1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeSet CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias).hasAttributes()) 61 return false; 62 63 // It's not safe to eliminate the sign / zero extension of the return value. 64 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 65 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 66 return false; 67 68 // Check if the only use is a function return node. 69 return isUsedByReturnOnly(Node, Chain); 70 } 71 72 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 73 const uint32_t *CallerPreservedMask, 74 const SmallVectorImpl<CCValAssign> &ArgLocs, 75 const SmallVectorImpl<SDValue> &OutVals) const { 76 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 77 const CCValAssign &ArgLoc = ArgLocs[I]; 78 if (!ArgLoc.isRegLoc()) 79 continue; 80 unsigned Reg = ArgLoc.getLocReg(); 81 // Only look at callee saved registers. 82 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 83 continue; 84 // Check that we pass the value used for the caller. 85 // (We look for a CopyFromReg reading a virtual register that is used 86 // for the function live-in value of register Reg) 87 SDValue Value = OutVals[I]; 88 if (Value->getOpcode() != ISD::CopyFromReg) 89 return false; 90 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 91 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 92 return false; 93 } 94 return true; 95 } 96 97 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 98 /// and called function attributes. 99 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 100 unsigned AttrIdx) { 101 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 102 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 103 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 104 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 105 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 106 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 107 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 108 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 109 isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 110 isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 111 Alignment = CS->getParamAlignment(AttrIdx); 112 } 113 114 /// Generate a libcall taking the given operands as arguments and returning a 115 /// result of type RetVT. 116 std::pair<SDValue, SDValue> 117 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 118 ArrayRef<SDValue> Ops, bool isSigned, 119 const SDLoc &dl, bool doesNotReturn, 120 bool isReturnValueUsed) const { 121 TargetLowering::ArgListTy Args; 122 Args.reserve(Ops.size()); 123 124 TargetLowering::ArgListEntry Entry; 125 for (SDValue Op : Ops) { 126 Entry.Node = Op; 127 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 128 Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 129 Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Args.push_back(Entry); 131 } 132 133 if (LC == RTLIB::UNKNOWN_LIBCALL) 134 report_fatal_error("Unsupported library call operation!"); 135 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 136 getPointerTy(DAG.getDataLayout())); 137 138 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 139 TargetLowering::CallLoweringInfo CLI(DAG); 140 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 141 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 142 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 143 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 144 .setSExtResult(signExtend).setZExtResult(!signExtend); 145 return LowerCallTo(CLI); 146 } 147 148 /// Soften the operands of a comparison. This code is shared among BR_CC, 149 /// SELECT_CC, and SETCC handlers. 150 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 151 SDValue &NewLHS, SDValue &NewRHS, 152 ISD::CondCode &CCCode, 153 const SDLoc &dl) const { 154 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 155 && "Unsupported setcc type!"); 156 157 // Expand into one or more soft-fp libcall(s). 158 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 159 bool ShouldInvertCC = false; 160 switch (CCCode) { 161 case ISD::SETEQ: 162 case ISD::SETOEQ: 163 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 164 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 165 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 166 break; 167 case ISD::SETNE: 168 case ISD::SETUNE: 169 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 170 (VT == MVT::f64) ? RTLIB::UNE_F64 : 171 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 172 break; 173 case ISD::SETGE: 174 case ISD::SETOGE: 175 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 176 (VT == MVT::f64) ? RTLIB::OGE_F64 : 177 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 178 break; 179 case ISD::SETLT: 180 case ISD::SETOLT: 181 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 182 (VT == MVT::f64) ? RTLIB::OLT_F64 : 183 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 184 break; 185 case ISD::SETLE: 186 case ISD::SETOLE: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 188 (VT == MVT::f64) ? RTLIB::OLE_F64 : 189 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 190 break; 191 case ISD::SETGT: 192 case ISD::SETOGT: 193 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 194 (VT == MVT::f64) ? RTLIB::OGT_F64 : 195 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 196 break; 197 case ISD::SETUO: 198 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 199 (VT == MVT::f64) ? RTLIB::UO_F64 : 200 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 201 break; 202 case ISD::SETO: 203 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 204 (VT == MVT::f64) ? RTLIB::O_F64 : 205 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 206 break; 207 case ISD::SETONE: 208 // SETONE = SETOLT | SETOGT 209 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 210 (VT == MVT::f64) ? RTLIB::OLT_F64 : 211 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 212 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 213 (VT == MVT::f64) ? RTLIB::OGT_F64 : 214 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 215 break; 216 case ISD::SETUEQ: 217 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 218 (VT == MVT::f64) ? RTLIB::UO_F64 : 219 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 221 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 222 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 223 break; 224 default: 225 // Invert CC for unordered comparisons 226 ShouldInvertCC = true; 227 switch (CCCode) { 228 case ISD::SETULT: 229 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 230 (VT == MVT::f64) ? RTLIB::OGE_F64 : 231 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 232 break; 233 case ISD::SETULE: 234 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 235 (VT == MVT::f64) ? RTLIB::OGT_F64 : 236 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 237 break; 238 case ISD::SETUGT: 239 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 240 (VT == MVT::f64) ? RTLIB::OLE_F64 : 241 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 242 break; 243 case ISD::SETUGE: 244 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 245 (VT == MVT::f64) ? RTLIB::OLT_F64 : 246 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 247 break; 248 default: llvm_unreachable("Do not know how to soften this setcc!"); 249 } 250 } 251 252 // Use the target specific return value for comparions lib calls. 253 EVT RetVT = getCmpLibcallReturnType(); 254 SDValue Ops[2] = {NewLHS, NewRHS}; 255 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 256 dl).first; 257 NewRHS = DAG.getConstant(0, dl, RetVT); 258 259 CCCode = getCmpLibcallCC(LC1); 260 if (ShouldInvertCC) 261 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 262 263 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 264 SDValue Tmp = DAG.getNode( 265 ISD::SETCC, dl, 266 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 267 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 268 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 269 dl).first; 270 NewLHS = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 274 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 275 NewRHS = SDValue(); 276 } 277 } 278 279 /// Return the entry encoding for a jump table in the current function. The 280 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 281 unsigned TargetLowering::getJumpTableEncoding() const { 282 // In non-pic modes, just use the address of a block. 283 if (!isPositionIndependent()) 284 return MachineJumpTableInfo::EK_BlockAddress; 285 286 // In PIC mode, if the target supports a GPRel32 directive, use it. 287 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 288 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 289 290 // Otherwise, use a label difference. 291 return MachineJumpTableInfo::EK_LabelDifference32; 292 } 293 294 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 295 SelectionDAG &DAG) const { 296 // If our PIC model is GP relative, use the global offset table as the base. 297 unsigned JTEncoding = getJumpTableEncoding(); 298 299 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 300 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 301 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 302 303 return Table; 304 } 305 306 /// This returns the relocation base for the given PIC jumptable, the same as 307 /// getPICJumpTableRelocBase, but as an MCExpr. 308 const MCExpr * 309 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 310 unsigned JTI,MCContext &Ctx) const{ 311 // The normal PIC reloc base is the label at the start of the jump table. 312 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 313 } 314 315 bool 316 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 317 const TargetMachine &TM = getTargetMachine(); 318 const GlobalValue *GV = GA->getGlobal(); 319 320 // If the address is not even local to this DSO we will have to load it from 321 // a got and then add the offset. 322 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 323 return false; 324 325 // If the code is position independent we will have to add a base register. 326 if (isPositionIndependent()) 327 return false; 328 329 // Otherwise we can do it. 330 return true; 331 } 332 333 //===----------------------------------------------------------------------===// 334 // Optimization Methods 335 //===----------------------------------------------------------------------===// 336 337 /// Check to see if the specified operand of the specified instruction is a 338 /// constant integer. If so, check to see if there are any bits set in the 339 /// constant that are not demanded. If so, shrink the constant and return true. 340 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 341 const APInt &Demanded) { 342 SDLoc dl(Op); 343 344 // FIXME: ISD::SELECT, ISD::SELECT_CC 345 switch (Op.getOpcode()) { 346 default: break; 347 case ISD::XOR: 348 case ISD::AND: 349 case ISD::OR: { 350 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 351 if (!C) return false; 352 353 if (Op.getOpcode() == ISD::XOR && 354 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 355 return false; 356 357 // if we can expand it to have all bits set, do it 358 if (C->getAPIntValue().intersects(~Demanded)) { 359 EVT VT = Op.getValueType(); 360 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 361 DAG.getConstant(Demanded & 362 C->getAPIntValue(), 363 dl, VT)); 364 return CombineTo(Op, New); 365 } 366 367 break; 368 } 369 } 370 371 return false; 372 } 373 374 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 375 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 376 /// generalized for targets with other types of implicit widening casts. 377 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 378 unsigned BitWidth, 379 const APInt &Demanded, 380 const SDLoc &dl) { 381 assert(Op.getNumOperands() == 2 && 382 "ShrinkDemandedOp only supports binary operators!"); 383 assert(Op.getNode()->getNumValues() == 1 && 384 "ShrinkDemandedOp only supports nodes with one result!"); 385 386 // Early return, as this function cannot handle vector types. 387 if (Op.getValueType().isVector()) 388 return false; 389 390 // Don't do this if the node has another user, which may require the 391 // full value. 392 if (!Op.getNode()->hasOneUse()) 393 return false; 394 395 // Search for the smallest integer type with free casts to and from 396 // Op's type. For expedience, just check power-of-2 integer types. 397 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 398 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 399 unsigned SmallVTBits = DemandedSize; 400 if (!isPowerOf2_32(SmallVTBits)) 401 SmallVTBits = NextPowerOf2(SmallVTBits); 402 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 403 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 404 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 405 TLI.isZExtFree(SmallVT, Op.getValueType())) { 406 // We found a type with free casts. 407 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 408 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 409 Op.getNode()->getOperand(0)), 410 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 411 Op.getNode()->getOperand(1))); 412 bool NeedZext = DemandedSize > SmallVTBits; 413 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 414 dl, Op.getValueType(), X); 415 return CombineTo(Op, Z); 416 } 417 } 418 return false; 419 } 420 421 /// Look at Op. At this point, we know that only the DemandedMask bits of the 422 /// result of Op are ever used downstream. If we can use this information to 423 /// simplify Op, create a new simplified DAG node and return true, returning the 424 /// original and new nodes in Old and New. Otherwise, analyze the expression and 425 /// return a mask of KnownOne and KnownZero bits for the expression (used to 426 /// simplify the caller). The KnownZero/One bits may only be accurate for those 427 /// bits in the DemandedMask. 428 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 429 const APInt &DemandedMask, 430 APInt &KnownZero, 431 APInt &KnownOne, 432 TargetLoweringOpt &TLO, 433 unsigned Depth) const { 434 unsigned BitWidth = DemandedMask.getBitWidth(); 435 assert(Op.getScalarValueSizeInBits() == BitWidth && 436 "Mask size mismatches value type size!"); 437 APInt NewMask = DemandedMask; 438 SDLoc dl(Op); 439 auto &DL = TLO.DAG.getDataLayout(); 440 441 // Don't know anything. 442 KnownZero = KnownOne = APInt(BitWidth, 0); 443 444 // Other users may use these bits. 445 if (!Op.getNode()->hasOneUse()) { 446 if (Depth != 0) { 447 // If not at the root, Just compute the KnownZero/KnownOne bits to 448 // simplify things downstream. 449 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 450 return false; 451 } 452 // If this is the root being simplified, allow it to have multiple uses, 453 // just set the NewMask to all bits. 454 NewMask = APInt::getAllOnesValue(BitWidth); 455 } else if (DemandedMask == 0) { 456 // Not demanding any bits from Op. 457 if (!Op.isUndef()) 458 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 459 return false; 460 } else if (Depth == 6) { // Limit search depth. 461 return false; 462 } 463 464 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 465 switch (Op.getOpcode()) { 466 case ISD::Constant: 467 // We know all of the bits for a constant! 468 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 469 KnownZero = ~KnownOne; 470 return false; // Don't fall through, will infinitely loop. 471 case ISD::BUILD_VECTOR: 472 // Collect the known bits that are shared by every constant vector element. 473 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 474 for (SDValue SrcOp : Op->ops()) { 475 if (!isa<ConstantSDNode>(SrcOp)) { 476 // We can only handle all constant values - bail out with no known bits. 477 KnownZero = KnownOne = APInt(BitWidth, 0); 478 return false; 479 } 480 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 481 KnownZero2 = ~KnownOne2; 482 483 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 484 if (KnownOne2.getBitWidth() != BitWidth) { 485 assert(KnownOne2.getBitWidth() > BitWidth && 486 KnownZero2.getBitWidth() > BitWidth && 487 "Expected BUILD_VECTOR implicit truncation"); 488 KnownOne2 = KnownOne2.trunc(BitWidth); 489 KnownZero2 = KnownZero2.trunc(BitWidth); 490 } 491 492 // Known bits are the values that are shared by every element. 493 // TODO: support per-element known bits. 494 KnownOne &= KnownOne2; 495 KnownZero &= KnownZero2; 496 } 497 return false; // Don't fall through, will infinitely loop. 498 case ISD::AND: 499 // If the RHS is a constant, check to see if the LHS would be zero without 500 // using the bits from the RHS. Below, we use knowledge about the RHS to 501 // simplify the LHS, here we're using information from the LHS to simplify 502 // the RHS. 503 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 504 APInt LHSZero, LHSOne; 505 // Do not increment Depth here; that can cause an infinite loop. 506 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 507 // If the LHS already has zeros where RHSC does, this and is dead. 508 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 509 return TLO.CombineTo(Op, Op.getOperand(0)); 510 // If any of the set bits in the RHS are known zero on the LHS, shrink 511 // the constant. 512 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 513 return true; 514 } 515 516 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 517 KnownOne, TLO, Depth+1)) 518 return true; 519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 520 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 521 KnownZero2, KnownOne2, TLO, Depth+1)) 522 return true; 523 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 524 525 // If all of the demanded bits are known one on one side, return the other. 526 // These bits cannot contribute to the result of the 'and'. 527 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 528 return TLO.CombineTo(Op, Op.getOperand(0)); 529 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 530 return TLO.CombineTo(Op, Op.getOperand(1)); 531 // If all of the demanded bits in the inputs are known zeros, return zero. 532 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 533 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 534 // If the RHS is a constant, see if we can simplify it. 535 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 536 return true; 537 // If the operation can be done in a smaller type, do so. 538 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 539 return true; 540 541 // Output known-1 bits are only known if set in both the LHS & RHS. 542 KnownOne &= KnownOne2; 543 // Output known-0 are known to be clear if zero in either the LHS | RHS. 544 KnownZero |= KnownZero2; 545 break; 546 case ISD::OR: 547 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 548 KnownOne, TLO, Depth+1)) 549 return true; 550 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 551 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 552 KnownZero2, KnownOne2, TLO, Depth+1)) 553 return true; 554 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 555 556 // If all of the demanded bits are known zero on one side, return the other. 557 // These bits cannot contribute to the result of the 'or'. 558 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 559 return TLO.CombineTo(Op, Op.getOperand(0)); 560 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 561 return TLO.CombineTo(Op, Op.getOperand(1)); 562 // If all of the potentially set bits on one side are known to be set on 563 // the other side, just use the 'other' side. 564 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 565 return TLO.CombineTo(Op, Op.getOperand(0)); 566 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 567 return TLO.CombineTo(Op, Op.getOperand(1)); 568 // If the RHS is a constant, see if we can simplify it. 569 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 570 return true; 571 // If the operation can be done in a smaller type, do so. 572 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 573 return true; 574 575 // Output known-0 bits are only known if clear in both the LHS & RHS. 576 KnownZero &= KnownZero2; 577 // Output known-1 are known to be set if set in either the LHS | RHS. 578 KnownOne |= KnownOne2; 579 break; 580 case ISD::XOR: 581 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 582 KnownOne, TLO, Depth+1)) 583 return true; 584 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 585 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 586 KnownOne2, TLO, Depth+1)) 587 return true; 588 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 589 590 // If all of the demanded bits are known zero on one side, return the other. 591 // These bits cannot contribute to the result of the 'xor'. 592 if ((KnownZero & NewMask) == NewMask) 593 return TLO.CombineTo(Op, Op.getOperand(0)); 594 if ((KnownZero2 & NewMask) == NewMask) 595 return TLO.CombineTo(Op, Op.getOperand(1)); 596 // If the operation can be done in a smaller type, do so. 597 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 598 return true; 599 600 // If all of the unknown bits are known to be zero on one side or the other 601 // (but not both) turn this into an *inclusive* or. 602 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 603 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 604 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 605 Op.getOperand(0), 606 Op.getOperand(1))); 607 608 // Output known-0 bits are known if clear or set in both the LHS & RHS. 609 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 610 // Output known-1 are known to be set if set in only one of the LHS, RHS. 611 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 612 613 // If all of the demanded bits on one side are known, and all of the set 614 // bits on that side are also known to be set on the other side, turn this 615 // into an AND, as we know the bits will be cleared. 616 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 617 // NB: it is okay if more bits are known than are requested 618 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 619 if (KnownOne == KnownOne2) { // set bits are the same on both sides 620 EVT VT = Op.getValueType(); 621 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 622 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 623 Op.getOperand(0), ANDC)); 624 } 625 } 626 627 // If the RHS is a constant, see if we can simplify it. 628 // for XOR, we prefer to force bits to 1 if they will make a -1. 629 // if we can't force bits, try to shrink constant 630 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 631 APInt Expanded = C->getAPIntValue() | (~NewMask); 632 // if we can expand it to have all bits set, do it 633 if (Expanded.isAllOnesValue()) { 634 if (Expanded != C->getAPIntValue()) { 635 EVT VT = Op.getValueType(); 636 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 637 TLO.DAG.getConstant(Expanded, dl, VT)); 638 return TLO.CombineTo(Op, New); 639 } 640 // if it already has all the bits set, nothing to change 641 // but don't shrink either! 642 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 643 return true; 644 } 645 } 646 647 KnownZero = KnownZeroOut; 648 KnownOne = KnownOneOut; 649 break; 650 case ISD::SELECT: 651 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 652 KnownOne, TLO, Depth+1)) 653 return true; 654 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 655 KnownOne2, TLO, Depth+1)) 656 return true; 657 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 658 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 659 660 // If the operands are constants, see if we can simplify them. 661 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 662 return true; 663 664 // Only known if known in both the LHS and RHS. 665 KnownOne &= KnownOne2; 666 KnownZero &= KnownZero2; 667 break; 668 case ISD::SELECT_CC: 669 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 670 KnownOne, TLO, Depth+1)) 671 return true; 672 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 673 KnownOne2, TLO, Depth+1)) 674 return true; 675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 676 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 677 678 // If the operands are constants, see if we can simplify them. 679 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 680 return true; 681 682 // Only known if known in both the LHS and RHS. 683 KnownOne &= KnownOne2; 684 KnownZero &= KnownZero2; 685 break; 686 case ISD::SHL: 687 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 688 unsigned ShAmt = SA->getZExtValue(); 689 SDValue InOp = Op.getOperand(0); 690 691 // If the shift count is an invalid immediate, don't do anything. 692 if (ShAmt >= BitWidth) 693 break; 694 695 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 696 // single shift. We can do this if the bottom bits (which are shifted 697 // out) are never demanded. 698 if (InOp.getOpcode() == ISD::SRL && 699 isa<ConstantSDNode>(InOp.getOperand(1))) { 700 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 701 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 702 unsigned Opc = ISD::SHL; 703 int Diff = ShAmt-C1; 704 if (Diff < 0) { 705 Diff = -Diff; 706 Opc = ISD::SRL; 707 } 708 709 SDValue NewSA = 710 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 711 EVT VT = Op.getValueType(); 712 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 713 InOp.getOperand(0), NewSA)); 714 } 715 } 716 717 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 718 KnownZero, KnownOne, TLO, Depth+1)) 719 return true; 720 721 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 722 // are not demanded. This will likely allow the anyext to be folded away. 723 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 724 SDValue InnerOp = InOp.getNode()->getOperand(0); 725 EVT InnerVT = InnerOp.getValueType(); 726 unsigned InnerBits = InnerVT.getSizeInBits(); 727 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 728 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 729 EVT ShTy = getShiftAmountTy(InnerVT, DL); 730 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 731 ShTy = InnerVT; 732 SDValue NarrowShl = 733 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 734 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 735 return 736 TLO.CombineTo(Op, 737 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 738 NarrowShl)); 739 } 740 // Repeat the SHL optimization above in cases where an extension 741 // intervenes: (shl (anyext (shr x, c1)), c2) to 742 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 743 // aren't demanded (as above) and that the shifted upper c1 bits of 744 // x aren't demanded. 745 if (InOp.hasOneUse() && 746 InnerOp.getOpcode() == ISD::SRL && 747 InnerOp.hasOneUse() && 748 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 749 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 750 ->getZExtValue(); 751 if (InnerShAmt < ShAmt && 752 InnerShAmt < InnerBits && 753 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 754 NewMask.trunc(ShAmt) == 0) { 755 SDValue NewSA = 756 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 757 Op.getOperand(1).getValueType()); 758 EVT VT = Op.getValueType(); 759 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 760 InnerOp.getOperand(0)); 761 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 762 NewExt, NewSA)); 763 } 764 } 765 } 766 767 KnownZero <<= SA->getZExtValue(); 768 KnownOne <<= SA->getZExtValue(); 769 // low bits known zero. 770 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 771 } 772 break; 773 case ISD::SRL: 774 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 775 EVT VT = Op.getValueType(); 776 unsigned ShAmt = SA->getZExtValue(); 777 unsigned VTSize = VT.getSizeInBits(); 778 SDValue InOp = Op.getOperand(0); 779 780 // If the shift count is an invalid immediate, don't do anything. 781 if (ShAmt >= BitWidth) 782 break; 783 784 APInt InDemandedMask = (NewMask << ShAmt); 785 786 // If the shift is exact, then it does demand the low bits (and knows that 787 // they are zero). 788 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 789 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 790 791 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 792 // single shift. We can do this if the top bits (which are shifted out) 793 // are never demanded. 794 if (InOp.getOpcode() == ISD::SHL && 795 isa<ConstantSDNode>(InOp.getOperand(1))) { 796 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 797 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 798 unsigned Opc = ISD::SRL; 799 int Diff = ShAmt-C1; 800 if (Diff < 0) { 801 Diff = -Diff; 802 Opc = ISD::SHL; 803 } 804 805 SDValue NewSA = 806 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 807 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 808 InOp.getOperand(0), NewSA)); 809 } 810 } 811 812 // Compute the new bits that are at the top now. 813 if (SimplifyDemandedBits(InOp, InDemandedMask, 814 KnownZero, KnownOne, TLO, Depth+1)) 815 return true; 816 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 817 KnownZero = KnownZero.lshr(ShAmt); 818 KnownOne = KnownOne.lshr(ShAmt); 819 820 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 821 KnownZero |= HighBits; // High bits known zero. 822 } 823 break; 824 case ISD::SRA: 825 // If this is an arithmetic shift right and only the low-bit is set, we can 826 // always convert this into a logical shr, even if the shift amount is 827 // variable. The low bit of the shift cannot be an input sign bit unless 828 // the shift amount is >= the size of the datatype, which is undefined. 829 if (NewMask == 1) 830 return TLO.CombineTo(Op, 831 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 832 Op.getOperand(0), Op.getOperand(1))); 833 834 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 835 EVT VT = Op.getValueType(); 836 unsigned ShAmt = SA->getZExtValue(); 837 838 // If the shift count is an invalid immediate, don't do anything. 839 if (ShAmt >= BitWidth) 840 break; 841 842 APInt InDemandedMask = (NewMask << ShAmt); 843 844 // If the shift is exact, then it does demand the low bits (and knows that 845 // they are zero). 846 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 847 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 848 849 // If any of the demanded bits are produced by the sign extension, we also 850 // demand the input sign bit. 851 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 852 if (HighBits.intersects(NewMask)) 853 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 854 855 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 856 KnownZero, KnownOne, TLO, Depth+1)) 857 return true; 858 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 859 KnownZero = KnownZero.lshr(ShAmt); 860 KnownOne = KnownOne.lshr(ShAmt); 861 862 // Handle the sign bit, adjusted to where it is now in the mask. 863 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 864 865 // If the input sign bit is known to be zero, or if none of the top bits 866 // are demanded, turn this into an unsigned shift right. 867 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 868 SDNodeFlags Flags; 869 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 870 return TLO.CombineTo(Op, 871 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 872 Op.getOperand(1), &Flags)); 873 } 874 875 int Log2 = NewMask.exactLogBase2(); 876 if (Log2 >= 0) { 877 // The bit must come from the sign. 878 SDValue NewSA = 879 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 880 Op.getOperand(1).getValueType()); 881 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 882 Op.getOperand(0), NewSA)); 883 } 884 885 if (KnownOne.intersects(SignBit)) 886 // New bits are known one. 887 KnownOne |= HighBits; 888 } 889 break; 890 case ISD::SIGN_EXTEND_INREG: { 891 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 892 893 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 894 // If we only care about the highest bit, don't bother shifting right. 895 if (MsbMask == NewMask) { 896 unsigned ShAmt = ExVT.getScalarSizeInBits(); 897 SDValue InOp = Op.getOperand(0); 898 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 899 bool AlreadySignExtended = 900 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 901 // However if the input is already sign extended we expect the sign 902 // extension to be dropped altogether later and do not simplify. 903 if (!AlreadySignExtended) { 904 // Compute the correct shift amount type, which must be getShiftAmountTy 905 // for scalar types after legalization. 906 EVT ShiftAmtTy = Op.getValueType(); 907 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 908 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 909 910 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 911 ShiftAmtTy); 912 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 913 Op.getValueType(), InOp, 914 ShiftAmt)); 915 } 916 } 917 918 // Sign extension. Compute the demanded bits in the result that are not 919 // present in the input. 920 APInt NewBits = 921 APInt::getHighBitsSet(BitWidth, 922 BitWidth - ExVT.getScalarSizeInBits()); 923 924 // If none of the extended bits are demanded, eliminate the sextinreg. 925 if ((NewBits & NewMask) == 0) 926 return TLO.CombineTo(Op, Op.getOperand(0)); 927 928 APInt InSignBit = 929 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 930 APInt InputDemandedBits = 931 APInt::getLowBitsSet(BitWidth, 932 ExVT.getScalarSizeInBits()) & 933 NewMask; 934 935 // Since the sign extended bits are demanded, we know that the sign 936 // bit is demanded. 937 InputDemandedBits |= InSignBit; 938 939 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 940 KnownZero, KnownOne, TLO, Depth+1)) 941 return true; 942 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 943 944 // If the sign bit of the input is known set or clear, then we know the 945 // top bits of the result. 946 947 // If the input sign bit is known zero, convert this into a zero extension. 948 if (KnownZero.intersects(InSignBit)) 949 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 950 Op.getOperand(0), dl, ExVT.getScalarType())); 951 952 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 953 KnownOne |= NewBits; 954 KnownZero &= ~NewBits; 955 } else { // Input sign bit unknown 956 KnownZero &= ~NewBits; 957 KnownOne &= ~NewBits; 958 } 959 break; 960 } 961 case ISD::BUILD_PAIR: { 962 EVT HalfVT = Op.getOperand(0).getValueType(); 963 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 964 965 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 966 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 967 968 APInt KnownZeroLo, KnownOneLo; 969 APInt KnownZeroHi, KnownOneHi; 970 971 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 972 KnownOneLo, TLO, Depth + 1)) 973 return true; 974 975 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 976 KnownOneHi, TLO, Depth + 1)) 977 return true; 978 979 KnownZero = KnownZeroLo.zext(BitWidth) | 980 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 981 982 KnownOne = KnownOneLo.zext(BitWidth) | 983 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 984 break; 985 } 986 case ISD::ZERO_EXTEND: { 987 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 988 APInt InMask = NewMask.trunc(OperandBitWidth); 989 990 // If none of the top bits are demanded, convert this into an any_extend. 991 APInt NewBits = 992 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 993 if (!NewBits.intersects(NewMask)) 994 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 995 Op.getValueType(), 996 Op.getOperand(0))); 997 998 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 999 KnownZero, KnownOne, TLO, Depth+1)) 1000 return true; 1001 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1002 KnownZero = KnownZero.zext(BitWidth); 1003 KnownOne = KnownOne.zext(BitWidth); 1004 KnownZero |= NewBits; 1005 break; 1006 } 1007 case ISD::SIGN_EXTEND: { 1008 EVT InVT = Op.getOperand(0).getValueType(); 1009 unsigned InBits = InVT.getScalarSizeInBits(); 1010 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1011 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1012 APInt NewBits = ~InMask & NewMask; 1013 1014 // If none of the top bits are demanded, convert this into an any_extend. 1015 if (NewBits == 0) 1016 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1017 Op.getValueType(), 1018 Op.getOperand(0))); 1019 1020 // Since some of the sign extended bits are demanded, we know that the sign 1021 // bit is demanded. 1022 APInt InDemandedBits = InMask & NewMask; 1023 InDemandedBits |= InSignBit; 1024 InDemandedBits = InDemandedBits.trunc(InBits); 1025 1026 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1027 KnownOne, TLO, Depth+1)) 1028 return true; 1029 KnownZero = KnownZero.zext(BitWidth); 1030 KnownOne = KnownOne.zext(BitWidth); 1031 1032 // If the sign bit is known zero, convert this to a zero extend. 1033 if (KnownZero.intersects(InSignBit)) 1034 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1035 Op.getValueType(), 1036 Op.getOperand(0))); 1037 1038 // If the sign bit is known one, the top bits match. 1039 if (KnownOne.intersects(InSignBit)) { 1040 KnownOne |= NewBits; 1041 assert((KnownZero & NewBits) == 0); 1042 } else { // Otherwise, top bits aren't known. 1043 assert((KnownOne & NewBits) == 0); 1044 assert((KnownZero & NewBits) == 0); 1045 } 1046 break; 1047 } 1048 case ISD::ANY_EXTEND: { 1049 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1050 APInt InMask = NewMask.trunc(OperandBitWidth); 1051 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1052 KnownZero, KnownOne, TLO, Depth+1)) 1053 return true; 1054 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1055 KnownZero = KnownZero.zext(BitWidth); 1056 KnownOne = KnownOne.zext(BitWidth); 1057 break; 1058 } 1059 case ISD::TRUNCATE: { 1060 // Simplify the input, using demanded bit information, and compute the known 1061 // zero/one bits live out. 1062 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1063 APInt TruncMask = NewMask.zext(OperandBitWidth); 1064 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1065 KnownZero, KnownOne, TLO, Depth+1)) 1066 return true; 1067 KnownZero = KnownZero.trunc(BitWidth); 1068 KnownOne = KnownOne.trunc(BitWidth); 1069 1070 // If the input is only used by this truncate, see if we can shrink it based 1071 // on the known demanded bits. 1072 if (Op.getOperand(0).getNode()->hasOneUse()) { 1073 SDValue In = Op.getOperand(0); 1074 switch (In.getOpcode()) { 1075 default: break; 1076 case ISD::SRL: 1077 // Shrink SRL by a constant if none of the high bits shifted in are 1078 // demanded. 1079 if (TLO.LegalTypes() && 1080 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1081 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1082 // undesirable. 1083 break; 1084 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1085 if (!ShAmt) 1086 break; 1087 SDValue Shift = In.getOperand(1); 1088 if (TLO.LegalTypes()) { 1089 uint64_t ShVal = ShAmt->getZExtValue(); 1090 Shift = TLO.DAG.getConstant(ShVal, dl, 1091 getShiftAmountTy(Op.getValueType(), DL)); 1092 } 1093 1094 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1095 OperandBitWidth - BitWidth); 1096 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1097 1098 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1099 // None of the shifted in bits are needed. Add a truncate of the 1100 // shift input, then shift it. 1101 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1102 Op.getValueType(), 1103 In.getOperand(0)); 1104 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1105 Op.getValueType(), 1106 NewTrunc, 1107 Shift)); 1108 } 1109 break; 1110 } 1111 } 1112 1113 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1114 break; 1115 } 1116 case ISD::AssertZext: { 1117 // AssertZext demands all of the high bits, plus any of the low bits 1118 // demanded by its users. 1119 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1120 APInt InMask = APInt::getLowBitsSet(BitWidth, 1121 VT.getSizeInBits()); 1122 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1123 KnownZero, KnownOne, TLO, Depth+1)) 1124 return true; 1125 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1126 1127 KnownZero |= ~InMask & NewMask; 1128 break; 1129 } 1130 case ISD::BITCAST: 1131 // If this is an FP->Int bitcast and if the sign bit is the only 1132 // thing demanded, turn this into a FGETSIGN. 1133 if (!TLO.LegalOperations() && 1134 !Op.getValueType().isVector() && 1135 !Op.getOperand(0).getValueType().isVector() && 1136 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1137 Op.getOperand(0).getValueType().isFloatingPoint()) { 1138 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1139 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1140 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1141 Op.getOperand(0).getValueType() != MVT::f128) { 1142 // Cannot eliminate/lower SHL for f128 yet. 1143 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1144 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1145 // place. We expect the SHL to be eliminated by other optimizations. 1146 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1147 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1148 if (!OpVTLegal && OpVTSizeInBits > 32) 1149 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1150 unsigned ShVal = Op.getValueSizeInBits() - 1; 1151 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1152 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1153 Op.getValueType(), 1154 Sign, ShAmt)); 1155 } 1156 } 1157 break; 1158 case ISD::ADD: 1159 case ISD::MUL: 1160 case ISD::SUB: { 1161 // Add, Sub, and Mul don't demand any bits in positions beyond that 1162 // of the highest bit demanded of them. 1163 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1164 BitWidth - NewMask.countLeadingZeros()); 1165 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1166 KnownOne2, TLO, Depth+1)) 1167 return true; 1168 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1169 KnownOne2, TLO, Depth+1)) 1170 return true; 1171 // See if the operation should be performed at a smaller bit width. 1172 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1173 return true; 1174 LLVM_FALLTHROUGH; 1175 } 1176 default: 1177 // Just use computeKnownBits to compute output bits. 1178 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1179 break; 1180 } 1181 1182 // If we know the value of all of the demanded bits, return this as a 1183 // constant. 1184 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1185 // Avoid folding to a constant if any OpaqueConstant is involved. 1186 const SDNode *N = Op.getNode(); 1187 for (SDNodeIterator I = SDNodeIterator::begin(N), 1188 E = SDNodeIterator::end(N); I != E; ++I) { 1189 SDNode *Op = *I; 1190 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1191 if (C->isOpaque()) 1192 return false; 1193 } 1194 return TLO.CombineTo(Op, 1195 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1196 } 1197 1198 return false; 1199 } 1200 1201 /// Determine which of the bits specified in Mask are known to be either zero or 1202 /// one and return them in the KnownZero/KnownOne bitsets. 1203 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1204 APInt &KnownZero, 1205 APInt &KnownOne, 1206 const SelectionDAG &DAG, 1207 unsigned Depth) const { 1208 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1209 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1210 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1211 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1212 "Should use MaskedValueIsZero if you don't know whether Op" 1213 " is a target node!"); 1214 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1215 } 1216 1217 /// This method can be implemented by targets that want to expose additional 1218 /// information about sign bits to the DAG Combiner. 1219 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1220 const SelectionDAG &, 1221 unsigned Depth) const { 1222 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1223 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1224 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1225 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1226 "Should use ComputeNumSignBits if you don't know whether Op" 1227 " is a target node!"); 1228 return 1; 1229 } 1230 1231 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1232 if (!N) 1233 return false; 1234 1235 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1236 if (!CN) { 1237 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1238 if (!BV) 1239 return false; 1240 1241 BitVector UndefElements; 1242 CN = BV->getConstantSplatNode(&UndefElements); 1243 // Only interested in constant splats, and we don't try to handle undef 1244 // elements in identifying boolean constants. 1245 if (!CN || UndefElements.none()) 1246 return false; 1247 } 1248 1249 switch (getBooleanContents(N->getValueType(0))) { 1250 case UndefinedBooleanContent: 1251 return CN->getAPIntValue()[0]; 1252 case ZeroOrOneBooleanContent: 1253 return CN->isOne(); 1254 case ZeroOrNegativeOneBooleanContent: 1255 return CN->isAllOnesValue(); 1256 } 1257 1258 llvm_unreachable("Invalid boolean contents"); 1259 } 1260 1261 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1262 const SDLoc &DL) const { 1263 unsigned ElementWidth = VT.getScalarSizeInBits(); 1264 APInt TrueInt = 1265 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1266 ? APInt(ElementWidth, 1) 1267 : APInt::getAllOnesValue(ElementWidth); 1268 return DAG.getConstant(TrueInt, DL, VT); 1269 } 1270 1271 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1272 if (!N) 1273 return false; 1274 1275 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1276 if (!CN) { 1277 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1278 if (!BV) 1279 return false; 1280 1281 BitVector UndefElements; 1282 CN = BV->getConstantSplatNode(&UndefElements); 1283 // Only interested in constant splats, and we don't try to handle undef 1284 // elements in identifying boolean constants. 1285 if (!CN || UndefElements.none()) 1286 return false; 1287 } 1288 1289 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1290 return !CN->getAPIntValue()[0]; 1291 1292 return CN->isNullValue(); 1293 } 1294 1295 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1296 bool SExt) const { 1297 if (VT == MVT::i1) 1298 return N->isOne(); 1299 1300 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1301 switch (Cnt) { 1302 case TargetLowering::ZeroOrOneBooleanContent: 1303 // An extended value of 1 is always true, unless its original type is i1, 1304 // in which case it will be sign extended to -1. 1305 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1306 case TargetLowering::UndefinedBooleanContent: 1307 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1308 return N->isAllOnesValue() && SExt; 1309 } 1310 llvm_unreachable("Unexpected enumeration."); 1311 } 1312 1313 /// This helper function of SimplifySetCC tries to optimize the comparison when 1314 /// either operand of the SetCC node is a bitwise-and instruction. 1315 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1316 ISD::CondCode Cond, 1317 DAGCombinerInfo &DCI, 1318 const SDLoc &DL) const { 1319 // Match these patterns in any of their permutations: 1320 // (X & Y) == Y 1321 // (X & Y) != Y 1322 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1323 std::swap(N0, N1); 1324 1325 EVT OpVT = N0.getValueType(); 1326 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1327 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1328 return SDValue(); 1329 1330 SDValue X, Y; 1331 if (N0.getOperand(0) == N1) { 1332 X = N0.getOperand(1); 1333 Y = N0.getOperand(0); 1334 } else if (N0.getOperand(1) == N1) { 1335 X = N0.getOperand(0); 1336 Y = N0.getOperand(1); 1337 } else { 1338 return SDValue(); 1339 } 1340 1341 SelectionDAG &DAG = DCI.DAG; 1342 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1343 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1344 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1345 // Note that where Y is variable and is known to have at most one bit set 1346 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1347 // equivalent when Y == 0. 1348 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1349 if (DCI.isBeforeLegalizeOps() || 1350 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1351 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1352 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1353 // If the target supports an 'and-not' or 'and-complement' logic operation, 1354 // try to use that to make a comparison operation more efficient. 1355 // But don't do this transform if the mask is a single bit because there are 1356 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1357 // 'rlwinm' on PPC). 1358 1359 // Bail out if the compare operand that we want to turn into a zero is 1360 // already a zero (otherwise, infinite loop). 1361 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1362 if (YConst && YConst->isNullValue()) 1363 return SDValue(); 1364 1365 // Transform this into: ~X & Y == 0. 1366 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1367 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1368 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1369 } 1370 1371 return SDValue(); 1372 } 1373 1374 /// Try to simplify a setcc built with the specified operands and cc. If it is 1375 /// unable to simplify it, return a null SDValue. 1376 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1377 ISD::CondCode Cond, bool foldBooleans, 1378 DAGCombinerInfo &DCI, 1379 const SDLoc &dl) const { 1380 SelectionDAG &DAG = DCI.DAG; 1381 1382 // These setcc operations always fold. 1383 switch (Cond) { 1384 default: break; 1385 case ISD::SETFALSE: 1386 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1387 case ISD::SETTRUE: 1388 case ISD::SETTRUE2: { 1389 TargetLowering::BooleanContent Cnt = 1390 getBooleanContents(N0->getValueType(0)); 1391 return DAG.getConstant( 1392 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1393 VT); 1394 } 1395 } 1396 1397 // Ensure that the constant occurs on the RHS, and fold constant 1398 // comparisons. 1399 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1400 if (isa<ConstantSDNode>(N0.getNode()) && 1401 (DCI.isBeforeLegalizeOps() || 1402 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1403 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1404 1405 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1406 const APInt &C1 = N1C->getAPIntValue(); 1407 1408 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1409 // equality comparison, then we're just comparing whether X itself is 1410 // zero. 1411 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1412 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1413 N0.getOperand(1).getOpcode() == ISD::Constant) { 1414 const APInt &ShAmt 1415 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1416 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1417 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1418 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1419 // (srl (ctlz x), 5) == 0 -> X != 0 1420 // (srl (ctlz x), 5) != 1 -> X != 0 1421 Cond = ISD::SETNE; 1422 } else { 1423 // (srl (ctlz x), 5) != 0 -> X == 0 1424 // (srl (ctlz x), 5) == 1 -> X == 0 1425 Cond = ISD::SETEQ; 1426 } 1427 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1428 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1429 Zero, Cond); 1430 } 1431 } 1432 1433 SDValue CTPOP = N0; 1434 // Look through truncs that don't change the value of a ctpop. 1435 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1436 CTPOP = N0.getOperand(0); 1437 1438 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1439 (N0 == CTPOP || 1440 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1441 EVT CTVT = CTPOP.getValueType(); 1442 SDValue CTOp = CTPOP.getOperand(0); 1443 1444 // (ctpop x) u< 2 -> (x & x-1) == 0 1445 // (ctpop x) u> 1 -> (x & x-1) != 0 1446 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1447 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1448 DAG.getConstant(1, dl, CTVT)); 1449 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1450 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1451 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1452 } 1453 1454 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1455 } 1456 1457 // (zext x) == C --> x == (trunc C) 1458 // (sext x) == C --> x == (trunc C) 1459 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1460 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1461 unsigned MinBits = N0.getValueSizeInBits(); 1462 SDValue PreExt; 1463 bool Signed = false; 1464 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1465 // ZExt 1466 MinBits = N0->getOperand(0).getValueSizeInBits(); 1467 PreExt = N0->getOperand(0); 1468 } else if (N0->getOpcode() == ISD::AND) { 1469 // DAGCombine turns costly ZExts into ANDs 1470 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1471 if ((C->getAPIntValue()+1).isPowerOf2()) { 1472 MinBits = C->getAPIntValue().countTrailingOnes(); 1473 PreExt = N0->getOperand(0); 1474 } 1475 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1476 // SExt 1477 MinBits = N0->getOperand(0).getValueSizeInBits(); 1478 PreExt = N0->getOperand(0); 1479 Signed = true; 1480 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1481 // ZEXTLOAD / SEXTLOAD 1482 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1483 MinBits = LN0->getMemoryVT().getSizeInBits(); 1484 PreExt = N0; 1485 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1486 Signed = true; 1487 MinBits = LN0->getMemoryVT().getSizeInBits(); 1488 PreExt = N0; 1489 } 1490 } 1491 1492 // Figure out how many bits we need to preserve this constant. 1493 unsigned ReqdBits = Signed ? 1494 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1495 C1.getActiveBits(); 1496 1497 // Make sure we're not losing bits from the constant. 1498 if (MinBits > 0 && 1499 MinBits < C1.getBitWidth() && 1500 MinBits >= ReqdBits) { 1501 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1502 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1503 // Will get folded away. 1504 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1505 if (MinBits == 1 && C1 == 1) 1506 // Invert the condition. 1507 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1508 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1509 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1510 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1511 } 1512 1513 // If truncating the setcc operands is not desirable, we can still 1514 // simplify the expression in some cases: 1515 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1516 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1517 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1518 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1519 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1520 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1521 SDValue TopSetCC = N0->getOperand(0); 1522 unsigned N0Opc = N0->getOpcode(); 1523 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1524 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1525 TopSetCC.getOpcode() == ISD::SETCC && 1526 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1527 (isConstFalseVal(N1C) || 1528 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1529 1530 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1531 (!N1C->isNullValue() && Cond == ISD::SETNE); 1532 1533 if (!Inverse) 1534 return TopSetCC; 1535 1536 ISD::CondCode InvCond = ISD::getSetCCInverse( 1537 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1538 TopSetCC.getOperand(0).getValueType().isInteger()); 1539 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1540 TopSetCC.getOperand(1), 1541 InvCond); 1542 1543 } 1544 } 1545 } 1546 1547 // If the LHS is '(and load, const)', the RHS is 0, 1548 // the test is for equality or unsigned, and all 1 bits of the const are 1549 // in the same partial word, see if we can shorten the load. 1550 if (DCI.isBeforeLegalize() && 1551 !ISD::isSignedIntSetCC(Cond) && 1552 N0.getOpcode() == ISD::AND && C1 == 0 && 1553 N0.getNode()->hasOneUse() && 1554 isa<LoadSDNode>(N0.getOperand(0)) && 1555 N0.getOperand(0).getNode()->hasOneUse() && 1556 isa<ConstantSDNode>(N0.getOperand(1))) { 1557 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1558 APInt bestMask; 1559 unsigned bestWidth = 0, bestOffset = 0; 1560 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1561 unsigned origWidth = N0.getValueSizeInBits(); 1562 unsigned maskWidth = origWidth; 1563 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1564 // 8 bits, but have to be careful... 1565 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1566 origWidth = Lod->getMemoryVT().getSizeInBits(); 1567 const APInt &Mask = 1568 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1569 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1570 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1571 for (unsigned offset=0; offset<origWidth/width; offset++) { 1572 if ((newMask & Mask) == Mask) { 1573 if (!DAG.getDataLayout().isLittleEndian()) 1574 bestOffset = (origWidth/width - offset - 1) * (width/8); 1575 else 1576 bestOffset = (uint64_t)offset * (width/8); 1577 bestMask = Mask.lshr(offset * (width/8) * 8); 1578 bestWidth = width; 1579 break; 1580 } 1581 newMask = newMask << width; 1582 } 1583 } 1584 } 1585 if (bestWidth) { 1586 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1587 if (newVT.isRound()) { 1588 EVT PtrType = Lod->getOperand(1).getValueType(); 1589 SDValue Ptr = Lod->getBasePtr(); 1590 if (bestOffset != 0) 1591 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1592 DAG.getConstant(bestOffset, dl, PtrType)); 1593 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1594 SDValue NewLoad = DAG.getLoad( 1595 newVT, dl, Lod->getChain(), Ptr, 1596 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1597 return DAG.getSetCC(dl, VT, 1598 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1599 DAG.getConstant(bestMask.trunc(bestWidth), 1600 dl, newVT)), 1601 DAG.getConstant(0LL, dl, newVT), Cond); 1602 } 1603 } 1604 } 1605 1606 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1607 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1608 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1609 1610 // If the comparison constant has bits in the upper part, the 1611 // zero-extended value could never match. 1612 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1613 C1.getBitWidth() - InSize))) { 1614 switch (Cond) { 1615 case ISD::SETUGT: 1616 case ISD::SETUGE: 1617 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1618 case ISD::SETULT: 1619 case ISD::SETULE: 1620 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1621 case ISD::SETGT: 1622 case ISD::SETGE: 1623 // True if the sign bit of C1 is set. 1624 return DAG.getConstant(C1.isNegative(), dl, VT); 1625 case ISD::SETLT: 1626 case ISD::SETLE: 1627 // True if the sign bit of C1 isn't set. 1628 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1629 default: 1630 break; 1631 } 1632 } 1633 1634 // Otherwise, we can perform the comparison with the low bits. 1635 switch (Cond) { 1636 case ISD::SETEQ: 1637 case ISD::SETNE: 1638 case ISD::SETUGT: 1639 case ISD::SETUGE: 1640 case ISD::SETULT: 1641 case ISD::SETULE: { 1642 EVT newVT = N0.getOperand(0).getValueType(); 1643 if (DCI.isBeforeLegalizeOps() || 1644 (isOperationLegal(ISD::SETCC, newVT) && 1645 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1646 EVT NewSetCCVT = 1647 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1648 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1649 1650 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1651 NewConst, Cond); 1652 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1653 } 1654 break; 1655 } 1656 default: 1657 break; // todo, be more careful with signed comparisons 1658 } 1659 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1660 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1661 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1662 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1663 EVT ExtDstTy = N0.getValueType(); 1664 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1665 1666 // If the constant doesn't fit into the number of bits for the source of 1667 // the sign extension, it is impossible for both sides to be equal. 1668 if (C1.getMinSignedBits() > ExtSrcTyBits) 1669 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1670 1671 SDValue ZextOp; 1672 EVT Op0Ty = N0.getOperand(0).getValueType(); 1673 if (Op0Ty == ExtSrcTy) { 1674 ZextOp = N0.getOperand(0); 1675 } else { 1676 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1677 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1678 DAG.getConstant(Imm, dl, Op0Ty)); 1679 } 1680 if (!DCI.isCalledByLegalizer()) 1681 DCI.AddToWorklist(ZextOp.getNode()); 1682 // Otherwise, make this a use of a zext. 1683 return DAG.getSetCC(dl, VT, ZextOp, 1684 DAG.getConstant(C1 & APInt::getLowBitsSet( 1685 ExtDstTyBits, 1686 ExtSrcTyBits), 1687 dl, ExtDstTy), 1688 Cond); 1689 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1690 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1691 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1692 if (N0.getOpcode() == ISD::SETCC && 1693 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1694 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1695 if (TrueWhenTrue) 1696 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1697 // Invert the condition. 1698 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1699 CC = ISD::getSetCCInverse(CC, 1700 N0.getOperand(0).getValueType().isInteger()); 1701 if (DCI.isBeforeLegalizeOps() || 1702 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1703 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1704 } 1705 1706 if ((N0.getOpcode() == ISD::XOR || 1707 (N0.getOpcode() == ISD::AND && 1708 N0.getOperand(0).getOpcode() == ISD::XOR && 1709 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1710 isa<ConstantSDNode>(N0.getOperand(1)) && 1711 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1712 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1713 // can only do this if the top bits are known zero. 1714 unsigned BitWidth = N0.getValueSizeInBits(); 1715 if (DAG.MaskedValueIsZero(N0, 1716 APInt::getHighBitsSet(BitWidth, 1717 BitWidth-1))) { 1718 // Okay, get the un-inverted input value. 1719 SDValue Val; 1720 if (N0.getOpcode() == ISD::XOR) 1721 Val = N0.getOperand(0); 1722 else { 1723 assert(N0.getOpcode() == ISD::AND && 1724 N0.getOperand(0).getOpcode() == ISD::XOR); 1725 // ((X^1)&1)^1 -> X & 1 1726 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1727 N0.getOperand(0).getOperand(0), 1728 N0.getOperand(1)); 1729 } 1730 1731 return DAG.getSetCC(dl, VT, Val, N1, 1732 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1733 } 1734 } else if (N1C->getAPIntValue() == 1 && 1735 (VT == MVT::i1 || 1736 getBooleanContents(N0->getValueType(0)) == 1737 ZeroOrOneBooleanContent)) { 1738 SDValue Op0 = N0; 1739 if (Op0.getOpcode() == ISD::TRUNCATE) 1740 Op0 = Op0.getOperand(0); 1741 1742 if ((Op0.getOpcode() == ISD::XOR) && 1743 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1744 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1745 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1746 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1747 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1748 Cond); 1749 } 1750 if (Op0.getOpcode() == ISD::AND && 1751 isa<ConstantSDNode>(Op0.getOperand(1)) && 1752 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1753 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1754 if (Op0.getValueType().bitsGT(VT)) 1755 Op0 = DAG.getNode(ISD::AND, dl, VT, 1756 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1757 DAG.getConstant(1, dl, VT)); 1758 else if (Op0.getValueType().bitsLT(VT)) 1759 Op0 = DAG.getNode(ISD::AND, dl, VT, 1760 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1761 DAG.getConstant(1, dl, VT)); 1762 1763 return DAG.getSetCC(dl, VT, Op0, 1764 DAG.getConstant(0, dl, Op0.getValueType()), 1765 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1766 } 1767 if (Op0.getOpcode() == ISD::AssertZext && 1768 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1769 return DAG.getSetCC(dl, VT, Op0, 1770 DAG.getConstant(0, dl, Op0.getValueType()), 1771 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1772 } 1773 } 1774 1775 APInt MinVal, MaxVal; 1776 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1777 if (ISD::isSignedIntSetCC(Cond)) { 1778 MinVal = APInt::getSignedMinValue(OperandBitSize); 1779 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1780 } else { 1781 MinVal = APInt::getMinValue(OperandBitSize); 1782 MaxVal = APInt::getMaxValue(OperandBitSize); 1783 } 1784 1785 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1786 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1787 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1788 // X >= C0 --> X > (C0 - 1) 1789 APInt C = C1 - 1; 1790 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1791 if ((DCI.isBeforeLegalizeOps() || 1792 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1793 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1794 isLegalICmpImmediate(C.getSExtValue())))) { 1795 return DAG.getSetCC(dl, VT, N0, 1796 DAG.getConstant(C, dl, N1.getValueType()), 1797 NewCC); 1798 } 1799 } 1800 1801 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1802 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1803 // X <= C0 --> X < (C0 + 1) 1804 APInt C = C1 + 1; 1805 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1806 if ((DCI.isBeforeLegalizeOps() || 1807 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1808 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1809 isLegalICmpImmediate(C.getSExtValue())))) { 1810 return DAG.getSetCC(dl, VT, N0, 1811 DAG.getConstant(C, dl, N1.getValueType()), 1812 NewCC); 1813 } 1814 } 1815 1816 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1817 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1818 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1819 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1820 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1821 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1822 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1823 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1824 1825 // Canonicalize setgt X, Min --> setne X, Min 1826 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1827 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1828 // Canonicalize setlt X, Max --> setne X, Max 1829 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1830 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1831 1832 // If we have setult X, 1, turn it into seteq X, 0 1833 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1834 return DAG.getSetCC(dl, VT, N0, 1835 DAG.getConstant(MinVal, dl, N0.getValueType()), 1836 ISD::SETEQ); 1837 // If we have setugt X, Max-1, turn it into seteq X, Max 1838 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1839 return DAG.getSetCC(dl, VT, N0, 1840 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1841 ISD::SETEQ); 1842 1843 // If we have "setcc X, C0", check to see if we can shrink the immediate 1844 // by changing cc. 1845 1846 // SETUGT X, SINTMAX -> SETLT X, 0 1847 if (Cond == ISD::SETUGT && 1848 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1849 return DAG.getSetCC(dl, VT, N0, 1850 DAG.getConstant(0, dl, N1.getValueType()), 1851 ISD::SETLT); 1852 1853 // SETULT X, SINTMIN -> SETGT X, -1 1854 if (Cond == ISD::SETULT && 1855 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1856 SDValue ConstMinusOne = 1857 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1858 N1.getValueType()); 1859 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1860 } 1861 1862 // Fold bit comparisons when we can. 1863 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1864 (VT == N0.getValueType() || 1865 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1866 N0.getOpcode() == ISD::AND) { 1867 auto &DL = DAG.getDataLayout(); 1868 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1869 EVT ShiftTy = DCI.isBeforeLegalize() 1870 ? getPointerTy(DL) 1871 : getShiftAmountTy(N0.getValueType(), DL); 1872 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1873 // Perform the xform if the AND RHS is a single bit. 1874 if (AndRHS->getAPIntValue().isPowerOf2()) { 1875 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1876 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1877 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1878 ShiftTy))); 1879 } 1880 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1881 // (X & 8) == 8 --> (X & 8) >> 3 1882 // Perform the xform if C1 is a single bit. 1883 if (C1.isPowerOf2()) { 1884 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1885 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1886 DAG.getConstant(C1.logBase2(), dl, 1887 ShiftTy))); 1888 } 1889 } 1890 } 1891 } 1892 1893 if (C1.getMinSignedBits() <= 64 && 1894 !isLegalICmpImmediate(C1.getSExtValue())) { 1895 // (X & -256) == 256 -> (X >> 8) == 1 1896 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1897 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1898 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1899 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1900 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1901 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1902 auto &DL = DAG.getDataLayout(); 1903 EVT ShiftTy = DCI.isBeforeLegalize() 1904 ? getPointerTy(DL) 1905 : getShiftAmountTy(N0.getValueType(), DL); 1906 EVT CmpTy = N0.getValueType(); 1907 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1908 DAG.getConstant(ShiftBits, dl, 1909 ShiftTy)); 1910 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1911 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1912 } 1913 } 1914 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1915 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1916 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1917 // X < 0x100000000 -> (X >> 32) < 1 1918 // X >= 0x100000000 -> (X >> 32) >= 1 1919 // X <= 0x0ffffffff -> (X >> 32) < 1 1920 // X > 0x0ffffffff -> (X >> 32) >= 1 1921 unsigned ShiftBits; 1922 APInt NewC = C1; 1923 ISD::CondCode NewCond = Cond; 1924 if (AdjOne) { 1925 ShiftBits = C1.countTrailingOnes(); 1926 NewC = NewC + 1; 1927 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1928 } else { 1929 ShiftBits = C1.countTrailingZeros(); 1930 } 1931 NewC = NewC.lshr(ShiftBits); 1932 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1933 isLegalICmpImmediate(NewC.getSExtValue())) { 1934 auto &DL = DAG.getDataLayout(); 1935 EVT ShiftTy = DCI.isBeforeLegalize() 1936 ? getPointerTy(DL) 1937 : getShiftAmountTy(N0.getValueType(), DL); 1938 EVT CmpTy = N0.getValueType(); 1939 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1940 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1941 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1942 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1943 } 1944 } 1945 } 1946 } 1947 1948 if (isa<ConstantFPSDNode>(N0.getNode())) { 1949 // Constant fold or commute setcc. 1950 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1951 if (O.getNode()) return O; 1952 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1953 // If the RHS of an FP comparison is a constant, simplify it away in 1954 // some cases. 1955 if (CFP->getValueAPF().isNaN()) { 1956 // If an operand is known to be a nan, we can fold it. 1957 switch (ISD::getUnorderedFlavor(Cond)) { 1958 default: llvm_unreachable("Unknown flavor!"); 1959 case 0: // Known false. 1960 return DAG.getConstant(0, dl, VT); 1961 case 1: // Known true. 1962 return DAG.getConstant(1, dl, VT); 1963 case 2: // Undefined. 1964 return DAG.getUNDEF(VT); 1965 } 1966 } 1967 1968 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1969 // constant if knowing that the operand is non-nan is enough. We prefer to 1970 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1971 // materialize 0.0. 1972 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1973 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1974 1975 // If the condition is not legal, see if we can find an equivalent one 1976 // which is legal. 1977 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1978 // If the comparison was an awkward floating-point == or != and one of 1979 // the comparison operands is infinity or negative infinity, convert the 1980 // condition to a less-awkward <= or >=. 1981 if (CFP->getValueAPF().isInfinity()) { 1982 if (CFP->getValueAPF().isNegative()) { 1983 if (Cond == ISD::SETOEQ && 1984 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1985 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1986 if (Cond == ISD::SETUEQ && 1987 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1988 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1989 if (Cond == ISD::SETUNE && 1990 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1991 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1992 if (Cond == ISD::SETONE && 1993 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1994 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1995 } else { 1996 if (Cond == ISD::SETOEQ && 1997 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1998 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1999 if (Cond == ISD::SETUEQ && 2000 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2001 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2002 if (Cond == ISD::SETUNE && 2003 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2004 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2005 if (Cond == ISD::SETONE && 2006 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2007 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2008 } 2009 } 2010 } 2011 } 2012 2013 if (N0 == N1) { 2014 // The sext(setcc()) => setcc() optimization relies on the appropriate 2015 // constant being emitted. 2016 uint64_t EqVal = 0; 2017 switch (getBooleanContents(N0.getValueType())) { 2018 case UndefinedBooleanContent: 2019 case ZeroOrOneBooleanContent: 2020 EqVal = ISD::isTrueWhenEqual(Cond); 2021 break; 2022 case ZeroOrNegativeOneBooleanContent: 2023 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2024 break; 2025 } 2026 2027 // We can always fold X == X for integer setcc's. 2028 if (N0.getValueType().isInteger()) { 2029 return DAG.getConstant(EqVal, dl, VT); 2030 } 2031 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2032 if (UOF == 2) // FP operators that are undefined on NaNs. 2033 return DAG.getConstant(EqVal, dl, VT); 2034 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2035 return DAG.getConstant(EqVal, dl, VT); 2036 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2037 // if it is not already. 2038 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2039 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2040 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2041 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2042 } 2043 2044 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2045 N0.getValueType().isInteger()) { 2046 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2047 N0.getOpcode() == ISD::XOR) { 2048 // Simplify (X+Y) == (X+Z) --> Y == Z 2049 if (N0.getOpcode() == N1.getOpcode()) { 2050 if (N0.getOperand(0) == N1.getOperand(0)) 2051 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2052 if (N0.getOperand(1) == N1.getOperand(1)) 2053 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2054 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2055 // If X op Y == Y op X, try other combinations. 2056 if (N0.getOperand(0) == N1.getOperand(1)) 2057 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2058 Cond); 2059 if (N0.getOperand(1) == N1.getOperand(0)) 2060 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2061 Cond); 2062 } 2063 } 2064 2065 // If RHS is a legal immediate value for a compare instruction, we need 2066 // to be careful about increasing register pressure needlessly. 2067 bool LegalRHSImm = false; 2068 2069 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2070 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2071 // Turn (X+C1) == C2 --> X == C2-C1 2072 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2073 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2074 DAG.getConstant(RHSC->getAPIntValue()- 2075 LHSR->getAPIntValue(), 2076 dl, N0.getValueType()), Cond); 2077 } 2078 2079 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2080 if (N0.getOpcode() == ISD::XOR) 2081 // If we know that all of the inverted bits are zero, don't bother 2082 // performing the inversion. 2083 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2084 return 2085 DAG.getSetCC(dl, VT, N0.getOperand(0), 2086 DAG.getConstant(LHSR->getAPIntValue() ^ 2087 RHSC->getAPIntValue(), 2088 dl, N0.getValueType()), 2089 Cond); 2090 } 2091 2092 // Turn (C1-X) == C2 --> X == C1-C2 2093 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2094 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2095 return 2096 DAG.getSetCC(dl, VT, N0.getOperand(1), 2097 DAG.getConstant(SUBC->getAPIntValue() - 2098 RHSC->getAPIntValue(), 2099 dl, N0.getValueType()), 2100 Cond); 2101 } 2102 } 2103 2104 // Could RHSC fold directly into a compare? 2105 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2106 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2107 } 2108 2109 // Simplify (X+Z) == X --> Z == 0 2110 // Don't do this if X is an immediate that can fold into a cmp 2111 // instruction and X+Z has other uses. It could be an induction variable 2112 // chain, and the transform would increase register pressure. 2113 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2114 if (N0.getOperand(0) == N1) 2115 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2116 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2117 if (N0.getOperand(1) == N1) { 2118 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2119 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2120 DAG.getConstant(0, dl, N0.getValueType()), 2121 Cond); 2122 if (N0.getNode()->hasOneUse()) { 2123 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2124 auto &DL = DAG.getDataLayout(); 2125 // (Z-X) == X --> Z == X<<1 2126 SDValue SH = DAG.getNode( 2127 ISD::SHL, dl, N1.getValueType(), N1, 2128 DAG.getConstant(1, dl, 2129 getShiftAmountTy(N1.getValueType(), DL))); 2130 if (!DCI.isCalledByLegalizer()) 2131 DCI.AddToWorklist(SH.getNode()); 2132 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2133 } 2134 } 2135 } 2136 } 2137 2138 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2139 N1.getOpcode() == ISD::XOR) { 2140 // Simplify X == (X+Z) --> Z == 0 2141 if (N1.getOperand(0) == N0) 2142 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2143 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2144 if (N1.getOperand(1) == N0) { 2145 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2146 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2147 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2148 if (N1.getNode()->hasOneUse()) { 2149 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2150 auto &DL = DAG.getDataLayout(); 2151 // X == (Z-X) --> X<<1 == Z 2152 SDValue SH = DAG.getNode( 2153 ISD::SHL, dl, N1.getValueType(), N0, 2154 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2155 if (!DCI.isCalledByLegalizer()) 2156 DCI.AddToWorklist(SH.getNode()); 2157 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2158 } 2159 } 2160 } 2161 2162 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2163 return V; 2164 } 2165 2166 // Fold away ALL boolean setcc's. 2167 SDValue Temp; 2168 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2169 switch (Cond) { 2170 default: llvm_unreachable("Unknown integer setcc!"); 2171 case ISD::SETEQ: // X == Y -> ~(X^Y) 2172 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2173 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2174 if (!DCI.isCalledByLegalizer()) 2175 DCI.AddToWorklist(Temp.getNode()); 2176 break; 2177 case ISD::SETNE: // X != Y --> (X^Y) 2178 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2179 break; 2180 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2181 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2182 Temp = DAG.getNOT(dl, N0, MVT::i1); 2183 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2184 if (!DCI.isCalledByLegalizer()) 2185 DCI.AddToWorklist(Temp.getNode()); 2186 break; 2187 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2188 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2189 Temp = DAG.getNOT(dl, N1, MVT::i1); 2190 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2191 if (!DCI.isCalledByLegalizer()) 2192 DCI.AddToWorklist(Temp.getNode()); 2193 break; 2194 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2195 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2196 Temp = DAG.getNOT(dl, N0, MVT::i1); 2197 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2198 if (!DCI.isCalledByLegalizer()) 2199 DCI.AddToWorklist(Temp.getNode()); 2200 break; 2201 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2202 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2203 Temp = DAG.getNOT(dl, N1, MVT::i1); 2204 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2205 break; 2206 } 2207 if (VT != MVT::i1) { 2208 if (!DCI.isCalledByLegalizer()) 2209 DCI.AddToWorklist(N0.getNode()); 2210 // FIXME: If running after legalize, we probably can't do this. 2211 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2212 } 2213 return N0; 2214 } 2215 2216 // Could not fold it. 2217 return SDValue(); 2218 } 2219 2220 /// Returns true (and the GlobalValue and the offset) if the node is a 2221 /// GlobalAddress + offset. 2222 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2223 int64_t &Offset) const { 2224 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2225 GA = GASD->getGlobal(); 2226 Offset += GASD->getOffset(); 2227 return true; 2228 } 2229 2230 if (N->getOpcode() == ISD::ADD) { 2231 SDValue N1 = N->getOperand(0); 2232 SDValue N2 = N->getOperand(1); 2233 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2234 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2235 Offset += V->getSExtValue(); 2236 return true; 2237 } 2238 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2239 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2240 Offset += V->getSExtValue(); 2241 return true; 2242 } 2243 } 2244 } 2245 2246 return false; 2247 } 2248 2249 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2250 DAGCombinerInfo &DCI) const { 2251 // Default implementation: no optimization. 2252 return SDValue(); 2253 } 2254 2255 //===----------------------------------------------------------------------===// 2256 // Inline Assembler Implementation Methods 2257 //===----------------------------------------------------------------------===// 2258 2259 TargetLowering::ConstraintType 2260 TargetLowering::getConstraintType(StringRef Constraint) const { 2261 unsigned S = Constraint.size(); 2262 2263 if (S == 1) { 2264 switch (Constraint[0]) { 2265 default: break; 2266 case 'r': return C_RegisterClass; 2267 case 'm': // memory 2268 case 'o': // offsetable 2269 case 'V': // not offsetable 2270 return C_Memory; 2271 case 'i': // Simple Integer or Relocatable Constant 2272 case 'n': // Simple Integer 2273 case 'E': // Floating Point Constant 2274 case 'F': // Floating Point Constant 2275 case 's': // Relocatable Constant 2276 case 'p': // Address. 2277 case 'X': // Allow ANY value. 2278 case 'I': // Target registers. 2279 case 'J': 2280 case 'K': 2281 case 'L': 2282 case 'M': 2283 case 'N': 2284 case 'O': 2285 case 'P': 2286 case '<': 2287 case '>': 2288 return C_Other; 2289 } 2290 } 2291 2292 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2293 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2294 return C_Memory; 2295 return C_Register; 2296 } 2297 return C_Unknown; 2298 } 2299 2300 /// Try to replace an X constraint, which matches anything, with another that 2301 /// has more specific requirements based on the type of the corresponding 2302 /// operand. 2303 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2304 if (ConstraintVT.isInteger()) 2305 return "r"; 2306 if (ConstraintVT.isFloatingPoint()) 2307 return "f"; // works for many targets 2308 return nullptr; 2309 } 2310 2311 /// Lower the specified operand into the Ops vector. 2312 /// If it is invalid, don't add anything to Ops. 2313 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2314 std::string &Constraint, 2315 std::vector<SDValue> &Ops, 2316 SelectionDAG &DAG) const { 2317 2318 if (Constraint.length() > 1) return; 2319 2320 char ConstraintLetter = Constraint[0]; 2321 switch (ConstraintLetter) { 2322 default: break; 2323 case 'X': // Allows any operand; labels (basic block) use this. 2324 if (Op.getOpcode() == ISD::BasicBlock) { 2325 Ops.push_back(Op); 2326 return; 2327 } 2328 LLVM_FALLTHROUGH; 2329 case 'i': // Simple Integer or Relocatable Constant 2330 case 'n': // Simple Integer 2331 case 's': { // Relocatable Constant 2332 // These operands are interested in values of the form (GV+C), where C may 2333 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2334 // is possible and fine if either GV or C are missing. 2335 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2336 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2337 2338 // If we have "(add GV, C)", pull out GV/C 2339 if (Op.getOpcode() == ISD::ADD) { 2340 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2341 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2342 if (!C || !GA) { 2343 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2344 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2345 } 2346 if (!C || !GA) { 2347 C = nullptr; 2348 GA = nullptr; 2349 } 2350 } 2351 2352 // If we find a valid operand, map to the TargetXXX version so that the 2353 // value itself doesn't get selected. 2354 if (GA) { // Either &GV or &GV+C 2355 if (ConstraintLetter != 'n') { 2356 int64_t Offs = GA->getOffset(); 2357 if (C) Offs += C->getZExtValue(); 2358 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2359 C ? SDLoc(C) : SDLoc(), 2360 Op.getValueType(), Offs)); 2361 } 2362 return; 2363 } 2364 if (C) { // just C, no GV. 2365 // Simple constants are not allowed for 's'. 2366 if (ConstraintLetter != 's') { 2367 // gcc prints these as sign extended. Sign extend value to 64 bits 2368 // now; without this it would get ZExt'd later in 2369 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2370 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2371 SDLoc(C), MVT::i64)); 2372 } 2373 return; 2374 } 2375 break; 2376 } 2377 } 2378 } 2379 2380 std::pair<unsigned, const TargetRegisterClass *> 2381 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2382 StringRef Constraint, 2383 MVT VT) const { 2384 if (Constraint.empty() || Constraint[0] != '{') 2385 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2386 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2387 2388 // Remove the braces from around the name. 2389 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2390 2391 std::pair<unsigned, const TargetRegisterClass*> R = 2392 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2393 2394 // Figure out which register class contains this reg. 2395 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2396 E = RI->regclass_end(); RCI != E; ++RCI) { 2397 const TargetRegisterClass *RC = *RCI; 2398 2399 // If none of the value types for this register class are valid, we 2400 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2401 if (!isLegalRC(RC)) 2402 continue; 2403 2404 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2405 I != E; ++I) { 2406 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2407 std::pair<unsigned, const TargetRegisterClass*> S = 2408 std::make_pair(*I, RC); 2409 2410 // If this register class has the requested value type, return it, 2411 // otherwise keep searching and return the first class found 2412 // if no other is found which explicitly has the requested type. 2413 if (RC->hasType(VT)) 2414 return S; 2415 else if (!R.second) 2416 R = S; 2417 } 2418 } 2419 } 2420 2421 return R; 2422 } 2423 2424 //===----------------------------------------------------------------------===// 2425 // Constraint Selection. 2426 2427 /// Return true of this is an input operand that is a matching constraint like 2428 /// "4". 2429 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2430 assert(!ConstraintCode.empty() && "No known constraint!"); 2431 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2432 } 2433 2434 /// If this is an input matching constraint, this method returns the output 2435 /// operand it matches. 2436 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2437 assert(!ConstraintCode.empty() && "No known constraint!"); 2438 return atoi(ConstraintCode.c_str()); 2439 } 2440 2441 /// Split up the constraint string from the inline assembly value into the 2442 /// specific constraints and their prefixes, and also tie in the associated 2443 /// operand values. 2444 /// If this returns an empty vector, and if the constraint string itself 2445 /// isn't empty, there was an error parsing. 2446 TargetLowering::AsmOperandInfoVector 2447 TargetLowering::ParseConstraints(const DataLayout &DL, 2448 const TargetRegisterInfo *TRI, 2449 ImmutableCallSite CS) const { 2450 /// Information about all of the constraints. 2451 AsmOperandInfoVector ConstraintOperands; 2452 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2453 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2454 2455 // Do a prepass over the constraints, canonicalizing them, and building up the 2456 // ConstraintOperands list. 2457 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2458 unsigned ResNo = 0; // ResNo - The result number of the next output. 2459 2460 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2461 ConstraintOperands.emplace_back(std::move(CI)); 2462 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2463 2464 // Update multiple alternative constraint count. 2465 if (OpInfo.multipleAlternatives.size() > maCount) 2466 maCount = OpInfo.multipleAlternatives.size(); 2467 2468 OpInfo.ConstraintVT = MVT::Other; 2469 2470 // Compute the value type for each operand. 2471 switch (OpInfo.Type) { 2472 case InlineAsm::isOutput: 2473 // Indirect outputs just consume an argument. 2474 if (OpInfo.isIndirect) { 2475 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2476 break; 2477 } 2478 2479 // The return value of the call is this value. As such, there is no 2480 // corresponding argument. 2481 assert(!CS.getType()->isVoidTy() && 2482 "Bad inline asm!"); 2483 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2484 OpInfo.ConstraintVT = 2485 getSimpleValueType(DL, STy->getElementType(ResNo)); 2486 } else { 2487 assert(ResNo == 0 && "Asm only has one result!"); 2488 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2489 } 2490 ++ResNo; 2491 break; 2492 case InlineAsm::isInput: 2493 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2494 break; 2495 case InlineAsm::isClobber: 2496 // Nothing to do. 2497 break; 2498 } 2499 2500 if (OpInfo.CallOperandVal) { 2501 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2502 if (OpInfo.isIndirect) { 2503 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2504 if (!PtrTy) 2505 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2506 OpTy = PtrTy->getElementType(); 2507 } 2508 2509 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2510 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2511 if (STy->getNumElements() == 1) 2512 OpTy = STy->getElementType(0); 2513 2514 // If OpTy is not a single value, it may be a struct/union that we 2515 // can tile with integers. 2516 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2517 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2518 switch (BitSize) { 2519 default: break; 2520 case 1: 2521 case 8: 2522 case 16: 2523 case 32: 2524 case 64: 2525 case 128: 2526 OpInfo.ConstraintVT = 2527 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2528 break; 2529 } 2530 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2531 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2532 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2533 } else { 2534 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2535 } 2536 } 2537 } 2538 2539 // If we have multiple alternative constraints, select the best alternative. 2540 if (!ConstraintOperands.empty()) { 2541 if (maCount) { 2542 unsigned bestMAIndex = 0; 2543 int bestWeight = -1; 2544 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2545 int weight = -1; 2546 unsigned maIndex; 2547 // Compute the sums of the weights for each alternative, keeping track 2548 // of the best (highest weight) one so far. 2549 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2550 int weightSum = 0; 2551 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2552 cIndex != eIndex; ++cIndex) { 2553 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2554 if (OpInfo.Type == InlineAsm::isClobber) 2555 continue; 2556 2557 // If this is an output operand with a matching input operand, 2558 // look up the matching input. If their types mismatch, e.g. one 2559 // is an integer, the other is floating point, or their sizes are 2560 // different, flag it as an maCantMatch. 2561 if (OpInfo.hasMatchingInput()) { 2562 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2563 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2564 if ((OpInfo.ConstraintVT.isInteger() != 2565 Input.ConstraintVT.isInteger()) || 2566 (OpInfo.ConstraintVT.getSizeInBits() != 2567 Input.ConstraintVT.getSizeInBits())) { 2568 weightSum = -1; // Can't match. 2569 break; 2570 } 2571 } 2572 } 2573 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2574 if (weight == -1) { 2575 weightSum = -1; 2576 break; 2577 } 2578 weightSum += weight; 2579 } 2580 // Update best. 2581 if (weightSum > bestWeight) { 2582 bestWeight = weightSum; 2583 bestMAIndex = maIndex; 2584 } 2585 } 2586 2587 // Now select chosen alternative in each constraint. 2588 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2589 cIndex != eIndex; ++cIndex) { 2590 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2591 if (cInfo.Type == InlineAsm::isClobber) 2592 continue; 2593 cInfo.selectAlternative(bestMAIndex); 2594 } 2595 } 2596 } 2597 2598 // Check and hook up tied operands, choose constraint code to use. 2599 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2600 cIndex != eIndex; ++cIndex) { 2601 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2602 2603 // If this is an output operand with a matching input operand, look up the 2604 // matching input. If their types mismatch, e.g. one is an integer, the 2605 // other is floating point, or their sizes are different, flag it as an 2606 // error. 2607 if (OpInfo.hasMatchingInput()) { 2608 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2609 2610 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2611 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2612 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2613 OpInfo.ConstraintVT); 2614 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2615 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2616 Input.ConstraintVT); 2617 if ((OpInfo.ConstraintVT.isInteger() != 2618 Input.ConstraintVT.isInteger()) || 2619 (MatchRC.second != InputRC.second)) { 2620 report_fatal_error("Unsupported asm: input constraint" 2621 " with a matching output constraint of" 2622 " incompatible type!"); 2623 } 2624 } 2625 } 2626 } 2627 2628 return ConstraintOperands; 2629 } 2630 2631 /// Return an integer indicating how general CT is. 2632 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2633 switch (CT) { 2634 case TargetLowering::C_Other: 2635 case TargetLowering::C_Unknown: 2636 return 0; 2637 case TargetLowering::C_Register: 2638 return 1; 2639 case TargetLowering::C_RegisterClass: 2640 return 2; 2641 case TargetLowering::C_Memory: 2642 return 3; 2643 } 2644 llvm_unreachable("Invalid constraint type"); 2645 } 2646 2647 /// Examine constraint type and operand type and determine a weight value. 2648 /// This object must already have been set up with the operand type 2649 /// and the current alternative constraint selected. 2650 TargetLowering::ConstraintWeight 2651 TargetLowering::getMultipleConstraintMatchWeight( 2652 AsmOperandInfo &info, int maIndex) const { 2653 InlineAsm::ConstraintCodeVector *rCodes; 2654 if (maIndex >= (int)info.multipleAlternatives.size()) 2655 rCodes = &info.Codes; 2656 else 2657 rCodes = &info.multipleAlternatives[maIndex].Codes; 2658 ConstraintWeight BestWeight = CW_Invalid; 2659 2660 // Loop over the options, keeping track of the most general one. 2661 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2662 ConstraintWeight weight = 2663 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2664 if (weight > BestWeight) 2665 BestWeight = weight; 2666 } 2667 2668 return BestWeight; 2669 } 2670 2671 /// Examine constraint type and operand type and determine a weight value. 2672 /// This object must already have been set up with the operand type 2673 /// and the current alternative constraint selected. 2674 TargetLowering::ConstraintWeight 2675 TargetLowering::getSingleConstraintMatchWeight( 2676 AsmOperandInfo &info, const char *constraint) const { 2677 ConstraintWeight weight = CW_Invalid; 2678 Value *CallOperandVal = info.CallOperandVal; 2679 // If we don't have a value, we can't do a match, 2680 // but allow it at the lowest weight. 2681 if (!CallOperandVal) 2682 return CW_Default; 2683 // Look at the constraint type. 2684 switch (*constraint) { 2685 case 'i': // immediate integer. 2686 case 'n': // immediate integer with a known value. 2687 if (isa<ConstantInt>(CallOperandVal)) 2688 weight = CW_Constant; 2689 break; 2690 case 's': // non-explicit intregal immediate. 2691 if (isa<GlobalValue>(CallOperandVal)) 2692 weight = CW_Constant; 2693 break; 2694 case 'E': // immediate float if host format. 2695 case 'F': // immediate float. 2696 if (isa<ConstantFP>(CallOperandVal)) 2697 weight = CW_Constant; 2698 break; 2699 case '<': // memory operand with autodecrement. 2700 case '>': // memory operand with autoincrement. 2701 case 'm': // memory operand. 2702 case 'o': // offsettable memory operand 2703 case 'V': // non-offsettable memory operand 2704 weight = CW_Memory; 2705 break; 2706 case 'r': // general register. 2707 case 'g': // general register, memory operand or immediate integer. 2708 // note: Clang converts "g" to "imr". 2709 if (CallOperandVal->getType()->isIntegerTy()) 2710 weight = CW_Register; 2711 break; 2712 case 'X': // any operand. 2713 default: 2714 weight = CW_Default; 2715 break; 2716 } 2717 return weight; 2718 } 2719 2720 /// If there are multiple different constraints that we could pick for this 2721 /// operand (e.g. "imr") try to pick the 'best' one. 2722 /// This is somewhat tricky: constraints fall into four classes: 2723 /// Other -> immediates and magic values 2724 /// Register -> one specific register 2725 /// RegisterClass -> a group of regs 2726 /// Memory -> memory 2727 /// Ideally, we would pick the most specific constraint possible: if we have 2728 /// something that fits into a register, we would pick it. The problem here 2729 /// is that if we have something that could either be in a register or in 2730 /// memory that use of the register could cause selection of *other* 2731 /// operands to fail: they might only succeed if we pick memory. Because of 2732 /// this the heuristic we use is: 2733 /// 2734 /// 1) If there is an 'other' constraint, and if the operand is valid for 2735 /// that constraint, use it. This makes us take advantage of 'i' 2736 /// constraints when available. 2737 /// 2) Otherwise, pick the most general constraint present. This prefers 2738 /// 'm' over 'r', for example. 2739 /// 2740 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2741 const TargetLowering &TLI, 2742 SDValue Op, SelectionDAG *DAG) { 2743 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2744 unsigned BestIdx = 0; 2745 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2746 int BestGenerality = -1; 2747 2748 // Loop over the options, keeping track of the most general one. 2749 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2750 TargetLowering::ConstraintType CType = 2751 TLI.getConstraintType(OpInfo.Codes[i]); 2752 2753 // If this is an 'other' constraint, see if the operand is valid for it. 2754 // For example, on X86 we might have an 'rI' constraint. If the operand 2755 // is an integer in the range [0..31] we want to use I (saving a load 2756 // of a register), otherwise we must use 'r'. 2757 if (CType == TargetLowering::C_Other && Op.getNode()) { 2758 assert(OpInfo.Codes[i].size() == 1 && 2759 "Unhandled multi-letter 'other' constraint"); 2760 std::vector<SDValue> ResultOps; 2761 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2762 ResultOps, *DAG); 2763 if (!ResultOps.empty()) { 2764 BestType = CType; 2765 BestIdx = i; 2766 break; 2767 } 2768 } 2769 2770 // Things with matching constraints can only be registers, per gcc 2771 // documentation. This mainly affects "g" constraints. 2772 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2773 continue; 2774 2775 // This constraint letter is more general than the previous one, use it. 2776 int Generality = getConstraintGenerality(CType); 2777 if (Generality > BestGenerality) { 2778 BestType = CType; 2779 BestIdx = i; 2780 BestGenerality = Generality; 2781 } 2782 } 2783 2784 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2785 OpInfo.ConstraintType = BestType; 2786 } 2787 2788 /// Determines the constraint code and constraint type to use for the specific 2789 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2790 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2791 SDValue Op, 2792 SelectionDAG *DAG) const { 2793 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2794 2795 // Single-letter constraints ('r') are very common. 2796 if (OpInfo.Codes.size() == 1) { 2797 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2798 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2799 } else { 2800 ChooseConstraint(OpInfo, *this, Op, DAG); 2801 } 2802 2803 // 'X' matches anything. 2804 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2805 // Labels and constants are handled elsewhere ('X' is the only thing 2806 // that matches labels). For Functions, the type here is the type of 2807 // the result, which is not what we want to look at; leave them alone. 2808 Value *v = OpInfo.CallOperandVal; 2809 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2810 OpInfo.CallOperandVal = v; 2811 return; 2812 } 2813 2814 // Otherwise, try to resolve it to something we know about by looking at 2815 // the actual operand type. 2816 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2817 OpInfo.ConstraintCode = Repl; 2818 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2819 } 2820 } 2821 } 2822 2823 /// \brief Given an exact SDIV by a constant, create a multiplication 2824 /// with the multiplicative inverse of the constant. 2825 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2826 const SDLoc &dl, SelectionDAG &DAG, 2827 std::vector<SDNode *> &Created) { 2828 assert(d != 0 && "Division by zero!"); 2829 2830 // Shift the value upfront if it is even, so the LSB is one. 2831 unsigned ShAmt = d.countTrailingZeros(); 2832 if (ShAmt) { 2833 // TODO: For UDIV use SRL instead of SRA. 2834 SDValue Amt = 2835 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2836 DAG.getDataLayout())); 2837 SDNodeFlags Flags; 2838 Flags.setExact(true); 2839 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2840 Created.push_back(Op1.getNode()); 2841 d = d.ashr(ShAmt); 2842 } 2843 2844 // Calculate the multiplicative inverse, using Newton's method. 2845 APInt t, xn = d; 2846 while ((t = d*xn) != 1) 2847 xn *= APInt(d.getBitWidth(), 2) - t; 2848 2849 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2850 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2851 Created.push_back(Mul.getNode()); 2852 return Mul; 2853 } 2854 2855 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2856 SelectionDAG &DAG, 2857 std::vector<SDNode *> *Created) const { 2858 AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2860 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2861 return SDValue(N,0); // Lower SDIV as SDIV 2862 return SDValue(); 2863 } 2864 2865 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2866 /// return a DAG expression to select that will generate the same value by 2867 /// multiplying by a magic number. 2868 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2869 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2870 SelectionDAG &DAG, bool IsAfterLegalization, 2871 std::vector<SDNode *> *Created) const { 2872 assert(Created && "No vector to hold sdiv ops."); 2873 2874 EVT VT = N->getValueType(0); 2875 SDLoc dl(N); 2876 2877 // Check to see if we can do this. 2878 // FIXME: We should be more aggressive here. 2879 if (!isTypeLegal(VT)) 2880 return SDValue(); 2881 2882 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2883 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2884 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2885 2886 APInt::ms magics = Divisor.magic(); 2887 2888 // Multiply the numerator (operand 0) by the magic value 2889 // FIXME: We should support doing a MUL in a wider type 2890 SDValue Q; 2891 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2892 isOperationLegalOrCustom(ISD::MULHS, VT)) 2893 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2894 DAG.getConstant(magics.m, dl, VT)); 2895 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2896 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2897 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2898 N->getOperand(0), 2899 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2900 else 2901 return SDValue(); // No mulhs or equvialent 2902 // If d > 0 and m < 0, add the numerator 2903 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2904 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2905 Created->push_back(Q.getNode()); 2906 } 2907 // If d < 0 and m > 0, subtract the numerator. 2908 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2909 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2910 Created->push_back(Q.getNode()); 2911 } 2912 auto &DL = DAG.getDataLayout(); 2913 // Shift right algebraic if shift value is nonzero 2914 if (magics.s > 0) { 2915 Q = DAG.getNode( 2916 ISD::SRA, dl, VT, Q, 2917 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2918 Created->push_back(Q.getNode()); 2919 } 2920 // Extract the sign bit and add it to the quotient 2921 SDValue T = 2922 DAG.getNode(ISD::SRL, dl, VT, Q, 2923 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2924 getShiftAmountTy(Q.getValueType(), DL))); 2925 Created->push_back(T.getNode()); 2926 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2927 } 2928 2929 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2930 /// return a DAG expression to select that will generate the same value by 2931 /// multiplying by a magic number. 2932 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2933 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2934 SelectionDAG &DAG, bool IsAfterLegalization, 2935 std::vector<SDNode *> *Created) const { 2936 assert(Created && "No vector to hold udiv ops."); 2937 2938 EVT VT = N->getValueType(0); 2939 SDLoc dl(N); 2940 auto &DL = DAG.getDataLayout(); 2941 2942 // Check to see if we can do this. 2943 // FIXME: We should be more aggressive here. 2944 if (!isTypeLegal(VT)) 2945 return SDValue(); 2946 2947 // FIXME: We should use a narrower constant when the upper 2948 // bits are known to be zero. 2949 APInt::mu magics = Divisor.magicu(); 2950 2951 SDValue Q = N->getOperand(0); 2952 2953 // If the divisor is even, we can avoid using the expensive fixup by shifting 2954 // the divided value upfront. 2955 if (magics.a != 0 && !Divisor[0]) { 2956 unsigned Shift = Divisor.countTrailingZeros(); 2957 Q = DAG.getNode( 2958 ISD::SRL, dl, VT, Q, 2959 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2960 Created->push_back(Q.getNode()); 2961 2962 // Get magic number for the shifted divisor. 2963 magics = Divisor.lshr(Shift).magicu(Shift); 2964 assert(magics.a == 0 && "Should use cheap fixup now"); 2965 } 2966 2967 // Multiply the numerator (operand 0) by the magic value 2968 // FIXME: We should support doing a MUL in a wider type 2969 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2970 isOperationLegalOrCustom(ISD::MULHU, VT)) 2971 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2972 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2973 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2974 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2975 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2976 else 2977 return SDValue(); // No mulhu or equvialent 2978 2979 Created->push_back(Q.getNode()); 2980 2981 if (magics.a == 0) { 2982 assert(magics.s < Divisor.getBitWidth() && 2983 "We shouldn't generate an undefined shift!"); 2984 return DAG.getNode( 2985 ISD::SRL, dl, VT, Q, 2986 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2987 } else { 2988 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2989 Created->push_back(NPQ.getNode()); 2990 NPQ = DAG.getNode( 2991 ISD::SRL, dl, VT, NPQ, 2992 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2993 Created->push_back(NPQ.getNode()); 2994 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2995 Created->push_back(NPQ.getNode()); 2996 return DAG.getNode( 2997 ISD::SRL, dl, VT, NPQ, 2998 DAG.getConstant(magics.s - 1, dl, 2999 getShiftAmountTy(NPQ.getValueType(), DL))); 3000 } 3001 } 3002 3003 bool TargetLowering:: 3004 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3005 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3006 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3007 "be a constant integer"); 3008 return true; 3009 } 3010 3011 return false; 3012 } 3013 3014 //===----------------------------------------------------------------------===// 3015 // Legalization Utilities 3016 //===----------------------------------------------------------------------===// 3017 3018 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3019 SelectionDAG &DAG, SDValue LL, SDValue LH, 3020 SDValue RL, SDValue RH) const { 3021 EVT VT = N->getValueType(0); 3022 SDLoc dl(N); 3023 3024 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3025 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3026 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3027 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3028 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 3029 unsigned OuterBitSize = VT.getSizeInBits(); 3030 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 3031 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 3032 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 3033 3034 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3035 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3036 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3037 3038 if (!LL.getNode() && !RL.getNode() && 3039 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3040 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 3041 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 3042 } 3043 3044 if (!LL.getNode()) 3045 return false; 3046 3047 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3048 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 3049 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 3050 // The inputs are both zero-extended. 3051 if (HasUMUL_LOHI) { 3052 // We can emit a umul_lohi. 3053 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3054 RL); 3055 Hi = SDValue(Lo.getNode(), 1); 3056 return true; 3057 } 3058 if (HasMULHU) { 3059 // We can emit a mulhu+mul. 3060 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3061 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3062 return true; 3063 } 3064 } 3065 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 3066 // The input values are both sign-extended. 3067 if (HasSMUL_LOHI) { 3068 // We can emit a smul_lohi. 3069 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 3070 RL); 3071 Hi = SDValue(Lo.getNode(), 1); 3072 return true; 3073 } 3074 if (HasMULHS) { 3075 // We can emit a mulhs+mul. 3076 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3077 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 3078 return true; 3079 } 3080 } 3081 3082 if (!LH.getNode() && !RH.getNode() && 3083 isOperationLegalOrCustom(ISD::SRL, VT) && 3084 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3085 auto &DL = DAG.getDataLayout(); 3086 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 3087 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 3088 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 3089 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3090 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 3091 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3092 } 3093 3094 if (!LH.getNode()) 3095 return false; 3096 3097 if (HasUMUL_LOHI) { 3098 // Lo,Hi = umul LHS, RHS. 3099 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 3100 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 3101 Lo = UMulLOHI; 3102 Hi = UMulLOHI.getValue(1); 3103 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3104 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3105 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3106 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3107 return true; 3108 } 3109 if (HasMULHU) { 3110 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 3111 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 3112 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3113 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3114 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3115 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3116 return true; 3117 } 3118 } 3119 return false; 3120 } 3121 3122 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3123 SelectionDAG &DAG) const { 3124 EVT VT = Node->getOperand(0).getValueType(); 3125 EVT NVT = Node->getValueType(0); 3126 SDLoc dl(SDValue(Node, 0)); 3127 3128 // FIXME: Only f32 to i64 conversions are supported. 3129 if (VT != MVT::f32 || NVT != MVT::i64) 3130 return false; 3131 3132 // Expand f32 -> i64 conversion 3133 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3134 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3135 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3136 VT.getSizeInBits()); 3137 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3138 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3139 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3140 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3141 IntVT); 3142 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3143 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3144 3145 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3146 3147 auto &DL = DAG.getDataLayout(); 3148 SDValue ExponentBits = DAG.getNode( 3149 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3150 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3151 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3152 3153 SDValue Sign = DAG.getNode( 3154 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3155 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3156 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3157 3158 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3159 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3160 DAG.getConstant(0x00800000, dl, IntVT)); 3161 3162 R = DAG.getZExtOrTrunc(R, dl, NVT); 3163 3164 R = DAG.getSelectCC( 3165 dl, Exponent, ExponentLoBit, 3166 DAG.getNode(ISD::SHL, dl, NVT, R, 3167 DAG.getZExtOrTrunc( 3168 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3169 dl, getShiftAmountTy(IntVT, DL))), 3170 DAG.getNode(ISD::SRL, dl, NVT, R, 3171 DAG.getZExtOrTrunc( 3172 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3173 dl, getShiftAmountTy(IntVT, DL))), 3174 ISD::SETGT); 3175 3176 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3177 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3178 Sign); 3179 3180 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3181 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3182 return true; 3183 } 3184 3185 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3186 SelectionDAG &DAG) const { 3187 SDLoc SL(LD); 3188 SDValue Chain = LD->getChain(); 3189 SDValue BasePTR = LD->getBasePtr(); 3190 EVT SrcVT = LD->getMemoryVT(); 3191 ISD::LoadExtType ExtType = LD->getExtensionType(); 3192 3193 unsigned NumElem = SrcVT.getVectorNumElements(); 3194 3195 EVT SrcEltVT = SrcVT.getScalarType(); 3196 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3197 3198 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3199 assert(SrcEltVT.isByteSized()); 3200 3201 EVT PtrVT = BasePTR.getValueType(); 3202 3203 SmallVector<SDValue, 8> Vals; 3204 SmallVector<SDValue, 8> LoadChains; 3205 3206 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3207 SDValue ScalarLoad = 3208 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3209 LD->getPointerInfo().getWithOffset(Idx * Stride), 3210 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3211 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3212 3213 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3214 DAG.getConstant(Stride, SL, PtrVT)); 3215 3216 Vals.push_back(ScalarLoad.getValue(0)); 3217 LoadChains.push_back(ScalarLoad.getValue(1)); 3218 } 3219 3220 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3221 SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals); 3222 3223 return DAG.getMergeValues({ Value, NewChain }, SL); 3224 } 3225 3226 // FIXME: This relies on each element having a byte size, otherwise the stride 3227 // is 0 and just overwrites the same location. ExpandStore currently expects 3228 // this broken behavior. 3229 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3230 SelectionDAG &DAG) const { 3231 SDLoc SL(ST); 3232 3233 SDValue Chain = ST->getChain(); 3234 SDValue BasePtr = ST->getBasePtr(); 3235 SDValue Value = ST->getValue(); 3236 EVT StVT = ST->getMemoryVT(); 3237 3238 // The type of the data we want to save 3239 EVT RegVT = Value.getValueType(); 3240 EVT RegSclVT = RegVT.getScalarType(); 3241 3242 // The type of data as saved in memory. 3243 EVT MemSclVT = StVT.getScalarType(); 3244 3245 EVT PtrVT = BasePtr.getValueType(); 3246 3247 // Store Stride in bytes 3248 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3249 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3250 unsigned NumElem = StVT.getVectorNumElements(); 3251 3252 // Extract each of the elements from the original vector and save them into 3253 // memory individually. 3254 SmallVector<SDValue, 8> Stores; 3255 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3256 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3257 DAG.getConstant(Idx, SL, IdxVT)); 3258 3259 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3260 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3261 3262 // This scalar TruncStore may be illegal, but we legalize it later. 3263 SDValue Store = DAG.getTruncStore( 3264 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3265 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3266 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3267 3268 Stores.push_back(Store); 3269 } 3270 3271 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3272 } 3273 3274 std::pair<SDValue, SDValue> 3275 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3276 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3277 "unaligned indexed loads not implemented!"); 3278 SDValue Chain = LD->getChain(); 3279 SDValue Ptr = LD->getBasePtr(); 3280 EVT VT = LD->getValueType(0); 3281 EVT LoadedVT = LD->getMemoryVT(); 3282 SDLoc dl(LD); 3283 if (VT.isFloatingPoint() || VT.isVector()) { 3284 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3285 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3286 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3287 // Scalarize the load and let the individual components be handled. 3288 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3289 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3290 } 3291 3292 // Expand to a (misaligned) integer load of the same size, 3293 // then bitconvert to floating point or vector. 3294 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3295 LD->getMemOperand()); 3296 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3297 if (LoadedVT != VT) 3298 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3299 ISD::ANY_EXTEND, dl, VT, Result); 3300 3301 return std::make_pair(Result, newLoad.getValue(1)); 3302 } 3303 3304 // Copy the value to a (aligned) stack slot using (unaligned) integer 3305 // loads and stores, then do a (aligned) load from the stack slot. 3306 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3307 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3308 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3309 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3310 3311 // Make sure the stack slot is also aligned for the register type. 3312 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3313 3314 SmallVector<SDValue, 8> Stores; 3315 SDValue StackPtr = StackBase; 3316 unsigned Offset = 0; 3317 3318 EVT PtrVT = Ptr.getValueType(); 3319 EVT StackPtrVT = StackPtr.getValueType(); 3320 3321 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3322 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3323 3324 // Do all but one copies using the full register width. 3325 for (unsigned i = 1; i < NumRegs; i++) { 3326 // Load one integer register's worth from the original location. 3327 SDValue Load = DAG.getLoad( 3328 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3329 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3330 LD->getAAInfo()); 3331 // Follow the load with a store to the stack slot. Remember the store. 3332 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3333 MachinePointerInfo())); 3334 // Increment the pointers. 3335 Offset += RegBytes; 3336 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3337 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3338 StackPtrIncrement); 3339 } 3340 3341 // The last copy may be partial. Do an extending load. 3342 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3343 8 * (LoadedBytes - Offset)); 3344 SDValue Load = 3345 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3346 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3347 MinAlign(LD->getAlignment(), Offset), 3348 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3349 // Follow the load with a store to the stack slot. Remember the store. 3350 // On big-endian machines this requires a truncating store to ensure 3351 // that the bits end up in the right place. 3352 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3353 MachinePointerInfo(), MemVT)); 3354 3355 // The order of the stores doesn't matter - say it with a TokenFactor. 3356 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3357 3358 // Finally, perform the original load only redirected to the stack slot. 3359 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3360 MachinePointerInfo(), LoadedVT); 3361 3362 // Callers expect a MERGE_VALUES node. 3363 return std::make_pair(Load, TF); 3364 } 3365 3366 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3367 "Unaligned load of unsupported type."); 3368 3369 // Compute the new VT that is half the size of the old one. This is an 3370 // integer MVT. 3371 unsigned NumBits = LoadedVT.getSizeInBits(); 3372 EVT NewLoadedVT; 3373 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3374 NumBits >>= 1; 3375 3376 unsigned Alignment = LD->getAlignment(); 3377 unsigned IncrementSize = NumBits / 8; 3378 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3379 3380 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3381 if (HiExtType == ISD::NON_EXTLOAD) 3382 HiExtType = ISD::ZEXTLOAD; 3383 3384 // Load the value in two parts 3385 SDValue Lo, Hi; 3386 if (DAG.getDataLayout().isLittleEndian()) { 3387 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3388 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3389 LD->getAAInfo()); 3390 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3391 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3392 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3393 LD->getPointerInfo().getWithOffset(IncrementSize), 3394 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3395 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3396 } else { 3397 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3398 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3399 LD->getAAInfo()); 3400 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3401 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3402 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3403 LD->getPointerInfo().getWithOffset(IncrementSize), 3404 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3405 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3406 } 3407 3408 // aggregate the two parts 3409 SDValue ShiftAmount = 3410 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3411 DAG.getDataLayout())); 3412 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3413 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3414 3415 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3416 Hi.getValue(1)); 3417 3418 return std::make_pair(Result, TF); 3419 } 3420 3421 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3422 SelectionDAG &DAG) const { 3423 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3424 "unaligned indexed stores not implemented!"); 3425 SDValue Chain = ST->getChain(); 3426 SDValue Ptr = ST->getBasePtr(); 3427 SDValue Val = ST->getValue(); 3428 EVT VT = Val.getValueType(); 3429 int Alignment = ST->getAlignment(); 3430 3431 SDLoc dl(ST); 3432 if (ST->getMemoryVT().isFloatingPoint() || 3433 ST->getMemoryVT().isVector()) { 3434 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3435 if (isTypeLegal(intVT)) { 3436 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3437 // Scalarize the store and let the individual components be handled. 3438 SDValue Result = scalarizeVectorStore(ST, DAG); 3439 3440 return Result; 3441 } 3442 // Expand to a bitconvert of the value to the integer type of the 3443 // same size, then a (misaligned) int store. 3444 // FIXME: Does not handle truncating floating point stores! 3445 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3446 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3447 Alignment, ST->getMemOperand()->getFlags()); 3448 return Result; 3449 } 3450 // Do a (aligned) store to a stack slot, then copy from the stack slot 3451 // to the final destination using (unaligned) integer loads and stores. 3452 EVT StoredVT = ST->getMemoryVT(); 3453 MVT RegVT = 3454 getRegisterType(*DAG.getContext(), 3455 EVT::getIntegerVT(*DAG.getContext(), 3456 StoredVT.getSizeInBits())); 3457 EVT PtrVT = Ptr.getValueType(); 3458 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3459 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3460 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3461 3462 // Make sure the stack slot is also aligned for the register type. 3463 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3464 3465 // Perform the original store, only redirected to the stack slot. 3466 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3467 MachinePointerInfo(), StoredVT); 3468 3469 EVT StackPtrVT = StackPtr.getValueType(); 3470 3471 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3472 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3473 SmallVector<SDValue, 8> Stores; 3474 unsigned Offset = 0; 3475 3476 // Do all but one copies using the full register width. 3477 for (unsigned i = 1; i < NumRegs; i++) { 3478 // Load one integer register's worth from the stack slot. 3479 SDValue Load = 3480 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3481 // Store it to the final location. Remember the store. 3482 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3483 ST->getPointerInfo().getWithOffset(Offset), 3484 MinAlign(ST->getAlignment(), Offset), 3485 ST->getMemOperand()->getFlags())); 3486 // Increment the pointers. 3487 Offset += RegBytes; 3488 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3489 StackPtr, StackPtrIncrement); 3490 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3491 } 3492 3493 // The last store may be partial. Do a truncating store. On big-endian 3494 // machines this requires an extending load from the stack slot to ensure 3495 // that the bits are in the right place. 3496 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3497 8 * (StoredBytes - Offset)); 3498 3499 // Load from the stack slot. 3500 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3501 MachinePointerInfo(), MemVT); 3502 3503 Stores.push_back( 3504 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3505 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3506 MinAlign(ST->getAlignment(), Offset), 3507 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3508 // The order of the stores doesn't matter - say it with a TokenFactor. 3509 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3510 return Result; 3511 } 3512 3513 assert(ST->getMemoryVT().isInteger() && 3514 !ST->getMemoryVT().isVector() && 3515 "Unaligned store of unknown type."); 3516 // Get the half-size VT 3517 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3518 int NumBits = NewStoredVT.getSizeInBits(); 3519 int IncrementSize = NumBits / 8; 3520 3521 // Divide the stored value in two parts. 3522 SDValue ShiftAmount = 3523 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3524 DAG.getDataLayout())); 3525 SDValue Lo = Val; 3526 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3527 3528 // Store the two parts 3529 SDValue Store1, Store2; 3530 Store1 = DAG.getTruncStore(Chain, dl, 3531 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3532 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3533 ST->getMemOperand()->getFlags()); 3534 3535 EVT PtrVT = Ptr.getValueType(); 3536 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3537 DAG.getConstant(IncrementSize, dl, PtrVT)); 3538 Alignment = MinAlign(Alignment, IncrementSize); 3539 Store2 = DAG.getTruncStore( 3540 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3541 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3542 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3543 3544 SDValue Result = 3545 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3546 return Result; 3547 } 3548 3549 //===----------------------------------------------------------------------===// 3550 // Implementation of Emulated TLS Model 3551 //===----------------------------------------------------------------------===// 3552 3553 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3554 SelectionDAG &DAG) const { 3555 // Access to address of TLS varialbe xyz is lowered to a function call: 3556 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3557 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3558 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3559 SDLoc dl(GA); 3560 3561 ArgListTy Args; 3562 ArgListEntry Entry; 3563 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3564 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3565 StringRef EmuTlsVarName(NameString); 3566 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3567 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3568 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3569 Entry.Ty = VoidPtrType; 3570 Args.push_back(Entry); 3571 3572 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3573 3574 TargetLowering::CallLoweringInfo CLI(DAG); 3575 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3576 CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3577 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3578 3579 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3580 // At last for X86 targets, maybe good for other targets too? 3581 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3582 MFI.setAdjustsStack(true); // Is this only for X86 target? 3583 MFI.setHasCalls(true); 3584 3585 assert((GA->getOffset() == 0) && 3586 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3587 return CallResult.first; 3588 } 3589 3590 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3591 SelectionDAG &DAG) const { 3592 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3593 if (!isCtlzFast()) 3594 return SDValue(); 3595 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3596 SDLoc dl(Op); 3597 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3598 if (C->isNullValue() && CC == ISD::SETEQ) { 3599 EVT VT = Op.getOperand(0).getValueType(); 3600 SDValue Zext = Op.getOperand(0); 3601 if (VT.bitsLT(MVT::i32)) { 3602 VT = MVT::i32; 3603 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3604 } 3605 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3606 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3607 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3608 DAG.getConstant(Log2b, dl, MVT::i32)); 3609 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3610 } 3611 } 3612 return SDValue(); 3613 } 3614