1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
114   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
115   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
116   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
117   Alignment = Call->getParamAlign(ArgIdx);
118   ByValType = nullptr;
119   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
120     ByValType = Call->getParamByValType(ArgIdx);
121 }
122 
123 /// Generate a libcall taking the given operands as arguments and returning a
124 /// result of type RetVT.
125 std::pair<SDValue, SDValue>
126 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
127                             ArrayRef<SDValue> Ops,
128                             MakeLibCallOptions CallOptions,
129                             const SDLoc &dl,
130                             SDValue InChain) const {
131   if (!InChain)
132     InChain = DAG.getEntryNode();
133 
134   TargetLowering::ArgListTy Args;
135   Args.reserve(Ops.size());
136 
137   TargetLowering::ArgListEntry Entry;
138   for (unsigned i = 0; i < Ops.size(); ++i) {
139     SDValue NewOp = Ops[i];
140     Entry.Node = NewOp;
141     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
142     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
143                                                  CallOptions.IsSExt);
144     Entry.IsZExt = !Entry.IsSExt;
145 
146     if (CallOptions.IsSoften &&
147         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
148       Entry.IsSExt = Entry.IsZExt = false;
149     }
150     Args.push_back(Entry);
151   }
152 
153   if (LC == RTLIB::UNKNOWN_LIBCALL)
154     report_fatal_error("Unsupported library call operation!");
155   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
156                                          getPointerTy(DAG.getDataLayout()));
157 
158   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
159   TargetLowering::CallLoweringInfo CLI(DAG);
160   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
161   bool zeroExtend = !signExtend;
162 
163   if (CallOptions.IsSoften &&
164       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
165     signExtend = zeroExtend = false;
166   }
167 
168   CLI.setDebugLoc(dl)
169       .setChain(InChain)
170       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
171       .setNoReturn(CallOptions.DoesNotReturn)
172       .setDiscardResult(!CallOptions.IsReturnValueUsed)
173       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
174       .setSExtResult(signExtend)
175       .setZExtResult(zeroExtend);
176   return LowerCallTo(CLI);
177 }
178 
179 bool TargetLowering::findOptimalMemOpLowering(
180     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
181     unsigned SrcAS, const AttributeList &FuncAttributes) const {
182   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
183     return false;
184 
185   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
186 
187   if (VT == MVT::Other) {
188     // Use the largest integer type whose alignment constraints are satisfied.
189     // We only need to check DstAlign here as SrcAlign is always greater or
190     // equal to DstAlign (or zero).
191     VT = MVT::i64;
192     if (Op.isFixedDstAlign())
193       while (
194           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
195           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
196         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
197     assert(VT.isInteger());
198 
199     // Find the largest legal integer type.
200     MVT LVT = MVT::i64;
201     while (!isTypeLegal(LVT))
202       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
203     assert(LVT.isInteger());
204 
205     // If the type we've chosen is larger than the largest legal integer type
206     // then use that instead.
207     if (VT.bitsGT(LVT))
208       VT = LVT;
209   }
210 
211   unsigned NumMemOps = 0;
212   uint64_t Size = Op.size();
213   while (Size) {
214     unsigned VTSize = VT.getSizeInBits() / 8;
215     while (VTSize > Size) {
216       // For now, only use non-vector load / store's for the left-over pieces.
217       EVT NewVT = VT;
218       unsigned NewVTSize;
219 
220       bool Found = false;
221       if (VT.isVector() || VT.isFloatingPoint()) {
222         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
223         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
224             isSafeMemOpType(NewVT.getSimpleVT()))
225           Found = true;
226         else if (NewVT == MVT::i64 &&
227                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
228                  isSafeMemOpType(MVT::f64)) {
229           // i64 is usually not legal on 32-bit targets, but f64 may be.
230           NewVT = MVT::f64;
231           Found = true;
232         }
233       }
234 
235       if (!Found) {
236         do {
237           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
238           if (NewVT == MVT::i8)
239             break;
240         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
241       }
242       NewVTSize = NewVT.getSizeInBits() / 8;
243 
244       // If the new VT cannot cover all of the remaining bits, then consider
245       // issuing a (or a pair of) unaligned and overlapping load / store.
246       bool Fast;
247       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
248           allowsMisalignedMemoryAccesses(
249               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
250               MachineMemOperand::MONone, &Fast) &&
251           Fast)
252         VTSize = Size;
253       else {
254         VT = NewVT;
255         VTSize = NewVTSize;
256       }
257     }
258 
259     if (++NumMemOps > Limit)
260       return false;
261 
262     MemOps.push_back(VT);
263     Size -= VTSize;
264   }
265 
266   return true;
267 }
268 
269 /// Soften the operands of a comparison. This code is shared among BR_CC,
270 /// SELECT_CC, and SETCC handlers.
271 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
272                                          SDValue &NewLHS, SDValue &NewRHS,
273                                          ISD::CondCode &CCCode,
274                                          const SDLoc &dl, const SDValue OldLHS,
275                                          const SDValue OldRHS) const {
276   SDValue Chain;
277   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
278                              OldRHS, Chain);
279 }
280 
281 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
282                                          SDValue &NewLHS, SDValue &NewRHS,
283                                          ISD::CondCode &CCCode,
284                                          const SDLoc &dl, const SDValue OldLHS,
285                                          const SDValue OldRHS,
286                                          SDValue &Chain,
287                                          bool IsSignaling) const {
288   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
289   // not supporting it. We can update this code when libgcc provides such
290   // functions.
291 
292   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
293          && "Unsupported setcc type!");
294 
295   // Expand into one or more soft-fp libcall(s).
296   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
297   bool ShouldInvertCC = false;
298   switch (CCCode) {
299   case ISD::SETEQ:
300   case ISD::SETOEQ:
301     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
302           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
303           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
304     break;
305   case ISD::SETNE:
306   case ISD::SETUNE:
307     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
308           (VT == MVT::f64) ? RTLIB::UNE_F64 :
309           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
310     break;
311   case ISD::SETGE:
312   case ISD::SETOGE:
313     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
314           (VT == MVT::f64) ? RTLIB::OGE_F64 :
315           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
316     break;
317   case ISD::SETLT:
318   case ISD::SETOLT:
319     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
320           (VT == MVT::f64) ? RTLIB::OLT_F64 :
321           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
322     break;
323   case ISD::SETLE:
324   case ISD::SETOLE:
325     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
326           (VT == MVT::f64) ? RTLIB::OLE_F64 :
327           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
328     break;
329   case ISD::SETGT:
330   case ISD::SETOGT:
331     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
332           (VT == MVT::f64) ? RTLIB::OGT_F64 :
333           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
334     break;
335   case ISD::SETO:
336     ShouldInvertCC = true;
337     LLVM_FALLTHROUGH;
338   case ISD::SETUO:
339     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
340           (VT == MVT::f64) ? RTLIB::UO_F64 :
341           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
342     break;
343   case ISD::SETONE:
344     // SETONE = O && UNE
345     ShouldInvertCC = true;
346     LLVM_FALLTHROUGH;
347   case ISD::SETUEQ:
348     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
349           (VT == MVT::f64) ? RTLIB::UO_F64 :
350           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
351     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
352           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
353           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
354     break;
355   default:
356     // Invert CC for unordered comparisons
357     ShouldInvertCC = true;
358     switch (CCCode) {
359     case ISD::SETULT:
360       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
361             (VT == MVT::f64) ? RTLIB::OGE_F64 :
362             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
363       break;
364     case ISD::SETULE:
365       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
366             (VT == MVT::f64) ? RTLIB::OGT_F64 :
367             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
368       break;
369     case ISD::SETUGT:
370       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
371             (VT == MVT::f64) ? RTLIB::OLE_F64 :
372             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
373       break;
374     case ISD::SETUGE:
375       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
376             (VT == MVT::f64) ? RTLIB::OLT_F64 :
377             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
378       break;
379     default: llvm_unreachable("Do not know how to soften this setcc!");
380     }
381   }
382 
383   // Use the target specific return value for comparions lib calls.
384   EVT RetVT = getCmpLibcallReturnType();
385   SDValue Ops[2] = {NewLHS, NewRHS};
386   TargetLowering::MakeLibCallOptions CallOptions;
387   EVT OpsVT[2] = { OldLHS.getValueType(),
388                    OldRHS.getValueType() };
389   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
390   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
391   NewLHS = Call.first;
392   NewRHS = DAG.getConstant(0, dl, RetVT);
393 
394   CCCode = getCmpLibcallCC(LC1);
395   if (ShouldInvertCC) {
396     assert(RetVT.isInteger());
397     CCCode = getSetCCInverse(CCCode, RetVT);
398   }
399 
400   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
401     // Update Chain.
402     Chain = Call.second;
403   } else {
404     EVT SetCCVT =
405         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
406     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
407     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
408     CCCode = getCmpLibcallCC(LC2);
409     if (ShouldInvertCC)
410       CCCode = getSetCCInverse(CCCode, RetVT);
411     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
412     if (Chain)
413       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
414                           Call2.second);
415     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
416                          Tmp.getValueType(), Tmp, NewLHS);
417     NewRHS = SDValue();
418   }
419 }
420 
421 /// Return the entry encoding for a jump table in the current function. The
422 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
423 unsigned TargetLowering::getJumpTableEncoding() const {
424   // In non-pic modes, just use the address of a block.
425   if (!isPositionIndependent())
426     return MachineJumpTableInfo::EK_BlockAddress;
427 
428   // In PIC mode, if the target supports a GPRel32 directive, use it.
429   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
430     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
431 
432   // Otherwise, use a label difference.
433   return MachineJumpTableInfo::EK_LabelDifference32;
434 }
435 
436 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
437                                                  SelectionDAG &DAG) const {
438   // If our PIC model is GP relative, use the global offset table as the base.
439   unsigned JTEncoding = getJumpTableEncoding();
440 
441   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
442       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
443     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
444 
445   return Table;
446 }
447 
448 /// This returns the relocation base for the given PIC jumptable, the same as
449 /// getPICJumpTableRelocBase, but as an MCExpr.
450 const MCExpr *
451 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
452                                              unsigned JTI,MCContext &Ctx) const{
453   // The normal PIC reloc base is the label at the start of the jump table.
454   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
455 }
456 
457 bool
458 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
459   const TargetMachine &TM = getTargetMachine();
460   const GlobalValue *GV = GA->getGlobal();
461 
462   // If the address is not even local to this DSO we will have to load it from
463   // a got and then add the offset.
464   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
465     return false;
466 
467   // If the code is position independent we will have to add a base register.
468   if (isPositionIndependent())
469     return false;
470 
471   // Otherwise we can do it.
472   return true;
473 }
474 
475 //===----------------------------------------------------------------------===//
476 //  Optimization Methods
477 //===----------------------------------------------------------------------===//
478 
479 /// If the specified instruction has a constant integer operand and there are
480 /// bits set in that constant that are not demanded, then clear those bits and
481 /// return true.
482 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
483                                             TargetLoweringOpt &TLO) const {
484   SDLoc DL(Op);
485   unsigned Opcode = Op.getOpcode();
486 
487   // Do target-specific constant optimization.
488   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
489     return TLO.New.getNode();
490 
491   // FIXME: ISD::SELECT, ISD::SELECT_CC
492   switch (Opcode) {
493   default:
494     break;
495   case ISD::XOR:
496   case ISD::AND:
497   case ISD::OR: {
498     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
499     if (!Op1C)
500       return false;
501 
502     // If this is a 'not' op, don't touch it because that's a canonical form.
503     const APInt &C = Op1C->getAPIntValue();
504     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
505       return false;
506 
507     if (!C.isSubsetOf(Demanded)) {
508       EVT VT = Op.getValueType();
509       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
510       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
511       return TLO.CombineTo(Op, NewOp);
512     }
513 
514     break;
515   }
516   }
517 
518   return false;
519 }
520 
521 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
522 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
523 /// generalized for targets with other types of implicit widening casts.
524 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
525                                       const APInt &Demanded,
526                                       TargetLoweringOpt &TLO) const {
527   assert(Op.getNumOperands() == 2 &&
528          "ShrinkDemandedOp only supports binary operators!");
529   assert(Op.getNode()->getNumValues() == 1 &&
530          "ShrinkDemandedOp only supports nodes with one result!");
531 
532   SelectionDAG &DAG = TLO.DAG;
533   SDLoc dl(Op);
534 
535   // Early return, as this function cannot handle vector types.
536   if (Op.getValueType().isVector())
537     return false;
538 
539   // Don't do this if the node has another user, which may require the
540   // full value.
541   if (!Op.getNode()->hasOneUse())
542     return false;
543 
544   // Search for the smallest integer type with free casts to and from
545   // Op's type. For expedience, just check power-of-2 integer types.
546   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
547   unsigned DemandedSize = Demanded.getActiveBits();
548   unsigned SmallVTBits = DemandedSize;
549   if (!isPowerOf2_32(SmallVTBits))
550     SmallVTBits = NextPowerOf2(SmallVTBits);
551   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
552     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
553     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
554         TLI.isZExtFree(SmallVT, Op.getValueType())) {
555       // We found a type with free casts.
556       SDValue X = DAG.getNode(
557           Op.getOpcode(), dl, SmallVT,
558           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
559           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
560       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
561       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
562       return TLO.CombineTo(Op, Z);
563     }
564   }
565   return false;
566 }
567 
568 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
569                                           DAGCombinerInfo &DCI) const {
570   SelectionDAG &DAG = DCI.DAG;
571   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
572                         !DCI.isBeforeLegalizeOps());
573   KnownBits Known;
574 
575   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
576   if (Simplified) {
577     DCI.AddToWorklist(Op.getNode());
578     DCI.CommitTargetLoweringOpt(TLO);
579   }
580   return Simplified;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           KnownBits &Known,
585                                           TargetLoweringOpt &TLO,
586                                           unsigned Depth,
587                                           bool AssumeSingleUse) const {
588   EVT VT = Op.getValueType();
589   APInt DemandedElts = VT.isVector()
590                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
591                            : APInt(1, 1);
592   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
593                               AssumeSingleUse);
594 }
595 
596 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
597 // TODO: Under what circumstances can we create nodes? Constant folding?
598 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
599     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
600     SelectionDAG &DAG, unsigned Depth) const {
601   // Limit search depth.
602   if (Depth >= SelectionDAG::MaxRecursionDepth)
603     return SDValue();
604 
605   // Ignore UNDEFs.
606   if (Op.isUndef())
607     return SDValue();
608 
609   // Not demanding any bits/elts from Op.
610   if (DemandedBits == 0 || DemandedElts == 0)
611     return DAG.getUNDEF(Op.getValueType());
612 
613   unsigned NumElts = DemandedElts.getBitWidth();
614   KnownBits LHSKnown, RHSKnown;
615   switch (Op.getOpcode()) {
616   case ISD::BITCAST: {
617     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
618     EVT SrcVT = Src.getValueType();
619     EVT DstVT = Op.getValueType();
620     if (SrcVT == DstVT)
621       return Src;
622 
623     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
624     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
625     if (NumSrcEltBits == NumDstEltBits)
626       if (SDValue V = SimplifyMultipleUseDemandedBits(
627               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
628         return DAG.getBitcast(DstVT, V);
629 
630     // TODO - bigendian once we have test coverage.
631     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
632         DAG.getDataLayout().isLittleEndian()) {
633       unsigned Scale = NumDstEltBits / NumSrcEltBits;
634       unsigned NumSrcElts = SrcVT.getVectorNumElements();
635       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
636       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
637       for (unsigned i = 0; i != Scale; ++i) {
638         unsigned Offset = i * NumSrcEltBits;
639         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
640         if (!Sub.isNullValue()) {
641           DemandedSrcBits |= Sub;
642           for (unsigned j = 0; j != NumElts; ++j)
643             if (DemandedElts[j])
644               DemandedSrcElts.setBit((j * Scale) + i);
645         }
646       }
647 
648       if (SDValue V = SimplifyMultipleUseDemandedBits(
649               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
650         return DAG.getBitcast(DstVT, V);
651     }
652 
653     // TODO - bigendian once we have test coverage.
654     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
655         DAG.getDataLayout().isLittleEndian()) {
656       unsigned Scale = NumSrcEltBits / NumDstEltBits;
657       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
658       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
659       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
660       for (unsigned i = 0; i != NumElts; ++i)
661         if (DemandedElts[i]) {
662           unsigned Offset = (i % Scale) * NumDstEltBits;
663           DemandedSrcBits.insertBits(DemandedBits, Offset);
664           DemandedSrcElts.setBit(i / Scale);
665         }
666 
667       if (SDValue V = SimplifyMultipleUseDemandedBits(
668               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
669         return DAG.getBitcast(DstVT, V);
670     }
671 
672     break;
673   }
674   case ISD::AND: {
675     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
676     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
677 
678     // If all of the demanded bits are known 1 on one side, return the other.
679     // These bits cannot contribute to the result of the 'and' in this
680     // context.
681     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
682       return Op.getOperand(0);
683     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
684       return Op.getOperand(1);
685     break;
686   }
687   case ISD::OR: {
688     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
689     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
690 
691     // If all of the demanded bits are known zero on one side, return the
692     // other.  These bits cannot contribute to the result of the 'or' in this
693     // context.
694     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
695       return Op.getOperand(0);
696     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
697       return Op.getOperand(1);
698     break;
699   }
700   case ISD::XOR: {
701     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
702     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
703 
704     // If all of the demanded bits are known zero on one side, return the
705     // other.
706     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
707       return Op.getOperand(0);
708     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
709       return Op.getOperand(1);
710     break;
711   }
712   case ISD::SETCC: {
713     SDValue Op0 = Op.getOperand(0);
714     SDValue Op1 = Op.getOperand(1);
715     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
716     // If (1) we only need the sign-bit, (2) the setcc operands are the same
717     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
718     // -1, we may be able to bypass the setcc.
719     if (DemandedBits.isSignMask() &&
720         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
721         getBooleanContents(Op0.getValueType()) ==
722             BooleanContent::ZeroOrNegativeOneBooleanContent) {
723       // If we're testing X < 0, then this compare isn't needed - just use X!
724       // FIXME: We're limiting to integer types here, but this should also work
725       // if we don't care about FP signed-zero. The use of SETLT with FP means
726       // that we don't care about NaNs.
727       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
728           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
729         return Op0;
730     }
731     break;
732   }
733   case ISD::SIGN_EXTEND_INREG: {
734     // If none of the extended bits are demanded, eliminate the sextinreg.
735     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
736     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
737       return Op.getOperand(0);
738     break;
739   }
740   case ISD::INSERT_VECTOR_ELT: {
741     // If we don't demand the inserted element, return the base vector.
742     SDValue Vec = Op.getOperand(0);
743     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
744     EVT VecVT = Vec.getValueType();
745     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
746         !DemandedElts[CIdx->getZExtValue()])
747       return Vec;
748     break;
749   }
750   case ISD::INSERT_SUBVECTOR: {
751     // If we don't demand the inserted subvector, return the base vector.
752     SDValue Vec = Op.getOperand(0);
753     SDValue Sub = Op.getOperand(1);
754     uint64_t Idx = Op.getConstantOperandVal(2);
755     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
756     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
757       return Vec;
758     break;
759   }
760   case ISD::VECTOR_SHUFFLE: {
761     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
762 
763     // If all the demanded elts are from one operand and are inline,
764     // then we can use the operand directly.
765     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
766     for (unsigned i = 0; i != NumElts; ++i) {
767       int M = ShuffleMask[i];
768       if (M < 0 || !DemandedElts[i])
769         continue;
770       AllUndef = false;
771       IdentityLHS &= (M == (int)i);
772       IdentityRHS &= ((M - NumElts) == i);
773     }
774 
775     if (AllUndef)
776       return DAG.getUNDEF(Op.getValueType());
777     if (IdentityLHS)
778       return Op.getOperand(0);
779     if (IdentityRHS)
780       return Op.getOperand(1);
781     break;
782   }
783   default:
784     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
785       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
786               Op, DemandedBits, DemandedElts, DAG, Depth))
787         return V;
788     break;
789   }
790   return SDValue();
791 }
792 
793 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
794     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
795     unsigned Depth) const {
796   EVT VT = Op.getValueType();
797   APInt DemandedElts = VT.isVector()
798                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
799                            : APInt(1, 1);
800   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
801                                          Depth);
802 }
803 
804 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
805 /// result of Op are ever used downstream. If we can use this information to
806 /// simplify Op, create a new simplified DAG node and return true, returning the
807 /// original and new nodes in Old and New. Otherwise, analyze the expression and
808 /// return a mask of Known bits for the expression (used to simplify the
809 /// caller).  The Known bits may only be accurate for those bits in the
810 /// OriginalDemandedBits and OriginalDemandedElts.
811 bool TargetLowering::SimplifyDemandedBits(
812     SDValue Op, const APInt &OriginalDemandedBits,
813     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
814     unsigned Depth, bool AssumeSingleUse) const {
815   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
816   assert(Op.getScalarValueSizeInBits() == BitWidth &&
817          "Mask size mismatches value type size!");
818 
819   unsigned NumElts = OriginalDemandedElts.getBitWidth();
820   assert((!Op.getValueType().isVector() ||
821           NumElts == Op.getValueType().getVectorNumElements()) &&
822          "Unexpected vector size");
823 
824   APInt DemandedBits = OriginalDemandedBits;
825   APInt DemandedElts = OriginalDemandedElts;
826   SDLoc dl(Op);
827   auto &DL = TLO.DAG.getDataLayout();
828 
829   // Don't know anything.
830   Known = KnownBits(BitWidth);
831 
832   // Undef operand.
833   if (Op.isUndef())
834     return false;
835 
836   if (Op.getOpcode() == ISD::Constant) {
837     // We know all of the bits for a constant!
838     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
839     Known.Zero = ~Known.One;
840     return false;
841   }
842 
843   // Other users may use these bits.
844   EVT VT = Op.getValueType();
845   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
846     if (Depth != 0) {
847       // If not at the root, Just compute the Known bits to
848       // simplify things downstream.
849       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
850       return false;
851     }
852     // If this is the root being simplified, allow it to have multiple uses,
853     // just set the DemandedBits/Elts to all bits.
854     DemandedBits = APInt::getAllOnesValue(BitWidth);
855     DemandedElts = APInt::getAllOnesValue(NumElts);
856   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
857     // Not demanding any bits/elts from Op.
858     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
859   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
860     // Limit search depth.
861     return false;
862   }
863 
864   KnownBits Known2;
865   switch (Op.getOpcode()) {
866   case ISD::TargetConstant:
867     llvm_unreachable("Can't simplify this node");
868   case ISD::SCALAR_TO_VECTOR: {
869     if (!DemandedElts[0])
870       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
871 
872     KnownBits SrcKnown;
873     SDValue Src = Op.getOperand(0);
874     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
875     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
876     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
877       return true;
878 
879     // Upper elements are undef, so only get the knownbits if we just demand
880     // the bottom element.
881     if (DemandedElts == 1)
882       Known = SrcKnown.anyextOrTrunc(BitWidth);
883     break;
884   }
885   case ISD::BUILD_VECTOR:
886     // Collect the known bits that are shared by every demanded element.
887     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
888     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
889     return false; // Don't fall through, will infinitely loop.
890   case ISD::LOAD: {
891     LoadSDNode *LD = cast<LoadSDNode>(Op);
892     if (getTargetConstantFromLoad(LD)) {
893       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
894       return false; // Don't fall through, will infinitely loop.
895     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
896       // If this is a ZEXTLoad and we are looking at the loaded value.
897       EVT MemVT = LD->getMemoryVT();
898       unsigned MemBits = MemVT.getScalarSizeInBits();
899       Known.Zero.setBitsFrom(MemBits);
900       return false; // Don't fall through, will infinitely loop.
901     }
902     break;
903   }
904   case ISD::INSERT_VECTOR_ELT: {
905     SDValue Vec = Op.getOperand(0);
906     SDValue Scl = Op.getOperand(1);
907     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
908     EVT VecVT = Vec.getValueType();
909 
910     // If index isn't constant, assume we need all vector elements AND the
911     // inserted element.
912     APInt DemandedVecElts(DemandedElts);
913     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
914       unsigned Idx = CIdx->getZExtValue();
915       DemandedVecElts.clearBit(Idx);
916 
917       // Inserted element is not required.
918       if (!DemandedElts[Idx])
919         return TLO.CombineTo(Op, Vec);
920     }
921 
922     KnownBits KnownScl;
923     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
924     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
925     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
926       return true;
927 
928     Known = KnownScl.anyextOrTrunc(BitWidth);
929 
930     KnownBits KnownVec;
931     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
932                              Depth + 1))
933       return true;
934 
935     if (!!DemandedVecElts) {
936       Known.One &= KnownVec.One;
937       Known.Zero &= KnownVec.Zero;
938     }
939 
940     return false;
941   }
942   case ISD::INSERT_SUBVECTOR: {
943     // Demand any elements from the subvector and the remainder from the src its
944     // inserted into.
945     SDValue Src = Op.getOperand(0);
946     SDValue Sub = Op.getOperand(1);
947     uint64_t Idx = Op.getConstantOperandVal(2);
948     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
949     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
950     APInt DemandedSrcElts = DemandedElts;
951     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
952 
953     KnownBits KnownSub, KnownSrc;
954     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
955                              Depth + 1))
956       return true;
957     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
958                              Depth + 1))
959       return true;
960 
961     Known.Zero.setAllBits();
962     Known.One.setAllBits();
963     if (!!DemandedSubElts) {
964       Known.One &= KnownSub.One;
965       Known.Zero &= KnownSub.Zero;
966     }
967     if (!!DemandedSrcElts) {
968       Known.One &= KnownSrc.One;
969       Known.Zero &= KnownSrc.Zero;
970     }
971 
972     // Attempt to avoid multi-use src if we don't need anything from it.
973     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
974         !DemandedSrcElts.isAllOnesValue()) {
975       SDValue NewSub = SimplifyMultipleUseDemandedBits(
976           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
977       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
978           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
979       if (NewSub || NewSrc) {
980         NewSub = NewSub ? NewSub : Sub;
981         NewSrc = NewSrc ? NewSrc : Src;
982         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
983                                         Op.getOperand(2));
984         return TLO.CombineTo(Op, NewOp);
985       }
986     }
987     break;
988   }
989   case ISD::EXTRACT_SUBVECTOR: {
990     // Offset the demanded elts by the subvector index.
991     SDValue Src = Op.getOperand(0);
992     uint64_t Idx = Op.getConstantOperandVal(1);
993     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
994     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
995 
996     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
997                              Depth + 1))
998       return true;
999 
1000     // Attempt to avoid multi-use src if we don't need anything from it.
1001     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1002       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1003           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1004       if (DemandedSrc) {
1005         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1006                                         Op.getOperand(1));
1007         return TLO.CombineTo(Op, NewOp);
1008       }
1009     }
1010     break;
1011   }
1012   case ISD::CONCAT_VECTORS: {
1013     Known.Zero.setAllBits();
1014     Known.One.setAllBits();
1015     EVT SubVT = Op.getOperand(0).getValueType();
1016     unsigned NumSubVecs = Op.getNumOperands();
1017     unsigned NumSubElts = SubVT.getVectorNumElements();
1018     for (unsigned i = 0; i != NumSubVecs; ++i) {
1019       APInt DemandedSubElts =
1020           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1021       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1022                                Known2, TLO, Depth + 1))
1023         return true;
1024       // Known bits are shared by every demanded subvector element.
1025       if (!!DemandedSubElts) {
1026         Known.One &= Known2.One;
1027         Known.Zero &= Known2.Zero;
1028       }
1029     }
1030     break;
1031   }
1032   case ISD::VECTOR_SHUFFLE: {
1033     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1034 
1035     // Collect demanded elements from shuffle operands..
1036     APInt DemandedLHS(NumElts, 0);
1037     APInt DemandedRHS(NumElts, 0);
1038     for (unsigned i = 0; i != NumElts; ++i) {
1039       if (!DemandedElts[i])
1040         continue;
1041       int M = ShuffleMask[i];
1042       if (M < 0) {
1043         // For UNDEF elements, we don't know anything about the common state of
1044         // the shuffle result.
1045         DemandedLHS.clearAllBits();
1046         DemandedRHS.clearAllBits();
1047         break;
1048       }
1049       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1050       if (M < (int)NumElts)
1051         DemandedLHS.setBit(M);
1052       else
1053         DemandedRHS.setBit(M - NumElts);
1054     }
1055 
1056     if (!!DemandedLHS || !!DemandedRHS) {
1057       SDValue Op0 = Op.getOperand(0);
1058       SDValue Op1 = Op.getOperand(1);
1059 
1060       Known.Zero.setAllBits();
1061       Known.One.setAllBits();
1062       if (!!DemandedLHS) {
1063         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1064                                  Depth + 1))
1065           return true;
1066         Known.One &= Known2.One;
1067         Known.Zero &= Known2.Zero;
1068       }
1069       if (!!DemandedRHS) {
1070         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1071                                  Depth + 1))
1072           return true;
1073         Known.One &= Known2.One;
1074         Known.Zero &= Known2.Zero;
1075       }
1076 
1077       // Attempt to avoid multi-use ops if we don't need anything from them.
1078       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1079           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1080       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1081           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1082       if (DemandedOp0 || DemandedOp1) {
1083         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1084         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1085         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1086         return TLO.CombineTo(Op, NewOp);
1087       }
1088     }
1089     break;
1090   }
1091   case ISD::AND: {
1092     SDValue Op0 = Op.getOperand(0);
1093     SDValue Op1 = Op.getOperand(1);
1094 
1095     // If the RHS is a constant, check to see if the LHS would be zero without
1096     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1097     // simplify the LHS, here we're using information from the LHS to simplify
1098     // the RHS.
1099     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1100       // Do not increment Depth here; that can cause an infinite loop.
1101       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1102       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1103       if ((LHSKnown.Zero & DemandedBits) ==
1104           (~RHSC->getAPIntValue() & DemandedBits))
1105         return TLO.CombineTo(Op, Op0);
1106 
1107       // If any of the set bits in the RHS are known zero on the LHS, shrink
1108       // the constant.
1109       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1110         return true;
1111 
1112       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1113       // constant, but if this 'and' is only clearing bits that were just set by
1114       // the xor, then this 'and' can be eliminated by shrinking the mask of
1115       // the xor. For example, for a 32-bit X:
1116       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1117       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1118           LHSKnown.One == ~RHSC->getAPIntValue()) {
1119         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1120         return TLO.CombineTo(Op, Xor);
1121       }
1122     }
1123 
1124     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1125                              Depth + 1))
1126       return true;
1127     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1128     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1129                              Known2, TLO, Depth + 1))
1130       return true;
1131     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1132 
1133     // Attempt to avoid multi-use ops if we don't need anything from them.
1134     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1135       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1136           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1137       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1138           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1139       if (DemandedOp0 || DemandedOp1) {
1140         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1141         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1142         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1143         return TLO.CombineTo(Op, NewOp);
1144       }
1145     }
1146 
1147     // If all of the demanded bits are known one on one side, return the other.
1148     // These bits cannot contribute to the result of the 'and'.
1149     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1150       return TLO.CombineTo(Op, Op0);
1151     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1152       return TLO.CombineTo(Op, Op1);
1153     // If all of the demanded bits in the inputs are known zeros, return zero.
1154     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1155       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1156     // If the RHS is a constant, see if we can simplify it.
1157     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1158       return true;
1159     // If the operation can be done in a smaller type, do so.
1160     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1161       return true;
1162 
1163     Known &= Known2;
1164     break;
1165   }
1166   case ISD::OR: {
1167     SDValue Op0 = Op.getOperand(0);
1168     SDValue Op1 = Op.getOperand(1);
1169 
1170     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1171                              Depth + 1))
1172       return true;
1173     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1174     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1175                              Known2, TLO, Depth + 1))
1176       return true;
1177     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1178 
1179     // Attempt to avoid multi-use ops if we don't need anything from them.
1180     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1181       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1182           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1183       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1184           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1185       if (DemandedOp0 || DemandedOp1) {
1186         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1187         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1188         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1189         return TLO.CombineTo(Op, NewOp);
1190       }
1191     }
1192 
1193     // If all of the demanded bits are known zero on one side, return the other.
1194     // These bits cannot contribute to the result of the 'or'.
1195     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1196       return TLO.CombineTo(Op, Op0);
1197     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1198       return TLO.CombineTo(Op, Op1);
1199     // If the RHS is a constant, see if we can simplify it.
1200     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1201       return true;
1202     // If the operation can be done in a smaller type, do so.
1203     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1204       return true;
1205 
1206     Known |= Known2;
1207     break;
1208   }
1209   case ISD::XOR: {
1210     SDValue Op0 = Op.getOperand(0);
1211     SDValue Op1 = Op.getOperand(1);
1212 
1213     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1214                              Depth + 1))
1215       return true;
1216     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1221 
1222     // Attempt to avoid multi-use ops if we don't need anything from them.
1223     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1224       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1225           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1226       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1227           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1228       if (DemandedOp0 || DemandedOp1) {
1229         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1230         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1231         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1232         return TLO.CombineTo(Op, NewOp);
1233       }
1234     }
1235 
1236     // If all of the demanded bits are known zero on one side, return the other.
1237     // These bits cannot contribute to the result of the 'xor'.
1238     if (DemandedBits.isSubsetOf(Known.Zero))
1239       return TLO.CombineTo(Op, Op0);
1240     if (DemandedBits.isSubsetOf(Known2.Zero))
1241       return TLO.CombineTo(Op, Op1);
1242     // If the operation can be done in a smaller type, do so.
1243     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1244       return true;
1245 
1246     // If all of the unknown bits are known to be zero on one side or the other
1247     // (but not both) turn this into an *inclusive* or.
1248     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1249     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1250       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1251 
1252     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1253       // If one side is a constant, and all of the known set bits on the other
1254       // side are also set in the constant, turn this into an AND, as we know
1255       // the bits will be cleared.
1256       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1257       // NB: it is okay if more bits are known than are requested
1258       if (C->getAPIntValue() == Known2.One) {
1259         SDValue ANDC =
1260             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1261         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1262       }
1263 
1264       // If the RHS is a constant, see if we can change it. Don't alter a -1
1265       // constant because that's a 'not' op, and that is better for combining
1266       // and codegen.
1267       if (!C->isAllOnesValue()) {
1268         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1269           // We're flipping all demanded bits. Flip the undemanded bits too.
1270           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1271           return TLO.CombineTo(Op, New);
1272         }
1273         // If we can't turn this into a 'not', try to shrink the constant.
1274         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1275           return true;
1276       }
1277     }
1278 
1279     Known ^= Known2;
1280     break;
1281   }
1282   case ISD::SELECT:
1283     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1284                              Depth + 1))
1285       return true;
1286     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1287                              Depth + 1))
1288       return true;
1289     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1290     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1291 
1292     // If the operands are constants, see if we can simplify them.
1293     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1294       return true;
1295 
1296     // Only known if known in both the LHS and RHS.
1297     Known.One &= Known2.One;
1298     Known.Zero &= Known2.Zero;
1299     break;
1300   case ISD::SELECT_CC:
1301     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1302                              Depth + 1))
1303       return true;
1304     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1305                              Depth + 1))
1306       return true;
1307     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1308     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1309 
1310     // If the operands are constants, see if we can simplify them.
1311     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1312       return true;
1313 
1314     // Only known if known in both the LHS and RHS.
1315     Known.One &= Known2.One;
1316     Known.Zero &= Known2.Zero;
1317     break;
1318   case ISD::SETCC: {
1319     SDValue Op0 = Op.getOperand(0);
1320     SDValue Op1 = Op.getOperand(1);
1321     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1322     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1323     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1324     // -1, we may be able to bypass the setcc.
1325     if (DemandedBits.isSignMask() &&
1326         Op0.getScalarValueSizeInBits() == BitWidth &&
1327         getBooleanContents(Op0.getValueType()) ==
1328             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1329       // If we're testing X < 0, then this compare isn't needed - just use X!
1330       // FIXME: We're limiting to integer types here, but this should also work
1331       // if we don't care about FP signed-zero. The use of SETLT with FP means
1332       // that we don't care about NaNs.
1333       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1334           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1335         return TLO.CombineTo(Op, Op0);
1336 
1337       // TODO: Should we check for other forms of sign-bit comparisons?
1338       // Examples: X <= -1, X >= 0
1339     }
1340     if (getBooleanContents(Op0.getValueType()) ==
1341             TargetLowering::ZeroOrOneBooleanContent &&
1342         BitWidth > 1)
1343       Known.Zero.setBitsFrom(1);
1344     break;
1345   }
1346   case ISD::SHL: {
1347     SDValue Op0 = Op.getOperand(0);
1348     SDValue Op1 = Op.getOperand(1);
1349     EVT ShiftVT = Op1.getValueType();
1350 
1351     if (const APInt *SA =
1352             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1353       unsigned ShAmt = SA->getZExtValue();
1354       if (ShAmt == 0)
1355         return TLO.CombineTo(Op, Op0);
1356 
1357       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1358       // single shift.  We can do this if the bottom bits (which are shifted
1359       // out) are never demanded.
1360       // TODO - support non-uniform vector amounts.
1361       if (Op0.getOpcode() == ISD::SRL) {
1362         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1363           if (const APInt *SA2 =
1364                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1365             if (SA2->ult(BitWidth)) {
1366               unsigned C1 = SA2->getZExtValue();
1367               unsigned Opc = ISD::SHL;
1368               int Diff = ShAmt - C1;
1369               if (Diff < 0) {
1370                 Diff = -Diff;
1371                 Opc = ISD::SRL;
1372               }
1373 
1374               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1375               return TLO.CombineTo(
1376                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1377             }
1378           }
1379         }
1380       }
1381 
1382       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1383       // are not demanded. This will likely allow the anyext to be folded away.
1384       // TODO - support non-uniform vector amounts.
1385       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1386         SDValue InnerOp = Op0.getOperand(0);
1387         EVT InnerVT = InnerOp.getValueType();
1388         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1389         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1390             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1391           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1392           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1393             ShTy = InnerVT;
1394           SDValue NarrowShl =
1395               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1396                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1397           return TLO.CombineTo(
1398               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1399         }
1400 
1401         // Repeat the SHL optimization above in cases where an extension
1402         // intervenes: (shl (anyext (shr x, c1)), c2) to
1403         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1404         // aren't demanded (as above) and that the shifted upper c1 bits of
1405         // x aren't demanded.
1406         // TODO - support non-uniform vector amounts.
1407         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1408             InnerOp.hasOneUse()) {
1409           if (const APInt *SA2 =
1410                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1411             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1412             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1413                 DemandedBits.getActiveBits() <=
1414                     (InnerBits - InnerShAmt + ShAmt) &&
1415                 DemandedBits.countTrailingZeros() >= ShAmt) {
1416               SDValue NewSA =
1417                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1418               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1419                                                InnerOp.getOperand(0));
1420               return TLO.CombineTo(
1421                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1422             }
1423           }
1424         }
1425       }
1426 
1427       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1428       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1429                                Depth + 1))
1430         return true;
1431       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1432       Known.Zero <<= ShAmt;
1433       Known.One <<= ShAmt;
1434       // low bits known zero.
1435       Known.Zero.setLowBits(ShAmt);
1436 
1437       // Try shrinking the operation as long as the shift amount will still be
1438       // in range.
1439       if ((ShAmt < DemandedBits.getActiveBits()) &&
1440           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1441         return true;
1442     }
1443     break;
1444   }
1445   case ISD::SRL: {
1446     SDValue Op0 = Op.getOperand(0);
1447     SDValue Op1 = Op.getOperand(1);
1448     EVT ShiftVT = Op1.getValueType();
1449 
1450     if (const APInt *SA =
1451             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1452       unsigned ShAmt = SA->getZExtValue();
1453       if (ShAmt == 0)
1454         return TLO.CombineTo(Op, Op0);
1455 
1456       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1457       // single shift.  We can do this if the top bits (which are shifted out)
1458       // are never demanded.
1459       // TODO - support non-uniform vector amounts.
1460       if (Op0.getOpcode() == ISD::SHL) {
1461         if (const APInt *SA2 =
1462                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1463           if (!DemandedBits.intersects(
1464                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1465             if (SA2->ult(BitWidth)) {
1466               unsigned C1 = SA2->getZExtValue();
1467               unsigned Opc = ISD::SRL;
1468               int Diff = ShAmt - C1;
1469               if (Diff < 0) {
1470                 Diff = -Diff;
1471                 Opc = ISD::SHL;
1472               }
1473 
1474               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1475               return TLO.CombineTo(
1476                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1477             }
1478           }
1479         }
1480       }
1481 
1482       APInt InDemandedMask = (DemandedBits << ShAmt);
1483 
1484       // If the shift is exact, then it does demand the low bits (and knows that
1485       // they are zero).
1486       if (Op->getFlags().hasExact())
1487         InDemandedMask.setLowBits(ShAmt);
1488 
1489       // Compute the new bits that are at the top now.
1490       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1491                                Depth + 1))
1492         return true;
1493       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1494       Known.Zero.lshrInPlace(ShAmt);
1495       Known.One.lshrInPlace(ShAmt);
1496       // High bits known zero.
1497       Known.Zero.setHighBits(ShAmt);
1498     }
1499     break;
1500   }
1501   case ISD::SRA: {
1502     SDValue Op0 = Op.getOperand(0);
1503     SDValue Op1 = Op.getOperand(1);
1504     EVT ShiftVT = Op1.getValueType();
1505 
1506     // If we only want bits that already match the signbit then we don't need
1507     // to shift.
1508     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1509     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1510         NumHiDemandedBits)
1511       return TLO.CombineTo(Op, Op0);
1512 
1513     // If this is an arithmetic shift right and only the low-bit is set, we can
1514     // always convert this into a logical shr, even if the shift amount is
1515     // variable.  The low bit of the shift cannot be an input sign bit unless
1516     // the shift amount is >= the size of the datatype, which is undefined.
1517     if (DemandedBits.isOneValue())
1518       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1519 
1520     if (const APInt *SA =
1521             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1522       unsigned ShAmt = SA->getZExtValue();
1523       if (ShAmt == 0)
1524         return TLO.CombineTo(Op, Op0);
1525 
1526       APInt InDemandedMask = (DemandedBits << ShAmt);
1527 
1528       // If the shift is exact, then it does demand the low bits (and knows that
1529       // they are zero).
1530       if (Op->getFlags().hasExact())
1531         InDemandedMask.setLowBits(ShAmt);
1532 
1533       // If any of the demanded bits are produced by the sign extension, we also
1534       // demand the input sign bit.
1535       if (DemandedBits.countLeadingZeros() < ShAmt)
1536         InDemandedMask.setSignBit();
1537 
1538       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1539                                Depth + 1))
1540         return true;
1541       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1542       Known.Zero.lshrInPlace(ShAmt);
1543       Known.One.lshrInPlace(ShAmt);
1544 
1545       // If the input sign bit is known to be zero, or if none of the top bits
1546       // are demanded, turn this into an unsigned shift right.
1547       if (Known.Zero[BitWidth - ShAmt - 1] ||
1548           DemandedBits.countLeadingZeros() >= ShAmt) {
1549         SDNodeFlags Flags;
1550         Flags.setExact(Op->getFlags().hasExact());
1551         return TLO.CombineTo(
1552             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1553       }
1554 
1555       int Log2 = DemandedBits.exactLogBase2();
1556       if (Log2 >= 0) {
1557         // The bit must come from the sign.
1558         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1559         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1560       }
1561 
1562       if (Known.One[BitWidth - ShAmt - 1])
1563         // New bits are known one.
1564         Known.One.setHighBits(ShAmt);
1565 
1566       // Attempt to avoid multi-use ops if we don't need anything from them.
1567       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1568         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1569             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1570         if (DemandedOp0) {
1571           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1572           return TLO.CombineTo(Op, NewOp);
1573         }
1574       }
1575     }
1576     break;
1577   }
1578   case ISD::FSHL:
1579   case ISD::FSHR: {
1580     SDValue Op0 = Op.getOperand(0);
1581     SDValue Op1 = Op.getOperand(1);
1582     SDValue Op2 = Op.getOperand(2);
1583     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1584 
1585     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1586       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1587 
1588       // For fshl, 0-shift returns the 1st arg.
1589       // For fshr, 0-shift returns the 2nd arg.
1590       if (Amt == 0) {
1591         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1592                                  Known, TLO, Depth + 1))
1593           return true;
1594         break;
1595       }
1596 
1597       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1598       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1599       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1600       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1601       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1602                                Depth + 1))
1603         return true;
1604       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1605                                Depth + 1))
1606         return true;
1607 
1608       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1609       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1610       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1611       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1612       Known.One |= Known2.One;
1613       Known.Zero |= Known2.Zero;
1614     }
1615 
1616     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1617     if (isPowerOf2_32(BitWidth)) {
1618       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1619       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1620                                Known2, TLO, Depth + 1))
1621         return true;
1622     }
1623     break;
1624   }
1625   case ISD::ROTL:
1626   case ISD::ROTR: {
1627     SDValue Op0 = Op.getOperand(0);
1628     SDValue Op1 = Op.getOperand(1);
1629 
1630     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1631     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1632       return TLO.CombineTo(Op, Op0);
1633 
1634     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1635     if (isPowerOf2_32(BitWidth)) {
1636       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1637       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1638                                Depth + 1))
1639         return true;
1640     }
1641     break;
1642   }
1643   case ISD::BITREVERSE: {
1644     SDValue Src = Op.getOperand(0);
1645     APInt DemandedSrcBits = DemandedBits.reverseBits();
1646     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1647                              Depth + 1))
1648       return true;
1649     Known.One = Known2.One.reverseBits();
1650     Known.Zero = Known2.Zero.reverseBits();
1651     break;
1652   }
1653   case ISD::BSWAP: {
1654     SDValue Src = Op.getOperand(0);
1655     APInt DemandedSrcBits = DemandedBits.byteSwap();
1656     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1657                              Depth + 1))
1658       return true;
1659     Known.One = Known2.One.byteSwap();
1660     Known.Zero = Known2.Zero.byteSwap();
1661     break;
1662   }
1663   case ISD::SIGN_EXTEND_INREG: {
1664     SDValue Op0 = Op.getOperand(0);
1665     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1666     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1667 
1668     // If we only care about the highest bit, don't bother shifting right.
1669     if (DemandedBits.isSignMask()) {
1670       unsigned NumSignBits =
1671           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1672       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1673       // However if the input is already sign extended we expect the sign
1674       // extension to be dropped altogether later and do not simplify.
1675       if (!AlreadySignExtended) {
1676         // Compute the correct shift amount type, which must be getShiftAmountTy
1677         // for scalar types after legalization.
1678         EVT ShiftAmtTy = VT;
1679         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1680           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1681 
1682         SDValue ShiftAmt =
1683             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1684         return TLO.CombineTo(Op,
1685                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1686       }
1687     }
1688 
1689     // If none of the extended bits are demanded, eliminate the sextinreg.
1690     if (DemandedBits.getActiveBits() <= ExVTBits)
1691       return TLO.CombineTo(Op, Op0);
1692 
1693     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1694 
1695     // Since the sign extended bits are demanded, we know that the sign
1696     // bit is demanded.
1697     InputDemandedBits.setBit(ExVTBits - 1);
1698 
1699     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1700       return true;
1701     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1702 
1703     // If the sign bit of the input is known set or clear, then we know the
1704     // top bits of the result.
1705 
1706     // If the input sign bit is known zero, convert this into a zero extension.
1707     if (Known.Zero[ExVTBits - 1])
1708       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1709 
1710     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1711     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1712       Known.One.setBitsFrom(ExVTBits);
1713       Known.Zero &= Mask;
1714     } else { // Input sign bit unknown
1715       Known.Zero &= Mask;
1716       Known.One &= Mask;
1717     }
1718     break;
1719   }
1720   case ISD::BUILD_PAIR: {
1721     EVT HalfVT = Op.getOperand(0).getValueType();
1722     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1723 
1724     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1725     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1726 
1727     KnownBits KnownLo, KnownHi;
1728 
1729     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1730       return true;
1731 
1732     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1733       return true;
1734 
1735     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1736                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1737 
1738     Known.One = KnownLo.One.zext(BitWidth) |
1739                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1740     break;
1741   }
1742   case ISD::ZERO_EXTEND:
1743   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1744     SDValue Src = Op.getOperand(0);
1745     EVT SrcVT = Src.getValueType();
1746     unsigned InBits = SrcVT.getScalarSizeInBits();
1747     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1748     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1749 
1750     // If none of the top bits are demanded, convert this into an any_extend.
1751     if (DemandedBits.getActiveBits() <= InBits) {
1752       // If we only need the non-extended bits of the bottom element
1753       // then we can just bitcast to the result.
1754       if (IsVecInReg && DemandedElts == 1 &&
1755           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1756           TLO.DAG.getDataLayout().isLittleEndian())
1757         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1758 
1759       unsigned Opc =
1760           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1761       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1762         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1763     }
1764 
1765     APInt InDemandedBits = DemandedBits.trunc(InBits);
1766     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1767     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1768                              Depth + 1))
1769       return true;
1770     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1771     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1772     Known = Known.zext(BitWidth);
1773     break;
1774   }
1775   case ISD::SIGN_EXTEND:
1776   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1777     SDValue Src = Op.getOperand(0);
1778     EVT SrcVT = Src.getValueType();
1779     unsigned InBits = SrcVT.getScalarSizeInBits();
1780     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1781     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1782 
1783     // If none of the top bits are demanded, convert this into an any_extend.
1784     if (DemandedBits.getActiveBits() <= InBits) {
1785       // If we only need the non-extended bits of the bottom element
1786       // then we can just bitcast to the result.
1787       if (IsVecInReg && DemandedElts == 1 &&
1788           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1789           TLO.DAG.getDataLayout().isLittleEndian())
1790         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1791 
1792       unsigned Opc =
1793           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1794       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1795         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1796     }
1797 
1798     APInt InDemandedBits = DemandedBits.trunc(InBits);
1799     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1800 
1801     // Since some of the sign extended bits are demanded, we know that the sign
1802     // bit is demanded.
1803     InDemandedBits.setBit(InBits - 1);
1804 
1805     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1806                              Depth + 1))
1807       return true;
1808     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1809     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1810 
1811     // If the sign bit is known one, the top bits match.
1812     Known = Known.sext(BitWidth);
1813 
1814     // If the sign bit is known zero, convert this to a zero extend.
1815     if (Known.isNonNegative()) {
1816       unsigned Opc =
1817           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1818       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1819         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1820     }
1821     break;
1822   }
1823   case ISD::ANY_EXTEND:
1824   case ISD::ANY_EXTEND_VECTOR_INREG: {
1825     SDValue Src = Op.getOperand(0);
1826     EVT SrcVT = Src.getValueType();
1827     unsigned InBits = SrcVT.getScalarSizeInBits();
1828     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1829     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1830 
1831     // If we only need the bottom element then we can just bitcast.
1832     // TODO: Handle ANY_EXTEND?
1833     if (IsVecInReg && DemandedElts == 1 &&
1834         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1835         TLO.DAG.getDataLayout().isLittleEndian())
1836       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1837 
1838     APInt InDemandedBits = DemandedBits.trunc(InBits);
1839     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1840     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1841                              Depth + 1))
1842       return true;
1843     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1844     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1845     Known = Known.anyext(BitWidth);
1846 
1847     // Attempt to avoid multi-use ops if we don't need anything from them.
1848     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1849             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1850       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1851     break;
1852   }
1853   case ISD::TRUNCATE: {
1854     SDValue Src = Op.getOperand(0);
1855 
1856     // Simplify the input, using demanded bit information, and compute the known
1857     // zero/one bits live out.
1858     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1859     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1860     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1861       return true;
1862     Known = Known.trunc(BitWidth);
1863 
1864     // Attempt to avoid multi-use ops if we don't need anything from them.
1865     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1866             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1867       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1868 
1869     // If the input is only used by this truncate, see if we can shrink it based
1870     // on the known demanded bits.
1871     if (Src.getNode()->hasOneUse()) {
1872       switch (Src.getOpcode()) {
1873       default:
1874         break;
1875       case ISD::SRL:
1876         // Shrink SRL by a constant if none of the high bits shifted in are
1877         // demanded.
1878         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1879           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1880           // undesirable.
1881           break;
1882 
1883         SDValue ShAmt = Src.getOperand(1);
1884         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1885         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1886           break;
1887         uint64_t ShVal = ShAmtC->getZExtValue();
1888 
1889         APInt HighBits =
1890             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1891         HighBits.lshrInPlace(ShVal);
1892         HighBits = HighBits.trunc(BitWidth);
1893 
1894         if (!(HighBits & DemandedBits)) {
1895           // None of the shifted in bits are needed.  Add a truncate of the
1896           // shift input, then shift it.
1897           if (TLO.LegalTypes())
1898             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1899           SDValue NewTrunc =
1900               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1901           return TLO.CombineTo(
1902               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1903         }
1904         break;
1905       }
1906     }
1907 
1908     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1909     break;
1910   }
1911   case ISD::AssertZext: {
1912     // AssertZext demands all of the high bits, plus any of the low bits
1913     // demanded by its users.
1914     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1915     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1916     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1917                              TLO, Depth + 1))
1918       return true;
1919     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1920 
1921     Known.Zero |= ~InMask;
1922     break;
1923   }
1924   case ISD::EXTRACT_VECTOR_ELT: {
1925     SDValue Src = Op.getOperand(0);
1926     SDValue Idx = Op.getOperand(1);
1927     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1928     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1929 
1930     // Demand the bits from every vector element without a constant index.
1931     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1932     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1933       if (CIdx->getAPIntValue().ult(NumSrcElts))
1934         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1935 
1936     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1937     // anything about the extended bits.
1938     APInt DemandedSrcBits = DemandedBits;
1939     if (BitWidth > EltBitWidth)
1940       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1941 
1942     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1943                              Depth + 1))
1944       return true;
1945 
1946     // Attempt to avoid multi-use ops if we don't need anything from them.
1947     if (!DemandedSrcBits.isAllOnesValue() ||
1948         !DemandedSrcElts.isAllOnesValue()) {
1949       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1950               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1951         SDValue NewOp =
1952             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1953         return TLO.CombineTo(Op, NewOp);
1954       }
1955     }
1956 
1957     Known = Known2;
1958     if (BitWidth > EltBitWidth)
1959       Known = Known.anyext(BitWidth);
1960     break;
1961   }
1962   case ISD::BITCAST: {
1963     SDValue Src = Op.getOperand(0);
1964     EVT SrcVT = Src.getValueType();
1965     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1966 
1967     // If this is an FP->Int bitcast and if the sign bit is the only
1968     // thing demanded, turn this into a FGETSIGN.
1969     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1970         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1971         SrcVT.isFloatingPoint()) {
1972       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1973       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1974       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1975           SrcVT != MVT::f128) {
1976         // Cannot eliminate/lower SHL for f128 yet.
1977         EVT Ty = OpVTLegal ? VT : MVT::i32;
1978         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1979         // place.  We expect the SHL to be eliminated by other optimizations.
1980         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1981         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1982         if (!OpVTLegal && OpVTSizeInBits > 32)
1983           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1984         unsigned ShVal = Op.getValueSizeInBits() - 1;
1985         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1986         return TLO.CombineTo(Op,
1987                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1988       }
1989     }
1990 
1991     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1992     // Demand the elt/bit if any of the original elts/bits are demanded.
1993     // TODO - bigendian once we have test coverage.
1994     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1995         TLO.DAG.getDataLayout().isLittleEndian()) {
1996       unsigned Scale = BitWidth / NumSrcEltBits;
1997       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1998       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1999       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2000       for (unsigned i = 0; i != Scale; ++i) {
2001         unsigned Offset = i * NumSrcEltBits;
2002         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2003         if (!Sub.isNullValue()) {
2004           DemandedSrcBits |= Sub;
2005           for (unsigned j = 0; j != NumElts; ++j)
2006             if (DemandedElts[j])
2007               DemandedSrcElts.setBit((j * Scale) + i);
2008         }
2009       }
2010 
2011       APInt KnownSrcUndef, KnownSrcZero;
2012       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2013                                      KnownSrcZero, TLO, Depth + 1))
2014         return true;
2015 
2016       KnownBits KnownSrcBits;
2017       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2018                                KnownSrcBits, TLO, Depth + 1))
2019         return true;
2020     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2021                TLO.DAG.getDataLayout().isLittleEndian()) {
2022       unsigned Scale = NumSrcEltBits / BitWidth;
2023       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2024       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2025       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2026       for (unsigned i = 0; i != NumElts; ++i)
2027         if (DemandedElts[i]) {
2028           unsigned Offset = (i % Scale) * BitWidth;
2029           DemandedSrcBits.insertBits(DemandedBits, Offset);
2030           DemandedSrcElts.setBit(i / Scale);
2031         }
2032 
2033       if (SrcVT.isVector()) {
2034         APInt KnownSrcUndef, KnownSrcZero;
2035         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2036                                        KnownSrcZero, TLO, Depth + 1))
2037           return true;
2038       }
2039 
2040       KnownBits KnownSrcBits;
2041       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2042                                KnownSrcBits, TLO, Depth + 1))
2043         return true;
2044     }
2045 
2046     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2047     // recursive call where Known may be useful to the caller.
2048     if (Depth > 0) {
2049       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2050       return false;
2051     }
2052     break;
2053   }
2054   case ISD::ADD:
2055   case ISD::MUL:
2056   case ISD::SUB: {
2057     // Add, Sub, and Mul don't demand any bits in positions beyond that
2058     // of the highest bit demanded of them.
2059     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2060     SDNodeFlags Flags = Op.getNode()->getFlags();
2061     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2062     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2063     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2064                              Depth + 1) ||
2065         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2066                              Depth + 1) ||
2067         // See if the operation should be performed at a smaller bit width.
2068         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2069       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2070         // Disable the nsw and nuw flags. We can no longer guarantee that we
2071         // won't wrap after simplification.
2072         Flags.setNoSignedWrap(false);
2073         Flags.setNoUnsignedWrap(false);
2074         SDValue NewOp =
2075             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2076         return TLO.CombineTo(Op, NewOp);
2077       }
2078       return true;
2079     }
2080 
2081     // Attempt to avoid multi-use ops if we don't need anything from them.
2082     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2083       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2084           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2085       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2086           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2087       if (DemandedOp0 || DemandedOp1) {
2088         Flags.setNoSignedWrap(false);
2089         Flags.setNoUnsignedWrap(false);
2090         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2091         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2092         SDValue NewOp =
2093             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2094         return TLO.CombineTo(Op, NewOp);
2095       }
2096     }
2097 
2098     // If we have a constant operand, we may be able to turn it into -1 if we
2099     // do not demand the high bits. This can make the constant smaller to
2100     // encode, allow more general folding, or match specialized instruction
2101     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2102     // is probably not useful (and could be detrimental).
2103     ConstantSDNode *C = isConstOrConstSplat(Op1);
2104     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2105     if (C && !C->isAllOnesValue() && !C->isOne() &&
2106         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2107       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2108       // Disable the nsw and nuw flags. We can no longer guarantee that we
2109       // won't wrap after simplification.
2110       Flags.setNoSignedWrap(false);
2111       Flags.setNoUnsignedWrap(false);
2112       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2113       return TLO.CombineTo(Op, NewOp);
2114     }
2115 
2116     LLVM_FALLTHROUGH;
2117   }
2118   default:
2119     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2120       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2121                                             Known, TLO, Depth))
2122         return true;
2123       break;
2124     }
2125 
2126     // Just use computeKnownBits to compute output bits.
2127     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2128     break;
2129   }
2130 
2131   // If we know the value of all of the demanded bits, return this as a
2132   // constant.
2133   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2134     // Avoid folding to a constant if any OpaqueConstant is involved.
2135     const SDNode *N = Op.getNode();
2136     for (SDNodeIterator I = SDNodeIterator::begin(N),
2137                         E = SDNodeIterator::end(N);
2138          I != E; ++I) {
2139       SDNode *Op = *I;
2140       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2141         if (C->isOpaque())
2142           return false;
2143     }
2144     // TODO: Handle float bits as well.
2145     if (VT.isInteger())
2146       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2147   }
2148 
2149   return false;
2150 }
2151 
2152 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2153                                                 const APInt &DemandedElts,
2154                                                 APInt &KnownUndef,
2155                                                 APInt &KnownZero,
2156                                                 DAGCombinerInfo &DCI) const {
2157   SelectionDAG &DAG = DCI.DAG;
2158   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2159                         !DCI.isBeforeLegalizeOps());
2160 
2161   bool Simplified =
2162       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2163   if (Simplified) {
2164     DCI.AddToWorklist(Op.getNode());
2165     DCI.CommitTargetLoweringOpt(TLO);
2166   }
2167 
2168   return Simplified;
2169 }
2170 
2171 /// Given a vector binary operation and known undefined elements for each input
2172 /// operand, compute whether each element of the output is undefined.
2173 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2174                                          const APInt &UndefOp0,
2175                                          const APInt &UndefOp1) {
2176   EVT VT = BO.getValueType();
2177   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2178          "Vector binop only");
2179 
2180   EVT EltVT = VT.getVectorElementType();
2181   unsigned NumElts = VT.getVectorNumElements();
2182   assert(UndefOp0.getBitWidth() == NumElts &&
2183          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2184 
2185   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2186                                    const APInt &UndefVals) {
2187     if (UndefVals[Index])
2188       return DAG.getUNDEF(EltVT);
2189 
2190     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2191       // Try hard to make sure that the getNode() call is not creating temporary
2192       // nodes. Ignore opaque integers because they do not constant fold.
2193       SDValue Elt = BV->getOperand(Index);
2194       auto *C = dyn_cast<ConstantSDNode>(Elt);
2195       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2196         return Elt;
2197     }
2198 
2199     return SDValue();
2200   };
2201 
2202   APInt KnownUndef = APInt::getNullValue(NumElts);
2203   for (unsigned i = 0; i != NumElts; ++i) {
2204     // If both inputs for this element are either constant or undef and match
2205     // the element type, compute the constant/undef result for this element of
2206     // the vector.
2207     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2208     // not handle FP constants. The code within getNode() should be refactored
2209     // to avoid the danger of creating a bogus temporary node here.
2210     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2211     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2212     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2213       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2214         KnownUndef.setBit(i);
2215   }
2216   return KnownUndef;
2217 }
2218 
2219 bool TargetLowering::SimplifyDemandedVectorElts(
2220     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2221     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2222     bool AssumeSingleUse) const {
2223   EVT VT = Op.getValueType();
2224   APInt DemandedElts = OriginalDemandedElts;
2225   unsigned NumElts = DemandedElts.getBitWidth();
2226   assert(VT.isVector() && "Expected vector op");
2227   assert(VT.getVectorNumElements() == NumElts &&
2228          "Mask size mismatches value type element count!");
2229 
2230   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2231 
2232   // Undef operand.
2233   if (Op.isUndef()) {
2234     KnownUndef.setAllBits();
2235     return false;
2236   }
2237 
2238   // If Op has other users, assume that all elements are needed.
2239   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2240     DemandedElts.setAllBits();
2241 
2242   // Not demanding any elements from Op.
2243   if (DemandedElts == 0) {
2244     KnownUndef.setAllBits();
2245     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2246   }
2247 
2248   // Limit search depth.
2249   if (Depth >= SelectionDAG::MaxRecursionDepth)
2250     return false;
2251 
2252   SDLoc DL(Op);
2253   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2254 
2255   switch (Op.getOpcode()) {
2256   case ISD::SCALAR_TO_VECTOR: {
2257     if (!DemandedElts[0]) {
2258       KnownUndef.setAllBits();
2259       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2260     }
2261     KnownUndef.setHighBits(NumElts - 1);
2262     break;
2263   }
2264   case ISD::BITCAST: {
2265     SDValue Src = Op.getOperand(0);
2266     EVT SrcVT = Src.getValueType();
2267 
2268     // We only handle vectors here.
2269     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2270     if (!SrcVT.isVector())
2271       break;
2272 
2273     // Fast handling of 'identity' bitcasts.
2274     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2275     if (NumSrcElts == NumElts)
2276       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2277                                         KnownZero, TLO, Depth + 1);
2278 
2279     APInt SrcZero, SrcUndef;
2280     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2281 
2282     // Bitcast from 'large element' src vector to 'small element' vector, we
2283     // must demand a source element if any DemandedElt maps to it.
2284     if ((NumElts % NumSrcElts) == 0) {
2285       unsigned Scale = NumElts / NumSrcElts;
2286       for (unsigned i = 0; i != NumElts; ++i)
2287         if (DemandedElts[i])
2288           SrcDemandedElts.setBit(i / Scale);
2289 
2290       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2291                                      TLO, Depth + 1))
2292         return true;
2293 
2294       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2295       // of the large element.
2296       // TODO - bigendian once we have test coverage.
2297       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2298         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2299         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2300         for (unsigned i = 0; i != NumElts; ++i)
2301           if (DemandedElts[i]) {
2302             unsigned Ofs = (i % Scale) * EltSizeInBits;
2303             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2304           }
2305 
2306         KnownBits Known;
2307         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2308                                  TLO, Depth + 1))
2309           return true;
2310       }
2311 
2312       // If the src element is zero/undef then all the output elements will be -
2313       // only demanded elements are guaranteed to be correct.
2314       for (unsigned i = 0; i != NumSrcElts; ++i) {
2315         if (SrcDemandedElts[i]) {
2316           if (SrcZero[i])
2317             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2318           if (SrcUndef[i])
2319             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2320         }
2321       }
2322     }
2323 
2324     // Bitcast from 'small element' src vector to 'large element' vector, we
2325     // demand all smaller source elements covered by the larger demanded element
2326     // of this vector.
2327     if ((NumSrcElts % NumElts) == 0) {
2328       unsigned Scale = NumSrcElts / NumElts;
2329       for (unsigned i = 0; i != NumElts; ++i)
2330         if (DemandedElts[i])
2331           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2332 
2333       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2334                                      TLO, Depth + 1))
2335         return true;
2336 
2337       // If all the src elements covering an output element are zero/undef, then
2338       // the output element will be as well, assuming it was demanded.
2339       for (unsigned i = 0; i != NumElts; ++i) {
2340         if (DemandedElts[i]) {
2341           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2342             KnownZero.setBit(i);
2343           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2344             KnownUndef.setBit(i);
2345         }
2346       }
2347     }
2348     break;
2349   }
2350   case ISD::BUILD_VECTOR: {
2351     // Check all elements and simplify any unused elements with UNDEF.
2352     if (!DemandedElts.isAllOnesValue()) {
2353       // Don't simplify BROADCASTS.
2354       if (llvm::any_of(Op->op_values(),
2355                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2356         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2357         bool Updated = false;
2358         for (unsigned i = 0; i != NumElts; ++i) {
2359           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2360             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2361             KnownUndef.setBit(i);
2362             Updated = true;
2363           }
2364         }
2365         if (Updated)
2366           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2367       }
2368     }
2369     for (unsigned i = 0; i != NumElts; ++i) {
2370       SDValue SrcOp = Op.getOperand(i);
2371       if (SrcOp.isUndef()) {
2372         KnownUndef.setBit(i);
2373       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2374                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2375         KnownZero.setBit(i);
2376       }
2377     }
2378     break;
2379   }
2380   case ISD::CONCAT_VECTORS: {
2381     EVT SubVT = Op.getOperand(0).getValueType();
2382     unsigned NumSubVecs = Op.getNumOperands();
2383     unsigned NumSubElts = SubVT.getVectorNumElements();
2384     for (unsigned i = 0; i != NumSubVecs; ++i) {
2385       SDValue SubOp = Op.getOperand(i);
2386       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2387       APInt SubUndef, SubZero;
2388       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2389                                      Depth + 1))
2390         return true;
2391       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2392       KnownZero.insertBits(SubZero, i * NumSubElts);
2393     }
2394     break;
2395   }
2396   case ISD::INSERT_SUBVECTOR: {
2397     // Demand any elements from the subvector and the remainder from the src its
2398     // inserted into.
2399     SDValue Src = Op.getOperand(0);
2400     SDValue Sub = Op.getOperand(1);
2401     uint64_t Idx = Op.getConstantOperandVal(2);
2402     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2403     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2404     APInt DemandedSrcElts = DemandedElts;
2405     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2406 
2407     APInt SubUndef, SubZero;
2408     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2409                                    Depth + 1))
2410       return true;
2411 
2412     // If none of the src operand elements are demanded, replace it with undef.
2413     if (!DemandedSrcElts && !Src.isUndef())
2414       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2415                                                TLO.DAG.getUNDEF(VT), Sub,
2416                                                Op.getOperand(2)));
2417 
2418     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2419                                    TLO, Depth + 1))
2420       return true;
2421     KnownUndef.insertBits(SubUndef, Idx);
2422     KnownZero.insertBits(SubZero, Idx);
2423 
2424     // Attempt to avoid multi-use ops if we don't need anything from them.
2425     if (!DemandedSrcElts.isAllOnesValue() ||
2426         !DemandedSubElts.isAllOnesValue()) {
2427       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2428       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2429           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2430       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2431           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
2432       if (NewSrc || NewSub) {
2433         NewSrc = NewSrc ? NewSrc : Src;
2434         NewSub = NewSub ? NewSub : Sub;
2435         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2436                                         NewSub, Op.getOperand(2));
2437         return TLO.CombineTo(Op, NewOp);
2438       }
2439     }
2440     break;
2441   }
2442   case ISD::EXTRACT_SUBVECTOR: {
2443     // Offset the demanded elts by the subvector index.
2444     SDValue Src = Op.getOperand(0);
2445     uint64_t Idx = Op.getConstantOperandVal(1);
2446     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2447     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2448 
2449     APInt SrcUndef, SrcZero;
2450     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2451                                    Depth + 1))
2452       return true;
2453     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2454     KnownZero = SrcZero.extractBits(NumElts, Idx);
2455 
2456     // Attempt to avoid multi-use ops if we don't need anything from them.
2457     if (!DemandedElts.isAllOnesValue()) {
2458       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2459       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2460           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2461       if (NewSrc) {
2462         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2463                                         Op.getOperand(1));
2464         return TLO.CombineTo(Op, NewOp);
2465       }
2466     }
2467     break;
2468   }
2469   case ISD::INSERT_VECTOR_ELT: {
2470     SDValue Vec = Op.getOperand(0);
2471     SDValue Scl = Op.getOperand(1);
2472     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2473 
2474     // For a legal, constant insertion index, if we don't need this insertion
2475     // then strip it, else remove it from the demanded elts.
2476     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2477       unsigned Idx = CIdx->getZExtValue();
2478       if (!DemandedElts[Idx])
2479         return TLO.CombineTo(Op, Vec);
2480 
2481       APInt DemandedVecElts(DemandedElts);
2482       DemandedVecElts.clearBit(Idx);
2483       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2484                                      KnownZero, TLO, Depth + 1))
2485         return true;
2486 
2487       KnownUndef.clearBit(Idx);
2488       if (Scl.isUndef())
2489         KnownUndef.setBit(Idx);
2490 
2491       KnownZero.clearBit(Idx);
2492       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2493         KnownZero.setBit(Idx);
2494       break;
2495     }
2496 
2497     APInt VecUndef, VecZero;
2498     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2499                                    Depth + 1))
2500       return true;
2501     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2502     break;
2503   }
2504   case ISD::VSELECT: {
2505     // Try to transform the select condition based on the current demanded
2506     // elements.
2507     // TODO: If a condition element is undef, we can choose from one arm of the
2508     //       select (and if one arm is undef, then we can propagate that to the
2509     //       result).
2510     // TODO - add support for constant vselect masks (see IR version of this).
2511     APInt UnusedUndef, UnusedZero;
2512     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2513                                    UnusedZero, TLO, Depth + 1))
2514       return true;
2515 
2516     // See if we can simplify either vselect operand.
2517     APInt DemandedLHS(DemandedElts);
2518     APInt DemandedRHS(DemandedElts);
2519     APInt UndefLHS, ZeroLHS;
2520     APInt UndefRHS, ZeroRHS;
2521     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2522                                    ZeroLHS, TLO, Depth + 1))
2523       return true;
2524     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2525                                    ZeroRHS, TLO, Depth + 1))
2526       return true;
2527 
2528     KnownUndef = UndefLHS & UndefRHS;
2529     KnownZero = ZeroLHS & ZeroRHS;
2530     break;
2531   }
2532   case ISD::VECTOR_SHUFFLE: {
2533     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2534 
2535     // Collect demanded elements from shuffle operands..
2536     APInt DemandedLHS(NumElts, 0);
2537     APInt DemandedRHS(NumElts, 0);
2538     for (unsigned i = 0; i != NumElts; ++i) {
2539       int M = ShuffleMask[i];
2540       if (M < 0 || !DemandedElts[i])
2541         continue;
2542       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2543       if (M < (int)NumElts)
2544         DemandedLHS.setBit(M);
2545       else
2546         DemandedRHS.setBit(M - NumElts);
2547     }
2548 
2549     // See if we can simplify either shuffle operand.
2550     APInt UndefLHS, ZeroLHS;
2551     APInt UndefRHS, ZeroRHS;
2552     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2553                                    ZeroLHS, TLO, Depth + 1))
2554       return true;
2555     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2556                                    ZeroRHS, TLO, Depth + 1))
2557       return true;
2558 
2559     // Simplify mask using undef elements from LHS/RHS.
2560     bool Updated = false;
2561     bool IdentityLHS = true, IdentityRHS = true;
2562     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2563     for (unsigned i = 0; i != NumElts; ++i) {
2564       int &M = NewMask[i];
2565       if (M < 0)
2566         continue;
2567       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2568           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2569         Updated = true;
2570         M = -1;
2571       }
2572       IdentityLHS &= (M < 0) || (M == (int)i);
2573       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2574     }
2575 
2576     // Update legal shuffle masks based on demanded elements if it won't reduce
2577     // to Identity which can cause premature removal of the shuffle mask.
2578     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2579       SDValue LegalShuffle =
2580           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2581                                   NewMask, TLO.DAG);
2582       if (LegalShuffle)
2583         return TLO.CombineTo(Op, LegalShuffle);
2584     }
2585 
2586     // Propagate undef/zero elements from LHS/RHS.
2587     for (unsigned i = 0; i != NumElts; ++i) {
2588       int M = ShuffleMask[i];
2589       if (M < 0) {
2590         KnownUndef.setBit(i);
2591       } else if (M < (int)NumElts) {
2592         if (UndefLHS[M])
2593           KnownUndef.setBit(i);
2594         if (ZeroLHS[M])
2595           KnownZero.setBit(i);
2596       } else {
2597         if (UndefRHS[M - NumElts])
2598           KnownUndef.setBit(i);
2599         if (ZeroRHS[M - NumElts])
2600           KnownZero.setBit(i);
2601       }
2602     }
2603     break;
2604   }
2605   case ISD::ANY_EXTEND_VECTOR_INREG:
2606   case ISD::SIGN_EXTEND_VECTOR_INREG:
2607   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2608     APInt SrcUndef, SrcZero;
2609     SDValue Src = Op.getOperand(0);
2610     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2611     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2612     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2613                                    Depth + 1))
2614       return true;
2615     KnownZero = SrcZero.zextOrTrunc(NumElts);
2616     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2617 
2618     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2619         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2620         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2621       // aext - if we just need the bottom element then we can bitcast.
2622       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2623     }
2624 
2625     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2626       // zext(undef) upper bits are guaranteed to be zero.
2627       if (DemandedElts.isSubsetOf(KnownUndef))
2628         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2629       KnownUndef.clearAllBits();
2630     }
2631     break;
2632   }
2633 
2634   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2635   // MAX, saturated math, etc.
2636   case ISD::OR:
2637   case ISD::XOR:
2638   case ISD::ADD:
2639   case ISD::SUB:
2640   case ISD::FADD:
2641   case ISD::FSUB:
2642   case ISD::FMUL:
2643   case ISD::FDIV:
2644   case ISD::FREM: {
2645     APInt UndefRHS, ZeroRHS;
2646     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2647                                    ZeroRHS, TLO, Depth + 1))
2648       return true;
2649     APInt UndefLHS, ZeroLHS;
2650     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2651                                    ZeroLHS, TLO, Depth + 1))
2652       return true;
2653 
2654     KnownZero = ZeroLHS & ZeroRHS;
2655     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2656     break;
2657   }
2658   case ISD::SHL:
2659   case ISD::SRL:
2660   case ISD::SRA:
2661   case ISD::ROTL:
2662   case ISD::ROTR: {
2663     APInt UndefRHS, ZeroRHS;
2664     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2665                                    ZeroRHS, TLO, Depth + 1))
2666       return true;
2667     APInt UndefLHS, ZeroLHS;
2668     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2669                                    ZeroLHS, TLO, Depth + 1))
2670       return true;
2671 
2672     KnownZero = ZeroLHS;
2673     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2674     break;
2675   }
2676   case ISD::MUL:
2677   case ISD::AND: {
2678     APInt SrcUndef, SrcZero;
2679     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2680                                    SrcZero, TLO, Depth + 1))
2681       return true;
2682     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2683                                    KnownZero, TLO, Depth + 1))
2684       return true;
2685 
2686     // If either side has a zero element, then the result element is zero, even
2687     // if the other is an UNDEF.
2688     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2689     // and then handle 'and' nodes with the rest of the binop opcodes.
2690     KnownZero |= SrcZero;
2691     KnownUndef &= SrcUndef;
2692     KnownUndef &= ~KnownZero;
2693     break;
2694   }
2695   case ISD::TRUNCATE:
2696   case ISD::SIGN_EXTEND:
2697   case ISD::ZERO_EXTEND:
2698     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2699                                    KnownZero, TLO, Depth + 1))
2700       return true;
2701 
2702     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2703       // zext(undef) upper bits are guaranteed to be zero.
2704       if (DemandedElts.isSubsetOf(KnownUndef))
2705         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2706       KnownUndef.clearAllBits();
2707     }
2708     break;
2709   default: {
2710     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2711       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2712                                                   KnownZero, TLO, Depth))
2713         return true;
2714     } else {
2715       KnownBits Known;
2716       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2717       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2718                                TLO, Depth, AssumeSingleUse))
2719         return true;
2720     }
2721     break;
2722   }
2723   }
2724   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2725 
2726   // Constant fold all undef cases.
2727   // TODO: Handle zero cases as well.
2728   if (DemandedElts.isSubsetOf(KnownUndef))
2729     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2730 
2731   return false;
2732 }
2733 
2734 /// Determine which of the bits specified in Mask are known to be either zero or
2735 /// one and return them in the Known.
2736 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2737                                                    KnownBits &Known,
2738                                                    const APInt &DemandedElts,
2739                                                    const SelectionDAG &DAG,
2740                                                    unsigned Depth) const {
2741   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2742           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2743           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2744           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2745          "Should use MaskedValueIsZero if you don't know whether Op"
2746          " is a target node!");
2747   Known.resetAll();
2748 }
2749 
2750 void TargetLowering::computeKnownBitsForTargetInstr(
2751     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2752     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2753     unsigned Depth) const {
2754   Known.resetAll();
2755 }
2756 
2757 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2758                                                    KnownBits &Known,
2759                                                    const APInt &DemandedElts,
2760                                                    const SelectionDAG &DAG,
2761                                                    unsigned Depth) const {
2762   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2763 
2764   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2765     // The low bits are known zero if the pointer is aligned.
2766     Known.Zero.setLowBits(Log2(*Alignment));
2767   }
2768 }
2769 
2770 /// This method can be implemented by targets that want to expose additional
2771 /// information about sign bits to the DAG Combiner.
2772 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2773                                                          const APInt &,
2774                                                          const SelectionDAG &,
2775                                                          unsigned Depth) const {
2776   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2777           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2778           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2779           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2780          "Should use ComputeNumSignBits if you don't know whether Op"
2781          " is a target node!");
2782   return 1;
2783 }
2784 
2785 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2786   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2787   const MachineRegisterInfo &MRI, unsigned Depth) const {
2788   return 1;
2789 }
2790 
2791 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2792     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2793     TargetLoweringOpt &TLO, unsigned Depth) const {
2794   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2795           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2796           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2797           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2798          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2799          " is a target node!");
2800   return false;
2801 }
2802 
2803 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2804     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2805     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2806   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2807           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2808           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2809           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2810          "Should use SimplifyDemandedBits if you don't know whether Op"
2811          " is a target node!");
2812   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2813   return false;
2814 }
2815 
2816 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2817     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2818     SelectionDAG &DAG, unsigned Depth) const {
2819   assert(
2820       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2821        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2822        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2823        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2824       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2825       " is a target node!");
2826   return SDValue();
2827 }
2828 
2829 SDValue
2830 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2831                                         SDValue N1, MutableArrayRef<int> Mask,
2832                                         SelectionDAG &DAG) const {
2833   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2834   if (!LegalMask) {
2835     std::swap(N0, N1);
2836     ShuffleVectorSDNode::commuteMask(Mask);
2837     LegalMask = isShuffleMaskLegal(Mask, VT);
2838   }
2839 
2840   if (!LegalMask)
2841     return SDValue();
2842 
2843   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2844 }
2845 
2846 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2847   return nullptr;
2848 }
2849 
2850 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2851                                                   const SelectionDAG &DAG,
2852                                                   bool SNaN,
2853                                                   unsigned Depth) const {
2854   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2855           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2856           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2857           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2858          "Should use isKnownNeverNaN if you don't know whether Op"
2859          " is a target node!");
2860   return false;
2861 }
2862 
2863 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2864 // work with truncating build vectors and vectors with elements of less than
2865 // 8 bits.
2866 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2867   if (!N)
2868     return false;
2869 
2870   APInt CVal;
2871   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2872     CVal = CN->getAPIntValue();
2873   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2874     auto *CN = BV->getConstantSplatNode();
2875     if (!CN)
2876       return false;
2877 
2878     // If this is a truncating build vector, truncate the splat value.
2879     // Otherwise, we may fail to match the expected values below.
2880     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2881     CVal = CN->getAPIntValue();
2882     if (BVEltWidth < CVal.getBitWidth())
2883       CVal = CVal.trunc(BVEltWidth);
2884   } else {
2885     return false;
2886   }
2887 
2888   switch (getBooleanContents(N->getValueType(0))) {
2889   case UndefinedBooleanContent:
2890     return CVal[0];
2891   case ZeroOrOneBooleanContent:
2892     return CVal.isOneValue();
2893   case ZeroOrNegativeOneBooleanContent:
2894     return CVal.isAllOnesValue();
2895   }
2896 
2897   llvm_unreachable("Invalid boolean contents");
2898 }
2899 
2900 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2901   if (!N)
2902     return false;
2903 
2904   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2905   if (!CN) {
2906     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2907     if (!BV)
2908       return false;
2909 
2910     // Only interested in constant splats, we don't care about undef
2911     // elements in identifying boolean constants and getConstantSplatNode
2912     // returns NULL if all ops are undef;
2913     CN = BV->getConstantSplatNode();
2914     if (!CN)
2915       return false;
2916   }
2917 
2918   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2919     return !CN->getAPIntValue()[0];
2920 
2921   return CN->isNullValue();
2922 }
2923 
2924 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2925                                        bool SExt) const {
2926   if (VT == MVT::i1)
2927     return N->isOne();
2928 
2929   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2930   switch (Cnt) {
2931   case TargetLowering::ZeroOrOneBooleanContent:
2932     // An extended value of 1 is always true, unless its original type is i1,
2933     // in which case it will be sign extended to -1.
2934     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2935   case TargetLowering::UndefinedBooleanContent:
2936   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2937     return N->isAllOnesValue() && SExt;
2938   }
2939   llvm_unreachable("Unexpected enumeration.");
2940 }
2941 
2942 /// This helper function of SimplifySetCC tries to optimize the comparison when
2943 /// either operand of the SetCC node is a bitwise-and instruction.
2944 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2945                                          ISD::CondCode Cond, const SDLoc &DL,
2946                                          DAGCombinerInfo &DCI) const {
2947   // Match these patterns in any of their permutations:
2948   // (X & Y) == Y
2949   // (X & Y) != Y
2950   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2951     std::swap(N0, N1);
2952 
2953   EVT OpVT = N0.getValueType();
2954   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2955       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2956     return SDValue();
2957 
2958   SDValue X, Y;
2959   if (N0.getOperand(0) == N1) {
2960     X = N0.getOperand(1);
2961     Y = N0.getOperand(0);
2962   } else if (N0.getOperand(1) == N1) {
2963     X = N0.getOperand(0);
2964     Y = N0.getOperand(1);
2965   } else {
2966     return SDValue();
2967   }
2968 
2969   SelectionDAG &DAG = DCI.DAG;
2970   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2971   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2972     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2973     // Note that where Y is variable and is known to have at most one bit set
2974     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2975     // equivalent when Y == 0.
2976     assert(OpVT.isInteger());
2977     Cond = ISD::getSetCCInverse(Cond, OpVT);
2978     if (DCI.isBeforeLegalizeOps() ||
2979         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2980       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2981   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2982     // If the target supports an 'and-not' or 'and-complement' logic operation,
2983     // try to use that to make a comparison operation more efficient.
2984     // But don't do this transform if the mask is a single bit because there are
2985     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2986     // 'rlwinm' on PPC).
2987 
2988     // Bail out if the compare operand that we want to turn into a zero is
2989     // already a zero (otherwise, infinite loop).
2990     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2991     if (YConst && YConst->isNullValue())
2992       return SDValue();
2993 
2994     // Transform this into: ~X & Y == 0.
2995     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2996     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2997     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2998   }
2999 
3000   return SDValue();
3001 }
3002 
3003 /// There are multiple IR patterns that could be checking whether certain
3004 /// truncation of a signed number would be lossy or not. The pattern which is
3005 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3006 /// We are looking for the following pattern: (KeptBits is a constant)
3007 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3008 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3009 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3010 /// We will unfold it into the natural trunc+sext pattern:
3011 ///   ((%x << C) a>> C) dstcond %x
3012 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3013 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3014     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3015     const SDLoc &DL) const {
3016   // We must be comparing with a constant.
3017   ConstantSDNode *C1;
3018   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3019     return SDValue();
3020 
3021   // N0 should be:  add %x, (1 << (KeptBits-1))
3022   if (N0->getOpcode() != ISD::ADD)
3023     return SDValue();
3024 
3025   // And we must be 'add'ing a constant.
3026   ConstantSDNode *C01;
3027   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3028     return SDValue();
3029 
3030   SDValue X = N0->getOperand(0);
3031   EVT XVT = X.getValueType();
3032 
3033   // Validate constants ...
3034 
3035   APInt I1 = C1->getAPIntValue();
3036 
3037   ISD::CondCode NewCond;
3038   if (Cond == ISD::CondCode::SETULT) {
3039     NewCond = ISD::CondCode::SETEQ;
3040   } else if (Cond == ISD::CondCode::SETULE) {
3041     NewCond = ISD::CondCode::SETEQ;
3042     // But need to 'canonicalize' the constant.
3043     I1 += 1;
3044   } else if (Cond == ISD::CondCode::SETUGT) {
3045     NewCond = ISD::CondCode::SETNE;
3046     // But need to 'canonicalize' the constant.
3047     I1 += 1;
3048   } else if (Cond == ISD::CondCode::SETUGE) {
3049     NewCond = ISD::CondCode::SETNE;
3050   } else
3051     return SDValue();
3052 
3053   APInt I01 = C01->getAPIntValue();
3054 
3055   auto checkConstants = [&I1, &I01]() -> bool {
3056     // Both of them must be power-of-two, and the constant from setcc is bigger.
3057     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3058   };
3059 
3060   if (checkConstants()) {
3061     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3062   } else {
3063     // What if we invert constants? (and the target predicate)
3064     I1.negate();
3065     I01.negate();
3066     assert(XVT.isInteger());
3067     NewCond = getSetCCInverse(NewCond, XVT);
3068     if (!checkConstants())
3069       return SDValue();
3070     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3071   }
3072 
3073   // They are power-of-two, so which bit is set?
3074   const unsigned KeptBits = I1.logBase2();
3075   const unsigned KeptBitsMinusOne = I01.logBase2();
3076 
3077   // Magic!
3078   if (KeptBits != (KeptBitsMinusOne + 1))
3079     return SDValue();
3080   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3081 
3082   // We don't want to do this in every single case.
3083   SelectionDAG &DAG = DCI.DAG;
3084   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3085           XVT, KeptBits))
3086     return SDValue();
3087 
3088   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3089   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3090 
3091   // Unfold into:  ((%x << C) a>> C) cond %x
3092   // Where 'cond' will be either 'eq' or 'ne'.
3093   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3094   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3095   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3096   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3097 
3098   return T2;
3099 }
3100 
3101 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3102 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3103     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3104     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3105   assert(isConstOrConstSplat(N1C) &&
3106          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3107          "Should be a comparison with 0.");
3108   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3109          "Valid only for [in]equality comparisons.");
3110 
3111   unsigned NewShiftOpcode;
3112   SDValue X, C, Y;
3113 
3114   SelectionDAG &DAG = DCI.DAG;
3115   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3116 
3117   // Look for '(C l>>/<< Y)'.
3118   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3119     // The shift should be one-use.
3120     if (!V.hasOneUse())
3121       return false;
3122     unsigned OldShiftOpcode = V.getOpcode();
3123     switch (OldShiftOpcode) {
3124     case ISD::SHL:
3125       NewShiftOpcode = ISD::SRL;
3126       break;
3127     case ISD::SRL:
3128       NewShiftOpcode = ISD::SHL;
3129       break;
3130     default:
3131       return false; // must be a logical shift.
3132     }
3133     // We should be shifting a constant.
3134     // FIXME: best to use isConstantOrConstantVector().
3135     C = V.getOperand(0);
3136     ConstantSDNode *CC =
3137         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3138     if (!CC)
3139       return false;
3140     Y = V.getOperand(1);
3141 
3142     ConstantSDNode *XC =
3143         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3144     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3145         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3146   };
3147 
3148   // LHS of comparison should be an one-use 'and'.
3149   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3150     return SDValue();
3151 
3152   X = N0.getOperand(0);
3153   SDValue Mask = N0.getOperand(1);
3154 
3155   // 'and' is commutative!
3156   if (!Match(Mask)) {
3157     std::swap(X, Mask);
3158     if (!Match(Mask))
3159       return SDValue();
3160   }
3161 
3162   EVT VT = X.getValueType();
3163 
3164   // Produce:
3165   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3166   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3167   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3168   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3169   return T2;
3170 }
3171 
3172 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3173 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3174 /// handle the commuted versions of these patterns.
3175 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3176                                            ISD::CondCode Cond, const SDLoc &DL,
3177                                            DAGCombinerInfo &DCI) const {
3178   unsigned BOpcode = N0.getOpcode();
3179   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3180          "Unexpected binop");
3181   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3182 
3183   // (X + Y) == X --> Y == 0
3184   // (X - Y) == X --> Y == 0
3185   // (X ^ Y) == X --> Y == 0
3186   SelectionDAG &DAG = DCI.DAG;
3187   EVT OpVT = N0.getValueType();
3188   SDValue X = N0.getOperand(0);
3189   SDValue Y = N0.getOperand(1);
3190   if (X == N1)
3191     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3192 
3193   if (Y != N1)
3194     return SDValue();
3195 
3196   // (X + Y) == Y --> X == 0
3197   // (X ^ Y) == Y --> X == 0
3198   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3199     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3200 
3201   // The shift would not be valid if the operands are boolean (i1).
3202   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3203     return SDValue();
3204 
3205   // (X - Y) == Y --> X == Y << 1
3206   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3207                                  !DCI.isBeforeLegalize());
3208   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3209   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3210   if (!DCI.isCalledByLegalizer())
3211     DCI.AddToWorklist(YShl1.getNode());
3212   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3213 }
3214 
3215 /// Try to simplify a setcc built with the specified operands and cc. If it is
3216 /// unable to simplify it, return a null SDValue.
3217 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3218                                       ISD::CondCode Cond, bool foldBooleans,
3219                                       DAGCombinerInfo &DCI,
3220                                       const SDLoc &dl) const {
3221   SelectionDAG &DAG = DCI.DAG;
3222   const DataLayout &Layout = DAG.getDataLayout();
3223   EVT OpVT = N0.getValueType();
3224 
3225   // Constant fold or commute setcc.
3226   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3227     return Fold;
3228 
3229   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3230   // TODO: Handle non-splat vector constants. All undef causes trouble.
3231   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3232   if (isConstOrConstSplat(N0) &&
3233       (DCI.isBeforeLegalizeOps() ||
3234        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3235     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3236 
3237   // If we have a subtract with the same 2 non-constant operands as this setcc
3238   // -- but in reverse order -- then try to commute the operands of this setcc
3239   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3240   // instruction on some targets.
3241   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3242       (DCI.isBeforeLegalizeOps() ||
3243        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3244       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3245       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3246     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3247 
3248   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3249     const APInt &C1 = N1C->getAPIntValue();
3250 
3251     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3252     // equality comparison, then we're just comparing whether X itself is
3253     // zero.
3254     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3255         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3256         N0.getOperand(1).getOpcode() == ISD::Constant) {
3257       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3258       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3259           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3260         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3261           // (srl (ctlz x), 5) == 0  -> X != 0
3262           // (srl (ctlz x), 5) != 1  -> X != 0
3263           Cond = ISD::SETNE;
3264         } else {
3265           // (srl (ctlz x), 5) != 0  -> X == 0
3266           // (srl (ctlz x), 5) == 1  -> X == 0
3267           Cond = ISD::SETEQ;
3268         }
3269         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3270         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3271                             Zero, Cond);
3272       }
3273     }
3274 
3275     SDValue CTPOP = N0;
3276     // Look through truncs that don't change the value of a ctpop.
3277     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3278       CTPOP = N0.getOperand(0);
3279 
3280     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3281         (N0 == CTPOP ||
3282          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3283       EVT CTVT = CTPOP.getValueType();
3284       SDValue CTOp = CTPOP.getOperand(0);
3285 
3286       // (ctpop x) u< 2 -> (x & x-1) == 0
3287       // (ctpop x) u> 1 -> (x & x-1) != 0
3288       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3289         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3290         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3291         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3292         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3293         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3294       }
3295 
3296       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3297       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3298           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3299         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3300         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3301         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3302         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3303         assert(CTVT.isInteger());
3304         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3305         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3306         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3307         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3308         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3309         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3310         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3311       }
3312     }
3313 
3314     // (zext x) == C --> x == (trunc C)
3315     // (sext x) == C --> x == (trunc C)
3316     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3317         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3318       unsigned MinBits = N0.getValueSizeInBits();
3319       SDValue PreExt;
3320       bool Signed = false;
3321       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3322         // ZExt
3323         MinBits = N0->getOperand(0).getValueSizeInBits();
3324         PreExt = N0->getOperand(0);
3325       } else if (N0->getOpcode() == ISD::AND) {
3326         // DAGCombine turns costly ZExts into ANDs
3327         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3328           if ((C->getAPIntValue()+1).isPowerOf2()) {
3329             MinBits = C->getAPIntValue().countTrailingOnes();
3330             PreExt = N0->getOperand(0);
3331           }
3332       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3333         // SExt
3334         MinBits = N0->getOperand(0).getValueSizeInBits();
3335         PreExt = N0->getOperand(0);
3336         Signed = true;
3337       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3338         // ZEXTLOAD / SEXTLOAD
3339         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3340           MinBits = LN0->getMemoryVT().getSizeInBits();
3341           PreExt = N0;
3342         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3343           Signed = true;
3344           MinBits = LN0->getMemoryVT().getSizeInBits();
3345           PreExt = N0;
3346         }
3347       }
3348 
3349       // Figure out how many bits we need to preserve this constant.
3350       unsigned ReqdBits = Signed ?
3351         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3352         C1.getActiveBits();
3353 
3354       // Make sure we're not losing bits from the constant.
3355       if (MinBits > 0 &&
3356           MinBits < C1.getBitWidth() &&
3357           MinBits >= ReqdBits) {
3358         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3359         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3360           // Will get folded away.
3361           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3362           if (MinBits == 1 && C1 == 1)
3363             // Invert the condition.
3364             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3365                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3366           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3367           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3368         }
3369 
3370         // If truncating the setcc operands is not desirable, we can still
3371         // simplify the expression in some cases:
3372         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3373         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3374         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3375         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3376         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3377         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3378         SDValue TopSetCC = N0->getOperand(0);
3379         unsigned N0Opc = N0->getOpcode();
3380         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3381         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3382             TopSetCC.getOpcode() == ISD::SETCC &&
3383             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3384             (isConstFalseVal(N1C) ||
3385              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3386 
3387           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3388                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3389 
3390           if (!Inverse)
3391             return TopSetCC;
3392 
3393           ISD::CondCode InvCond = ISD::getSetCCInverse(
3394               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3395               TopSetCC.getOperand(0).getValueType());
3396           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3397                                       TopSetCC.getOperand(1),
3398                                       InvCond);
3399         }
3400       }
3401     }
3402 
3403     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3404     // equality or unsigned, and all 1 bits of the const are in the same
3405     // partial word, see if we can shorten the load.
3406     if (DCI.isBeforeLegalize() &&
3407         !ISD::isSignedIntSetCC(Cond) &&
3408         N0.getOpcode() == ISD::AND && C1 == 0 &&
3409         N0.getNode()->hasOneUse() &&
3410         isa<LoadSDNode>(N0.getOperand(0)) &&
3411         N0.getOperand(0).getNode()->hasOneUse() &&
3412         isa<ConstantSDNode>(N0.getOperand(1))) {
3413       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3414       APInt bestMask;
3415       unsigned bestWidth = 0, bestOffset = 0;
3416       if (Lod->isSimple() && Lod->isUnindexed()) {
3417         unsigned origWidth = N0.getValueSizeInBits();
3418         unsigned maskWidth = origWidth;
3419         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3420         // 8 bits, but have to be careful...
3421         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3422           origWidth = Lod->getMemoryVT().getSizeInBits();
3423         const APInt &Mask = N0.getConstantOperandAPInt(1);
3424         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3425           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3426           for (unsigned offset=0; offset<origWidth/width; offset++) {
3427             if (Mask.isSubsetOf(newMask)) {
3428               if (Layout.isLittleEndian())
3429                 bestOffset = (uint64_t)offset * (width/8);
3430               else
3431                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3432               bestMask = Mask.lshr(offset * (width/8) * 8);
3433               bestWidth = width;
3434               break;
3435             }
3436             newMask <<= width;
3437           }
3438         }
3439       }
3440       if (bestWidth) {
3441         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3442         if (newVT.isRound() &&
3443             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3444           SDValue Ptr = Lod->getBasePtr();
3445           if (bestOffset != 0)
3446             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3447           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3448           SDValue NewLoad = DAG.getLoad(
3449               newVT, dl, Lod->getChain(), Ptr,
3450               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3451           return DAG.getSetCC(dl, VT,
3452                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3453                                       DAG.getConstant(bestMask.trunc(bestWidth),
3454                                                       dl, newVT)),
3455                               DAG.getConstant(0LL, dl, newVT), Cond);
3456         }
3457       }
3458     }
3459 
3460     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3461     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3462       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3463 
3464       // If the comparison constant has bits in the upper part, the
3465       // zero-extended value could never match.
3466       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3467                                               C1.getBitWidth() - InSize))) {
3468         switch (Cond) {
3469         case ISD::SETUGT:
3470         case ISD::SETUGE:
3471         case ISD::SETEQ:
3472           return DAG.getConstant(0, dl, VT);
3473         case ISD::SETULT:
3474         case ISD::SETULE:
3475         case ISD::SETNE:
3476           return DAG.getConstant(1, dl, VT);
3477         case ISD::SETGT:
3478         case ISD::SETGE:
3479           // True if the sign bit of C1 is set.
3480           return DAG.getConstant(C1.isNegative(), dl, VT);
3481         case ISD::SETLT:
3482         case ISD::SETLE:
3483           // True if the sign bit of C1 isn't set.
3484           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3485         default:
3486           break;
3487         }
3488       }
3489 
3490       // Otherwise, we can perform the comparison with the low bits.
3491       switch (Cond) {
3492       case ISD::SETEQ:
3493       case ISD::SETNE:
3494       case ISD::SETUGT:
3495       case ISD::SETUGE:
3496       case ISD::SETULT:
3497       case ISD::SETULE: {
3498         EVT newVT = N0.getOperand(0).getValueType();
3499         if (DCI.isBeforeLegalizeOps() ||
3500             (isOperationLegal(ISD::SETCC, newVT) &&
3501              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3502           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3503           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3504 
3505           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3506                                           NewConst, Cond);
3507           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3508         }
3509         break;
3510       }
3511       default:
3512         break; // todo, be more careful with signed comparisons
3513       }
3514     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3515                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3516       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3517       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3518       EVT ExtDstTy = N0.getValueType();
3519       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3520 
3521       // If the constant doesn't fit into the number of bits for the source of
3522       // the sign extension, it is impossible for both sides to be equal.
3523       if (C1.getMinSignedBits() > ExtSrcTyBits)
3524         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3525 
3526       SDValue ZextOp;
3527       EVT Op0Ty = N0.getOperand(0).getValueType();
3528       if (Op0Ty == ExtSrcTy) {
3529         ZextOp = N0.getOperand(0);
3530       } else {
3531         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3532         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3533                              DAG.getConstant(Imm, dl, Op0Ty));
3534       }
3535       if (!DCI.isCalledByLegalizer())
3536         DCI.AddToWorklist(ZextOp.getNode());
3537       // Otherwise, make this a use of a zext.
3538       return DAG.getSetCC(dl, VT, ZextOp,
3539                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3540                                                               ExtDstTyBits,
3541                                                               ExtSrcTyBits),
3542                                           dl, ExtDstTy),
3543                           Cond);
3544     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3545                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3546       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3547       if (N0.getOpcode() == ISD::SETCC &&
3548           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3549           (N0.getValueType() == MVT::i1 ||
3550            getBooleanContents(N0.getOperand(0).getValueType()) ==
3551                        ZeroOrOneBooleanContent)) {
3552         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3553         if (TrueWhenTrue)
3554           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3555         // Invert the condition.
3556         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3557         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3558         if (DCI.isBeforeLegalizeOps() ||
3559             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3560           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3561       }
3562 
3563       if ((N0.getOpcode() == ISD::XOR ||
3564            (N0.getOpcode() == ISD::AND &&
3565             N0.getOperand(0).getOpcode() == ISD::XOR &&
3566             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3567           isa<ConstantSDNode>(N0.getOperand(1)) &&
3568           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3569         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3570         // can only do this if the top bits are known zero.
3571         unsigned BitWidth = N0.getValueSizeInBits();
3572         if (DAG.MaskedValueIsZero(N0,
3573                                   APInt::getHighBitsSet(BitWidth,
3574                                                         BitWidth-1))) {
3575           // Okay, get the un-inverted input value.
3576           SDValue Val;
3577           if (N0.getOpcode() == ISD::XOR) {
3578             Val = N0.getOperand(0);
3579           } else {
3580             assert(N0.getOpcode() == ISD::AND &&
3581                     N0.getOperand(0).getOpcode() == ISD::XOR);
3582             // ((X^1)&1)^1 -> X & 1
3583             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3584                               N0.getOperand(0).getOperand(0),
3585                               N0.getOperand(1));
3586           }
3587 
3588           return DAG.getSetCC(dl, VT, Val, N1,
3589                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3590         }
3591       } else if (N1C->isOne()) {
3592         SDValue Op0 = N0;
3593         if (Op0.getOpcode() == ISD::TRUNCATE)
3594           Op0 = Op0.getOperand(0);
3595 
3596         if ((Op0.getOpcode() == ISD::XOR) &&
3597             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3598             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3599           SDValue XorLHS = Op0.getOperand(0);
3600           SDValue XorRHS = Op0.getOperand(1);
3601           // Ensure that the input setccs return an i1 type or 0/1 value.
3602           if (Op0.getValueType() == MVT::i1 ||
3603               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3604                       ZeroOrOneBooleanContent &&
3605                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3606                         ZeroOrOneBooleanContent)) {
3607             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3608             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3609             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3610           }
3611         }
3612         if (Op0.getOpcode() == ISD::AND &&
3613             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3614             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3615           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3616           if (Op0.getValueType().bitsGT(VT))
3617             Op0 = DAG.getNode(ISD::AND, dl, VT,
3618                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3619                           DAG.getConstant(1, dl, VT));
3620           else if (Op0.getValueType().bitsLT(VT))
3621             Op0 = DAG.getNode(ISD::AND, dl, VT,
3622                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3623                         DAG.getConstant(1, dl, VT));
3624 
3625           return DAG.getSetCC(dl, VT, Op0,
3626                               DAG.getConstant(0, dl, Op0.getValueType()),
3627                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3628         }
3629         if (Op0.getOpcode() == ISD::AssertZext &&
3630             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3631           return DAG.getSetCC(dl, VT, Op0,
3632                               DAG.getConstant(0, dl, Op0.getValueType()),
3633                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3634       }
3635     }
3636 
3637     // Given:
3638     //   icmp eq/ne (urem %x, %y), 0
3639     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3640     //   icmp eq/ne %x, 0
3641     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3642         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3643       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3644       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3645       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3646         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3647     }
3648 
3649     if (SDValue V =
3650             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3651       return V;
3652   }
3653 
3654   // These simplifications apply to splat vectors as well.
3655   // TODO: Handle more splat vector cases.
3656   if (auto *N1C = isConstOrConstSplat(N1)) {
3657     const APInt &C1 = N1C->getAPIntValue();
3658 
3659     APInt MinVal, MaxVal;
3660     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3661     if (ISD::isSignedIntSetCC(Cond)) {
3662       MinVal = APInt::getSignedMinValue(OperandBitSize);
3663       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3664     } else {
3665       MinVal = APInt::getMinValue(OperandBitSize);
3666       MaxVal = APInt::getMaxValue(OperandBitSize);
3667     }
3668 
3669     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3670     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3671       // X >= MIN --> true
3672       if (C1 == MinVal)
3673         return DAG.getBoolConstant(true, dl, VT, OpVT);
3674 
3675       if (!VT.isVector()) { // TODO: Support this for vectors.
3676         // X >= C0 --> X > (C0 - 1)
3677         APInt C = C1 - 1;
3678         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3679         if ((DCI.isBeforeLegalizeOps() ||
3680              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3681             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3682                                   isLegalICmpImmediate(C.getSExtValue())))) {
3683           return DAG.getSetCC(dl, VT, N0,
3684                               DAG.getConstant(C, dl, N1.getValueType()),
3685                               NewCC);
3686         }
3687       }
3688     }
3689 
3690     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3691       // X <= MAX --> true
3692       if (C1 == MaxVal)
3693         return DAG.getBoolConstant(true, dl, VT, OpVT);
3694 
3695       // X <= C0 --> X < (C0 + 1)
3696       if (!VT.isVector()) { // TODO: Support this for vectors.
3697         APInt C = C1 + 1;
3698         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3699         if ((DCI.isBeforeLegalizeOps() ||
3700              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3701             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3702                                   isLegalICmpImmediate(C.getSExtValue())))) {
3703           return DAG.getSetCC(dl, VT, N0,
3704                               DAG.getConstant(C, dl, N1.getValueType()),
3705                               NewCC);
3706         }
3707       }
3708     }
3709 
3710     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3711       if (C1 == MinVal)
3712         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3713 
3714       // TODO: Support this for vectors after legalize ops.
3715       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3716         // Canonicalize setlt X, Max --> setne X, Max
3717         if (C1 == MaxVal)
3718           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3719 
3720         // If we have setult X, 1, turn it into seteq X, 0
3721         if (C1 == MinVal+1)
3722           return DAG.getSetCC(dl, VT, N0,
3723                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3724                               ISD::SETEQ);
3725       }
3726     }
3727 
3728     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3729       if (C1 == MaxVal)
3730         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3731 
3732       // TODO: Support this for vectors after legalize ops.
3733       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3734         // Canonicalize setgt X, Min --> setne X, Min
3735         if (C1 == MinVal)
3736           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3737 
3738         // If we have setugt X, Max-1, turn it into seteq X, Max
3739         if (C1 == MaxVal-1)
3740           return DAG.getSetCC(dl, VT, N0,
3741                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3742                               ISD::SETEQ);
3743       }
3744     }
3745 
3746     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3747       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3748       if (C1.isNullValue())
3749         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3750                 VT, N0, N1, Cond, DCI, dl))
3751           return CC;
3752     }
3753 
3754     // If we have "setcc X, C0", check to see if we can shrink the immediate
3755     // by changing cc.
3756     // TODO: Support this for vectors after legalize ops.
3757     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3758       // SETUGT X, SINTMAX  -> SETLT X, 0
3759       if (Cond == ISD::SETUGT &&
3760           C1 == APInt::getSignedMaxValue(OperandBitSize))
3761         return DAG.getSetCC(dl, VT, N0,
3762                             DAG.getConstant(0, dl, N1.getValueType()),
3763                             ISD::SETLT);
3764 
3765       // SETULT X, SINTMIN  -> SETGT X, -1
3766       if (Cond == ISD::SETULT &&
3767           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3768         SDValue ConstMinusOne =
3769             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3770                             N1.getValueType());
3771         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3772       }
3773     }
3774   }
3775 
3776   // Back to non-vector simplifications.
3777   // TODO: Can we do these for vector splats?
3778   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3779     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3780     const APInt &C1 = N1C->getAPIntValue();
3781     EVT ShValTy = N0.getValueType();
3782 
3783     // Fold bit comparisons when we can.
3784     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3785         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3786         N0.getOpcode() == ISD::AND) {
3787       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3788         EVT ShiftTy =
3789             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3790         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3791           // Perform the xform if the AND RHS is a single bit.
3792           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3793           if (AndRHS->getAPIntValue().isPowerOf2() &&
3794               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3795             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3796                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3797                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3798           }
3799         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3800           // (X & 8) == 8  -->  (X & 8) >> 3
3801           // Perform the xform if C1 is a single bit.
3802           unsigned ShCt = C1.logBase2();
3803           if (C1.isPowerOf2() &&
3804               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3805             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3806                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3807                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3808           }
3809         }
3810       }
3811     }
3812 
3813     if (C1.getMinSignedBits() <= 64 &&
3814         !isLegalICmpImmediate(C1.getSExtValue())) {
3815       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3816       // (X & -256) == 256 -> (X >> 8) == 1
3817       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3818           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3819         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3820           const APInt &AndRHSC = AndRHS->getAPIntValue();
3821           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3822             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3823             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3824               SDValue Shift =
3825                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3826                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3827               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3828               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3829             }
3830           }
3831         }
3832       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3833                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3834         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3835         // X <  0x100000000 -> (X >> 32) <  1
3836         // X >= 0x100000000 -> (X >> 32) >= 1
3837         // X <= 0x0ffffffff -> (X >> 32) <  1
3838         // X >  0x0ffffffff -> (X >> 32) >= 1
3839         unsigned ShiftBits;
3840         APInt NewC = C1;
3841         ISD::CondCode NewCond = Cond;
3842         if (AdjOne) {
3843           ShiftBits = C1.countTrailingOnes();
3844           NewC = NewC + 1;
3845           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3846         } else {
3847           ShiftBits = C1.countTrailingZeros();
3848         }
3849         NewC.lshrInPlace(ShiftBits);
3850         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3851             isLegalICmpImmediate(NewC.getSExtValue()) &&
3852             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3853           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3854                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3855           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3856           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3857         }
3858       }
3859     }
3860   }
3861 
3862   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3863     auto *CFP = cast<ConstantFPSDNode>(N1);
3864     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3865 
3866     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3867     // constant if knowing that the operand is non-nan is enough.  We prefer to
3868     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3869     // materialize 0.0.
3870     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3871       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3872 
3873     // setcc (fneg x), C -> setcc swap(pred) x, -C
3874     if (N0.getOpcode() == ISD::FNEG) {
3875       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3876       if (DCI.isBeforeLegalizeOps() ||
3877           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3878         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3879         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3880       }
3881     }
3882 
3883     // If the condition is not legal, see if we can find an equivalent one
3884     // which is legal.
3885     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3886       // If the comparison was an awkward floating-point == or != and one of
3887       // the comparison operands is infinity or negative infinity, convert the
3888       // condition to a less-awkward <= or >=.
3889       if (CFP->getValueAPF().isInfinity()) {
3890         bool IsNegInf = CFP->getValueAPF().isNegative();
3891         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3892         switch (Cond) {
3893         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3894         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3895         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3896         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3897         default: break;
3898         }
3899         if (NewCond != ISD::SETCC_INVALID &&
3900             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3901           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3902       }
3903     }
3904   }
3905 
3906   if (N0 == N1) {
3907     // The sext(setcc()) => setcc() optimization relies on the appropriate
3908     // constant being emitted.
3909     assert(!N0.getValueType().isInteger() &&
3910            "Integer types should be handled by FoldSetCC");
3911 
3912     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3913     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3914     if (UOF == 2) // FP operators that are undefined on NaNs.
3915       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3916     if (UOF == unsigned(EqTrue))
3917       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3918     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3919     // if it is not already.
3920     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3921     if (NewCond != Cond &&
3922         (DCI.isBeforeLegalizeOps() ||
3923                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3924       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3925   }
3926 
3927   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3928       N0.getValueType().isInteger()) {
3929     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3930         N0.getOpcode() == ISD::XOR) {
3931       // Simplify (X+Y) == (X+Z) -->  Y == Z
3932       if (N0.getOpcode() == N1.getOpcode()) {
3933         if (N0.getOperand(0) == N1.getOperand(0))
3934           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3935         if (N0.getOperand(1) == N1.getOperand(1))
3936           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3937         if (isCommutativeBinOp(N0.getOpcode())) {
3938           // If X op Y == Y op X, try other combinations.
3939           if (N0.getOperand(0) == N1.getOperand(1))
3940             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3941                                 Cond);
3942           if (N0.getOperand(1) == N1.getOperand(0))
3943             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3944                                 Cond);
3945         }
3946       }
3947 
3948       // If RHS is a legal immediate value for a compare instruction, we need
3949       // to be careful about increasing register pressure needlessly.
3950       bool LegalRHSImm = false;
3951 
3952       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3953         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3954           // Turn (X+C1) == C2 --> X == C2-C1
3955           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3956             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3957                                 DAG.getConstant(RHSC->getAPIntValue()-
3958                                                 LHSR->getAPIntValue(),
3959                                 dl, N0.getValueType()), Cond);
3960           }
3961 
3962           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3963           if (N0.getOpcode() == ISD::XOR)
3964             // If we know that all of the inverted bits are zero, don't bother
3965             // performing the inversion.
3966             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3967               return
3968                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3969                              DAG.getConstant(LHSR->getAPIntValue() ^
3970                                                RHSC->getAPIntValue(),
3971                                              dl, N0.getValueType()),
3972                              Cond);
3973         }
3974 
3975         // Turn (C1-X) == C2 --> X == C1-C2
3976         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3977           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3978             return
3979               DAG.getSetCC(dl, VT, N0.getOperand(1),
3980                            DAG.getConstant(SUBC->getAPIntValue() -
3981                                              RHSC->getAPIntValue(),
3982                                            dl, N0.getValueType()),
3983                            Cond);
3984           }
3985         }
3986 
3987         // Could RHSC fold directly into a compare?
3988         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3989           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3990       }
3991 
3992       // (X+Y) == X --> Y == 0 and similar folds.
3993       // Don't do this if X is an immediate that can fold into a cmp
3994       // instruction and X+Y has other uses. It could be an induction variable
3995       // chain, and the transform would increase register pressure.
3996       if (!LegalRHSImm || N0.hasOneUse())
3997         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3998           return V;
3999     }
4000 
4001     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4002         N1.getOpcode() == ISD::XOR)
4003       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4004         return V;
4005 
4006     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4007       return V;
4008   }
4009 
4010   // Fold remainder of division by a constant.
4011   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4012       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4013     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4014 
4015     // When division is cheap or optimizing for minimum size,
4016     // fall through to DIVREM creation by skipping this fold.
4017     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4018       if (N0.getOpcode() == ISD::UREM) {
4019         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4020           return Folded;
4021       } else if (N0.getOpcode() == ISD::SREM) {
4022         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4023           return Folded;
4024       }
4025     }
4026   }
4027 
4028   // Fold away ALL boolean setcc's.
4029   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4030     SDValue Temp;
4031     switch (Cond) {
4032     default: llvm_unreachable("Unknown integer setcc!");
4033     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4034       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4035       N0 = DAG.getNOT(dl, Temp, OpVT);
4036       if (!DCI.isCalledByLegalizer())
4037         DCI.AddToWorklist(Temp.getNode());
4038       break;
4039     case ISD::SETNE:  // X != Y   -->  (X^Y)
4040       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4041       break;
4042     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4043     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4044       Temp = DAG.getNOT(dl, N0, OpVT);
4045       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4046       if (!DCI.isCalledByLegalizer())
4047         DCI.AddToWorklist(Temp.getNode());
4048       break;
4049     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4050     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4051       Temp = DAG.getNOT(dl, N1, OpVT);
4052       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4053       if (!DCI.isCalledByLegalizer())
4054         DCI.AddToWorklist(Temp.getNode());
4055       break;
4056     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4057     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4058       Temp = DAG.getNOT(dl, N0, OpVT);
4059       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4060       if (!DCI.isCalledByLegalizer())
4061         DCI.AddToWorklist(Temp.getNode());
4062       break;
4063     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4064     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4065       Temp = DAG.getNOT(dl, N1, OpVT);
4066       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4067       break;
4068     }
4069     if (VT.getScalarType() != MVT::i1) {
4070       if (!DCI.isCalledByLegalizer())
4071         DCI.AddToWorklist(N0.getNode());
4072       // FIXME: If running after legalize, we probably can't do this.
4073       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4074       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4075     }
4076     return N0;
4077   }
4078 
4079   // Could not fold it.
4080   return SDValue();
4081 }
4082 
4083 /// Returns true (and the GlobalValue and the offset) if the node is a
4084 /// GlobalAddress + offset.
4085 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4086                                     int64_t &Offset) const {
4087 
4088   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4089 
4090   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4091     GA = GASD->getGlobal();
4092     Offset += GASD->getOffset();
4093     return true;
4094   }
4095 
4096   if (N->getOpcode() == ISD::ADD) {
4097     SDValue N1 = N->getOperand(0);
4098     SDValue N2 = N->getOperand(1);
4099     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4100       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4101         Offset += V->getSExtValue();
4102         return true;
4103       }
4104     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4105       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4106         Offset += V->getSExtValue();
4107         return true;
4108       }
4109     }
4110   }
4111 
4112   return false;
4113 }
4114 
4115 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4116                                           DAGCombinerInfo &DCI) const {
4117   // Default implementation: no optimization.
4118   return SDValue();
4119 }
4120 
4121 //===----------------------------------------------------------------------===//
4122 //  Inline Assembler Implementation Methods
4123 //===----------------------------------------------------------------------===//
4124 
4125 TargetLowering::ConstraintType
4126 TargetLowering::getConstraintType(StringRef Constraint) const {
4127   unsigned S = Constraint.size();
4128 
4129   if (S == 1) {
4130     switch (Constraint[0]) {
4131     default: break;
4132     case 'r':
4133       return C_RegisterClass;
4134     case 'm': // memory
4135     case 'o': // offsetable
4136     case 'V': // not offsetable
4137       return C_Memory;
4138     case 'n': // Simple Integer
4139     case 'E': // Floating Point Constant
4140     case 'F': // Floating Point Constant
4141       return C_Immediate;
4142     case 'i': // Simple Integer or Relocatable Constant
4143     case 's': // Relocatable Constant
4144     case 'p': // Address.
4145     case 'X': // Allow ANY value.
4146     case 'I': // Target registers.
4147     case 'J':
4148     case 'K':
4149     case 'L':
4150     case 'M':
4151     case 'N':
4152     case 'O':
4153     case 'P':
4154     case '<':
4155     case '>':
4156       return C_Other;
4157     }
4158   }
4159 
4160   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4161     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4162       return C_Memory;
4163     return C_Register;
4164   }
4165   return C_Unknown;
4166 }
4167 
4168 /// Try to replace an X constraint, which matches anything, with another that
4169 /// has more specific requirements based on the type of the corresponding
4170 /// operand.
4171 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4172   if (ConstraintVT.isInteger())
4173     return "r";
4174   if (ConstraintVT.isFloatingPoint())
4175     return "f"; // works for many targets
4176   return nullptr;
4177 }
4178 
4179 SDValue TargetLowering::LowerAsmOutputForConstraint(
4180     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4181     SelectionDAG &DAG) const {
4182   return SDValue();
4183 }
4184 
4185 /// Lower the specified operand into the Ops vector.
4186 /// If it is invalid, don't add anything to Ops.
4187 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4188                                                   std::string &Constraint,
4189                                                   std::vector<SDValue> &Ops,
4190                                                   SelectionDAG &DAG) const {
4191 
4192   if (Constraint.length() > 1) return;
4193 
4194   char ConstraintLetter = Constraint[0];
4195   switch (ConstraintLetter) {
4196   default: break;
4197   case 'X':     // Allows any operand; labels (basic block) use this.
4198     if (Op.getOpcode() == ISD::BasicBlock ||
4199         Op.getOpcode() == ISD::TargetBlockAddress) {
4200       Ops.push_back(Op);
4201       return;
4202     }
4203     LLVM_FALLTHROUGH;
4204   case 'i':    // Simple Integer or Relocatable Constant
4205   case 'n':    // Simple Integer
4206   case 's': {  // Relocatable Constant
4207 
4208     GlobalAddressSDNode *GA;
4209     ConstantSDNode *C;
4210     BlockAddressSDNode *BA;
4211     uint64_t Offset = 0;
4212 
4213     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4214     // etc., since getelementpointer is variadic. We can't use
4215     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4216     // while in this case the GA may be furthest from the root node which is
4217     // likely an ISD::ADD.
4218     while (1) {
4219       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4220         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4221                                                  GA->getValueType(0),
4222                                                  Offset + GA->getOffset()));
4223         return;
4224       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4225                  ConstraintLetter != 's') {
4226         // gcc prints these as sign extended.  Sign extend value to 64 bits
4227         // now; without this it would get ZExt'd later in
4228         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4229         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4230         BooleanContent BCont = getBooleanContents(MVT::i64);
4231         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4232                                       : ISD::SIGN_EXTEND;
4233         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4234                                                     : C->getSExtValue();
4235         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4236                                             SDLoc(C), MVT::i64));
4237         return;
4238       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4239                  ConstraintLetter != 'n') {
4240         Ops.push_back(DAG.getTargetBlockAddress(
4241             BA->getBlockAddress(), BA->getValueType(0),
4242             Offset + BA->getOffset(), BA->getTargetFlags()));
4243         return;
4244       } else {
4245         const unsigned OpCode = Op.getOpcode();
4246         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4247           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4248             Op = Op.getOperand(1);
4249           // Subtraction is not commutative.
4250           else if (OpCode == ISD::ADD &&
4251                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4252             Op = Op.getOperand(0);
4253           else
4254             return;
4255           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4256           continue;
4257         }
4258       }
4259       return;
4260     }
4261     break;
4262   }
4263   }
4264 }
4265 
4266 std::pair<unsigned, const TargetRegisterClass *>
4267 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4268                                              StringRef Constraint,
4269                                              MVT VT) const {
4270   if (Constraint.empty() || Constraint[0] != '{')
4271     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4272   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4273 
4274   // Remove the braces from around the name.
4275   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4276 
4277   std::pair<unsigned, const TargetRegisterClass *> R =
4278       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4279 
4280   // Figure out which register class contains this reg.
4281   for (const TargetRegisterClass *RC : RI->regclasses()) {
4282     // If none of the value types for this register class are valid, we
4283     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4284     if (!isLegalRC(*RI, *RC))
4285       continue;
4286 
4287     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4288          I != E; ++I) {
4289       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4290         std::pair<unsigned, const TargetRegisterClass *> S =
4291             std::make_pair(*I, RC);
4292 
4293         // If this register class has the requested value type, return it,
4294         // otherwise keep searching and return the first class found
4295         // if no other is found which explicitly has the requested type.
4296         if (RI->isTypeLegalForClass(*RC, VT))
4297           return S;
4298         if (!R.second)
4299           R = S;
4300       }
4301     }
4302   }
4303 
4304   return R;
4305 }
4306 
4307 //===----------------------------------------------------------------------===//
4308 // Constraint Selection.
4309 
4310 /// Return true of this is an input operand that is a matching constraint like
4311 /// "4".
4312 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4313   assert(!ConstraintCode.empty() && "No known constraint!");
4314   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4315 }
4316 
4317 /// If this is an input matching constraint, this method returns the output
4318 /// operand it matches.
4319 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4320   assert(!ConstraintCode.empty() && "No known constraint!");
4321   return atoi(ConstraintCode.c_str());
4322 }
4323 
4324 /// Split up the constraint string from the inline assembly value into the
4325 /// specific constraints and their prefixes, and also tie in the associated
4326 /// operand values.
4327 /// If this returns an empty vector, and if the constraint string itself
4328 /// isn't empty, there was an error parsing.
4329 TargetLowering::AsmOperandInfoVector
4330 TargetLowering::ParseConstraints(const DataLayout &DL,
4331                                  const TargetRegisterInfo *TRI,
4332                                  const CallBase &Call) const {
4333   /// Information about all of the constraints.
4334   AsmOperandInfoVector ConstraintOperands;
4335   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4336   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4337 
4338   // Do a prepass over the constraints, canonicalizing them, and building up the
4339   // ConstraintOperands list.
4340   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4341   unsigned ResNo = 0; // ResNo - The result number of the next output.
4342 
4343   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4344     ConstraintOperands.emplace_back(std::move(CI));
4345     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4346 
4347     // Update multiple alternative constraint count.
4348     if (OpInfo.multipleAlternatives.size() > maCount)
4349       maCount = OpInfo.multipleAlternatives.size();
4350 
4351     OpInfo.ConstraintVT = MVT::Other;
4352 
4353     // Compute the value type for each operand.
4354     switch (OpInfo.Type) {
4355     case InlineAsm::isOutput:
4356       // Indirect outputs just consume an argument.
4357       if (OpInfo.isIndirect) {
4358         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4359         break;
4360       }
4361 
4362       // The return value of the call is this value.  As such, there is no
4363       // corresponding argument.
4364       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4365       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4366         OpInfo.ConstraintVT =
4367             getSimpleValueType(DL, STy->getElementType(ResNo));
4368       } else {
4369         assert(ResNo == 0 && "Asm only has one result!");
4370         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4371       }
4372       ++ResNo;
4373       break;
4374     case InlineAsm::isInput:
4375       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4376       break;
4377     case InlineAsm::isClobber:
4378       // Nothing to do.
4379       break;
4380     }
4381 
4382     if (OpInfo.CallOperandVal) {
4383       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4384       if (OpInfo.isIndirect) {
4385         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4386         if (!PtrTy)
4387           report_fatal_error("Indirect operand for inline asm not a pointer!");
4388         OpTy = PtrTy->getElementType();
4389       }
4390 
4391       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4392       if (StructType *STy = dyn_cast<StructType>(OpTy))
4393         if (STy->getNumElements() == 1)
4394           OpTy = STy->getElementType(0);
4395 
4396       // If OpTy is not a single value, it may be a struct/union that we
4397       // can tile with integers.
4398       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4399         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4400         switch (BitSize) {
4401         default: break;
4402         case 1:
4403         case 8:
4404         case 16:
4405         case 32:
4406         case 64:
4407         case 128:
4408           OpInfo.ConstraintVT =
4409               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4410           break;
4411         }
4412       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4413         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4414         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4415       } else {
4416         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4417       }
4418     }
4419   }
4420 
4421   // If we have multiple alternative constraints, select the best alternative.
4422   if (!ConstraintOperands.empty()) {
4423     if (maCount) {
4424       unsigned bestMAIndex = 0;
4425       int bestWeight = -1;
4426       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4427       int weight = -1;
4428       unsigned maIndex;
4429       // Compute the sums of the weights for each alternative, keeping track
4430       // of the best (highest weight) one so far.
4431       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4432         int weightSum = 0;
4433         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4434              cIndex != eIndex; ++cIndex) {
4435           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4436           if (OpInfo.Type == InlineAsm::isClobber)
4437             continue;
4438 
4439           // If this is an output operand with a matching input operand,
4440           // look up the matching input. If their types mismatch, e.g. one
4441           // is an integer, the other is floating point, or their sizes are
4442           // different, flag it as an maCantMatch.
4443           if (OpInfo.hasMatchingInput()) {
4444             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4445             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4446               if ((OpInfo.ConstraintVT.isInteger() !=
4447                    Input.ConstraintVT.isInteger()) ||
4448                   (OpInfo.ConstraintVT.getSizeInBits() !=
4449                    Input.ConstraintVT.getSizeInBits())) {
4450                 weightSum = -1; // Can't match.
4451                 break;
4452               }
4453             }
4454           }
4455           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4456           if (weight == -1) {
4457             weightSum = -1;
4458             break;
4459           }
4460           weightSum += weight;
4461         }
4462         // Update best.
4463         if (weightSum > bestWeight) {
4464           bestWeight = weightSum;
4465           bestMAIndex = maIndex;
4466         }
4467       }
4468 
4469       // Now select chosen alternative in each constraint.
4470       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4471            cIndex != eIndex; ++cIndex) {
4472         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4473         if (cInfo.Type == InlineAsm::isClobber)
4474           continue;
4475         cInfo.selectAlternative(bestMAIndex);
4476       }
4477     }
4478   }
4479 
4480   // Check and hook up tied operands, choose constraint code to use.
4481   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4482        cIndex != eIndex; ++cIndex) {
4483     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4484 
4485     // If this is an output operand with a matching input operand, look up the
4486     // matching input. If their types mismatch, e.g. one is an integer, the
4487     // other is floating point, or their sizes are different, flag it as an
4488     // error.
4489     if (OpInfo.hasMatchingInput()) {
4490       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4491 
4492       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4493         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4494             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4495                                          OpInfo.ConstraintVT);
4496         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4497             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4498                                          Input.ConstraintVT);
4499         if ((OpInfo.ConstraintVT.isInteger() !=
4500              Input.ConstraintVT.isInteger()) ||
4501             (MatchRC.second != InputRC.second)) {
4502           report_fatal_error("Unsupported asm: input constraint"
4503                              " with a matching output constraint of"
4504                              " incompatible type!");
4505         }
4506       }
4507     }
4508   }
4509 
4510   return ConstraintOperands;
4511 }
4512 
4513 /// Return an integer indicating how general CT is.
4514 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4515   switch (CT) {
4516   case TargetLowering::C_Immediate:
4517   case TargetLowering::C_Other:
4518   case TargetLowering::C_Unknown:
4519     return 0;
4520   case TargetLowering::C_Register:
4521     return 1;
4522   case TargetLowering::C_RegisterClass:
4523     return 2;
4524   case TargetLowering::C_Memory:
4525     return 3;
4526   }
4527   llvm_unreachable("Invalid constraint type");
4528 }
4529 
4530 /// Examine constraint type and operand type and determine a weight value.
4531 /// This object must already have been set up with the operand type
4532 /// and the current alternative constraint selected.
4533 TargetLowering::ConstraintWeight
4534   TargetLowering::getMultipleConstraintMatchWeight(
4535     AsmOperandInfo &info, int maIndex) const {
4536   InlineAsm::ConstraintCodeVector *rCodes;
4537   if (maIndex >= (int)info.multipleAlternatives.size())
4538     rCodes = &info.Codes;
4539   else
4540     rCodes = &info.multipleAlternatives[maIndex].Codes;
4541   ConstraintWeight BestWeight = CW_Invalid;
4542 
4543   // Loop over the options, keeping track of the most general one.
4544   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4545     ConstraintWeight weight =
4546       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4547     if (weight > BestWeight)
4548       BestWeight = weight;
4549   }
4550 
4551   return BestWeight;
4552 }
4553 
4554 /// Examine constraint type and operand type and determine a weight value.
4555 /// This object must already have been set up with the operand type
4556 /// and the current alternative constraint selected.
4557 TargetLowering::ConstraintWeight
4558   TargetLowering::getSingleConstraintMatchWeight(
4559     AsmOperandInfo &info, const char *constraint) const {
4560   ConstraintWeight weight = CW_Invalid;
4561   Value *CallOperandVal = info.CallOperandVal;
4562     // If we don't have a value, we can't do a match,
4563     // but allow it at the lowest weight.
4564   if (!CallOperandVal)
4565     return CW_Default;
4566   // Look at the constraint type.
4567   switch (*constraint) {
4568     case 'i': // immediate integer.
4569     case 'n': // immediate integer with a known value.
4570       if (isa<ConstantInt>(CallOperandVal))
4571         weight = CW_Constant;
4572       break;
4573     case 's': // non-explicit intregal immediate.
4574       if (isa<GlobalValue>(CallOperandVal))
4575         weight = CW_Constant;
4576       break;
4577     case 'E': // immediate float if host format.
4578     case 'F': // immediate float.
4579       if (isa<ConstantFP>(CallOperandVal))
4580         weight = CW_Constant;
4581       break;
4582     case '<': // memory operand with autodecrement.
4583     case '>': // memory operand with autoincrement.
4584     case 'm': // memory operand.
4585     case 'o': // offsettable memory operand
4586     case 'V': // non-offsettable memory operand
4587       weight = CW_Memory;
4588       break;
4589     case 'r': // general register.
4590     case 'g': // general register, memory operand or immediate integer.
4591               // note: Clang converts "g" to "imr".
4592       if (CallOperandVal->getType()->isIntegerTy())
4593         weight = CW_Register;
4594       break;
4595     case 'X': // any operand.
4596   default:
4597     weight = CW_Default;
4598     break;
4599   }
4600   return weight;
4601 }
4602 
4603 /// If there are multiple different constraints that we could pick for this
4604 /// operand (e.g. "imr") try to pick the 'best' one.
4605 /// This is somewhat tricky: constraints fall into four classes:
4606 ///    Other         -> immediates and magic values
4607 ///    Register      -> one specific register
4608 ///    RegisterClass -> a group of regs
4609 ///    Memory        -> memory
4610 /// Ideally, we would pick the most specific constraint possible: if we have
4611 /// something that fits into a register, we would pick it.  The problem here
4612 /// is that if we have something that could either be in a register or in
4613 /// memory that use of the register could cause selection of *other*
4614 /// operands to fail: they might only succeed if we pick memory.  Because of
4615 /// this the heuristic we use is:
4616 ///
4617 ///  1) If there is an 'other' constraint, and if the operand is valid for
4618 ///     that constraint, use it.  This makes us take advantage of 'i'
4619 ///     constraints when available.
4620 ///  2) Otherwise, pick the most general constraint present.  This prefers
4621 ///     'm' over 'r', for example.
4622 ///
4623 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4624                              const TargetLowering &TLI,
4625                              SDValue Op, SelectionDAG *DAG) {
4626   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4627   unsigned BestIdx = 0;
4628   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4629   int BestGenerality = -1;
4630 
4631   // Loop over the options, keeping track of the most general one.
4632   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4633     TargetLowering::ConstraintType CType =
4634       TLI.getConstraintType(OpInfo.Codes[i]);
4635 
4636     // Indirect 'other' or 'immediate' constraints are not allowed.
4637     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4638                                CType == TargetLowering::C_Register ||
4639                                CType == TargetLowering::C_RegisterClass))
4640       continue;
4641 
4642     // If this is an 'other' or 'immediate' constraint, see if the operand is
4643     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4644     // the operand is an integer in the range [0..31] we want to use I (saving a
4645     // load of a register), otherwise we must use 'r'.
4646     if ((CType == TargetLowering::C_Other ||
4647          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4648       assert(OpInfo.Codes[i].size() == 1 &&
4649              "Unhandled multi-letter 'other' constraint");
4650       std::vector<SDValue> ResultOps;
4651       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4652                                        ResultOps, *DAG);
4653       if (!ResultOps.empty()) {
4654         BestType = CType;
4655         BestIdx = i;
4656         break;
4657       }
4658     }
4659 
4660     // Things with matching constraints can only be registers, per gcc
4661     // documentation.  This mainly affects "g" constraints.
4662     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4663       continue;
4664 
4665     // This constraint letter is more general than the previous one, use it.
4666     int Generality = getConstraintGenerality(CType);
4667     if (Generality > BestGenerality) {
4668       BestType = CType;
4669       BestIdx = i;
4670       BestGenerality = Generality;
4671     }
4672   }
4673 
4674   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4675   OpInfo.ConstraintType = BestType;
4676 }
4677 
4678 /// Determines the constraint code and constraint type to use for the specific
4679 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4680 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4681                                             SDValue Op,
4682                                             SelectionDAG *DAG) const {
4683   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4684 
4685   // Single-letter constraints ('r') are very common.
4686   if (OpInfo.Codes.size() == 1) {
4687     OpInfo.ConstraintCode = OpInfo.Codes[0];
4688     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4689   } else {
4690     ChooseConstraint(OpInfo, *this, Op, DAG);
4691   }
4692 
4693   // 'X' matches anything.
4694   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4695     // Labels and constants are handled elsewhere ('X' is the only thing
4696     // that matches labels).  For Functions, the type here is the type of
4697     // the result, which is not what we want to look at; leave them alone.
4698     Value *v = OpInfo.CallOperandVal;
4699     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4700       OpInfo.CallOperandVal = v;
4701       return;
4702     }
4703 
4704     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4705       return;
4706 
4707     // Otherwise, try to resolve it to something we know about by looking at
4708     // the actual operand type.
4709     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4710       OpInfo.ConstraintCode = Repl;
4711       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4712     }
4713   }
4714 }
4715 
4716 /// Given an exact SDIV by a constant, create a multiplication
4717 /// with the multiplicative inverse of the constant.
4718 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4719                               const SDLoc &dl, SelectionDAG &DAG,
4720                               SmallVectorImpl<SDNode *> &Created) {
4721   SDValue Op0 = N->getOperand(0);
4722   SDValue Op1 = N->getOperand(1);
4723   EVT VT = N->getValueType(0);
4724   EVT SVT = VT.getScalarType();
4725   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4726   EVT ShSVT = ShVT.getScalarType();
4727 
4728   bool UseSRA = false;
4729   SmallVector<SDValue, 16> Shifts, Factors;
4730 
4731   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4732     if (C->isNullValue())
4733       return false;
4734     APInt Divisor = C->getAPIntValue();
4735     unsigned Shift = Divisor.countTrailingZeros();
4736     if (Shift) {
4737       Divisor.ashrInPlace(Shift);
4738       UseSRA = true;
4739     }
4740     // Calculate the multiplicative inverse, using Newton's method.
4741     APInt t;
4742     APInt Factor = Divisor;
4743     while ((t = Divisor * Factor) != 1)
4744       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4745     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4746     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4747     return true;
4748   };
4749 
4750   // Collect all magic values from the build vector.
4751   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4752     return SDValue();
4753 
4754   SDValue Shift, Factor;
4755   if (VT.isVector()) {
4756     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4757     Factor = DAG.getBuildVector(VT, dl, Factors);
4758   } else {
4759     Shift = Shifts[0];
4760     Factor = Factors[0];
4761   }
4762 
4763   SDValue Res = Op0;
4764 
4765   // Shift the value upfront if it is even, so the LSB is one.
4766   if (UseSRA) {
4767     // TODO: For UDIV use SRL instead of SRA.
4768     SDNodeFlags Flags;
4769     Flags.setExact(true);
4770     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4771     Created.push_back(Res.getNode());
4772   }
4773 
4774   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4775 }
4776 
4777 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4778                               SelectionDAG &DAG,
4779                               SmallVectorImpl<SDNode *> &Created) const {
4780   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4781   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4782   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4783     return SDValue(N, 0); // Lower SDIV as SDIV
4784   return SDValue();
4785 }
4786 
4787 /// Given an ISD::SDIV node expressing a divide by constant,
4788 /// return a DAG expression to select that will generate the same value by
4789 /// multiplying by a magic number.
4790 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4791 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4792                                   bool IsAfterLegalization,
4793                                   SmallVectorImpl<SDNode *> &Created) const {
4794   SDLoc dl(N);
4795   EVT VT = N->getValueType(0);
4796   EVT SVT = VT.getScalarType();
4797   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4798   EVT ShSVT = ShVT.getScalarType();
4799   unsigned EltBits = VT.getScalarSizeInBits();
4800 
4801   // Check to see if we can do this.
4802   // FIXME: We should be more aggressive here.
4803   if (!isTypeLegal(VT))
4804     return SDValue();
4805 
4806   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4807   if (N->getFlags().hasExact())
4808     return BuildExactSDIV(*this, N, dl, DAG, Created);
4809 
4810   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4811 
4812   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4813     if (C->isNullValue())
4814       return false;
4815 
4816     const APInt &Divisor = C->getAPIntValue();
4817     APInt::ms magics = Divisor.magic();
4818     int NumeratorFactor = 0;
4819     int ShiftMask = -1;
4820 
4821     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4822       // If d is +1/-1, we just multiply the numerator by +1/-1.
4823       NumeratorFactor = Divisor.getSExtValue();
4824       magics.m = 0;
4825       magics.s = 0;
4826       ShiftMask = 0;
4827     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4828       // If d > 0 and m < 0, add the numerator.
4829       NumeratorFactor = 1;
4830     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4831       // If d < 0 and m > 0, subtract the numerator.
4832       NumeratorFactor = -1;
4833     }
4834 
4835     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4836     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4837     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4838     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4839     return true;
4840   };
4841 
4842   SDValue N0 = N->getOperand(0);
4843   SDValue N1 = N->getOperand(1);
4844 
4845   // Collect the shifts / magic values from each element.
4846   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4847     return SDValue();
4848 
4849   SDValue MagicFactor, Factor, Shift, ShiftMask;
4850   if (VT.isVector()) {
4851     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4852     Factor = DAG.getBuildVector(VT, dl, Factors);
4853     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4854     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4855   } else {
4856     MagicFactor = MagicFactors[0];
4857     Factor = Factors[0];
4858     Shift = Shifts[0];
4859     ShiftMask = ShiftMasks[0];
4860   }
4861 
4862   // Multiply the numerator (operand 0) by the magic value.
4863   // FIXME: We should support doing a MUL in a wider type.
4864   SDValue Q;
4865   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4866                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4867     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4868   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4869                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4870     SDValue LoHi =
4871         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4872     Q = SDValue(LoHi.getNode(), 1);
4873   } else
4874     return SDValue(); // No mulhs or equivalent.
4875   Created.push_back(Q.getNode());
4876 
4877   // (Optionally) Add/subtract the numerator using Factor.
4878   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4879   Created.push_back(Factor.getNode());
4880   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4881   Created.push_back(Q.getNode());
4882 
4883   // Shift right algebraic by shift value.
4884   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4885   Created.push_back(Q.getNode());
4886 
4887   // Extract the sign bit, mask it and add it to the quotient.
4888   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4889   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4890   Created.push_back(T.getNode());
4891   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4892   Created.push_back(T.getNode());
4893   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4894 }
4895 
4896 /// Given an ISD::UDIV node expressing a divide by constant,
4897 /// return a DAG expression to select that will generate the same value by
4898 /// multiplying by a magic number.
4899 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4900 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4901                                   bool IsAfterLegalization,
4902                                   SmallVectorImpl<SDNode *> &Created) const {
4903   SDLoc dl(N);
4904   EVT VT = N->getValueType(0);
4905   EVT SVT = VT.getScalarType();
4906   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4907   EVT ShSVT = ShVT.getScalarType();
4908   unsigned EltBits = VT.getScalarSizeInBits();
4909 
4910   // Check to see if we can do this.
4911   // FIXME: We should be more aggressive here.
4912   if (!isTypeLegal(VT))
4913     return SDValue();
4914 
4915   bool UseNPQ = false;
4916   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4917 
4918   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4919     if (C->isNullValue())
4920       return false;
4921     // FIXME: We should use a narrower constant when the upper
4922     // bits are known to be zero.
4923     APInt Divisor = C->getAPIntValue();
4924     APInt::mu magics = Divisor.magicu();
4925     unsigned PreShift = 0, PostShift = 0;
4926 
4927     // If the divisor is even, we can avoid using the expensive fixup by
4928     // shifting the divided value upfront.
4929     if (magics.a != 0 && !Divisor[0]) {
4930       PreShift = Divisor.countTrailingZeros();
4931       // Get magic number for the shifted divisor.
4932       magics = Divisor.lshr(PreShift).magicu(PreShift);
4933       assert(magics.a == 0 && "Should use cheap fixup now");
4934     }
4935 
4936     APInt Magic = magics.m;
4937 
4938     unsigned SelNPQ;
4939     if (magics.a == 0 || Divisor.isOneValue()) {
4940       assert(magics.s < Divisor.getBitWidth() &&
4941              "We shouldn't generate an undefined shift!");
4942       PostShift = magics.s;
4943       SelNPQ = false;
4944     } else {
4945       PostShift = magics.s - 1;
4946       SelNPQ = true;
4947     }
4948 
4949     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4950     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4951     NPQFactors.push_back(
4952         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4953                                : APInt::getNullValue(EltBits),
4954                         dl, SVT));
4955     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4956     UseNPQ |= SelNPQ;
4957     return true;
4958   };
4959 
4960   SDValue N0 = N->getOperand(0);
4961   SDValue N1 = N->getOperand(1);
4962 
4963   // Collect the shifts/magic values from each element.
4964   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4965     return SDValue();
4966 
4967   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4968   if (VT.isVector()) {
4969     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4970     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4971     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4972     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4973   } else {
4974     PreShift = PreShifts[0];
4975     MagicFactor = MagicFactors[0];
4976     PostShift = PostShifts[0];
4977   }
4978 
4979   SDValue Q = N0;
4980   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4981   Created.push_back(Q.getNode());
4982 
4983   // FIXME: We should support doing a MUL in a wider type.
4984   auto GetMULHU = [&](SDValue X, SDValue Y) {
4985     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4986                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4987       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4988     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4989                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4990       SDValue LoHi =
4991           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4992       return SDValue(LoHi.getNode(), 1);
4993     }
4994     return SDValue(); // No mulhu or equivalent
4995   };
4996 
4997   // Multiply the numerator (operand 0) by the magic value.
4998   Q = GetMULHU(Q, MagicFactor);
4999   if (!Q)
5000     return SDValue();
5001 
5002   Created.push_back(Q.getNode());
5003 
5004   if (UseNPQ) {
5005     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5006     Created.push_back(NPQ.getNode());
5007 
5008     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5009     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5010     if (VT.isVector())
5011       NPQ = GetMULHU(NPQ, NPQFactor);
5012     else
5013       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5014 
5015     Created.push_back(NPQ.getNode());
5016 
5017     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5018     Created.push_back(Q.getNode());
5019   }
5020 
5021   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5022   Created.push_back(Q.getNode());
5023 
5024   SDValue One = DAG.getConstant(1, dl, VT);
5025   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5026   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5027 }
5028 
5029 /// If all values in Values that *don't* match the predicate are same 'splat'
5030 /// value, then replace all values with that splat value.
5031 /// Else, if AlternativeReplacement was provided, then replace all values that
5032 /// do match predicate with AlternativeReplacement value.
5033 static void
5034 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5035                           std::function<bool(SDValue)> Predicate,
5036                           SDValue AlternativeReplacement = SDValue()) {
5037   SDValue Replacement;
5038   // Is there a value for which the Predicate does *NOT* match? What is it?
5039   auto SplatValue = llvm::find_if_not(Values, Predicate);
5040   if (SplatValue != Values.end()) {
5041     // Does Values consist only of SplatValue's and values matching Predicate?
5042     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5043           return Value == *SplatValue || Predicate(Value);
5044         })) // Then we shall replace values matching predicate with SplatValue.
5045       Replacement = *SplatValue;
5046   }
5047   if (!Replacement) {
5048     // Oops, we did not find the "baseline" splat value.
5049     if (!AlternativeReplacement)
5050       return; // Nothing to do.
5051     // Let's replace with provided value then.
5052     Replacement = AlternativeReplacement;
5053   }
5054   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5055 }
5056 
5057 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5058 /// where the divisor is constant and the comparison target is zero,
5059 /// return a DAG expression that will generate the same comparison result
5060 /// using only multiplications, additions and shifts/rotations.
5061 /// Ref: "Hacker's Delight" 10-17.
5062 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5063                                         SDValue CompTargetNode,
5064                                         ISD::CondCode Cond,
5065                                         DAGCombinerInfo &DCI,
5066                                         const SDLoc &DL) const {
5067   SmallVector<SDNode *, 5> Built;
5068   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5069                                          DCI, DL, Built)) {
5070     for (SDNode *N : Built)
5071       DCI.AddToWorklist(N);
5072     return Folded;
5073   }
5074 
5075   return SDValue();
5076 }
5077 
5078 SDValue
5079 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5080                                   SDValue CompTargetNode, ISD::CondCode Cond,
5081                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5082                                   SmallVectorImpl<SDNode *> &Created) const {
5083   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5084   // - D must be constant, with D = D0 * 2^K where D0 is odd
5085   // - P is the multiplicative inverse of D0 modulo 2^W
5086   // - Q = floor(((2^W) - 1) / D)
5087   // where W is the width of the common type of N and D.
5088   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5089          "Only applicable for (in)equality comparisons.");
5090 
5091   SelectionDAG &DAG = DCI.DAG;
5092 
5093   EVT VT = REMNode.getValueType();
5094   EVT SVT = VT.getScalarType();
5095   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5096   EVT ShSVT = ShVT.getScalarType();
5097 
5098   // If MUL is unavailable, we cannot proceed in any case.
5099   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5100     return SDValue();
5101 
5102   bool ComparingWithAllZeros = true;
5103   bool AllComparisonsWithNonZerosAreTautological = true;
5104   bool HadTautologicalLanes = false;
5105   bool AllLanesAreTautological = true;
5106   bool HadEvenDivisor = false;
5107   bool AllDivisorsArePowerOfTwo = true;
5108   bool HadTautologicalInvertedLanes = false;
5109   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5110 
5111   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5112     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5113     if (CDiv->isNullValue())
5114       return false;
5115 
5116     const APInt &D = CDiv->getAPIntValue();
5117     const APInt &Cmp = CCmp->getAPIntValue();
5118 
5119     ComparingWithAllZeros &= Cmp.isNullValue();
5120 
5121     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5122     // if C2 is not less than C1, the comparison is always false.
5123     // But we will only be able to produce the comparison that will give the
5124     // opposive tautological answer. So this lane would need to be fixed up.
5125     bool TautologicalInvertedLane = D.ule(Cmp);
5126     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5127 
5128     // If all lanes are tautological (either all divisors are ones, or divisor
5129     // is not greater than the constant we are comparing with),
5130     // we will prefer to avoid the fold.
5131     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5132     HadTautologicalLanes |= TautologicalLane;
5133     AllLanesAreTautological &= TautologicalLane;
5134 
5135     // If we are comparing with non-zero, we need'll need  to subtract said
5136     // comparison value from the LHS. But there is no point in doing that if
5137     // every lane where we are comparing with non-zero is tautological..
5138     if (!Cmp.isNullValue())
5139       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5140 
5141     // Decompose D into D0 * 2^K
5142     unsigned K = D.countTrailingZeros();
5143     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5144     APInt D0 = D.lshr(K);
5145 
5146     // D is even if it has trailing zeros.
5147     HadEvenDivisor |= (K != 0);
5148     // D is a power-of-two if D0 is one.
5149     // If all divisors are power-of-two, we will prefer to avoid the fold.
5150     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5151 
5152     // P = inv(D0, 2^W)
5153     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5154     unsigned W = D.getBitWidth();
5155     APInt P = D0.zext(W + 1)
5156                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5157                   .trunc(W);
5158     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5159     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5160 
5161     // Q = floor((2^W - 1) u/ D)
5162     // R = ((2^W - 1) u% D)
5163     APInt Q, R;
5164     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5165 
5166     // If we are comparing with zero, then that comparison constant is okay,
5167     // else it may need to be one less than that.
5168     if (Cmp.ugt(R))
5169       Q -= 1;
5170 
5171     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5172            "We are expecting that K is always less than all-ones for ShSVT");
5173 
5174     // If the lane is tautological the result can be constant-folded.
5175     if (TautologicalLane) {
5176       // Set P and K amount to a bogus values so we can try to splat them.
5177       P = 0;
5178       K = -1;
5179       // And ensure that comparison constant is tautological,
5180       // it will always compare true/false.
5181       Q = -1;
5182     }
5183 
5184     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5185     KAmts.push_back(
5186         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5187     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5188     return true;
5189   };
5190 
5191   SDValue N = REMNode.getOperand(0);
5192   SDValue D = REMNode.getOperand(1);
5193 
5194   // Collect the values from each element.
5195   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5196     return SDValue();
5197 
5198   // If all lanes are tautological, the result can be constant-folded.
5199   if (AllLanesAreTautological)
5200     return SDValue();
5201 
5202   // If this is a urem by a powers-of-two, avoid the fold since it can be
5203   // best implemented as a bit test.
5204   if (AllDivisorsArePowerOfTwo)
5205     return SDValue();
5206 
5207   SDValue PVal, KVal, QVal;
5208   if (VT.isVector()) {
5209     if (HadTautologicalLanes) {
5210       // Try to turn PAmts into a splat, since we don't care about the values
5211       // that are currently '0'. If we can't, just keep '0'`s.
5212       turnVectorIntoSplatVector(PAmts, isNullConstant);
5213       // Try to turn KAmts into a splat, since we don't care about the values
5214       // that are currently '-1'. If we can't, change them to '0'`s.
5215       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5216                                 DAG.getConstant(0, DL, ShSVT));
5217     }
5218 
5219     PVal = DAG.getBuildVector(VT, DL, PAmts);
5220     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5221     QVal = DAG.getBuildVector(VT, DL, QAmts);
5222   } else {
5223     PVal = PAmts[0];
5224     KVal = KAmts[0];
5225     QVal = QAmts[0];
5226   }
5227 
5228   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5229     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5230       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5231     assert(CompTargetNode.getValueType() == N.getValueType() &&
5232            "Expecting that the types on LHS and RHS of comparisons match.");
5233     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5234   }
5235 
5236   // (mul N, P)
5237   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5238   Created.push_back(Op0.getNode());
5239 
5240   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5241   // divisors as a performance improvement, since rotating by 0 is a no-op.
5242   if (HadEvenDivisor) {
5243     // We need ROTR to do this.
5244     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5245       return SDValue();
5246     SDNodeFlags Flags;
5247     Flags.setExact(true);
5248     // UREM: (rotr (mul N, P), K)
5249     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5250     Created.push_back(Op0.getNode());
5251   }
5252 
5253   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5254   SDValue NewCC =
5255       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5256                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5257   if (!HadTautologicalInvertedLanes)
5258     return NewCC;
5259 
5260   // If any lanes previously compared always-false, the NewCC will give
5261   // always-true result for them, so we need to fixup those lanes.
5262   // Or the other way around for inequality predicate.
5263   assert(VT.isVector() && "Can/should only get here for vectors.");
5264   Created.push_back(NewCC.getNode());
5265 
5266   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5267   // if C2 is not less than C1, the comparison is always false.
5268   // But we have produced the comparison that will give the
5269   // opposive tautological answer. So these lanes would need to be fixed up.
5270   SDValue TautologicalInvertedChannels =
5271       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5272   Created.push_back(TautologicalInvertedChannels.getNode());
5273 
5274   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5275     // If we have a vector select, let's replace the comparison results in the
5276     // affected lanes with the correct tautological result.
5277     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5278                                               DL, SETCCVT, SETCCVT);
5279     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5280                        Replacement, NewCC);
5281   }
5282 
5283   // Else, we can just invert the comparison result in the appropriate lanes.
5284   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5285     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5286                        TautologicalInvertedChannels);
5287 
5288   return SDValue(); // Don't know how to lower.
5289 }
5290 
5291 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5292 /// where the divisor is constant and the comparison target is zero,
5293 /// return a DAG expression that will generate the same comparison result
5294 /// using only multiplications, additions and shifts/rotations.
5295 /// Ref: "Hacker's Delight" 10-17.
5296 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5297                                         SDValue CompTargetNode,
5298                                         ISD::CondCode Cond,
5299                                         DAGCombinerInfo &DCI,
5300                                         const SDLoc &DL) const {
5301   SmallVector<SDNode *, 7> Built;
5302   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5303                                          DCI, DL, Built)) {
5304     assert(Built.size() <= 7 && "Max size prediction failed.");
5305     for (SDNode *N : Built)
5306       DCI.AddToWorklist(N);
5307     return Folded;
5308   }
5309 
5310   return SDValue();
5311 }
5312 
5313 SDValue
5314 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5315                                   SDValue CompTargetNode, ISD::CondCode Cond,
5316                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5317                                   SmallVectorImpl<SDNode *> &Created) const {
5318   // Fold:
5319   //   (seteq/ne (srem N, D), 0)
5320   // To:
5321   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5322   //
5323   // - D must be constant, with D = D0 * 2^K where D0 is odd
5324   // - P is the multiplicative inverse of D0 modulo 2^W
5325   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5326   // - Q = floor((2 * A) / (2^K))
5327   // where W is the width of the common type of N and D.
5328   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5329          "Only applicable for (in)equality comparisons.");
5330 
5331   SelectionDAG &DAG = DCI.DAG;
5332 
5333   EVT VT = REMNode.getValueType();
5334   EVT SVT = VT.getScalarType();
5335   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5336   EVT ShSVT = ShVT.getScalarType();
5337 
5338   // If MUL is unavailable, we cannot proceed in any case.
5339   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5340     return SDValue();
5341 
5342   // TODO: Could support comparing with non-zero too.
5343   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5344   if (!CompTarget || !CompTarget->isNullValue())
5345     return SDValue();
5346 
5347   bool HadIntMinDivisor = false;
5348   bool HadOneDivisor = false;
5349   bool AllDivisorsAreOnes = true;
5350   bool HadEvenDivisor = false;
5351   bool NeedToApplyOffset = false;
5352   bool AllDivisorsArePowerOfTwo = true;
5353   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5354 
5355   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5356     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5357     if (C->isNullValue())
5358       return false;
5359 
5360     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5361 
5362     // WARNING: this fold is only valid for positive divisors!
5363     APInt D = C->getAPIntValue();
5364     if (D.isNegative())
5365       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5366 
5367     HadIntMinDivisor |= D.isMinSignedValue();
5368 
5369     // If all divisors are ones, we will prefer to avoid the fold.
5370     HadOneDivisor |= D.isOneValue();
5371     AllDivisorsAreOnes &= D.isOneValue();
5372 
5373     // Decompose D into D0 * 2^K
5374     unsigned K = D.countTrailingZeros();
5375     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5376     APInt D0 = D.lshr(K);
5377 
5378     if (!D.isMinSignedValue()) {
5379       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5380       // we don't care about this lane in this fold, we'll special-handle it.
5381       HadEvenDivisor |= (K != 0);
5382     }
5383 
5384     // D is a power-of-two if D0 is one. This includes INT_MIN.
5385     // If all divisors are power-of-two, we will prefer to avoid the fold.
5386     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5387 
5388     // P = inv(D0, 2^W)
5389     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5390     unsigned W = D.getBitWidth();
5391     APInt P = D0.zext(W + 1)
5392                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5393                   .trunc(W);
5394     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5395     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5396 
5397     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5398     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5399     A.clearLowBits(K);
5400 
5401     if (!D.isMinSignedValue()) {
5402       // If divisor INT_MIN, then we don't care about this lane in this fold,
5403       // we'll special-handle it.
5404       NeedToApplyOffset |= A != 0;
5405     }
5406 
5407     // Q = floor((2 * A) / (2^K))
5408     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5409 
5410     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5411            "We are expecting that A is always less than all-ones for SVT");
5412     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5413            "We are expecting that K is always less than all-ones for ShSVT");
5414 
5415     // If the divisor is 1 the result can be constant-folded. Likewise, we
5416     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5417     if (D.isOneValue()) {
5418       // Set P, A and K to a bogus values so we can try to splat them.
5419       P = 0;
5420       A = -1;
5421       K = -1;
5422 
5423       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5424       Q = -1;
5425     }
5426 
5427     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5428     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5429     KAmts.push_back(
5430         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5431     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5432     return true;
5433   };
5434 
5435   SDValue N = REMNode.getOperand(0);
5436   SDValue D = REMNode.getOperand(1);
5437 
5438   // Collect the values from each element.
5439   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5440     return SDValue();
5441 
5442   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5443   if (AllDivisorsAreOnes)
5444     return SDValue();
5445 
5446   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5447   // since it can be best implemented as a bit test.
5448   if (AllDivisorsArePowerOfTwo)
5449     return SDValue();
5450 
5451   SDValue PVal, AVal, KVal, QVal;
5452   if (VT.isVector()) {
5453     if (HadOneDivisor) {
5454       // Try to turn PAmts into a splat, since we don't care about the values
5455       // that are currently '0'. If we can't, just keep '0'`s.
5456       turnVectorIntoSplatVector(PAmts, isNullConstant);
5457       // Try to turn AAmts into a splat, since we don't care about the
5458       // values that are currently '-1'. If we can't, change them to '0'`s.
5459       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5460                                 DAG.getConstant(0, DL, SVT));
5461       // Try to turn KAmts into a splat, since we don't care about the values
5462       // that are currently '-1'. If we can't, change them to '0'`s.
5463       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5464                                 DAG.getConstant(0, DL, ShSVT));
5465     }
5466 
5467     PVal = DAG.getBuildVector(VT, DL, PAmts);
5468     AVal = DAG.getBuildVector(VT, DL, AAmts);
5469     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5470     QVal = DAG.getBuildVector(VT, DL, QAmts);
5471   } else {
5472     PVal = PAmts[0];
5473     AVal = AAmts[0];
5474     KVal = KAmts[0];
5475     QVal = QAmts[0];
5476   }
5477 
5478   // (mul N, P)
5479   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5480   Created.push_back(Op0.getNode());
5481 
5482   if (NeedToApplyOffset) {
5483     // We need ADD to do this.
5484     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5485       return SDValue();
5486 
5487     // (add (mul N, P), A)
5488     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5489     Created.push_back(Op0.getNode());
5490   }
5491 
5492   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5493   // divisors as a performance improvement, since rotating by 0 is a no-op.
5494   if (HadEvenDivisor) {
5495     // We need ROTR to do this.
5496     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5497       return SDValue();
5498     SDNodeFlags Flags;
5499     Flags.setExact(true);
5500     // SREM: (rotr (add (mul N, P), A), K)
5501     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5502     Created.push_back(Op0.getNode());
5503   }
5504 
5505   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5506   SDValue Fold =
5507       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5508                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5509 
5510   // If we didn't have lanes with INT_MIN divisor, then we're done.
5511   if (!HadIntMinDivisor)
5512     return Fold;
5513 
5514   // That fold is only valid for positive divisors. Which effectively means,
5515   // it is invalid for INT_MIN divisors. So if we have such a lane,
5516   // we must fix-up results for said lanes.
5517   assert(VT.isVector() && "Can/should only get here for vectors.");
5518 
5519   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5520       !isOperationLegalOrCustom(ISD::AND, VT) ||
5521       !isOperationLegalOrCustom(Cond, VT) ||
5522       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5523     return SDValue();
5524 
5525   Created.push_back(Fold.getNode());
5526 
5527   SDValue IntMin = DAG.getConstant(
5528       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5529   SDValue IntMax = DAG.getConstant(
5530       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5531   SDValue Zero =
5532       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5533 
5534   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5535   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5536   Created.push_back(DivisorIsIntMin.getNode());
5537 
5538   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5539   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5540   Created.push_back(Masked.getNode());
5541   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5542   Created.push_back(MaskedIsZero.getNode());
5543 
5544   // To produce final result we need to blend 2 vectors: 'SetCC' and
5545   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5546   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5547   // constant-folded, select can get lowered to a shuffle with constant mask.
5548   SDValue Blended =
5549       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5550 
5551   return Blended;
5552 }
5553 
5554 bool TargetLowering::
5555 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5556   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5557     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5558                                 "be a constant integer");
5559     return true;
5560   }
5561 
5562   return false;
5563 }
5564 
5565 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5566                                              bool LegalOps, bool OptForSize,
5567                                              NegatibleCost &Cost,
5568                                              unsigned Depth) const {
5569   // fneg is removable even if it has multiple uses.
5570   if (Op.getOpcode() == ISD::FNEG) {
5571     Cost = NegatibleCost::Cheaper;
5572     return Op.getOperand(0);
5573   }
5574 
5575   // Don't recurse exponentially.
5576   if (Depth > SelectionDAG::MaxRecursionDepth)
5577     return SDValue();
5578 
5579   // Pre-increment recursion depth for use in recursive calls.
5580   ++Depth;
5581   const SDNodeFlags Flags = Op->getFlags();
5582   const TargetOptions &Options = DAG.getTarget().Options;
5583   EVT VT = Op.getValueType();
5584   unsigned Opcode = Op.getOpcode();
5585 
5586   // Don't allow anything with multiple uses unless we know it is free.
5587   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5588     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5589                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5590     if (!IsFreeExtend)
5591       return SDValue();
5592   }
5593 
5594   SDLoc DL(Op);
5595 
5596   switch (Opcode) {
5597   case ISD::ConstantFP: {
5598     // Don't invert constant FP values after legalization unless the target says
5599     // the negated constant is legal.
5600     bool IsOpLegal =
5601         isOperationLegal(ISD::ConstantFP, VT) ||
5602         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5603                      OptForSize);
5604 
5605     if (LegalOps && !IsOpLegal)
5606       break;
5607 
5608     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5609     V.changeSign();
5610     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5611 
5612     // If we already have the use of the negated floating constant, it is free
5613     // to negate it even it has multiple uses.
5614     if (!Op.hasOneUse() && CFP.use_empty())
5615       break;
5616     Cost = NegatibleCost::Neutral;
5617     return CFP;
5618   }
5619   case ISD::BUILD_VECTOR: {
5620     // Only permit BUILD_VECTOR of constants.
5621     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5622           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5623         }))
5624       break;
5625 
5626     bool IsOpLegal =
5627         (isOperationLegal(ISD::ConstantFP, VT) &&
5628          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5629         llvm::all_of(Op->op_values(), [&](SDValue N) {
5630           return N.isUndef() ||
5631                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5632                               OptForSize);
5633         });
5634 
5635     if (LegalOps && !IsOpLegal)
5636       break;
5637 
5638     SmallVector<SDValue, 4> Ops;
5639     for (SDValue C : Op->op_values()) {
5640       if (C.isUndef()) {
5641         Ops.push_back(C);
5642         continue;
5643       }
5644       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5645       V.changeSign();
5646       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5647     }
5648     Cost = NegatibleCost::Neutral;
5649     return DAG.getBuildVector(VT, DL, Ops);
5650   }
5651   case ISD::FADD: {
5652     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5653       break;
5654 
5655     // After operation legalization, it might not be legal to create new FSUBs.
5656     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5657       break;
5658     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5659 
5660     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5661     NegatibleCost CostX = NegatibleCost::Expensive;
5662     SDValue NegX =
5663         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5664     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5665     NegatibleCost CostY = NegatibleCost::Expensive;
5666     SDValue NegY =
5667         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5668 
5669     // Negate the X if its cost is less or equal than Y.
5670     if (NegX && (CostX <= CostY)) {
5671       Cost = CostX;
5672       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5673     }
5674 
5675     // Negate the Y if it is not expensive.
5676     if (NegY) {
5677       Cost = CostY;
5678       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5679     }
5680     break;
5681   }
5682   case ISD::FSUB: {
5683     // We can't turn -(A-B) into B-A when we honor signed zeros.
5684     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5685       break;
5686 
5687     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5688     // fold (fneg (fsub 0, Y)) -> Y
5689     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5690       if (C->isZero()) {
5691         Cost = NegatibleCost::Cheaper;
5692         return Y;
5693       }
5694 
5695     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5696     Cost = NegatibleCost::Neutral;
5697     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5698   }
5699   case ISD::FMUL:
5700   case ISD::FDIV: {
5701     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5702 
5703     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5704     NegatibleCost CostX = NegatibleCost::Expensive;
5705     SDValue NegX =
5706         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5707     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5708     NegatibleCost CostY = NegatibleCost::Expensive;
5709     SDValue NegY =
5710         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5711 
5712     // Negate the X if its cost is less or equal than Y.
5713     if (NegX && (CostX <= CostY)) {
5714       Cost = CostX;
5715       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5716     }
5717 
5718     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5719     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5720       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5721         break;
5722 
5723     // Negate the Y if it is not expensive.
5724     if (NegY) {
5725       Cost = CostY;
5726       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5727     }
5728     break;
5729   }
5730   case ISD::FMA:
5731   case ISD::FMAD: {
5732     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5733       break;
5734 
5735     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5736     NegatibleCost CostZ = NegatibleCost::Expensive;
5737     SDValue NegZ =
5738         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5739     // Give up if fail to negate the Z.
5740     if (!NegZ)
5741       break;
5742 
5743     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5744     NegatibleCost CostX = NegatibleCost::Expensive;
5745     SDValue NegX =
5746         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5747     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5748     NegatibleCost CostY = NegatibleCost::Expensive;
5749     SDValue NegY =
5750         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5751 
5752     // Negate the X if its cost is less or equal than Y.
5753     if (NegX && (CostX <= CostY)) {
5754       Cost = std::min(CostX, CostZ);
5755       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5756     }
5757 
5758     // Negate the Y if it is not expensive.
5759     if (NegY) {
5760       Cost = std::min(CostY, CostZ);
5761       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5762     }
5763     break;
5764   }
5765 
5766   case ISD::FP_EXTEND:
5767   case ISD::FSIN:
5768     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5769                                             OptForSize, Cost, Depth))
5770       return DAG.getNode(Opcode, DL, VT, NegV);
5771     break;
5772   case ISD::FP_ROUND:
5773     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5774                                             OptForSize, Cost, Depth))
5775       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5776     break;
5777   }
5778 
5779   return SDValue();
5780 }
5781 
5782 //===----------------------------------------------------------------------===//
5783 // Legalization Utilities
5784 //===----------------------------------------------------------------------===//
5785 
5786 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5787                                     SDValue LHS, SDValue RHS,
5788                                     SmallVectorImpl<SDValue> &Result,
5789                                     EVT HiLoVT, SelectionDAG &DAG,
5790                                     MulExpansionKind Kind, SDValue LL,
5791                                     SDValue LH, SDValue RL, SDValue RH) const {
5792   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5793          Opcode == ISD::SMUL_LOHI);
5794 
5795   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5796                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5797   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5798                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5799   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5800                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5801   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5802                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5803 
5804   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5805     return false;
5806 
5807   unsigned OuterBitSize = VT.getScalarSizeInBits();
5808   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5809   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5810   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5811 
5812   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5813   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5814          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5815 
5816   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5817   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5818                           bool Signed) -> bool {
5819     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5820       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5821       Hi = SDValue(Lo.getNode(), 1);
5822       return true;
5823     }
5824     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5825       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5826       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5827       return true;
5828     }
5829     return false;
5830   };
5831 
5832   SDValue Lo, Hi;
5833 
5834   if (!LL.getNode() && !RL.getNode() &&
5835       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5836     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5837     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5838   }
5839 
5840   if (!LL.getNode())
5841     return false;
5842 
5843   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5844   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5845       DAG.MaskedValueIsZero(RHS, HighMask)) {
5846     // The inputs are both zero-extended.
5847     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5848       Result.push_back(Lo);
5849       Result.push_back(Hi);
5850       if (Opcode != ISD::MUL) {
5851         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5852         Result.push_back(Zero);
5853         Result.push_back(Zero);
5854       }
5855       return true;
5856     }
5857   }
5858 
5859   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5860       RHSSB > InnerBitSize) {
5861     // The input values are both sign-extended.
5862     // TODO non-MUL case?
5863     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5864       Result.push_back(Lo);
5865       Result.push_back(Hi);
5866       return true;
5867     }
5868   }
5869 
5870   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5871   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5872   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5873     // FIXME getShiftAmountTy does not always return a sensible result when VT
5874     // is an illegal type, and so the type may be too small to fit the shift
5875     // amount. Override it with i32. The shift will have to be legalized.
5876     ShiftAmountTy = MVT::i32;
5877   }
5878   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5879 
5880   if (!LH.getNode() && !RH.getNode() &&
5881       isOperationLegalOrCustom(ISD::SRL, VT) &&
5882       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5883     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5884     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5885     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5886     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5887   }
5888 
5889   if (!LH.getNode())
5890     return false;
5891 
5892   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5893     return false;
5894 
5895   Result.push_back(Lo);
5896 
5897   if (Opcode == ISD::MUL) {
5898     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5899     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5900     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5901     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5902     Result.push_back(Hi);
5903     return true;
5904   }
5905 
5906   // Compute the full width result.
5907   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5908     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5909     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5910     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5911     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5912   };
5913 
5914   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5915   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5916     return false;
5917 
5918   // This is effectively the add part of a multiply-add of half-sized operands,
5919   // so it cannot overflow.
5920   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5921 
5922   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5923     return false;
5924 
5925   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5926   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5927 
5928   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5929                   isOperationLegalOrCustom(ISD::ADDE, VT));
5930   if (UseGlue)
5931     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5932                        Merge(Lo, Hi));
5933   else
5934     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5935                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5936 
5937   SDValue Carry = Next.getValue(1);
5938   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5939   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5940 
5941   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5942     return false;
5943 
5944   if (UseGlue)
5945     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5946                      Carry);
5947   else
5948     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5949                      Zero, Carry);
5950 
5951   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5952 
5953   if (Opcode == ISD::SMUL_LOHI) {
5954     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5955                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5956     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5957 
5958     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5959                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5960     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5961   }
5962 
5963   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5964   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5965   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5966   return true;
5967 }
5968 
5969 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5970                                SelectionDAG &DAG, MulExpansionKind Kind,
5971                                SDValue LL, SDValue LH, SDValue RL,
5972                                SDValue RH) const {
5973   SmallVector<SDValue, 2> Result;
5974   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5975                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5976                            DAG, Kind, LL, LH, RL, RH);
5977   if (Ok) {
5978     assert(Result.size() == 2);
5979     Lo = Result[0];
5980     Hi = Result[1];
5981   }
5982   return Ok;
5983 }
5984 
5985 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5986                                        SelectionDAG &DAG) const {
5987   EVT VT = Node->getValueType(0);
5988 
5989   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5990                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5991                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5992                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5993     return false;
5994 
5995   // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
5996   // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
5997   SDValue X = Node->getOperand(0);
5998   SDValue Y = Node->getOperand(1);
5999   SDValue Z = Node->getOperand(2);
6000 
6001   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6002   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6003   SDLoc DL(SDValue(Node, 0));
6004 
6005   EVT ShVT = Z.getValueType();
6006   SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6007   SDValue ShAmt;
6008   if (isPowerOf2_32(EltSizeInBits)) {
6009     // Z % BW -> Z & (BW - 1)
6010     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6011   } else {
6012     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6013     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6014   }
6015   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6016 
6017   SDValue One = DAG.getConstant(1, DL, ShVT);
6018   SDValue ShX, ShY;
6019   if (IsFSHL) {
6020     ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6021     SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6022     ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6023   } else {
6024     SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6025     ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6026     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6027   }
6028   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6029   return true;
6030 }
6031 
6032 // TODO: Merge with expandFunnelShift.
6033 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6034                                SelectionDAG &DAG) const {
6035   EVT VT = Node->getValueType(0);
6036   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6037   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6038   SDValue Op0 = Node->getOperand(0);
6039   SDValue Op1 = Node->getOperand(1);
6040   SDLoc DL(SDValue(Node, 0));
6041 
6042   EVT ShVT = Op1.getValueType();
6043   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6044 
6045   // If a rotate in the other direction is legal, use it.
6046   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6047   if (isOperationLegal(RevRot, VT)) {
6048     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6049     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6050     return true;
6051   }
6052 
6053   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6054                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6055                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6056                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6057                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6058     return false;
6059 
6060   // Otherwise,
6061   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6062   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6063   //
6064   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6065          "Expecting the type bitwidth to be a power of 2");
6066   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6067   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6068   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6069   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6070   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6071   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6072   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6073                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6074   return true;
6075 }
6076 
6077 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6078                                       SelectionDAG &DAG) const {
6079   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6080   SDValue Src = Node->getOperand(OpNo);
6081   EVT SrcVT = Src.getValueType();
6082   EVT DstVT = Node->getValueType(0);
6083   SDLoc dl(SDValue(Node, 0));
6084 
6085   // FIXME: Only f32 to i64 conversions are supported.
6086   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6087     return false;
6088 
6089   if (Node->isStrictFPOpcode())
6090     // When a NaN is converted to an integer a trap is allowed. We can't
6091     // use this expansion here because it would eliminate that trap. Other
6092     // traps are also allowed and cannot be eliminated. See
6093     // IEEE 754-2008 sec 5.8.
6094     return false;
6095 
6096   // Expand f32 -> i64 conversion
6097   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6098   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6099   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6100   EVT IntVT = SrcVT.changeTypeToInteger();
6101   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6102 
6103   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6104   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6105   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6106   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6107   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6108   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6109 
6110   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6111 
6112   SDValue ExponentBits = DAG.getNode(
6113       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6114       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6115   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6116 
6117   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6118                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6119                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6120   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6121 
6122   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6123                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6124                           DAG.getConstant(0x00800000, dl, IntVT));
6125 
6126   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6127 
6128   R = DAG.getSelectCC(
6129       dl, Exponent, ExponentLoBit,
6130       DAG.getNode(ISD::SHL, dl, DstVT, R,
6131                   DAG.getZExtOrTrunc(
6132                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6133                       dl, IntShVT)),
6134       DAG.getNode(ISD::SRL, dl, DstVT, R,
6135                   DAG.getZExtOrTrunc(
6136                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6137                       dl, IntShVT)),
6138       ISD::SETGT);
6139 
6140   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6141                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6142 
6143   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6144                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6145   return true;
6146 }
6147 
6148 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6149                                       SDValue &Chain,
6150                                       SelectionDAG &DAG) const {
6151   SDLoc dl(SDValue(Node, 0));
6152   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6153   SDValue Src = Node->getOperand(OpNo);
6154 
6155   EVT SrcVT = Src.getValueType();
6156   EVT DstVT = Node->getValueType(0);
6157   EVT SetCCVT =
6158       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6159   EVT DstSetCCVT =
6160       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6161 
6162   // Only expand vector types if we have the appropriate vector bit operations.
6163   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6164                                                    ISD::FP_TO_SINT;
6165   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6166                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6167     return false;
6168 
6169   // If the maximum float value is smaller then the signed integer range,
6170   // the destination signmask can't be represented by the float, so we can
6171   // just use FP_TO_SINT directly.
6172   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6173   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6174   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6175   if (APFloat::opOverflow &
6176       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6177     if (Node->isStrictFPOpcode()) {
6178       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6179                            { Node->getOperand(0), Src });
6180       Chain = Result.getValue(1);
6181     } else
6182       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6183     return true;
6184   }
6185 
6186   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6187   SDValue Sel;
6188 
6189   if (Node->isStrictFPOpcode()) {
6190     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6191                        Node->getOperand(0), /*IsSignaling*/ true);
6192     Chain = Sel.getValue(1);
6193   } else {
6194     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6195   }
6196 
6197   bool Strict = Node->isStrictFPOpcode() ||
6198                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6199 
6200   if (Strict) {
6201     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6202     // signmask then offset (the result of which should be fully representable).
6203     // Sel = Src < 0x8000000000000000
6204     // FltOfs = select Sel, 0, 0x8000000000000000
6205     // IntOfs = select Sel, 0, 0x8000000000000000
6206     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6207 
6208     // TODO: Should any fast-math-flags be set for the FSUB?
6209     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6210                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6211     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6212     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6213                                    DAG.getConstant(0, dl, DstVT),
6214                                    DAG.getConstant(SignMask, dl, DstVT));
6215     SDValue SInt;
6216     if (Node->isStrictFPOpcode()) {
6217       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6218                                 { Chain, Src, FltOfs });
6219       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6220                          { Val.getValue(1), Val });
6221       Chain = SInt.getValue(1);
6222     } else {
6223       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6224       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6225     }
6226     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6227   } else {
6228     // Expand based on maximum range of FP_TO_SINT:
6229     // True = fp_to_sint(Src)
6230     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6231     // Result = select (Src < 0x8000000000000000), True, False
6232 
6233     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6234     // TODO: Should any fast-math-flags be set for the FSUB?
6235     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6236                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6237     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6238                         DAG.getConstant(SignMask, dl, DstVT));
6239     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6240     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6241   }
6242   return true;
6243 }
6244 
6245 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6246                                       SDValue &Chain,
6247                                       SelectionDAG &DAG) const {
6248   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6249   SDValue Src = Node->getOperand(OpNo);
6250   EVT SrcVT = Src.getValueType();
6251   EVT DstVT = Node->getValueType(0);
6252 
6253   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6254     return false;
6255 
6256   // Only expand vector types if we have the appropriate vector bit operations.
6257   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6258                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6259                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6260                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6261                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6262     return false;
6263 
6264   SDLoc dl(SDValue(Node, 0));
6265   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6266 
6267   // Implementation of unsigned i64 to f64 following the algorithm in
6268   // __floatundidf in compiler_rt. This implementation has the advantage
6269   // of performing rounding correctly, both in the default rounding mode
6270   // and in all alternate rounding modes.
6271   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6272   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6273       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6274   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6275   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6276   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6277 
6278   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6279   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6280   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6281   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6282   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6283   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6284   if (Node->isStrictFPOpcode()) {
6285     SDValue HiSub =
6286         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6287                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6288     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6289                          {HiSub.getValue(1), LoFlt, HiSub});
6290     Chain = Result.getValue(1);
6291   } else {
6292     SDValue HiSub =
6293         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6294     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6295   }
6296   return true;
6297 }
6298 
6299 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6300                                               SelectionDAG &DAG) const {
6301   SDLoc dl(Node);
6302   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6303     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6304   EVT VT = Node->getValueType(0);
6305   if (isOperationLegalOrCustom(NewOp, VT)) {
6306     SDValue Quiet0 = Node->getOperand(0);
6307     SDValue Quiet1 = Node->getOperand(1);
6308 
6309     if (!Node->getFlags().hasNoNaNs()) {
6310       // Insert canonicalizes if it's possible we need to quiet to get correct
6311       // sNaN behavior.
6312       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6313         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6314                              Node->getFlags());
6315       }
6316       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6317         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6318                              Node->getFlags());
6319       }
6320     }
6321 
6322     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6323   }
6324 
6325   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6326   // instead if there are no NaNs.
6327   if (Node->getFlags().hasNoNaNs()) {
6328     unsigned IEEE2018Op =
6329         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6330     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6331       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6332                          Node->getOperand(1), Node->getFlags());
6333     }
6334   }
6335 
6336   // If none of the above worked, but there are no NaNs, then expand to
6337   // a compare/select sequence.  This is required for correctness since
6338   // InstCombine might have canonicalized a fcmp+select sequence to a
6339   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6340   // expansion to libcall, we might introduce a link-time dependency
6341   // on libm into a file that originally did not have one.
6342   if (Node->getFlags().hasNoNaNs()) {
6343     ISD::CondCode Pred =
6344         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6345     SDValue Op1 = Node->getOperand(0);
6346     SDValue Op2 = Node->getOperand(1);
6347     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6348     // Copy FMF flags, but always set the no-signed-zeros flag
6349     // as this is implied by the FMINNUM/FMAXNUM semantics.
6350     SDNodeFlags Flags = Node->getFlags();
6351     Flags.setNoSignedZeros(true);
6352     SelCC->setFlags(Flags);
6353     return SelCC;
6354   }
6355 
6356   return SDValue();
6357 }
6358 
6359 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6360                                  SelectionDAG &DAG) const {
6361   SDLoc dl(Node);
6362   EVT VT = Node->getValueType(0);
6363   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6364   SDValue Op = Node->getOperand(0);
6365   unsigned Len = VT.getScalarSizeInBits();
6366   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6367 
6368   // TODO: Add support for irregular type lengths.
6369   if (!(Len <= 128 && Len % 8 == 0))
6370     return false;
6371 
6372   // Only expand vector types if we have the appropriate vector bit operations.
6373   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6374                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6375                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6376                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6377                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6378     return false;
6379 
6380   // This is the "best" algorithm from
6381   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6382   SDValue Mask55 =
6383       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6384   SDValue Mask33 =
6385       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6386   SDValue Mask0F =
6387       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6388   SDValue Mask01 =
6389       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6390 
6391   // v = v - ((v >> 1) & 0x55555555...)
6392   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6393                    DAG.getNode(ISD::AND, dl, VT,
6394                                DAG.getNode(ISD::SRL, dl, VT, Op,
6395                                            DAG.getConstant(1, dl, ShVT)),
6396                                Mask55));
6397   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6398   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6399                    DAG.getNode(ISD::AND, dl, VT,
6400                                DAG.getNode(ISD::SRL, dl, VT, Op,
6401                                            DAG.getConstant(2, dl, ShVT)),
6402                                Mask33));
6403   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6404   Op = DAG.getNode(ISD::AND, dl, VT,
6405                    DAG.getNode(ISD::ADD, dl, VT, Op,
6406                                DAG.getNode(ISD::SRL, dl, VT, Op,
6407                                            DAG.getConstant(4, dl, ShVT))),
6408                    Mask0F);
6409   // v = (v * 0x01010101...) >> (Len - 8)
6410   if (Len > 8)
6411     Op =
6412         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6413                     DAG.getConstant(Len - 8, dl, ShVT));
6414 
6415   Result = Op;
6416   return true;
6417 }
6418 
6419 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6420                                 SelectionDAG &DAG) const {
6421   SDLoc dl(Node);
6422   EVT VT = Node->getValueType(0);
6423   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6424   SDValue Op = Node->getOperand(0);
6425   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6426 
6427   // If the non-ZERO_UNDEF version is supported we can use that instead.
6428   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6429       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6430     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6431     return true;
6432   }
6433 
6434   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6435   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6436     EVT SetCCVT =
6437         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6438     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6439     SDValue Zero = DAG.getConstant(0, dl, VT);
6440     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6441     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6442                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6443     return true;
6444   }
6445 
6446   // Only expand vector types if we have the appropriate vector bit operations.
6447   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6448                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6449                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6450                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6451     return false;
6452 
6453   // for now, we do this:
6454   // x = x | (x >> 1);
6455   // x = x | (x >> 2);
6456   // ...
6457   // x = x | (x >>16);
6458   // x = x | (x >>32); // for 64-bit input
6459   // return popcount(~x);
6460   //
6461   // Ref: "Hacker's Delight" by Henry Warren
6462   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6463     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6464     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6465                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6466   }
6467   Op = DAG.getNOT(dl, Op, VT);
6468   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6469   return true;
6470 }
6471 
6472 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6473                                 SelectionDAG &DAG) const {
6474   SDLoc dl(Node);
6475   EVT VT = Node->getValueType(0);
6476   SDValue Op = Node->getOperand(0);
6477   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6478 
6479   // If the non-ZERO_UNDEF version is supported we can use that instead.
6480   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6481       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6482     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6483     return true;
6484   }
6485 
6486   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6487   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6488     EVT SetCCVT =
6489         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6490     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6491     SDValue Zero = DAG.getConstant(0, dl, VT);
6492     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6493     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6494                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6495     return true;
6496   }
6497 
6498   // Only expand vector types if we have the appropriate vector bit operations.
6499   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6500                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6501                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6502                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6503                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6504                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6505     return false;
6506 
6507   // for now, we use: { return popcount(~x & (x - 1)); }
6508   // unless the target has ctlz but not ctpop, in which case we use:
6509   // { return 32 - nlz(~x & (x-1)); }
6510   // Ref: "Hacker's Delight" by Henry Warren
6511   SDValue Tmp = DAG.getNode(
6512       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6513       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6514 
6515   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6516   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6517     Result =
6518         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6519                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6520     return true;
6521   }
6522 
6523   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6524   return true;
6525 }
6526 
6527 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6528                                SelectionDAG &DAG) const {
6529   SDLoc dl(N);
6530   EVT VT = N->getValueType(0);
6531   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6532   SDValue Op = N->getOperand(0);
6533 
6534   // Only expand vector types if we have the appropriate vector operations.
6535   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6536                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6537                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6538     return false;
6539 
6540   SDValue Shift =
6541       DAG.getNode(ISD::SRA, dl, VT, Op,
6542                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6543   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6544   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6545   return true;
6546 }
6547 
6548 std::pair<SDValue, SDValue>
6549 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6550                                     SelectionDAG &DAG) const {
6551   SDLoc SL(LD);
6552   SDValue Chain = LD->getChain();
6553   SDValue BasePTR = LD->getBasePtr();
6554   EVT SrcVT = LD->getMemoryVT();
6555   EVT DstVT = LD->getValueType(0);
6556   ISD::LoadExtType ExtType = LD->getExtensionType();
6557 
6558   unsigned NumElem = SrcVT.getVectorNumElements();
6559 
6560   EVT SrcEltVT = SrcVT.getScalarType();
6561   EVT DstEltVT = DstVT.getScalarType();
6562 
6563   // A vector must always be stored in memory as-is, i.e. without any padding
6564   // between the elements, since various code depend on it, e.g. in the
6565   // handling of a bitcast of a vector type to int, which may be done with a
6566   // vector store followed by an integer load. A vector that does not have
6567   // elements that are byte-sized must therefore be stored as an integer
6568   // built out of the extracted vector elements.
6569   if (!SrcEltVT.isByteSized()) {
6570     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6571     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6572 
6573     unsigned NumSrcBits = SrcVT.getSizeInBits();
6574     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6575 
6576     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6577     SDValue SrcEltBitMask = DAG.getConstant(
6578         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6579 
6580     // Load the whole vector and avoid masking off the top bits as it makes
6581     // the codegen worse.
6582     SDValue Load =
6583         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6584                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6585                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6586 
6587     SmallVector<SDValue, 8> Vals;
6588     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6589       unsigned ShiftIntoIdx =
6590           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6591       SDValue ShiftAmount =
6592           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6593                                      LoadVT, SL, /*LegalTypes=*/false);
6594       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6595       SDValue Elt =
6596           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6597       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6598 
6599       if (ExtType != ISD::NON_EXTLOAD) {
6600         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6601         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6602       }
6603 
6604       Vals.push_back(Scalar);
6605     }
6606 
6607     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6608     return std::make_pair(Value, Load.getValue(1));
6609   }
6610 
6611   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6612   assert(SrcEltVT.isByteSized());
6613 
6614   SmallVector<SDValue, 8> Vals;
6615   SmallVector<SDValue, 8> LoadChains;
6616 
6617   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6618     SDValue ScalarLoad =
6619         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6620                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6621                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6622                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6623 
6624     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6625 
6626     Vals.push_back(ScalarLoad.getValue(0));
6627     LoadChains.push_back(ScalarLoad.getValue(1));
6628   }
6629 
6630   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6631   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6632 
6633   return std::make_pair(Value, NewChain);
6634 }
6635 
6636 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6637                                              SelectionDAG &DAG) const {
6638   SDLoc SL(ST);
6639 
6640   SDValue Chain = ST->getChain();
6641   SDValue BasePtr = ST->getBasePtr();
6642   SDValue Value = ST->getValue();
6643   EVT StVT = ST->getMemoryVT();
6644 
6645   // The type of the data we want to save
6646   EVT RegVT = Value.getValueType();
6647   EVT RegSclVT = RegVT.getScalarType();
6648 
6649   // The type of data as saved in memory.
6650   EVT MemSclVT = StVT.getScalarType();
6651 
6652   unsigned NumElem = StVT.getVectorNumElements();
6653 
6654   // A vector must always be stored in memory as-is, i.e. without any padding
6655   // between the elements, since various code depend on it, e.g. in the
6656   // handling of a bitcast of a vector type to int, which may be done with a
6657   // vector store followed by an integer load. A vector that does not have
6658   // elements that are byte-sized must therefore be stored as an integer
6659   // built out of the extracted vector elements.
6660   if (!MemSclVT.isByteSized()) {
6661     unsigned NumBits = StVT.getSizeInBits();
6662     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6663 
6664     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6665 
6666     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6667       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6668                                 DAG.getVectorIdxConstant(Idx, SL));
6669       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6670       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6671       unsigned ShiftIntoIdx =
6672           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6673       SDValue ShiftAmount =
6674           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6675       SDValue ShiftedElt =
6676           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6677       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6678     }
6679 
6680     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6681                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6682                         ST->getAAInfo());
6683   }
6684 
6685   // Store Stride in bytes
6686   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6687   assert(Stride && "Zero stride!");
6688   // Extract each of the elements from the original vector and save them into
6689   // memory individually.
6690   SmallVector<SDValue, 8> Stores;
6691   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6692     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6693                               DAG.getVectorIdxConstant(Idx, SL));
6694 
6695     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6696 
6697     // This scalar TruncStore may be illegal, but we legalize it later.
6698     SDValue Store = DAG.getTruncStore(
6699         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6700         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6701         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6702 
6703     Stores.push_back(Store);
6704   }
6705 
6706   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6707 }
6708 
6709 std::pair<SDValue, SDValue>
6710 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6711   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6712          "unaligned indexed loads not implemented!");
6713   SDValue Chain = LD->getChain();
6714   SDValue Ptr = LD->getBasePtr();
6715   EVT VT = LD->getValueType(0);
6716   EVT LoadedVT = LD->getMemoryVT();
6717   SDLoc dl(LD);
6718   auto &MF = DAG.getMachineFunction();
6719 
6720   if (VT.isFloatingPoint() || VT.isVector()) {
6721     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6722     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6723       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6724           LoadedVT.isVector()) {
6725         // Scalarize the load and let the individual components be handled.
6726         return scalarizeVectorLoad(LD, DAG);
6727       }
6728 
6729       // Expand to a (misaligned) integer load of the same size,
6730       // then bitconvert to floating point or vector.
6731       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6732                                     LD->getMemOperand());
6733       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6734       if (LoadedVT != VT)
6735         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6736                              ISD::ANY_EXTEND, dl, VT, Result);
6737 
6738       return std::make_pair(Result, newLoad.getValue(1));
6739     }
6740 
6741     // Copy the value to a (aligned) stack slot using (unaligned) integer
6742     // loads and stores, then do a (aligned) load from the stack slot.
6743     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6744     unsigned LoadedBytes = LoadedVT.getStoreSize();
6745     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6746     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6747 
6748     // Make sure the stack slot is also aligned for the register type.
6749     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6750     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6751     SmallVector<SDValue, 8> Stores;
6752     SDValue StackPtr = StackBase;
6753     unsigned Offset = 0;
6754 
6755     EVT PtrVT = Ptr.getValueType();
6756     EVT StackPtrVT = StackPtr.getValueType();
6757 
6758     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6759     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6760 
6761     // Do all but one copies using the full register width.
6762     for (unsigned i = 1; i < NumRegs; i++) {
6763       // Load one integer register's worth from the original location.
6764       SDValue Load = DAG.getLoad(
6765           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6766           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6767           LD->getAAInfo());
6768       // Follow the load with a store to the stack slot.  Remember the store.
6769       Stores.push_back(DAG.getStore(
6770           Load.getValue(1), dl, Load, StackPtr,
6771           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6772       // Increment the pointers.
6773       Offset += RegBytes;
6774 
6775       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6776       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6777     }
6778 
6779     // The last copy may be partial.  Do an extending load.
6780     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6781                                   8 * (LoadedBytes - Offset));
6782     SDValue Load =
6783         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6784                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6785                        MinAlign(LD->getAlignment(), Offset),
6786                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6787     // Follow the load with a store to the stack slot.  Remember the store.
6788     // On big-endian machines this requires a truncating store to ensure
6789     // that the bits end up in the right place.
6790     Stores.push_back(DAG.getTruncStore(
6791         Load.getValue(1), dl, Load, StackPtr,
6792         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6793 
6794     // The order of the stores doesn't matter - say it with a TokenFactor.
6795     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6796 
6797     // Finally, perform the original load only redirected to the stack slot.
6798     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6799                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6800                           LoadedVT);
6801 
6802     // Callers expect a MERGE_VALUES node.
6803     return std::make_pair(Load, TF);
6804   }
6805 
6806   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6807          "Unaligned load of unsupported type.");
6808 
6809   // Compute the new VT that is half the size of the old one.  This is an
6810   // integer MVT.
6811   unsigned NumBits = LoadedVT.getSizeInBits();
6812   EVT NewLoadedVT;
6813   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6814   NumBits >>= 1;
6815 
6816   unsigned Alignment = LD->getAlignment();
6817   unsigned IncrementSize = NumBits / 8;
6818   ISD::LoadExtType HiExtType = LD->getExtensionType();
6819 
6820   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6821   if (HiExtType == ISD::NON_EXTLOAD)
6822     HiExtType = ISD::ZEXTLOAD;
6823 
6824   // Load the value in two parts
6825   SDValue Lo, Hi;
6826   if (DAG.getDataLayout().isLittleEndian()) {
6827     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6828                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6829                         LD->getAAInfo());
6830 
6831     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6832     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6833                         LD->getPointerInfo().getWithOffset(IncrementSize),
6834                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6835                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6836   } else {
6837     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6838                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6839                         LD->getAAInfo());
6840 
6841     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6842     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6843                         LD->getPointerInfo().getWithOffset(IncrementSize),
6844                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6845                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6846   }
6847 
6848   // aggregate the two parts
6849   SDValue ShiftAmount =
6850       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6851                                                     DAG.getDataLayout()));
6852   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6853   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6854 
6855   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6856                              Hi.getValue(1));
6857 
6858   return std::make_pair(Result, TF);
6859 }
6860 
6861 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6862                                              SelectionDAG &DAG) const {
6863   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6864          "unaligned indexed stores not implemented!");
6865   SDValue Chain = ST->getChain();
6866   SDValue Ptr = ST->getBasePtr();
6867   SDValue Val = ST->getValue();
6868   EVT VT = Val.getValueType();
6869   int Alignment = ST->getAlignment();
6870   auto &MF = DAG.getMachineFunction();
6871   EVT StoreMemVT = ST->getMemoryVT();
6872 
6873   SDLoc dl(ST);
6874   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6875     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6876     if (isTypeLegal(intVT)) {
6877       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6878           StoreMemVT.isVector()) {
6879         // Scalarize the store and let the individual components be handled.
6880         SDValue Result = scalarizeVectorStore(ST, DAG);
6881         return Result;
6882       }
6883       // Expand to a bitconvert of the value to the integer type of the
6884       // same size, then a (misaligned) int store.
6885       // FIXME: Does not handle truncating floating point stores!
6886       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6887       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6888                             Alignment, ST->getMemOperand()->getFlags());
6889       return Result;
6890     }
6891     // Do a (aligned) store to a stack slot, then copy from the stack slot
6892     // to the final destination using (unaligned) integer loads and stores.
6893     MVT RegVT = getRegisterType(
6894         *DAG.getContext(),
6895         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6896     EVT PtrVT = Ptr.getValueType();
6897     unsigned StoredBytes = StoreMemVT.getStoreSize();
6898     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6899     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6900 
6901     // Make sure the stack slot is also aligned for the register type.
6902     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6903     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6904 
6905     // Perform the original store, only redirected to the stack slot.
6906     SDValue Store = DAG.getTruncStore(
6907         Chain, dl, Val, StackPtr,
6908         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6909 
6910     EVT StackPtrVT = StackPtr.getValueType();
6911 
6912     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6913     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6914     SmallVector<SDValue, 8> Stores;
6915     unsigned Offset = 0;
6916 
6917     // Do all but one copies using the full register width.
6918     for (unsigned i = 1; i < NumRegs; i++) {
6919       // Load one integer register's worth from the stack slot.
6920       SDValue Load = DAG.getLoad(
6921           RegVT, dl, Store, StackPtr,
6922           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6923       // Store it to the final location.  Remember the store.
6924       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6925                                     ST->getPointerInfo().getWithOffset(Offset),
6926                                     MinAlign(ST->getAlignment(), Offset),
6927                                     ST->getMemOperand()->getFlags()));
6928       // Increment the pointers.
6929       Offset += RegBytes;
6930       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6931       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6932     }
6933 
6934     // The last store may be partial.  Do a truncating store.  On big-endian
6935     // machines this requires an extending load from the stack slot to ensure
6936     // that the bits are in the right place.
6937     EVT LoadMemVT =
6938         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6939 
6940     // Load from the stack slot.
6941     SDValue Load = DAG.getExtLoad(
6942         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6943         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6944 
6945     Stores.push_back(
6946         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6947                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6948                           MinAlign(ST->getAlignment(), Offset),
6949                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6950     // The order of the stores doesn't matter - say it with a TokenFactor.
6951     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6952     return Result;
6953   }
6954 
6955   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6956          "Unaligned store of unknown type.");
6957   // Get the half-size VT
6958   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6959   int NumBits = NewStoredVT.getSizeInBits();
6960   int IncrementSize = NumBits / 8;
6961 
6962   // Divide the stored value in two parts.
6963   SDValue ShiftAmount = DAG.getConstant(
6964       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6965   SDValue Lo = Val;
6966   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6967 
6968   // Store the two parts
6969   SDValue Store1, Store2;
6970   Store1 = DAG.getTruncStore(Chain, dl,
6971                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6972                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6973                              ST->getMemOperand()->getFlags());
6974 
6975   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6976   Alignment = MinAlign(Alignment, IncrementSize);
6977   Store2 = DAG.getTruncStore(
6978       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6979       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6980       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6981 
6982   SDValue Result =
6983       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6984   return Result;
6985 }
6986 
6987 SDValue
6988 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6989                                        const SDLoc &DL, EVT DataVT,
6990                                        SelectionDAG &DAG,
6991                                        bool IsCompressedMemory) const {
6992   SDValue Increment;
6993   EVT AddrVT = Addr.getValueType();
6994   EVT MaskVT = Mask.getValueType();
6995   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6996          "Incompatible types of Data and Mask");
6997   if (IsCompressedMemory) {
6998     // Incrementing the pointer according to number of '1's in the mask.
6999     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7000     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7001     if (MaskIntVT.getSizeInBits() < 32) {
7002       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7003       MaskIntVT = MVT::i32;
7004     }
7005 
7006     // Count '1's with POPCNT.
7007     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7008     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7009     // Scale is an element size in bytes.
7010     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7011                                     AddrVT);
7012     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7013   } else
7014     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7015 
7016   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7017 }
7018 
7019 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7020                                        SDValue Idx,
7021                                        EVT VecVT,
7022                                        const SDLoc &dl) {
7023   if (isa<ConstantSDNode>(Idx))
7024     return Idx;
7025 
7026   EVT IdxVT = Idx.getValueType();
7027   unsigned NElts = VecVT.getVectorNumElements();
7028   if (isPowerOf2_32(NElts)) {
7029     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7030                                      Log2_32(NElts));
7031     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7032                        DAG.getConstant(Imm, dl, IdxVT));
7033   }
7034 
7035   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7036                      DAG.getConstant(NElts - 1, dl, IdxVT));
7037 }
7038 
7039 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7040                                                 SDValue VecPtr, EVT VecVT,
7041                                                 SDValue Index) const {
7042   SDLoc dl(Index);
7043   // Make sure the index type is big enough to compute in.
7044   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7045 
7046   EVT EltVT = VecVT.getVectorElementType();
7047 
7048   // Calculate the element offset and add it to the pointer.
7049   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7050   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7051          "Converting bits to bytes lost precision");
7052 
7053   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7054 
7055   EVT IdxVT = Index.getValueType();
7056 
7057   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7058                       DAG.getConstant(EltSize, dl, IdxVT));
7059   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7060 }
7061 
7062 //===----------------------------------------------------------------------===//
7063 // Implementation of Emulated TLS Model
7064 //===----------------------------------------------------------------------===//
7065 
7066 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7067                                                 SelectionDAG &DAG) const {
7068   // Access to address of TLS varialbe xyz is lowered to a function call:
7069   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7070   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7071   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7072   SDLoc dl(GA);
7073 
7074   ArgListTy Args;
7075   ArgListEntry Entry;
7076   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7077   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7078   StringRef EmuTlsVarName(NameString);
7079   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7080   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7081   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7082   Entry.Ty = VoidPtrType;
7083   Args.push_back(Entry);
7084 
7085   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7086 
7087   TargetLowering::CallLoweringInfo CLI(DAG);
7088   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7089   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7090   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7091 
7092   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7093   // At last for X86 targets, maybe good for other targets too?
7094   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7095   MFI.setAdjustsStack(true); // Is this only for X86 target?
7096   MFI.setHasCalls(true);
7097 
7098   assert((GA->getOffset() == 0) &&
7099          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7100   return CallResult.first;
7101 }
7102 
7103 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7104                                                 SelectionDAG &DAG) const {
7105   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7106   if (!isCtlzFast())
7107     return SDValue();
7108   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7109   SDLoc dl(Op);
7110   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7111     if (C->isNullValue() && CC == ISD::SETEQ) {
7112       EVT VT = Op.getOperand(0).getValueType();
7113       SDValue Zext = Op.getOperand(0);
7114       if (VT.bitsLT(MVT::i32)) {
7115         VT = MVT::i32;
7116         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7117       }
7118       unsigned Log2b = Log2_32(VT.getSizeInBits());
7119       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7120       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7121                                 DAG.getConstant(Log2b, dl, MVT::i32));
7122       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7123     }
7124   }
7125   return SDValue();
7126 }
7127 
7128 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7129   unsigned Opcode = Node->getOpcode();
7130   SDValue LHS = Node->getOperand(0);
7131   SDValue RHS = Node->getOperand(1);
7132   EVT VT = LHS.getValueType();
7133   SDLoc dl(Node);
7134 
7135   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7136   assert(VT.isInteger() && "Expected operands to be integers");
7137 
7138   // usub.sat(a, b) -> umax(a, b) - b
7139   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7140     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7141     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7142   }
7143 
7144   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7145     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7146     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7147     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7148   }
7149 
7150   unsigned OverflowOp;
7151   switch (Opcode) {
7152   case ISD::SADDSAT:
7153     OverflowOp = ISD::SADDO;
7154     break;
7155   case ISD::UADDSAT:
7156     OverflowOp = ISD::UADDO;
7157     break;
7158   case ISD::SSUBSAT:
7159     OverflowOp = ISD::SSUBO;
7160     break;
7161   case ISD::USUBSAT:
7162     OverflowOp = ISD::USUBO;
7163     break;
7164   default:
7165     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7166                      "addition or subtraction node.");
7167   }
7168 
7169   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7170   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7171   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7172                                LHS, RHS);
7173   SDValue SumDiff = Result.getValue(0);
7174   SDValue Overflow = Result.getValue(1);
7175   SDValue Zero = DAG.getConstant(0, dl, VT);
7176   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7177 
7178   if (Opcode == ISD::UADDSAT) {
7179     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7180       // (LHS + RHS) | OverflowMask
7181       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7182       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7183     }
7184     // Overflow ? 0xffff.... : (LHS + RHS)
7185     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7186   } else if (Opcode == ISD::USUBSAT) {
7187     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7188       // (LHS - RHS) & ~OverflowMask
7189       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7190       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7191       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7192     }
7193     // Overflow ? 0 : (LHS - RHS)
7194     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7195   } else {
7196     // SatMax -> Overflow && SumDiff < 0
7197     // SatMin -> Overflow && SumDiff >= 0
7198     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7199     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7200     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7201     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7202     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7203     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7204     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7205   }
7206 }
7207 
7208 SDValue
7209 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7210   assert((Node->getOpcode() == ISD::SMULFIX ||
7211           Node->getOpcode() == ISD::UMULFIX ||
7212           Node->getOpcode() == ISD::SMULFIXSAT ||
7213           Node->getOpcode() == ISD::UMULFIXSAT) &&
7214          "Expected a fixed point multiplication opcode");
7215 
7216   SDLoc dl(Node);
7217   SDValue LHS = Node->getOperand(0);
7218   SDValue RHS = Node->getOperand(1);
7219   EVT VT = LHS.getValueType();
7220   unsigned Scale = Node->getConstantOperandVal(2);
7221   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7222                      Node->getOpcode() == ISD::UMULFIXSAT);
7223   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7224                  Node->getOpcode() == ISD::SMULFIXSAT);
7225   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7226   unsigned VTSize = VT.getScalarSizeInBits();
7227 
7228   if (!Scale) {
7229     // [us]mul.fix(a, b, 0) -> mul(a, b)
7230     if (!Saturating) {
7231       if (isOperationLegalOrCustom(ISD::MUL, VT))
7232         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7233     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7234       SDValue Result =
7235           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7236       SDValue Product = Result.getValue(0);
7237       SDValue Overflow = Result.getValue(1);
7238       SDValue Zero = DAG.getConstant(0, dl, VT);
7239 
7240       APInt MinVal = APInt::getSignedMinValue(VTSize);
7241       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7242       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7243       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7244       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7245       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7246       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7247     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7248       SDValue Result =
7249           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7250       SDValue Product = Result.getValue(0);
7251       SDValue Overflow = Result.getValue(1);
7252 
7253       APInt MaxVal = APInt::getMaxValue(VTSize);
7254       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7255       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7256     }
7257   }
7258 
7259   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7260          "Expected scale to be less than the number of bits if signed or at "
7261          "most the number of bits if unsigned.");
7262   assert(LHS.getValueType() == RHS.getValueType() &&
7263          "Expected both operands to be the same type");
7264 
7265   // Get the upper and lower bits of the result.
7266   SDValue Lo, Hi;
7267   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7268   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7269   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7270     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7271     Lo = Result.getValue(0);
7272     Hi = Result.getValue(1);
7273   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7274     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7275     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7276   } else if (VT.isVector()) {
7277     return SDValue();
7278   } else {
7279     report_fatal_error("Unable to expand fixed point multiplication.");
7280   }
7281 
7282   if (Scale == VTSize)
7283     // Result is just the top half since we'd be shifting by the width of the
7284     // operand. Overflow impossible so this works for both UMULFIX and
7285     // UMULFIXSAT.
7286     return Hi;
7287 
7288   // The result will need to be shifted right by the scale since both operands
7289   // are scaled. The result is given to us in 2 halves, so we only want part of
7290   // both in the result.
7291   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7292   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7293                                DAG.getConstant(Scale, dl, ShiftTy));
7294   if (!Saturating)
7295     return Result;
7296 
7297   if (!Signed) {
7298     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7299     // widened multiplication) aren't all zeroes.
7300 
7301     // Saturate to max if ((Hi >> Scale) != 0),
7302     // which is the same as if (Hi > ((1 << Scale) - 1))
7303     APInt MaxVal = APInt::getMaxValue(VTSize);
7304     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7305                                       dl, VT);
7306     Result = DAG.getSelectCC(dl, Hi, LowMask,
7307                              DAG.getConstant(MaxVal, dl, VT), Result,
7308                              ISD::SETUGT);
7309 
7310     return Result;
7311   }
7312 
7313   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7314   // widened multiplication) aren't all ones or all zeroes.
7315 
7316   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7317   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7318 
7319   if (Scale == 0) {
7320     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7321                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7322     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7323     // Saturated to SatMin if wide product is negative, and SatMax if wide
7324     // product is positive ...
7325     SDValue Zero = DAG.getConstant(0, dl, VT);
7326     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7327                                                ISD::SETLT);
7328     // ... but only if we overflowed.
7329     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7330   }
7331 
7332   //  We handled Scale==0 above so all the bits to examine is in Hi.
7333 
7334   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7335   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7336   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7337                                     dl, VT);
7338   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7339   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7340   // which is the same as if (HI < (-1 << (Scale - 1))
7341   SDValue HighMask =
7342       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7343                       dl, VT);
7344   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7345   return Result;
7346 }
7347 
7348 SDValue
7349 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7350                                     SDValue LHS, SDValue RHS,
7351                                     unsigned Scale, SelectionDAG &DAG) const {
7352   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7353           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7354          "Expected a fixed point division opcode");
7355 
7356   EVT VT = LHS.getValueType();
7357   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7358   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7359   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7360 
7361   // If there is enough room in the type to upscale the LHS or downscale the
7362   // RHS before the division, we can perform it in this type without having to
7363   // resize. For signed operations, the LHS headroom is the number of
7364   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7365   // The headroom for the RHS is the number of trailing zeroes.
7366   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7367                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7368   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7369 
7370   // For signed saturating operations, we need to be able to detect true integer
7371   // division overflow; that is, when you have MIN / -EPS. However, this
7372   // is undefined behavior and if we emit divisions that could take such
7373   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7374   // example).
7375   // Avoid this by requiring an extra bit so that we never get this case.
7376   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7377   // signed saturating division, we need to emit a whopping 32-bit division.
7378   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7379     return SDValue();
7380 
7381   unsigned LHSShift = std::min(LHSLead, Scale);
7382   unsigned RHSShift = Scale - LHSShift;
7383 
7384   // At this point, we know that if we shift the LHS up by LHSShift and the
7385   // RHS down by RHSShift, we can emit a regular division with a final scaling
7386   // factor of Scale.
7387 
7388   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7389   if (LHSShift)
7390     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7391                       DAG.getConstant(LHSShift, dl, ShiftTy));
7392   if (RHSShift)
7393     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7394                       DAG.getConstant(RHSShift, dl, ShiftTy));
7395 
7396   SDValue Quot;
7397   if (Signed) {
7398     // For signed operations, if the resulting quotient is negative and the
7399     // remainder is nonzero, subtract 1 from the quotient to round towards
7400     // negative infinity.
7401     SDValue Rem;
7402     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7403     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7404     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7405     if (isTypeLegal(VT) &&
7406         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7407       Quot = DAG.getNode(ISD::SDIVREM, dl,
7408                          DAG.getVTList(VT, VT),
7409                          LHS, RHS);
7410       Rem = Quot.getValue(1);
7411       Quot = Quot.getValue(0);
7412     } else {
7413       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7414                          LHS, RHS);
7415       Rem = DAG.getNode(ISD::SREM, dl, VT,
7416                         LHS, RHS);
7417     }
7418     SDValue Zero = DAG.getConstant(0, dl, VT);
7419     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7420     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7421     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7422     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7423     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7424                                DAG.getConstant(1, dl, VT));
7425     Quot = DAG.getSelect(dl, VT,
7426                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7427                          Sub1, Quot);
7428   } else
7429     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7430                        LHS, RHS);
7431 
7432   return Quot;
7433 }
7434 
7435 void TargetLowering::expandUADDSUBO(
7436     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7437   SDLoc dl(Node);
7438   SDValue LHS = Node->getOperand(0);
7439   SDValue RHS = Node->getOperand(1);
7440   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7441 
7442   // If ADD/SUBCARRY is legal, use that instead.
7443   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7444   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7445     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7446     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7447                                     { LHS, RHS, CarryIn });
7448     Result = SDValue(NodeCarry.getNode(), 0);
7449     Overflow = SDValue(NodeCarry.getNode(), 1);
7450     return;
7451   }
7452 
7453   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7454                             LHS.getValueType(), LHS, RHS);
7455 
7456   EVT ResultType = Node->getValueType(1);
7457   EVT SetCCType = getSetCCResultType(
7458       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7459   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7460   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7461   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7462 }
7463 
7464 void TargetLowering::expandSADDSUBO(
7465     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7466   SDLoc dl(Node);
7467   SDValue LHS = Node->getOperand(0);
7468   SDValue RHS = Node->getOperand(1);
7469   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7470 
7471   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7472                             LHS.getValueType(), LHS, RHS);
7473 
7474   EVT ResultType = Node->getValueType(1);
7475   EVT OType = getSetCCResultType(
7476       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7477 
7478   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7479   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7480   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7481     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7482     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7483     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7484     return;
7485   }
7486 
7487   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7488 
7489   // For an addition, the result should be less than one of the operands (LHS)
7490   // if and only if the other operand (RHS) is negative, otherwise there will
7491   // be overflow.
7492   // For a subtraction, the result should be less than one of the operands
7493   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7494   // otherwise there will be overflow.
7495   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7496   SDValue ConditionRHS =
7497       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7498 
7499   Overflow = DAG.getBoolExtOrTrunc(
7500       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7501       ResultType, ResultType);
7502 }
7503 
7504 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7505                                 SDValue &Overflow, SelectionDAG &DAG) const {
7506   SDLoc dl(Node);
7507   EVT VT = Node->getValueType(0);
7508   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7509   SDValue LHS = Node->getOperand(0);
7510   SDValue RHS = Node->getOperand(1);
7511   bool isSigned = Node->getOpcode() == ISD::SMULO;
7512 
7513   // For power-of-two multiplications we can use a simpler shift expansion.
7514   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7515     const APInt &C = RHSC->getAPIntValue();
7516     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7517     if (C.isPowerOf2()) {
7518       // smulo(x, signed_min) is same as umulo(x, signed_min).
7519       bool UseArithShift = isSigned && !C.isMinSignedValue();
7520       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7521       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7522       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7523       Overflow = DAG.getSetCC(dl, SetCCVT,
7524           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7525                       dl, VT, Result, ShiftAmt),
7526           LHS, ISD::SETNE);
7527       return true;
7528     }
7529   }
7530 
7531   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7532   if (VT.isVector())
7533     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7534                               VT.getVectorNumElements());
7535 
7536   SDValue BottomHalf;
7537   SDValue TopHalf;
7538   static const unsigned Ops[2][3] =
7539       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7540         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7541   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7542     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7543     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7544   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7545     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7546                              RHS);
7547     TopHalf = BottomHalf.getValue(1);
7548   } else if (isTypeLegal(WideVT)) {
7549     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7550     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7551     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7552     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7553     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7554         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7555     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7556                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7557   } else {
7558     if (VT.isVector())
7559       return false;
7560 
7561     // We can fall back to a libcall with an illegal type for the MUL if we
7562     // have a libcall big enough.
7563     // Also, we can fall back to a division in some cases, but that's a big
7564     // performance hit in the general case.
7565     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7566     if (WideVT == MVT::i16)
7567       LC = RTLIB::MUL_I16;
7568     else if (WideVT == MVT::i32)
7569       LC = RTLIB::MUL_I32;
7570     else if (WideVT == MVT::i64)
7571       LC = RTLIB::MUL_I64;
7572     else if (WideVT == MVT::i128)
7573       LC = RTLIB::MUL_I128;
7574     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7575 
7576     SDValue HiLHS;
7577     SDValue HiRHS;
7578     if (isSigned) {
7579       // The high part is obtained by SRA'ing all but one of the bits of low
7580       // part.
7581       unsigned LoSize = VT.getSizeInBits();
7582       HiLHS =
7583           DAG.getNode(ISD::SRA, dl, VT, LHS,
7584                       DAG.getConstant(LoSize - 1, dl,
7585                                       getPointerTy(DAG.getDataLayout())));
7586       HiRHS =
7587           DAG.getNode(ISD::SRA, dl, VT, RHS,
7588                       DAG.getConstant(LoSize - 1, dl,
7589                                       getPointerTy(DAG.getDataLayout())));
7590     } else {
7591         HiLHS = DAG.getConstant(0, dl, VT);
7592         HiRHS = DAG.getConstant(0, dl, VT);
7593     }
7594 
7595     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7596     // pre-lowered to the correct types. This all depends upon WideVT not
7597     // being a legal type for the architecture and thus has to be split to
7598     // two arguments.
7599     SDValue Ret;
7600     TargetLowering::MakeLibCallOptions CallOptions;
7601     CallOptions.setSExt(isSigned);
7602     CallOptions.setIsPostTypeLegalization(true);
7603     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7604       // Halves of WideVT are packed into registers in different order
7605       // depending on platform endianness. This is usually handled by
7606       // the C calling convention, but we can't defer to it in
7607       // the legalizer.
7608       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7609       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7610     } else {
7611       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7612       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7613     }
7614     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7615            "Ret value is a collection of constituent nodes holding result.");
7616     if (DAG.getDataLayout().isLittleEndian()) {
7617       // Same as above.
7618       BottomHalf = Ret.getOperand(0);
7619       TopHalf = Ret.getOperand(1);
7620     } else {
7621       BottomHalf = Ret.getOperand(1);
7622       TopHalf = Ret.getOperand(0);
7623     }
7624   }
7625 
7626   Result = BottomHalf;
7627   if (isSigned) {
7628     SDValue ShiftAmt = DAG.getConstant(
7629         VT.getScalarSizeInBits() - 1, dl,
7630         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7631     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7632     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7633   } else {
7634     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7635                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7636   }
7637 
7638   // Truncate the result if SetCC returns a larger type than needed.
7639   EVT RType = Node->getValueType(1);
7640   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7641     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7642 
7643   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7644          "Unexpected result type for S/UMULO legalization");
7645   return true;
7646 }
7647 
7648 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7649   SDLoc dl(Node);
7650   bool NoNaN = Node->getFlags().hasNoNaNs();
7651   unsigned BaseOpcode = 0;
7652   switch (Node->getOpcode()) {
7653   default: llvm_unreachable("Expected VECREDUCE opcode");
7654   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7655   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7656   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7657   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7658   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7659   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7660   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7661   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7662   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7663   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7664   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7665   case ISD::VECREDUCE_FMAX:
7666     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7667     break;
7668   case ISD::VECREDUCE_FMIN:
7669     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7670     break;
7671   }
7672 
7673   SDValue Op = Node->getOperand(0);
7674   EVT VT = Op.getValueType();
7675 
7676   // Try to use a shuffle reduction for power of two vectors.
7677   if (VT.isPow2VectorType()) {
7678     while (VT.getVectorNumElements() > 1) {
7679       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7680       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7681         break;
7682 
7683       SDValue Lo, Hi;
7684       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7685       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7686       VT = HalfVT;
7687     }
7688   }
7689 
7690   EVT EltVT = VT.getVectorElementType();
7691   unsigned NumElts = VT.getVectorNumElements();
7692 
7693   SmallVector<SDValue, 8> Ops;
7694   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7695 
7696   SDValue Res = Ops[0];
7697   for (unsigned i = 1; i < NumElts; i++)
7698     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7699 
7700   // Result type may be wider than element type.
7701   if (EltVT != Node->getValueType(0))
7702     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7703   return Res;
7704 }
7705