Cond, bool foldBooleans, 2451 DAGCombinerInfo &DCI, 2452 const SDLoc &dl) const { 2453 SelectionDAG &DAG = DCI.DAG; 2454 EVT OpVT = N0.getValueType(); 2455 2456 // Constant fold or commute setcc. 2457 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2458 return Fold; 2459 2460 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2461 // TODO: Handle non-splat vector constants. All undef causes trouble. 2462 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2463 if (isConstOrConstSplat(N0) && 2464 (DCI.isBeforeLegalizeOps() || 2465 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2466 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2467 2468 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2469 const APInt &C1 = N1C->getAPIntValue(); 2470 2471 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2472 // equality comparison, then we're just comparing whether X itself is 2473 // zero. 2474 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2475 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2476 N0.getOperand(1).getOpcode() == ISD::Constant) { 2477 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2478 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2479 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2480 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2481 // (srl (ctlz x), 5) == 0 -> X != 0 2482 // (srl (ctlz x), 5) != 1 -> X != 0 2483 Cond = ISD::SETNE; 2484 } else { 2485 // (srl (ctlz x), 5) != 0 -> X == 0 2486 // (srl (ctlz x), 5) == 1 -> X == 0 2487 Cond = ISD::SETEQ; 2488 } 2489 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2490 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2491 Zero, Cond); 2492 } 2493 } 2494 2495 SDValue CTPOP = N0; 2496 // Look through truncs that don't change the value of a ctpop. 2497 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2498 CTPOP = N0.getOperand(0); 2499 2500 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2501 (N0 == CTPOP || 2502 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2503 EVT CTVT = CTPOP.getValueType(); 2504 SDValue CTOp = CTPOP.getOperand(0); 2505 2506 // (ctpop x) u< 2 -> (x & x-1) == 0 2507 // (ctpop x) u> 1 -> (x & x-1) != 0 2508 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2509 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2510 DAG.getConstant(1, dl, CTVT)); 2511 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2512 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2513 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2514 } 2515 2516 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2517 } 2518 2519 // (zext x) == C --> x == (trunc C) 2520 // (sext x) == C --> x == (trunc C) 2521 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2522 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2523 unsigned MinBits = N0.getValueSizeInBits(); 2524 SDValue PreExt; 2525 bool Signed = false; 2526 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2527 // ZExt 2528 MinBits = N0->getOperand(0).getValueSizeInBits(); 2529 PreExt = N0->getOperand(0); 2530 } else if (N0->getOpcode() == ISD::AND) { 2531 // DAGCombine turns costly ZExts into ANDs 2532 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2533 if ((C->getAPIntValue()+1).isPowerOf2()) { 2534 MinBits = C->getAPIntValue().countTrailingOnes(); 2535 PreExt = N0->getOperand(0); 2536 } 2537 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2538 // SExt 2539 MinBits = N0->getOperand(0).getValueSizeInBits(); 2540 PreExt = N0->getOperand(0); 2541 Signed = true; 2542 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2543 // ZEXTLOAD / SEXTLOAD 2544 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2545 MinBits = LN0->getMemoryVT().getSizeInBits(); 2546 PreExt = N0; 2547 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2548 Signed = true; 2549 MinBits = LN0->getMemoryVT().getSizeInBits(); 2550 PreExt = N0; 2551 } 2552 } 2553 2554 // Figure out how many bits we need to preserve this constant. 2555 unsigned ReqdBits = Signed ? 2556 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2557 C1.getActiveBits(); 2558 2559 // Make sure we're not losing bits from the constant. 2560 if (MinBits > 0 && 2561 MinBits < C1.getBitWidth() && 2562 MinBits >= ReqdBits) { 2563 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2564 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2565 // Will get folded away. 2566 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2567 if (MinBits == 1 && C1 == 1) 2568 // Invert the condition. 2569 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2570 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2571 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2572 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2573 } 2574 2575 // If truncating the setcc operands is not desirable, we can still 2576 // simplify the expression in some cases: 2577 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2578 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2579 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2580 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2581 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2582 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2583 SDValue TopSetCC = N0->getOperand(0); 2584 unsigned N0Opc = N0->getOpcode(); 2585 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2586 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2587 TopSetCC.getOpcode() == ISD::SETCC && 2588 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2589 (isConstFalseVal(N1C) || 2590 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2591 2592 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2593 (!N1C->isNullValue() && Cond == ISD::SETNE); 2594 2595 if (!Inverse) 2596 return TopSetCC; 2597 2598 ISD::CondCode InvCond = ISD::getSetCCInverse( 2599 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2600 TopSetCC.getOperand(0).getValueType().isInteger()); 2601 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2602 TopSetCC.getOperand(1), 2603 InvCond); 2604 } 2605 } 2606 } 2607 2608 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2609 // equality or unsigned, and all 1 bits of the const are in the same 2610 // partial word, see if we can shorten the load. 2611 if (DCI.isBeforeLegalize() && 2612 !ISD::isSignedIntSetCC(Cond) && 2613 N0.getOpcode() == ISD::AND && C1 == 0 && 2614 N0.getNode()->hasOneUse() && 2615 isa<LoadSDNode>(N0.getOperand(0)) && 2616 N0.getOperand(0).getNode()->hasOneUse() && 2617 isa<ConstantSDNode>(N0.getOperand(1))) { 2618 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2619 APInt bestMask; 2620 unsigned bestWidth = 0, bestOffset = 0; 2621 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2622 unsigned origWidth = N0.getValueSizeInBits(); 2623 unsigned maskWidth = origWidth; 2624 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2625 // 8 bits, but have to be careful... 2626 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2627 origWidth = Lod->getMemoryVT().getSizeInBits(); 2628 const APInt &Mask = N0.getConstantOperandAPInt(1); 2629 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2630 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2631 for (unsigned offset=0; offset<origWidth/width; offset++) { 2632 if (Mask.isSubsetOf(newMask)) { 2633 if (DAG.getDataLayout().isLittleEndian()) 2634 bestOffset = (uint64_t)offset * (width/8); 2635 else 2636 bestOffset = (origWidth/width - offset - 1) * (width/8); 2637 bestMask = Mask.lshr(offset * (width/8) * 8); 2638 bestWidth = width; 2639 break; 2640 } 2641 newMask <<= width; 2642 } 2643 } 2644 } 2645 if (bestWidth) { 2646 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2647 if (newVT.isRound() && 2648 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2649 EVT PtrType = Lod->getOperand(1).getValueType(); 2650 SDValue Ptr = Lod->getBasePtr(); 2651 if (bestOffset != 0) 2652 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2653 DAG.getConstant(bestOffset, dl, PtrType)); 2654 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2655 SDValue NewLoad = DAG.getLoad( 2656 newVT, dl, Lod->getChain(), Ptr, 2657 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2658 return DAG.getSetCC(dl, VT, 2659 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2660 DAG.getConstant(bestMask.trunc(bestWidth), 2661 dl, newVT)), 2662 DAG.getConstant(0LL, dl, newVT), Cond); 2663 } 2664 } 2665 } 2666 2667 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2668 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2669 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2670 2671 // If the comparison constant has bits in the upper part, the 2672 // zero-extended value could never match. 2673 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2674 C1.getBitWidth() - InSize))) { 2675 switch (Cond) { 2676 case ISD::SETUGT: 2677 case ISD::SETUGE: 2678 case ISD::SETEQ: 2679 return DAG.getConstant(0, dl, VT); 2680 case ISD::SETULT: 2681 case ISD::SETULE: 2682 case ISD::SETNE: 2683 return DAG.getConstant(1, dl, VT); 2684 case ISD::SETGT: 2685 case ISD::SETGE: 2686 // True if the sign bit of C1 is set. 2687 return DAG.getConstant(C1.isNegative(), dl, VT); 2688 case ISD::SETLT: 2689 case ISD::SETLE: 2690 // True if the sign bit of C1 isn't set. 2691 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2692 default: 2693 break; 2694 } 2695 } 2696 2697 // Otherwise, we can perform the comparison with the low bits. 2698 switch (Cond) { 2699 case ISD::SETEQ: 2700 case ISD::SETNE: 2701 case ISD::SETUGT: 2702 case ISD::SETUGE: 2703 case ISD::SETULT: 2704 case ISD::SETULE: { 2705 EVT newVT = N0.getOperand(0).getValueType(); 2706 if (DCI.isBeforeLegalizeOps() || 2707 (isOperationLegal(ISD::SETCC, newVT) && 2708 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2709 EVT NewSetCCVT = 2710 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2711 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2712 2713 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2714 NewConst, Cond); 2715 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2716 } 2717 break; 2718 } 2719 default: 2720 break; // todo, be more careful with signed comparisons 2721 } 2722 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2723 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2724 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2725 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2726 EVT ExtDstTy = N0.getValueType(); 2727 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2728 2729 // If the constant doesn't fit into the number of bits for the source of 2730 // the sign extension, it is impossible for both sides to be equal. 2731 if (C1.getMinSignedBits() > ExtSrcTyBits) 2732 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2733 2734 SDValue ZextOp; 2735 EVT Op0Ty = N0.getOperand(0).getValueType(); 2736 if (Op0Ty == ExtSrcTy) { 2737 ZextOp = N0.getOperand(0); 2738 } else { 2739 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2740 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2741 DAG.getConstant(Imm, dl, Op0Ty)); 2742 } 2743 if (!DCI.isCalledByLegalizer()) 2744 DCI.AddToWorklist(ZextOp.getNode()); 2745 // Otherwise, make this a use of a zext. 2746 return DAG.getSetCC(dl, VT, ZextOp, 2747 DAG.getConstant(C1 & APInt::getLowBitsSet( 2748 ExtDstTyBits, 2749 ExtSrcTyBits), 2750 dl, ExtDstTy), 2751 Cond); 2752 } else if ((N1C->isNullValue() || N1C->isOne()) && 2753 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2754 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2755 if (N0.getOpcode() == ISD::SETCC && 2756 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2757 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2758 if (TrueWhenTrue) 2759 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2760 // Invert the condition. 2761 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2762 CC = ISD::getSetCCInverse(CC, 2763 N0.getOperand(0).getValueType().isInteger()); 2764 if (DCI.isBeforeLegalizeOps() || 2765 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2766 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2767 } 2768 2769 if ((N0.getOpcode() == ISD::XOR || 2770 (N0.getOpcode() == ISD::AND && 2771 N0.getOperand(0).getOpcode() == ISD::XOR && 2772 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2773 isa<ConstantSDNode>(N0.getOperand(1)) && 2774 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2775 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2776 // can only do this if the top bits are known zero. 2777 unsigned BitWidth = N0.getValueSizeInBits(); 2778 if (DAG.MaskedValueIsZero(N0, 2779 APInt::getHighBitsSet(BitWidth, 2780 BitWidth-1))) { 2781 // Okay, get the un-inverted input value. 2782 SDValue Val; 2783 if (N0.getOpcode() == ISD::XOR) { 2784 Val = N0.getOperand(0); 2785 } else { 2786 assert(N0.getOpcode() == ISD::AND && 2787 N0.getOperand(0).getOpcode() == ISD::XOR); 2788 // ((X^1)&1)^1 -> X & 1 2789 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2790 N0.getOperand(0).getOperand(0), 2791 N0.getOperand(1)); 2792 } 2793 2794 return DAG.getSetCC(dl, VT, Val, N1, 2795 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2796 } 2797 } else if (N1C->isOne() && 2798 (VT == MVT::i1 || 2799 getBooleanContents(N0->getValueType(0)) == 2800 ZeroOrOneBooleanContent)) { 2801 SDValue Op0 = N0; 2802 if (Op0.getOpcode() == ISD::TRUNCATE) 2803 Op0 = Op0.getOperand(0); 2804 2805 if ((Op0.getOpcode() == ISD::XOR) && 2806 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2807 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2808 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2809 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2810 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2811 Cond); 2812 } 2813 if (Op0.getOpcode() == ISD::AND && 2814 isa<ConstantSDNode>(Op0.getOperand(1)) && 2815 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2816 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2817 if (Op0.getValueType().bitsGT(VT)) 2818 Op0 = DAG.getNode(ISD::AND, dl, VT, 2819 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2820 DAG.getConstant(1, dl, VT)); 2821 else if (Op0.getValueType().bitsLT(VT)) 2822 Op0 = DAG.getNode(ISD::AND, dl, VT, 2823 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2824 DAG.getConstant(1, dl, VT)); 2825 2826 return DAG.getSetCC(dl, VT, Op0, 2827 DAG.getConstant(0, dl, Op0.getValueType()), 2828 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2829 } 2830 if (Op0.getOpcode() == ISD::AssertZext && 2831 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2832 return DAG.getSetCC(dl, VT, Op0, 2833 DAG.getConstant(0, dl, Op0.getValueType()), 2834 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2835 } 2836 } 2837 2838 if (SDValue V = 2839 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2840 return V; 2841 } 2842 2843 // These simplifications apply to splat vectors as well. 2844 // TODO: Handle more splat vector cases. 2845 if (auto *N1C = isConstOrConstSplat(N1)) { 2846 const APInt &C1 = N1C->getAPIntValue(); 2847 2848 APInt MinVal, MaxVal; 2849 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2850 if (ISD::isSignedIntSetCC(Cond)) { 2851 MinVal = APInt::getSignedMinValue(OperandBitSize); 2852 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2853 } else { 2854 MinVal = APInt::getMinValue(OperandBitSize); 2855 MaxVal = APInt::getMaxValue(OperandBitSize); 2856 } 2857 2858 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2859 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2860 // X >= MIN --> true 2861 if (C1 == MinVal) 2862 return DAG.getBoolConstant(true, dl, VT, OpVT); 2863 2864 if (!VT.isVector()) { // TODO: Support this for vectors. 2865 // X >= C0 --> X > (C0 - 1) 2866 APInt C = C1 - 1; 2867 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2868 if ((DCI.isBeforeLegalizeOps() || 2869 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2870 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2871 isLegalICmpImmediate(C.getSExtValue())))) { 2872 return DAG.getSetCC(dl, VT, N0, 2873 DAG.getConstant(C, dl, N1.getValueType()), 2874 NewCC); 2875 } 2876 } 2877 } 2878 2879 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2880 // X <= MAX --> true 2881 if (C1 == MaxVal) 2882 return DAG.getBoolConstant(true, dl, VT, OpVT); 2883 2884 // X <= C0 --> X < (C0 + 1) 2885 if (!VT.isVector()) { // TODO: Support this for vectors. 2886 APInt C = C1 + 1; 2887 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2888 if ((DCI.isBeforeLegalizeOps() || 2889 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2890 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2891 isLegalICmpImmediate(C.getSExtValue())))) { 2892 return DAG.getSetCC(dl, VT, N0, 2893 DAG.getConstant(C, dl, N1.getValueType()), 2894 NewCC); 2895 } 2896 } 2897 } 2898 2899 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2900 if (C1 == MinVal) 2901 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2902 2903 // TODO: Support this for vectors after legalize ops. 2904 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2905 // Canonicalize setlt X, Max --> setne X, Max 2906 if (C1 == MaxVal) 2907 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2908 2909 // If we have setult X, 1, turn it into seteq X, 0 2910 if (C1 == MinVal+1) 2911 return DAG.getSetCC(dl, VT, N0, 2912 DAG.getConstant(MinVal, dl, N0.getValueType()), 2913 ISD::SETEQ); 2914 } 2915 } 2916 2917 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2918 if (C1 == MaxVal) 2919 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2920 2921 // TODO: Support this for vectors after legalize ops. 2922 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2923 // Canonicalize setgt X, Min --> setne X, Min 2924 if (C1 == MinVal) 2925 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2926 2927 // If we have setugt X, Max-1, turn it into seteq X, Max 2928 if (C1 == MaxVal-1) 2929 return DAG.getSetCC(dl, VT, N0, 2930 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2931 ISD::SETEQ); 2932 } 2933 } 2934 2935 // If we have "setcc X, C0", check to see if we can shrink the immediate 2936 // by changing cc. 2937 // TODO: Support this for vectors after legalize ops. 2938 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2939 // SETUGT X, SINTMAX -> SETLT X, 0 2940 if (Cond == ISD::SETUGT && 2941 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2942 return DAG.getSetCC(dl, VT, N0, 2943 DAG.getConstant(0, dl, N1.getValueType()), 2944 ISD::SETLT); 2945 2946 // SETULT X, SINTMIN -> SETGT X, -1 2947 if (Cond == ISD::SETULT && 2948 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2949 SDValue ConstMinusOne = 2950 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2951 N1.getValueType()); 2952 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2953 } 2954 } 2955 } 2956 2957 // Back to non-vector simplifications. 2958 // TODO: Can we do these for vector splats? 2959 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2960 const APInt &C1 = N1C->getAPIntValue(); 2961 2962 // Fold bit comparisons when we can. 2963 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2964 (VT == N0.getValueType() || 2965 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2966 N0.getOpcode() == ISD::AND) { 2967 auto &DL = DAG.getDataLayout(); 2968 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2969 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2970 !DCI.isBeforeLegalize()); 2971 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2972 // Perform the xform if the AND RHS is a single bit. 2973 if (AndRHS->getAPIntValue().isPowerOf2()) { 2974 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2975 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2976 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2977 ShiftTy))); 2978 } 2979 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2980 // (X & 8) == 8 --> (X & 8) >> 3 2981 // Perform the xform if C1 is a single bit. 2982 if (C1.isPowerOf2()) { 2983 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2984 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2985 DAG.getConstant(C1.logBase2(), dl, 2986 ShiftTy))); 2987 } 2988 } 2989 } 2990 } 2991 2992 if (C1.getMinSignedBits() <= 64 && 2993 !isLegalICmpImmediate(C1.getSExtValue())) { 2994 // (X & -256) == 256 -> (X >> 8) == 1 2995 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2996 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2997 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2998 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2999 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3000 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3001 auto &DL = DAG.getDataLayout(); 3002 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3003 !DCI.isBeforeLegalize()); 3004 EVT CmpTy = N0.getValueType(); 3005 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3006 DAG.getConstant(ShiftBits, dl, 3007 ShiftTy)); 3008 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3009 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3010 } 3011 } 3012 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3013 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3014 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3015 // X < 0x100000000 -> (X >> 32) < 1 3016 // X >= 0x100000000 -> (X >> 32) >= 1 3017 // X <= 0x0ffffffff -> (X >> 32) < 1 3018 // X > 0x0ffffffff -> (X >> 32) >= 1 3019 unsigned ShiftBits; 3020 APInt NewC = C1; 3021 ISD::CondCode NewCond = Cond; 3022 if (AdjOne) { 3023 ShiftBits = C1.countTrailingOnes(); 3024 NewC = NewC + 1; 3025 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3026 } else { 3027 ShiftBits = C1.countTrailingZeros(); 3028 } 3029 NewC.lshrInPlace(ShiftBits); 3030 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3031 isLegalICmpImmediate(NewC.getSExtValue())) { 3032 auto &DL = DAG.getDataLayout(); 3033 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3034 !DCI.isBeforeLegalize()); 3035 EVT CmpTy = N0.getValueType(); 3036 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3037 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3038 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3039 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3040 } 3041 } 3042 } 3043 } 3044 3045 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3046 auto *CFP = cast<ConstantFPSDNode>(N1); 3047 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3048 3049 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3050 // constant if knowing that the operand is non-nan is enough. We prefer to 3051 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3052 // materialize 0.0. 3053 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3054 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3055 3056 // setcc (fneg x), C -> setcc swap(pred) x, -C 3057 if (N0.getOpcode() == ISD::FNEG) { 3058 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3059 if (DCI.isBeforeLegalizeOps() || 3060 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3061 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3062 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3063 } 3064 } 3065 3066 // If the condition is not legal, see if we can find an equivalent one 3067 // which is legal. 3068 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3069 // If the comparison was an awkward floating-point == or != and one of 3070 // the comparison operands is infinity or negative infinity, convert the 3071 // condition to a less-awkward <= or >=. 3072 if (CFP->getValueAPF().isInfinity()) { 3073 if (CFP->getValueAPF().isNegative()) { 3074 if (Cond == ISD::SETOEQ && 3075 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3076 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3077 if (Cond == ISD::SETUEQ && 3078 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3079 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3080 if (Cond == ISD::SETUNE && 3081 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3082 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3083 if (Cond == ISD::SETONE && 3084 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3085 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3086 } else { 3087 if (Cond == ISD::SETOEQ && 3088 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3089 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3090 if (Cond == ISD::SETUEQ && 3091 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3092 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3093 if (Cond == ISD::SETUNE && 3094 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3095 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3096 if (Cond == ISD::SETONE && 3097 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3098 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3099 } 3100 } 3101 } 3102 } 3103 3104 if (N0 == N1) { 3105 // The sext(setcc()) => setcc() optimization relies on the appropriate 3106 // constant being emitted. 3107 assert(!N0.getValueType().isInteger() && 3108 "Integer types should be handled by FoldSetCC"); 3109 3110 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3111 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3112 if (UOF == 2) // FP operators that are undefined on NaNs. 3113 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3114 if (UOF == unsigned(EqTrue)) 3115 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3116 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3117 // if it is not already. 3118 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3119 if (NewCond != Cond && 3120 (DCI.isBeforeLegalizeOps() || 3121 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3122 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3123 } 3124 3125 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3126 N0.getValueType().isInteger()) { 3127 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3128 N0.getOpcode() == ISD::XOR) { 3129 // Simplify (X+Y) == (X+Z) --> Y == Z 3130 if (N0.getOpcode() == N1.getOpcode()) { 3131 if (N0.getOperand(0) == N1.getOperand(0)) 3132 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3133 if (N0.getOperand(1) == N1.getOperand(1)) 3134 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3135 if (isCommutativeBinOp(N0.getOpcode())) { 3136 // If X op Y == Y op X, try other combinations. 3137 if (N0.getOperand(0) == N1.getOperand(1)) 3138 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3139 Cond); 3140 if (N0.getOperand(1) == N1.getOperand(0)) 3141 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3142 Cond); 3143 } 3144 } 3145 3146 // If RHS is a legal immediate value for a compare instruction, we need 3147 // to be careful about increasing register pressure needlessly. 3148 bool LegalRHSImm = false; 3149 3150 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3151 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3152 // Turn (X+C1) == C2 --> X == C2-C1 3153 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3154 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3155 DAG.getConstant(RHSC->getAPIntValue()- 3156 LHSR->getAPIntValue(), 3157 dl, N0.getValueType()), Cond); 3158 } 3159 3160 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3161 if (N0.getOpcode() == ISD::XOR) 3162 // If we know that all of the inverted bits are zero, don't bother 3163 // performing the inversion. 3164 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3165 return 3166 DAG.getSetCC(dl, VT, N0.getOperand(0), 3167 DAG.getConstant(LHSR->getAPIntValue() ^ 3168 RHSC->getAPIntValue(), 3169 dl, N0.getValueType()), 3170 Cond); 3171 } 3172 3173 // Turn (C1-X) == C2 --> X == C1-C2 3174 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3175 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3176 return 3177 DAG.getSetCC(dl, VT, N0.getOperand(1), 3178 DAG.getConstant(SUBC->getAPIntValue() - 3179 RHSC->getAPIntValue(), 3180 dl, N0.getValueType()), 3181 Cond); 3182 } 3183 } 3184 3185 // Could RHSC fold directly into a compare? 3186 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3187 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3188 } 3189 3190 // (X+Y) == X --> Y == 0 and similar folds. 3191 // Don't do this if X is an immediate that can fold into a cmp 3192 // instruction and X+Y has other uses. It could be an induction variable 3193 // chain, and the transform would increase register pressure. 3194 if (!LegalRHSImm || N0.hasOneUse()) 3195 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3196 return V; 3197 } 3198 3199 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3200 N1.getOpcode() == ISD::XOR) 3201 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3202 return V; 3203 3204 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3205 return V; 3206 } 3207 3208 // Fold away ALL boolean setcc's. 3209 SDValue Temp; 3210 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3211 EVT OpVT = N0.getValueType(); 3212 switch (Cond) { 3213 default: llvm_unreachable("Unknown integer setcc!"); 3214 case ISD::SETEQ: // X == Y -> ~(X^Y) 3215 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3216 N0 = DAG.getNOT(dl, Temp, OpVT); 3217 if (!DCI.isCalledByLegalizer()) 3218 DCI.AddToWorklist(Temp.getNode()); 3219 break; 3220 case ISD::SETNE: // X != Y --> (X^Y) 3221 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3222 break; 3223 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3224 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3225 Temp = DAG.getNOT(dl, N0, OpVT); 3226 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3227 if (!DCI.isCalledByLegalizer()) 3228 DCI.AddToWorklist(Temp.getNode()); 3229 break; 3230 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3231 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3232 Temp = DAG.getNOT(dl, N1, OpVT); 3233 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3234 if (!DCI.isCalledByLegalizer()) 3235 DCI.AddToWorklist(Temp.getNode()); 3236 break; 3237 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3238 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3239 Temp = DAG.getNOT(dl, N0, OpVT); 3240 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3241 if (!DCI.isCalledByLegalizer()) 3242 DCI.AddToWorklist(Temp.getNode()); 3243 break; 3244 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3245 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3246 Temp = DAG.getNOT(dl, N1, OpVT); 3247 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3248 break; 3249 } 3250 if (VT.getScalarType() != MVT::i1) { 3251 if (!DCI.isCalledByLegalizer()) 3252 DCI.AddToWorklist(N0.getNode()); 3253 // FIXME: If running after legalize, we probably can't do this. 3254 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3255 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3256 } 3257 return N0; 3258 } 3259 3260 // Could not fold it. 3261 return SDValue(); 3262 } 3263 3264 /// Returns true (and the GlobalValue and the offset) if the node is a 3265 /// GlobalAddress + offset. 3266 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3267 int64_t &Offset) const { 3268 3269 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3270 3271 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3272 GA = GASD->getGlobal(); 3273 Offset += GASD->getOffset(); 3274 return true; 3275 } 3276 3277 if (N->getOpcode() == ISD::ADD) { 3278 SDValue N1 = N->getOperand(0); 3279 SDValue N2 = N->getOperand(1); 3280 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3281 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3282 Offset += V->getSExtValue(); 3283 return true; 3284 } 3285 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3286 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3287 Offset += V->getSExtValue(); 3288 return true; 3289 } 3290 } 3291 } 3292 3293 return false; 3294 } 3295 3296 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3297 DAGCombinerInfo &DCI) const { 3298 // Default implementation: no optimization. 3299 return SDValue(); 3300 } 3301 3302 //===----------------------------------------------------------------------===// 3303 // Inline Assembler Implementation Methods 3304 //===----------------------------------------------------------------------===// 3305 3306 TargetLowering::ConstraintType 3307 TargetLowering::getConstraintType(StringRef Constraint) const { 3308 unsigned S = Constraint.size(); 3309 3310 if (S == 1) { 3311 switch (Constraint[0]) { 3312 default: break; 3313 case 'r': return C_RegisterClass; 3314 case 'm': // memory 3315 case 'o': // offsetable 3316 case 'V': // not offsetable 3317 return C_Memory; 3318 case 'i': // Simple Integer or Relocatable Constant 3319 case 'n': // Simple Integer 3320 case 'E': // Floating Point Constant 3321 case 'F': // Floating Point Constant 3322 case 's': // Relocatable Constant 3323 case 'p': // Address. 3324 case 'X': // Allow ANY value. 3325 case 'I': // Target registers. 3326 case 'J': 3327 case 'K': 3328 case 'L': 3329 case 'M': 3330 case 'N': 3331 case 'O': 3332 case 'P': 3333 case '<': 3334 case '>': 3335 return C_Other; 3336 } 3337 } 3338 3339 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3340 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3341 return C_Memory; 3342 return C_Register; 3343 } 3344 return C_Unknown; 3345 } 3346 3347 /// Try to replace an X constraint, which matches anything, with another that 3348 /// has more specific requirements based on the type of the corresponding 3349 /// operand. 3350 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3351 if (ConstraintVT.isInteger()) 3352 return "r"; 3353 if (ConstraintVT.isFloatingPoint()) 3354 return "f"; // works for many targets 3355 return nullptr; 3356 } 3357 3358 SDValue TargetLowering::LowerAsmOutputForConstraint( 3359 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3360 SelectionDAG &DAG) const { 3361 return SDValue(); 3362 } 3363 3364 /// Lower the specified operand into the Ops vector. 3365 /// If it is invalid, don't add anything to Ops. 3366 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3367 std::string &Constraint, 3368 std::vector<SDValue> &Ops, 3369 SelectionDAG &DAG) const { 3370 3371 if (Constraint.length() > 1) return; 3372 3373 char ConstraintLetter = Constraint[0]; 3374 switch (ConstraintLetter) { 3375 default: break; 3376 case 'X': // Allows any operand; labels (basic block) use this. 3377 if (Op.getOpcode() == ISD::BasicBlock || 3378 Op.getOpcode() == ISD::TargetBlockAddress) { 3379 Ops.push_back(Op); 3380 return; 3381 } 3382 LLVM_FALLTHROUGH; 3383 case 'i': // Simple Integer or Relocatable Constant 3384 case 'n': // Simple Integer 3385 case 's': { // Relocatable Constant 3386 // These operands are interested in values of the form (GV+C), where C may 3387 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3388 // is possible and fine if either GV or C are missing. 3389 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3390 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3391 3392 // If we have "(add GV, C)", pull out GV/C 3393 if (Op.getOpcode() == ISD::ADD) { 3394 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3395 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3396 if (!C || !GA) { 3397 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3398 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3399 } 3400 if (!C || !GA) { 3401 C = nullptr; 3402 GA = nullptr; 3403 } 3404 } 3405 3406 // If we find a valid operand, map to the TargetXXX version so that the 3407 // value itself doesn't get selected. 3408 if (GA) { // Either &GV or &GV+C 3409 if (ConstraintLetter != 'n') { 3410 int64_t Offs = GA->getOffset(); 3411 if (C) Offs += C->getZExtValue(); 3412 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3413 C ? SDLoc(C) : SDLoc(), 3414 Op.getValueType(), Offs)); 3415 } 3416 return; 3417 } 3418 if (C) { // just C, no GV. 3419 // Simple constants are not allowed for 's'. 3420 if (ConstraintLetter != 's') { 3421 // gcc prints these as sign extended. Sign extend value to 64 bits 3422 // now; without this it would get ZExt'd later in 3423 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3424 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3425 SDLoc(C), MVT::i64)); 3426 } 3427 return; 3428 } 3429 break; 3430 } 3431 } 3432 } 3433 3434 std::pair<unsigned, const TargetRegisterClass *> 3435 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3436 StringRef Constraint, 3437 MVT VT) const { 3438 if (Constraint.empty() || Constraint[0] != '{') 3439 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3440 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3441 3442 // Remove the braces from around the name. 3443 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3444 3445 std::pair<unsigned, const TargetRegisterClass *> R = 3446 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3447 3448 // Figure out which register class contains this reg. 3449 for (const TargetRegisterClass *RC : RI->regclasses()) { 3450 // If none of the value types for this register class are valid, we 3451 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3452 if (!isLegalRC(*RI, *RC)) 3453 continue; 3454 3455 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3456 I != E; ++I) { 3457 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3458 std::pair<unsigned, const TargetRegisterClass *> S = 3459 std::make_pair(*I, RC); 3460 3461 // If this register class has the requested value type, return it, 3462 // otherwise keep searching and return the first class found 3463 // if no other is found which explicitly has the requested type. 3464 if (RI->isTypeLegalForClass(*RC, VT)) 3465 return S; 3466 if (!R.second) 3467 R = S; 3468 } 3469 } 3470 } 3471 3472 return R; 3473 } 3474 3475 //===----------------------------------------------------------------------===// 3476 // Constraint Selection. 3477 3478 /// Return true of this is an input operand that is a matching constraint like 3479 /// "4". 3480 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3481 assert(!ConstraintCode.empty() && "No known constraint!"); 3482 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3483 } 3484 3485 /// If this is an input matching constraint, this method returns the output 3486 /// operand it matches. 3487 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3488 assert(!ConstraintCode.empty() && "No known constraint!"); 3489 return atoi(ConstraintCode.c_str()); 3490 } 3491 3492 /// Split up the constraint string from the inline assembly value into the 3493 /// specific constraints and their prefixes, and also tie in the associated 3494 /// operand values. 3495 /// If this returns an empty vector, and if the constraint string itself 3496 /// isn't empty, there was an error parsing. 3497 TargetLowering::AsmOperandInfoVector 3498 TargetLowering::ParseConstraints(const DataLayout &DL, 3499 const TargetRegisterInfo *TRI, 3500 ImmutableCallSite CS) const { 3501 /// Information about all of the constraints. 3502 AsmOperandInfoVector ConstraintOperands; 3503 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3504 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3505 3506 // Do a prepass over the constraints, canonicalizing them, and building up the 3507 // ConstraintOperands list. 3508 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3509 unsigned ResNo = 0; // ResNo - The result number of the next output. 3510 3511 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3512 ConstraintOperands.emplace_back(std::move(CI)); 3513 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3514 3515 // Update multiple alternative constraint count. 3516 if (OpInfo.multipleAlternatives.size() > maCount) 3517 maCount = OpInfo.multipleAlternatives.size(); 3518 3519 OpInfo.ConstraintVT = MVT::Other; 3520 3521 // Compute the value type for each operand. 3522 switch (OpInfo.Type) { 3523 case InlineAsm::isOutput: 3524 // Indirect outputs just consume an argument. 3525 if (OpInfo.isIndirect) { 3526 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3527 break; 3528 } 3529 3530 // The return value of the call is this value. As such, there is no 3531 // corresponding argument. 3532 assert(!CS.getType()->isVoidTy() && 3533 "Bad inline asm!"); 3534 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3535 OpInfo.ConstraintVT = 3536 getSimpleValueType(DL, STy->getElementType(ResNo)); 3537 } else { 3538 assert(ResNo == 0 && "Asm only has one result!"); 3539 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3540 } 3541 ++ResNo; 3542 break; 3543 case InlineAsm::isInput: 3544 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3545 break; 3546 case InlineAsm::isClobber: 3547 // Nothing to do. 3548 break; 3549 } 3550 3551 if (OpInfo.CallOperandVal) { 3552 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3553 if (OpInfo.isIndirect) { 3554 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3555 if (!PtrTy) 3556 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3557 OpTy = PtrTy->getElementType(); 3558 } 3559 3560 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3561 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3562 if (STy->getNumElements() == 1) 3563 OpTy = STy->getElementType(0); 3564 3565 // If OpTy is not a single value, it may be a struct/union that we 3566 // can tile with integers. 3567 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3568 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3569 switch (BitSize) { 3570 default: break; 3571 case 1: 3572 case 8: 3573 case 16: 3574 case 32: 3575 case 64: 3576 case 128: 3577 OpInfo.ConstraintVT = 3578 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3579 break; 3580 } 3581 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3582 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3583 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3584 } else { 3585 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3586 } 3587 } 3588 } 3589 3590 // If we have multiple alternative constraints, select the best alternative. 3591 if (!ConstraintOperands.empty()) { 3592 if (maCount) { 3593 unsigned bestMAIndex = 0; 3594 int bestWeight = -1; 3595 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3596 int weight = -1; 3597 unsigned maIndex; 3598 // Compute the sums of the weights for each alternative, keeping track 3599 // of the best (highest weight) one so far. 3600 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3601 int weightSum = 0; 3602 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3603 cIndex != eIndex; ++cIndex) { 3604 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3605 if (OpInfo.Type == InlineAsm::isClobber) 3606 continue; 3607 3608 // If this is an output operand with a matching input operand, 3609 // look up the matching input. If their types mismatch, e.g. one 3610 // is an integer, the other is floating point, or their sizes are 3611 // different, flag it as an maCantMatch. 3612 if (OpInfo.hasMatchingInput()) { 3613 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3614 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3615 if ((OpInfo.ConstraintVT.isInteger() != 3616 Input.ConstraintVT.isInteger()) || 3617 (OpInfo.ConstraintVT.getSizeInBits() != 3618 Input.ConstraintVT.getSizeInBits())) { 3619 weightSum = -1; // Can't match. 3620 break; 3621 } 3622 } 3623 } 3624 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3625 if (weight == -1) { 3626 weightSum = -1; 3627 break; 3628 } 3629 weightSum += weight; 3630 } 3631 // Update best. 3632 if (weightSum > bestWeight) { 3633 bestWeight = weightSum; 3634 bestMAIndex = maIndex; 3635 } 3636 } 3637 3638 // Now select chosen alternative in each constraint. 3639 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3640 cIndex != eIndex; ++cIndex) { 3641 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3642 if (cInfo.Type == InlineAsm::isClobber) 3643 continue; 3644 cInfo.selectAlternative(bestMAIndex); 3645 } 3646 } 3647 } 3648 3649 // Check and hook up tied operands, choose constraint code to use. 3650 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3651 cIndex != eIndex; ++cIndex) { 3652 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3653 3654 // If this is an output operand with a matching input operand, look up the 3655 // matching input. If their types mismatch, e.g. one is an integer, the 3656 // other is floating point, or their sizes are different, flag it as an 3657 // error. 3658 if (OpInfo.hasMatchingInput()) { 3659 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3660 3661 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3662 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3663 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3664 OpInfo.ConstraintVT); 3665 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3666 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3667 Input.ConstraintVT); 3668 if ((OpInfo.ConstraintVT.isInteger() != 3669 Input.ConstraintVT.isInteger()) || 3670 (MatchRC.second != InputRC.second)) { 3671 report_fatal_error("Unsupported asm: input constraint" 3672 " with a matching output constraint of" 3673 " incompatible type!"); 3674 } 3675 } 3676 } 3677 } 3678 3679 return ConstraintOperands; 3680 } 3681 3682 /// Return an integer indicating how general CT is. 3683 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3684 switch (CT) { 3685 case TargetLowering::C_Other: 3686 case TargetLowering::C_Unknown: 3687 return 0; 3688 case TargetLowering::C_Register: 3689 return 1; 3690 case TargetLowering::C_RegisterClass: 3691 return 2; 3692 case TargetLowering::C_Memory: 3693 return 3; 3694 } 3695 llvm_unreachable("Invalid constraint type"); 3696 } 3697 3698 /// Examine constraint type and operand type and determine a weight value. 3699 /// This object must already have been set up with the operand type 3700 /// and the current alternative constraint selected. 3701 TargetLowering::ConstraintWeight 3702 TargetLowering::getMultipleConstraintMatchWeight( 3703 AsmOperandInfo &info, int maIndex) const { 3704 InlineAsm::ConstraintCodeVector *rCodes; 3705 if (maIndex >= (int)info.multipleAlternatives.size()) 3706 rCodes = &info.Codes; 3707 else 3708 rCodes = &info.multipleAlternatives[maIndex].Codes; 3709 ConstraintWeight BestWeight = CW_Invalid; 3710 3711 // Loop over the options, keeping track of the most general one. 3712 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3713 ConstraintWeight weight = 3714 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3715 if (weight > BestWeight) 3716 BestWeight = weight; 3717 } 3718 3719 return BestWeight; 3720 } 3721 3722 /// Examine constraint type and operand type and determine a weight value. 3723 /// This object must already have been set up with the operand type 3724 /// and the current alternative constraint selected. 3725 TargetLowering::ConstraintWeight 3726 TargetLowering::getSingleConstraintMatchWeight( 3727 AsmOperandInfo &info, const char *constraint) const { 3728 ConstraintWeight weight = CW_Invalid; 3729 Value *CallOperandVal = info.CallOperandVal; 3730 // If we don't have a value, we can't do a match, 3731 // but allow it at the lowest weight. 3732 if (!CallOperandVal) 3733 return CW_Default; 3734 // Look at the constraint type. 3735 switch (*constraint) { 3736 case 'i': // immediate integer. 3737 case 'n': // immediate integer with a known value. 3738 if (isa<ConstantInt>(CallOperandVal)) 3739 weight = CW_Constant; 3740 break; 3741 case 's': // non-explicit intregal immediate. 3742 if (isa<GlobalValue>(CallOperandVal)) 3743 weight = CW_Constant; 3744 break; 3745 case 'E': // immediate float if host format. 3746 case 'F': // immediate float. 3747 if (isa<ConstantFP>(CallOperandVal)) 3748 weight = CW_Constant; 3749 break; 3750 case '<': // memory operand with autodecrement. 3751 case '>': // memory operand with autoincrement. 3752 case 'm': // memory operand. 3753 case 'o': // offsettable memory operand 3754 case 'V': // non-offsettable memory operand 3755 weight = CW_Memory; 3756 break; 3757 case 'r': // general register. 3758 case 'g': // general register, memory operand or immediate integer. 3759 // note: Clang converts "g" to "imr". 3760 if (CallOperandVal->getType()->isIntegerTy()) 3761 weight = CW_Register; 3762 break; 3763 case 'X': // any operand. 3764 default: 3765 weight = CW_Default; 3766 break; 3767 } 3768 return weight; 3769 } 3770 3771 /// If there are multiple different constraints that we could pick for this 3772 /// operand (e.g. "imr") try to pick the 'best' one. 3773 /// This is somewhat tricky: constraints fall into four classes: 3774 /// Other -> immediates and magic values 3775 /// Register -> one specific register 3776 /// RegisterClass -> a group of regs 3777 /// Memory -> memory 3778 /// Ideally, we would pick the most specific constraint possible: if we have 3779 /// something that fits into a register, we would pick it. The problem here 3780 /// is that if we have something that could either be in a register or in 3781 /// memory that use of the register could cause selection of *other* 3782 /// operands to fail: they might only succeed if we pick memory. Because of 3783 /// this the heuristic we use is: 3784 /// 3785 /// 1) If there is an 'other' constraint, and if the operand is valid for 3786 /// that constraint, use it. This makes us take advantage of 'i' 3787 /// constraints when available. 3788 /// 2) Otherwise, pick the most general constraint present. This prefers 3789 /// 'm' over 'r', for example. 3790 /// 3791 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3792 const TargetLowering &TLI, 3793 SDValue Op, SelectionDAG *DAG) { 3794 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3795 unsigned BestIdx = 0; 3796 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3797 int BestGenerality = -1; 3798 3799 // Loop over the options, keeping track of the most general one. 3800 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3801 TargetLowering::ConstraintType CType = 3802 TLI.getConstraintType(OpInfo.Codes[i]); 3803 3804 // If this is an 'other' constraint, see if the operand is valid for it. 3805 // For example, on X86 we might have an 'rI' constraint. If the operand 3806 // is an integer in the range [0..31] we want to use I (saving a load 3807 // of a register), otherwise we must use 'r'. 3808 if (CType == TargetLowering::C_Other && Op.getNode()) { 3809 assert(OpInfo.Codes[i].size() == 1 && 3810 "Unhandled multi-letter 'other' constraint"); 3811 std::vector<SDValue> ResultOps; 3812 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3813 ResultOps, *DAG); 3814 if (!ResultOps.empty()) { 3815 BestType = CType; 3816 BestIdx = i; 3817 break; 3818 } 3819 } 3820 3821 // Things with matching constraints can only be registers, per gcc 3822 // documentation. This mainly affects "g" constraints. 3823 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3824 continue; 3825 3826 // This constraint letter is more general than the previous one, use it. 3827 int Generality = getConstraintGenerality(CType); 3828 if (Generality > BestGenerality) { 3829 BestType = CType; 3830 BestIdx = i; 3831 BestGenerality = Generality; 3832 } 3833 } 3834 3835 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3836 OpInfo.ConstraintType = BestType; 3837 } 3838 3839 /// Determines the constraint code and constraint type to use for the specific 3840 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3841 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3842 SDValue Op, 3843 SelectionDAG *DAG) const { 3844 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3845 3846 // Single-letter constraints ('r') are very common. 3847 if (OpInfo.Codes.size() == 1) { 3848 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3849 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3850 } else { 3851 ChooseConstraint(OpInfo, *this, Op, DAG); 3852 } 3853 3854 // 'X' matches anything. 3855 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3856 // Labels and constants are handled elsewhere ('X' is the only thing 3857 // that matches labels). For Functions, the type here is the type of 3858 // the result, which is not what we want to look at; leave them alone. 3859 Value *v = OpInfo.CallOperandVal; 3860 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3861 OpInfo.CallOperandVal = v; 3862 return; 3863 } 3864 3865 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3866 return; 3867 3868 // Otherwise, try to resolve it to something we know about by looking at 3869 // the actual operand type. 3870 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3871 OpInfo.ConstraintCode = Repl; 3872 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3873 } 3874 } 3875 } 3876 3877 /// Given an exact SDIV by a constant, create a multiplication 3878 /// with the multiplicative inverse of the constant. 3879 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3880 const SDLoc &dl, SelectionDAG &DAG, 3881 SmallVectorImpl<SDNode *> &Created) { 3882 SDValue Op0 = N->getOperand(0); 3883 SDValue Op1 = N->getOperand(1); 3884 EVT VT = N->getValueType(0); 3885 EVT SVT = VT.getScalarType(); 3886 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3887 EVT ShSVT = ShVT.getScalarType(); 3888 3889 bool UseSRA = false; 3890 SmallVector<SDValue, 16> Shifts, Factors; 3891 3892 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3893 if (C->isNullValue()) 3894 return false; 3895 APInt Divisor = C->getAPIntValue(); 3896 unsigned Shift = Divisor.countTrailingZeros(); 3897 if (Shift) { 3898 Divisor.ashrInPlace(Shift); 3899 UseSRA = true; 3900 } 3901 // Calculate the multiplicative inverse, using Newton's method. 3902 APInt t; 3903 APInt Factor = Divisor; 3904 while ((t = Divisor * Factor) != 1) 3905 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3906 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3907 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3908 return true; 3909 }; 3910 3911 // Collect all magic values from the build vector. 3912 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3913 return SDValue(); 3914 3915 SDValue Shift, Factor; 3916 if (VT.isVector()) { 3917 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3918 Factor = DAG.getBuildVector(VT, dl, Factors); 3919 } else { 3920 Shift = Shifts[0]; 3921 Factor = Factors[0]; 3922 } 3923 3924 SDValue Res = Op0; 3925 3926 // Shift the value upfront if it is even, so the LSB is one. 3927 if (UseSRA) { 3928 // TODO: For UDIV use SRL instead of SRA. 3929 SDNodeFlags Flags; 3930 Flags.setExact(true); 3931 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3932 Created.push_back(Res.getNode()); 3933 } 3934 3935 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3936 } 3937 3938 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3939 SelectionDAG &DAG, 3940 SmallVectorImpl<SDNode *> &Created) const { 3941 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3942 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3943 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3944 return SDValue(N, 0); // Lower SDIV as SDIV 3945 return SDValue(); 3946 } 3947 3948 /// Given an ISD::SDIV node expressing a divide by constant, 3949 /// return a DAG expression to select that will generate the same value by 3950 /// multiplying by a magic number. 3951 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3952 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3953 bool IsAfterLegalization, 3954 SmallVectorImpl<SDNode *> &Created) const { 3955 SDLoc dl(N); 3956 EVT VT = N->getValueType(0); 3957 EVT SVT = VT.getScalarType(); 3958 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3959 EVT ShSVT = ShVT.getScalarType(); 3960 unsigned EltBits = VT.getScalarSizeInBits(); 3961 3962 // Check to see if we can do this. 3963 // FIXME: We should be more aggressive here. 3964 if (!isTypeLegal(VT)) 3965 return SDValue(); 3966 3967 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3968 if (N->getFlags().hasExact()) 3969 return BuildExactSDIV(*this, N, dl, DAG, Created); 3970 3971 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3972 3973 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3974 if (C->isNullValue()) 3975 return false; 3976 3977 const APInt &Divisor = C->getAPIntValue(); 3978 APInt::ms magics = Divisor.magic(); 3979 int NumeratorFactor = 0; 3980 int ShiftMask = -1; 3981 3982 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3983 // If d is +1/-1, we just multiply the numerator by +1/-1. 3984 NumeratorFactor = Divisor.getSExtValue(); 3985 magics.m = 0; 3986 magics.s = 0; 3987 ShiftMask = 0; 3988 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3989 // If d > 0 and m < 0, add the numerator. 3990 NumeratorFactor = 1; 3991 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3992 // If d < 0 and m > 0, subtract the numerator. 3993 NumeratorFactor = -1; 3994 } 3995 3996 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3997 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3998 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3999 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4000 return true; 4001 }; 4002 4003 SDValue N0 = N->getOperand(0); 4004 SDValue N1 = N->getOperand(1); 4005 4006 // Collect the shifts / magic values from each element. 4007 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4008 return SDValue(); 4009 4010 SDValue MagicFactor, Factor, Shift, ShiftMask; 4011 if (VT.isVector()) { 4012 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4013 Factor = DAG.getBuildVector(VT, dl, Factors); 4014 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4015 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4016 } else { 4017 MagicFactor = MagicFactors[0]; 4018 Factor = Factors[0]; 4019 Shift = Shifts[0]; 4020 ShiftMask = ShiftMasks[0]; 4021 } 4022 4023 // Multiply the numerator (operand 0) by the magic value. 4024 // FIXME: We should support doing a MUL in a wider type. 4025 SDValue Q; 4026 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4027 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4028 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4029 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4030 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4031 SDValue LoHi = 4032 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4033 Q = SDValue(LoHi.getNode(), 1); 4034 } else 4035 return SDValue(); // No mulhs or equivalent. 4036 Created.push_back(Q.getNode()); 4037 4038 // (Optionally) Add/subtract the numerator using Factor. 4039 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4040 Created.push_back(Factor.getNode()); 4041 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4042 Created.push_back(Q.getNode()); 4043 4044 // Shift right algebraic by shift value. 4045 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4046 Created.push_back(Q.getNode()); 4047 4048 // Extract the sign bit, mask it and add it to the quotient. 4049 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4050 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4051 Created.push_back(T.getNode()); 4052 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4053 Created.push_back(T.getNode()); 4054 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4055 } 4056 4057 /// Given an ISD::UDIV node expressing a divide by constant, 4058 /// return a DAG expression to select that will generate the same value by 4059 /// multiplying by a magic number. 4060 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4061 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4062 bool IsAfterLegalization, 4063 SmallVectorImpl<SDNode *> &Created) const { 4064 SDLoc dl(N); 4065 EVT VT = N->getValueType(0); 4066 EVT SVT = VT.getScalarType(); 4067 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4068 EVT ShSVT = ShVT.getScalarType(); 4069 unsigned EltBits = VT.getScalarSizeInBits(); 4070 4071 // Check to see if we can do this. 4072 // FIXME: We should be more aggressive here. 4073 if (!isTypeLegal(VT)) 4074 return SDValue(); 4075 4076 bool UseNPQ = false; 4077 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4078 4079 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4080 if (C->isNullValue()) 4081 return false; 4082 // FIXME: We should use a narrower constant when the upper 4083 // bits are known to be zero. 4084 APInt Divisor = C->getAPIntValue(); 4085 APInt::mu magics = Divisor.magicu(); 4086 unsigned PreShift = 0, PostShift = 0; 4087 4088 // If the divisor is even, we can avoid using the expensive fixup by 4089 // shifting the divided value upfront. 4090 if (magics.a != 0 && !Divisor[0]) { 4091 PreShift = Divisor.countTrailingZeros(); 4092 // Get magic number for the shifted divisor. 4093 magics = Divisor.lshr(PreShift).magicu(PreShift); 4094 assert(magics.a == 0 && "Should use cheap fixup now"); 4095 } 4096 4097 APInt Magic = magics.m; 4098 4099 unsigned SelNPQ; 4100 if (magics.a == 0 || Divisor.isOneValue()) { 4101 assert(magics.s < Divisor.getBitWidth() && 4102 "We shouldn't generate an undefined shift!"); 4103 PostShift = magics.s; 4104 SelNPQ = false; 4105 } else { 4106 PostShift = magics.s - 1; 4107 SelNPQ = true; 4108 } 4109 4110 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4111 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4112 NPQFactors.push_back( 4113 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4114 : APInt::getNullValue(EltBits), 4115 dl, SVT)); 4116 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4117 UseNPQ |= SelNPQ; 4118 return true; 4119 }; 4120 4121 SDValue N0 = N->getOperand(0); 4122 SDValue N1 = N->getOperand(1); 4123 4124 // Collect the shifts/magic values from each element. 4125 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4126 return SDValue(); 4127 4128 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4129 if (VT.isVector()) { 4130 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4131 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4132 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4133 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4134 } else { 4135 PreShift = PreShifts[0]; 4136 MagicFactor = MagicFactors[0]; 4137 PostShift = PostShifts[0]; 4138 } 4139 4140 SDValue Q = N0; 4141 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4142 Created.push_back(Q.getNode()); 4143 4144 // FIXME: We should support doing a MUL in a wider type. 4145 auto GetMULHU = [&](SDValue X, SDValue Y) { 4146 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4147 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4148 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4149 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4150 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4151 SDValue LoHi = 4152 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4153 return SDValue(LoHi.getNode(), 1); 4154 } 4155 return SDValue(); // No mulhu or equivalent 4156 }; 4157 4158 // Multiply the numerator (operand 0) by the magic value. 4159 Q = GetMULHU(Q, MagicFactor); 4160 if (!Q) 4161 return SDValue(); 4162 4163 Created.push_back(Q.getNode()); 4164 4165 if (UseNPQ) { 4166 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4167 Created.push_back(NPQ.getNode()); 4168 4169 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4170 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4171 if (VT.isVector()) 4172 NPQ = GetMULHU(NPQ, NPQFactor); 4173 else 4174 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4175 4176 Created.push_back(NPQ.getNode()); 4177 4178 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4179 Created.push_back(Q.getNode()); 4180 } 4181 4182 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4183 Created.push_back(Q.getNode()); 4184 4185 SDValue One = DAG.getConstant(1, dl, VT); 4186 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4187 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4188 } 4189 4190 bool TargetLowering:: 4191 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4192 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4193 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4194 "be a constant integer"); 4195 return true; 4196 } 4197 4198 return false; 4199 } 4200 4201 //===----------------------------------------------------------------------===// 4202 // Legalization Utilities 4203 //===----------------------------------------------------------------------===// 4204 4205 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4206 SDValue LHS, SDValue RHS, 4207 SmallVectorImpl<SDValue> &Result, 4208 EVT HiLoVT, SelectionDAG &DAG, 4209 MulExpansionKind Kind, SDValue LL, 4210 SDValue LH, SDValue RL, SDValue RH) const { 4211 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4212 Opcode == ISD::SMUL_LOHI); 4213 4214 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4215 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4216 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4217 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4218 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4219 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4220 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4221 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4222 4223 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4224 return false; 4225 4226 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4227 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4228 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4229 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4230 4231 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4232 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4233 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4234 4235 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4236 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4237 bool Signed) -> bool { 4238 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4239 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4240 Hi = SDValue(Lo.getNode(), 1); 4241 return true; 4242 } 4243 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4244 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4245 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4246 return true; 4247 } 4248 return false; 4249 }; 4250 4251 SDValue Lo, Hi; 4252 4253 if (!LL.getNode() && !RL.getNode() && 4254 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4255 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4256 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4257 } 4258 4259 if (!LL.getNode()) 4260 return false; 4261 4262 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4263 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4264 DAG.MaskedValueIsZero(RHS, HighMask)) { 4265 // The inputs are both zero-extended. 4266 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4267 Result.push_back(Lo); 4268 Result.push_back(Hi); 4269 if (Opcode != ISD::MUL) { 4270 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4271 Result.push_back(Zero); 4272 Result.push_back(Zero); 4273 } 4274 return true; 4275 } 4276 } 4277 4278 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4279 RHSSB > InnerBitSize) { 4280 // The input values are both sign-extended. 4281 // TODO non-MUL case? 4282 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4283 Result.push_back(Lo); 4284 Result.push_back(Hi); 4285 return true; 4286 } 4287 } 4288 4289 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4290 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4291 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4292 // FIXME getShiftAmountTy does not always return a sensible result when VT 4293 // is an illegal type, and so the type may be too small to fit the shift 4294 // amount. Override it with i32. The shift will have to be legalized. 4295 ShiftAmountTy = MVT::i32; 4296 } 4297 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4298 4299 if (!LH.getNode() && !RH.getNode() && 4300 isOperationLegalOrCustom(ISD::SRL, VT) && 4301 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4302 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4303 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4304 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4305 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4306 } 4307 4308 if (!LH.getNode()) 4309 return false; 4310 4311 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4312 return false; 4313 4314 Result.push_back(Lo); 4315 4316 if (Opcode == ISD::MUL) { 4317 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4318 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4319 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4320 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4321 Result.push_back(Hi); 4322 return true; 4323 } 4324 4325 // Compute the full width result. 4326 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4327 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4328 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4329 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4330 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4331 }; 4332 4333 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4334 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4335 return false; 4336 4337 // This is effectively the add part of a multiply-add of half-sized operands, 4338 // so it cannot overflow. 4339 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4340 4341 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4342 return false; 4343 4344 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4345 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4346 4347 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4348 isOperationLegalOrCustom(ISD::ADDE, VT)); 4349 if (UseGlue) 4350 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4351 Merge(Lo, Hi)); 4352 else 4353 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4354 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4355 4356 SDValue Carry = Next.getValue(1); 4357 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4358 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4359 4360 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4361 return false; 4362 4363 if (UseGlue) 4364 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4365 Carry); 4366 else 4367 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4368 Zero, Carry); 4369 4370 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4371 4372 if (Opcode == ISD::SMUL_LOHI) { 4373 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4374 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4375 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4376 4377 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4378 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4379 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4380 } 4381 4382 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4383 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4384 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4385 return true; 4386 } 4387 4388 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4389 SelectionDAG &DAG, MulExpansionKind Kind, 4390 SDValue LL, SDValue LH, SDValue RL, 4391 SDValue RH) const { 4392 SmallVector<SDValue, 2> Result; 4393 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4394 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4395 DAG, Kind, LL, LH, RL, RH); 4396 if (Ok) { 4397 assert(Result.size() == 2); 4398 Lo = Result[0]; 4399 Hi = Result[1]; 4400 } 4401 return Ok; 4402 } 4403 4404 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4405 SelectionDAG &DAG) const { 4406 EVT VT = Node->getValueType(0); 4407 4408 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4409 !isOperationLegalOrCustom(ISD::SRL, VT) || 4410 !isOperationLegalOrCustom(ISD::SUB, VT) || 4411 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4412 return false; 4413 4414 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4415 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4416 SDValue X = Node->getOperand(0); 4417 SDValue Y = Node->getOperand(1); 4418 SDValue Z = Node->getOperand(2); 4419 4420 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4421 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4422 SDLoc DL(SDValue(Node, 0)); 4423 4424 EVT ShVT = Z.getValueType(); 4425 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4426 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4427 4428 SDValue ShAmt; 4429 if (isPowerOf2_32(EltSizeInBits)) { 4430 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4431 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4432 } else { 4433 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4434 } 4435 4436 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4437 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4438 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4439 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4440 4441 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4442 // and that is undefined. We must compare and select to avoid UB. 4443 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4444 4445 // For fshl, 0-shift returns the 1st arg (X). 4446 // For fshr, 0-shift returns the 2nd arg (Y). 4447 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4448 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4449 return true; 4450 } 4451 4452 // TODO: Merge with expandFunnelShift. 4453 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4454 SelectionDAG &DAG) const { 4455 EVT VT = Node->getValueType(0); 4456 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4457 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4458 SDValue Op0 = Node->getOperand(0); 4459 SDValue Op1 = Node->getOperand(1); 4460 SDLoc DL(SDValue(Node, 0)); 4461 4462 EVT ShVT = Op1.getValueType(); 4463 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4464 4465 // If a rotate in the other direction is legal, use it. 4466 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4467 if (isOperationLegal(RevRot, VT)) { 4468 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4469 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4470 return true; 4471 } 4472 4473 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4474 !isOperationLegalOrCustom(ISD::SRL, VT) || 4475 !isOperationLegalOrCustom(ISD::SUB, VT) || 4476 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4477 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4478 return false; 4479 4480 // Otherwise, 4481 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4482 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4483 // 4484 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4485 "Expecting the type bitwidth to be a power of 2"); 4486 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4487 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4488 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4489 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4490 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4491 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4492 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4493 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4494 return true; 4495 } 4496 4497 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4498 SelectionDAG &DAG) const { 4499 SDValue Src = Node->getOperand(0); 4500 EVT SrcVT = Src.getValueType(); 4501 EVT DstVT = Node->getValueType(0); 4502 SDLoc dl(SDValue(Node, 0)); 4503 4504 // FIXME: Only f32 to i64 conversions are supported. 4505 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4506 return false; 4507 4508 // Expand f32 -> i64 conversion 4509 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4510 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4511 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4512 EVT IntVT = SrcVT.changeTypeToInteger(); 4513 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4514 4515 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4516 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4517 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4518 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4519 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4520 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4521 4522 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4523 4524 SDValue ExponentBits = DAG.getNode( 4525 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4526 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4527 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4528 4529 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4530 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4531 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4532 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4533 4534 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4535 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4536 DAG.getConstant(0x00800000, dl, IntVT)); 4537 4538 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4539 4540 R = DAG.getSelectCC( 4541 dl, Exponent, ExponentLoBit, 4542 DAG.getNode(ISD::SHL, dl, DstVT, R, 4543 DAG.getZExtOrTrunc( 4544 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4545 dl, IntShVT)), 4546 DAG.getNode(ISD::SRL, dl, DstVT, R, 4547 DAG.getZExtOrTrunc( 4548 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4549 dl, IntShVT)), 4550 ISD::SETGT); 4551 4552 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4553 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4554 4555 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4556 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4557 return true; 4558 } 4559 4560 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4561 SelectionDAG &DAG) const { 4562 SDLoc dl(SDValue(Node, 0)); 4563 SDValue Src = Node->getOperand(0); 4564 4565 EVT SrcVT = Src.getValueType(); 4566 EVT DstVT = Node->getValueType(0); 4567 EVT SetCCVT = 4568 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4569 4570 // Only expand vector types if we have the appropriate vector bit operations. 4571 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4572 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4573 return false; 4574 4575 // If the maximum float value is smaller then the signed integer range, 4576 // the destination signmask can't be represented by the float, so we can 4577 // just use FP_TO_SINT directly. 4578 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4579 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4580 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4581 if (APFloat::opOverflow & 4582 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4583 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4584 return true; 4585 } 4586 4587 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4588 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4589 4590 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4591 if (Strict) { 4592 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4593 // signmask then offset (the result of which should be fully representable). 4594 // Sel = Src < 0x8000000000000000 4595 // Val = select Sel, Src, Src - 0x8000000000000000 4596 // Ofs = select Sel, 0, 0x8000000000000000 4597 // Result = fp_to_sint(Val) ^ Ofs 4598 4599 // TODO: Should any fast-math-flags be set for the FSUB? 4600 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4601 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4602 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4603 DAG.getConstant(SignMask, dl, DstVT)); 4604 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4605 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4606 } else { 4607 // Expand based on maximum range of FP_TO_SINT: 4608 // True = fp_to_sint(Src) 4609 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4610 // Result = select (Src < 0x8000000000000000), True, False 4611 4612 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4613 // TODO: Should any fast-math-flags be set for the FSUB? 4614 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4615 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4616 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4617 DAG.getConstant(SignMask, dl, DstVT)); 4618 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4619 } 4620 return true; 4621 } 4622 4623 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4624 SelectionDAG &DAG) const { 4625 SDValue Src = Node->getOperand(0); 4626 EVT SrcVT = Src.getValueType(); 4627 EVT DstVT = Node->getValueType(0); 4628 4629 if (SrcVT.getScalarType() != MVT::i64) 4630 return false; 4631 4632 SDLoc dl(SDValue(Node, 0)); 4633 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4634 4635 if (DstVT.getScalarType() == MVT::f32) { 4636 // Only expand vector types if we have the appropriate vector bit 4637 // operations. 4638 if (SrcVT.isVector() && 4639 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4640 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4641 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4642 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4643 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4644 return false; 4645 4646 // For unsigned conversions, convert them to signed conversions using the 4647 // algorithm from the x86_64 __floatundidf in compiler_rt. 4648 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4649 4650 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4651 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4652 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4653 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4654 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4655 4656 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4657 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4658 4659 // TODO: This really should be implemented using a branch rather than a 4660 // select. We happen to get lucky and machinesink does the right 4661 // thing most of the time. This would be a good candidate for a 4662 // pseudo-op, or, even better, for whole-function isel. 4663 EVT SetCCVT = 4664 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4665 4666 SDValue SignBitTest = DAG.getSetCC( 4667 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4668 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4669 return true; 4670 } 4671 4672 if (DstVT.getScalarType() == MVT::f64) { 4673 // Only expand vector types if we have the appropriate vector bit 4674 // operations. 4675 if (SrcVT.isVector() && 4676 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4677 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4678 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4679 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4680 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4681 return false; 4682 4683 // Implementation of unsigned i64 to f64 following the algorithm in 4684 // __floatundidf in compiler_rt. This implementation has the advantage 4685 // of performing rounding correctly, both in the default rounding mode 4686 // and in all alternate rounding modes. 4687 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4688 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4689 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4690 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4691 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4692 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4693 4694 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4695 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4696 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4697 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4698 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4699 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4700 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4701 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4702 return true; 4703 } 4704 4705 return false; 4706 } 4707 4708 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4709 SelectionDAG &DAG) const { 4710 SDLoc dl(Node); 4711 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4712 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4713 EVT VT = Node->getValueType(0); 4714 if (isOperationLegalOrCustom(NewOp, VT)) { 4715 SDValue Quiet0 = Node->getOperand(0); 4716 SDValue Quiet1 = Node->getOperand(1); 4717 4718 if (!Node->getFlags().hasNoNaNs()) { 4719 // Insert canonicalizes if it's possible we need to quiet to get correct 4720 // sNaN behavior. 4721 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4722 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4723 Node->getFlags()); 4724 } 4725 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4726 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4727 Node->getFlags()); 4728 } 4729 } 4730 4731 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4732 } 4733 4734 return SDValue(); 4735 } 4736 4737 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4738 SelectionDAG &DAG) const { 4739 SDLoc dl(Node); 4740 EVT VT = Node->getValueType(0); 4741 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4742 SDValue Op = Node->getOperand(0); 4743 unsigned Len = VT.getScalarSizeInBits(); 4744 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4745 4746 // TODO: Add support for irregular type lengths. 4747 if (!(Len <= 128 && Len % 8 == 0)) 4748 return false; 4749 4750 // Only expand vector types if we have the appropriate vector bit operations. 4751 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4752 !isOperationLegalOrCustom(ISD::SUB, VT) || 4753 !isOperationLegalOrCustom(ISD::SRL, VT) || 4754 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4755 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4756 return false; 4757 4758 // This is the "best" algorithm from 4759 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4760 SDValue Mask55 = 4761 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4762 SDValue Mask33 = 4763 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4764 SDValue Mask0F = 4765 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4766 SDValue Mask01 = 4767 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4768 4769 // v = v - ((v >> 1) & 0x55555555...) 4770 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4771 DAG.getNode(ISD::AND, dl, VT, 4772 DAG.getNode(ISD::SRL, dl, VT, Op, 4773 DAG.getConstant(1, dl, ShVT)), 4774 Mask55)); 4775 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4776 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4777 DAG.getNode(ISD::AND, dl, VT, 4778 DAG.getNode(ISD::SRL, dl, VT, Op, 4779 DAG.getConstant(2, dl, ShVT)), 4780 Mask33)); 4781 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4782 Op = DAG.getNode(ISD::AND, dl, VT, 4783 DAG.getNode(ISD::ADD, dl, VT, Op, 4784 DAG.getNode(ISD::SRL, dl, VT, Op, 4785 DAG.getConstant(4, dl, ShVT))), 4786 Mask0F); 4787 // v = (v * 0x01010101...) >> (Len - 8) 4788 if (Len > 8) 4789 Op = 4790 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4791 DAG.getConstant(Len - 8, dl, ShVT)); 4792 4793 Result = Op; 4794 return true; 4795 } 4796 4797 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4798 SelectionDAG &DAG) const { 4799 SDLoc dl(Node); 4800 EVT VT = Node->getValueType(0); 4801 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4802 SDValue Op = Node->getOperand(0); 4803 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4804 4805 // If the non-ZERO_UNDEF version is supported we can use that instead. 4806 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4807 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4808 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4809 return true; 4810 } 4811 4812 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4813 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4814 EVT SetCCVT = 4815 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4816 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4817 SDValue Zero = DAG.getConstant(0, dl, VT); 4818 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4819 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4820 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4821 return true; 4822 } 4823 4824 // Only expand vector types if we have the appropriate vector bit operations. 4825 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4826 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4827 !isOperationLegalOrCustom(ISD::SRL, VT) || 4828 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4829 return false; 4830 4831 // for now, we do this: 4832 // x = x | (x >> 1); 4833 // x = x | (x >> 2); 4834 // ... 4835 // x = x | (x >>16); 4836 // x = x | (x >>32); // for 64-bit input 4837 // return popcount(~x); 4838 // 4839 // Ref: "Hacker's Delight" by Henry Warren 4840 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4841 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4842 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4843 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4844 } 4845 Op = DAG.getNOT(dl, Op, VT); 4846 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4847 return true; 4848 } 4849 4850 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4851 SelectionDAG &DAG) const { 4852 SDLoc dl(Node); 4853 EVT VT = Node->getValueType(0); 4854 SDValue Op = Node->getOperand(0); 4855 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4856 4857 // If the non-ZERO_UNDEF version is supported we can use that instead. 4858 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4859 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4860 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4861 return true; 4862 } 4863 4864 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4865 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4866 EVT SetCCVT = 4867 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4868 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4869 SDValue Zero = DAG.getConstant(0, dl, VT); 4870 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4871 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4872 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4873 return true; 4874 } 4875 4876 // Only expand vector types if we have the appropriate vector bit operations. 4877 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4878 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4879 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4880 !isOperationLegalOrCustom(ISD::SUB, VT) || 4881 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4882 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4883 return false; 4884 4885 // for now, we use: { return popcount(~x & (x - 1)); } 4886 // unless the target has ctlz but not ctpop, in which case we use: 4887 // { return 32 - nlz(~x & (x-1)); } 4888 // Ref: "Hacker's Delight" by Henry Warren 4889 SDValue Tmp = DAG.getNode( 4890 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4891 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4892 4893 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4894 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4895 Result = 4896 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4897 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4898 return true; 4899 } 4900 4901 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4902 return true; 4903 } 4904 4905 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4906 SelectionDAG &DAG) const { 4907 SDLoc dl(N); 4908 EVT VT = N->getValueType(0); 4909 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4910 SDValue Op = N->getOperand(0); 4911 4912 // Only expand vector types if we have the appropriate vector operations. 4913 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4914 !isOperationLegalOrCustom(ISD::ADD, VT) || 4915 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4916 return false; 4917 4918 SDValue Shift = 4919 DAG.getNode(ISD::SRA, dl, VT, Op, 4920 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4921 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4922 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4923 return true; 4924 } 4925 4926 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4927 SelectionDAG &DAG) const { 4928 SDLoc SL(LD); 4929 SDValue Chain = LD->getChain(); 4930 SDValue BasePTR = LD->getBasePtr(); 4931 EVT SrcVT = LD->getMemoryVT(); 4932 ISD::LoadExtType ExtType = LD->getExtensionType(); 4933 4934 unsigned NumElem = SrcVT.getVectorNumElements(); 4935 4936 EVT SrcEltVT = SrcVT.getScalarType(); 4937 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4938 4939 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4940 assert(SrcEltVT.isByteSized()); 4941 4942 SmallVector<SDValue, 8> Vals; 4943 SmallVector<SDValue, 8> LoadChains; 4944 4945 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4946 SDValue ScalarLoad = 4947 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4948 LD->getPointerInfo().getWithOffset(Idx * Stride), 4949 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4950 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4951 4952 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4953 4954 Vals.push_back(ScalarLoad.getValue(0)); 4955 LoadChains.push_back(ScalarLoad.getValue(1)); 4956 } 4957 4958 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4959 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4960 4961 return DAG.getMergeValues({Value, NewChain}, SL); 4962 } 4963 4964 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4965 SelectionDAG &DAG) const { 4966 SDLoc SL(ST); 4967 4968 SDValue Chain = ST->getChain(); 4969 SDValue BasePtr = ST->getBasePtr(); 4970 SDValue Value = ST->getValue(); 4971 EVT StVT = ST->getMemoryVT(); 4972 4973 // The type of the data we want to save 4974 EVT RegVT = Value.getValueType(); 4975 EVT RegSclVT = RegVT.getScalarType(); 4976 4977 // The type of data as saved in memory. 4978 EVT MemSclVT = StVT.getScalarType(); 4979 4980 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4981 unsigned NumElem = StVT.getVectorNumElements(); 4982 4983 // A vector must always be stored in memory as-is, i.e. without any padding 4984 // between the elements, since various code depend on it, e.g. in the 4985 // handling of a bitcast of a vector type to int, which may be done with a 4986 // vector store followed by an integer load. A vector that does not have 4987 // elements that are byte-sized must therefore be stored as an integer 4988 // built out of the extracted vector elements. 4989 if (!MemSclVT.isByteSized()) { 4990 unsigned NumBits = StVT.getSizeInBits(); 4991 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4992 4993 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4994 4995 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4996 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4997 DAG.getConstant(Idx, SL, IdxVT)); 4998 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4999 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5000 unsigned ShiftIntoIdx = 5001 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5002 SDValue ShiftAmount = 5003 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5004 SDValue ShiftedElt = 5005 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5006 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5007 } 5008 5009 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5010 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5011 ST->getAAInfo()); 5012 } 5013 5014 // Store Stride in bytes 5015 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5016 assert(Stride && "Zero stride!"); 5017 // Extract each of the elements from the original vector and save them into 5018 // memory individually. 5019 SmallVector<SDValue, 8> Stores; 5020 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5021 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5022 DAG.getConstant(Idx, SL, IdxVT)); 5023 5024 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5025 5026 // This scalar TruncStore may be illegal, but we legalize it later. 5027 SDValue Store = DAG.getTruncStore( 5028 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5029 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5030 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5031 5032 Stores.push_back(Store); 5033 } 5034 5035 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5036 } 5037 5038 std::pair<SDValue, SDValue> 5039 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5040 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5041 "unaligned indexed loads not implemented!"); 5042 SDValue Chain = LD->getChain(); 5043 SDValue Ptr = LD->getBasePtr(); 5044 EVT VT = LD->getValueType(0); 5045 EVT LoadedVT = LD->getMemoryVT(); 5046 SDLoc dl(LD); 5047 auto &MF = DAG.getMachineFunction(); 5048 5049 if (VT.isFloatingPoint() || VT.isVector()) { 5050 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5051 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5052 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5053 LoadedVT.isVector()) { 5054 // Scalarize the load and let the individual components be handled. 5055 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5056 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5057 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5058 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5059 } 5060 5061 // Expand to a (misaligned) integer load of the same size, 5062 // then bitconvert to floating point or vector. 5063 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5064 LD->getMemOperand()); 5065 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5066 if (LoadedVT != VT) 5067 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5068 ISD::ANY_EXTEND, dl, VT, Result); 5069 5070 return std::make_pair(Result, newLoad.getValue(1)); 5071 } 5072 5073 // Copy the value to a (aligned) stack slot using (unaligned) integer 5074 // loads and stores, then do a (aligned) load from the stack slot. 5075 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5076 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5077 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5078 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5079 5080 // Make sure the stack slot is also aligned for the register type. 5081 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5082 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5083 SmallVector<SDValue, 8> Stores; 5084 SDValue StackPtr = StackBase; 5085 unsigned Offset = 0; 5086 5087 EVT PtrVT = Ptr.getValueType(); 5088 EVT StackPtrVT = StackPtr.getValueType(); 5089 5090 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5091 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5092 5093 // Do all but one copies using the full register width. 5094 for (unsigned i = 1; i < NumRegs; i++) { 5095 // Load one integer register's worth from the original location. 5096 SDValue Load = DAG.getLoad( 5097 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5098 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5099 LD->getAAInfo()); 5100 // Follow the load with a store to the stack slot. Remember the store. 5101 Stores.push_back(DAG.getStore( 5102 Load.getValue(1), dl, Load, StackPtr, 5103 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5104 // Increment the pointers. 5105 Offset += RegBytes; 5106 5107 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5108 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5109 } 5110 5111 // The last copy may be partial. Do an extending load. 5112 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5113 8 * (LoadedBytes - Offset)); 5114 SDValue Load = 5115 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5116 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5117 MinAlign(LD->getAlignment(), Offset), 5118 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5119 // Follow the load with a store to the stack slot. Remember the store. 5120 // On big-endian machines this requires a truncating store to ensure 5121 // that the bits end up in the right place. 5122 Stores.push_back(DAG.getTruncStore( 5123 Load.getValue(1), dl, Load, StackPtr, 5124 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5125 5126 // The order of the stores doesn't matter - say it with a TokenFactor. 5127 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5128 5129 // Finally, perform the original load only redirected to the stack slot. 5130 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5131 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5132 LoadedVT); 5133 5134 // Callers expect a MERGE_VALUES node. 5135 return std::make_pair(Load, TF); 5136 } 5137 5138 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5139 "Unaligned load of unsupported type."); 5140 5141 // Compute the new VT that is half the size of the old one. This is an 5142 // integer MVT. 5143 unsigned NumBits = LoadedVT.getSizeInBits(); 5144 EVT NewLoadedVT; 5145 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5146 NumBits >>= 1; 5147 5148 unsigned Alignment = LD->getAlignment(); 5149 unsigned IncrementSize = NumBits / 8; 5150 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5151 5152 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5153 if (HiExtType == ISD::NON_EXTLOAD) 5154 HiExtType = ISD::ZEXTLOAD; 5155 5156 // Load the value in two parts 5157 SDValue Lo, Hi; 5158 if (DAG.getDataLayout().isLittleEndian()) { 5159 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5160 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5161 LD->getAAInfo()); 5162 5163 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5164 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5165 LD->getPointerInfo().getWithOffset(IncrementSize), 5166 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5167 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5168 } else { 5169 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5170 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5171 LD->getAAInfo()); 5172 5173 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5174 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5175 LD->getPointerInfo().getWithOffset(IncrementSize), 5176 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5177 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5178 } 5179 5180 // aggregate the two parts 5181 SDValue ShiftAmount = 5182 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5183 DAG.getDataLayout())); 5184 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5185 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5186 5187 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5188 Hi.getValue(1)); 5189 5190 return std::make_pair(Result, TF); 5191 } 5192 5193 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5194 SelectionDAG &DAG) const { 5195 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5196 "unaligned indexed stores not implemented!"); 5197 SDValue Chain = ST->getChain(); 5198 SDValue Ptr = ST->getBasePtr(); 5199 SDValue Val = ST->getValue(); 5200 EVT VT = Val.getValueType(); 5201 int Alignment = ST->getAlignment(); 5202 auto &MF = DAG.getMachineFunction(); 5203 EVT MemVT = ST->getMemoryVT(); 5204 5205 SDLoc dl(ST); 5206 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5207 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5208 if (isTypeLegal(intVT)) { 5209 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5210 MemVT.isVector()) { 5211 // Scalarize the store and let the individual components be handled. 5212 SDValue Result = scalarizeVectorStore(ST, DAG); 5213 5214 return Result; 5215 } 5216 // Expand to a bitconvert of the value to the integer type of the 5217 // same size, then a (misaligned) int store. 5218 // FIXME: Does not handle truncating floating point stores! 5219 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5220 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5221 Alignment, ST->getMemOperand()->getFlags()); 5222 return Result; 5223 } 5224 // Do a (aligned) store to a stack slot, then copy from the stack slot 5225 // to the final destination using (unaligned) integer loads and stores. 5226 EVT StoredVT = ST->getMemoryVT(); 5227 MVT RegVT = 5228 getRegisterType(*DAG.getContext(), 5229 EVT::getIntegerVT(*DAG.getContext(), 5230 StoredVT.getSizeInBits())); 5231 EVT PtrVT = Ptr.getValueType(); 5232 unsigned StoredBytes = StoredVT.getStoreSize(); 5233 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5234 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5235 5236 // Make sure the stack slot is also aligned for the register type. 5237 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5238 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5239 5240 // Perform the original store, only redirected to the stack slot. 5241 SDValue Store = DAG.getTruncStore( 5242 Chain, dl, Val, StackPtr, 5243 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5244 5245 EVT StackPtrVT = StackPtr.getValueType(); 5246 5247 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5248 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5249 SmallVector<SDValue, 8> Stores; 5250 unsigned Offset = 0; 5251 5252 // Do all but one copies using the full register width. 5253 for (unsigned i = 1; i < NumRegs; i++) { 5254 // Load one integer register's worth from the stack slot. 5255 SDValue Load = DAG.getLoad( 5256 RegVT, dl, Store, StackPtr, 5257 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5258 // Store it to the final location. Remember the store. 5259 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5260 ST->getPointerInfo().getWithOffset(Offset), 5261 MinAlign(ST->getAlignment(), Offset), 5262 ST->getMemOperand()->getFlags())); 5263 // Increment the pointers. 5264 Offset += RegBytes; 5265 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5266 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5267 } 5268 5269 // The last store may be partial. Do a truncating store. On big-endian 5270 // machines this requires an extending load from the stack slot to ensure 5271 // that the bits are in the right place. 5272 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5273 8 * (StoredBytes - Offset)); 5274 5275 // Load from the stack slot. 5276 SDValue Load = DAG.getExtLoad( 5277 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5278 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5279 5280 Stores.push_back( 5281 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5282 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5283 MinAlign(ST->getAlignment(), Offset), 5284 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5285 // The order of the stores doesn't matter - say it with a TokenFactor. 5286 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5287 return Result; 5288 } 5289 5290 assert(ST->getMemoryVT().isInteger() && 5291 !ST->getMemoryVT().isVector() && 5292 "Unaligned store of unknown type."); 5293 // Get the half-size VT 5294 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5295 int NumBits = NewStoredVT.getSizeInBits(); 5296 int IncrementSize = NumBits / 8; 5297 5298 // Divide the stored value in two parts. 5299 SDValue ShiftAmount = 5300 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5301 DAG.getDataLayout())); 5302 SDValue Lo = Val; 5303 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5304 5305 // Store the two parts 5306 SDValue Store1, Store2; 5307 Store1 = DAG.getTruncStore(Chain, dl, 5308 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5309 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5310 ST->getMemOperand()->getFlags()); 5311 5312 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5313 Alignment = MinAlign(Alignment, IncrementSize); 5314 Store2 = DAG.getTruncStore( 5315 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5316 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5317 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5318 5319 SDValue Result = 5320 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5321 return Result; 5322 } 5323 5324 SDValue 5325 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5326 const SDLoc &DL, EVT DataVT, 5327 SelectionDAG &DAG, 5328 bool IsCompressedMemory) const { 5329 SDValue Increment; 5330 EVT AddrVT = Addr.getValueType(); 5331 EVT MaskVT = Mask.getValueType(); 5332 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5333 "Incompatible types of Data and Mask"); 5334 if (IsCompressedMemory) { 5335 // Incrementing the pointer according to number of '1's in the mask. 5336 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5337 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5338 if (MaskIntVT.getSizeInBits() < 32) { 5339 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5340 MaskIntVT = MVT::i32; 5341 } 5342 5343 // Count '1's with POPCNT. 5344 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5345 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5346 // Scale is an element size in bytes. 5347 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5348 AddrVT); 5349 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5350 } else 5351 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5352 5353 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5354 } 5355 5356 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5357 SDValue Idx, 5358 EVT VecVT, 5359 const SDLoc &dl) { 5360 if (isa<ConstantSDNode>(Idx)) 5361 return Idx; 5362 5363 EVT IdxVT = Idx.getValueType(); 5364 unsigned NElts = VecVT.getVectorNumElements(); 5365 if (isPowerOf2_32(NElts)) { 5366 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5367 Log2_32(NElts)); 5368 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5369 DAG.getConstant(Imm, dl, IdxVT)); 5370 } 5371 5372 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5373 DAG.getConstant(NElts - 1, dl, IdxVT)); 5374 } 5375 5376 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5377 SDValue VecPtr, EVT VecVT, 5378 SDValue Index) const { 5379 SDLoc dl(Index); 5380 // Make sure the index type is big enough to compute in. 5381 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5382 5383 EVT EltVT = VecVT.getVectorElementType(); 5384 5385 // Calculate the element offset and add it to the pointer. 5386 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5387 assert(EltSize * 8 == EltVT.getSizeInBits() && 5388 "Converting bits to bytes lost precision"); 5389 5390 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5391 5392 EVT IdxVT = Index.getValueType(); 5393 5394 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5395 DAG.getConstant(EltSize, dl, IdxVT)); 5396 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5397 } 5398 5399 //===----------------------------------------------------------------------===// 5400 // Implementation of Emulated TLS Model 5401 //===----------------------------------------------------------------------===// 5402 5403 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5404 SelectionDAG &DAG) const { 5405 // Access to address of TLS varialbe xyz is lowered to a function call: 5406 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5407 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5408 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5409 SDLoc dl(GA); 5410 5411 ArgListTy Args; 5412 ArgListEntry Entry; 5413 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5414 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5415 StringRef EmuTlsVarName(NameString); 5416 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5417 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5418 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5419 Entry.Ty = VoidPtrType; 5420 Args.push_back(Entry); 5421 5422 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5423 5424 TargetLowering::CallLoweringInfo CLI(DAG); 5425 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5426 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5427 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5428 5429 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5430 // At last for X86 targets, maybe good for other targets too? 5431 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5432 MFI.setAdjustsStack(true); // Is this only for X86 target? 5433 MFI.setHasCalls(true); 5434 5435 assert((GA->getOffset() == 0) && 5436 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5437 return CallResult.first; 5438 } 5439 5440 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5441 SelectionDAG &DAG) const { 5442 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5443 if (!isCtlzFast()) 5444 return SDValue(); 5445 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5446 SDLoc dl(Op); 5447 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5448 if (C->isNullValue() && CC == ISD::SETEQ) { 5449 EVT VT = Op.getOperand(0).getValueType(); 5450 SDValue Zext = Op.getOperand(0); 5451 if (VT.bitsLT(MVT::i32)) { 5452 VT = MVT::i32; 5453 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5454 } 5455 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5456 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5457 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5458 DAG.getConstant(Log2b, dl, MVT::i32)); 5459 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5460 } 5461 } 5462 return SDValue(); 5463 } 5464 5465 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5466 unsigned Opcode = Node->getOpcode(); 5467 SDValue LHS = Node->getOperand(0); 5468 SDValue RHS = Node->getOperand(1); 5469 EVT VT = LHS.getValueType(); 5470 SDLoc dl(Node); 5471 5472 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5473 assert(VT.isInteger() && "Expected operands to be integers"); 5474 5475 // usub.sat(a, b) -> umax(a, b) - b 5476 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5477 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5478 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5479 } 5480 5481 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5482 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5483 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5484 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5485 } 5486 5487 unsigned OverflowOp; 5488 switch (Opcode) { 5489 case ISD::SADDSAT: 5490 OverflowOp = ISD::SADDO; 5491 break; 5492 case ISD::UADDSAT: 5493 OverflowOp = ISD::UADDO; 5494 break; 5495 case ISD::SSUBSAT: 5496 OverflowOp = ISD::SSUBO; 5497 break; 5498 case ISD::USUBSAT: 5499 OverflowOp = ISD::USUBO; 5500 break; 5501 default: 5502 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5503 "addition or subtraction node."); 5504 } 5505 5506 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5507 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5508 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5509 LHS, RHS); 5510 SDValue SumDiff = Result.getValue(0); 5511 SDValue Overflow = Result.getValue(1); 5512 SDValue Zero = DAG.getConstant(0, dl, VT); 5513 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5514 5515 if (Opcode == ISD::UADDSAT) { 5516 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5517 // (LHS + RHS) | OverflowMask 5518 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5519 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5520 } 5521 // Overflow ? 0xffff.... : (LHS + RHS) 5522 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5523 } else if (Opcode == ISD::USUBSAT) { 5524 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5525 // (LHS - RHS) & ~OverflowMask 5526 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5527 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5528 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5529 } 5530 // Overflow ? 0 : (LHS - RHS) 5531 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5532 } else { 5533 // SatMax -> Overflow && SumDiff < 0 5534 // SatMin -> Overflow && SumDiff >= 0 5535 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5536 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5537 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5538 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5539 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5540 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5541 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5542 } 5543 } 5544 5545 SDValue 5546 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5547 assert((Node->getOpcode() == ISD::SMULFIX || 5548 Node->getOpcode() == ISD::UMULFIX) && 5549 "Expected opcode to be SMULFIX or UMULFIX."); 5550 5551 SDLoc dl(Node); 5552 SDValue LHS = Node->getOperand(0); 5553 SDValue RHS = Node->getOperand(1); 5554 EVT VT = LHS.getValueType(); 5555 unsigned Scale = Node->getConstantOperandVal(2); 5556 5557 // [us]mul.fix(a, b, 0) -> mul(a, b) 5558 if (!Scale) { 5559 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5560 return SDValue(); 5561 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5562 } 5563 5564 unsigned VTSize = VT.getScalarSizeInBits(); 5565 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5566 5567 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5568 "Expected scale to be less than the number of bits if signed or at " 5569 "most the number of bits if unsigned."); 5570 assert(LHS.getValueType() == RHS.getValueType() && 5571 "Expected both operands to be the same type"); 5572 5573 // Get the upper and lower bits of the result. 5574 SDValue Lo, Hi; 5575 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5576 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5577 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5578 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5579 Lo = Result.getValue(0); 5580 Hi = Result.getValue(1); 5581 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5582 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5583 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5584 } else if (VT.isVector()) { 5585 return SDValue(); 5586 } else { 5587 report_fatal_error("Unable to expand fixed point multiplication."); 5588 } 5589 5590 if (Scale == VTSize) 5591 // Result is just the top half since we'd be shifting by the width of the 5592 // operand. 5593 return Hi; 5594 5595 // The result will need to be shifted right by the scale since both operands 5596 // are scaled. The result is given to us in 2 halves, so we only want part of 5597 // both in the result. 5598 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5599 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5600 DAG.getConstant(Scale, dl, ShiftTy)); 5601 } 5602 5603 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5604 SDValue &Overflow, SelectionDAG &DAG) const { 5605 SDLoc dl(Node); 5606 EVT VT = Node->getValueType(0); 5607 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5608 SDValue LHS = Node->getOperand(0); 5609 SDValue RHS = Node->getOperand(1); 5610 bool isSigned = Node->getOpcode() == ISD::SMULO; 5611 5612 // For power-of-two multiplications we can use a simpler shift expansion. 5613 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5614 const APInt &C = RHSC->getAPIntValue(); 5615 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5616 if (C.isPowerOf2()) { 5617 // smulo(x, signed_min) is same as umulo(x, signed_min). 5618 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5619 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5620 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5621 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5622 Overflow = DAG.getSetCC(dl, SetCCVT, 5623 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5624 dl, VT, Result, ShiftAmt), 5625 LHS, ISD::SETNE); 5626 return true; 5627 } 5628 } 5629 5630 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5631 if (VT.isVector()) 5632 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5633 VT.getVectorNumElements()); 5634 5635 SDValue BottomHalf; 5636 SDValue TopHalf; 5637 static const unsigned Ops[2][3] = 5638 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5639 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5640 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5641 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5642 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5643 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5644 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5645 RHS); 5646 TopHalf = BottomHalf.getValue(1); 5647 } else if (isTypeLegal(WideVT)) { 5648 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5649 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5650 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5651 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5652 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5653 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5654 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5655 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5656 } else { 5657 if (VT.isVector()) 5658 return false; 5659 5660 // We can fall back to a libcall with an illegal type for the MUL if we 5661 // have a libcall big enough. 5662 // Also, we can fall back to a division in some cases, but that's a big 5663 // performance hit in the general case. 5664 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5665 if (WideVT == MVT::i16) 5666 LC = RTLIB::MUL_I16; 5667 else if (WideVT == MVT::i32) 5668 LC = RTLIB::MUL_I32; 5669 else if (WideVT == MVT::i64) 5670 LC = RTLIB::MUL_I64; 5671 else if (WideVT == MVT::i128) 5672 LC = RTLIB::MUL_I128; 5673 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5674 5675 SDValue HiLHS; 5676 SDValue HiRHS; 5677 if (isSigned) { 5678 // The high part is obtained by SRA'ing all but one of the bits of low 5679 // part. 5680 unsigned LoSize = VT.getSizeInBits(); 5681 HiLHS = 5682 DAG.getNode(ISD::SRA, dl, VT, LHS, 5683 DAG.getConstant(LoSize - 1, dl, 5684 getPointerTy(DAG.getDataLayout()))); 5685 HiRHS = 5686 DAG.getNode(ISD::SRA, dl, VT, RHS, 5687 DAG.getConstant(LoSize - 1, dl, 5688 getPointerTy(DAG.getDataLayout()))); 5689 } else { 5690 HiLHS = DAG.getConstant(0, dl, VT); 5691 HiRHS = DAG.getConstant(0, dl, VT); 5692 } 5693 5694 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5695 // pre-lowered to the correct types. This all depends upon WideVT not 5696 // being a legal type for the architecture and thus has to be split to 5697 // two arguments. 5698 SDValue Ret; 5699 if (DAG.getDataLayout().isLittleEndian()) { 5700 // Halves of WideVT are packed into registers in different order 5701 // depending on platform endianness. This is usually handled by 5702 // the C calling convention, but we can't defer to it in 5703 // the legalizer. 5704 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5705 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5706 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5707 /* isPostTypeLegalization */ true).first; 5708 } else { 5709 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5710 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5711 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5712 /* isPostTypeLegalization */ true).first; 5713 } 5714 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5715 "Ret value is a collection of constituent nodes holding result."); 5716 if (DAG.getDataLayout().isLittleEndian()) { 5717 // Same as above. 5718 BottomHalf = Ret.getOperand(0); 5719 TopHalf = Ret.getOperand(1); 5720 } else { 5721 BottomHalf = Ret.getOperand(1); 5722 TopHalf = Ret.getOperand(0); 5723 } 5724 } 5725 5726 Result = BottomHalf; 5727 if (isSigned) { 5728 SDValue ShiftAmt = DAG.getConstant( 5729 VT.getScalarSizeInBits() - 1, dl, 5730 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5731 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5732 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5733 } else { 5734 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5735 DAG.getConstant(0, dl, VT), ISD::SETNE); 5736 } 5737 5738 // Truncate the result if SetCC returns a larger type than needed. 5739 EVT RType = Node->getValueType(1); 5740 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5741 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5742 5743 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5744 "Unexpected result type for S/UMULO legalization"); 5745 return true; 5746 } 5747 5748 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 5749 SDLoc dl(Node); 5750 bool NoNaN = Node->getFlags().hasNoNaNs(); 5751 unsigned BaseOpcode = 0; 5752 switch (Node->getOpcode()) { 5753 default: llvm_unreachable("Expected VECREDUCE opcode"); 5754 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 5755 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 5756 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 5757 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 5758 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 5759 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 5760 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 5761 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 5762 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 5763 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 5764 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 5765 case ISD::VECREDUCE_FMAX: 5766 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 5767 break; 5768 case ISD::VECREDUCE_FMIN: 5769 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 5770 break; 5771 } 5772 5773 SDValue Op = Node->getOperand(0); 5774 EVT VT = Op.getValueType(); 5775 5776 // Try to use a shuffle reduction for power of two vectors. 5777 if (VT.isPow2VectorType()) { 5778 while (VT.getVectorNumElements() > 1) { 5779 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 5780 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 5781 break; 5782 5783 SDValue Lo, Hi; 5784 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 5785 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 5786 VT = HalfVT; 5787 } 5788 } 5789 5790 EVT EltVT = VT.getVectorElementType(); 5791 unsigned NumElts = VT.getVectorNumElements(); 5792 5793 SmallVector<SDValue, 8> Ops; 5794 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 5795 5796 SDValue Res = Ops[0]; 5797 for (unsigned i = 1; i < NumElts; i++) 5798 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 5799 5800 // Result type may be wider than element type. 5801 if (EltVT != Node->getValueType(0)) 5802 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 5803 return Res; 5804 } 5805