1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() != ISD::CopyFromReg) 97 return false; 98 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 99 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 100 return false; 101 } 102 return true; 103 } 104 105 /// Set CallLoweringInfo attribute flags based on the call instruction's 106 /// argument attributes. 107 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 108 unsigned ArgIdx) { 109 auto Attrs = Call->getAttributes(); 110 111 IsSExt = Attrs.hasParamAttribute(ArgIdx, Attribute::SExt); 112 IsZExt = Attrs.hasParamAttribute(ArgIdx, Attribute::ZExt); 113 IsInReg = Attrs.hasParamAttribute(ArgIdx, Attribute::InReg); 114 IsSRet = Attrs.hasParamAttribute(ArgIdx, Attribute::StructRet); 115 IsNest = Attrs.hasParamAttribute(ArgIdx, Attribute::Nest); 116 IsReturned = Attrs.hasParamAttribute(ArgIdx, Attribute::Returned); 117 IsSwiftSelf = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftSelf); 118 IsSwiftAsync = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftAsync); 119 IsSwiftError = Attrs.hasParamAttribute(ArgIdx, Attribute::SwiftError); 120 Alignment = Attrs.getParamStackAlignment(ArgIdx); 121 122 IsByVal = Attrs.hasParamAttribute(ArgIdx, Attribute::ByVal); 123 ByValType = nullptr; 124 if (IsByVal) { 125 ByValType = Call->getParamByValType(ArgIdx); 126 if (!Alignment) 127 Alignment = Call->getParamAlign(ArgIdx); 128 } 129 IsInAlloca = Attrs.hasParamAttribute(ArgIdx, Attribute::InAlloca); 130 IsPreallocated = Attrs.hasParamAttribute(ArgIdx, Attribute::Preallocated); 131 PreallocatedType = nullptr; 132 if (IsPreallocated) 133 PreallocatedType = Call->getParamPreallocatedType(ArgIdx); 134 } 135 136 /// Generate a libcall taking the given operands as arguments and returning a 137 /// result of type RetVT. 138 std::pair<SDValue, SDValue> 139 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 140 ArrayRef<SDValue> Ops, 141 MakeLibCallOptions CallOptions, 142 const SDLoc &dl, 143 SDValue InChain) const { 144 if (!InChain) 145 InChain = DAG.getEntryNode(); 146 147 TargetLowering::ArgListTy Args; 148 Args.reserve(Ops.size()); 149 150 TargetLowering::ArgListEntry Entry; 151 for (unsigned i = 0; i < Ops.size(); ++i) { 152 SDValue NewOp = Ops[i]; 153 Entry.Node = NewOp; 154 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 155 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 156 CallOptions.IsSExt); 157 Entry.IsZExt = !Entry.IsSExt; 158 159 if (CallOptions.IsSoften && 160 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 161 Entry.IsSExt = Entry.IsZExt = false; 162 } 163 Args.push_back(Entry); 164 } 165 166 if (LC == RTLIB::UNKNOWN_LIBCALL) 167 report_fatal_error("Unsupported library call operation!"); 168 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 169 getPointerTy(DAG.getDataLayout())); 170 171 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 172 TargetLowering::CallLoweringInfo CLI(DAG); 173 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 174 bool zeroExtend = !signExtend; 175 176 if (CallOptions.IsSoften && 177 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 178 signExtend = zeroExtend = false; 179 } 180 181 CLI.setDebugLoc(dl) 182 .setChain(InChain) 183 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 184 .setNoReturn(CallOptions.DoesNotReturn) 185 .setDiscardResult(!CallOptions.IsReturnValueUsed) 186 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 187 .setSExtResult(signExtend) 188 .setZExtResult(zeroExtend); 189 return LowerCallTo(CLI); 190 } 191 192 bool TargetLowering::findOptimalMemOpLowering( 193 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 194 unsigned SrcAS, const AttributeList &FuncAttributes) const { 195 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 196 return false; 197 198 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 199 200 if (VT == MVT::Other) { 201 // Use the largest integer type whose alignment constraints are satisfied. 202 // We only need to check DstAlign here as SrcAlign is always greater or 203 // equal to DstAlign (or zero). 204 VT = MVT::i64; 205 if (Op.isFixedDstAlign()) 206 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 207 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 208 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 209 assert(VT.isInteger()); 210 211 // Find the largest legal integer type. 212 MVT LVT = MVT::i64; 213 while (!isTypeLegal(LVT)) 214 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 215 assert(LVT.isInteger()); 216 217 // If the type we've chosen is larger than the largest legal integer type 218 // then use that instead. 219 if (VT.bitsGT(LVT)) 220 VT = LVT; 221 } 222 223 unsigned NumMemOps = 0; 224 uint64_t Size = Op.size(); 225 while (Size) { 226 unsigned VTSize = VT.getSizeInBits() / 8; 227 while (VTSize > Size) { 228 // For now, only use non-vector load / store's for the left-over pieces. 229 EVT NewVT = VT; 230 unsigned NewVTSize; 231 232 bool Found = false; 233 if (VT.isVector() || VT.isFloatingPoint()) { 234 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 235 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 236 isSafeMemOpType(NewVT.getSimpleVT())) 237 Found = true; 238 else if (NewVT == MVT::i64 && 239 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 240 isSafeMemOpType(MVT::f64)) { 241 // i64 is usually not legal on 32-bit targets, but f64 may be. 242 NewVT = MVT::f64; 243 Found = true; 244 } 245 } 246 247 if (!Found) { 248 do { 249 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 250 if (NewVT == MVT::i8) 251 break; 252 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 253 } 254 NewVTSize = NewVT.getSizeInBits() / 8; 255 256 // If the new VT cannot cover all of the remaining bits, then consider 257 // issuing a (or a pair of) unaligned and overlapping load / store. 258 bool Fast; 259 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 260 allowsMisalignedMemoryAccesses( 261 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 262 MachineMemOperand::MONone, &Fast) && 263 Fast) 264 VTSize = Size; 265 else { 266 VT = NewVT; 267 VTSize = NewVTSize; 268 } 269 } 270 271 if (++NumMemOps > Limit) 272 return false; 273 274 MemOps.push_back(VT); 275 Size -= VTSize; 276 } 277 278 return true; 279 } 280 281 /// Soften the operands of a comparison. This code is shared among BR_CC, 282 /// SELECT_CC, and SETCC handlers. 283 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 284 SDValue &NewLHS, SDValue &NewRHS, 285 ISD::CondCode &CCCode, 286 const SDLoc &dl, const SDValue OldLHS, 287 const SDValue OldRHS) const { 288 SDValue Chain; 289 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 290 OldRHS, Chain); 291 } 292 293 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 294 SDValue &NewLHS, SDValue &NewRHS, 295 ISD::CondCode &CCCode, 296 const SDLoc &dl, const SDValue OldLHS, 297 const SDValue OldRHS, 298 SDValue &Chain, 299 bool IsSignaling) const { 300 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 301 // not supporting it. We can update this code when libgcc provides such 302 // functions. 303 304 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 305 && "Unsupported setcc type!"); 306 307 // Expand into one or more soft-fp libcall(s). 308 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 309 bool ShouldInvertCC = false; 310 switch (CCCode) { 311 case ISD::SETEQ: 312 case ISD::SETOEQ: 313 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 314 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 315 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 316 break; 317 case ISD::SETNE: 318 case ISD::SETUNE: 319 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 320 (VT == MVT::f64) ? RTLIB::UNE_F64 : 321 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 322 break; 323 case ISD::SETGE: 324 case ISD::SETOGE: 325 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 326 (VT == MVT::f64) ? RTLIB::OGE_F64 : 327 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 328 break; 329 case ISD::SETLT: 330 case ISD::SETOLT: 331 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 332 (VT == MVT::f64) ? RTLIB::OLT_F64 : 333 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 334 break; 335 case ISD::SETLE: 336 case ISD::SETOLE: 337 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 338 (VT == MVT::f64) ? RTLIB::OLE_F64 : 339 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 340 break; 341 case ISD::SETGT: 342 case ISD::SETOGT: 343 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 344 (VT == MVT::f64) ? RTLIB::OGT_F64 : 345 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 346 break; 347 case ISD::SETO: 348 ShouldInvertCC = true; 349 LLVM_FALLTHROUGH; 350 case ISD::SETUO: 351 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 352 (VT == MVT::f64) ? RTLIB::UO_F64 : 353 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 354 break; 355 case ISD::SETONE: 356 // SETONE = O && UNE 357 ShouldInvertCC = true; 358 LLVM_FALLTHROUGH; 359 case ISD::SETUEQ: 360 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 361 (VT == MVT::f64) ? RTLIB::UO_F64 : 362 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 363 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 364 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 365 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 366 break; 367 default: 368 // Invert CC for unordered comparisons 369 ShouldInvertCC = true; 370 switch (CCCode) { 371 case ISD::SETULT: 372 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 373 (VT == MVT::f64) ? RTLIB::OGE_F64 : 374 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 375 break; 376 case ISD::SETULE: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 378 (VT == MVT::f64) ? RTLIB::OGT_F64 : 379 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 380 break; 381 case ISD::SETUGT: 382 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 383 (VT == MVT::f64) ? RTLIB::OLE_F64 : 384 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 385 break; 386 case ISD::SETUGE: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 388 (VT == MVT::f64) ? RTLIB::OLT_F64 : 389 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 390 break; 391 default: llvm_unreachable("Do not know how to soften this setcc!"); 392 } 393 } 394 395 // Use the target specific return value for comparions lib calls. 396 EVT RetVT = getCmpLibcallReturnType(); 397 SDValue Ops[2] = {NewLHS, NewRHS}; 398 TargetLowering::MakeLibCallOptions CallOptions; 399 EVT OpsVT[2] = { OldLHS.getValueType(), 400 OldRHS.getValueType() }; 401 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 402 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 403 NewLHS = Call.first; 404 NewRHS = DAG.getConstant(0, dl, RetVT); 405 406 CCCode = getCmpLibcallCC(LC1); 407 if (ShouldInvertCC) { 408 assert(RetVT.isInteger()); 409 CCCode = getSetCCInverse(CCCode, RetVT); 410 } 411 412 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 413 // Update Chain. 414 Chain = Call.second; 415 } else { 416 EVT SetCCVT = 417 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 418 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 419 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 420 CCCode = getCmpLibcallCC(LC2); 421 if (ShouldInvertCC) 422 CCCode = getSetCCInverse(CCCode, RetVT); 423 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 424 if (Chain) 425 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 426 Call2.second); 427 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 428 Tmp.getValueType(), Tmp, NewLHS); 429 NewRHS = SDValue(); 430 } 431 } 432 433 /// Return the entry encoding for a jump table in the current function. The 434 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 435 unsigned TargetLowering::getJumpTableEncoding() const { 436 // In non-pic modes, just use the address of a block. 437 if (!isPositionIndependent()) 438 return MachineJumpTableInfo::EK_BlockAddress; 439 440 // In PIC mode, if the target supports a GPRel32 directive, use it. 441 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 442 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 443 444 // Otherwise, use a label difference. 445 return MachineJumpTableInfo::EK_LabelDifference32; 446 } 447 448 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 449 SelectionDAG &DAG) const { 450 // If our PIC model is GP relative, use the global offset table as the base. 451 unsigned JTEncoding = getJumpTableEncoding(); 452 453 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 454 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 455 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 456 457 return Table; 458 } 459 460 /// This returns the relocation base for the given PIC jumptable, the same as 461 /// getPICJumpTableRelocBase, but as an MCExpr. 462 const MCExpr * 463 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 464 unsigned JTI,MCContext &Ctx) const{ 465 // The normal PIC reloc base is the label at the start of the jump table. 466 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 467 } 468 469 bool 470 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 471 const TargetMachine &TM = getTargetMachine(); 472 const GlobalValue *GV = GA->getGlobal(); 473 474 // If the address is not even local to this DSO we will have to load it from 475 // a got and then add the offset. 476 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 477 return false; 478 479 // If the code is position independent we will have to add a base register. 480 if (isPositionIndependent()) 481 return false; 482 483 // Otherwise we can do it. 484 return true; 485 } 486 487 //===----------------------------------------------------------------------===// 488 // Optimization Methods 489 //===----------------------------------------------------------------------===// 490 491 /// If the specified instruction has a constant integer operand and there are 492 /// bits set in that constant that are not demanded, then clear those bits and 493 /// return true. 494 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 495 const APInt &DemandedBits, 496 const APInt &DemandedElts, 497 TargetLoweringOpt &TLO) const { 498 SDLoc DL(Op); 499 unsigned Opcode = Op.getOpcode(); 500 501 // Do target-specific constant optimization. 502 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 503 return TLO.New.getNode(); 504 505 // FIXME: ISD::SELECT, ISD::SELECT_CC 506 switch (Opcode) { 507 default: 508 break; 509 case ISD::XOR: 510 case ISD::AND: 511 case ISD::OR: { 512 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 513 if (!Op1C) 514 return false; 515 516 // If this is a 'not' op, don't touch it because that's a canonical form. 517 const APInt &C = Op1C->getAPIntValue(); 518 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 519 return false; 520 521 if (!C.isSubsetOf(DemandedBits)) { 522 EVT VT = Op.getValueType(); 523 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 524 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 525 return TLO.CombineTo(Op, NewOp); 526 } 527 528 break; 529 } 530 } 531 532 return false; 533 } 534 535 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 536 const APInt &DemandedBits, 537 TargetLoweringOpt &TLO) const { 538 EVT VT = Op.getValueType(); 539 APInt DemandedElts = VT.isVector() 540 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 541 : APInt(1, 1); 542 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 543 } 544 545 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 546 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 547 /// generalized for targets with other types of implicit widening casts. 548 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 549 const APInt &Demanded, 550 TargetLoweringOpt &TLO) const { 551 assert(Op.getNumOperands() == 2 && 552 "ShrinkDemandedOp only supports binary operators!"); 553 assert(Op.getNode()->getNumValues() == 1 && 554 "ShrinkDemandedOp only supports nodes with one result!"); 555 556 SelectionDAG &DAG = TLO.DAG; 557 SDLoc dl(Op); 558 559 // Early return, as this function cannot handle vector types. 560 if (Op.getValueType().isVector()) 561 return false; 562 563 // Don't do this if the node has another user, which may require the 564 // full value. 565 if (!Op.getNode()->hasOneUse()) 566 return false; 567 568 // Search for the smallest integer type with free casts to and from 569 // Op's type. For expedience, just check power-of-2 integer types. 570 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 571 unsigned DemandedSize = Demanded.getActiveBits(); 572 unsigned SmallVTBits = DemandedSize; 573 if (!isPowerOf2_32(SmallVTBits)) 574 SmallVTBits = NextPowerOf2(SmallVTBits); 575 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 576 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 577 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 578 TLI.isZExtFree(SmallVT, Op.getValueType())) { 579 // We found a type with free casts. 580 SDValue X = DAG.getNode( 581 Op.getOpcode(), dl, SmallVT, 582 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 583 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 584 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 585 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 586 return TLO.CombineTo(Op, Z); 587 } 588 } 589 return false; 590 } 591 592 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 593 DAGCombinerInfo &DCI) const { 594 SelectionDAG &DAG = DCI.DAG; 595 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 596 !DCI.isBeforeLegalizeOps()); 597 KnownBits Known; 598 599 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 600 if (Simplified) { 601 DCI.AddToWorklist(Op.getNode()); 602 DCI.CommitTargetLoweringOpt(TLO); 603 } 604 return Simplified; 605 } 606 607 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 608 KnownBits &Known, 609 TargetLoweringOpt &TLO, 610 unsigned Depth, 611 bool AssumeSingleUse) const { 612 EVT VT = Op.getValueType(); 613 614 // TODO: We can probably do more work on calculating the known bits and 615 // simplifying the operations for scalable vectors, but for now we just 616 // bail out. 617 if (VT.isScalableVector()) { 618 // Pretend we don't know anything for now. 619 Known = KnownBits(DemandedBits.getBitWidth()); 620 return false; 621 } 622 623 APInt DemandedElts = VT.isVector() 624 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 625 : APInt(1, 1); 626 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 627 AssumeSingleUse); 628 } 629 630 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 631 // TODO: Under what circumstances can we create nodes? Constant folding? 632 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 633 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 634 SelectionDAG &DAG, unsigned Depth) const { 635 // Limit search depth. 636 if (Depth >= SelectionDAG::MaxRecursionDepth) 637 return SDValue(); 638 639 // Ignore UNDEFs. 640 if (Op.isUndef()) 641 return SDValue(); 642 643 // Not demanding any bits/elts from Op. 644 if (DemandedBits == 0 || DemandedElts == 0) 645 return DAG.getUNDEF(Op.getValueType()); 646 647 unsigned NumElts = DemandedElts.getBitWidth(); 648 unsigned BitWidth = DemandedBits.getBitWidth(); 649 KnownBits LHSKnown, RHSKnown; 650 switch (Op.getOpcode()) { 651 case ISD::BITCAST: { 652 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 653 EVT SrcVT = Src.getValueType(); 654 EVT DstVT = Op.getValueType(); 655 if (SrcVT == DstVT) 656 return Src; 657 658 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 659 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 660 if (NumSrcEltBits == NumDstEltBits) 661 if (SDValue V = SimplifyMultipleUseDemandedBits( 662 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 663 return DAG.getBitcast(DstVT, V); 664 665 // TODO - bigendian once we have test coverage. 666 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 667 DAG.getDataLayout().isLittleEndian()) { 668 unsigned Scale = NumDstEltBits / NumSrcEltBits; 669 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 670 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 671 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 672 for (unsigned i = 0; i != Scale; ++i) { 673 unsigned Offset = i * NumSrcEltBits; 674 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 675 if (!Sub.isNullValue()) { 676 DemandedSrcBits |= Sub; 677 for (unsigned j = 0; j != NumElts; ++j) 678 if (DemandedElts[j]) 679 DemandedSrcElts.setBit((j * Scale) + i); 680 } 681 } 682 683 if (SDValue V = SimplifyMultipleUseDemandedBits( 684 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 685 return DAG.getBitcast(DstVT, V); 686 } 687 688 // TODO - bigendian once we have test coverage. 689 if ((NumSrcEltBits % NumDstEltBits) == 0 && 690 DAG.getDataLayout().isLittleEndian()) { 691 unsigned Scale = NumSrcEltBits / NumDstEltBits; 692 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 693 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 694 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 695 for (unsigned i = 0; i != NumElts; ++i) 696 if (DemandedElts[i]) { 697 unsigned Offset = (i % Scale) * NumDstEltBits; 698 DemandedSrcBits.insertBits(DemandedBits, Offset); 699 DemandedSrcElts.setBit(i / Scale); 700 } 701 702 if (SDValue V = SimplifyMultipleUseDemandedBits( 703 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 704 return DAG.getBitcast(DstVT, V); 705 } 706 707 break; 708 } 709 case ISD::AND: { 710 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 711 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 712 713 // If all of the demanded bits are known 1 on one side, return the other. 714 // These bits cannot contribute to the result of the 'and' in this 715 // context. 716 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 717 return Op.getOperand(0); 718 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 719 return Op.getOperand(1); 720 break; 721 } 722 case ISD::OR: { 723 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 724 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 725 726 // If all of the demanded bits are known zero on one side, return the 727 // other. These bits cannot contribute to the result of the 'or' in this 728 // context. 729 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 730 return Op.getOperand(0); 731 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 732 return Op.getOperand(1); 733 break; 734 } 735 case ISD::XOR: { 736 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 737 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 738 739 // If all of the demanded bits are known zero on one side, return the 740 // other. 741 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 742 return Op.getOperand(0); 743 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 744 return Op.getOperand(1); 745 break; 746 } 747 case ISD::SHL: { 748 // If we are only demanding sign bits then we can use the shift source 749 // directly. 750 if (const APInt *MaxSA = 751 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 752 SDValue Op0 = Op.getOperand(0); 753 unsigned ShAmt = MaxSA->getZExtValue(); 754 unsigned NumSignBits = 755 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 756 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 757 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 758 return Op0; 759 } 760 break; 761 } 762 case ISD::SETCC: { 763 SDValue Op0 = Op.getOperand(0); 764 SDValue Op1 = Op.getOperand(1); 765 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 766 // If (1) we only need the sign-bit, (2) the setcc operands are the same 767 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 768 // -1, we may be able to bypass the setcc. 769 if (DemandedBits.isSignMask() && 770 Op0.getScalarValueSizeInBits() == BitWidth && 771 getBooleanContents(Op0.getValueType()) == 772 BooleanContent::ZeroOrNegativeOneBooleanContent) { 773 // If we're testing X < 0, then this compare isn't needed - just use X! 774 // FIXME: We're limiting to integer types here, but this should also work 775 // if we don't care about FP signed-zero. The use of SETLT with FP means 776 // that we don't care about NaNs. 777 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 778 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SIGN_EXTEND_INREG: { 784 // If none of the extended bits are demanded, eliminate the sextinreg. 785 SDValue Op0 = Op.getOperand(0); 786 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 787 unsigned ExBits = ExVT.getScalarSizeInBits(); 788 if (DemandedBits.getActiveBits() <= ExBits) 789 return Op0; 790 // If the input is already sign extended, just drop the extension. 791 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 792 if (NumSignBits >= (BitWidth - ExBits + 1)) 793 return Op0; 794 break; 795 } 796 case ISD::ANY_EXTEND_VECTOR_INREG: 797 case ISD::SIGN_EXTEND_VECTOR_INREG: 798 case ISD::ZERO_EXTEND_VECTOR_INREG: { 799 // If we only want the lowest element and none of extended bits, then we can 800 // return the bitcasted source vector. 801 SDValue Src = Op.getOperand(0); 802 EVT SrcVT = Src.getValueType(); 803 EVT DstVT = Op.getValueType(); 804 if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 805 DAG.getDataLayout().isLittleEndian() && 806 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 807 return DAG.getBitcast(DstVT, Src); 808 } 809 break; 810 } 811 case ISD::INSERT_VECTOR_ELT: { 812 // If we don't demand the inserted element, return the base vector. 813 SDValue Vec = Op.getOperand(0); 814 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 815 EVT VecVT = Vec.getValueType(); 816 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 817 !DemandedElts[CIdx->getZExtValue()]) 818 return Vec; 819 break; 820 } 821 case ISD::INSERT_SUBVECTOR: { 822 // If we don't demand the inserted subvector, return the base vector. 823 SDValue Vec = Op.getOperand(0); 824 SDValue Sub = Op.getOperand(1); 825 uint64_t Idx = Op.getConstantOperandVal(2); 826 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 827 if (DemandedElts.extractBits(NumSubElts, Idx) == 0) 828 return Vec; 829 break; 830 } 831 case ISD::VECTOR_SHUFFLE: { 832 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 833 834 // If all the demanded elts are from one operand and are inline, 835 // then we can use the operand directly. 836 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 837 for (unsigned i = 0; i != NumElts; ++i) { 838 int M = ShuffleMask[i]; 839 if (M < 0 || !DemandedElts[i]) 840 continue; 841 AllUndef = false; 842 IdentityLHS &= (M == (int)i); 843 IdentityRHS &= ((M - NumElts) == i); 844 } 845 846 if (AllUndef) 847 return DAG.getUNDEF(Op.getValueType()); 848 if (IdentityLHS) 849 return Op.getOperand(0); 850 if (IdentityRHS) 851 return Op.getOperand(1); 852 break; 853 } 854 default: 855 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 856 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 857 Op, DemandedBits, DemandedElts, DAG, Depth)) 858 return V; 859 break; 860 } 861 return SDValue(); 862 } 863 864 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 865 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 866 unsigned Depth) const { 867 EVT VT = Op.getValueType(); 868 APInt DemandedElts = VT.isVector() 869 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 870 : APInt(1, 1); 871 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 872 Depth); 873 } 874 875 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 876 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 877 unsigned Depth) const { 878 APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits()); 879 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 880 Depth); 881 } 882 883 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 884 /// result of Op are ever used downstream. If we can use this information to 885 /// simplify Op, create a new simplified DAG node and return true, returning the 886 /// original and new nodes in Old and New. Otherwise, analyze the expression and 887 /// return a mask of Known bits for the expression (used to simplify the 888 /// caller). The Known bits may only be accurate for those bits in the 889 /// OriginalDemandedBits and OriginalDemandedElts. 890 bool TargetLowering::SimplifyDemandedBits( 891 SDValue Op, const APInt &OriginalDemandedBits, 892 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 893 unsigned Depth, bool AssumeSingleUse) const { 894 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 895 assert(Op.getScalarValueSizeInBits() == BitWidth && 896 "Mask size mismatches value type size!"); 897 898 // Don't know anything. 899 Known = KnownBits(BitWidth); 900 901 // TODO: We can probably do more work on calculating the known bits and 902 // simplifying the operations for scalable vectors, but for now we just 903 // bail out. 904 if (Op.getValueType().isScalableVector()) 905 return false; 906 907 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 908 assert((!Op.getValueType().isVector() || 909 NumElts == Op.getValueType().getVectorNumElements()) && 910 "Unexpected vector size"); 911 912 APInt DemandedBits = OriginalDemandedBits; 913 APInt DemandedElts = OriginalDemandedElts; 914 SDLoc dl(Op); 915 auto &DL = TLO.DAG.getDataLayout(); 916 917 // Undef operand. 918 if (Op.isUndef()) 919 return false; 920 921 if (Op.getOpcode() == ISD::Constant) { 922 // We know all of the bits for a constant! 923 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 924 return false; 925 } 926 927 if (Op.getOpcode() == ISD::ConstantFP) { 928 // We know all of the bits for a floating point constant! 929 Known = KnownBits::makeConstant( 930 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 931 return false; 932 } 933 934 // Other users may use these bits. 935 EVT VT = Op.getValueType(); 936 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 937 if (Depth != 0) { 938 // If not at the root, Just compute the Known bits to 939 // simplify things downstream. 940 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 941 return false; 942 } 943 // If this is the root being simplified, allow it to have multiple uses, 944 // just set the DemandedBits/Elts to all bits. 945 DemandedBits = APInt::getAllOnesValue(BitWidth); 946 DemandedElts = APInt::getAllOnesValue(NumElts); 947 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 948 // Not demanding any bits/elts from Op. 949 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 950 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 951 // Limit search depth. 952 return false; 953 } 954 955 KnownBits Known2; 956 switch (Op.getOpcode()) { 957 case ISD::TargetConstant: 958 llvm_unreachable("Can't simplify this node"); 959 case ISD::SCALAR_TO_VECTOR: { 960 if (!DemandedElts[0]) 961 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 962 963 KnownBits SrcKnown; 964 SDValue Src = Op.getOperand(0); 965 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 966 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 967 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 968 return true; 969 970 // Upper elements are undef, so only get the knownbits if we just demand 971 // the bottom element. 972 if (DemandedElts == 1) 973 Known = SrcKnown.anyextOrTrunc(BitWidth); 974 break; 975 } 976 case ISD::BUILD_VECTOR: 977 // Collect the known bits that are shared by every demanded element. 978 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 979 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 980 return false; // Don't fall through, will infinitely loop. 981 case ISD::LOAD: { 982 auto *LD = cast<LoadSDNode>(Op); 983 if (getTargetConstantFromLoad(LD)) { 984 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 985 return false; // Don't fall through, will infinitely loop. 986 } 987 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 988 // If this is a ZEXTLoad and we are looking at the loaded value. 989 EVT MemVT = LD->getMemoryVT(); 990 unsigned MemBits = MemVT.getScalarSizeInBits(); 991 Known.Zero.setBitsFrom(MemBits); 992 return false; // Don't fall through, will infinitely loop. 993 } 994 break; 995 } 996 case ISD::INSERT_VECTOR_ELT: { 997 SDValue Vec = Op.getOperand(0); 998 SDValue Scl = Op.getOperand(1); 999 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1000 EVT VecVT = Vec.getValueType(); 1001 1002 // If index isn't constant, assume we need all vector elements AND the 1003 // inserted element. 1004 APInt DemandedVecElts(DemandedElts); 1005 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1006 unsigned Idx = CIdx->getZExtValue(); 1007 DemandedVecElts.clearBit(Idx); 1008 1009 // Inserted element is not required. 1010 if (!DemandedElts[Idx]) 1011 return TLO.CombineTo(Op, Vec); 1012 } 1013 1014 KnownBits KnownScl; 1015 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1016 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1017 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1018 return true; 1019 1020 Known = KnownScl.anyextOrTrunc(BitWidth); 1021 1022 KnownBits KnownVec; 1023 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1024 Depth + 1)) 1025 return true; 1026 1027 if (!!DemandedVecElts) 1028 Known = KnownBits::commonBits(Known, KnownVec); 1029 1030 return false; 1031 } 1032 case ISD::INSERT_SUBVECTOR: { 1033 // Demand any elements from the subvector and the remainder from the src its 1034 // inserted into. 1035 SDValue Src = Op.getOperand(0); 1036 SDValue Sub = Op.getOperand(1); 1037 uint64_t Idx = Op.getConstantOperandVal(2); 1038 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1039 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1040 APInt DemandedSrcElts = DemandedElts; 1041 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 1042 1043 KnownBits KnownSub, KnownSrc; 1044 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1045 Depth + 1)) 1046 return true; 1047 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1048 Depth + 1)) 1049 return true; 1050 1051 Known.Zero.setAllBits(); 1052 Known.One.setAllBits(); 1053 if (!!DemandedSubElts) 1054 Known = KnownBits::commonBits(Known, KnownSub); 1055 if (!!DemandedSrcElts) 1056 Known = KnownBits::commonBits(Known, KnownSrc); 1057 1058 // Attempt to avoid multi-use src if we don't need anything from it. 1059 if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() || 1060 !DemandedSrcElts.isAllOnesValue()) { 1061 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1062 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1063 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1064 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1065 if (NewSub || NewSrc) { 1066 NewSub = NewSub ? NewSub : Sub; 1067 NewSrc = NewSrc ? NewSrc : Src; 1068 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1069 Op.getOperand(2)); 1070 return TLO.CombineTo(Op, NewOp); 1071 } 1072 } 1073 break; 1074 } 1075 case ISD::EXTRACT_SUBVECTOR: { 1076 // Offset the demanded elts by the subvector index. 1077 SDValue Src = Op.getOperand(0); 1078 if (Src.getValueType().isScalableVector()) 1079 break; 1080 uint64_t Idx = Op.getConstantOperandVal(1); 1081 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1082 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1083 1084 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1085 Depth + 1)) 1086 return true; 1087 1088 // Attempt to avoid multi-use src if we don't need anything from it. 1089 if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) { 1090 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1091 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1092 if (DemandedSrc) { 1093 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1094 Op.getOperand(1)); 1095 return TLO.CombineTo(Op, NewOp); 1096 } 1097 } 1098 break; 1099 } 1100 case ISD::CONCAT_VECTORS: { 1101 Known.Zero.setAllBits(); 1102 Known.One.setAllBits(); 1103 EVT SubVT = Op.getOperand(0).getValueType(); 1104 unsigned NumSubVecs = Op.getNumOperands(); 1105 unsigned NumSubElts = SubVT.getVectorNumElements(); 1106 for (unsigned i = 0; i != NumSubVecs; ++i) { 1107 APInt DemandedSubElts = 1108 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1109 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1110 Known2, TLO, Depth + 1)) 1111 return true; 1112 // Known bits are shared by every demanded subvector element. 1113 if (!!DemandedSubElts) 1114 Known = KnownBits::commonBits(Known, Known2); 1115 } 1116 break; 1117 } 1118 case ISD::VECTOR_SHUFFLE: { 1119 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1120 1121 // Collect demanded elements from shuffle operands.. 1122 APInt DemandedLHS(NumElts, 0); 1123 APInt DemandedRHS(NumElts, 0); 1124 for (unsigned i = 0; i != NumElts; ++i) { 1125 if (!DemandedElts[i]) 1126 continue; 1127 int M = ShuffleMask[i]; 1128 if (M < 0) { 1129 // For UNDEF elements, we don't know anything about the common state of 1130 // the shuffle result. 1131 DemandedLHS.clearAllBits(); 1132 DemandedRHS.clearAllBits(); 1133 break; 1134 } 1135 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1136 if (M < (int)NumElts) 1137 DemandedLHS.setBit(M); 1138 else 1139 DemandedRHS.setBit(M - NumElts); 1140 } 1141 1142 if (!!DemandedLHS || !!DemandedRHS) { 1143 SDValue Op0 = Op.getOperand(0); 1144 SDValue Op1 = Op.getOperand(1); 1145 1146 Known.Zero.setAllBits(); 1147 Known.One.setAllBits(); 1148 if (!!DemandedLHS) { 1149 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1150 Depth + 1)) 1151 return true; 1152 Known = KnownBits::commonBits(Known, Known2); 1153 } 1154 if (!!DemandedRHS) { 1155 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1156 Depth + 1)) 1157 return true; 1158 Known = KnownBits::commonBits(Known, Known2); 1159 } 1160 1161 // Attempt to avoid multi-use ops if we don't need anything from them. 1162 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1163 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1164 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1165 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1166 if (DemandedOp0 || DemandedOp1) { 1167 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1168 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1169 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1170 return TLO.CombineTo(Op, NewOp); 1171 } 1172 } 1173 break; 1174 } 1175 case ISD::AND: { 1176 SDValue Op0 = Op.getOperand(0); 1177 SDValue Op1 = Op.getOperand(1); 1178 1179 // If the RHS is a constant, check to see if the LHS would be zero without 1180 // using the bits from the RHS. Below, we use knowledge about the RHS to 1181 // simplify the LHS, here we're using information from the LHS to simplify 1182 // the RHS. 1183 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1184 // Do not increment Depth here; that can cause an infinite loop. 1185 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1186 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1187 if ((LHSKnown.Zero & DemandedBits) == 1188 (~RHSC->getAPIntValue() & DemandedBits)) 1189 return TLO.CombineTo(Op, Op0); 1190 1191 // If any of the set bits in the RHS are known zero on the LHS, shrink 1192 // the constant. 1193 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1194 DemandedElts, TLO)) 1195 return true; 1196 1197 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1198 // constant, but if this 'and' is only clearing bits that were just set by 1199 // the xor, then this 'and' can be eliminated by shrinking the mask of 1200 // the xor. For example, for a 32-bit X: 1201 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1202 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1203 LHSKnown.One == ~RHSC->getAPIntValue()) { 1204 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1205 return TLO.CombineTo(Op, Xor); 1206 } 1207 } 1208 1209 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1210 Depth + 1)) 1211 return true; 1212 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1213 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1214 Known2, TLO, Depth + 1)) 1215 return true; 1216 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1217 1218 // Attempt to avoid multi-use ops if we don't need anything from them. 1219 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1220 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1221 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1222 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1223 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1224 if (DemandedOp0 || DemandedOp1) { 1225 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1226 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1227 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1228 return TLO.CombineTo(Op, NewOp); 1229 } 1230 } 1231 1232 // If all of the demanded bits are known one on one side, return the other. 1233 // These bits cannot contribute to the result of the 'and'. 1234 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1235 return TLO.CombineTo(Op, Op0); 1236 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1237 return TLO.CombineTo(Op, Op1); 1238 // If all of the demanded bits in the inputs are known zeros, return zero. 1239 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1240 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1241 // If the RHS is a constant, see if we can simplify it. 1242 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1243 TLO)) 1244 return true; 1245 // If the operation can be done in a smaller type, do so. 1246 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1247 return true; 1248 1249 Known &= Known2; 1250 break; 1251 } 1252 case ISD::OR: { 1253 SDValue Op0 = Op.getOperand(0); 1254 SDValue Op1 = Op.getOperand(1); 1255 1256 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1257 Depth + 1)) 1258 return true; 1259 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1260 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1261 Known2, TLO, Depth + 1)) 1262 return true; 1263 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1264 1265 // Attempt to avoid multi-use ops if we don't need anything from them. 1266 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1267 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1268 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1269 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1270 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1271 if (DemandedOp0 || DemandedOp1) { 1272 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1273 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1274 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1275 return TLO.CombineTo(Op, NewOp); 1276 } 1277 } 1278 1279 // If all of the demanded bits are known zero on one side, return the other. 1280 // These bits cannot contribute to the result of the 'or'. 1281 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1282 return TLO.CombineTo(Op, Op0); 1283 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1284 return TLO.CombineTo(Op, Op1); 1285 // If the RHS is a constant, see if we can simplify it. 1286 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1287 return true; 1288 // If the operation can be done in a smaller type, do so. 1289 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1290 return true; 1291 1292 Known |= Known2; 1293 break; 1294 } 1295 case ISD::XOR: { 1296 SDValue Op0 = Op.getOperand(0); 1297 SDValue Op1 = Op.getOperand(1); 1298 1299 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1300 Depth + 1)) 1301 return true; 1302 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1307 1308 // Attempt to avoid multi-use ops if we don't need anything from them. 1309 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1310 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1311 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1312 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1313 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1314 if (DemandedOp0 || DemandedOp1) { 1315 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1316 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1317 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1318 return TLO.CombineTo(Op, NewOp); 1319 } 1320 } 1321 1322 // If all of the demanded bits are known zero on one side, return the other. 1323 // These bits cannot contribute to the result of the 'xor'. 1324 if (DemandedBits.isSubsetOf(Known.Zero)) 1325 return TLO.CombineTo(Op, Op0); 1326 if (DemandedBits.isSubsetOf(Known2.Zero)) 1327 return TLO.CombineTo(Op, Op1); 1328 // If the operation can be done in a smaller type, do so. 1329 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1330 return true; 1331 1332 // If all of the unknown bits are known to be zero on one side or the other 1333 // turn this into an *inclusive* or. 1334 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1335 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1336 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1337 1338 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1339 if (C) { 1340 // If one side is a constant, and all of the set bits in the constant are 1341 // also known set on the other side, turn this into an AND, as we know 1342 // the bits will be cleared. 1343 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1344 // NB: it is okay if more bits are known than are requested 1345 if (C->getAPIntValue() == Known2.One) { 1346 SDValue ANDC = 1347 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1348 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1349 } 1350 1351 // If the RHS is a constant, see if we can change it. Don't alter a -1 1352 // constant because that's a 'not' op, and that is better for combining 1353 // and codegen. 1354 if (!C->isAllOnesValue() && 1355 DemandedBits.isSubsetOf(C->getAPIntValue())) { 1356 // We're flipping all demanded bits. Flip the undemanded bits too. 1357 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1358 return TLO.CombineTo(Op, New); 1359 } 1360 } 1361 1362 // If we can't turn this into a 'not', try to shrink the constant. 1363 if (!C || !C->isAllOnesValue()) 1364 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1365 return true; 1366 1367 Known ^= Known2; 1368 break; 1369 } 1370 case ISD::SELECT: 1371 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1372 Depth + 1)) 1373 return true; 1374 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1375 Depth + 1)) 1376 return true; 1377 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1378 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1379 1380 // If the operands are constants, see if we can simplify them. 1381 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1382 return true; 1383 1384 // Only known if known in both the LHS and RHS. 1385 Known = KnownBits::commonBits(Known, Known2); 1386 break; 1387 case ISD::SELECT_CC: 1388 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1389 Depth + 1)) 1390 return true; 1391 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1392 Depth + 1)) 1393 return true; 1394 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1396 1397 // If the operands are constants, see if we can simplify them. 1398 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1399 return true; 1400 1401 // Only known if known in both the LHS and RHS. 1402 Known = KnownBits::commonBits(Known, Known2); 1403 break; 1404 case ISD::SETCC: { 1405 SDValue Op0 = Op.getOperand(0); 1406 SDValue Op1 = Op.getOperand(1); 1407 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1408 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1409 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1410 // -1, we may be able to bypass the setcc. 1411 if (DemandedBits.isSignMask() && 1412 Op0.getScalarValueSizeInBits() == BitWidth && 1413 getBooleanContents(Op0.getValueType()) == 1414 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1415 // If we're testing X < 0, then this compare isn't needed - just use X! 1416 // FIXME: We're limiting to integer types here, but this should also work 1417 // if we don't care about FP signed-zero. The use of SETLT with FP means 1418 // that we don't care about NaNs. 1419 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1420 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1421 return TLO.CombineTo(Op, Op0); 1422 1423 // TODO: Should we check for other forms of sign-bit comparisons? 1424 // Examples: X <= -1, X >= 0 1425 } 1426 if (getBooleanContents(Op0.getValueType()) == 1427 TargetLowering::ZeroOrOneBooleanContent && 1428 BitWidth > 1) 1429 Known.Zero.setBitsFrom(1); 1430 break; 1431 } 1432 case ISD::SHL: { 1433 SDValue Op0 = Op.getOperand(0); 1434 SDValue Op1 = Op.getOperand(1); 1435 EVT ShiftVT = Op1.getValueType(); 1436 1437 if (const APInt *SA = 1438 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1439 unsigned ShAmt = SA->getZExtValue(); 1440 if (ShAmt == 0) 1441 return TLO.CombineTo(Op, Op0); 1442 1443 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1444 // single shift. We can do this if the bottom bits (which are shifted 1445 // out) are never demanded. 1446 // TODO - support non-uniform vector amounts. 1447 if (Op0.getOpcode() == ISD::SRL) { 1448 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1449 if (const APInt *SA2 = 1450 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1451 unsigned C1 = SA2->getZExtValue(); 1452 unsigned Opc = ISD::SHL; 1453 int Diff = ShAmt - C1; 1454 if (Diff < 0) { 1455 Diff = -Diff; 1456 Opc = ISD::SRL; 1457 } 1458 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1459 return TLO.CombineTo( 1460 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1461 } 1462 } 1463 } 1464 1465 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1466 // are not demanded. This will likely allow the anyext to be folded away. 1467 // TODO - support non-uniform vector amounts. 1468 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1469 SDValue InnerOp = Op0.getOperand(0); 1470 EVT InnerVT = InnerOp.getValueType(); 1471 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1472 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1473 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1474 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1475 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1476 ShTy = InnerVT; 1477 SDValue NarrowShl = 1478 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1479 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1480 return TLO.CombineTo( 1481 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1482 } 1483 1484 // Repeat the SHL optimization above in cases where an extension 1485 // intervenes: (shl (anyext (shr x, c1)), c2) to 1486 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1487 // aren't demanded (as above) and that the shifted upper c1 bits of 1488 // x aren't demanded. 1489 // TODO - support non-uniform vector amounts. 1490 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1491 InnerOp.hasOneUse()) { 1492 if (const APInt *SA2 = 1493 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1494 unsigned InnerShAmt = SA2->getZExtValue(); 1495 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1496 DemandedBits.getActiveBits() <= 1497 (InnerBits - InnerShAmt + ShAmt) && 1498 DemandedBits.countTrailingZeros() >= ShAmt) { 1499 SDValue NewSA = 1500 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1501 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1502 InnerOp.getOperand(0)); 1503 return TLO.CombineTo( 1504 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1505 } 1506 } 1507 } 1508 } 1509 1510 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1511 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1512 Depth + 1)) 1513 return true; 1514 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1515 Known.Zero <<= ShAmt; 1516 Known.One <<= ShAmt; 1517 // low bits known zero. 1518 Known.Zero.setLowBits(ShAmt); 1519 1520 // Try shrinking the operation as long as the shift amount will still be 1521 // in range. 1522 if ((ShAmt < DemandedBits.getActiveBits()) && 1523 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1524 return true; 1525 } 1526 1527 // If we are only demanding sign bits then we can use the shift source 1528 // directly. 1529 if (const APInt *MaxSA = 1530 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1531 unsigned ShAmt = MaxSA->getZExtValue(); 1532 unsigned NumSignBits = 1533 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1534 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1535 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1536 return TLO.CombineTo(Op, Op0); 1537 } 1538 break; 1539 } 1540 case ISD::SRL: { 1541 SDValue Op0 = Op.getOperand(0); 1542 SDValue Op1 = Op.getOperand(1); 1543 EVT ShiftVT = Op1.getValueType(); 1544 1545 if (const APInt *SA = 1546 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1547 unsigned ShAmt = SA->getZExtValue(); 1548 if (ShAmt == 0) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1552 // single shift. We can do this if the top bits (which are shifted out) 1553 // are never demanded. 1554 // TODO - support non-uniform vector amounts. 1555 if (Op0.getOpcode() == ISD::SHL) { 1556 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1557 if (const APInt *SA2 = 1558 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1559 unsigned C1 = SA2->getZExtValue(); 1560 unsigned Opc = ISD::SRL; 1561 int Diff = ShAmt - C1; 1562 if (Diff < 0) { 1563 Diff = -Diff; 1564 Opc = ISD::SHL; 1565 } 1566 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1567 return TLO.CombineTo( 1568 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1569 } 1570 } 1571 } 1572 1573 APInt InDemandedMask = (DemandedBits << ShAmt); 1574 1575 // If the shift is exact, then it does demand the low bits (and knows that 1576 // they are zero). 1577 if (Op->getFlags().hasExact()) 1578 InDemandedMask.setLowBits(ShAmt); 1579 1580 // Compute the new bits that are at the top now. 1581 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1582 Depth + 1)) 1583 return true; 1584 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1585 Known.Zero.lshrInPlace(ShAmt); 1586 Known.One.lshrInPlace(ShAmt); 1587 // High bits known zero. 1588 Known.Zero.setHighBits(ShAmt); 1589 } 1590 break; 1591 } 1592 case ISD::SRA: { 1593 SDValue Op0 = Op.getOperand(0); 1594 SDValue Op1 = Op.getOperand(1); 1595 EVT ShiftVT = Op1.getValueType(); 1596 1597 // If we only want bits that already match the signbit then we don't need 1598 // to shift. 1599 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1600 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1601 NumHiDemandedBits) 1602 return TLO.CombineTo(Op, Op0); 1603 1604 // If this is an arithmetic shift right and only the low-bit is set, we can 1605 // always convert this into a logical shr, even if the shift amount is 1606 // variable. The low bit of the shift cannot be an input sign bit unless 1607 // the shift amount is >= the size of the datatype, which is undefined. 1608 if (DemandedBits.isOneValue()) 1609 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1610 1611 if (const APInt *SA = 1612 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1613 unsigned ShAmt = SA->getZExtValue(); 1614 if (ShAmt == 0) 1615 return TLO.CombineTo(Op, Op0); 1616 1617 APInt InDemandedMask = (DemandedBits << ShAmt); 1618 1619 // If the shift is exact, then it does demand the low bits (and knows that 1620 // they are zero). 1621 if (Op->getFlags().hasExact()) 1622 InDemandedMask.setLowBits(ShAmt); 1623 1624 // If any of the demanded bits are produced by the sign extension, we also 1625 // demand the input sign bit. 1626 if (DemandedBits.countLeadingZeros() < ShAmt) 1627 InDemandedMask.setSignBit(); 1628 1629 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1630 Depth + 1)) 1631 return true; 1632 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1633 Known.Zero.lshrInPlace(ShAmt); 1634 Known.One.lshrInPlace(ShAmt); 1635 1636 // If the input sign bit is known to be zero, or if none of the top bits 1637 // are demanded, turn this into an unsigned shift right. 1638 if (Known.Zero[BitWidth - ShAmt - 1] || 1639 DemandedBits.countLeadingZeros() >= ShAmt) { 1640 SDNodeFlags Flags; 1641 Flags.setExact(Op->getFlags().hasExact()); 1642 return TLO.CombineTo( 1643 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1644 } 1645 1646 int Log2 = DemandedBits.exactLogBase2(); 1647 if (Log2 >= 0) { 1648 // The bit must come from the sign. 1649 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1650 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1651 } 1652 1653 if (Known.One[BitWidth - ShAmt - 1]) 1654 // New bits are known one. 1655 Known.One.setHighBits(ShAmt); 1656 1657 // Attempt to avoid multi-use ops if we don't need anything from them. 1658 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1659 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1660 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1661 if (DemandedOp0) { 1662 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1663 return TLO.CombineTo(Op, NewOp); 1664 } 1665 } 1666 } 1667 break; 1668 } 1669 case ISD::FSHL: 1670 case ISD::FSHR: { 1671 SDValue Op0 = Op.getOperand(0); 1672 SDValue Op1 = Op.getOperand(1); 1673 SDValue Op2 = Op.getOperand(2); 1674 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1675 1676 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1677 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1678 1679 // For fshl, 0-shift returns the 1st arg. 1680 // For fshr, 0-shift returns the 2nd arg. 1681 if (Amt == 0) { 1682 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1683 Known, TLO, Depth + 1)) 1684 return true; 1685 break; 1686 } 1687 1688 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1689 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1690 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1691 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1692 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1693 Depth + 1)) 1694 return true; 1695 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1696 Depth + 1)) 1697 return true; 1698 1699 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1700 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1701 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1702 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1703 Known.One |= Known2.One; 1704 Known.Zero |= Known2.Zero; 1705 } 1706 1707 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1708 if (isPowerOf2_32(BitWidth)) { 1709 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1710 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1711 Known2, TLO, Depth + 1)) 1712 return true; 1713 } 1714 break; 1715 } 1716 case ISD::ROTL: 1717 case ISD::ROTR: { 1718 SDValue Op0 = Op.getOperand(0); 1719 SDValue Op1 = Op.getOperand(1); 1720 1721 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1722 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1723 return TLO.CombineTo(Op, Op0); 1724 1725 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1726 if (isPowerOf2_32(BitWidth)) { 1727 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1728 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1729 Depth + 1)) 1730 return true; 1731 } 1732 break; 1733 } 1734 case ISD::UMIN: { 1735 // Check if one arg is always less than (or equal) to the other arg. 1736 SDValue Op0 = Op.getOperand(0); 1737 SDValue Op1 = Op.getOperand(1); 1738 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1739 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1740 Known = KnownBits::umin(Known0, Known1); 1741 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1742 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1743 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1744 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1745 break; 1746 } 1747 case ISD::UMAX: { 1748 // Check if one arg is always greater than (or equal) to the other arg. 1749 SDValue Op0 = Op.getOperand(0); 1750 SDValue Op1 = Op.getOperand(1); 1751 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1752 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1753 Known = KnownBits::umax(Known0, Known1); 1754 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1755 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1756 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1757 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1758 break; 1759 } 1760 case ISD::BITREVERSE: { 1761 SDValue Src = Op.getOperand(0); 1762 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1763 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1764 Depth + 1)) 1765 return true; 1766 Known.One = Known2.One.reverseBits(); 1767 Known.Zero = Known2.Zero.reverseBits(); 1768 break; 1769 } 1770 case ISD::BSWAP: { 1771 SDValue Src = Op.getOperand(0); 1772 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1773 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1774 Depth + 1)) 1775 return true; 1776 Known.One = Known2.One.byteSwap(); 1777 Known.Zero = Known2.Zero.byteSwap(); 1778 break; 1779 } 1780 case ISD::CTPOP: { 1781 // If only 1 bit is demanded, replace with PARITY as long as we're before 1782 // op legalization. 1783 // FIXME: Limit to scalars for now. 1784 if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector()) 1785 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 1786 Op.getOperand(0))); 1787 1788 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1789 break; 1790 } 1791 case ISD::SIGN_EXTEND_INREG: { 1792 SDValue Op0 = Op.getOperand(0); 1793 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1794 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1795 1796 // If we only care about the highest bit, don't bother shifting right. 1797 if (DemandedBits.isSignMask()) { 1798 unsigned NumSignBits = 1799 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1800 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1801 // However if the input is already sign extended we expect the sign 1802 // extension to be dropped altogether later and do not simplify. 1803 if (!AlreadySignExtended) { 1804 // Compute the correct shift amount type, which must be getShiftAmountTy 1805 // for scalar types after legalization. 1806 EVT ShiftAmtTy = VT; 1807 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1808 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1809 1810 SDValue ShiftAmt = 1811 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1812 return TLO.CombineTo(Op, 1813 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1814 } 1815 } 1816 1817 // If none of the extended bits are demanded, eliminate the sextinreg. 1818 if (DemandedBits.getActiveBits() <= ExVTBits) 1819 return TLO.CombineTo(Op, Op0); 1820 1821 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1822 1823 // Since the sign extended bits are demanded, we know that the sign 1824 // bit is demanded. 1825 InputDemandedBits.setBit(ExVTBits - 1); 1826 1827 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1828 return true; 1829 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1830 1831 // If the sign bit of the input is known set or clear, then we know the 1832 // top bits of the result. 1833 1834 // If the input sign bit is known zero, convert this into a zero extension. 1835 if (Known.Zero[ExVTBits - 1]) 1836 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 1837 1838 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1839 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1840 Known.One.setBitsFrom(ExVTBits); 1841 Known.Zero &= Mask; 1842 } else { // Input sign bit unknown 1843 Known.Zero &= Mask; 1844 Known.One &= Mask; 1845 } 1846 break; 1847 } 1848 case ISD::BUILD_PAIR: { 1849 EVT HalfVT = Op.getOperand(0).getValueType(); 1850 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1851 1852 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1853 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1854 1855 KnownBits KnownLo, KnownHi; 1856 1857 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1858 return true; 1859 1860 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1861 return true; 1862 1863 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1864 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1865 1866 Known.One = KnownLo.One.zext(BitWidth) | 1867 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1868 break; 1869 } 1870 case ISD::ZERO_EXTEND: 1871 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1872 SDValue Src = Op.getOperand(0); 1873 EVT SrcVT = Src.getValueType(); 1874 unsigned InBits = SrcVT.getScalarSizeInBits(); 1875 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1876 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1877 1878 // If none of the top bits are demanded, convert this into an any_extend. 1879 if (DemandedBits.getActiveBits() <= InBits) { 1880 // If we only need the non-extended bits of the bottom element 1881 // then we can just bitcast to the result. 1882 if (IsVecInReg && DemandedElts == 1 && 1883 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1884 TLO.DAG.getDataLayout().isLittleEndian()) 1885 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1886 1887 unsigned Opc = 1888 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1889 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1890 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1891 } 1892 1893 APInt InDemandedBits = DemandedBits.trunc(InBits); 1894 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1895 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1896 Depth + 1)) 1897 return true; 1898 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1899 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1900 Known = Known.zext(BitWidth); 1901 1902 // Attempt to avoid multi-use ops if we don't need anything from them. 1903 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1904 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1905 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1906 break; 1907 } 1908 case ISD::SIGN_EXTEND: 1909 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1910 SDValue Src = Op.getOperand(0); 1911 EVT SrcVT = Src.getValueType(); 1912 unsigned InBits = SrcVT.getScalarSizeInBits(); 1913 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1914 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1915 1916 // If none of the top bits are demanded, convert this into an any_extend. 1917 if (DemandedBits.getActiveBits() <= InBits) { 1918 // If we only need the non-extended bits of the bottom element 1919 // then we can just bitcast to the result. 1920 if (IsVecInReg && DemandedElts == 1 && 1921 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1922 TLO.DAG.getDataLayout().isLittleEndian()) 1923 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1924 1925 unsigned Opc = 1926 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1927 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1928 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1929 } 1930 1931 APInt InDemandedBits = DemandedBits.trunc(InBits); 1932 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1933 1934 // Since some of the sign extended bits are demanded, we know that the sign 1935 // bit is demanded. 1936 InDemandedBits.setBit(InBits - 1); 1937 1938 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1939 Depth + 1)) 1940 return true; 1941 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1942 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1943 1944 // If the sign bit is known one, the top bits match. 1945 Known = Known.sext(BitWidth); 1946 1947 // If the sign bit is known zero, convert this to a zero extend. 1948 if (Known.isNonNegative()) { 1949 unsigned Opc = 1950 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1951 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1952 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1953 } 1954 1955 // Attempt to avoid multi-use ops if we don't need anything from them. 1956 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1957 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1958 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1959 break; 1960 } 1961 case ISD::ANY_EXTEND: 1962 case ISD::ANY_EXTEND_VECTOR_INREG: { 1963 SDValue Src = Op.getOperand(0); 1964 EVT SrcVT = Src.getValueType(); 1965 unsigned InBits = SrcVT.getScalarSizeInBits(); 1966 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1967 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1968 1969 // If we only need the bottom element then we can just bitcast. 1970 // TODO: Handle ANY_EXTEND? 1971 if (IsVecInReg && DemandedElts == 1 && 1972 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1973 TLO.DAG.getDataLayout().isLittleEndian()) 1974 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1975 1976 APInt InDemandedBits = DemandedBits.trunc(InBits); 1977 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1978 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1979 Depth + 1)) 1980 return true; 1981 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1982 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1983 Known = Known.anyext(BitWidth); 1984 1985 // Attempt to avoid multi-use ops if we don't need anything from them. 1986 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1987 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 1988 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 1989 break; 1990 } 1991 case ISD::TRUNCATE: { 1992 SDValue Src = Op.getOperand(0); 1993 1994 // Simplify the input, using demanded bit information, and compute the known 1995 // zero/one bits live out. 1996 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1997 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1998 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 1999 Depth + 1)) 2000 return true; 2001 Known = Known.trunc(BitWidth); 2002 2003 // Attempt to avoid multi-use ops if we don't need anything from them. 2004 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2005 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2006 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2007 2008 // If the input is only used by this truncate, see if we can shrink it based 2009 // on the known demanded bits. 2010 if (Src.getNode()->hasOneUse()) { 2011 switch (Src.getOpcode()) { 2012 default: 2013 break; 2014 case ISD::SRL: 2015 // Shrink SRL by a constant if none of the high bits shifted in are 2016 // demanded. 2017 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2018 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2019 // undesirable. 2020 break; 2021 2022 const APInt *ShAmtC = 2023 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2024 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2025 break; 2026 uint64_t ShVal = ShAmtC->getZExtValue(); 2027 2028 APInt HighBits = 2029 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2030 HighBits.lshrInPlace(ShVal); 2031 HighBits = HighBits.trunc(BitWidth); 2032 2033 if (!(HighBits & DemandedBits)) { 2034 // None of the shifted in bits are needed. Add a truncate of the 2035 // shift input, then shift it. 2036 SDValue NewShAmt = TLO.DAG.getConstant( 2037 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2038 SDValue NewTrunc = 2039 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2040 return TLO.CombineTo( 2041 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2042 } 2043 break; 2044 } 2045 } 2046 2047 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2048 break; 2049 } 2050 case ISD::AssertZext: { 2051 // AssertZext demands all of the high bits, plus any of the low bits 2052 // demanded by its users. 2053 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2054 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2055 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2056 TLO, Depth + 1)) 2057 return true; 2058 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2059 2060 Known.Zero |= ~InMask; 2061 break; 2062 } 2063 case ISD::EXTRACT_VECTOR_ELT: { 2064 SDValue Src = Op.getOperand(0); 2065 SDValue Idx = Op.getOperand(1); 2066 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2067 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2068 2069 if (SrcEltCnt.isScalable()) 2070 return false; 2071 2072 // Demand the bits from every vector element without a constant index. 2073 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2074 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 2075 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2076 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2077 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2078 2079 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2080 // anything about the extended bits. 2081 APInt DemandedSrcBits = DemandedBits; 2082 if (BitWidth > EltBitWidth) 2083 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2084 2085 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2086 Depth + 1)) 2087 return true; 2088 2089 // Attempt to avoid multi-use ops if we don't need anything from them. 2090 if (!DemandedSrcBits.isAllOnesValue() || 2091 !DemandedSrcElts.isAllOnesValue()) { 2092 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2093 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2094 SDValue NewOp = 2095 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2096 return TLO.CombineTo(Op, NewOp); 2097 } 2098 } 2099 2100 Known = Known2; 2101 if (BitWidth > EltBitWidth) 2102 Known = Known.anyext(BitWidth); 2103 break; 2104 } 2105 case ISD::BITCAST: { 2106 SDValue Src = Op.getOperand(0); 2107 EVT SrcVT = Src.getValueType(); 2108 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2109 2110 // If this is an FP->Int bitcast and if the sign bit is the only 2111 // thing demanded, turn this into a FGETSIGN. 2112 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2113 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2114 SrcVT.isFloatingPoint()) { 2115 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2116 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2117 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2118 SrcVT != MVT::f128) { 2119 // Cannot eliminate/lower SHL for f128 yet. 2120 EVT Ty = OpVTLegal ? VT : MVT::i32; 2121 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2122 // place. We expect the SHL to be eliminated by other optimizations. 2123 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2124 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2125 if (!OpVTLegal && OpVTSizeInBits > 32) 2126 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2127 unsigned ShVal = Op.getValueSizeInBits() - 1; 2128 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2129 return TLO.CombineTo(Op, 2130 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2131 } 2132 } 2133 2134 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2135 // Demand the elt/bit if any of the original elts/bits are demanded. 2136 // TODO - bigendian once we have test coverage. 2137 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 2138 TLO.DAG.getDataLayout().isLittleEndian()) { 2139 unsigned Scale = BitWidth / NumSrcEltBits; 2140 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2141 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2142 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2143 for (unsigned i = 0; i != Scale; ++i) { 2144 unsigned Offset = i * NumSrcEltBits; 2145 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 2146 if (!Sub.isNullValue()) { 2147 DemandedSrcBits |= Sub; 2148 for (unsigned j = 0; j != NumElts; ++j) 2149 if (DemandedElts[j]) 2150 DemandedSrcElts.setBit((j * Scale) + i); 2151 } 2152 } 2153 2154 APInt KnownSrcUndef, KnownSrcZero; 2155 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2156 KnownSrcZero, TLO, Depth + 1)) 2157 return true; 2158 2159 KnownBits KnownSrcBits; 2160 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2161 KnownSrcBits, TLO, Depth + 1)) 2162 return true; 2163 } else if ((NumSrcEltBits % BitWidth) == 0 && 2164 TLO.DAG.getDataLayout().isLittleEndian()) { 2165 unsigned Scale = NumSrcEltBits / BitWidth; 2166 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2167 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 2168 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 2169 for (unsigned i = 0; i != NumElts; ++i) 2170 if (DemandedElts[i]) { 2171 unsigned Offset = (i % Scale) * BitWidth; 2172 DemandedSrcBits.insertBits(DemandedBits, Offset); 2173 DemandedSrcElts.setBit(i / Scale); 2174 } 2175 2176 if (SrcVT.isVector()) { 2177 APInt KnownSrcUndef, KnownSrcZero; 2178 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2179 KnownSrcZero, TLO, Depth + 1)) 2180 return true; 2181 } 2182 2183 KnownBits KnownSrcBits; 2184 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2185 KnownSrcBits, TLO, Depth + 1)) 2186 return true; 2187 } 2188 2189 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2190 // recursive call where Known may be useful to the caller. 2191 if (Depth > 0) { 2192 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2193 return false; 2194 } 2195 break; 2196 } 2197 case ISD::ADD: 2198 case ISD::MUL: 2199 case ISD::SUB: { 2200 // Add, Sub, and Mul don't demand any bits in positions beyond that 2201 // of the highest bit demanded of them. 2202 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2203 SDNodeFlags Flags = Op.getNode()->getFlags(); 2204 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2205 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2206 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2207 Depth + 1) || 2208 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2209 Depth + 1) || 2210 // See if the operation should be performed at a smaller bit width. 2211 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2212 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2213 // Disable the nsw and nuw flags. We can no longer guarantee that we 2214 // won't wrap after simplification. 2215 Flags.setNoSignedWrap(false); 2216 Flags.setNoUnsignedWrap(false); 2217 SDValue NewOp = 2218 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2219 return TLO.CombineTo(Op, NewOp); 2220 } 2221 return true; 2222 } 2223 2224 // Attempt to avoid multi-use ops if we don't need anything from them. 2225 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 2226 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2227 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2228 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2229 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2230 if (DemandedOp0 || DemandedOp1) { 2231 Flags.setNoSignedWrap(false); 2232 Flags.setNoUnsignedWrap(false); 2233 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2234 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2235 SDValue NewOp = 2236 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2237 return TLO.CombineTo(Op, NewOp); 2238 } 2239 } 2240 2241 // If we have a constant operand, we may be able to turn it into -1 if we 2242 // do not demand the high bits. This can make the constant smaller to 2243 // encode, allow more general folding, or match specialized instruction 2244 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2245 // is probably not useful (and could be detrimental). 2246 ConstantSDNode *C = isConstOrConstSplat(Op1); 2247 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2248 if (C && !C->isAllOnesValue() && !C->isOne() && 2249 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 2250 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2251 // Disable the nsw and nuw flags. We can no longer guarantee that we 2252 // won't wrap after simplification. 2253 Flags.setNoSignedWrap(false); 2254 Flags.setNoUnsignedWrap(false); 2255 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2256 return TLO.CombineTo(Op, NewOp); 2257 } 2258 2259 LLVM_FALLTHROUGH; 2260 } 2261 default: 2262 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2263 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2264 Known, TLO, Depth)) 2265 return true; 2266 break; 2267 } 2268 2269 // Just use computeKnownBits to compute output bits. 2270 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2271 break; 2272 } 2273 2274 // If we know the value of all of the demanded bits, return this as a 2275 // constant. 2276 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2277 // Avoid folding to a constant if any OpaqueConstant is involved. 2278 const SDNode *N = Op.getNode(); 2279 for (SDNode *Op : 2280 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2281 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2282 if (C->isOpaque()) 2283 return false; 2284 } 2285 if (VT.isInteger()) 2286 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2287 if (VT.isFloatingPoint()) 2288 return TLO.CombineTo( 2289 Op, 2290 TLO.DAG.getConstantFP( 2291 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2292 } 2293 2294 return false; 2295 } 2296 2297 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2298 const APInt &DemandedElts, 2299 APInt &KnownUndef, 2300 APInt &KnownZero, 2301 DAGCombinerInfo &DCI) const { 2302 SelectionDAG &DAG = DCI.DAG; 2303 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2304 !DCI.isBeforeLegalizeOps()); 2305 2306 bool Simplified = 2307 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2308 if (Simplified) { 2309 DCI.AddToWorklist(Op.getNode()); 2310 DCI.CommitTargetLoweringOpt(TLO); 2311 } 2312 2313 return Simplified; 2314 } 2315 2316 /// Given a vector binary operation and known undefined elements for each input 2317 /// operand, compute whether each element of the output is undefined. 2318 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2319 const APInt &UndefOp0, 2320 const APInt &UndefOp1) { 2321 EVT VT = BO.getValueType(); 2322 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2323 "Vector binop only"); 2324 2325 EVT EltVT = VT.getVectorElementType(); 2326 unsigned NumElts = VT.getVectorNumElements(); 2327 assert(UndefOp0.getBitWidth() == NumElts && 2328 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2329 2330 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2331 const APInt &UndefVals) { 2332 if (UndefVals[Index]) 2333 return DAG.getUNDEF(EltVT); 2334 2335 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2336 // Try hard to make sure that the getNode() call is not creating temporary 2337 // nodes. Ignore opaque integers because they do not constant fold. 2338 SDValue Elt = BV->getOperand(Index); 2339 auto *C = dyn_cast<ConstantSDNode>(Elt); 2340 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2341 return Elt; 2342 } 2343 2344 return SDValue(); 2345 }; 2346 2347 APInt KnownUndef = APInt::getNullValue(NumElts); 2348 for (unsigned i = 0; i != NumElts; ++i) { 2349 // If both inputs for this element are either constant or undef and match 2350 // the element type, compute the constant/undef result for this element of 2351 // the vector. 2352 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2353 // not handle FP constants. The code within getNode() should be refactored 2354 // to avoid the danger of creating a bogus temporary node here. 2355 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2356 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2357 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2358 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2359 KnownUndef.setBit(i); 2360 } 2361 return KnownUndef; 2362 } 2363 2364 bool TargetLowering::SimplifyDemandedVectorElts( 2365 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2366 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2367 bool AssumeSingleUse) const { 2368 EVT VT = Op.getValueType(); 2369 unsigned Opcode = Op.getOpcode(); 2370 APInt DemandedElts = OriginalDemandedElts; 2371 unsigned NumElts = DemandedElts.getBitWidth(); 2372 assert(VT.isVector() && "Expected vector op"); 2373 2374 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2375 2376 // TODO: For now we assume we know nothing about scalable vectors. 2377 if (VT.isScalableVector()) 2378 return false; 2379 2380 assert(VT.getVectorNumElements() == NumElts && 2381 "Mask size mismatches value type element count!"); 2382 2383 // Undef operand. 2384 if (Op.isUndef()) { 2385 KnownUndef.setAllBits(); 2386 return false; 2387 } 2388 2389 // If Op has other users, assume that all elements are needed. 2390 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2391 DemandedElts.setAllBits(); 2392 2393 // Not demanding any elements from Op. 2394 if (DemandedElts == 0) { 2395 KnownUndef.setAllBits(); 2396 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2397 } 2398 2399 // Limit search depth. 2400 if (Depth >= SelectionDAG::MaxRecursionDepth) 2401 return false; 2402 2403 SDLoc DL(Op); 2404 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2405 2406 // Helper for demanding the specified elements and all the bits of both binary 2407 // operands. 2408 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2409 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2410 TLO.DAG, Depth + 1); 2411 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2412 TLO.DAG, Depth + 1); 2413 if (NewOp0 || NewOp1) { 2414 SDValue NewOp = TLO.DAG.getNode( 2415 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2416 return TLO.CombineTo(Op, NewOp); 2417 } 2418 return false; 2419 }; 2420 2421 switch (Opcode) { 2422 case ISD::SCALAR_TO_VECTOR: { 2423 if (!DemandedElts[0]) { 2424 KnownUndef.setAllBits(); 2425 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2426 } 2427 KnownUndef.setHighBits(NumElts - 1); 2428 break; 2429 } 2430 case ISD::BITCAST: { 2431 SDValue Src = Op.getOperand(0); 2432 EVT SrcVT = Src.getValueType(); 2433 2434 // We only handle vectors here. 2435 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2436 if (!SrcVT.isVector()) 2437 break; 2438 2439 // Fast handling of 'identity' bitcasts. 2440 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2441 if (NumSrcElts == NumElts) 2442 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2443 KnownZero, TLO, Depth + 1); 2444 2445 APInt SrcZero, SrcUndef; 2446 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2447 2448 // Bitcast from 'large element' src vector to 'small element' vector, we 2449 // must demand a source element if any DemandedElt maps to it. 2450 if ((NumElts % NumSrcElts) == 0) { 2451 unsigned Scale = NumElts / NumSrcElts; 2452 for (unsigned i = 0; i != NumElts; ++i) 2453 if (DemandedElts[i]) 2454 SrcDemandedElts.setBit(i / Scale); 2455 2456 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2457 TLO, Depth + 1)) 2458 return true; 2459 2460 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2461 // of the large element. 2462 // TODO - bigendian once we have test coverage. 2463 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2464 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2465 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2466 for (unsigned i = 0; i != NumElts; ++i) 2467 if (DemandedElts[i]) { 2468 unsigned Ofs = (i % Scale) * EltSizeInBits; 2469 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2470 } 2471 2472 KnownBits Known; 2473 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2474 TLO, Depth + 1)) 2475 return true; 2476 } 2477 2478 // If the src element is zero/undef then all the output elements will be - 2479 // only demanded elements are guaranteed to be correct. 2480 for (unsigned i = 0; i != NumSrcElts; ++i) { 2481 if (SrcDemandedElts[i]) { 2482 if (SrcZero[i]) 2483 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2484 if (SrcUndef[i]) 2485 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2486 } 2487 } 2488 } 2489 2490 // Bitcast from 'small element' src vector to 'large element' vector, we 2491 // demand all smaller source elements covered by the larger demanded element 2492 // of this vector. 2493 if ((NumSrcElts % NumElts) == 0) { 2494 unsigned Scale = NumSrcElts / NumElts; 2495 for (unsigned i = 0; i != NumElts; ++i) 2496 if (DemandedElts[i]) 2497 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2498 2499 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2500 TLO, Depth + 1)) 2501 return true; 2502 2503 // If all the src elements covering an output element are zero/undef, then 2504 // the output element will be as well, assuming it was demanded. 2505 for (unsigned i = 0; i != NumElts; ++i) { 2506 if (DemandedElts[i]) { 2507 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2508 KnownZero.setBit(i); 2509 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2510 KnownUndef.setBit(i); 2511 } 2512 } 2513 } 2514 break; 2515 } 2516 case ISD::BUILD_VECTOR: { 2517 // Check all elements and simplify any unused elements with UNDEF. 2518 if (!DemandedElts.isAllOnesValue()) { 2519 // Don't simplify BROADCASTS. 2520 if (llvm::any_of(Op->op_values(), 2521 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2522 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2523 bool Updated = false; 2524 for (unsigned i = 0; i != NumElts; ++i) { 2525 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2526 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2527 KnownUndef.setBit(i); 2528 Updated = true; 2529 } 2530 } 2531 if (Updated) 2532 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2533 } 2534 } 2535 for (unsigned i = 0; i != NumElts; ++i) { 2536 SDValue SrcOp = Op.getOperand(i); 2537 if (SrcOp.isUndef()) { 2538 KnownUndef.setBit(i); 2539 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2540 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2541 KnownZero.setBit(i); 2542 } 2543 } 2544 break; 2545 } 2546 case ISD::CONCAT_VECTORS: { 2547 EVT SubVT = Op.getOperand(0).getValueType(); 2548 unsigned NumSubVecs = Op.getNumOperands(); 2549 unsigned NumSubElts = SubVT.getVectorNumElements(); 2550 for (unsigned i = 0; i != NumSubVecs; ++i) { 2551 SDValue SubOp = Op.getOperand(i); 2552 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2553 APInt SubUndef, SubZero; 2554 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2555 Depth + 1)) 2556 return true; 2557 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2558 KnownZero.insertBits(SubZero, i * NumSubElts); 2559 } 2560 break; 2561 } 2562 case ISD::INSERT_SUBVECTOR: { 2563 // Demand any elements from the subvector and the remainder from the src its 2564 // inserted into. 2565 SDValue Src = Op.getOperand(0); 2566 SDValue Sub = Op.getOperand(1); 2567 uint64_t Idx = Op.getConstantOperandVal(2); 2568 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2569 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2570 APInt DemandedSrcElts = DemandedElts; 2571 DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx); 2572 2573 APInt SubUndef, SubZero; 2574 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2575 Depth + 1)) 2576 return true; 2577 2578 // If none of the src operand elements are demanded, replace it with undef. 2579 if (!DemandedSrcElts && !Src.isUndef()) 2580 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2581 TLO.DAG.getUNDEF(VT), Sub, 2582 Op.getOperand(2))); 2583 2584 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2585 TLO, Depth + 1)) 2586 return true; 2587 KnownUndef.insertBits(SubUndef, Idx); 2588 KnownZero.insertBits(SubZero, Idx); 2589 2590 // Attempt to avoid multi-use ops if we don't need anything from them. 2591 if (!DemandedSrcElts.isAllOnesValue() || 2592 !DemandedSubElts.isAllOnesValue()) { 2593 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2594 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2595 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2596 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2597 if (NewSrc || NewSub) { 2598 NewSrc = NewSrc ? NewSrc : Src; 2599 NewSub = NewSub ? NewSub : Sub; 2600 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2601 NewSub, Op.getOperand(2)); 2602 return TLO.CombineTo(Op, NewOp); 2603 } 2604 } 2605 break; 2606 } 2607 case ISD::EXTRACT_SUBVECTOR: { 2608 // Offset the demanded elts by the subvector index. 2609 SDValue Src = Op.getOperand(0); 2610 if (Src.getValueType().isScalableVector()) 2611 break; 2612 uint64_t Idx = Op.getConstantOperandVal(1); 2613 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2614 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2615 2616 APInt SrcUndef, SrcZero; 2617 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2618 Depth + 1)) 2619 return true; 2620 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2621 KnownZero = SrcZero.extractBits(NumElts, Idx); 2622 2623 // Attempt to avoid multi-use ops if we don't need anything from them. 2624 if (!DemandedElts.isAllOnesValue()) { 2625 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2626 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2627 if (NewSrc) { 2628 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2629 Op.getOperand(1)); 2630 return TLO.CombineTo(Op, NewOp); 2631 } 2632 } 2633 break; 2634 } 2635 case ISD::INSERT_VECTOR_ELT: { 2636 SDValue Vec = Op.getOperand(0); 2637 SDValue Scl = Op.getOperand(1); 2638 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2639 2640 // For a legal, constant insertion index, if we don't need this insertion 2641 // then strip it, else remove it from the demanded elts. 2642 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2643 unsigned Idx = CIdx->getZExtValue(); 2644 if (!DemandedElts[Idx]) 2645 return TLO.CombineTo(Op, Vec); 2646 2647 APInt DemandedVecElts(DemandedElts); 2648 DemandedVecElts.clearBit(Idx); 2649 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2650 KnownZero, TLO, Depth + 1)) 2651 return true; 2652 2653 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2654 2655 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2656 break; 2657 } 2658 2659 APInt VecUndef, VecZero; 2660 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2661 Depth + 1)) 2662 return true; 2663 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2664 break; 2665 } 2666 case ISD::VSELECT: { 2667 // Try to transform the select condition based on the current demanded 2668 // elements. 2669 // TODO: If a condition element is undef, we can choose from one arm of the 2670 // select (and if one arm is undef, then we can propagate that to the 2671 // result). 2672 // TODO - add support for constant vselect masks (see IR version of this). 2673 APInt UnusedUndef, UnusedZero; 2674 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2675 UnusedZero, TLO, Depth + 1)) 2676 return true; 2677 2678 // See if we can simplify either vselect operand. 2679 APInt DemandedLHS(DemandedElts); 2680 APInt DemandedRHS(DemandedElts); 2681 APInt UndefLHS, ZeroLHS; 2682 APInt UndefRHS, ZeroRHS; 2683 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2684 ZeroLHS, TLO, Depth + 1)) 2685 return true; 2686 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2687 ZeroRHS, TLO, Depth + 1)) 2688 return true; 2689 2690 KnownUndef = UndefLHS & UndefRHS; 2691 KnownZero = ZeroLHS & ZeroRHS; 2692 break; 2693 } 2694 case ISD::VECTOR_SHUFFLE: { 2695 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2696 2697 // Collect demanded elements from shuffle operands.. 2698 APInt DemandedLHS(NumElts, 0); 2699 APInt DemandedRHS(NumElts, 0); 2700 for (unsigned i = 0; i != NumElts; ++i) { 2701 int M = ShuffleMask[i]; 2702 if (M < 0 || !DemandedElts[i]) 2703 continue; 2704 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2705 if (M < (int)NumElts) 2706 DemandedLHS.setBit(M); 2707 else 2708 DemandedRHS.setBit(M - NumElts); 2709 } 2710 2711 // See if we can simplify either shuffle operand. 2712 APInt UndefLHS, ZeroLHS; 2713 APInt UndefRHS, ZeroRHS; 2714 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2715 ZeroLHS, TLO, Depth + 1)) 2716 return true; 2717 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2718 ZeroRHS, TLO, Depth + 1)) 2719 return true; 2720 2721 // Simplify mask using undef elements from LHS/RHS. 2722 bool Updated = false; 2723 bool IdentityLHS = true, IdentityRHS = true; 2724 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2725 for (unsigned i = 0; i != NumElts; ++i) { 2726 int &M = NewMask[i]; 2727 if (M < 0) 2728 continue; 2729 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2730 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2731 Updated = true; 2732 M = -1; 2733 } 2734 IdentityLHS &= (M < 0) || (M == (int)i); 2735 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2736 } 2737 2738 // Update legal shuffle masks based on demanded elements if it won't reduce 2739 // to Identity which can cause premature removal of the shuffle mask. 2740 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2741 SDValue LegalShuffle = 2742 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2743 NewMask, TLO.DAG); 2744 if (LegalShuffle) 2745 return TLO.CombineTo(Op, LegalShuffle); 2746 } 2747 2748 // Propagate undef/zero elements from LHS/RHS. 2749 for (unsigned i = 0; i != NumElts; ++i) { 2750 int M = ShuffleMask[i]; 2751 if (M < 0) { 2752 KnownUndef.setBit(i); 2753 } else if (M < (int)NumElts) { 2754 if (UndefLHS[M]) 2755 KnownUndef.setBit(i); 2756 if (ZeroLHS[M]) 2757 KnownZero.setBit(i); 2758 } else { 2759 if (UndefRHS[M - NumElts]) 2760 KnownUndef.setBit(i); 2761 if (ZeroRHS[M - NumElts]) 2762 KnownZero.setBit(i); 2763 } 2764 } 2765 break; 2766 } 2767 case ISD::ANY_EXTEND_VECTOR_INREG: 2768 case ISD::SIGN_EXTEND_VECTOR_INREG: 2769 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2770 APInt SrcUndef, SrcZero; 2771 SDValue Src = Op.getOperand(0); 2772 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2773 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2774 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2775 Depth + 1)) 2776 return true; 2777 KnownZero = SrcZero.zextOrTrunc(NumElts); 2778 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2779 2780 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2781 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2782 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2783 // aext - if we just need the bottom element then we can bitcast. 2784 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2785 } 2786 2787 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2788 // zext(undef) upper bits are guaranteed to be zero. 2789 if (DemandedElts.isSubsetOf(KnownUndef)) 2790 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2791 KnownUndef.clearAllBits(); 2792 } 2793 break; 2794 } 2795 2796 // TODO: There are more binop opcodes that could be handled here - MIN, 2797 // MAX, saturated math, etc. 2798 case ISD::OR: 2799 case ISD::XOR: 2800 case ISD::ADD: 2801 case ISD::SUB: 2802 case ISD::FADD: 2803 case ISD::FSUB: 2804 case ISD::FMUL: 2805 case ISD::FDIV: 2806 case ISD::FREM: { 2807 SDValue Op0 = Op.getOperand(0); 2808 SDValue Op1 = Op.getOperand(1); 2809 2810 APInt UndefRHS, ZeroRHS; 2811 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2812 Depth + 1)) 2813 return true; 2814 APInt UndefLHS, ZeroLHS; 2815 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2816 Depth + 1)) 2817 return true; 2818 2819 KnownZero = ZeroLHS & ZeroRHS; 2820 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2821 2822 // Attempt to avoid multi-use ops if we don't need anything from them. 2823 // TODO - use KnownUndef to relax the demandedelts? 2824 if (!DemandedElts.isAllOnesValue()) 2825 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2826 return true; 2827 break; 2828 } 2829 case ISD::SHL: 2830 case ISD::SRL: 2831 case ISD::SRA: 2832 case ISD::ROTL: 2833 case ISD::ROTR: { 2834 SDValue Op0 = Op.getOperand(0); 2835 SDValue Op1 = Op.getOperand(1); 2836 2837 APInt UndefRHS, ZeroRHS; 2838 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 2839 Depth + 1)) 2840 return true; 2841 APInt UndefLHS, ZeroLHS; 2842 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 2843 Depth + 1)) 2844 return true; 2845 2846 KnownZero = ZeroLHS; 2847 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2848 2849 // Attempt to avoid multi-use ops if we don't need anything from them. 2850 // TODO - use KnownUndef to relax the demandedelts? 2851 if (!DemandedElts.isAllOnesValue()) 2852 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2853 return true; 2854 break; 2855 } 2856 case ISD::MUL: 2857 case ISD::AND: { 2858 SDValue Op0 = Op.getOperand(0); 2859 SDValue Op1 = Op.getOperand(1); 2860 2861 APInt SrcUndef, SrcZero; 2862 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 2863 Depth + 1)) 2864 return true; 2865 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 2866 TLO, Depth + 1)) 2867 return true; 2868 2869 // If either side has a zero element, then the result element is zero, even 2870 // if the other is an UNDEF. 2871 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2872 // and then handle 'and' nodes with the rest of the binop opcodes. 2873 KnownZero |= SrcZero; 2874 KnownUndef &= SrcUndef; 2875 KnownUndef &= ~KnownZero; 2876 2877 // Attempt to avoid multi-use ops if we don't need anything from them. 2878 // TODO - use KnownUndef to relax the demandedelts? 2879 if (!DemandedElts.isAllOnesValue()) 2880 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 2881 return true; 2882 break; 2883 } 2884 case ISD::TRUNCATE: 2885 case ISD::SIGN_EXTEND: 2886 case ISD::ZERO_EXTEND: 2887 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2888 KnownZero, TLO, Depth + 1)) 2889 return true; 2890 2891 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2892 // zext(undef) upper bits are guaranteed to be zero. 2893 if (DemandedElts.isSubsetOf(KnownUndef)) 2894 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2895 KnownUndef.clearAllBits(); 2896 } 2897 break; 2898 default: { 2899 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2900 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2901 KnownZero, TLO, Depth)) 2902 return true; 2903 } else { 2904 KnownBits Known; 2905 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2906 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2907 TLO, Depth, AssumeSingleUse)) 2908 return true; 2909 } 2910 break; 2911 } 2912 } 2913 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2914 2915 // Constant fold all undef cases. 2916 // TODO: Handle zero cases as well. 2917 if (DemandedElts.isSubsetOf(KnownUndef)) 2918 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2919 2920 return false; 2921 } 2922 2923 /// Determine which of the bits specified in Mask are known to be either zero or 2924 /// one and return them in the Known. 2925 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2926 KnownBits &Known, 2927 const APInt &DemandedElts, 2928 const SelectionDAG &DAG, 2929 unsigned Depth) const { 2930 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2931 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2932 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2933 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2934 "Should use MaskedValueIsZero if you don't know whether Op" 2935 " is a target node!"); 2936 Known.resetAll(); 2937 } 2938 2939 void TargetLowering::computeKnownBitsForTargetInstr( 2940 GISelKnownBits &Analysis, Register R, KnownBits &Known, 2941 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 2942 unsigned Depth) const { 2943 Known.resetAll(); 2944 } 2945 2946 void TargetLowering::computeKnownBitsForFrameIndex( 2947 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 2948 // The low bits are known zero if the pointer is aligned. 2949 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 2950 } 2951 2952 Align TargetLowering::computeKnownAlignForTargetInstr( 2953 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 2954 unsigned Depth) const { 2955 return Align(1); 2956 } 2957 2958 /// This method can be implemented by targets that want to expose additional 2959 /// information about sign bits to the DAG Combiner. 2960 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2961 const APInt &, 2962 const SelectionDAG &, 2963 unsigned Depth) const { 2964 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2965 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2966 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2967 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2968 "Should use ComputeNumSignBits if you don't know whether Op" 2969 " is a target node!"); 2970 return 1; 2971 } 2972 2973 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 2974 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 2975 const MachineRegisterInfo &MRI, unsigned Depth) const { 2976 return 1; 2977 } 2978 2979 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2980 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2981 TargetLoweringOpt &TLO, unsigned Depth) const { 2982 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2983 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2984 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2985 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2986 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2987 " is a target node!"); 2988 return false; 2989 } 2990 2991 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2992 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2993 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2994 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2995 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2996 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2997 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2998 "Should use SimplifyDemandedBits if you don't know whether Op" 2999 " is a target node!"); 3000 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3001 return false; 3002 } 3003 3004 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3005 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3006 SelectionDAG &DAG, unsigned Depth) const { 3007 assert( 3008 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3009 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3010 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3011 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3012 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3013 " is a target node!"); 3014 return SDValue(); 3015 } 3016 3017 SDValue 3018 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3019 SDValue N1, MutableArrayRef<int> Mask, 3020 SelectionDAG &DAG) const { 3021 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3022 if (!LegalMask) { 3023 std::swap(N0, N1); 3024 ShuffleVectorSDNode::commuteMask(Mask); 3025 LegalMask = isShuffleMaskLegal(Mask, VT); 3026 } 3027 3028 if (!LegalMask) 3029 return SDValue(); 3030 3031 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3032 } 3033 3034 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3035 return nullptr; 3036 } 3037 3038 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3039 const SelectionDAG &DAG, 3040 bool SNaN, 3041 unsigned Depth) const { 3042 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3043 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3044 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3045 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3046 "Should use isKnownNeverNaN if you don't know whether Op" 3047 " is a target node!"); 3048 return false; 3049 } 3050 3051 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3052 // work with truncating build vectors and vectors with elements of less than 3053 // 8 bits. 3054 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 3055 if (!N) 3056 return false; 3057 3058 APInt CVal; 3059 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 3060 CVal = CN->getAPIntValue(); 3061 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 3062 auto *CN = BV->getConstantSplatNode(); 3063 if (!CN) 3064 return false; 3065 3066 // If this is a truncating build vector, truncate the splat value. 3067 // Otherwise, we may fail to match the expected values below. 3068 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 3069 CVal = CN->getAPIntValue(); 3070 if (BVEltWidth < CVal.getBitWidth()) 3071 CVal = CVal.trunc(BVEltWidth); 3072 } else { 3073 return false; 3074 } 3075 3076 switch (getBooleanContents(N->getValueType(0))) { 3077 case UndefinedBooleanContent: 3078 return CVal[0]; 3079 case ZeroOrOneBooleanContent: 3080 return CVal.isOneValue(); 3081 case ZeroOrNegativeOneBooleanContent: 3082 return CVal.isAllOnesValue(); 3083 } 3084 3085 llvm_unreachable("Invalid boolean contents"); 3086 } 3087 3088 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 3089 if (!N) 3090 return false; 3091 3092 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3093 if (!CN) { 3094 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3095 if (!BV) 3096 return false; 3097 3098 // Only interested in constant splats, we don't care about undef 3099 // elements in identifying boolean constants and getConstantSplatNode 3100 // returns NULL if all ops are undef; 3101 CN = BV->getConstantSplatNode(); 3102 if (!CN) 3103 return false; 3104 } 3105 3106 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3107 return !CN->getAPIntValue()[0]; 3108 3109 return CN->isNullValue(); 3110 } 3111 3112 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3113 bool SExt) const { 3114 if (VT == MVT::i1) 3115 return N->isOne(); 3116 3117 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3118 switch (Cnt) { 3119 case TargetLowering::ZeroOrOneBooleanContent: 3120 // An extended value of 1 is always true, unless its original type is i1, 3121 // in which case it will be sign extended to -1. 3122 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3123 case TargetLowering::UndefinedBooleanContent: 3124 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3125 return N->isAllOnesValue() && SExt; 3126 } 3127 llvm_unreachable("Unexpected enumeration."); 3128 } 3129 3130 /// This helper function of SimplifySetCC tries to optimize the comparison when 3131 /// either operand of the SetCC node is a bitwise-and instruction. 3132 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3133 ISD::CondCode Cond, const SDLoc &DL, 3134 DAGCombinerInfo &DCI) const { 3135 // Match these patterns in any of their permutations: 3136 // (X & Y) == Y 3137 // (X & Y) != Y 3138 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3139 std::swap(N0, N1); 3140 3141 EVT OpVT = N0.getValueType(); 3142 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3143 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3144 return SDValue(); 3145 3146 SDValue X, Y; 3147 if (N0.getOperand(0) == N1) { 3148 X = N0.getOperand(1); 3149 Y = N0.getOperand(0); 3150 } else if (N0.getOperand(1) == N1) { 3151 X = N0.getOperand(0); 3152 Y = N0.getOperand(1); 3153 } else { 3154 return SDValue(); 3155 } 3156 3157 SelectionDAG &DAG = DCI.DAG; 3158 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3159 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3160 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3161 // Note that where Y is variable and is known to have at most one bit set 3162 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3163 // equivalent when Y == 0. 3164 assert(OpVT.isInteger()); 3165 Cond = ISD::getSetCCInverse(Cond, OpVT); 3166 if (DCI.isBeforeLegalizeOps() || 3167 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3168 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3169 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3170 // If the target supports an 'and-not' or 'and-complement' logic operation, 3171 // try to use that to make a comparison operation more efficient. 3172 // But don't do this transform if the mask is a single bit because there are 3173 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3174 // 'rlwinm' on PPC). 3175 3176 // Bail out if the compare operand that we want to turn into a zero is 3177 // already a zero (otherwise, infinite loop). 3178 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3179 if (YConst && YConst->isNullValue()) 3180 return SDValue(); 3181 3182 // Transform this into: ~X & Y == 0. 3183 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3184 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3185 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3186 } 3187 3188 return SDValue(); 3189 } 3190 3191 /// There are multiple IR patterns that could be checking whether certain 3192 /// truncation of a signed number would be lossy or not. The pattern which is 3193 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3194 /// We are looking for the following pattern: (KeptBits is a constant) 3195 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3196 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3197 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3198 /// We will unfold it into the natural trunc+sext pattern: 3199 /// ((%x << C) a>> C) dstcond %x 3200 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3201 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3202 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3203 const SDLoc &DL) const { 3204 // We must be comparing with a constant. 3205 ConstantSDNode *C1; 3206 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3207 return SDValue(); 3208 3209 // N0 should be: add %x, (1 << (KeptBits-1)) 3210 if (N0->getOpcode() != ISD::ADD) 3211 return SDValue(); 3212 3213 // And we must be 'add'ing a constant. 3214 ConstantSDNode *C01; 3215 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3216 return SDValue(); 3217 3218 SDValue X = N0->getOperand(0); 3219 EVT XVT = X.getValueType(); 3220 3221 // Validate constants ... 3222 3223 APInt I1 = C1->getAPIntValue(); 3224 3225 ISD::CondCode NewCond; 3226 if (Cond == ISD::CondCode::SETULT) { 3227 NewCond = ISD::CondCode::SETEQ; 3228 } else if (Cond == ISD::CondCode::SETULE) { 3229 NewCond = ISD::CondCode::SETEQ; 3230 // But need to 'canonicalize' the constant. 3231 I1 += 1; 3232 } else if (Cond == ISD::CondCode::SETUGT) { 3233 NewCond = ISD::CondCode::SETNE; 3234 // But need to 'canonicalize' the constant. 3235 I1 += 1; 3236 } else if (Cond == ISD::CondCode::SETUGE) { 3237 NewCond = ISD::CondCode::SETNE; 3238 } else 3239 return SDValue(); 3240 3241 APInt I01 = C01->getAPIntValue(); 3242 3243 auto checkConstants = [&I1, &I01]() -> bool { 3244 // Both of them must be power-of-two, and the constant from setcc is bigger. 3245 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3246 }; 3247 3248 if (checkConstants()) { 3249 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3250 } else { 3251 // What if we invert constants? (and the target predicate) 3252 I1.negate(); 3253 I01.negate(); 3254 assert(XVT.isInteger()); 3255 NewCond = getSetCCInverse(NewCond, XVT); 3256 if (!checkConstants()) 3257 return SDValue(); 3258 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3259 } 3260 3261 // They are power-of-two, so which bit is set? 3262 const unsigned KeptBits = I1.logBase2(); 3263 const unsigned KeptBitsMinusOne = I01.logBase2(); 3264 3265 // Magic! 3266 if (KeptBits != (KeptBitsMinusOne + 1)) 3267 return SDValue(); 3268 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3269 3270 // We don't want to do this in every single case. 3271 SelectionDAG &DAG = DCI.DAG; 3272 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3273 XVT, KeptBits)) 3274 return SDValue(); 3275 3276 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3277 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3278 3279 // Unfold into: ((%x << C) a>> C) cond %x 3280 // Where 'cond' will be either 'eq' or 'ne'. 3281 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3282 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3283 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3284 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3285 3286 return T2; 3287 } 3288 3289 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3290 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3291 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3292 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3293 assert(isConstOrConstSplat(N1C) && 3294 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 3295 "Should be a comparison with 0."); 3296 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3297 "Valid only for [in]equality comparisons."); 3298 3299 unsigned NewShiftOpcode; 3300 SDValue X, C, Y; 3301 3302 SelectionDAG &DAG = DCI.DAG; 3303 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3304 3305 // Look for '(C l>>/<< Y)'. 3306 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3307 // The shift should be one-use. 3308 if (!V.hasOneUse()) 3309 return false; 3310 unsigned OldShiftOpcode = V.getOpcode(); 3311 switch (OldShiftOpcode) { 3312 case ISD::SHL: 3313 NewShiftOpcode = ISD::SRL; 3314 break; 3315 case ISD::SRL: 3316 NewShiftOpcode = ISD::SHL; 3317 break; 3318 default: 3319 return false; // must be a logical shift. 3320 } 3321 // We should be shifting a constant. 3322 // FIXME: best to use isConstantOrConstantVector(). 3323 C = V.getOperand(0); 3324 ConstantSDNode *CC = 3325 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3326 if (!CC) 3327 return false; 3328 Y = V.getOperand(1); 3329 3330 ConstantSDNode *XC = 3331 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3332 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3333 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3334 }; 3335 3336 // LHS of comparison should be an one-use 'and'. 3337 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3338 return SDValue(); 3339 3340 X = N0.getOperand(0); 3341 SDValue Mask = N0.getOperand(1); 3342 3343 // 'and' is commutative! 3344 if (!Match(Mask)) { 3345 std::swap(X, Mask); 3346 if (!Match(Mask)) 3347 return SDValue(); 3348 } 3349 3350 EVT VT = X.getValueType(); 3351 3352 // Produce: 3353 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3354 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3355 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3356 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3357 return T2; 3358 } 3359 3360 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3361 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3362 /// handle the commuted versions of these patterns. 3363 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3364 ISD::CondCode Cond, const SDLoc &DL, 3365 DAGCombinerInfo &DCI) const { 3366 unsigned BOpcode = N0.getOpcode(); 3367 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3368 "Unexpected binop"); 3369 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3370 3371 // (X + Y) == X --> Y == 0 3372 // (X - Y) == X --> Y == 0 3373 // (X ^ Y) == X --> Y == 0 3374 SelectionDAG &DAG = DCI.DAG; 3375 EVT OpVT = N0.getValueType(); 3376 SDValue X = N0.getOperand(0); 3377 SDValue Y = N0.getOperand(1); 3378 if (X == N1) 3379 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3380 3381 if (Y != N1) 3382 return SDValue(); 3383 3384 // (X + Y) == Y --> X == 0 3385 // (X ^ Y) == Y --> X == 0 3386 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3387 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3388 3389 // The shift would not be valid if the operands are boolean (i1). 3390 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3391 return SDValue(); 3392 3393 // (X - Y) == Y --> X == Y << 1 3394 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3395 !DCI.isBeforeLegalize()); 3396 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3397 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3398 if (!DCI.isCalledByLegalizer()) 3399 DCI.AddToWorklist(YShl1.getNode()); 3400 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3401 } 3402 3403 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3404 SDValue N0, const APInt &C1, 3405 ISD::CondCode Cond, const SDLoc &dl, 3406 SelectionDAG &DAG) { 3407 // Look through truncs that don't change the value of a ctpop. 3408 // FIXME: Add vector support? Need to be careful with setcc result type below. 3409 SDValue CTPOP = N0; 3410 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3411 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3412 CTPOP = N0.getOperand(0); 3413 3414 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3415 return SDValue(); 3416 3417 EVT CTVT = CTPOP.getValueType(); 3418 SDValue CTOp = CTPOP.getOperand(0); 3419 3420 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3421 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3422 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3423 return SDValue(); 3424 3425 // (ctpop x) u< 2 -> (x & x-1) == 0 3426 // (ctpop x) u> 1 -> (x & x-1) != 0 3427 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3428 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3429 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3430 return SDValue(); 3431 if (C1 == 0 && (Cond == ISD::SETULT)) 3432 return SDValue(); // This is handled elsewhere. 3433 3434 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3435 3436 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3437 SDValue Result = CTOp; 3438 for (unsigned i = 0; i < Passes; i++) { 3439 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3440 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3441 } 3442 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3443 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3444 } 3445 3446 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3447 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3448 // For scalars, keep CTPOP if it is legal or custom. 3449 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3450 return SDValue(); 3451 // This is based on X86's custom lowering for CTPOP which produces more 3452 // instructions than the expansion here. 3453 3454 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3455 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3456 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3457 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3458 assert(CTVT.isInteger()); 3459 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3460 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3461 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3462 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3463 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3464 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3465 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3466 } 3467 3468 return SDValue(); 3469 } 3470 3471 /// Try to simplify a setcc built with the specified operands and cc. If it is 3472 /// unable to simplify it, return a null SDValue. 3473 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3474 ISD::CondCode Cond, bool foldBooleans, 3475 DAGCombinerInfo &DCI, 3476 const SDLoc &dl) const { 3477 SelectionDAG &DAG = DCI.DAG; 3478 const DataLayout &Layout = DAG.getDataLayout(); 3479 EVT OpVT = N0.getValueType(); 3480 3481 // Constant fold or commute setcc. 3482 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3483 return Fold; 3484 3485 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3486 // TODO: Handle non-splat vector constants. All undef causes trouble. 3487 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3488 // infinite loop here when we encounter one. 3489 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3490 if (isConstOrConstSplat(N0) && 3491 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3492 (DCI.isBeforeLegalizeOps() || 3493 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3494 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3495 3496 // If we have a subtract with the same 2 non-constant operands as this setcc 3497 // -- but in reverse order -- then try to commute the operands of this setcc 3498 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3499 // instruction on some targets. 3500 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3501 (DCI.isBeforeLegalizeOps() || 3502 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3503 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3504 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3505 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3506 3507 if (auto *N1C = isConstOrConstSplat(N1)) { 3508 const APInt &C1 = N1C->getAPIntValue(); 3509 3510 // Optimize some CTPOP cases. 3511 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3512 return V; 3513 3514 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3515 // equality comparison, then we're just comparing whether X itself is 3516 // zero. 3517 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3518 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3519 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3520 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3521 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3522 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3523 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3524 // (srl (ctlz x), 5) == 0 -> X != 0 3525 // (srl (ctlz x), 5) != 1 -> X != 0 3526 Cond = ISD::SETNE; 3527 } else { 3528 // (srl (ctlz x), 5) != 0 -> X == 0 3529 // (srl (ctlz x), 5) == 1 -> X == 0 3530 Cond = ISD::SETEQ; 3531 } 3532 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3533 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3534 Cond); 3535 } 3536 } 3537 } 3538 } 3539 3540 // FIXME: Support vectors. 3541 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3542 const APInt &C1 = N1C->getAPIntValue(); 3543 3544 // (zext x) == C --> x == (trunc C) 3545 // (sext x) == C --> x == (trunc C) 3546 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3547 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3548 unsigned MinBits = N0.getValueSizeInBits(); 3549 SDValue PreExt; 3550 bool Signed = false; 3551 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3552 // ZExt 3553 MinBits = N0->getOperand(0).getValueSizeInBits(); 3554 PreExt = N0->getOperand(0); 3555 } else if (N0->getOpcode() == ISD::AND) { 3556 // DAGCombine turns costly ZExts into ANDs 3557 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3558 if ((C->getAPIntValue()+1).isPowerOf2()) { 3559 MinBits = C->getAPIntValue().countTrailingOnes(); 3560 PreExt = N0->getOperand(0); 3561 } 3562 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3563 // SExt 3564 MinBits = N0->getOperand(0).getValueSizeInBits(); 3565 PreExt = N0->getOperand(0); 3566 Signed = true; 3567 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3568 // ZEXTLOAD / SEXTLOAD 3569 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3570 MinBits = LN0->getMemoryVT().getSizeInBits(); 3571 PreExt = N0; 3572 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3573 Signed = true; 3574 MinBits = LN0->getMemoryVT().getSizeInBits(); 3575 PreExt = N0; 3576 } 3577 } 3578 3579 // Figure out how many bits we need to preserve this constant. 3580 unsigned ReqdBits = Signed ? 3581 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3582 C1.getActiveBits(); 3583 3584 // Make sure we're not losing bits from the constant. 3585 if (MinBits > 0 && 3586 MinBits < C1.getBitWidth() && 3587 MinBits >= ReqdBits) { 3588 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3589 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3590 // Will get folded away. 3591 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3592 if (MinBits == 1 && C1 == 1) 3593 // Invert the condition. 3594 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3595 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3596 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3597 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3598 } 3599 3600 // If truncating the setcc operands is not desirable, we can still 3601 // simplify the expression in some cases: 3602 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3603 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3604 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3605 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3606 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3607 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3608 SDValue TopSetCC = N0->getOperand(0); 3609 unsigned N0Opc = N0->getOpcode(); 3610 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3611 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3612 TopSetCC.getOpcode() == ISD::SETCC && 3613 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3614 (isConstFalseVal(N1C) || 3615 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3616 3617 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3618 (!N1C->isNullValue() && Cond == ISD::SETNE); 3619 3620 if (!Inverse) 3621 return TopSetCC; 3622 3623 ISD::CondCode InvCond = ISD::getSetCCInverse( 3624 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3625 TopSetCC.getOperand(0).getValueType()); 3626 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3627 TopSetCC.getOperand(1), 3628 InvCond); 3629 } 3630 } 3631 } 3632 3633 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3634 // equality or unsigned, and all 1 bits of the const are in the same 3635 // partial word, see if we can shorten the load. 3636 if (DCI.isBeforeLegalize() && 3637 !ISD::isSignedIntSetCC(Cond) && 3638 N0.getOpcode() == ISD::AND && C1 == 0 && 3639 N0.getNode()->hasOneUse() && 3640 isa<LoadSDNode>(N0.getOperand(0)) && 3641 N0.getOperand(0).getNode()->hasOneUse() && 3642 isa<ConstantSDNode>(N0.getOperand(1))) { 3643 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3644 APInt bestMask; 3645 unsigned bestWidth = 0, bestOffset = 0; 3646 if (Lod->isSimple() && Lod->isUnindexed()) { 3647 unsigned origWidth = N0.getValueSizeInBits(); 3648 unsigned maskWidth = origWidth; 3649 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3650 // 8 bits, but have to be careful... 3651 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3652 origWidth = Lod->getMemoryVT().getSizeInBits(); 3653 const APInt &Mask = N0.getConstantOperandAPInt(1); 3654 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3655 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3656 for (unsigned offset=0; offset<origWidth/width; offset++) { 3657 if (Mask.isSubsetOf(newMask)) { 3658 if (Layout.isLittleEndian()) 3659 bestOffset = (uint64_t)offset * (width/8); 3660 else 3661 bestOffset = (origWidth/width - offset - 1) * (width/8); 3662 bestMask = Mask.lshr(offset * (width/8) * 8); 3663 bestWidth = width; 3664 break; 3665 } 3666 newMask <<= width; 3667 } 3668 } 3669 } 3670 if (bestWidth) { 3671 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3672 if (newVT.isRound() && 3673 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3674 SDValue Ptr = Lod->getBasePtr(); 3675 if (bestOffset != 0) 3676 Ptr = 3677 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3678 SDValue NewLoad = 3679 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3680 Lod->getPointerInfo().getWithOffset(bestOffset), 3681 Lod->getOriginalAlign()); 3682 return DAG.getSetCC(dl, VT, 3683 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3684 DAG.getConstant(bestMask.trunc(bestWidth), 3685 dl, newVT)), 3686 DAG.getConstant(0LL, dl, newVT), Cond); 3687 } 3688 } 3689 } 3690 3691 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3692 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3693 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3694 3695 // If the comparison constant has bits in the upper part, the 3696 // zero-extended value could never match. 3697 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3698 C1.getBitWidth() - InSize))) { 3699 switch (Cond) { 3700 case ISD::SETUGT: 3701 case ISD::SETUGE: 3702 case ISD::SETEQ: 3703 return DAG.getConstant(0, dl, VT); 3704 case ISD::SETULT: 3705 case ISD::SETULE: 3706 case ISD::SETNE: 3707 return DAG.getConstant(1, dl, VT); 3708 case ISD::SETGT: 3709 case ISD::SETGE: 3710 // True if the sign bit of C1 is set. 3711 return DAG.getConstant(C1.isNegative(), dl, VT); 3712 case ISD::SETLT: 3713 case ISD::SETLE: 3714 // True if the sign bit of C1 isn't set. 3715 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3716 default: 3717 break; 3718 } 3719 } 3720 3721 // Otherwise, we can perform the comparison with the low bits. 3722 switch (Cond) { 3723 case ISD::SETEQ: 3724 case ISD::SETNE: 3725 case ISD::SETUGT: 3726 case ISD::SETUGE: 3727 case ISD::SETULT: 3728 case ISD::SETULE: { 3729 EVT newVT = N0.getOperand(0).getValueType(); 3730 if (DCI.isBeforeLegalizeOps() || 3731 (isOperationLegal(ISD::SETCC, newVT) && 3732 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3733 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 3734 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3735 3736 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3737 NewConst, Cond); 3738 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3739 } 3740 break; 3741 } 3742 default: 3743 break; // todo, be more careful with signed comparisons 3744 } 3745 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3746 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3747 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 3748 OpVT)) { 3749 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3750 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3751 EVT ExtDstTy = N0.getValueType(); 3752 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3753 3754 // If the constant doesn't fit into the number of bits for the source of 3755 // the sign extension, it is impossible for both sides to be equal. 3756 if (C1.getMinSignedBits() > ExtSrcTyBits) 3757 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 3758 3759 assert(ExtDstTy == N0.getOperand(0).getValueType() && 3760 ExtDstTy != ExtSrcTy && "Unexpected types!"); 3761 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3762 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 3763 DAG.getConstant(Imm, dl, ExtDstTy)); 3764 if (!DCI.isCalledByLegalizer()) 3765 DCI.AddToWorklist(ZextOp.getNode()); 3766 // Otherwise, make this a use of a zext. 3767 return DAG.getSetCC(dl, VT, ZextOp, 3768 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 3769 } else if ((N1C->isNullValue() || N1C->isOne()) && 3770 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3771 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3772 if (N0.getOpcode() == ISD::SETCC && 3773 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 3774 (N0.getValueType() == MVT::i1 || 3775 getBooleanContents(N0.getOperand(0).getValueType()) == 3776 ZeroOrOneBooleanContent)) { 3777 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3778 if (TrueWhenTrue) 3779 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3780 // Invert the condition. 3781 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3782 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 3783 if (DCI.isBeforeLegalizeOps() || 3784 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3785 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3786 } 3787 3788 if ((N0.getOpcode() == ISD::XOR || 3789 (N0.getOpcode() == ISD::AND && 3790 N0.getOperand(0).getOpcode() == ISD::XOR && 3791 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3792 isOneConstant(N0.getOperand(1))) { 3793 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3794 // can only do this if the top bits are known zero. 3795 unsigned BitWidth = N0.getValueSizeInBits(); 3796 if (DAG.MaskedValueIsZero(N0, 3797 APInt::getHighBitsSet(BitWidth, 3798 BitWidth-1))) { 3799 // Okay, get the un-inverted input value. 3800 SDValue Val; 3801 if (N0.getOpcode() == ISD::XOR) { 3802 Val = N0.getOperand(0); 3803 } else { 3804 assert(N0.getOpcode() == ISD::AND && 3805 N0.getOperand(0).getOpcode() == ISD::XOR); 3806 // ((X^1)&1)^1 -> X & 1 3807 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3808 N0.getOperand(0).getOperand(0), 3809 N0.getOperand(1)); 3810 } 3811 3812 return DAG.getSetCC(dl, VT, Val, N1, 3813 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3814 } 3815 } else if (N1C->isOne()) { 3816 SDValue Op0 = N0; 3817 if (Op0.getOpcode() == ISD::TRUNCATE) 3818 Op0 = Op0.getOperand(0); 3819 3820 if ((Op0.getOpcode() == ISD::XOR) && 3821 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3822 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3823 SDValue XorLHS = Op0.getOperand(0); 3824 SDValue XorRHS = Op0.getOperand(1); 3825 // Ensure that the input setccs return an i1 type or 0/1 value. 3826 if (Op0.getValueType() == MVT::i1 || 3827 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 3828 ZeroOrOneBooleanContent && 3829 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 3830 ZeroOrOneBooleanContent)) { 3831 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3832 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3833 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 3834 } 3835 } 3836 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 3837 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3838 if (Op0.getValueType().bitsGT(VT)) 3839 Op0 = DAG.getNode(ISD::AND, dl, VT, 3840 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3841 DAG.getConstant(1, dl, VT)); 3842 else if (Op0.getValueType().bitsLT(VT)) 3843 Op0 = DAG.getNode(ISD::AND, dl, VT, 3844 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3845 DAG.getConstant(1, dl, VT)); 3846 3847 return DAG.getSetCC(dl, VT, Op0, 3848 DAG.getConstant(0, dl, Op0.getValueType()), 3849 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3850 } 3851 if (Op0.getOpcode() == ISD::AssertZext && 3852 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3853 return DAG.getSetCC(dl, VT, Op0, 3854 DAG.getConstant(0, dl, Op0.getValueType()), 3855 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3856 } 3857 } 3858 3859 // Given: 3860 // icmp eq/ne (urem %x, %y), 0 3861 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3862 // icmp eq/ne %x, 0 3863 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3864 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3865 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3866 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3867 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3868 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3869 } 3870 3871 if (SDValue V = 3872 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3873 return V; 3874 } 3875 3876 // These simplifications apply to splat vectors as well. 3877 // TODO: Handle more splat vector cases. 3878 if (auto *N1C = isConstOrConstSplat(N1)) { 3879 const APInt &C1 = N1C->getAPIntValue(); 3880 3881 APInt MinVal, MaxVal; 3882 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3883 if (ISD::isSignedIntSetCC(Cond)) { 3884 MinVal = APInt::getSignedMinValue(OperandBitSize); 3885 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3886 } else { 3887 MinVal = APInt::getMinValue(OperandBitSize); 3888 MaxVal = APInt::getMaxValue(OperandBitSize); 3889 } 3890 3891 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3892 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3893 // X >= MIN --> true 3894 if (C1 == MinVal) 3895 return DAG.getBoolConstant(true, dl, VT, OpVT); 3896 3897 if (!VT.isVector()) { // TODO: Support this for vectors. 3898 // X >= C0 --> X > (C0 - 1) 3899 APInt C = C1 - 1; 3900 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3901 if ((DCI.isBeforeLegalizeOps() || 3902 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3903 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3904 isLegalICmpImmediate(C.getSExtValue())))) { 3905 return DAG.getSetCC(dl, VT, N0, 3906 DAG.getConstant(C, dl, N1.getValueType()), 3907 NewCC); 3908 } 3909 } 3910 } 3911 3912 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3913 // X <= MAX --> true 3914 if (C1 == MaxVal) 3915 return DAG.getBoolConstant(true, dl, VT, OpVT); 3916 3917 // X <= C0 --> X < (C0 + 1) 3918 if (!VT.isVector()) { // TODO: Support this for vectors. 3919 APInt C = C1 + 1; 3920 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3921 if ((DCI.isBeforeLegalizeOps() || 3922 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3923 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3924 isLegalICmpImmediate(C.getSExtValue())))) { 3925 return DAG.getSetCC(dl, VT, N0, 3926 DAG.getConstant(C, dl, N1.getValueType()), 3927 NewCC); 3928 } 3929 } 3930 } 3931 3932 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3933 if (C1 == MinVal) 3934 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3935 3936 // TODO: Support this for vectors after legalize ops. 3937 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3938 // Canonicalize setlt X, Max --> setne X, Max 3939 if (C1 == MaxVal) 3940 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3941 3942 // If we have setult X, 1, turn it into seteq X, 0 3943 if (C1 == MinVal+1) 3944 return DAG.getSetCC(dl, VT, N0, 3945 DAG.getConstant(MinVal, dl, N0.getValueType()), 3946 ISD::SETEQ); 3947 } 3948 } 3949 3950 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3951 if (C1 == MaxVal) 3952 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3953 3954 // TODO: Support this for vectors after legalize ops. 3955 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3956 // Canonicalize setgt X, Min --> setne X, Min 3957 if (C1 == MinVal) 3958 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3959 3960 // If we have setugt X, Max-1, turn it into seteq X, Max 3961 if (C1 == MaxVal-1) 3962 return DAG.getSetCC(dl, VT, N0, 3963 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3964 ISD::SETEQ); 3965 } 3966 } 3967 3968 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3969 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3970 if (C1.isNullValue()) 3971 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3972 VT, N0, N1, Cond, DCI, dl)) 3973 return CC; 3974 3975 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 3976 // For example, when high 32-bits of i64 X are known clear: 3977 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 3978 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 3979 bool CmpZero = N1C->getAPIntValue().isNullValue(); 3980 bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue(); 3981 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 3982 // Match or(lo,shl(hi,bw/2)) pattern. 3983 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 3984 unsigned EltBits = V.getScalarValueSizeInBits(); 3985 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 3986 return false; 3987 SDValue LHS = V.getOperand(0); 3988 SDValue RHS = V.getOperand(1); 3989 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 3990 // Unshifted element must have zero upperbits. 3991 if (RHS.getOpcode() == ISD::SHL && 3992 isa<ConstantSDNode>(RHS.getOperand(1)) && 3993 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 3994 DAG.MaskedValueIsZero(LHS, HiBits)) { 3995 Lo = LHS; 3996 Hi = RHS.getOperand(0); 3997 return true; 3998 } 3999 if (LHS.getOpcode() == ISD::SHL && 4000 isa<ConstantSDNode>(LHS.getOperand(1)) && 4001 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4002 DAG.MaskedValueIsZero(RHS, HiBits)) { 4003 Lo = RHS; 4004 Hi = LHS.getOperand(0); 4005 return true; 4006 } 4007 return false; 4008 }; 4009 4010 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4011 unsigned EltBits = N0.getScalarValueSizeInBits(); 4012 unsigned HalfBits = EltBits / 2; 4013 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4014 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4015 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4016 SDValue NewN0 = 4017 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4018 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4019 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4020 }; 4021 4022 SDValue Lo, Hi; 4023 if (IsConcat(N0, Lo, Hi)) 4024 return MergeConcat(Lo, Hi); 4025 4026 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4027 SDValue Lo0, Lo1, Hi0, Hi1; 4028 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4029 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4030 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4031 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4032 } 4033 } 4034 } 4035 } 4036 4037 // If we have "setcc X, C0", check to see if we can shrink the immediate 4038 // by changing cc. 4039 // TODO: Support this for vectors after legalize ops. 4040 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4041 // SETUGT X, SINTMAX -> SETLT X, 0 4042 // SETUGE X, SINTMIN -> SETLT X, 0 4043 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4044 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4045 return DAG.getSetCC(dl, VT, N0, 4046 DAG.getConstant(0, dl, N1.getValueType()), 4047 ISD::SETLT); 4048 4049 // SETULT X, SINTMIN -> SETGT X, -1 4050 // SETULE X, SINTMAX -> SETGT X, -1 4051 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4052 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4053 return DAG.getSetCC(dl, VT, N0, 4054 DAG.getAllOnesConstant(dl, N1.getValueType()), 4055 ISD::SETGT); 4056 } 4057 } 4058 4059 // Back to non-vector simplifications. 4060 // TODO: Can we do these for vector splats? 4061 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4063 const APInt &C1 = N1C->getAPIntValue(); 4064 EVT ShValTy = N0.getValueType(); 4065 4066 // Fold bit comparisons when we can. This will result in an 4067 // incorrect value when boolean false is negative one, unless 4068 // the bitsize is 1 in which case the false value is the same 4069 // in practice regardless of the representation. 4070 if ((VT.getSizeInBits() == 1 || 4071 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4072 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4073 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4074 N0.getOpcode() == ISD::AND) { 4075 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4076 EVT ShiftTy = 4077 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4078 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4079 // Perform the xform if the AND RHS is a single bit. 4080 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4081 if (AndRHS->getAPIntValue().isPowerOf2() && 4082 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4083 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4084 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4085 DAG.getConstant(ShCt, dl, ShiftTy))); 4086 } 4087 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4088 // (X & 8) == 8 --> (X & 8) >> 3 4089 // Perform the xform if C1 is a single bit. 4090 unsigned ShCt = C1.logBase2(); 4091 if (C1.isPowerOf2() && 4092 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4093 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4094 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4095 DAG.getConstant(ShCt, dl, ShiftTy))); 4096 } 4097 } 4098 } 4099 } 4100 4101 if (C1.getMinSignedBits() <= 64 && 4102 !isLegalICmpImmediate(C1.getSExtValue())) { 4103 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4104 // (X & -256) == 256 -> (X >> 8) == 1 4105 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4106 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4107 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4108 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4109 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 4110 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4111 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4112 SDValue Shift = 4113 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4114 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4115 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4116 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4117 } 4118 } 4119 } 4120 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4121 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4122 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4123 // X < 0x100000000 -> (X >> 32) < 1 4124 // X >= 0x100000000 -> (X >> 32) >= 1 4125 // X <= 0x0ffffffff -> (X >> 32) < 1 4126 // X > 0x0ffffffff -> (X >> 32) >= 1 4127 unsigned ShiftBits; 4128 APInt NewC = C1; 4129 ISD::CondCode NewCond = Cond; 4130 if (AdjOne) { 4131 ShiftBits = C1.countTrailingOnes(); 4132 NewC = NewC + 1; 4133 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4134 } else { 4135 ShiftBits = C1.countTrailingZeros(); 4136 } 4137 NewC.lshrInPlace(ShiftBits); 4138 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4139 isLegalICmpImmediate(NewC.getSExtValue()) && 4140 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4141 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4142 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4143 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4144 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4145 } 4146 } 4147 } 4148 } 4149 4150 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4151 auto *CFP = cast<ConstantFPSDNode>(N1); 4152 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4153 4154 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4155 // constant if knowing that the operand is non-nan is enough. We prefer to 4156 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4157 // materialize 0.0. 4158 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4159 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4160 4161 // setcc (fneg x), C -> setcc swap(pred) x, -C 4162 if (N0.getOpcode() == ISD::FNEG) { 4163 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4164 if (DCI.isBeforeLegalizeOps() || 4165 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4166 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4167 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4168 } 4169 } 4170 4171 // If the condition is not legal, see if we can find an equivalent one 4172 // which is legal. 4173 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4174 // If the comparison was an awkward floating-point == or != and one of 4175 // the comparison operands is infinity or negative infinity, convert the 4176 // condition to a less-awkward <= or >=. 4177 if (CFP->getValueAPF().isInfinity()) { 4178 bool IsNegInf = CFP->getValueAPF().isNegative(); 4179 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4180 switch (Cond) { 4181 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4182 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4183 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4184 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4185 default: break; 4186 } 4187 if (NewCond != ISD::SETCC_INVALID && 4188 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4189 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4190 } 4191 } 4192 } 4193 4194 if (N0 == N1) { 4195 // The sext(setcc()) => setcc() optimization relies on the appropriate 4196 // constant being emitted. 4197 assert(!N0.getValueType().isInteger() && 4198 "Integer types should be handled by FoldSetCC"); 4199 4200 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4201 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4202 if (UOF == 2) // FP operators that are undefined on NaNs. 4203 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4204 if (UOF == unsigned(EqTrue)) 4205 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4206 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4207 // if it is not already. 4208 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4209 if (NewCond != Cond && 4210 (DCI.isBeforeLegalizeOps() || 4211 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4212 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4213 } 4214 4215 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4216 N0.getValueType().isInteger()) { 4217 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4218 N0.getOpcode() == ISD::XOR) { 4219 // Simplify (X+Y) == (X+Z) --> Y == Z 4220 if (N0.getOpcode() == N1.getOpcode()) { 4221 if (N0.getOperand(0) == N1.getOperand(0)) 4222 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4223 if (N0.getOperand(1) == N1.getOperand(1)) 4224 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4225 if (isCommutativeBinOp(N0.getOpcode())) { 4226 // If X op Y == Y op X, try other combinations. 4227 if (N0.getOperand(0) == N1.getOperand(1)) 4228 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4229 Cond); 4230 if (N0.getOperand(1) == N1.getOperand(0)) 4231 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4232 Cond); 4233 } 4234 } 4235 4236 // If RHS is a legal immediate value for a compare instruction, we need 4237 // to be careful about increasing register pressure needlessly. 4238 bool LegalRHSImm = false; 4239 4240 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4241 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4242 // Turn (X+C1) == C2 --> X == C2-C1 4243 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4244 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4245 DAG.getConstant(RHSC->getAPIntValue()- 4246 LHSR->getAPIntValue(), 4247 dl, N0.getValueType()), Cond); 4248 } 4249 4250 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4251 if (N0.getOpcode() == ISD::XOR) 4252 // If we know that all of the inverted bits are zero, don't bother 4253 // performing the inversion. 4254 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4255 return 4256 DAG.getSetCC(dl, VT, N0.getOperand(0), 4257 DAG.getConstant(LHSR->getAPIntValue() ^ 4258 RHSC->getAPIntValue(), 4259 dl, N0.getValueType()), 4260 Cond); 4261 } 4262 4263 // Turn (C1-X) == C2 --> X == C1-C2 4264 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4265 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4266 return 4267 DAG.getSetCC(dl, VT, N0.getOperand(1), 4268 DAG.getConstant(SUBC->getAPIntValue() - 4269 RHSC->getAPIntValue(), 4270 dl, N0.getValueType()), 4271 Cond); 4272 } 4273 } 4274 4275 // Could RHSC fold directly into a compare? 4276 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4277 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4278 } 4279 4280 // (X+Y) == X --> Y == 0 and similar folds. 4281 // Don't do this if X is an immediate that can fold into a cmp 4282 // instruction and X+Y has other uses. It could be an induction variable 4283 // chain, and the transform would increase register pressure. 4284 if (!LegalRHSImm || N0.hasOneUse()) 4285 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4286 return V; 4287 } 4288 4289 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4290 N1.getOpcode() == ISD::XOR) 4291 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4292 return V; 4293 4294 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4295 return V; 4296 } 4297 4298 // Fold remainder of division by a constant. 4299 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4300 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4301 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4302 4303 // When division is cheap or optimizing for minimum size, 4304 // fall through to DIVREM creation by skipping this fold. 4305 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 4306 if (N0.getOpcode() == ISD::UREM) { 4307 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4308 return Folded; 4309 } else if (N0.getOpcode() == ISD::SREM) { 4310 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4311 return Folded; 4312 } 4313 } 4314 } 4315 4316 // Fold away ALL boolean setcc's. 4317 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4318 SDValue Temp; 4319 switch (Cond) { 4320 default: llvm_unreachable("Unknown integer setcc!"); 4321 case ISD::SETEQ: // X == Y -> ~(X^Y) 4322 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4323 N0 = DAG.getNOT(dl, Temp, OpVT); 4324 if (!DCI.isCalledByLegalizer()) 4325 DCI.AddToWorklist(Temp.getNode()); 4326 break; 4327 case ISD::SETNE: // X != Y --> (X^Y) 4328 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4329 break; 4330 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4331 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4332 Temp = DAG.getNOT(dl, N0, OpVT); 4333 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4334 if (!DCI.isCalledByLegalizer()) 4335 DCI.AddToWorklist(Temp.getNode()); 4336 break; 4337 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4338 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4339 Temp = DAG.getNOT(dl, N1, OpVT); 4340 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4341 if (!DCI.isCalledByLegalizer()) 4342 DCI.AddToWorklist(Temp.getNode()); 4343 break; 4344 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4345 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4346 Temp = DAG.getNOT(dl, N0, OpVT); 4347 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4348 if (!DCI.isCalledByLegalizer()) 4349 DCI.AddToWorklist(Temp.getNode()); 4350 break; 4351 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4352 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4353 Temp = DAG.getNOT(dl, N1, OpVT); 4354 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4355 break; 4356 } 4357 if (VT.getScalarType() != MVT::i1) { 4358 if (!DCI.isCalledByLegalizer()) 4359 DCI.AddToWorklist(N0.getNode()); 4360 // FIXME: If running after legalize, we probably can't do this. 4361 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4362 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4363 } 4364 return N0; 4365 } 4366 4367 // Could not fold it. 4368 return SDValue(); 4369 } 4370 4371 /// Returns true (and the GlobalValue and the offset) if the node is a 4372 /// GlobalAddress + offset. 4373 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4374 int64_t &Offset) const { 4375 4376 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4377 4378 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4379 GA = GASD->getGlobal(); 4380 Offset += GASD->getOffset(); 4381 return true; 4382 } 4383 4384 if (N->getOpcode() == ISD::ADD) { 4385 SDValue N1 = N->getOperand(0); 4386 SDValue N2 = N->getOperand(1); 4387 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4388 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4389 Offset += V->getSExtValue(); 4390 return true; 4391 } 4392 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4393 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4394 Offset += V->getSExtValue(); 4395 return true; 4396 } 4397 } 4398 } 4399 4400 return false; 4401 } 4402 4403 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4404 DAGCombinerInfo &DCI) const { 4405 // Default implementation: no optimization. 4406 return SDValue(); 4407 } 4408 4409 //===----------------------------------------------------------------------===// 4410 // Inline Assembler Implementation Methods 4411 //===----------------------------------------------------------------------===// 4412 4413 TargetLowering::ConstraintType 4414 TargetLowering::getConstraintType(StringRef Constraint) const { 4415 unsigned S = Constraint.size(); 4416 4417 if (S == 1) { 4418 switch (Constraint[0]) { 4419 default: break; 4420 case 'r': 4421 return C_RegisterClass; 4422 case 'm': // memory 4423 case 'o': // offsetable 4424 case 'V': // not offsetable 4425 return C_Memory; 4426 case 'n': // Simple Integer 4427 case 'E': // Floating Point Constant 4428 case 'F': // Floating Point Constant 4429 return C_Immediate; 4430 case 'i': // Simple Integer or Relocatable Constant 4431 case 's': // Relocatable Constant 4432 case 'p': // Address. 4433 case 'X': // Allow ANY value. 4434 case 'I': // Target registers. 4435 case 'J': 4436 case 'K': 4437 case 'L': 4438 case 'M': 4439 case 'N': 4440 case 'O': 4441 case 'P': 4442 case '<': 4443 case '>': 4444 return C_Other; 4445 } 4446 } 4447 4448 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4449 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4450 return C_Memory; 4451 return C_Register; 4452 } 4453 return C_Unknown; 4454 } 4455 4456 /// Try to replace an X constraint, which matches anything, with another that 4457 /// has more specific requirements based on the type of the corresponding 4458 /// operand. 4459 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4460 if (ConstraintVT.isInteger()) 4461 return "r"; 4462 if (ConstraintVT.isFloatingPoint()) 4463 return "f"; // works for many targets 4464 return nullptr; 4465 } 4466 4467 SDValue TargetLowering::LowerAsmOutputForConstraint( 4468 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4469 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4470 return SDValue(); 4471 } 4472 4473 /// Lower the specified operand into the Ops vector. 4474 /// If it is invalid, don't add anything to Ops. 4475 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4476 std::string &Constraint, 4477 std::vector<SDValue> &Ops, 4478 SelectionDAG &DAG) const { 4479 4480 if (Constraint.length() > 1) return; 4481 4482 char ConstraintLetter = Constraint[0]; 4483 switch (ConstraintLetter) { 4484 default: break; 4485 case 'X': // Allows any operand; labels (basic block) use this. 4486 if (Op.getOpcode() == ISD::BasicBlock || 4487 Op.getOpcode() == ISD::TargetBlockAddress) { 4488 Ops.push_back(Op); 4489 return; 4490 } 4491 LLVM_FALLTHROUGH; 4492 case 'i': // Simple Integer or Relocatable Constant 4493 case 'n': // Simple Integer 4494 case 's': { // Relocatable Constant 4495 4496 GlobalAddressSDNode *GA; 4497 ConstantSDNode *C; 4498 BlockAddressSDNode *BA; 4499 uint64_t Offset = 0; 4500 4501 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4502 // etc., since getelementpointer is variadic. We can't use 4503 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4504 // while in this case the GA may be furthest from the root node which is 4505 // likely an ISD::ADD. 4506 while (1) { 4507 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4508 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4509 GA->getValueType(0), 4510 Offset + GA->getOffset())); 4511 return; 4512 } 4513 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4514 // gcc prints these as sign extended. Sign extend value to 64 bits 4515 // now; without this it would get ZExt'd later in 4516 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4517 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4518 BooleanContent BCont = getBooleanContents(MVT::i64); 4519 ISD::NodeType ExtOpc = 4520 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4521 int64_t ExtVal = 4522 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4523 Ops.push_back( 4524 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4525 return; 4526 } 4527 if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4528 Ops.push_back(DAG.getTargetBlockAddress( 4529 BA->getBlockAddress(), BA->getValueType(0), 4530 Offset + BA->getOffset(), BA->getTargetFlags())); 4531 return; 4532 } 4533 const unsigned OpCode = Op.getOpcode(); 4534 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4535 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4536 Op = Op.getOperand(1); 4537 // Subtraction is not commutative. 4538 else if (OpCode == ISD::ADD && 4539 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4540 Op = Op.getOperand(0); 4541 else 4542 return; 4543 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4544 continue; 4545 } 4546 return; 4547 } 4548 break; 4549 } 4550 } 4551 } 4552 4553 std::pair<unsigned, const TargetRegisterClass *> 4554 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4555 StringRef Constraint, 4556 MVT VT) const { 4557 if (Constraint.empty() || Constraint[0] != '{') 4558 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4559 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4560 4561 // Remove the braces from around the name. 4562 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4563 4564 std::pair<unsigned, const TargetRegisterClass *> R = 4565 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4566 4567 // Figure out which register class contains this reg. 4568 for (const TargetRegisterClass *RC : RI->regclasses()) { 4569 // If none of the value types for this register class are valid, we 4570 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4571 if (!isLegalRC(*RI, *RC)) 4572 continue; 4573 4574 for (const MCPhysReg &PR : *RC) { 4575 if (RegName.equals_lower(RI->getRegAsmName(PR))) { 4576 std::pair<unsigned, const TargetRegisterClass *> S = 4577 std::make_pair(PR, RC); 4578 4579 // If this register class has the requested value type, return it, 4580 // otherwise keep searching and return the first class found 4581 // if no other is found which explicitly has the requested type. 4582 if (RI->isTypeLegalForClass(*RC, VT)) 4583 return S; 4584 if (!R.second) 4585 R = S; 4586 } 4587 } 4588 } 4589 4590 return R; 4591 } 4592 4593 //===----------------------------------------------------------------------===// 4594 // Constraint Selection. 4595 4596 /// Return true of this is an input operand that is a matching constraint like 4597 /// "4". 4598 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4599 assert(!ConstraintCode.empty() && "No known constraint!"); 4600 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4601 } 4602 4603 /// If this is an input matching constraint, this method returns the output 4604 /// operand it matches. 4605 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4606 assert(!ConstraintCode.empty() && "No known constraint!"); 4607 return atoi(ConstraintCode.c_str()); 4608 } 4609 4610 /// Split up the constraint string from the inline assembly value into the 4611 /// specific constraints and their prefixes, and also tie in the associated 4612 /// operand values. 4613 /// If this returns an empty vector, and if the constraint string itself 4614 /// isn't empty, there was an error parsing. 4615 TargetLowering::AsmOperandInfoVector 4616 TargetLowering::ParseConstraints(const DataLayout &DL, 4617 const TargetRegisterInfo *TRI, 4618 const CallBase &Call) const { 4619 /// Information about all of the constraints. 4620 AsmOperandInfoVector ConstraintOperands; 4621 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4622 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4623 4624 // Do a prepass over the constraints, canonicalizing them, and building up the 4625 // ConstraintOperands list. 4626 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4627 unsigned ResNo = 0; // ResNo - The result number of the next output. 4628 4629 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4630 ConstraintOperands.emplace_back(std::move(CI)); 4631 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4632 4633 // Update multiple alternative constraint count. 4634 if (OpInfo.multipleAlternatives.size() > maCount) 4635 maCount = OpInfo.multipleAlternatives.size(); 4636 4637 OpInfo.ConstraintVT = MVT::Other; 4638 4639 // Compute the value type for each operand. 4640 switch (OpInfo.Type) { 4641 case InlineAsm::isOutput: 4642 // Indirect outputs just consume an argument. 4643 if (OpInfo.isIndirect) { 4644 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4645 break; 4646 } 4647 4648 // The return value of the call is this value. As such, there is no 4649 // corresponding argument. 4650 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4651 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4652 OpInfo.ConstraintVT = 4653 getSimpleValueType(DL, STy->getElementType(ResNo)); 4654 } else { 4655 assert(ResNo == 0 && "Asm only has one result!"); 4656 OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType()); 4657 } 4658 ++ResNo; 4659 break; 4660 case InlineAsm::isInput: 4661 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 4662 break; 4663 case InlineAsm::isClobber: 4664 // Nothing to do. 4665 break; 4666 } 4667 4668 if (OpInfo.CallOperandVal) { 4669 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4670 if (OpInfo.isIndirect) { 4671 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4672 if (!PtrTy) 4673 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4674 OpTy = PtrTy->getElementType(); 4675 } 4676 4677 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4678 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4679 if (STy->getNumElements() == 1) 4680 OpTy = STy->getElementType(0); 4681 4682 // If OpTy is not a single value, it may be a struct/union that we 4683 // can tile with integers. 4684 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4685 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4686 switch (BitSize) { 4687 default: break; 4688 case 1: 4689 case 8: 4690 case 16: 4691 case 32: 4692 case 64: 4693 case 128: 4694 OpInfo.ConstraintVT = 4695 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4696 break; 4697 } 4698 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4699 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4700 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4701 } else { 4702 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4703 } 4704 } 4705 } 4706 4707 // If we have multiple alternative constraints, select the best alternative. 4708 if (!ConstraintOperands.empty()) { 4709 if (maCount) { 4710 unsigned bestMAIndex = 0; 4711 int bestWeight = -1; 4712 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4713 int weight = -1; 4714 unsigned maIndex; 4715 // Compute the sums of the weights for each alternative, keeping track 4716 // of the best (highest weight) one so far. 4717 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4718 int weightSum = 0; 4719 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4720 cIndex != eIndex; ++cIndex) { 4721 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4722 if (OpInfo.Type == InlineAsm::isClobber) 4723 continue; 4724 4725 // If this is an output operand with a matching input operand, 4726 // look up the matching input. If their types mismatch, e.g. one 4727 // is an integer, the other is floating point, or their sizes are 4728 // different, flag it as an maCantMatch. 4729 if (OpInfo.hasMatchingInput()) { 4730 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4731 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4732 if ((OpInfo.ConstraintVT.isInteger() != 4733 Input.ConstraintVT.isInteger()) || 4734 (OpInfo.ConstraintVT.getSizeInBits() != 4735 Input.ConstraintVT.getSizeInBits())) { 4736 weightSum = -1; // Can't match. 4737 break; 4738 } 4739 } 4740 } 4741 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4742 if (weight == -1) { 4743 weightSum = -1; 4744 break; 4745 } 4746 weightSum += weight; 4747 } 4748 // Update best. 4749 if (weightSum > bestWeight) { 4750 bestWeight = weightSum; 4751 bestMAIndex = maIndex; 4752 } 4753 } 4754 4755 // Now select chosen alternative in each constraint. 4756 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4757 cIndex != eIndex; ++cIndex) { 4758 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4759 if (cInfo.Type == InlineAsm::isClobber) 4760 continue; 4761 cInfo.selectAlternative(bestMAIndex); 4762 } 4763 } 4764 } 4765 4766 // Check and hook up tied operands, choose constraint code to use. 4767 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4768 cIndex != eIndex; ++cIndex) { 4769 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4770 4771 // If this is an output operand with a matching input operand, look up the 4772 // matching input. If their types mismatch, e.g. one is an integer, the 4773 // other is floating point, or their sizes are different, flag it as an 4774 // error. 4775 if (OpInfo.hasMatchingInput()) { 4776 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4777 4778 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4779 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4780 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4781 OpInfo.ConstraintVT); 4782 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4783 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4784 Input.ConstraintVT); 4785 if ((OpInfo.ConstraintVT.isInteger() != 4786 Input.ConstraintVT.isInteger()) || 4787 (MatchRC.second != InputRC.second)) { 4788 report_fatal_error("Unsupported asm: input constraint" 4789 " with a matching output constraint of" 4790 " incompatible type!"); 4791 } 4792 } 4793 } 4794 } 4795 4796 return ConstraintOperands; 4797 } 4798 4799 /// Return an integer indicating how general CT is. 4800 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4801 switch (CT) { 4802 case TargetLowering::C_Immediate: 4803 case TargetLowering::C_Other: 4804 case TargetLowering::C_Unknown: 4805 return 0; 4806 case TargetLowering::C_Register: 4807 return 1; 4808 case TargetLowering::C_RegisterClass: 4809 return 2; 4810 case TargetLowering::C_Memory: 4811 return 3; 4812 } 4813 llvm_unreachable("Invalid constraint type"); 4814 } 4815 4816 /// Examine constraint type and operand type and determine a weight value. 4817 /// This object must already have been set up with the operand type 4818 /// and the current alternative constraint selected. 4819 TargetLowering::ConstraintWeight 4820 TargetLowering::getMultipleConstraintMatchWeight( 4821 AsmOperandInfo &info, int maIndex) const { 4822 InlineAsm::ConstraintCodeVector *rCodes; 4823 if (maIndex >= (int)info.multipleAlternatives.size()) 4824 rCodes = &info.Codes; 4825 else 4826 rCodes = &info.multipleAlternatives[maIndex].Codes; 4827 ConstraintWeight BestWeight = CW_Invalid; 4828 4829 // Loop over the options, keeping track of the most general one. 4830 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4831 ConstraintWeight weight = 4832 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4833 if (weight > BestWeight) 4834 BestWeight = weight; 4835 } 4836 4837 return BestWeight; 4838 } 4839 4840 /// Examine constraint type and operand type and determine a weight value. 4841 /// This object must already have been set up with the operand type 4842 /// and the current alternative constraint selected. 4843 TargetLowering::ConstraintWeight 4844 TargetLowering::getSingleConstraintMatchWeight( 4845 AsmOperandInfo &info, const char *constraint) const { 4846 ConstraintWeight weight = CW_Invalid; 4847 Value *CallOperandVal = info.CallOperandVal; 4848 // If we don't have a value, we can't do a match, 4849 // but allow it at the lowest weight. 4850 if (!CallOperandVal) 4851 return CW_Default; 4852 // Look at the constraint type. 4853 switch (*constraint) { 4854 case 'i': // immediate integer. 4855 case 'n': // immediate integer with a known value. 4856 if (isa<ConstantInt>(CallOperandVal)) 4857 weight = CW_Constant; 4858 break; 4859 case 's': // non-explicit intregal immediate. 4860 if (isa<GlobalValue>(CallOperandVal)) 4861 weight = CW_Constant; 4862 break; 4863 case 'E': // immediate float if host format. 4864 case 'F': // immediate float. 4865 if (isa<ConstantFP>(CallOperandVal)) 4866 weight = CW_Constant; 4867 break; 4868 case '<': // memory operand with autodecrement. 4869 case '>': // memory operand with autoincrement. 4870 case 'm': // memory operand. 4871 case 'o': // offsettable memory operand 4872 case 'V': // non-offsettable memory operand 4873 weight = CW_Memory; 4874 break; 4875 case 'r': // general register. 4876 case 'g': // general register, memory operand or immediate integer. 4877 // note: Clang converts "g" to "imr". 4878 if (CallOperandVal->getType()->isIntegerTy()) 4879 weight = CW_Register; 4880 break; 4881 case 'X': // any operand. 4882 default: 4883 weight = CW_Default; 4884 break; 4885 } 4886 return weight; 4887 } 4888 4889 /// If there are multiple different constraints that we could pick for this 4890 /// operand (e.g. "imr") try to pick the 'best' one. 4891 /// This is somewhat tricky: constraints fall into four classes: 4892 /// Other -> immediates and magic values 4893 /// Register -> one specific register 4894 /// RegisterClass -> a group of regs 4895 /// Memory -> memory 4896 /// Ideally, we would pick the most specific constraint possible: if we have 4897 /// something that fits into a register, we would pick it. The problem here 4898 /// is that if we have something that could either be in a register or in 4899 /// memory that use of the register could cause selection of *other* 4900 /// operands to fail: they might only succeed if we pick memory. Because of 4901 /// this the heuristic we use is: 4902 /// 4903 /// 1) If there is an 'other' constraint, and if the operand is valid for 4904 /// that constraint, use it. This makes us take advantage of 'i' 4905 /// constraints when available. 4906 /// 2) Otherwise, pick the most general constraint present. This prefers 4907 /// 'm' over 'r', for example. 4908 /// 4909 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4910 const TargetLowering &TLI, 4911 SDValue Op, SelectionDAG *DAG) { 4912 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4913 unsigned BestIdx = 0; 4914 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4915 int BestGenerality = -1; 4916 4917 // Loop over the options, keeping track of the most general one. 4918 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4919 TargetLowering::ConstraintType CType = 4920 TLI.getConstraintType(OpInfo.Codes[i]); 4921 4922 // Indirect 'other' or 'immediate' constraints are not allowed. 4923 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 4924 CType == TargetLowering::C_Register || 4925 CType == TargetLowering::C_RegisterClass)) 4926 continue; 4927 4928 // If this is an 'other' or 'immediate' constraint, see if the operand is 4929 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4930 // the operand is an integer in the range [0..31] we want to use I (saving a 4931 // load of a register), otherwise we must use 'r'. 4932 if ((CType == TargetLowering::C_Other || 4933 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4934 assert(OpInfo.Codes[i].size() == 1 && 4935 "Unhandled multi-letter 'other' constraint"); 4936 std::vector<SDValue> ResultOps; 4937 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4938 ResultOps, *DAG); 4939 if (!ResultOps.empty()) { 4940 BestType = CType; 4941 BestIdx = i; 4942 break; 4943 } 4944 } 4945 4946 // Things with matching constraints can only be registers, per gcc 4947 // documentation. This mainly affects "g" constraints. 4948 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4949 continue; 4950 4951 // This constraint letter is more general than the previous one, use it. 4952 int Generality = getConstraintGenerality(CType); 4953 if (Generality > BestGenerality) { 4954 BestType = CType; 4955 BestIdx = i; 4956 BestGenerality = Generality; 4957 } 4958 } 4959 4960 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4961 OpInfo.ConstraintType = BestType; 4962 } 4963 4964 /// Determines the constraint code and constraint type to use for the specific 4965 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4966 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4967 SDValue Op, 4968 SelectionDAG *DAG) const { 4969 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4970 4971 // Single-letter constraints ('r') are very common. 4972 if (OpInfo.Codes.size() == 1) { 4973 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4974 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4975 } else { 4976 ChooseConstraint(OpInfo, *this, Op, DAG); 4977 } 4978 4979 // 'X' matches anything. 4980 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4981 // Labels and constants are handled elsewhere ('X' is the only thing 4982 // that matches labels). For Functions, the type here is the type of 4983 // the result, which is not what we want to look at; leave them alone. 4984 Value *v = OpInfo.CallOperandVal; 4985 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4986 OpInfo.CallOperandVal = v; 4987 return; 4988 } 4989 4990 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4991 return; 4992 4993 // Otherwise, try to resolve it to something we know about by looking at 4994 // the actual operand type. 4995 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4996 OpInfo.ConstraintCode = Repl; 4997 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4998 } 4999 } 5000 } 5001 5002 /// Given an exact SDIV by a constant, create a multiplication 5003 /// with the multiplicative inverse of the constant. 5004 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5005 const SDLoc &dl, SelectionDAG &DAG, 5006 SmallVectorImpl<SDNode *> &Created) { 5007 SDValue Op0 = N->getOperand(0); 5008 SDValue Op1 = N->getOperand(1); 5009 EVT VT = N->getValueType(0); 5010 EVT SVT = VT.getScalarType(); 5011 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5012 EVT ShSVT = ShVT.getScalarType(); 5013 5014 bool UseSRA = false; 5015 SmallVector<SDValue, 16> Shifts, Factors; 5016 5017 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5018 if (C->isNullValue()) 5019 return false; 5020 APInt Divisor = C->getAPIntValue(); 5021 unsigned Shift = Divisor.countTrailingZeros(); 5022 if (Shift) { 5023 Divisor.ashrInPlace(Shift); 5024 UseSRA = true; 5025 } 5026 // Calculate the multiplicative inverse, using Newton's method. 5027 APInt t; 5028 APInt Factor = Divisor; 5029 while ((t = Divisor * Factor) != 1) 5030 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5031 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5032 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5033 return true; 5034 }; 5035 5036 // Collect all magic values from the build vector. 5037 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5038 return SDValue(); 5039 5040 SDValue Shift, Factor; 5041 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5042 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5043 Factor = DAG.getBuildVector(VT, dl, Factors); 5044 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5045 assert(Shifts.size() == 1 && Factors.size() == 1 && 5046 "Expected matchUnaryPredicate to return one element for scalable " 5047 "vectors"); 5048 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5049 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5050 } else { 5051 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5052 Shift = Shifts[0]; 5053 Factor = Factors[0]; 5054 } 5055 5056 SDValue Res = Op0; 5057 5058 // Shift the value upfront if it is even, so the LSB is one. 5059 if (UseSRA) { 5060 // TODO: For UDIV use SRL instead of SRA. 5061 SDNodeFlags Flags; 5062 Flags.setExact(true); 5063 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5064 Created.push_back(Res.getNode()); 5065 } 5066 5067 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5068 } 5069 5070 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5071 SelectionDAG &DAG, 5072 SmallVectorImpl<SDNode *> &Created) const { 5073 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5075 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5076 return SDValue(N, 0); // Lower SDIV as SDIV 5077 return SDValue(); 5078 } 5079 5080 /// Given an ISD::SDIV node expressing a divide by constant, 5081 /// return a DAG expression to select that will generate the same value by 5082 /// multiplying by a magic number. 5083 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5084 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5085 bool IsAfterLegalization, 5086 SmallVectorImpl<SDNode *> &Created) const { 5087 SDLoc dl(N); 5088 EVT VT = N->getValueType(0); 5089 EVT SVT = VT.getScalarType(); 5090 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5091 EVT ShSVT = ShVT.getScalarType(); 5092 unsigned EltBits = VT.getScalarSizeInBits(); 5093 EVT MulVT; 5094 5095 // Check to see if we can do this. 5096 // FIXME: We should be more aggressive here. 5097 if (!isTypeLegal(VT)) { 5098 // Limit this to simple scalars for now. 5099 if (VT.isVector() || !VT.isSimple()) 5100 return SDValue(); 5101 5102 // If this type will be promoted to a large enough type with a legal 5103 // multiply operation, we can go ahead and do this transform. 5104 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5105 return SDValue(); 5106 5107 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5108 if (MulVT.getSizeInBits() < (2 * EltBits) || 5109 !isOperationLegal(ISD::MUL, MulVT)) 5110 return SDValue(); 5111 } 5112 5113 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5114 if (N->getFlags().hasExact()) 5115 return BuildExactSDIV(*this, N, dl, DAG, Created); 5116 5117 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5118 5119 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5120 if (C->isNullValue()) 5121 return false; 5122 5123 const APInt &Divisor = C->getAPIntValue(); 5124 APInt::ms magics = Divisor.magic(); 5125 int NumeratorFactor = 0; 5126 int ShiftMask = -1; 5127 5128 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 5129 // If d is +1/-1, we just multiply the numerator by +1/-1. 5130 NumeratorFactor = Divisor.getSExtValue(); 5131 magics.m = 0; 5132 magics.s = 0; 5133 ShiftMask = 0; 5134 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 5135 // If d > 0 and m < 0, add the numerator. 5136 NumeratorFactor = 1; 5137 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 5138 // If d < 0 and m > 0, subtract the numerator. 5139 NumeratorFactor = -1; 5140 } 5141 5142 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 5143 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5144 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 5145 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5146 return true; 5147 }; 5148 5149 SDValue N0 = N->getOperand(0); 5150 SDValue N1 = N->getOperand(1); 5151 5152 // Collect the shifts / magic values from each element. 5153 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5154 return SDValue(); 5155 5156 SDValue MagicFactor, Factor, Shift, ShiftMask; 5157 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5158 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5159 Factor = DAG.getBuildVector(VT, dl, Factors); 5160 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5161 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5162 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5163 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5164 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5165 "Expected matchUnaryPredicate to return one element for scalable " 5166 "vectors"); 5167 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5168 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5169 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5170 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5171 } else { 5172 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5173 MagicFactor = MagicFactors[0]; 5174 Factor = Factors[0]; 5175 Shift = Shifts[0]; 5176 ShiftMask = ShiftMasks[0]; 5177 } 5178 5179 // Multiply the numerator (operand 0) by the magic value. 5180 // FIXME: We should support doing a MUL in a wider type. 5181 auto GetMULHS = [&](SDValue X, SDValue Y) { 5182 // If the type isn't legal, use a wider mul of the the type calculated 5183 // earlier. 5184 if (!isTypeLegal(VT)) { 5185 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5186 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5187 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5188 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5189 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5190 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5191 } 5192 5193 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5194 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5195 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5196 SDValue LoHi = 5197 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5198 return SDValue(LoHi.getNode(), 1); 5199 } 5200 return SDValue(); 5201 }; 5202 5203 SDValue Q = GetMULHS(N0, MagicFactor); 5204 if (!Q) 5205 return SDValue(); 5206 5207 Created.push_back(Q.getNode()); 5208 5209 // (Optionally) Add/subtract the numerator using Factor. 5210 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5211 Created.push_back(Factor.getNode()); 5212 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5213 Created.push_back(Q.getNode()); 5214 5215 // Shift right algebraic by shift value. 5216 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5217 Created.push_back(Q.getNode()); 5218 5219 // Extract the sign bit, mask it and add it to the quotient. 5220 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5221 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5222 Created.push_back(T.getNode()); 5223 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5224 Created.push_back(T.getNode()); 5225 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5226 } 5227 5228 /// Given an ISD::UDIV node expressing a divide by constant, 5229 /// return a DAG expression to select that will generate the same value by 5230 /// multiplying by a magic number. 5231 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5232 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5233 bool IsAfterLegalization, 5234 SmallVectorImpl<SDNode *> &Created) const { 5235 SDLoc dl(N); 5236 EVT VT = N->getValueType(0); 5237 EVT SVT = VT.getScalarType(); 5238 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5239 EVT ShSVT = ShVT.getScalarType(); 5240 unsigned EltBits = VT.getScalarSizeInBits(); 5241 EVT MulVT; 5242 5243 // Check to see if we can do this. 5244 // FIXME: We should be more aggressive here. 5245 if (!isTypeLegal(VT)) { 5246 // Limit this to simple scalars for now. 5247 if (VT.isVector() || !VT.isSimple()) 5248 return SDValue(); 5249 5250 // If this type will be promoted to a large enough type with a legal 5251 // multiply operation, we can go ahead and do this transform. 5252 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5253 return SDValue(); 5254 5255 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5256 if (MulVT.getSizeInBits() < (2 * EltBits) || 5257 !isOperationLegal(ISD::MUL, MulVT)) 5258 return SDValue(); 5259 } 5260 5261 bool UseNPQ = false; 5262 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5263 5264 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5265 if (C->isNullValue()) 5266 return false; 5267 // FIXME: We should use a narrower constant when the upper 5268 // bits are known to be zero. 5269 const APInt& Divisor = C->getAPIntValue(); 5270 APInt::mu magics = Divisor.magicu(); 5271 unsigned PreShift = 0, PostShift = 0; 5272 5273 // If the divisor is even, we can avoid using the expensive fixup by 5274 // shifting the divided value upfront. 5275 if (magics.a != 0 && !Divisor[0]) { 5276 PreShift = Divisor.countTrailingZeros(); 5277 // Get magic number for the shifted divisor. 5278 magics = Divisor.lshr(PreShift).magicu(PreShift); 5279 assert(magics.a == 0 && "Should use cheap fixup now"); 5280 } 5281 5282 APInt Magic = magics.m; 5283 5284 unsigned SelNPQ; 5285 if (magics.a == 0 || Divisor.isOneValue()) { 5286 assert(magics.s < Divisor.getBitWidth() && 5287 "We shouldn't generate an undefined shift!"); 5288 PostShift = magics.s; 5289 SelNPQ = false; 5290 } else { 5291 PostShift = magics.s - 1; 5292 SelNPQ = true; 5293 } 5294 5295 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5296 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5297 NPQFactors.push_back( 5298 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5299 : APInt::getNullValue(EltBits), 5300 dl, SVT)); 5301 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5302 UseNPQ |= SelNPQ; 5303 return true; 5304 }; 5305 5306 SDValue N0 = N->getOperand(0); 5307 SDValue N1 = N->getOperand(1); 5308 5309 // Collect the shifts/magic values from each element. 5310 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5311 return SDValue(); 5312 5313 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5314 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5315 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5316 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5317 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5318 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5319 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5320 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5321 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5322 "Expected matchUnaryPredicate to return one for scalable vectors"); 5323 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5324 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5325 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5326 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5327 } else { 5328 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5329 PreShift = PreShifts[0]; 5330 MagicFactor = MagicFactors[0]; 5331 PostShift = PostShifts[0]; 5332 } 5333 5334 SDValue Q = N0; 5335 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5336 Created.push_back(Q.getNode()); 5337 5338 // FIXME: We should support doing a MUL in a wider type. 5339 auto GetMULHU = [&](SDValue X, SDValue Y) { 5340 // If the type isn't legal, use a wider mul of the the type calculated 5341 // earlier. 5342 if (!isTypeLegal(VT)) { 5343 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5344 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5345 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5346 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5347 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5348 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5349 } 5350 5351 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5352 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5353 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5354 SDValue LoHi = 5355 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5356 return SDValue(LoHi.getNode(), 1); 5357 } 5358 return SDValue(); // No mulhu or equivalent 5359 }; 5360 5361 // Multiply the numerator (operand 0) by the magic value. 5362 Q = GetMULHU(Q, MagicFactor); 5363 if (!Q) 5364 return SDValue(); 5365 5366 Created.push_back(Q.getNode()); 5367 5368 if (UseNPQ) { 5369 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5370 Created.push_back(NPQ.getNode()); 5371 5372 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5373 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5374 if (VT.isVector()) 5375 NPQ = GetMULHU(NPQ, NPQFactor); 5376 else 5377 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5378 5379 Created.push_back(NPQ.getNode()); 5380 5381 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5382 Created.push_back(Q.getNode()); 5383 } 5384 5385 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5386 Created.push_back(Q.getNode()); 5387 5388 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5389 5390 SDValue One = DAG.getConstant(1, dl, VT); 5391 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5392 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5393 } 5394 5395 /// If all values in Values that *don't* match the predicate are same 'splat' 5396 /// value, then replace all values with that splat value. 5397 /// Else, if AlternativeReplacement was provided, then replace all values that 5398 /// do match predicate with AlternativeReplacement value. 5399 static void 5400 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5401 std::function<bool(SDValue)> Predicate, 5402 SDValue AlternativeReplacement = SDValue()) { 5403 SDValue Replacement; 5404 // Is there a value for which the Predicate does *NOT* match? What is it? 5405 auto SplatValue = llvm::find_if_not(Values, Predicate); 5406 if (SplatValue != Values.end()) { 5407 // Does Values consist only of SplatValue's and values matching Predicate? 5408 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5409 return Value == *SplatValue || Predicate(Value); 5410 })) // Then we shall replace values matching predicate with SplatValue. 5411 Replacement = *SplatValue; 5412 } 5413 if (!Replacement) { 5414 // Oops, we did not find the "baseline" splat value. 5415 if (!AlternativeReplacement) 5416 return; // Nothing to do. 5417 // Let's replace with provided value then. 5418 Replacement = AlternativeReplacement; 5419 } 5420 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5421 } 5422 5423 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5424 /// where the divisor is constant and the comparison target is zero, 5425 /// return a DAG expression that will generate the same comparison result 5426 /// using only multiplications, additions and shifts/rotations. 5427 /// Ref: "Hacker's Delight" 10-17. 5428 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5429 SDValue CompTargetNode, 5430 ISD::CondCode Cond, 5431 DAGCombinerInfo &DCI, 5432 const SDLoc &DL) const { 5433 SmallVector<SDNode *, 5> Built; 5434 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5435 DCI, DL, Built)) { 5436 for (SDNode *N : Built) 5437 DCI.AddToWorklist(N); 5438 return Folded; 5439 } 5440 5441 return SDValue(); 5442 } 5443 5444 SDValue 5445 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5446 SDValue CompTargetNode, ISD::CondCode Cond, 5447 DAGCombinerInfo &DCI, const SDLoc &DL, 5448 SmallVectorImpl<SDNode *> &Created) const { 5449 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5450 // - D must be constant, with D = D0 * 2^K where D0 is odd 5451 // - P is the multiplicative inverse of D0 modulo 2^W 5452 // - Q = floor(((2^W) - 1) / D) 5453 // where W is the width of the common type of N and D. 5454 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5455 "Only applicable for (in)equality comparisons."); 5456 5457 SelectionDAG &DAG = DCI.DAG; 5458 5459 EVT VT = REMNode.getValueType(); 5460 EVT SVT = VT.getScalarType(); 5461 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5462 EVT ShSVT = ShVT.getScalarType(); 5463 5464 // If MUL is unavailable, we cannot proceed in any case. 5465 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5466 return SDValue(); 5467 5468 bool ComparingWithAllZeros = true; 5469 bool AllComparisonsWithNonZerosAreTautological = true; 5470 bool HadTautologicalLanes = false; 5471 bool AllLanesAreTautological = true; 5472 bool HadEvenDivisor = false; 5473 bool AllDivisorsArePowerOfTwo = true; 5474 bool HadTautologicalInvertedLanes = false; 5475 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5476 5477 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5478 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5479 if (CDiv->isNullValue()) 5480 return false; 5481 5482 const APInt &D = CDiv->getAPIntValue(); 5483 const APInt &Cmp = CCmp->getAPIntValue(); 5484 5485 ComparingWithAllZeros &= Cmp.isNullValue(); 5486 5487 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5488 // if C2 is not less than C1, the comparison is always false. 5489 // But we will only be able to produce the comparison that will give the 5490 // opposive tautological answer. So this lane would need to be fixed up. 5491 bool TautologicalInvertedLane = D.ule(Cmp); 5492 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5493 5494 // If all lanes are tautological (either all divisors are ones, or divisor 5495 // is not greater than the constant we are comparing with), 5496 // we will prefer to avoid the fold. 5497 bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane; 5498 HadTautologicalLanes |= TautologicalLane; 5499 AllLanesAreTautological &= TautologicalLane; 5500 5501 // If we are comparing with non-zero, we need'll need to subtract said 5502 // comparison value from the LHS. But there is no point in doing that if 5503 // every lane where we are comparing with non-zero is tautological.. 5504 if (!Cmp.isNullValue()) 5505 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5506 5507 // Decompose D into D0 * 2^K 5508 unsigned K = D.countTrailingZeros(); 5509 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5510 APInt D0 = D.lshr(K); 5511 5512 // D is even if it has trailing zeros. 5513 HadEvenDivisor |= (K != 0); 5514 // D is a power-of-two if D0 is one. 5515 // If all divisors are power-of-two, we will prefer to avoid the fold. 5516 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5517 5518 // P = inv(D0, 2^W) 5519 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5520 unsigned W = D.getBitWidth(); 5521 APInt P = D0.zext(W + 1) 5522 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5523 .trunc(W); 5524 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5525 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5526 5527 // Q = floor((2^W - 1) u/ D) 5528 // R = ((2^W - 1) u% D) 5529 APInt Q, R; 5530 APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R); 5531 5532 // If we are comparing with zero, then that comparison constant is okay, 5533 // else it may need to be one less than that. 5534 if (Cmp.ugt(R)) 5535 Q -= 1; 5536 5537 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5538 "We are expecting that K is always less than all-ones for ShSVT"); 5539 5540 // If the lane is tautological the result can be constant-folded. 5541 if (TautologicalLane) { 5542 // Set P and K amount to a bogus values so we can try to splat them. 5543 P = 0; 5544 K = -1; 5545 // And ensure that comparison constant is tautological, 5546 // it will always compare true/false. 5547 Q = -1; 5548 } 5549 5550 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5551 KAmts.push_back( 5552 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5553 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5554 return true; 5555 }; 5556 5557 SDValue N = REMNode.getOperand(0); 5558 SDValue D = REMNode.getOperand(1); 5559 5560 // Collect the values from each element. 5561 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5562 return SDValue(); 5563 5564 // If all lanes are tautological, the result can be constant-folded. 5565 if (AllLanesAreTautological) 5566 return SDValue(); 5567 5568 // If this is a urem by a powers-of-two, avoid the fold since it can be 5569 // best implemented as a bit test. 5570 if (AllDivisorsArePowerOfTwo) 5571 return SDValue(); 5572 5573 SDValue PVal, KVal, QVal; 5574 if (VT.isVector()) { 5575 if (HadTautologicalLanes) { 5576 // Try to turn PAmts into a splat, since we don't care about the values 5577 // that are currently '0'. If we can't, just keep '0'`s. 5578 turnVectorIntoSplatVector(PAmts, isNullConstant); 5579 // Try to turn KAmts into a splat, since we don't care about the values 5580 // that are currently '-1'. If we can't, change them to '0'`s. 5581 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5582 DAG.getConstant(0, DL, ShSVT)); 5583 } 5584 5585 PVal = DAG.getBuildVector(VT, DL, PAmts); 5586 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5587 QVal = DAG.getBuildVector(VT, DL, QAmts); 5588 } else { 5589 PVal = PAmts[0]; 5590 KVal = KAmts[0]; 5591 QVal = QAmts[0]; 5592 } 5593 5594 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5595 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5596 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5597 assert(CompTargetNode.getValueType() == N.getValueType() && 5598 "Expecting that the types on LHS and RHS of comparisons match."); 5599 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5600 } 5601 5602 // (mul N, P) 5603 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5604 Created.push_back(Op0.getNode()); 5605 5606 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5607 // divisors as a performance improvement, since rotating by 0 is a no-op. 5608 if (HadEvenDivisor) { 5609 // We need ROTR to do this. 5610 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5611 return SDValue(); 5612 SDNodeFlags Flags; 5613 Flags.setExact(true); 5614 // UREM: (rotr (mul N, P), K) 5615 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5616 Created.push_back(Op0.getNode()); 5617 } 5618 5619 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5620 SDValue NewCC = 5621 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5622 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5623 if (!HadTautologicalInvertedLanes) 5624 return NewCC; 5625 5626 // If any lanes previously compared always-false, the NewCC will give 5627 // always-true result for them, so we need to fixup those lanes. 5628 // Or the other way around for inequality predicate. 5629 assert(VT.isVector() && "Can/should only get here for vectors."); 5630 Created.push_back(NewCC.getNode()); 5631 5632 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5633 // if C2 is not less than C1, the comparison is always false. 5634 // But we have produced the comparison that will give the 5635 // opposive tautological answer. So these lanes would need to be fixed up. 5636 SDValue TautologicalInvertedChannels = 5637 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5638 Created.push_back(TautologicalInvertedChannels.getNode()); 5639 5640 // NOTE: we avoid letting illegal types through even if we're before legalize 5641 // ops – legalization has a hard time producing good code for this. 5642 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5643 // If we have a vector select, let's replace the comparison results in the 5644 // affected lanes with the correct tautological result. 5645 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5646 DL, SETCCVT, SETCCVT); 5647 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5648 Replacement, NewCC); 5649 } 5650 5651 // Else, we can just invert the comparison result in the appropriate lanes. 5652 // 5653 // NOTE: see the note above VSELECT above. 5654 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5655 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5656 TautologicalInvertedChannels); 5657 5658 return SDValue(); // Don't know how to lower. 5659 } 5660 5661 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5662 /// where the divisor is constant and the comparison target is zero, 5663 /// return a DAG expression that will generate the same comparison result 5664 /// using only multiplications, additions and shifts/rotations. 5665 /// Ref: "Hacker's Delight" 10-17. 5666 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5667 SDValue CompTargetNode, 5668 ISD::CondCode Cond, 5669 DAGCombinerInfo &DCI, 5670 const SDLoc &DL) const { 5671 SmallVector<SDNode *, 7> Built; 5672 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5673 DCI, DL, Built)) { 5674 assert(Built.size() <= 7 && "Max size prediction failed."); 5675 for (SDNode *N : Built) 5676 DCI.AddToWorklist(N); 5677 return Folded; 5678 } 5679 5680 return SDValue(); 5681 } 5682 5683 SDValue 5684 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5685 SDValue CompTargetNode, ISD::CondCode Cond, 5686 DAGCombinerInfo &DCI, const SDLoc &DL, 5687 SmallVectorImpl<SDNode *> &Created) const { 5688 // Fold: 5689 // (seteq/ne (srem N, D), 0) 5690 // To: 5691 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5692 // 5693 // - D must be constant, with D = D0 * 2^K where D0 is odd 5694 // - P is the multiplicative inverse of D0 modulo 2^W 5695 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5696 // - Q = floor((2 * A) / (2^K)) 5697 // where W is the width of the common type of N and D. 5698 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5699 "Only applicable for (in)equality comparisons."); 5700 5701 SelectionDAG &DAG = DCI.DAG; 5702 5703 EVT VT = REMNode.getValueType(); 5704 EVT SVT = VT.getScalarType(); 5705 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5706 EVT ShSVT = ShVT.getScalarType(); 5707 5708 // If we are after ops legalization, and MUL is unavailable, we can not 5709 // proceed. 5710 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5711 return SDValue(); 5712 5713 // TODO: Could support comparing with non-zero too. 5714 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5715 if (!CompTarget || !CompTarget->isNullValue()) 5716 return SDValue(); 5717 5718 bool HadIntMinDivisor = false; 5719 bool HadOneDivisor = false; 5720 bool AllDivisorsAreOnes = true; 5721 bool HadEvenDivisor = false; 5722 bool NeedToApplyOffset = false; 5723 bool AllDivisorsArePowerOfTwo = true; 5724 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5725 5726 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5727 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5728 if (C->isNullValue()) 5729 return false; 5730 5731 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5732 5733 // WARNING: this fold is only valid for positive divisors! 5734 APInt D = C->getAPIntValue(); 5735 if (D.isNegative()) 5736 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5737 5738 HadIntMinDivisor |= D.isMinSignedValue(); 5739 5740 // If all divisors are ones, we will prefer to avoid the fold. 5741 HadOneDivisor |= D.isOneValue(); 5742 AllDivisorsAreOnes &= D.isOneValue(); 5743 5744 // Decompose D into D0 * 2^K 5745 unsigned K = D.countTrailingZeros(); 5746 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5747 APInt D0 = D.lshr(K); 5748 5749 if (!D.isMinSignedValue()) { 5750 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5751 // we don't care about this lane in this fold, we'll special-handle it. 5752 HadEvenDivisor |= (K != 0); 5753 } 5754 5755 // D is a power-of-two if D0 is one. This includes INT_MIN. 5756 // If all divisors are power-of-two, we will prefer to avoid the fold. 5757 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5758 5759 // P = inv(D0, 2^W) 5760 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5761 unsigned W = D.getBitWidth(); 5762 APInt P = D0.zext(W + 1) 5763 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5764 .trunc(W); 5765 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5766 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5767 5768 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5769 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5770 A.clearLowBits(K); 5771 5772 if (!D.isMinSignedValue()) { 5773 // If divisor INT_MIN, then we don't care about this lane in this fold, 5774 // we'll special-handle it. 5775 NeedToApplyOffset |= A != 0; 5776 } 5777 5778 // Q = floor((2 * A) / (2^K)) 5779 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5780 5781 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5782 "We are expecting that A is always less than all-ones for SVT"); 5783 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5784 "We are expecting that K is always less than all-ones for ShSVT"); 5785 5786 // If the divisor is 1 the result can be constant-folded. Likewise, we 5787 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5788 if (D.isOneValue()) { 5789 // Set P, A and K to a bogus values so we can try to splat them. 5790 P = 0; 5791 A = -1; 5792 K = -1; 5793 5794 // x ?% 1 == 0 <--> true <--> x u<= -1 5795 Q = -1; 5796 } 5797 5798 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5799 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5800 KAmts.push_back( 5801 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5802 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5803 return true; 5804 }; 5805 5806 SDValue N = REMNode.getOperand(0); 5807 SDValue D = REMNode.getOperand(1); 5808 5809 // Collect the values from each element. 5810 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5811 return SDValue(); 5812 5813 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5814 if (AllDivisorsAreOnes) 5815 return SDValue(); 5816 5817 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5818 // since it can be best implemented as a bit test. 5819 if (AllDivisorsArePowerOfTwo) 5820 return SDValue(); 5821 5822 SDValue PVal, AVal, KVal, QVal; 5823 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5824 if (HadOneDivisor) { 5825 // Try to turn PAmts into a splat, since we don't care about the values 5826 // that are currently '0'. If we can't, just keep '0'`s. 5827 turnVectorIntoSplatVector(PAmts, isNullConstant); 5828 // Try to turn AAmts into a splat, since we don't care about the 5829 // values that are currently '-1'. If we can't, change them to '0'`s. 5830 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5831 DAG.getConstant(0, DL, SVT)); 5832 // Try to turn KAmts into a splat, since we don't care about the values 5833 // that are currently '-1'. If we can't, change them to '0'`s. 5834 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5835 DAG.getConstant(0, DL, ShSVT)); 5836 } 5837 5838 PVal = DAG.getBuildVector(VT, DL, PAmts); 5839 AVal = DAG.getBuildVector(VT, DL, AAmts); 5840 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5841 QVal = DAG.getBuildVector(VT, DL, QAmts); 5842 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5843 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 5844 QAmts.size() == 1 && 5845 "Expected matchUnaryPredicate to return one element for scalable " 5846 "vectors"); 5847 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5848 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 5849 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5850 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5851 } else { 5852 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 5853 PVal = PAmts[0]; 5854 AVal = AAmts[0]; 5855 KVal = KAmts[0]; 5856 QVal = QAmts[0]; 5857 } 5858 5859 // (mul N, P) 5860 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5861 Created.push_back(Op0.getNode()); 5862 5863 if (NeedToApplyOffset) { 5864 // We need ADD to do this. 5865 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 5866 return SDValue(); 5867 5868 // (add (mul N, P), A) 5869 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5870 Created.push_back(Op0.getNode()); 5871 } 5872 5873 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5874 // divisors as a performance improvement, since rotating by 0 is a no-op. 5875 if (HadEvenDivisor) { 5876 // We need ROTR to do this. 5877 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5878 return SDValue(); 5879 SDNodeFlags Flags; 5880 Flags.setExact(true); 5881 // SREM: (rotr (add (mul N, P), A), K) 5882 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5883 Created.push_back(Op0.getNode()); 5884 } 5885 5886 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5887 SDValue Fold = 5888 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5889 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5890 5891 // If we didn't have lanes with INT_MIN divisor, then we're done. 5892 if (!HadIntMinDivisor) 5893 return Fold; 5894 5895 // That fold is only valid for positive divisors. Which effectively means, 5896 // it is invalid for INT_MIN divisors. So if we have such a lane, 5897 // we must fix-up results for said lanes. 5898 assert(VT.isVector() && "Can/should only get here for vectors."); 5899 5900 // NOTE: we avoid letting illegal types through even if we're before legalize 5901 // ops – legalization has a hard time producing good code for the code that 5902 // follows. 5903 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5904 !isOperationLegalOrCustom(ISD::AND, VT) || 5905 !isOperationLegalOrCustom(Cond, VT) || 5906 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5907 return SDValue(); 5908 5909 Created.push_back(Fold.getNode()); 5910 5911 SDValue IntMin = DAG.getConstant( 5912 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5913 SDValue IntMax = DAG.getConstant( 5914 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5915 SDValue Zero = 5916 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5917 5918 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5919 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5920 Created.push_back(DivisorIsIntMin.getNode()); 5921 5922 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5923 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5924 Created.push_back(Masked.getNode()); 5925 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5926 Created.push_back(MaskedIsZero.getNode()); 5927 5928 // To produce final result we need to blend 2 vectors: 'SetCC' and 5929 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5930 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5931 // constant-folded, select can get lowered to a shuffle with constant mask. 5932 SDValue Blended = 5933 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5934 5935 return Blended; 5936 } 5937 5938 bool TargetLowering:: 5939 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5940 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5941 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5942 "be a constant integer"); 5943 return true; 5944 } 5945 5946 return false; 5947 } 5948 5949 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 5950 const DenormalMode &Mode) const { 5951 SDLoc DL(Op); 5952 EVT VT = Op.getValueType(); 5953 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5954 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 5955 // Testing it with denormal inputs to avoid wrong estimate. 5956 if (Mode.Input == DenormalMode::IEEE) { 5957 // This is specifically a check for the handling of denormal inputs, 5958 // not the result. 5959 5960 // Test = fabs(X) < SmallestNormal 5961 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 5962 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 5963 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 5964 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 5965 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 5966 } 5967 // Test = X == 0.0 5968 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 5969 } 5970 5971 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 5972 bool LegalOps, bool OptForSize, 5973 NegatibleCost &Cost, 5974 unsigned Depth) const { 5975 // fneg is removable even if it has multiple uses. 5976 if (Op.getOpcode() == ISD::FNEG) { 5977 Cost = NegatibleCost::Cheaper; 5978 return Op.getOperand(0); 5979 } 5980 5981 // Don't recurse exponentially. 5982 if (Depth > SelectionDAG::MaxRecursionDepth) 5983 return SDValue(); 5984 5985 // Pre-increment recursion depth for use in recursive calls. 5986 ++Depth; 5987 const SDNodeFlags Flags = Op->getFlags(); 5988 const TargetOptions &Options = DAG.getTarget().Options; 5989 EVT VT = Op.getValueType(); 5990 unsigned Opcode = Op.getOpcode(); 5991 5992 // Don't allow anything with multiple uses unless we know it is free. 5993 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 5994 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 5995 isFPExtFree(VT, Op.getOperand(0).getValueType()); 5996 if (!IsFreeExtend) 5997 return SDValue(); 5998 } 5999 6000 auto RemoveDeadNode = [&](SDValue N) { 6001 if (N && N.getNode()->use_empty()) 6002 DAG.RemoveDeadNode(N.getNode()); 6003 }; 6004 6005 SDLoc DL(Op); 6006 6007 // Because getNegatedExpression can delete nodes we need a handle to keep 6008 // temporary nodes alive in case the recursion manages to create an identical 6009 // node. 6010 std::list<HandleSDNode> Handles; 6011 6012 switch (Opcode) { 6013 case ISD::ConstantFP: { 6014 // Don't invert constant FP values after legalization unless the target says 6015 // the negated constant is legal. 6016 bool IsOpLegal = 6017 isOperationLegal(ISD::ConstantFP, VT) || 6018 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6019 OptForSize); 6020 6021 if (LegalOps && !IsOpLegal) 6022 break; 6023 6024 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6025 V.changeSign(); 6026 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6027 6028 // If we already have the use of the negated floating constant, it is free 6029 // to negate it even it has multiple uses. 6030 if (!Op.hasOneUse() && CFP.use_empty()) 6031 break; 6032 Cost = NegatibleCost::Neutral; 6033 return CFP; 6034 } 6035 case ISD::BUILD_VECTOR: { 6036 // Only permit BUILD_VECTOR of constants. 6037 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6038 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6039 })) 6040 break; 6041 6042 bool IsOpLegal = 6043 (isOperationLegal(ISD::ConstantFP, VT) && 6044 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6045 llvm::all_of(Op->op_values(), [&](SDValue N) { 6046 return N.isUndef() || 6047 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6048 OptForSize); 6049 }); 6050 6051 if (LegalOps && !IsOpLegal) 6052 break; 6053 6054 SmallVector<SDValue, 4> Ops; 6055 for (SDValue C : Op->op_values()) { 6056 if (C.isUndef()) { 6057 Ops.push_back(C); 6058 continue; 6059 } 6060 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6061 V.changeSign(); 6062 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6063 } 6064 Cost = NegatibleCost::Neutral; 6065 return DAG.getBuildVector(VT, DL, Ops); 6066 } 6067 case ISD::FADD: { 6068 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6069 break; 6070 6071 // After operation legalization, it might not be legal to create new FSUBs. 6072 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6073 break; 6074 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6075 6076 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6077 NegatibleCost CostX = NegatibleCost::Expensive; 6078 SDValue NegX = 6079 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6080 // Prevent this node from being deleted by the next call. 6081 if (NegX) 6082 Handles.emplace_back(NegX); 6083 6084 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6085 NegatibleCost CostY = NegatibleCost::Expensive; 6086 SDValue NegY = 6087 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6088 6089 // We're done with the handles. 6090 Handles.clear(); 6091 6092 // Negate the X if its cost is less or equal than Y. 6093 if (NegX && (CostX <= CostY)) { 6094 Cost = CostX; 6095 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6096 if (NegY != N) 6097 RemoveDeadNode(NegY); 6098 return N; 6099 } 6100 6101 // Negate the Y if it is not expensive. 6102 if (NegY) { 6103 Cost = CostY; 6104 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6105 if (NegX != N) 6106 RemoveDeadNode(NegX); 6107 return N; 6108 } 6109 break; 6110 } 6111 case ISD::FSUB: { 6112 // We can't turn -(A-B) into B-A when we honor signed zeros. 6113 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6114 break; 6115 6116 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6117 // fold (fneg (fsub 0, Y)) -> Y 6118 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6119 if (C->isZero()) { 6120 Cost = NegatibleCost::Cheaper; 6121 return Y; 6122 } 6123 6124 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6125 Cost = NegatibleCost::Neutral; 6126 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6127 } 6128 case ISD::FMUL: 6129 case ISD::FDIV: { 6130 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6131 6132 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6133 NegatibleCost CostX = NegatibleCost::Expensive; 6134 SDValue NegX = 6135 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6136 // Prevent this node from being deleted by the next call. 6137 if (NegX) 6138 Handles.emplace_back(NegX); 6139 6140 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6141 NegatibleCost CostY = NegatibleCost::Expensive; 6142 SDValue NegY = 6143 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6144 6145 // We're done with the handles. 6146 Handles.clear(); 6147 6148 // Negate the X if its cost is less or equal than Y. 6149 if (NegX && (CostX <= CostY)) { 6150 Cost = CostX; 6151 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6152 if (NegY != N) 6153 RemoveDeadNode(NegY); 6154 return N; 6155 } 6156 6157 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6158 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6159 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6160 break; 6161 6162 // Negate the Y if it is not expensive. 6163 if (NegY) { 6164 Cost = CostY; 6165 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6166 if (NegX != N) 6167 RemoveDeadNode(NegX); 6168 return N; 6169 } 6170 break; 6171 } 6172 case ISD::FMA: 6173 case ISD::FMAD: { 6174 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6175 break; 6176 6177 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6178 NegatibleCost CostZ = NegatibleCost::Expensive; 6179 SDValue NegZ = 6180 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6181 // Give up if fail to negate the Z. 6182 if (!NegZ) 6183 break; 6184 6185 // Prevent this node from being deleted by the next two calls. 6186 Handles.emplace_back(NegZ); 6187 6188 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6189 NegatibleCost CostX = NegatibleCost::Expensive; 6190 SDValue NegX = 6191 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6192 // Prevent this node from being deleted by the next call. 6193 if (NegX) 6194 Handles.emplace_back(NegX); 6195 6196 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6197 NegatibleCost CostY = NegatibleCost::Expensive; 6198 SDValue NegY = 6199 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6200 6201 // We're done with the handles. 6202 Handles.clear(); 6203 6204 // Negate the X if its cost is less or equal than Y. 6205 if (NegX && (CostX <= CostY)) { 6206 Cost = std::min(CostX, CostZ); 6207 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6208 if (NegY != N) 6209 RemoveDeadNode(NegY); 6210 return N; 6211 } 6212 6213 // Negate the Y if it is not expensive. 6214 if (NegY) { 6215 Cost = std::min(CostY, CostZ); 6216 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6217 if (NegX != N) 6218 RemoveDeadNode(NegX); 6219 return N; 6220 } 6221 break; 6222 } 6223 6224 case ISD::FP_EXTEND: 6225 case ISD::FSIN: 6226 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6227 OptForSize, Cost, Depth)) 6228 return DAG.getNode(Opcode, DL, VT, NegV); 6229 break; 6230 case ISD::FP_ROUND: 6231 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6232 OptForSize, Cost, Depth)) 6233 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6234 break; 6235 } 6236 6237 return SDValue(); 6238 } 6239 6240 //===----------------------------------------------------------------------===// 6241 // Legalization Utilities 6242 //===----------------------------------------------------------------------===// 6243 6244 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6245 SDValue LHS, SDValue RHS, 6246 SmallVectorImpl<SDValue> &Result, 6247 EVT HiLoVT, SelectionDAG &DAG, 6248 MulExpansionKind Kind, SDValue LL, 6249 SDValue LH, SDValue RL, SDValue RH) const { 6250 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6251 Opcode == ISD::SMUL_LOHI); 6252 6253 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6254 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6255 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6256 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6257 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6258 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6259 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6260 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6261 6262 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6263 return false; 6264 6265 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6266 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6267 6268 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6269 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6270 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6271 6272 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6273 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6274 bool Signed) -> bool { 6275 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6276 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6277 Hi = SDValue(Lo.getNode(), 1); 6278 return true; 6279 } 6280 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6281 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6282 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6283 return true; 6284 } 6285 return false; 6286 }; 6287 6288 SDValue Lo, Hi; 6289 6290 if (!LL.getNode() && !RL.getNode() && 6291 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6292 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6293 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6294 } 6295 6296 if (!LL.getNode()) 6297 return false; 6298 6299 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6300 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6301 DAG.MaskedValueIsZero(RHS, HighMask)) { 6302 // The inputs are both zero-extended. 6303 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6304 Result.push_back(Lo); 6305 Result.push_back(Hi); 6306 if (Opcode != ISD::MUL) { 6307 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6308 Result.push_back(Zero); 6309 Result.push_back(Zero); 6310 } 6311 return true; 6312 } 6313 } 6314 6315 if (!VT.isVector() && Opcode == ISD::MUL && 6316 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6317 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6318 // The input values are both sign-extended. 6319 // TODO non-MUL case? 6320 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6321 Result.push_back(Lo); 6322 Result.push_back(Hi); 6323 return true; 6324 } 6325 } 6326 6327 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6328 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6329 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 6330 // FIXME getShiftAmountTy does not always return a sensible result when VT 6331 // is an illegal type, and so the type may be too small to fit the shift 6332 // amount. Override it with i32. The shift will have to be legalized. 6333 ShiftAmountTy = MVT::i32; 6334 } 6335 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6336 6337 if (!LH.getNode() && !RH.getNode() && 6338 isOperationLegalOrCustom(ISD::SRL, VT) && 6339 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6340 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6341 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6342 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6343 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6344 } 6345 6346 if (!LH.getNode()) 6347 return false; 6348 6349 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6350 return false; 6351 6352 Result.push_back(Lo); 6353 6354 if (Opcode == ISD::MUL) { 6355 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6356 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6357 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6358 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6359 Result.push_back(Hi); 6360 return true; 6361 } 6362 6363 // Compute the full width result. 6364 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6365 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6366 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6367 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6368 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6369 }; 6370 6371 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6372 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6373 return false; 6374 6375 // This is effectively the add part of a multiply-add of half-sized operands, 6376 // so it cannot overflow. 6377 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6378 6379 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6380 return false; 6381 6382 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6383 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6384 6385 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6386 isOperationLegalOrCustom(ISD::ADDE, VT)); 6387 if (UseGlue) 6388 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6389 Merge(Lo, Hi)); 6390 else 6391 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6392 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6393 6394 SDValue Carry = Next.getValue(1); 6395 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6396 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6397 6398 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6399 return false; 6400 6401 if (UseGlue) 6402 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6403 Carry); 6404 else 6405 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6406 Zero, Carry); 6407 6408 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6409 6410 if (Opcode == ISD::SMUL_LOHI) { 6411 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6412 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6413 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6414 6415 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6416 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6417 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6418 } 6419 6420 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6421 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6422 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6423 return true; 6424 } 6425 6426 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6427 SelectionDAG &DAG, MulExpansionKind Kind, 6428 SDValue LL, SDValue LH, SDValue RL, 6429 SDValue RH) const { 6430 SmallVector<SDValue, 2> Result; 6431 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6432 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6433 DAG, Kind, LL, LH, RL, RH); 6434 if (Ok) { 6435 assert(Result.size() == 2); 6436 Lo = Result[0]; 6437 Hi = Result[1]; 6438 } 6439 return Ok; 6440 } 6441 6442 // Check that (every element of) Z is undef or not an exact multiple of BW. 6443 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6444 return ISD::matchUnaryPredicate( 6445 Z, 6446 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6447 true); 6448 } 6449 6450 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 6451 SelectionDAG &DAG) const { 6452 EVT VT = Node->getValueType(0); 6453 6454 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6455 !isOperationLegalOrCustom(ISD::SRL, VT) || 6456 !isOperationLegalOrCustom(ISD::SUB, VT) || 6457 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6458 return false; 6459 6460 SDValue X = Node->getOperand(0); 6461 SDValue Y = Node->getOperand(1); 6462 SDValue Z = Node->getOperand(2); 6463 6464 unsigned BW = VT.getScalarSizeInBits(); 6465 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6466 SDLoc DL(SDValue(Node, 0)); 6467 6468 EVT ShVT = Z.getValueType(); 6469 6470 // If a funnel shift in the other direction is more supported, use it. 6471 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6472 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6473 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6474 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6475 // fshl X, Y, Z -> fshr X, Y, -Z 6476 // fshr X, Y, Z -> fshl X, Y, -Z 6477 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6478 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6479 } else { 6480 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6481 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6482 SDValue One = DAG.getConstant(1, DL, ShVT); 6483 if (IsFSHL) { 6484 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6485 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6486 } else { 6487 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6488 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6489 } 6490 Z = DAG.getNOT(DL, Z, ShVT); 6491 } 6492 Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6493 return true; 6494 } 6495 6496 SDValue ShX, ShY; 6497 SDValue ShAmt, InvShAmt; 6498 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6499 // fshl: X << C | Y >> (BW - C) 6500 // fshr: X << (BW - C) | Y >> C 6501 // where C = Z % BW is not zero 6502 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6503 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6504 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6505 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6506 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6507 } else { 6508 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6509 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6510 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6511 if (isPowerOf2_32(BW)) { 6512 // Z % BW -> Z & (BW - 1) 6513 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6514 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6515 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6516 } else { 6517 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6518 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6519 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6520 } 6521 6522 SDValue One = DAG.getConstant(1, DL, ShVT); 6523 if (IsFSHL) { 6524 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6525 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6526 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6527 } else { 6528 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6529 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6530 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6531 } 6532 } 6533 Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6534 return true; 6535 } 6536 6537 // TODO: Merge with expandFunnelShift. 6538 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6539 SDValue &Result, SelectionDAG &DAG) const { 6540 EVT VT = Node->getValueType(0); 6541 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6542 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6543 SDValue Op0 = Node->getOperand(0); 6544 SDValue Op1 = Node->getOperand(1); 6545 SDLoc DL(SDValue(Node, 0)); 6546 6547 EVT ShVT = Op1.getValueType(); 6548 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6549 6550 // If a rotate in the other direction is supported, use it. 6551 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6552 if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6553 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6554 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 6555 return true; 6556 } 6557 6558 if (!AllowVectorOps && VT.isVector() && 6559 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6560 !isOperationLegalOrCustom(ISD::SRL, VT) || 6561 !isOperationLegalOrCustom(ISD::SUB, VT) || 6562 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6563 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6564 return false; 6565 6566 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6567 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6568 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6569 SDValue ShVal; 6570 SDValue HsVal; 6571 if (isPowerOf2_32(EltSizeInBits)) { 6572 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6573 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6574 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6575 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6576 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6577 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6578 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6579 } else { 6580 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6581 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6582 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6583 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6584 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6585 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6586 SDValue One = DAG.getConstant(1, DL, ShVT); 6587 HsVal = 6588 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6589 } 6590 Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6591 return true; 6592 } 6593 6594 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6595 SelectionDAG &DAG) const { 6596 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6597 EVT VT = Node->getValueType(0); 6598 unsigned VTBits = VT.getScalarSizeInBits(); 6599 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6600 6601 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6602 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6603 SDValue ShOpLo = Node->getOperand(0); 6604 SDValue ShOpHi = Node->getOperand(1); 6605 SDValue ShAmt = Node->getOperand(2); 6606 EVT ShAmtVT = ShAmt.getValueType(); 6607 EVT ShAmtCCVT = 6608 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6609 SDLoc dl(Node); 6610 6611 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6612 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6613 // away during isel. 6614 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6615 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6616 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6617 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6618 : DAG.getConstant(0, dl, VT); 6619 6620 SDValue Tmp2, Tmp3; 6621 if (IsSHL) { 6622 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6623 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6624 } else { 6625 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6626 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6627 } 6628 6629 // If the shift amount is larger or equal than the width of a part we don't 6630 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6631 // values for large shift amounts. 6632 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6633 DAG.getConstant(VTBits, dl, ShAmtVT)); 6634 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6635 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6636 6637 if (IsSHL) { 6638 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6639 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6640 } else { 6641 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6642 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6643 } 6644 } 6645 6646 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6647 SelectionDAG &DAG) const { 6648 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6649 SDValue Src = Node->getOperand(OpNo); 6650 EVT SrcVT = Src.getValueType(); 6651 EVT DstVT = Node->getValueType(0); 6652 SDLoc dl(SDValue(Node, 0)); 6653 6654 // FIXME: Only f32 to i64 conversions are supported. 6655 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6656 return false; 6657 6658 if (Node->isStrictFPOpcode()) 6659 // When a NaN is converted to an integer a trap is allowed. We can't 6660 // use this expansion here because it would eliminate that trap. Other 6661 // traps are also allowed and cannot be eliminated. See 6662 // IEEE 754-2008 sec 5.8. 6663 return false; 6664 6665 // Expand f32 -> i64 conversion 6666 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6667 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6668 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6669 EVT IntVT = SrcVT.changeTypeToInteger(); 6670 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6671 6672 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6673 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6674 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6675 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6676 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6677 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6678 6679 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6680 6681 SDValue ExponentBits = DAG.getNode( 6682 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6683 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6684 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6685 6686 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6687 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6688 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6689 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6690 6691 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6692 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6693 DAG.getConstant(0x00800000, dl, IntVT)); 6694 6695 R = DAG.getZExtOrTrunc(R, dl, DstVT); 6696 6697 R = DAG.getSelectCC( 6698 dl, Exponent, ExponentLoBit, 6699 DAG.getNode(ISD::SHL, dl, DstVT, R, 6700 DAG.getZExtOrTrunc( 6701 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 6702 dl, IntShVT)), 6703 DAG.getNode(ISD::SRL, dl, DstVT, R, 6704 DAG.getZExtOrTrunc( 6705 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 6706 dl, IntShVT)), 6707 ISD::SETGT); 6708 6709 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 6710 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 6711 6712 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 6713 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 6714 return true; 6715 } 6716 6717 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 6718 SDValue &Chain, 6719 SelectionDAG &DAG) const { 6720 SDLoc dl(SDValue(Node, 0)); 6721 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6722 SDValue Src = Node->getOperand(OpNo); 6723 6724 EVT SrcVT = Src.getValueType(); 6725 EVT DstVT = Node->getValueType(0); 6726 EVT SetCCVT = 6727 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 6728 EVT DstSetCCVT = 6729 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 6730 6731 // Only expand vector types if we have the appropriate vector bit operations. 6732 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 6733 ISD::FP_TO_SINT; 6734 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 6735 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 6736 return false; 6737 6738 // If the maximum float value is smaller then the signed integer range, 6739 // the destination signmask can't be represented by the float, so we can 6740 // just use FP_TO_SINT directly. 6741 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 6742 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 6743 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 6744 if (APFloat::opOverflow & 6745 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 6746 if (Node->isStrictFPOpcode()) { 6747 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6748 { Node->getOperand(0), Src }); 6749 Chain = Result.getValue(1); 6750 } else 6751 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6752 return true; 6753 } 6754 6755 // Don't expand it if there isn't cheap fsub instruction. 6756 if (!isOperationLegalOrCustom( 6757 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 6758 return false; 6759 6760 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 6761 SDValue Sel; 6762 6763 if (Node->isStrictFPOpcode()) { 6764 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 6765 Node->getOperand(0), /*IsSignaling*/ true); 6766 Chain = Sel.getValue(1); 6767 } else { 6768 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 6769 } 6770 6771 bool Strict = Node->isStrictFPOpcode() || 6772 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 6773 6774 if (Strict) { 6775 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 6776 // signmask then offset (the result of which should be fully representable). 6777 // Sel = Src < 0x8000000000000000 6778 // FltOfs = select Sel, 0, 0x8000000000000000 6779 // IntOfs = select Sel, 0, 0x8000000000000000 6780 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 6781 6782 // TODO: Should any fast-math-flags be set for the FSUB? 6783 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 6784 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 6785 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6786 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 6787 DAG.getConstant(0, dl, DstVT), 6788 DAG.getConstant(SignMask, dl, DstVT)); 6789 SDValue SInt; 6790 if (Node->isStrictFPOpcode()) { 6791 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 6792 { Chain, Src, FltOfs }); 6793 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 6794 { Val.getValue(1), Val }); 6795 Chain = SInt.getValue(1); 6796 } else { 6797 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 6798 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 6799 } 6800 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 6801 } else { 6802 // Expand based on maximum range of FP_TO_SINT: 6803 // True = fp_to_sint(Src) 6804 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 6805 // Result = select (Src < 0x8000000000000000), True, False 6806 6807 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 6808 // TODO: Should any fast-math-flags be set for the FSUB? 6809 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 6810 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 6811 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 6812 DAG.getConstant(SignMask, dl, DstVT)); 6813 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 6814 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 6815 } 6816 return true; 6817 } 6818 6819 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 6820 SDValue &Chain, 6821 SelectionDAG &DAG) const { 6822 // This transform is not correct for converting 0 when rounding mode is set 6823 // to round toward negative infinity which will produce -0.0. So disable under 6824 // strictfp. 6825 if (Node->isStrictFPOpcode()) 6826 return false; 6827 6828 SDValue Src = Node->getOperand(0); 6829 EVT SrcVT = Src.getValueType(); 6830 EVT DstVT = Node->getValueType(0); 6831 6832 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 6833 return false; 6834 6835 // Only expand vector types if we have the appropriate vector bit operations. 6836 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 6837 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 6838 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 6839 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 6840 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 6841 return false; 6842 6843 SDLoc dl(SDValue(Node, 0)); 6844 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 6845 6846 // Implementation of unsigned i64 to f64 following the algorithm in 6847 // __floatundidf in compiler_rt. This implementation performs rounding 6848 // correctly in all rounding modes with the exception of converting 0 6849 // when rounding toward negative infinity. In that case the fsub will produce 6850 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 6851 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 6852 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 6853 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 6854 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 6855 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 6856 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 6857 6858 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 6859 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 6860 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 6861 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 6862 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 6863 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 6864 SDValue HiSub = 6865 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 6866 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 6867 return true; 6868 } 6869 6870 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 6871 SelectionDAG &DAG) const { 6872 SDLoc dl(Node); 6873 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 6874 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 6875 EVT VT = Node->getValueType(0); 6876 6877 if (VT.isScalableVector()) 6878 report_fatal_error( 6879 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 6880 6881 if (isOperationLegalOrCustom(NewOp, VT)) { 6882 SDValue Quiet0 = Node->getOperand(0); 6883 SDValue Quiet1 = Node->getOperand(1); 6884 6885 if (!Node->getFlags().hasNoNaNs()) { 6886 // Insert canonicalizes if it's possible we need to quiet to get correct 6887 // sNaN behavior. 6888 if (!DAG.isKnownNeverSNaN(Quiet0)) { 6889 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 6890 Node->getFlags()); 6891 } 6892 if (!DAG.isKnownNeverSNaN(Quiet1)) { 6893 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 6894 Node->getFlags()); 6895 } 6896 } 6897 6898 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 6899 } 6900 6901 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 6902 // instead if there are no NaNs. 6903 if (Node->getFlags().hasNoNaNs()) { 6904 unsigned IEEE2018Op = 6905 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 6906 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 6907 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 6908 Node->getOperand(1), Node->getFlags()); 6909 } 6910 } 6911 6912 // If none of the above worked, but there are no NaNs, then expand to 6913 // a compare/select sequence. This is required for correctness since 6914 // InstCombine might have canonicalized a fcmp+select sequence to a 6915 // FMINNUM/FMAXNUM node. If we were to fall through to the default 6916 // expansion to libcall, we might introduce a link-time dependency 6917 // on libm into a file that originally did not have one. 6918 if (Node->getFlags().hasNoNaNs()) { 6919 ISD::CondCode Pred = 6920 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 6921 SDValue Op1 = Node->getOperand(0); 6922 SDValue Op2 = Node->getOperand(1); 6923 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 6924 // Copy FMF flags, but always set the no-signed-zeros flag 6925 // as this is implied by the FMINNUM/FMAXNUM semantics. 6926 SDNodeFlags Flags = Node->getFlags(); 6927 Flags.setNoSignedZeros(true); 6928 SelCC->setFlags(Flags); 6929 return SelCC; 6930 } 6931 6932 return SDValue(); 6933 } 6934 6935 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 6936 SelectionDAG &DAG) const { 6937 SDLoc dl(Node); 6938 EVT VT = Node->getValueType(0); 6939 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6940 SDValue Op = Node->getOperand(0); 6941 unsigned Len = VT.getScalarSizeInBits(); 6942 assert(VT.isInteger() && "CTPOP not implemented for this type."); 6943 6944 // TODO: Add support for irregular type lengths. 6945 if (!(Len <= 128 && Len % 8 == 0)) 6946 return false; 6947 6948 // Only expand vector types if we have the appropriate vector bit operations. 6949 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 6950 !isOperationLegalOrCustom(ISD::SUB, VT) || 6951 !isOperationLegalOrCustom(ISD::SRL, VT) || 6952 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 6953 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6954 return false; 6955 6956 // This is the "best" algorithm from 6957 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 6958 SDValue Mask55 = 6959 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 6960 SDValue Mask33 = 6961 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 6962 SDValue Mask0F = 6963 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 6964 SDValue Mask01 = 6965 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 6966 6967 // v = v - ((v >> 1) & 0x55555555...) 6968 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 6969 DAG.getNode(ISD::AND, dl, VT, 6970 DAG.getNode(ISD::SRL, dl, VT, Op, 6971 DAG.getConstant(1, dl, ShVT)), 6972 Mask55)); 6973 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 6974 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 6975 DAG.getNode(ISD::AND, dl, VT, 6976 DAG.getNode(ISD::SRL, dl, VT, Op, 6977 DAG.getConstant(2, dl, ShVT)), 6978 Mask33)); 6979 // v = (v + (v >> 4)) & 0x0F0F0F0F... 6980 Op = DAG.getNode(ISD::AND, dl, VT, 6981 DAG.getNode(ISD::ADD, dl, VT, Op, 6982 DAG.getNode(ISD::SRL, dl, VT, Op, 6983 DAG.getConstant(4, dl, ShVT))), 6984 Mask0F); 6985 // v = (v * 0x01010101...) >> (Len - 8) 6986 if (Len > 8) 6987 Op = 6988 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 6989 DAG.getConstant(Len - 8, dl, ShVT)); 6990 6991 Result = Op; 6992 return true; 6993 } 6994 6995 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 6996 SelectionDAG &DAG) const { 6997 SDLoc dl(Node); 6998 EVT VT = Node->getValueType(0); 6999 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7000 SDValue Op = Node->getOperand(0); 7001 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7002 7003 // If the non-ZERO_UNDEF version is supported we can use that instead. 7004 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7005 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 7006 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 7007 return true; 7008 } 7009 7010 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7011 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7012 EVT SetCCVT = 7013 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7014 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7015 SDValue Zero = DAG.getConstant(0, dl, VT); 7016 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7017 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7018 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7019 return true; 7020 } 7021 7022 // Only expand vector types if we have the appropriate vector bit operations. 7023 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7024 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 7025 !isOperationLegalOrCustom(ISD::SRL, VT) || 7026 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7027 return false; 7028 7029 // for now, we do this: 7030 // x = x | (x >> 1); 7031 // x = x | (x >> 2); 7032 // ... 7033 // x = x | (x >>16); 7034 // x = x | (x >>32); // for 64-bit input 7035 // return popcount(~x); 7036 // 7037 // Ref: "Hacker's Delight" by Henry Warren 7038 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7039 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7040 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7041 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7042 } 7043 Op = DAG.getNOT(dl, Op, VT); 7044 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 7045 return true; 7046 } 7047 7048 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 7049 SelectionDAG &DAG) const { 7050 SDLoc dl(Node); 7051 EVT VT = Node->getValueType(0); 7052 SDValue Op = Node->getOperand(0); 7053 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7054 7055 // If the non-ZERO_UNDEF version is supported we can use that instead. 7056 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7057 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 7058 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 7059 return true; 7060 } 7061 7062 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7063 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7064 EVT SetCCVT = 7065 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7066 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7067 SDValue Zero = DAG.getConstant(0, dl, VT); 7068 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7069 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 7070 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7071 return true; 7072 } 7073 7074 // Only expand vector types if we have the appropriate vector bit operations. 7075 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7076 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7077 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 7078 !isOperationLegalOrCustom(ISD::SUB, VT) || 7079 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7080 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7081 return false; 7082 7083 // for now, we use: { return popcount(~x & (x - 1)); } 7084 // unless the target has ctlz but not ctpop, in which case we use: 7085 // { return 32 - nlz(~x & (x-1)); } 7086 // Ref: "Hacker's Delight" by Henry Warren 7087 SDValue Tmp = DAG.getNode( 7088 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7089 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7090 7091 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7092 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7093 Result = 7094 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7095 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7096 return true; 7097 } 7098 7099 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7100 return true; 7101 } 7102 7103 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 7104 SelectionDAG &DAG, bool IsNegative) const { 7105 SDLoc dl(N); 7106 EVT VT = N->getValueType(0); 7107 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7108 SDValue Op = N->getOperand(0); 7109 7110 // abs(x) -> smax(x,sub(0,x)) 7111 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7112 isOperationLegal(ISD::SMAX, VT)) { 7113 SDValue Zero = DAG.getConstant(0, dl, VT); 7114 Result = DAG.getNode(ISD::SMAX, dl, VT, Op, 7115 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7116 return true; 7117 } 7118 7119 // abs(x) -> umin(x,sub(0,x)) 7120 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7121 isOperationLegal(ISD::UMIN, VT)) { 7122 SDValue Zero = DAG.getConstant(0, dl, VT); 7123 Result = DAG.getNode(ISD::UMIN, dl, VT, Op, 7124 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7125 return true; 7126 } 7127 7128 // 0 - abs(x) -> smin(x, sub(0,x)) 7129 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7130 isOperationLegal(ISD::SMIN, VT)) { 7131 SDValue Zero = DAG.getConstant(0, dl, VT); 7132 Result = DAG.getNode(ISD::SMIN, dl, VT, Op, 7133 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7134 return true; 7135 } 7136 7137 // Only expand vector types if we have the appropriate vector operations. 7138 if (VT.isVector() && 7139 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7140 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7141 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7142 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7143 return false; 7144 7145 SDValue Shift = 7146 DAG.getNode(ISD::SRA, dl, VT, Op, 7147 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7148 if (!IsNegative) { 7149 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 7150 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 7151 } else { 7152 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7153 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7154 Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7155 } 7156 return true; 7157 } 7158 7159 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7160 SDLoc dl(N); 7161 EVT VT = N->getValueType(0); 7162 SDValue Op = N->getOperand(0); 7163 7164 if (!VT.isSimple()) 7165 return SDValue(); 7166 7167 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7168 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7169 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7170 default: 7171 return SDValue(); 7172 case MVT::i16: 7173 // Use a rotate by 8. This can be further expanded if necessary. 7174 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7175 case MVT::i32: 7176 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7177 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7178 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7179 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7180 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7181 DAG.getConstant(0xFF0000, dl, VT)); 7182 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7183 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7184 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7185 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7186 case MVT::i64: 7187 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7188 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7189 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7190 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7191 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7192 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7193 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7194 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7195 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7196 DAG.getConstant(255ULL<<48, dl, VT)); 7197 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7198 DAG.getConstant(255ULL<<40, dl, VT)); 7199 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7200 DAG.getConstant(255ULL<<32, dl, VT)); 7201 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7202 DAG.getConstant(255ULL<<24, dl, VT)); 7203 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7204 DAG.getConstant(255ULL<<16, dl, VT)); 7205 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7206 DAG.getConstant(255ULL<<8 , dl, VT)); 7207 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7208 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7209 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7210 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7211 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7212 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7213 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7214 } 7215 } 7216 7217 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7218 SDLoc dl(N); 7219 EVT VT = N->getValueType(0); 7220 SDValue Op = N->getOperand(0); 7221 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7222 unsigned Sz = VT.getScalarSizeInBits(); 7223 7224 SDValue Tmp, Tmp2, Tmp3; 7225 7226 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7227 // and finally the i1 pairs. 7228 // TODO: We can easily support i4/i2 legal types if any target ever does. 7229 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7230 // Create the masks - repeating the pattern every byte. 7231 APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0)); 7232 APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC)); 7233 APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA)); 7234 APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7235 APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7236 APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7237 7238 // BSWAP if the type is wider than a single byte. 7239 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7240 7241 // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4) 7242 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT)); 7243 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT)); 7244 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT)); 7245 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7246 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7247 7248 // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2) 7249 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT)); 7250 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT)); 7251 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT)); 7252 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7253 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7254 7255 // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1) 7256 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT)); 7257 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT)); 7258 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT)); 7259 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7260 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7261 return Tmp; 7262 } 7263 7264 Tmp = DAG.getConstant(0, dl, VT); 7265 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7266 if (I < J) 7267 Tmp2 = 7268 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7269 else 7270 Tmp2 = 7271 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7272 7273 APInt Shift(Sz, 1); 7274 Shift <<= J; 7275 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7276 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7277 } 7278 7279 return Tmp; 7280 } 7281 7282 std::pair<SDValue, SDValue> 7283 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7284 SelectionDAG &DAG) const { 7285 SDLoc SL(LD); 7286 SDValue Chain = LD->getChain(); 7287 SDValue BasePTR = LD->getBasePtr(); 7288 EVT SrcVT = LD->getMemoryVT(); 7289 EVT DstVT = LD->getValueType(0); 7290 ISD::LoadExtType ExtType = LD->getExtensionType(); 7291 7292 if (SrcVT.isScalableVector()) 7293 report_fatal_error("Cannot scalarize scalable vector loads"); 7294 7295 unsigned NumElem = SrcVT.getVectorNumElements(); 7296 7297 EVT SrcEltVT = SrcVT.getScalarType(); 7298 EVT DstEltVT = DstVT.getScalarType(); 7299 7300 // A vector must always be stored in memory as-is, i.e. without any padding 7301 // between the elements, since various code depend on it, e.g. in the 7302 // handling of a bitcast of a vector type to int, which may be done with a 7303 // vector store followed by an integer load. A vector that does not have 7304 // elements that are byte-sized must therefore be stored as an integer 7305 // built out of the extracted vector elements. 7306 if (!SrcEltVT.isByteSized()) { 7307 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7308 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7309 7310 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7311 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7312 7313 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7314 SDValue SrcEltBitMask = DAG.getConstant( 7315 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7316 7317 // Load the whole vector and avoid masking off the top bits as it makes 7318 // the codegen worse. 7319 SDValue Load = 7320 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7321 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7322 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7323 7324 SmallVector<SDValue, 8> Vals; 7325 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7326 unsigned ShiftIntoIdx = 7327 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7328 SDValue ShiftAmount = 7329 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7330 LoadVT, SL, /*LegalTypes=*/false); 7331 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7332 SDValue Elt = 7333 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7334 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7335 7336 if (ExtType != ISD::NON_EXTLOAD) { 7337 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7338 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7339 } 7340 7341 Vals.push_back(Scalar); 7342 } 7343 7344 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7345 return std::make_pair(Value, Load.getValue(1)); 7346 } 7347 7348 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7349 assert(SrcEltVT.isByteSized()); 7350 7351 SmallVector<SDValue, 8> Vals; 7352 SmallVector<SDValue, 8> LoadChains; 7353 7354 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7355 SDValue ScalarLoad = 7356 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7357 LD->getPointerInfo().getWithOffset(Idx * Stride), 7358 SrcEltVT, LD->getOriginalAlign(), 7359 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7360 7361 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7362 7363 Vals.push_back(ScalarLoad.getValue(0)); 7364 LoadChains.push_back(ScalarLoad.getValue(1)); 7365 } 7366 7367 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7368 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7369 7370 return std::make_pair(Value, NewChain); 7371 } 7372 7373 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7374 SelectionDAG &DAG) const { 7375 SDLoc SL(ST); 7376 7377 SDValue Chain = ST->getChain(); 7378 SDValue BasePtr = ST->getBasePtr(); 7379 SDValue Value = ST->getValue(); 7380 EVT StVT = ST->getMemoryVT(); 7381 7382 if (StVT.isScalableVector()) 7383 report_fatal_error("Cannot scalarize scalable vector stores"); 7384 7385 // The type of the data we want to save 7386 EVT RegVT = Value.getValueType(); 7387 EVT RegSclVT = RegVT.getScalarType(); 7388 7389 // The type of data as saved in memory. 7390 EVT MemSclVT = StVT.getScalarType(); 7391 7392 unsigned NumElem = StVT.getVectorNumElements(); 7393 7394 // A vector must always be stored in memory as-is, i.e. without any padding 7395 // between the elements, since various code depend on it, e.g. in the 7396 // handling of a bitcast of a vector type to int, which may be done with a 7397 // vector store followed by an integer load. A vector that does not have 7398 // elements that are byte-sized must therefore be stored as an integer 7399 // built out of the extracted vector elements. 7400 if (!MemSclVT.isByteSized()) { 7401 unsigned NumBits = StVT.getSizeInBits(); 7402 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7403 7404 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7405 7406 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7407 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7408 DAG.getVectorIdxConstant(Idx, SL)); 7409 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7410 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7411 unsigned ShiftIntoIdx = 7412 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7413 SDValue ShiftAmount = 7414 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7415 SDValue ShiftedElt = 7416 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7417 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7418 } 7419 7420 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7421 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7422 ST->getAAInfo()); 7423 } 7424 7425 // Store Stride in bytes 7426 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7427 assert(Stride && "Zero stride!"); 7428 // Extract each of the elements from the original vector and save them into 7429 // memory individually. 7430 SmallVector<SDValue, 8> Stores; 7431 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7432 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7433 DAG.getVectorIdxConstant(Idx, SL)); 7434 7435 SDValue Ptr = 7436 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7437 7438 // This scalar TruncStore may be illegal, but we legalize it later. 7439 SDValue Store = DAG.getTruncStore( 7440 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7441 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7442 ST->getAAInfo()); 7443 7444 Stores.push_back(Store); 7445 } 7446 7447 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7448 } 7449 7450 std::pair<SDValue, SDValue> 7451 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7452 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7453 "unaligned indexed loads not implemented!"); 7454 SDValue Chain = LD->getChain(); 7455 SDValue Ptr = LD->getBasePtr(); 7456 EVT VT = LD->getValueType(0); 7457 EVT LoadedVT = LD->getMemoryVT(); 7458 SDLoc dl(LD); 7459 auto &MF = DAG.getMachineFunction(); 7460 7461 if (VT.isFloatingPoint() || VT.isVector()) { 7462 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7463 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7464 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7465 LoadedVT.isVector()) { 7466 // Scalarize the load and let the individual components be handled. 7467 return scalarizeVectorLoad(LD, DAG); 7468 } 7469 7470 // Expand to a (misaligned) integer load of the same size, 7471 // then bitconvert to floating point or vector. 7472 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7473 LD->getMemOperand()); 7474 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7475 if (LoadedVT != VT) 7476 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7477 ISD::ANY_EXTEND, dl, VT, Result); 7478 7479 return std::make_pair(Result, newLoad.getValue(1)); 7480 } 7481 7482 // Copy the value to a (aligned) stack slot using (unaligned) integer 7483 // loads and stores, then do a (aligned) load from the stack slot. 7484 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7485 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7486 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7487 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7488 7489 // Make sure the stack slot is also aligned for the register type. 7490 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7491 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7492 SmallVector<SDValue, 8> Stores; 7493 SDValue StackPtr = StackBase; 7494 unsigned Offset = 0; 7495 7496 EVT PtrVT = Ptr.getValueType(); 7497 EVT StackPtrVT = StackPtr.getValueType(); 7498 7499 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7500 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7501 7502 // Do all but one copies using the full register width. 7503 for (unsigned i = 1; i < NumRegs; i++) { 7504 // Load one integer register's worth from the original location. 7505 SDValue Load = DAG.getLoad( 7506 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7507 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7508 LD->getAAInfo()); 7509 // Follow the load with a store to the stack slot. Remember the store. 7510 Stores.push_back(DAG.getStore( 7511 Load.getValue(1), dl, Load, StackPtr, 7512 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7513 // Increment the pointers. 7514 Offset += RegBytes; 7515 7516 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7517 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7518 } 7519 7520 // The last copy may be partial. Do an extending load. 7521 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7522 8 * (LoadedBytes - Offset)); 7523 SDValue Load = 7524 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7525 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7526 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7527 LD->getAAInfo()); 7528 // Follow the load with a store to the stack slot. Remember the store. 7529 // On big-endian machines this requires a truncating store to ensure 7530 // that the bits end up in the right place. 7531 Stores.push_back(DAG.getTruncStore( 7532 Load.getValue(1), dl, Load, StackPtr, 7533 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7534 7535 // The order of the stores doesn't matter - say it with a TokenFactor. 7536 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7537 7538 // Finally, perform the original load only redirected to the stack slot. 7539 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7540 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7541 LoadedVT); 7542 7543 // Callers expect a MERGE_VALUES node. 7544 return std::make_pair(Load, TF); 7545 } 7546 7547 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7548 "Unaligned load of unsupported type."); 7549 7550 // Compute the new VT that is half the size of the old one. This is an 7551 // integer MVT. 7552 unsigned NumBits = LoadedVT.getSizeInBits(); 7553 EVT NewLoadedVT; 7554 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7555 NumBits >>= 1; 7556 7557 Align Alignment = LD->getOriginalAlign(); 7558 unsigned IncrementSize = NumBits / 8; 7559 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7560 7561 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7562 if (HiExtType == ISD::NON_EXTLOAD) 7563 HiExtType = ISD::ZEXTLOAD; 7564 7565 // Load the value in two parts 7566 SDValue Lo, Hi; 7567 if (DAG.getDataLayout().isLittleEndian()) { 7568 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7569 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7570 LD->getAAInfo()); 7571 7572 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7573 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7574 LD->getPointerInfo().getWithOffset(IncrementSize), 7575 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7576 LD->getAAInfo()); 7577 } else { 7578 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7579 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7580 LD->getAAInfo()); 7581 7582 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7583 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7584 LD->getPointerInfo().getWithOffset(IncrementSize), 7585 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7586 LD->getAAInfo()); 7587 } 7588 7589 // aggregate the two parts 7590 SDValue ShiftAmount = 7591 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7592 DAG.getDataLayout())); 7593 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7594 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7595 7596 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7597 Hi.getValue(1)); 7598 7599 return std::make_pair(Result, TF); 7600 } 7601 7602 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7603 SelectionDAG &DAG) const { 7604 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7605 "unaligned indexed stores not implemented!"); 7606 SDValue Chain = ST->getChain(); 7607 SDValue Ptr = ST->getBasePtr(); 7608 SDValue Val = ST->getValue(); 7609 EVT VT = Val.getValueType(); 7610 Align Alignment = ST->getOriginalAlign(); 7611 auto &MF = DAG.getMachineFunction(); 7612 EVT StoreMemVT = ST->getMemoryVT(); 7613 7614 SDLoc dl(ST); 7615 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7616 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7617 if (isTypeLegal(intVT)) { 7618 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7619 StoreMemVT.isVector()) { 7620 // Scalarize the store and let the individual components be handled. 7621 SDValue Result = scalarizeVectorStore(ST, DAG); 7622 return Result; 7623 } 7624 // Expand to a bitconvert of the value to the integer type of the 7625 // same size, then a (misaligned) int store. 7626 // FIXME: Does not handle truncating floating point stores! 7627 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7628 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7629 Alignment, ST->getMemOperand()->getFlags()); 7630 return Result; 7631 } 7632 // Do a (aligned) store to a stack slot, then copy from the stack slot 7633 // to the final destination using (unaligned) integer loads and stores. 7634 MVT RegVT = getRegisterType( 7635 *DAG.getContext(), 7636 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7637 EVT PtrVT = Ptr.getValueType(); 7638 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7639 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7640 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7641 7642 // Make sure the stack slot is also aligned for the register type. 7643 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7644 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7645 7646 // Perform the original store, only redirected to the stack slot. 7647 SDValue Store = DAG.getTruncStore( 7648 Chain, dl, Val, StackPtr, 7649 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7650 7651 EVT StackPtrVT = StackPtr.getValueType(); 7652 7653 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7654 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7655 SmallVector<SDValue, 8> Stores; 7656 unsigned Offset = 0; 7657 7658 // Do all but one copies using the full register width. 7659 for (unsigned i = 1; i < NumRegs; i++) { 7660 // Load one integer register's worth from the stack slot. 7661 SDValue Load = DAG.getLoad( 7662 RegVT, dl, Store, StackPtr, 7663 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7664 // Store it to the final location. Remember the store. 7665 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7666 ST->getPointerInfo().getWithOffset(Offset), 7667 ST->getOriginalAlign(), 7668 ST->getMemOperand()->getFlags())); 7669 // Increment the pointers. 7670 Offset += RegBytes; 7671 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7672 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7673 } 7674 7675 // The last store may be partial. Do a truncating store. On big-endian 7676 // machines this requires an extending load from the stack slot to ensure 7677 // that the bits are in the right place. 7678 EVT LoadMemVT = 7679 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7680 7681 // Load from the stack slot. 7682 SDValue Load = DAG.getExtLoad( 7683 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7684 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7685 7686 Stores.push_back( 7687 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7688 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7689 ST->getOriginalAlign(), 7690 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7691 // The order of the stores doesn't matter - say it with a TokenFactor. 7692 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7693 return Result; 7694 } 7695 7696 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7697 "Unaligned store of unknown type."); 7698 // Get the half-size VT 7699 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7700 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7701 unsigned IncrementSize = NumBits / 8; 7702 7703 // Divide the stored value in two parts. 7704 SDValue ShiftAmount = DAG.getConstant( 7705 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 7706 SDValue Lo = Val; 7707 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 7708 7709 // Store the two parts 7710 SDValue Store1, Store2; 7711 Store1 = DAG.getTruncStore(Chain, dl, 7712 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 7713 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 7714 ST->getMemOperand()->getFlags()); 7715 7716 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7717 Store2 = DAG.getTruncStore( 7718 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 7719 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 7720 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 7721 7722 SDValue Result = 7723 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 7724 return Result; 7725 } 7726 7727 SDValue 7728 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 7729 const SDLoc &DL, EVT DataVT, 7730 SelectionDAG &DAG, 7731 bool IsCompressedMemory) const { 7732 SDValue Increment; 7733 EVT AddrVT = Addr.getValueType(); 7734 EVT MaskVT = Mask.getValueType(); 7735 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 7736 "Incompatible types of Data and Mask"); 7737 if (IsCompressedMemory) { 7738 if (DataVT.isScalableVector()) 7739 report_fatal_error( 7740 "Cannot currently handle compressed memory with scalable vectors"); 7741 // Incrementing the pointer according to number of '1's in the mask. 7742 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 7743 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 7744 if (MaskIntVT.getSizeInBits() < 32) { 7745 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 7746 MaskIntVT = MVT::i32; 7747 } 7748 7749 // Count '1's with POPCNT. 7750 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 7751 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 7752 // Scale is an element size in bytes. 7753 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 7754 AddrVT); 7755 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 7756 } else if (DataVT.isScalableVector()) { 7757 Increment = DAG.getVScale(DL, AddrVT, 7758 APInt(AddrVT.getFixedSizeInBits(), 7759 DataVT.getStoreSize().getKnownMinSize())); 7760 } else 7761 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 7762 7763 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 7764 } 7765 7766 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 7767 SDValue Idx, 7768 EVT VecVT, 7769 const SDLoc &dl) { 7770 if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx)) 7771 return Idx; 7772 7773 EVT IdxVT = Idx.getValueType(); 7774 unsigned NElts = VecVT.getVectorMinNumElements(); 7775 if (VecVT.isScalableVector()) { 7776 // If this is a constant index and we know the value is less than the 7777 // minimum number of elements then it's safe to return Idx. 7778 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 7779 if (IdxCst->getZExtValue() < NElts) 7780 return Idx; 7781 SDValue VS = 7782 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 7783 SDValue Sub = 7784 DAG.getNode(ISD::SUB, dl, IdxVT, VS, DAG.getConstant(1, dl, IdxVT)); 7785 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 7786 } 7787 if (isPowerOf2_32(NElts)) { 7788 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 7789 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 7790 DAG.getConstant(Imm, dl, IdxVT)); 7791 } 7792 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 7793 DAG.getConstant(NElts - 1, dl, IdxVT)); 7794 } 7795 7796 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 7797 SDValue VecPtr, EVT VecVT, 7798 SDValue Index) const { 7799 SDLoc dl(Index); 7800 // Make sure the index type is big enough to compute in. 7801 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 7802 7803 EVT EltVT = VecVT.getVectorElementType(); 7804 7805 // Calculate the element offset and add it to the pointer. 7806 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 7807 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 7808 "Converting bits to bytes lost precision"); 7809 7810 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 7811 7812 EVT IdxVT = Index.getValueType(); 7813 7814 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 7815 DAG.getConstant(EltSize, dl, IdxVT)); 7816 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 7817 } 7818 7819 //===----------------------------------------------------------------------===// 7820 // Implementation of Emulated TLS Model 7821 //===----------------------------------------------------------------------===// 7822 7823 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 7824 SelectionDAG &DAG) const { 7825 // Access to address of TLS varialbe xyz is lowered to a function call: 7826 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 7827 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 7828 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 7829 SDLoc dl(GA); 7830 7831 ArgListTy Args; 7832 ArgListEntry Entry; 7833 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 7834 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 7835 StringRef EmuTlsVarName(NameString); 7836 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 7837 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 7838 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 7839 Entry.Ty = VoidPtrType; 7840 Args.push_back(Entry); 7841 7842 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 7843 7844 TargetLowering::CallLoweringInfo CLI(DAG); 7845 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 7846 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 7847 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 7848 7849 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 7850 // At last for X86 targets, maybe good for other targets too? 7851 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 7852 MFI.setAdjustsStack(true); // Is this only for X86 target? 7853 MFI.setHasCalls(true); 7854 7855 assert((GA->getOffset() == 0) && 7856 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 7857 return CallResult.first; 7858 } 7859 7860 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 7861 SelectionDAG &DAG) const { 7862 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 7863 if (!isCtlzFast()) 7864 return SDValue(); 7865 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 7866 SDLoc dl(Op); 7867 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 7868 if (C->isNullValue() && CC == ISD::SETEQ) { 7869 EVT VT = Op.getOperand(0).getValueType(); 7870 SDValue Zext = Op.getOperand(0); 7871 if (VT.bitsLT(MVT::i32)) { 7872 VT = MVT::i32; 7873 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 7874 } 7875 unsigned Log2b = Log2_32(VT.getSizeInBits()); 7876 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 7877 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 7878 DAG.getConstant(Log2b, dl, MVT::i32)); 7879 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 7880 } 7881 } 7882 return SDValue(); 7883 } 7884 7885 // Convert redundant addressing modes (e.g. scaling is redundant 7886 // when accessing bytes). 7887 ISD::MemIndexType 7888 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 7889 SDValue Offsets) const { 7890 bool IsScaledIndex = 7891 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 7892 bool IsSignedIndex = 7893 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 7894 7895 // Scaling is unimportant for bytes, canonicalize to unscaled. 7896 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) { 7897 IsScaledIndex = false; 7898 IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 7899 } 7900 7901 return IndexType; 7902 } 7903 7904 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 7905 SDValue Op0 = Node->getOperand(0); 7906 SDValue Op1 = Node->getOperand(1); 7907 EVT VT = Op0.getValueType(); 7908 unsigned Opcode = Node->getOpcode(); 7909 SDLoc DL(Node); 7910 7911 // umin(x,y) -> sub(x,usubsat(x,y)) 7912 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 7913 isOperationLegal(ISD::USUBSAT, VT)) { 7914 return DAG.getNode(ISD::SUB, DL, VT, Op0, 7915 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 7916 } 7917 7918 // umax(x,y) -> add(x,usubsat(y,x)) 7919 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 7920 isOperationLegal(ISD::USUBSAT, VT)) { 7921 return DAG.getNode(ISD::ADD, DL, VT, Op0, 7922 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 7923 } 7924 7925 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 7926 ISD::CondCode CC; 7927 switch (Opcode) { 7928 default: llvm_unreachable("How did we get here?"); 7929 case ISD::SMAX: CC = ISD::SETGT; break; 7930 case ISD::SMIN: CC = ISD::SETLT; break; 7931 case ISD::UMAX: CC = ISD::SETUGT; break; 7932 case ISD::UMIN: CC = ISD::SETULT; break; 7933 } 7934 7935 // FIXME: Should really try to split the vector in case it's legal on a 7936 // subvector. 7937 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7938 return DAG.UnrollVectorOp(Node); 7939 7940 SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC); 7941 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 7942 } 7943 7944 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 7945 unsigned Opcode = Node->getOpcode(); 7946 SDValue LHS = Node->getOperand(0); 7947 SDValue RHS = Node->getOperand(1); 7948 EVT VT = LHS.getValueType(); 7949 SDLoc dl(Node); 7950 7951 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 7952 assert(VT.isInteger() && "Expected operands to be integers"); 7953 7954 // usub.sat(a, b) -> umax(a, b) - b 7955 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 7956 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 7957 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 7958 } 7959 7960 // uadd.sat(a, b) -> umin(a, ~b) + b 7961 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 7962 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 7963 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 7964 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 7965 } 7966 7967 unsigned OverflowOp; 7968 switch (Opcode) { 7969 case ISD::SADDSAT: 7970 OverflowOp = ISD::SADDO; 7971 break; 7972 case ISD::UADDSAT: 7973 OverflowOp = ISD::UADDO; 7974 break; 7975 case ISD::SSUBSAT: 7976 OverflowOp = ISD::SSUBO; 7977 break; 7978 case ISD::USUBSAT: 7979 OverflowOp = ISD::USUBO; 7980 break; 7981 default: 7982 llvm_unreachable("Expected method to receive signed or unsigned saturation " 7983 "addition or subtraction node."); 7984 } 7985 7986 // FIXME: Should really try to split the vector in case it's legal on a 7987 // subvector. 7988 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 7989 return DAG.UnrollVectorOp(Node); 7990 7991 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 7992 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7993 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 7994 SDValue SumDiff = Result.getValue(0); 7995 SDValue Overflow = Result.getValue(1); 7996 SDValue Zero = DAG.getConstant(0, dl, VT); 7997 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 7998 7999 if (Opcode == ISD::UADDSAT) { 8000 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8001 // (LHS + RHS) | OverflowMask 8002 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8003 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8004 } 8005 // Overflow ? 0xffff.... : (LHS + RHS) 8006 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8007 } 8008 8009 if (Opcode == ISD::USUBSAT) { 8010 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8011 // (LHS - RHS) & ~OverflowMask 8012 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8013 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8014 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8015 } 8016 // Overflow ? 0 : (LHS - RHS) 8017 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8018 } 8019 8020 // SatMax -> Overflow && SumDiff < 0 8021 // SatMin -> Overflow && SumDiff >= 0 8022 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8023 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 8024 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8025 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8026 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 8027 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 8028 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8029 } 8030 8031 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8032 unsigned Opcode = Node->getOpcode(); 8033 bool IsSigned = Opcode == ISD::SSHLSAT; 8034 SDValue LHS = Node->getOperand(0); 8035 SDValue RHS = Node->getOperand(1); 8036 EVT VT = LHS.getValueType(); 8037 SDLoc dl(Node); 8038 8039 assert((Node->getOpcode() == ISD::SSHLSAT || 8040 Node->getOpcode() == ISD::USHLSAT) && 8041 "Expected a SHLSAT opcode"); 8042 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8043 assert(VT.isInteger() && "Expected operands to be integers"); 8044 8045 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8046 8047 unsigned BW = VT.getScalarSizeInBits(); 8048 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8049 SDValue Orig = 8050 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8051 8052 SDValue SatVal; 8053 if (IsSigned) { 8054 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8055 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8056 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8057 SatMin, SatMax, ISD::SETLT); 8058 } else { 8059 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8060 } 8061 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8062 8063 return Result; 8064 } 8065 8066 SDValue 8067 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8068 assert((Node->getOpcode() == ISD::SMULFIX || 8069 Node->getOpcode() == ISD::UMULFIX || 8070 Node->getOpcode() == ISD::SMULFIXSAT || 8071 Node->getOpcode() == ISD::UMULFIXSAT) && 8072 "Expected a fixed point multiplication opcode"); 8073 8074 SDLoc dl(Node); 8075 SDValue LHS = Node->getOperand(0); 8076 SDValue RHS = Node->getOperand(1); 8077 EVT VT = LHS.getValueType(); 8078 unsigned Scale = Node->getConstantOperandVal(2); 8079 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8080 Node->getOpcode() == ISD::UMULFIXSAT); 8081 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8082 Node->getOpcode() == ISD::SMULFIXSAT); 8083 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8084 unsigned VTSize = VT.getScalarSizeInBits(); 8085 8086 if (!Scale) { 8087 // [us]mul.fix(a, b, 0) -> mul(a, b) 8088 if (!Saturating) { 8089 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8090 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8091 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8092 SDValue Result = 8093 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8094 SDValue Product = Result.getValue(0); 8095 SDValue Overflow = Result.getValue(1); 8096 SDValue Zero = DAG.getConstant(0, dl, VT); 8097 8098 APInt MinVal = APInt::getSignedMinValue(VTSize); 8099 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8100 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8101 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8102 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 8103 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 8104 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8105 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8106 SDValue Result = 8107 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8108 SDValue Product = Result.getValue(0); 8109 SDValue Overflow = Result.getValue(1); 8110 8111 APInt MaxVal = APInt::getMaxValue(VTSize); 8112 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8113 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8114 } 8115 } 8116 8117 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8118 "Expected scale to be less than the number of bits if signed or at " 8119 "most the number of bits if unsigned."); 8120 assert(LHS.getValueType() == RHS.getValueType() && 8121 "Expected both operands to be the same type"); 8122 8123 // Get the upper and lower bits of the result. 8124 SDValue Lo, Hi; 8125 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8126 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8127 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8128 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8129 Lo = Result.getValue(0); 8130 Hi = Result.getValue(1); 8131 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8132 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8133 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8134 } else if (VT.isVector()) { 8135 return SDValue(); 8136 } else { 8137 report_fatal_error("Unable to expand fixed point multiplication."); 8138 } 8139 8140 if (Scale == VTSize) 8141 // Result is just the top half since we'd be shifting by the width of the 8142 // operand. Overflow impossible so this works for both UMULFIX and 8143 // UMULFIXSAT. 8144 return Hi; 8145 8146 // The result will need to be shifted right by the scale since both operands 8147 // are scaled. The result is given to us in 2 halves, so we only want part of 8148 // both in the result. 8149 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8150 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8151 DAG.getConstant(Scale, dl, ShiftTy)); 8152 if (!Saturating) 8153 return Result; 8154 8155 if (!Signed) { 8156 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8157 // widened multiplication) aren't all zeroes. 8158 8159 // Saturate to max if ((Hi >> Scale) != 0), 8160 // which is the same as if (Hi > ((1 << Scale) - 1)) 8161 APInt MaxVal = APInt::getMaxValue(VTSize); 8162 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8163 dl, VT); 8164 Result = DAG.getSelectCC(dl, Hi, LowMask, 8165 DAG.getConstant(MaxVal, dl, VT), Result, 8166 ISD::SETUGT); 8167 8168 return Result; 8169 } 8170 8171 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8172 // widened multiplication) aren't all ones or all zeroes. 8173 8174 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8175 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8176 8177 if (Scale == 0) { 8178 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8179 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8180 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8181 // Saturated to SatMin if wide product is negative, and SatMax if wide 8182 // product is positive ... 8183 SDValue Zero = DAG.getConstant(0, dl, VT); 8184 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8185 ISD::SETLT); 8186 // ... but only if we overflowed. 8187 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8188 } 8189 8190 // We handled Scale==0 above so all the bits to examine is in Hi. 8191 8192 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8193 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8194 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8195 dl, VT); 8196 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8197 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8198 // which is the same as if (HI < (-1 << (Scale - 1)) 8199 SDValue HighMask = 8200 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8201 dl, VT); 8202 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8203 return Result; 8204 } 8205 8206 SDValue 8207 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8208 SDValue LHS, SDValue RHS, 8209 unsigned Scale, SelectionDAG &DAG) const { 8210 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8211 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8212 "Expected a fixed point division opcode"); 8213 8214 EVT VT = LHS.getValueType(); 8215 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8216 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8217 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8218 8219 // If there is enough room in the type to upscale the LHS or downscale the 8220 // RHS before the division, we can perform it in this type without having to 8221 // resize. For signed operations, the LHS headroom is the number of 8222 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8223 // The headroom for the RHS is the number of trailing zeroes. 8224 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8225 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8226 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8227 8228 // For signed saturating operations, we need to be able to detect true integer 8229 // division overflow; that is, when you have MIN / -EPS. However, this 8230 // is undefined behavior and if we emit divisions that could take such 8231 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8232 // example). 8233 // Avoid this by requiring an extra bit so that we never get this case. 8234 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8235 // signed saturating division, we need to emit a whopping 32-bit division. 8236 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8237 return SDValue(); 8238 8239 unsigned LHSShift = std::min(LHSLead, Scale); 8240 unsigned RHSShift = Scale - LHSShift; 8241 8242 // At this point, we know that if we shift the LHS up by LHSShift and the 8243 // RHS down by RHSShift, we can emit a regular division with a final scaling 8244 // factor of Scale. 8245 8246 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8247 if (LHSShift) 8248 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8249 DAG.getConstant(LHSShift, dl, ShiftTy)); 8250 if (RHSShift) 8251 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8252 DAG.getConstant(RHSShift, dl, ShiftTy)); 8253 8254 SDValue Quot; 8255 if (Signed) { 8256 // For signed operations, if the resulting quotient is negative and the 8257 // remainder is nonzero, subtract 1 from the quotient to round towards 8258 // negative infinity. 8259 SDValue Rem; 8260 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8261 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8262 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8263 if (isTypeLegal(VT) && 8264 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8265 Quot = DAG.getNode(ISD::SDIVREM, dl, 8266 DAG.getVTList(VT, VT), 8267 LHS, RHS); 8268 Rem = Quot.getValue(1); 8269 Quot = Quot.getValue(0); 8270 } else { 8271 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8272 LHS, RHS); 8273 Rem = DAG.getNode(ISD::SREM, dl, VT, 8274 LHS, RHS); 8275 } 8276 SDValue Zero = DAG.getConstant(0, dl, VT); 8277 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8278 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8279 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8280 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8281 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8282 DAG.getConstant(1, dl, VT)); 8283 Quot = DAG.getSelect(dl, VT, 8284 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8285 Sub1, Quot); 8286 } else 8287 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8288 LHS, RHS); 8289 8290 return Quot; 8291 } 8292 8293 void TargetLowering::expandUADDSUBO( 8294 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8295 SDLoc dl(Node); 8296 SDValue LHS = Node->getOperand(0); 8297 SDValue RHS = Node->getOperand(1); 8298 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8299 8300 // If ADD/SUBCARRY is legal, use that instead. 8301 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8302 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8303 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8304 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8305 { LHS, RHS, CarryIn }); 8306 Result = SDValue(NodeCarry.getNode(), 0); 8307 Overflow = SDValue(NodeCarry.getNode(), 1); 8308 return; 8309 } 8310 8311 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8312 LHS.getValueType(), LHS, RHS); 8313 8314 EVT ResultType = Node->getValueType(1); 8315 EVT SetCCType = getSetCCResultType( 8316 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8317 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8318 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8319 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8320 } 8321 8322 void TargetLowering::expandSADDSUBO( 8323 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8324 SDLoc dl(Node); 8325 SDValue LHS = Node->getOperand(0); 8326 SDValue RHS = Node->getOperand(1); 8327 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8328 8329 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8330 LHS.getValueType(), LHS, RHS); 8331 8332 EVT ResultType = Node->getValueType(1); 8333 EVT OType = getSetCCResultType( 8334 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8335 8336 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8337 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8338 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 8339 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8340 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8341 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8342 return; 8343 } 8344 8345 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8346 8347 // For an addition, the result should be less than one of the operands (LHS) 8348 // if and only if the other operand (RHS) is negative, otherwise there will 8349 // be overflow. 8350 // For a subtraction, the result should be less than one of the operands 8351 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8352 // otherwise there will be overflow. 8353 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8354 SDValue ConditionRHS = 8355 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8356 8357 Overflow = DAG.getBoolExtOrTrunc( 8358 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8359 ResultType, ResultType); 8360 } 8361 8362 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8363 SDValue &Overflow, SelectionDAG &DAG) const { 8364 SDLoc dl(Node); 8365 EVT VT = Node->getValueType(0); 8366 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8367 SDValue LHS = Node->getOperand(0); 8368 SDValue RHS = Node->getOperand(1); 8369 bool isSigned = Node->getOpcode() == ISD::SMULO; 8370 8371 // For power-of-two multiplications we can use a simpler shift expansion. 8372 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8373 const APInt &C = RHSC->getAPIntValue(); 8374 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8375 if (C.isPowerOf2()) { 8376 // smulo(x, signed_min) is same as umulo(x, signed_min). 8377 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8378 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8379 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8380 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8381 Overflow = DAG.getSetCC(dl, SetCCVT, 8382 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8383 dl, VT, Result, ShiftAmt), 8384 LHS, ISD::SETNE); 8385 return true; 8386 } 8387 } 8388 8389 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8390 if (VT.isVector()) 8391 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 8392 VT.getVectorNumElements()); 8393 8394 SDValue BottomHalf; 8395 SDValue TopHalf; 8396 static const unsigned Ops[2][3] = 8397 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8398 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8399 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8400 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8401 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8402 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8403 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8404 RHS); 8405 TopHalf = BottomHalf.getValue(1); 8406 } else if (isTypeLegal(WideVT)) { 8407 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8408 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8409 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8410 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8411 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8412 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8413 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8414 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8415 } else { 8416 if (VT.isVector()) 8417 return false; 8418 8419 // We can fall back to a libcall with an illegal type for the MUL if we 8420 // have a libcall big enough. 8421 // Also, we can fall back to a division in some cases, but that's a big 8422 // performance hit in the general case. 8423 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8424 if (WideVT == MVT::i16) 8425 LC = RTLIB::MUL_I16; 8426 else if (WideVT == MVT::i32) 8427 LC = RTLIB::MUL_I32; 8428 else if (WideVT == MVT::i64) 8429 LC = RTLIB::MUL_I64; 8430 else if (WideVT == MVT::i128) 8431 LC = RTLIB::MUL_I128; 8432 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8433 8434 SDValue HiLHS; 8435 SDValue HiRHS; 8436 if (isSigned) { 8437 // The high part is obtained by SRA'ing all but one of the bits of low 8438 // part. 8439 unsigned LoSize = VT.getFixedSizeInBits(); 8440 HiLHS = 8441 DAG.getNode(ISD::SRA, dl, VT, LHS, 8442 DAG.getConstant(LoSize - 1, dl, 8443 getPointerTy(DAG.getDataLayout()))); 8444 HiRHS = 8445 DAG.getNode(ISD::SRA, dl, VT, RHS, 8446 DAG.getConstant(LoSize - 1, dl, 8447 getPointerTy(DAG.getDataLayout()))); 8448 } else { 8449 HiLHS = DAG.getConstant(0, dl, VT); 8450 HiRHS = DAG.getConstant(0, dl, VT); 8451 } 8452 8453 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8454 // pre-lowered to the correct types. This all depends upon WideVT not 8455 // being a legal type for the architecture and thus has to be split to 8456 // two arguments. 8457 SDValue Ret; 8458 TargetLowering::MakeLibCallOptions CallOptions; 8459 CallOptions.setSExt(isSigned); 8460 CallOptions.setIsPostTypeLegalization(true); 8461 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8462 // Halves of WideVT are packed into registers in different order 8463 // depending on platform endianness. This is usually handled by 8464 // the C calling convention, but we can't defer to it in 8465 // the legalizer. 8466 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8467 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8468 } else { 8469 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8470 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8471 } 8472 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8473 "Ret value is a collection of constituent nodes holding result."); 8474 if (DAG.getDataLayout().isLittleEndian()) { 8475 // Same as above. 8476 BottomHalf = Ret.getOperand(0); 8477 TopHalf = Ret.getOperand(1); 8478 } else { 8479 BottomHalf = Ret.getOperand(1); 8480 TopHalf = Ret.getOperand(0); 8481 } 8482 } 8483 8484 Result = BottomHalf; 8485 if (isSigned) { 8486 SDValue ShiftAmt = DAG.getConstant( 8487 VT.getScalarSizeInBits() - 1, dl, 8488 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8489 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8490 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8491 } else { 8492 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8493 DAG.getConstant(0, dl, VT), ISD::SETNE); 8494 } 8495 8496 // Truncate the result if SetCC returns a larger type than needed. 8497 EVT RType = Node->getValueType(1); 8498 if (RType.bitsLT(Overflow.getValueType())) 8499 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8500 8501 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8502 "Unexpected result type for S/UMULO legalization"); 8503 return true; 8504 } 8505 8506 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8507 SDLoc dl(Node); 8508 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8509 SDValue Op = Node->getOperand(0); 8510 EVT VT = Op.getValueType(); 8511 8512 if (VT.isScalableVector()) 8513 report_fatal_error( 8514 "Expanding reductions for scalable vectors is undefined."); 8515 8516 // Try to use a shuffle reduction for power of two vectors. 8517 if (VT.isPow2VectorType()) { 8518 while (VT.getVectorNumElements() > 1) { 8519 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8520 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8521 break; 8522 8523 SDValue Lo, Hi; 8524 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8525 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8526 VT = HalfVT; 8527 } 8528 } 8529 8530 EVT EltVT = VT.getVectorElementType(); 8531 unsigned NumElts = VT.getVectorNumElements(); 8532 8533 SmallVector<SDValue, 8> Ops; 8534 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8535 8536 SDValue Res = Ops[0]; 8537 for (unsigned i = 1; i < NumElts; i++) 8538 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8539 8540 // Result type may be wider than element type. 8541 if (EltVT != Node->getValueType(0)) 8542 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8543 return Res; 8544 } 8545 8546 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8547 SDLoc dl(Node); 8548 SDValue AccOp = Node->getOperand(0); 8549 SDValue VecOp = Node->getOperand(1); 8550 SDNodeFlags Flags = Node->getFlags(); 8551 8552 EVT VT = VecOp.getValueType(); 8553 EVT EltVT = VT.getVectorElementType(); 8554 8555 if (VT.isScalableVector()) 8556 report_fatal_error( 8557 "Expanding reductions for scalable vectors is undefined."); 8558 8559 unsigned NumElts = VT.getVectorNumElements(); 8560 8561 SmallVector<SDValue, 8> Ops; 8562 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8563 8564 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8565 8566 SDValue Res = AccOp; 8567 for (unsigned i = 0; i < NumElts; i++) 8568 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8569 8570 return Res; 8571 } 8572 8573 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8574 SelectionDAG &DAG) const { 8575 EVT VT = Node->getValueType(0); 8576 SDLoc dl(Node); 8577 bool isSigned = Node->getOpcode() == ISD::SREM; 8578 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8579 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8580 SDValue Dividend = Node->getOperand(0); 8581 SDValue Divisor = Node->getOperand(1); 8582 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8583 SDVTList VTs = DAG.getVTList(VT, VT); 8584 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8585 return true; 8586 } 8587 if (isOperationLegalOrCustom(DivOpc, VT)) { 8588 // X % Y -> X-X/Y*Y 8589 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8590 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8591 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8592 return true; 8593 } 8594 return false; 8595 } 8596 8597 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8598 SelectionDAG &DAG) const { 8599 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8600 SDLoc dl(SDValue(Node, 0)); 8601 SDValue Src = Node->getOperand(0); 8602 8603 // DstVT is the result type, while SatVT is the size to which we saturate 8604 EVT SrcVT = Src.getValueType(); 8605 EVT DstVT = Node->getValueType(0); 8606 8607 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8608 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8609 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8610 assert(SatWidth <= DstWidth && 8611 "Expected saturation width smaller than result width"); 8612 8613 // Determine minimum and maximum integer values and their corresponding 8614 // floating-point values. 8615 APInt MinInt, MaxInt; 8616 if (IsSigned) { 8617 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8618 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8619 } else { 8620 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8621 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8622 } 8623 8624 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8625 // libcall emission cannot handle this. Large result types will fail. 8626 if (SrcVT == MVT::f16) { 8627 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8628 SrcVT = Src.getValueType(); 8629 } 8630 8631 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8632 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8633 8634 APFloat::opStatus MinStatus = 8635 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8636 APFloat::opStatus MaxStatus = 8637 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8638 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8639 !(MaxStatus & APFloat::opStatus::opInexact); 8640 8641 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8642 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8643 8644 // If the integer bounds are exactly representable as floats and min/max are 8645 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8646 // of comparisons and selects. 8647 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8648 isOperationLegal(ISD::FMAXNUM, SrcVT); 8649 if (AreExactFloatBounds && MinMaxLegal) { 8650 SDValue Clamped = Src; 8651 8652 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8653 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8654 // Clamp by MaxFloat from above. NaN cannot occur. 8655 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8656 // Convert clamped value to integer. 8657 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8658 dl, DstVT, Clamped); 8659 8660 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8661 // which will cast to zero. 8662 if (!IsSigned) 8663 return FpToInt; 8664 8665 // Otherwise, select 0 if Src is NaN. 8666 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8667 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8668 ISD::CondCode::SETUO); 8669 } 8670 8671 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8672 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8673 8674 // Result of direct conversion. The assumption here is that the operation is 8675 // non-trapping and it's fine to apply it to an out-of-range value if we 8676 // select it away later. 8677 SDValue FpToInt = 8678 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8679 8680 SDValue Select = FpToInt; 8681 8682 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8683 // MinInt if Src is NaN. 8684 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8685 ISD::CondCode::SETULT); 8686 // If Src OGT MaxFloat, select MaxInt. 8687 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 8688 ISD::CondCode::SETOGT); 8689 8690 // In the unsigned case we are done, because we mapped NaN to MinInt, which 8691 // is already zero. 8692 if (!IsSigned) 8693 return Select; 8694 8695 // Otherwise, select 0 if Src is NaN. 8696 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8697 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 8698 } 8699 8700 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 8701 SelectionDAG &DAG) const { 8702 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 8703 assert(Node->getValueType(0).isScalableVector() && 8704 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 8705 8706 EVT VT = Node->getValueType(0); 8707 SDValue V1 = Node->getOperand(0); 8708 SDValue V2 = Node->getOperand(1); 8709 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 8710 SDLoc DL(Node); 8711 8712 // Expand through memory thusly: 8713 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 8714 // Store V1, Ptr 8715 // Store V2, Ptr + sizeof(V1) 8716 // If (Imm < 0) 8717 // TrailingElts = -Imm 8718 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 8719 // else 8720 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 8721 // Res = Load Ptr 8722 8723 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 8724 8725 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 8726 VT.getVectorElementCount() * 2); 8727 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 8728 EVT PtrVT = StackPtr.getValueType(); 8729 auto &MF = DAG.getMachineFunction(); 8730 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8731 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 8732 8733 // Store the lo part of CONCAT_VECTORS(V1, V2) 8734 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 8735 // Store the hi part of CONCAT_VECTORS(V1, V2) 8736 SDValue OffsetToV2 = DAG.getVScale( 8737 DL, PtrVT, 8738 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8739 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 8740 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 8741 8742 if (Imm >= 0) { 8743 // Load back the required element. getVectorElementPointer takes care of 8744 // clamping the index if it's out-of-bounds. 8745 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 8746 // Load the spliced result 8747 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 8748 MachinePointerInfo::getUnknownStack(MF)); 8749 } 8750 8751 uint64_t TrailingElts = -Imm; 8752 8753 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 8754 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 8755 SDValue TrailingBytes = 8756 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 8757 8758 if (TrailingElts > VT.getVectorMinNumElements()) { 8759 SDValue VLBytes = DAG.getVScale( 8760 DL, PtrVT, 8761 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 8762 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 8763 } 8764 8765 // Calculate the start address of the spliced result. 8766 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 8767 8768 // Load the spliced result 8769 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 8770 MachinePointerInfo::getUnknownStack(MF)); 8771 } 8772 8773 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 8774 SDValue &LHS, SDValue &RHS, 8775 SDValue &CC, bool &NeedInvert, 8776 const SDLoc &dl, SDValue &Chain, 8777 bool IsSignaling) const { 8778 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8779 MVT OpVT = LHS.getSimpleValueType(); 8780 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 8781 NeedInvert = false; 8782 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 8783 default: 8784 llvm_unreachable("Unknown condition code action!"); 8785 case TargetLowering::Legal: 8786 // Nothing to do. 8787 break; 8788 case TargetLowering::Expand: { 8789 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 8790 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8791 std::swap(LHS, RHS); 8792 CC = DAG.getCondCode(InvCC); 8793 return true; 8794 } 8795 // Swapping operands didn't work. Try inverting the condition. 8796 bool NeedSwap = false; 8797 InvCC = getSetCCInverse(CCCode, OpVT); 8798 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8799 // If inverting the condition is not enough, try swapping operands 8800 // on top of it. 8801 InvCC = ISD::getSetCCSwappedOperands(InvCC); 8802 NeedSwap = true; 8803 } 8804 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 8805 CC = DAG.getCondCode(InvCC); 8806 NeedInvert = true; 8807 if (NeedSwap) 8808 std::swap(LHS, RHS); 8809 return true; 8810 } 8811 8812 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 8813 unsigned Opc = 0; 8814 switch (CCCode) { 8815 default: 8816 llvm_unreachable("Don't know how to expand this condition!"); 8817 case ISD::SETUO: 8818 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 8819 CC1 = ISD::SETUNE; 8820 CC2 = ISD::SETUNE; 8821 Opc = ISD::OR; 8822 break; 8823 } 8824 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8825 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 8826 NeedInvert = true; 8827 LLVM_FALLTHROUGH; 8828 case ISD::SETO: 8829 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 8830 "If SETO is expanded, SETOEQ must be legal!"); 8831 CC1 = ISD::SETOEQ; 8832 CC2 = ISD::SETOEQ; 8833 Opc = ISD::AND; 8834 break; 8835 case ISD::SETONE: 8836 case ISD::SETUEQ: 8837 // If the SETUO or SETO CC isn't legal, we might be able to use 8838 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 8839 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 8840 // the operands. 8841 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8842 if (!TLI.isCondCodeLegal(CC2, OpVT) && 8843 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 8844 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 8845 CC1 = ISD::SETOGT; 8846 CC2 = ISD::SETOLT; 8847 Opc = ISD::OR; 8848 NeedInvert = ((unsigned)CCCode & 0x8U); 8849 break; 8850 } 8851 LLVM_FALLTHROUGH; 8852 case ISD::SETOEQ: 8853 case ISD::SETOGT: 8854 case ISD::SETOGE: 8855 case ISD::SETOLT: 8856 case ISD::SETOLE: 8857 case ISD::SETUNE: 8858 case ISD::SETUGT: 8859 case ISD::SETUGE: 8860 case ISD::SETULT: 8861 case ISD::SETULE: 8862 // If we are floating point, assign and break, otherwise fall through. 8863 if (!OpVT.isInteger()) { 8864 // We can use the 4th bit to tell if we are the unordered 8865 // or ordered version of the opcode. 8866 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 8867 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 8868 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 8869 break; 8870 } 8871 // Fallthrough if we are unsigned integer. 8872 LLVM_FALLTHROUGH; 8873 case ISD::SETLE: 8874 case ISD::SETGT: 8875 case ISD::SETGE: 8876 case ISD::SETLT: 8877 case ISD::SETNE: 8878 case ISD::SETEQ: 8879 // If all combinations of inverting the condition and swapping operands 8880 // didn't work then we have no means to expand the condition. 8881 llvm_unreachable("Don't know how to expand this condition!"); 8882 } 8883 8884 SDValue SetCC1, SetCC2; 8885 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 8886 // If we aren't the ordered or unorder operation, 8887 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 8888 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 8889 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 8890 } else { 8891 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 8892 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 8893 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 8894 } 8895 if (Chain) 8896 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 8897 SetCC2.getValue(1)); 8898 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 8899 RHS = SDValue(); 8900 CC = SDValue(); 8901 return true; 8902 } 8903 } 8904 return false; 8905 } 8906