1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
487                                             TargetLoweringOpt &TLO) const {
488   SDLoc DL(Op);
489   unsigned Opcode = Op.getOpcode();
490 
491   // Do target-specific constant optimization.
492   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
493     return TLO.New.getNode();
494 
495   // FIXME: ISD::SELECT, ISD::SELECT_CC
496   switch (Opcode) {
497   default:
498     break;
499   case ISD::XOR:
500   case ISD::AND:
501   case ISD::OR: {
502     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
503     if (!Op1C)
504       return false;
505 
506     // If this is a 'not' op, don't touch it because that's a canonical form.
507     const APInt &C = Op1C->getAPIntValue();
508     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
509       return false;
510 
511     if (!C.isSubsetOf(Demanded)) {
512       EVT VT = Op.getValueType();
513       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
514       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
515       return TLO.CombineTo(Op, NewOp);
516     }
517 
518     break;
519   }
520   }
521 
522   return false;
523 }
524 
525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
527 /// generalized for targets with other types of implicit widening casts.
528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
529                                       const APInt &Demanded,
530                                       TargetLoweringOpt &TLO) const {
531   assert(Op.getNumOperands() == 2 &&
532          "ShrinkDemandedOp only supports binary operators!");
533   assert(Op.getNode()->getNumValues() == 1 &&
534          "ShrinkDemandedOp only supports nodes with one result!");
535 
536   SelectionDAG &DAG = TLO.DAG;
537   SDLoc dl(Op);
538 
539   // Early return, as this function cannot handle vector types.
540   if (Op.getValueType().isVector())
541     return false;
542 
543   // Don't do this if the node has another user, which may require the
544   // full value.
545   if (!Op.getNode()->hasOneUse())
546     return false;
547 
548   // Search for the smallest integer type with free casts to and from
549   // Op's type. For expedience, just check power-of-2 integer types.
550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
551   unsigned DemandedSize = Demanded.getActiveBits();
552   unsigned SmallVTBits = DemandedSize;
553   if (!isPowerOf2_32(SmallVTBits))
554     SmallVTBits = NextPowerOf2(SmallVTBits);
555   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
556     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
557     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
558         TLI.isZExtFree(SmallVT, Op.getValueType())) {
559       // We found a type with free casts.
560       SDValue X = DAG.getNode(
561           Op.getOpcode(), dl, SmallVT,
562           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
563           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
564       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
565       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
566       return TLO.CombineTo(Op, Z);
567     }
568   }
569   return false;
570 }
571 
572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
573                                           DAGCombinerInfo &DCI) const {
574   SelectionDAG &DAG = DCI.DAG;
575   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
576                         !DCI.isBeforeLegalizeOps());
577   KnownBits Known;
578 
579   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
580   if (Simplified) {
581     DCI.AddToWorklist(Op.getNode());
582     DCI.CommitTargetLoweringOpt(TLO);
583   }
584   return Simplified;
585 }
586 
587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
588                                           KnownBits &Known,
589                                           TargetLoweringOpt &TLO,
590                                           unsigned Depth,
591                                           bool AssumeSingleUse) const {
592   EVT VT = Op.getValueType();
593   APInt DemandedElts = VT.isVector()
594                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
595                            : APInt(1, 1);
596   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
597                               AssumeSingleUse);
598 }
599 
600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
601 // TODO: Under what circumstances can we create nodes? Constant folding?
602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
603     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
604     SelectionDAG &DAG, unsigned Depth) const {
605   // Limit search depth.
606   if (Depth >= SelectionDAG::MaxRecursionDepth)
607     return SDValue();
608 
609   // Ignore UNDEFs.
610   if (Op.isUndef())
611     return SDValue();
612 
613   // Not demanding any bits/elts from Op.
614   if (DemandedBits == 0 || DemandedElts == 0)
615     return DAG.getUNDEF(Op.getValueType());
616 
617   unsigned NumElts = DemandedElts.getBitWidth();
618   KnownBits LHSKnown, RHSKnown;
619   switch (Op.getOpcode()) {
620   case ISD::BITCAST: {
621     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
622     EVT SrcVT = Src.getValueType();
623     EVT DstVT = Op.getValueType();
624     if (SrcVT == DstVT)
625       return Src;
626 
627     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
628     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
629     if (NumSrcEltBits == NumDstEltBits)
630       if (SDValue V = SimplifyMultipleUseDemandedBits(
631               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
632         return DAG.getBitcast(DstVT, V);
633 
634     // TODO - bigendian once we have test coverage.
635     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
636         DAG.getDataLayout().isLittleEndian()) {
637       unsigned Scale = NumDstEltBits / NumSrcEltBits;
638       unsigned NumSrcElts = SrcVT.getVectorNumElements();
639       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
640       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
641       for (unsigned i = 0; i != Scale; ++i) {
642         unsigned Offset = i * NumSrcEltBits;
643         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
644         if (!Sub.isNullValue()) {
645           DemandedSrcBits |= Sub;
646           for (unsigned j = 0; j != NumElts; ++j)
647             if (DemandedElts[j])
648               DemandedSrcElts.setBit((j * Scale) + i);
649         }
650       }
651 
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655     }
656 
657     // TODO - bigendian once we have test coverage.
658     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumSrcEltBits / NumDstEltBits;
661       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != NumElts; ++i)
665         if (DemandedElts[i]) {
666           unsigned Offset = (i % Scale) * NumDstEltBits;
667           DemandedSrcBits.insertBits(DemandedBits, Offset);
668           DemandedSrcElts.setBit(i / Scale);
669         }
670 
671       if (SDValue V = SimplifyMultipleUseDemandedBits(
672               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
673         return DAG.getBitcast(DstVT, V);
674     }
675 
676     break;
677   }
678   case ISD::AND: {
679     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
680     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
681 
682     // If all of the demanded bits are known 1 on one side, return the other.
683     // These bits cannot contribute to the result of the 'and' in this
684     // context.
685     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
686       return Op.getOperand(0);
687     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
688       return Op.getOperand(1);
689     break;
690   }
691   case ISD::OR: {
692     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
693     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
694 
695     // If all of the demanded bits are known zero on one side, return the
696     // other.  These bits cannot contribute to the result of the 'or' in this
697     // context.
698     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
699       return Op.getOperand(0);
700     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
701       return Op.getOperand(1);
702     break;
703   }
704   case ISD::XOR: {
705     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
706     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
707 
708     // If all of the demanded bits are known zero on one side, return the
709     // other.
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
711       return Op.getOperand(0);
712     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
713       return Op.getOperand(1);
714     break;
715   }
716   case ISD::SHL: {
717     // If we are only demanding sign bits then we can use the shift source
718     // directly.
719     if (const APInt *MaxSA =
720             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
721       SDValue Op0 = Op.getOperand(0);
722       unsigned ShAmt = MaxSA->getZExtValue();
723       unsigned BitWidth = DemandedBits.getBitWidth();
724       unsigned NumSignBits =
725           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
726       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
727       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
728         return Op0;
729     }
730     break;
731   }
732   case ISD::SETCC: {
733     SDValue Op0 = Op.getOperand(0);
734     SDValue Op1 = Op.getOperand(1);
735     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
736     // If (1) we only need the sign-bit, (2) the setcc operands are the same
737     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
738     // -1, we may be able to bypass the setcc.
739     if (DemandedBits.isSignMask() &&
740         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
741         getBooleanContents(Op0.getValueType()) ==
742             BooleanContent::ZeroOrNegativeOneBooleanContent) {
743       // If we're testing X < 0, then this compare isn't needed - just use X!
744       // FIXME: We're limiting to integer types here, but this should also work
745       // if we don't care about FP signed-zero. The use of SETLT with FP means
746       // that we don't care about NaNs.
747       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
748           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
749         return Op0;
750     }
751     break;
752   }
753   case ISD::SIGN_EXTEND_INREG: {
754     // If none of the extended bits are demanded, eliminate the sextinreg.
755     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
756     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
757       return Op.getOperand(0);
758     break;
759   }
760   case ISD::INSERT_VECTOR_ELT: {
761     // If we don't demand the inserted element, return the base vector.
762     SDValue Vec = Op.getOperand(0);
763     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
764     EVT VecVT = Vec.getValueType();
765     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
766         !DemandedElts[CIdx->getZExtValue()])
767       return Vec;
768     break;
769   }
770   case ISD::INSERT_SUBVECTOR: {
771     // If we don't demand the inserted subvector, return the base vector.
772     SDValue Vec = Op.getOperand(0);
773     SDValue Sub = Op.getOperand(1);
774     uint64_t Idx = Op.getConstantOperandVal(2);
775     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
776     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
777       return Vec;
778     break;
779   }
780   case ISD::VECTOR_SHUFFLE: {
781     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
782 
783     // If all the demanded elts are from one operand and are inline,
784     // then we can use the operand directly.
785     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
786     for (unsigned i = 0; i != NumElts; ++i) {
787       int M = ShuffleMask[i];
788       if (M < 0 || !DemandedElts[i])
789         continue;
790       AllUndef = false;
791       IdentityLHS &= (M == (int)i);
792       IdentityRHS &= ((M - NumElts) == i);
793     }
794 
795     if (AllUndef)
796       return DAG.getUNDEF(Op.getValueType());
797     if (IdentityLHS)
798       return Op.getOperand(0);
799     if (IdentityRHS)
800       return Op.getOperand(1);
801     break;
802   }
803   default:
804     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
805       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
806               Op, DemandedBits, DemandedElts, DAG, Depth))
807         return V;
808     break;
809   }
810   return SDValue();
811 }
812 
813 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
814     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
815     unsigned Depth) const {
816   EVT VT = Op.getValueType();
817   APInt DemandedElts = VT.isVector()
818                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
819                            : APInt(1, 1);
820   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
821                                          Depth);
822 }
823 
824 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
825 /// result of Op are ever used downstream. If we can use this information to
826 /// simplify Op, create a new simplified DAG node and return true, returning the
827 /// original and new nodes in Old and New. Otherwise, analyze the expression and
828 /// return a mask of Known bits for the expression (used to simplify the
829 /// caller).  The Known bits may only be accurate for those bits in the
830 /// OriginalDemandedBits and OriginalDemandedElts.
831 bool TargetLowering::SimplifyDemandedBits(
832     SDValue Op, const APInt &OriginalDemandedBits,
833     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
834     unsigned Depth, bool AssumeSingleUse) const {
835   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
836   assert(Op.getScalarValueSizeInBits() == BitWidth &&
837          "Mask size mismatches value type size!");
838 
839   unsigned NumElts = OriginalDemandedElts.getBitWidth();
840   assert((!Op.getValueType().isVector() ||
841           NumElts == Op.getValueType().getVectorNumElements()) &&
842          "Unexpected vector size");
843 
844   APInt DemandedBits = OriginalDemandedBits;
845   APInt DemandedElts = OriginalDemandedElts;
846   SDLoc dl(Op);
847   auto &DL = TLO.DAG.getDataLayout();
848 
849   // Don't know anything.
850   Known = KnownBits(BitWidth);
851 
852   // Undef operand.
853   if (Op.isUndef())
854     return false;
855 
856   if (Op.getOpcode() == ISD::Constant) {
857     // We know all of the bits for a constant!
858     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
859     Known.Zero = ~Known.One;
860     return false;
861   }
862 
863   // Other users may use these bits.
864   EVT VT = Op.getValueType();
865   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
866     if (Depth != 0) {
867       // If not at the root, Just compute the Known bits to
868       // simplify things downstream.
869       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
870       return false;
871     }
872     // If this is the root being simplified, allow it to have multiple uses,
873     // just set the DemandedBits/Elts to all bits.
874     DemandedBits = APInt::getAllOnesValue(BitWidth);
875     DemandedElts = APInt::getAllOnesValue(NumElts);
876   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
877     // Not demanding any bits/elts from Op.
878     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
879   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
880     // Limit search depth.
881     return false;
882   }
883 
884   KnownBits Known2;
885   switch (Op.getOpcode()) {
886   case ISD::TargetConstant:
887     llvm_unreachable("Can't simplify this node");
888   case ISD::SCALAR_TO_VECTOR: {
889     if (!DemandedElts[0])
890       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
891 
892     KnownBits SrcKnown;
893     SDValue Src = Op.getOperand(0);
894     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
895     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
896     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
897       return true;
898 
899     // Upper elements are undef, so only get the knownbits if we just demand
900     // the bottom element.
901     if (DemandedElts == 1)
902       Known = SrcKnown.anyextOrTrunc(BitWidth);
903     break;
904   }
905   case ISD::BUILD_VECTOR:
906     // Collect the known bits that are shared by every demanded element.
907     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
908     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
909     return false; // Don't fall through, will infinitely loop.
910   case ISD::LOAD: {
911     LoadSDNode *LD = cast<LoadSDNode>(Op);
912     if (getTargetConstantFromLoad(LD)) {
913       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
914       return false; // Don't fall through, will infinitely loop.
915     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
916       // If this is a ZEXTLoad and we are looking at the loaded value.
917       EVT MemVT = LD->getMemoryVT();
918       unsigned MemBits = MemVT.getScalarSizeInBits();
919       Known.Zero.setBitsFrom(MemBits);
920       return false; // Don't fall through, will infinitely loop.
921     }
922     break;
923   }
924   case ISD::INSERT_VECTOR_ELT: {
925     SDValue Vec = Op.getOperand(0);
926     SDValue Scl = Op.getOperand(1);
927     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
928     EVT VecVT = Vec.getValueType();
929 
930     // If index isn't constant, assume we need all vector elements AND the
931     // inserted element.
932     APInt DemandedVecElts(DemandedElts);
933     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
934       unsigned Idx = CIdx->getZExtValue();
935       DemandedVecElts.clearBit(Idx);
936 
937       // Inserted element is not required.
938       if (!DemandedElts[Idx])
939         return TLO.CombineTo(Op, Vec);
940     }
941 
942     KnownBits KnownScl;
943     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
944     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
945     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
946       return true;
947 
948     Known = KnownScl.anyextOrTrunc(BitWidth);
949 
950     KnownBits KnownVec;
951     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
952                              Depth + 1))
953       return true;
954 
955     if (!!DemandedVecElts) {
956       Known.One &= KnownVec.One;
957       Known.Zero &= KnownVec.Zero;
958     }
959 
960     return false;
961   }
962   case ISD::INSERT_SUBVECTOR: {
963     // Demand any elements from the subvector and the remainder from the src its
964     // inserted into.
965     SDValue Src = Op.getOperand(0);
966     SDValue Sub = Op.getOperand(1);
967     uint64_t Idx = Op.getConstantOperandVal(2);
968     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
969     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
970     APInt DemandedSrcElts = DemandedElts;
971     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
972 
973     KnownBits KnownSub, KnownSrc;
974     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
975                              Depth + 1))
976       return true;
977     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
978                              Depth + 1))
979       return true;
980 
981     Known.Zero.setAllBits();
982     Known.One.setAllBits();
983     if (!!DemandedSubElts) {
984       Known.One &= KnownSub.One;
985       Known.Zero &= KnownSub.Zero;
986     }
987     if (!!DemandedSrcElts) {
988       Known.One &= KnownSrc.One;
989       Known.Zero &= KnownSrc.Zero;
990     }
991 
992     // Attempt to avoid multi-use src if we don't need anything from it.
993     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
994         !DemandedSrcElts.isAllOnesValue()) {
995       SDValue NewSub = SimplifyMultipleUseDemandedBits(
996           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
997       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
998           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
999       if (NewSub || NewSrc) {
1000         NewSub = NewSub ? NewSub : Sub;
1001         NewSrc = NewSrc ? NewSrc : Src;
1002         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1003                                         Op.getOperand(2));
1004         return TLO.CombineTo(Op, NewOp);
1005       }
1006     }
1007     break;
1008   }
1009   case ISD::EXTRACT_SUBVECTOR: {
1010     // Offset the demanded elts by the subvector index.
1011     SDValue Src = Op.getOperand(0);
1012     uint64_t Idx = Op.getConstantOperandVal(1);
1013     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1014     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1015 
1016     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1017                              Depth + 1))
1018       return true;
1019 
1020     // Attempt to avoid multi-use src if we don't need anything from it.
1021     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1022       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1023           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1024       if (DemandedSrc) {
1025         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1026                                         Op.getOperand(1));
1027         return TLO.CombineTo(Op, NewOp);
1028       }
1029     }
1030     break;
1031   }
1032   case ISD::CONCAT_VECTORS: {
1033     Known.Zero.setAllBits();
1034     Known.One.setAllBits();
1035     EVT SubVT = Op.getOperand(0).getValueType();
1036     unsigned NumSubVecs = Op.getNumOperands();
1037     unsigned NumSubElts = SubVT.getVectorNumElements();
1038     for (unsigned i = 0; i != NumSubVecs; ++i) {
1039       APInt DemandedSubElts =
1040           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1041       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1042                                Known2, TLO, Depth + 1))
1043         return true;
1044       // Known bits are shared by every demanded subvector element.
1045       if (!!DemandedSubElts) {
1046         Known.One &= Known2.One;
1047         Known.Zero &= Known2.Zero;
1048       }
1049     }
1050     break;
1051   }
1052   case ISD::VECTOR_SHUFFLE: {
1053     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1054 
1055     // Collect demanded elements from shuffle operands..
1056     APInt DemandedLHS(NumElts, 0);
1057     APInt DemandedRHS(NumElts, 0);
1058     for (unsigned i = 0; i != NumElts; ++i) {
1059       if (!DemandedElts[i])
1060         continue;
1061       int M = ShuffleMask[i];
1062       if (M < 0) {
1063         // For UNDEF elements, we don't know anything about the common state of
1064         // the shuffle result.
1065         DemandedLHS.clearAllBits();
1066         DemandedRHS.clearAllBits();
1067         break;
1068       }
1069       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1070       if (M < (int)NumElts)
1071         DemandedLHS.setBit(M);
1072       else
1073         DemandedRHS.setBit(M - NumElts);
1074     }
1075 
1076     if (!!DemandedLHS || !!DemandedRHS) {
1077       SDValue Op0 = Op.getOperand(0);
1078       SDValue Op1 = Op.getOperand(1);
1079 
1080       Known.Zero.setAllBits();
1081       Known.One.setAllBits();
1082       if (!!DemandedLHS) {
1083         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1084                                  Depth + 1))
1085           return true;
1086         Known.One &= Known2.One;
1087         Known.Zero &= Known2.Zero;
1088       }
1089       if (!!DemandedRHS) {
1090         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1091                                  Depth + 1))
1092           return true;
1093         Known.One &= Known2.One;
1094         Known.Zero &= Known2.Zero;
1095       }
1096 
1097       // Attempt to avoid multi-use ops if we don't need anything from them.
1098       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1099           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1100       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1101           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1102       if (DemandedOp0 || DemandedOp1) {
1103         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1104         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1105         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1106         return TLO.CombineTo(Op, NewOp);
1107       }
1108     }
1109     break;
1110   }
1111   case ISD::AND: {
1112     SDValue Op0 = Op.getOperand(0);
1113     SDValue Op1 = Op.getOperand(1);
1114 
1115     // If the RHS is a constant, check to see if the LHS would be zero without
1116     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1117     // simplify the LHS, here we're using information from the LHS to simplify
1118     // the RHS.
1119     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1120       // Do not increment Depth here; that can cause an infinite loop.
1121       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1122       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1123       if ((LHSKnown.Zero & DemandedBits) ==
1124           (~RHSC->getAPIntValue() & DemandedBits))
1125         return TLO.CombineTo(Op, Op0);
1126 
1127       // If any of the set bits in the RHS are known zero on the LHS, shrink
1128       // the constant.
1129       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1130         return true;
1131 
1132       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1133       // constant, but if this 'and' is only clearing bits that were just set by
1134       // the xor, then this 'and' can be eliminated by shrinking the mask of
1135       // the xor. For example, for a 32-bit X:
1136       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1137       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1138           LHSKnown.One == ~RHSC->getAPIntValue()) {
1139         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1140         return TLO.CombineTo(Op, Xor);
1141       }
1142     }
1143 
1144     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1145                              Depth + 1))
1146       return true;
1147     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1148     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1149                              Known2, TLO, Depth + 1))
1150       return true;
1151     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1152 
1153     // Attempt to avoid multi-use ops if we don't need anything from them.
1154     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1155       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1156           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1157       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1158           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1159       if (DemandedOp0 || DemandedOp1) {
1160         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1161         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1162         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1163         return TLO.CombineTo(Op, NewOp);
1164       }
1165     }
1166 
1167     // If all of the demanded bits are known one on one side, return the other.
1168     // These bits cannot contribute to the result of the 'and'.
1169     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1170       return TLO.CombineTo(Op, Op0);
1171     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1172       return TLO.CombineTo(Op, Op1);
1173     // If all of the demanded bits in the inputs are known zeros, return zero.
1174     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1175       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1176     // If the RHS is a constant, see if we can simplify it.
1177     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1178       return true;
1179     // If the operation can be done in a smaller type, do so.
1180     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1181       return true;
1182 
1183     Known &= Known2;
1184     break;
1185   }
1186   case ISD::OR: {
1187     SDValue Op0 = Op.getOperand(0);
1188     SDValue Op1 = Op.getOperand(1);
1189 
1190     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1191                              Depth + 1))
1192       return true;
1193     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1194     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1195                              Known2, TLO, Depth + 1))
1196       return true;
1197     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1198 
1199     // Attempt to avoid multi-use ops if we don't need anything from them.
1200     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1201       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1202           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1203       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1204           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1205       if (DemandedOp0 || DemandedOp1) {
1206         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1207         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1208         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1209         return TLO.CombineTo(Op, NewOp);
1210       }
1211     }
1212 
1213     // If all of the demanded bits are known zero on one side, return the other.
1214     // These bits cannot contribute to the result of the 'or'.
1215     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1216       return TLO.CombineTo(Op, Op0);
1217     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1218       return TLO.CombineTo(Op, Op1);
1219     // If the RHS is a constant, see if we can simplify it.
1220     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221       return true;
1222     // If the operation can be done in a smaller type, do so.
1223     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1224       return true;
1225 
1226     Known |= Known2;
1227     break;
1228   }
1229   case ISD::XOR: {
1230     SDValue Op0 = Op.getOperand(0);
1231     SDValue Op1 = Op.getOperand(1);
1232 
1233     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1234                              Depth + 1))
1235       return true;
1236     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1237     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1238                              Depth + 1))
1239       return true;
1240     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1241 
1242     // Attempt to avoid multi-use ops if we don't need anything from them.
1243     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1244       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1245           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1246       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1247           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1248       if (DemandedOp0 || DemandedOp1) {
1249         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1250         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1251         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1252         return TLO.CombineTo(Op, NewOp);
1253       }
1254     }
1255 
1256     // If all of the demanded bits are known zero on one side, return the other.
1257     // These bits cannot contribute to the result of the 'xor'.
1258     if (DemandedBits.isSubsetOf(Known.Zero))
1259       return TLO.CombineTo(Op, Op0);
1260     if (DemandedBits.isSubsetOf(Known2.Zero))
1261       return TLO.CombineTo(Op, Op1);
1262     // If the operation can be done in a smaller type, do so.
1263     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1264       return true;
1265 
1266     // If all of the unknown bits are known to be zero on one side or the other
1267     // (but not both) turn this into an *inclusive* or.
1268     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1269     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1270       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1271 
1272     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1273       // If one side is a constant, and all of the known set bits on the other
1274       // side are also set in the constant, turn this into an AND, as we know
1275       // the bits will be cleared.
1276       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1277       // NB: it is okay if more bits are known than are requested
1278       if (C->getAPIntValue() == Known2.One) {
1279         SDValue ANDC =
1280             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1281         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1282       }
1283 
1284       // If the RHS is a constant, see if we can change it. Don't alter a -1
1285       // constant because that's a 'not' op, and that is better for combining
1286       // and codegen.
1287       if (!C->isAllOnesValue()) {
1288         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1289           // We're flipping all demanded bits. Flip the undemanded bits too.
1290           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1291           return TLO.CombineTo(Op, New);
1292         }
1293         // If we can't turn this into a 'not', try to shrink the constant.
1294         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1295           return true;
1296       }
1297     }
1298 
1299     Known ^= Known2;
1300     break;
1301   }
1302   case ISD::SELECT:
1303     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1304                              Depth + 1))
1305       return true;
1306     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1307                              Depth + 1))
1308       return true;
1309     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1310     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1311 
1312     // If the operands are constants, see if we can simplify them.
1313     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1314       return true;
1315 
1316     // Only known if known in both the LHS and RHS.
1317     Known.One &= Known2.One;
1318     Known.Zero &= Known2.Zero;
1319     break;
1320   case ISD::SELECT_CC:
1321     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1322                              Depth + 1))
1323       return true;
1324     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1325                              Depth + 1))
1326       return true;
1327     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1328     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1329 
1330     // If the operands are constants, see if we can simplify them.
1331     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1332       return true;
1333 
1334     // Only known if known in both the LHS and RHS.
1335     Known.One &= Known2.One;
1336     Known.Zero &= Known2.Zero;
1337     break;
1338   case ISD::SETCC: {
1339     SDValue Op0 = Op.getOperand(0);
1340     SDValue Op1 = Op.getOperand(1);
1341     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1342     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1343     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1344     // -1, we may be able to bypass the setcc.
1345     if (DemandedBits.isSignMask() &&
1346         Op0.getScalarValueSizeInBits() == BitWidth &&
1347         getBooleanContents(Op0.getValueType()) ==
1348             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1349       // If we're testing X < 0, then this compare isn't needed - just use X!
1350       // FIXME: We're limiting to integer types here, but this should also work
1351       // if we don't care about FP signed-zero. The use of SETLT with FP means
1352       // that we don't care about NaNs.
1353       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1354           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1355         return TLO.CombineTo(Op, Op0);
1356 
1357       // TODO: Should we check for other forms of sign-bit comparisons?
1358       // Examples: X <= -1, X >= 0
1359     }
1360     if (getBooleanContents(Op0.getValueType()) ==
1361             TargetLowering::ZeroOrOneBooleanContent &&
1362         BitWidth > 1)
1363       Known.Zero.setBitsFrom(1);
1364     break;
1365   }
1366   case ISD::SHL: {
1367     SDValue Op0 = Op.getOperand(0);
1368     SDValue Op1 = Op.getOperand(1);
1369     EVT ShiftVT = Op1.getValueType();
1370 
1371     if (const APInt *SA =
1372             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1373       unsigned ShAmt = SA->getZExtValue();
1374       if (ShAmt == 0)
1375         return TLO.CombineTo(Op, Op0);
1376 
1377       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1378       // single shift.  We can do this if the bottom bits (which are shifted
1379       // out) are never demanded.
1380       // TODO - support non-uniform vector amounts.
1381       if (Op0.getOpcode() == ISD::SRL) {
1382         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1383           if (const APInt *SA2 =
1384                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1385             unsigned C1 = SA2->getZExtValue();
1386             unsigned Opc = ISD::SHL;
1387             int Diff = ShAmt - C1;
1388             if (Diff < 0) {
1389               Diff = -Diff;
1390               Opc = ISD::SRL;
1391             }
1392             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1393             return TLO.CombineTo(
1394                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1395           }
1396         }
1397       }
1398 
1399       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1400       // are not demanded. This will likely allow the anyext to be folded away.
1401       // TODO - support non-uniform vector amounts.
1402       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1403         SDValue InnerOp = Op0.getOperand(0);
1404         EVT InnerVT = InnerOp.getValueType();
1405         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1406         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1407             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1408           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1409           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1410             ShTy = InnerVT;
1411           SDValue NarrowShl =
1412               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1413                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1414           return TLO.CombineTo(
1415               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1416         }
1417 
1418         // Repeat the SHL optimization above in cases where an extension
1419         // intervenes: (shl (anyext (shr x, c1)), c2) to
1420         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1421         // aren't demanded (as above) and that the shifted upper c1 bits of
1422         // x aren't demanded.
1423         // TODO - support non-uniform vector amounts.
1424         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1425             InnerOp.hasOneUse()) {
1426           if (const APInt *SA2 =
1427                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1428             unsigned InnerShAmt = SA2->getZExtValue();
1429             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1430                 DemandedBits.getActiveBits() <=
1431                     (InnerBits - InnerShAmt + ShAmt) &&
1432                 DemandedBits.countTrailingZeros() >= ShAmt) {
1433               SDValue NewSA =
1434                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1435               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1436                                                InnerOp.getOperand(0));
1437               return TLO.CombineTo(
1438                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1439             }
1440           }
1441         }
1442       }
1443 
1444       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1445       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1446                                Depth + 1))
1447         return true;
1448       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1449       Known.Zero <<= ShAmt;
1450       Known.One <<= ShAmt;
1451       // low bits known zero.
1452       Known.Zero.setLowBits(ShAmt);
1453 
1454       // Try shrinking the operation as long as the shift amount will still be
1455       // in range.
1456       if ((ShAmt < DemandedBits.getActiveBits()) &&
1457           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1458         return true;
1459     }
1460 
1461     // If we are only demanding sign bits then we can use the shift source
1462     // directly.
1463     if (const APInt *MaxSA =
1464             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1465       unsigned ShAmt = MaxSA->getZExtValue();
1466       unsigned NumSignBits =
1467           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1468       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1469       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1470         return TLO.CombineTo(Op, Op0);
1471     }
1472     break;
1473   }
1474   case ISD::SRL: {
1475     SDValue Op0 = Op.getOperand(0);
1476     SDValue Op1 = Op.getOperand(1);
1477     EVT ShiftVT = Op1.getValueType();
1478 
1479     if (const APInt *SA =
1480             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1481       unsigned ShAmt = SA->getZExtValue();
1482       if (ShAmt == 0)
1483         return TLO.CombineTo(Op, Op0);
1484 
1485       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1486       // single shift.  We can do this if the top bits (which are shifted out)
1487       // are never demanded.
1488       // TODO - support non-uniform vector amounts.
1489       if (Op0.getOpcode() == ISD::SHL) {
1490         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1491           if (const APInt *SA2 =
1492                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1493             unsigned C1 = SA2->getZExtValue();
1494             unsigned Opc = ISD::SRL;
1495             int Diff = ShAmt - C1;
1496             if (Diff < 0) {
1497               Diff = -Diff;
1498               Opc = ISD::SHL;
1499             }
1500             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1501             return TLO.CombineTo(
1502                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1503           }
1504         }
1505       }
1506 
1507       APInt InDemandedMask = (DemandedBits << ShAmt);
1508 
1509       // If the shift is exact, then it does demand the low bits (and knows that
1510       // they are zero).
1511       if (Op->getFlags().hasExact())
1512         InDemandedMask.setLowBits(ShAmt);
1513 
1514       // Compute the new bits that are at the top now.
1515       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1516                                Depth + 1))
1517         return true;
1518       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1519       Known.Zero.lshrInPlace(ShAmt);
1520       Known.One.lshrInPlace(ShAmt);
1521       // High bits known zero.
1522       Known.Zero.setHighBits(ShAmt);
1523     }
1524     break;
1525   }
1526   case ISD::SRA: {
1527     SDValue Op0 = Op.getOperand(0);
1528     SDValue Op1 = Op.getOperand(1);
1529     EVT ShiftVT = Op1.getValueType();
1530 
1531     // If we only want bits that already match the signbit then we don't need
1532     // to shift.
1533     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1534     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1535         NumHiDemandedBits)
1536       return TLO.CombineTo(Op, Op0);
1537 
1538     // If this is an arithmetic shift right and only the low-bit is set, we can
1539     // always convert this into a logical shr, even if the shift amount is
1540     // variable.  The low bit of the shift cannot be an input sign bit unless
1541     // the shift amount is >= the size of the datatype, which is undefined.
1542     if (DemandedBits.isOneValue())
1543       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1544 
1545     if (const APInt *SA =
1546             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1547       unsigned ShAmt = SA->getZExtValue();
1548       if (ShAmt == 0)
1549         return TLO.CombineTo(Op, Op0);
1550 
1551       APInt InDemandedMask = (DemandedBits << ShAmt);
1552 
1553       // If the shift is exact, then it does demand the low bits (and knows that
1554       // they are zero).
1555       if (Op->getFlags().hasExact())
1556         InDemandedMask.setLowBits(ShAmt);
1557 
1558       // If any of the demanded bits are produced by the sign extension, we also
1559       // demand the input sign bit.
1560       if (DemandedBits.countLeadingZeros() < ShAmt)
1561         InDemandedMask.setSignBit();
1562 
1563       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1564                                Depth + 1))
1565         return true;
1566       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1567       Known.Zero.lshrInPlace(ShAmt);
1568       Known.One.lshrInPlace(ShAmt);
1569 
1570       // If the input sign bit is known to be zero, or if none of the top bits
1571       // are demanded, turn this into an unsigned shift right.
1572       if (Known.Zero[BitWidth - ShAmt - 1] ||
1573           DemandedBits.countLeadingZeros() >= ShAmt) {
1574         SDNodeFlags Flags;
1575         Flags.setExact(Op->getFlags().hasExact());
1576         return TLO.CombineTo(
1577             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1578       }
1579 
1580       int Log2 = DemandedBits.exactLogBase2();
1581       if (Log2 >= 0) {
1582         // The bit must come from the sign.
1583         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1584         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1585       }
1586 
1587       if (Known.One[BitWidth - ShAmt - 1])
1588         // New bits are known one.
1589         Known.One.setHighBits(ShAmt);
1590 
1591       // Attempt to avoid multi-use ops if we don't need anything from them.
1592       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1593         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1594             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1595         if (DemandedOp0) {
1596           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1597           return TLO.CombineTo(Op, NewOp);
1598         }
1599       }
1600     }
1601     break;
1602   }
1603   case ISD::FSHL:
1604   case ISD::FSHR: {
1605     SDValue Op0 = Op.getOperand(0);
1606     SDValue Op1 = Op.getOperand(1);
1607     SDValue Op2 = Op.getOperand(2);
1608     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1609 
1610     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1611       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1612 
1613       // For fshl, 0-shift returns the 1st arg.
1614       // For fshr, 0-shift returns the 2nd arg.
1615       if (Amt == 0) {
1616         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1617                                  Known, TLO, Depth + 1))
1618           return true;
1619         break;
1620       }
1621 
1622       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1623       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1624       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1625       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1626       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1627                                Depth + 1))
1628         return true;
1629       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1630                                Depth + 1))
1631         return true;
1632 
1633       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1634       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1635       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1636       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1637       Known.One |= Known2.One;
1638       Known.Zero |= Known2.Zero;
1639     }
1640 
1641     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1642     if (isPowerOf2_32(BitWidth)) {
1643       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1644       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1645                                Known2, TLO, Depth + 1))
1646         return true;
1647     }
1648     break;
1649   }
1650   case ISD::ROTL:
1651   case ISD::ROTR: {
1652     SDValue Op0 = Op.getOperand(0);
1653     SDValue Op1 = Op.getOperand(1);
1654 
1655     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1656     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1657       return TLO.CombineTo(Op, Op0);
1658 
1659     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1660     if (isPowerOf2_32(BitWidth)) {
1661       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1662       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1663                                Depth + 1))
1664         return true;
1665     }
1666     break;
1667   }
1668   case ISD::BITREVERSE: {
1669     SDValue Src = Op.getOperand(0);
1670     APInt DemandedSrcBits = DemandedBits.reverseBits();
1671     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1672                              Depth + 1))
1673       return true;
1674     Known.One = Known2.One.reverseBits();
1675     Known.Zero = Known2.Zero.reverseBits();
1676     break;
1677   }
1678   case ISD::BSWAP: {
1679     SDValue Src = Op.getOperand(0);
1680     APInt DemandedSrcBits = DemandedBits.byteSwap();
1681     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1682                              Depth + 1))
1683       return true;
1684     Known.One = Known2.One.byteSwap();
1685     Known.Zero = Known2.Zero.byteSwap();
1686     break;
1687   }
1688   case ISD::SIGN_EXTEND_INREG: {
1689     SDValue Op0 = Op.getOperand(0);
1690     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1691     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1692 
1693     // If we only care about the highest bit, don't bother shifting right.
1694     if (DemandedBits.isSignMask()) {
1695       unsigned NumSignBits =
1696           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1697       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1698       // However if the input is already sign extended we expect the sign
1699       // extension to be dropped altogether later and do not simplify.
1700       if (!AlreadySignExtended) {
1701         // Compute the correct shift amount type, which must be getShiftAmountTy
1702         // for scalar types after legalization.
1703         EVT ShiftAmtTy = VT;
1704         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1705           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1706 
1707         SDValue ShiftAmt =
1708             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1709         return TLO.CombineTo(Op,
1710                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1711       }
1712     }
1713 
1714     // If none of the extended bits are demanded, eliminate the sextinreg.
1715     if (DemandedBits.getActiveBits() <= ExVTBits)
1716       return TLO.CombineTo(Op, Op0);
1717 
1718     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1719 
1720     // Since the sign extended bits are demanded, we know that the sign
1721     // bit is demanded.
1722     InputDemandedBits.setBit(ExVTBits - 1);
1723 
1724     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1725       return true;
1726     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1727 
1728     // If the sign bit of the input is known set or clear, then we know the
1729     // top bits of the result.
1730 
1731     // If the input sign bit is known zero, convert this into a zero extension.
1732     if (Known.Zero[ExVTBits - 1])
1733       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1734 
1735     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1736     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1737       Known.One.setBitsFrom(ExVTBits);
1738       Known.Zero &= Mask;
1739     } else { // Input sign bit unknown
1740       Known.Zero &= Mask;
1741       Known.One &= Mask;
1742     }
1743     break;
1744   }
1745   case ISD::BUILD_PAIR: {
1746     EVT HalfVT = Op.getOperand(0).getValueType();
1747     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1748 
1749     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1750     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1751 
1752     KnownBits KnownLo, KnownHi;
1753 
1754     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1755       return true;
1756 
1757     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1758       return true;
1759 
1760     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1761                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1762 
1763     Known.One = KnownLo.One.zext(BitWidth) |
1764                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1765     break;
1766   }
1767   case ISD::ZERO_EXTEND:
1768   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1769     SDValue Src = Op.getOperand(0);
1770     EVT SrcVT = Src.getValueType();
1771     unsigned InBits = SrcVT.getScalarSizeInBits();
1772     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1773     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1774 
1775     // If none of the top bits are demanded, convert this into an any_extend.
1776     if (DemandedBits.getActiveBits() <= InBits) {
1777       // If we only need the non-extended bits of the bottom element
1778       // then we can just bitcast to the result.
1779       if (IsVecInReg && DemandedElts == 1 &&
1780           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1781           TLO.DAG.getDataLayout().isLittleEndian())
1782         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1783 
1784       unsigned Opc =
1785           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1786       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1787         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1788     }
1789 
1790     APInt InDemandedBits = DemandedBits.trunc(InBits);
1791     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1792     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1793                              Depth + 1))
1794       return true;
1795     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1797     Known = Known.zext(BitWidth);
1798     break;
1799   }
1800   case ISD::SIGN_EXTEND:
1801   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1802     SDValue Src = Op.getOperand(0);
1803     EVT SrcVT = Src.getValueType();
1804     unsigned InBits = SrcVT.getScalarSizeInBits();
1805     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1806     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1807 
1808     // If none of the top bits are demanded, convert this into an any_extend.
1809     if (DemandedBits.getActiveBits() <= InBits) {
1810       // If we only need the non-extended bits of the bottom element
1811       // then we can just bitcast to the result.
1812       if (IsVecInReg && DemandedElts == 1 &&
1813           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1814           TLO.DAG.getDataLayout().isLittleEndian())
1815         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1816 
1817       unsigned Opc =
1818           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1819       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1820         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1821     }
1822 
1823     APInt InDemandedBits = DemandedBits.trunc(InBits);
1824     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1825 
1826     // Since some of the sign extended bits are demanded, we know that the sign
1827     // bit is demanded.
1828     InDemandedBits.setBit(InBits - 1);
1829 
1830     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1831                              Depth + 1))
1832       return true;
1833     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1834     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1835 
1836     // If the sign bit is known one, the top bits match.
1837     Known = Known.sext(BitWidth);
1838 
1839     // If the sign bit is known zero, convert this to a zero extend.
1840     if (Known.isNonNegative()) {
1841       unsigned Opc =
1842           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1843       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1844         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1845     }
1846     break;
1847   }
1848   case ISD::ANY_EXTEND:
1849   case ISD::ANY_EXTEND_VECTOR_INREG: {
1850     SDValue Src = Op.getOperand(0);
1851     EVT SrcVT = Src.getValueType();
1852     unsigned InBits = SrcVT.getScalarSizeInBits();
1853     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1854     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1855 
1856     // If we only need the bottom element then we can just bitcast.
1857     // TODO: Handle ANY_EXTEND?
1858     if (IsVecInReg && DemandedElts == 1 &&
1859         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1860         TLO.DAG.getDataLayout().isLittleEndian())
1861       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1862 
1863     APInt InDemandedBits = DemandedBits.trunc(InBits);
1864     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1865     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1866                              Depth + 1))
1867       return true;
1868     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1869     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1870     Known = Known.anyext(BitWidth);
1871 
1872     // Attempt to avoid multi-use ops if we don't need anything from them.
1873     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1874             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1875       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1876     break;
1877   }
1878   case ISD::TRUNCATE: {
1879     SDValue Src = Op.getOperand(0);
1880 
1881     // Simplify the input, using demanded bit information, and compute the known
1882     // zero/one bits live out.
1883     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1884     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1885     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1886       return true;
1887     Known = Known.trunc(BitWidth);
1888 
1889     // Attempt to avoid multi-use ops if we don't need anything from them.
1890     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1891             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1892       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1893 
1894     // If the input is only used by this truncate, see if we can shrink it based
1895     // on the known demanded bits.
1896     if (Src.getNode()->hasOneUse()) {
1897       switch (Src.getOpcode()) {
1898       default:
1899         break;
1900       case ISD::SRL:
1901         // Shrink SRL by a constant if none of the high bits shifted in are
1902         // demanded.
1903         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1904           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1905           // undesirable.
1906           break;
1907 
1908         SDValue ShAmt = Src.getOperand(1);
1909         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1910         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1911           break;
1912         uint64_t ShVal = ShAmtC->getZExtValue();
1913 
1914         APInt HighBits =
1915             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1916         HighBits.lshrInPlace(ShVal);
1917         HighBits = HighBits.trunc(BitWidth);
1918 
1919         if (!(HighBits & DemandedBits)) {
1920           // None of the shifted in bits are needed.  Add a truncate of the
1921           // shift input, then shift it.
1922           if (TLO.LegalTypes())
1923             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1924           SDValue NewTrunc =
1925               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1926           return TLO.CombineTo(
1927               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1928         }
1929         break;
1930       }
1931     }
1932 
1933     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1934     break;
1935   }
1936   case ISD::AssertZext: {
1937     // AssertZext demands all of the high bits, plus any of the low bits
1938     // demanded by its users.
1939     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1940     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1941     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1942                              TLO, Depth + 1))
1943       return true;
1944     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1945 
1946     Known.Zero |= ~InMask;
1947     break;
1948   }
1949   case ISD::EXTRACT_VECTOR_ELT: {
1950     SDValue Src = Op.getOperand(0);
1951     SDValue Idx = Op.getOperand(1);
1952     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1953     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1954 
1955     // Demand the bits from every vector element without a constant index.
1956     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1957     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1958       if (CIdx->getAPIntValue().ult(NumSrcElts))
1959         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1960 
1961     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1962     // anything about the extended bits.
1963     APInt DemandedSrcBits = DemandedBits;
1964     if (BitWidth > EltBitWidth)
1965       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1966 
1967     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1968                              Depth + 1))
1969       return true;
1970 
1971     // Attempt to avoid multi-use ops if we don't need anything from them.
1972     if (!DemandedSrcBits.isAllOnesValue() ||
1973         !DemandedSrcElts.isAllOnesValue()) {
1974       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1975               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1976         SDValue NewOp =
1977             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1978         return TLO.CombineTo(Op, NewOp);
1979       }
1980     }
1981 
1982     Known = Known2;
1983     if (BitWidth > EltBitWidth)
1984       Known = Known.anyext(BitWidth);
1985     break;
1986   }
1987   case ISD::BITCAST: {
1988     SDValue Src = Op.getOperand(0);
1989     EVT SrcVT = Src.getValueType();
1990     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1991 
1992     // If this is an FP->Int bitcast and if the sign bit is the only
1993     // thing demanded, turn this into a FGETSIGN.
1994     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1995         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1996         SrcVT.isFloatingPoint()) {
1997       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1998       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1999       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2000           SrcVT != MVT::f128) {
2001         // Cannot eliminate/lower SHL for f128 yet.
2002         EVT Ty = OpVTLegal ? VT : MVT::i32;
2003         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2004         // place.  We expect the SHL to be eliminated by other optimizations.
2005         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2006         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2007         if (!OpVTLegal && OpVTSizeInBits > 32)
2008           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2009         unsigned ShVal = Op.getValueSizeInBits() - 1;
2010         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2011         return TLO.CombineTo(Op,
2012                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2013       }
2014     }
2015 
2016     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2017     // Demand the elt/bit if any of the original elts/bits are demanded.
2018     // TODO - bigendian once we have test coverage.
2019     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2020         TLO.DAG.getDataLayout().isLittleEndian()) {
2021       unsigned Scale = BitWidth / NumSrcEltBits;
2022       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2023       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2024       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2025       for (unsigned i = 0; i != Scale; ++i) {
2026         unsigned Offset = i * NumSrcEltBits;
2027         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2028         if (!Sub.isNullValue()) {
2029           DemandedSrcBits |= Sub;
2030           for (unsigned j = 0; j != NumElts; ++j)
2031             if (DemandedElts[j])
2032               DemandedSrcElts.setBit((j * Scale) + i);
2033         }
2034       }
2035 
2036       APInt KnownSrcUndef, KnownSrcZero;
2037       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2038                                      KnownSrcZero, TLO, Depth + 1))
2039         return true;
2040 
2041       KnownBits KnownSrcBits;
2042       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2043                                KnownSrcBits, TLO, Depth + 1))
2044         return true;
2045     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2046                TLO.DAG.getDataLayout().isLittleEndian()) {
2047       unsigned Scale = NumSrcEltBits / BitWidth;
2048       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2049       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2050       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2051       for (unsigned i = 0; i != NumElts; ++i)
2052         if (DemandedElts[i]) {
2053           unsigned Offset = (i % Scale) * BitWidth;
2054           DemandedSrcBits.insertBits(DemandedBits, Offset);
2055           DemandedSrcElts.setBit(i / Scale);
2056         }
2057 
2058       if (SrcVT.isVector()) {
2059         APInt KnownSrcUndef, KnownSrcZero;
2060         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2061                                        KnownSrcZero, TLO, Depth + 1))
2062           return true;
2063       }
2064 
2065       KnownBits KnownSrcBits;
2066       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2067                                KnownSrcBits, TLO, Depth + 1))
2068         return true;
2069     }
2070 
2071     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2072     // recursive call where Known may be useful to the caller.
2073     if (Depth > 0) {
2074       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2075       return false;
2076     }
2077     break;
2078   }
2079   case ISD::ADD:
2080   case ISD::MUL:
2081   case ISD::SUB: {
2082     // Add, Sub, and Mul don't demand any bits in positions beyond that
2083     // of the highest bit demanded of them.
2084     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2085     SDNodeFlags Flags = Op.getNode()->getFlags();
2086     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2087     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2088     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2089                              Depth + 1) ||
2090         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2091                              Depth + 1) ||
2092         // See if the operation should be performed at a smaller bit width.
2093         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2094       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2095         // Disable the nsw and nuw flags. We can no longer guarantee that we
2096         // won't wrap after simplification.
2097         Flags.setNoSignedWrap(false);
2098         Flags.setNoUnsignedWrap(false);
2099         SDValue NewOp =
2100             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2101         return TLO.CombineTo(Op, NewOp);
2102       }
2103       return true;
2104     }
2105 
2106     // Attempt to avoid multi-use ops if we don't need anything from them.
2107     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2108       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2109           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2110       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2111           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2112       if (DemandedOp0 || DemandedOp1) {
2113         Flags.setNoSignedWrap(false);
2114         Flags.setNoUnsignedWrap(false);
2115         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2116         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2117         SDValue NewOp =
2118             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2119         return TLO.CombineTo(Op, NewOp);
2120       }
2121     }
2122 
2123     // If we have a constant operand, we may be able to turn it into -1 if we
2124     // do not demand the high bits. This can make the constant smaller to
2125     // encode, allow more general folding, or match specialized instruction
2126     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2127     // is probably not useful (and could be detrimental).
2128     ConstantSDNode *C = isConstOrConstSplat(Op1);
2129     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2130     if (C && !C->isAllOnesValue() && !C->isOne() &&
2131         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2132       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2133       // Disable the nsw and nuw flags. We can no longer guarantee that we
2134       // won't wrap after simplification.
2135       Flags.setNoSignedWrap(false);
2136       Flags.setNoUnsignedWrap(false);
2137       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2138       return TLO.CombineTo(Op, NewOp);
2139     }
2140 
2141     LLVM_FALLTHROUGH;
2142   }
2143   default:
2144     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2145       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2146                                             Known, TLO, Depth))
2147         return true;
2148       break;
2149     }
2150 
2151     // Just use computeKnownBits to compute output bits.
2152     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2153     break;
2154   }
2155 
2156   // If we know the value of all of the demanded bits, return this as a
2157   // constant.
2158   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2159     // Avoid folding to a constant if any OpaqueConstant is involved.
2160     const SDNode *N = Op.getNode();
2161     for (SDNodeIterator I = SDNodeIterator::begin(N),
2162                         E = SDNodeIterator::end(N);
2163          I != E; ++I) {
2164       SDNode *Op = *I;
2165       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2166         if (C->isOpaque())
2167           return false;
2168     }
2169     // TODO: Handle float bits as well.
2170     if (VT.isInteger())
2171       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2172   }
2173 
2174   return false;
2175 }
2176 
2177 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2178                                                 const APInt &DemandedElts,
2179                                                 APInt &KnownUndef,
2180                                                 APInt &KnownZero,
2181                                                 DAGCombinerInfo &DCI) const {
2182   SelectionDAG &DAG = DCI.DAG;
2183   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2184                         !DCI.isBeforeLegalizeOps());
2185 
2186   bool Simplified =
2187       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2188   if (Simplified) {
2189     DCI.AddToWorklist(Op.getNode());
2190     DCI.CommitTargetLoweringOpt(TLO);
2191   }
2192 
2193   return Simplified;
2194 }
2195 
2196 /// Given a vector binary operation and known undefined elements for each input
2197 /// operand, compute whether each element of the output is undefined.
2198 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2199                                          const APInt &UndefOp0,
2200                                          const APInt &UndefOp1) {
2201   EVT VT = BO.getValueType();
2202   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2203          "Vector binop only");
2204 
2205   EVT EltVT = VT.getVectorElementType();
2206   unsigned NumElts = VT.getVectorNumElements();
2207   assert(UndefOp0.getBitWidth() == NumElts &&
2208          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2209 
2210   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2211                                    const APInt &UndefVals) {
2212     if (UndefVals[Index])
2213       return DAG.getUNDEF(EltVT);
2214 
2215     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2216       // Try hard to make sure that the getNode() call is not creating temporary
2217       // nodes. Ignore opaque integers because they do not constant fold.
2218       SDValue Elt = BV->getOperand(Index);
2219       auto *C = dyn_cast<ConstantSDNode>(Elt);
2220       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2221         return Elt;
2222     }
2223 
2224     return SDValue();
2225   };
2226 
2227   APInt KnownUndef = APInt::getNullValue(NumElts);
2228   for (unsigned i = 0; i != NumElts; ++i) {
2229     // If both inputs for this element are either constant or undef and match
2230     // the element type, compute the constant/undef result for this element of
2231     // the vector.
2232     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2233     // not handle FP constants. The code within getNode() should be refactored
2234     // to avoid the danger of creating a bogus temporary node here.
2235     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2236     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2237     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2238       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2239         KnownUndef.setBit(i);
2240   }
2241   return KnownUndef;
2242 }
2243 
2244 bool TargetLowering::SimplifyDemandedVectorElts(
2245     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2246     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2247     bool AssumeSingleUse) const {
2248   EVT VT = Op.getValueType();
2249   unsigned Opcode = Op.getOpcode();
2250   APInt DemandedElts = OriginalDemandedElts;
2251   unsigned NumElts = DemandedElts.getBitWidth();
2252   assert(VT.isVector() && "Expected vector op");
2253   assert(VT.getVectorNumElements() == NumElts &&
2254          "Mask size mismatches value type element count!");
2255 
2256   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2257 
2258   // Undef operand.
2259   if (Op.isUndef()) {
2260     KnownUndef.setAllBits();
2261     return false;
2262   }
2263 
2264   // If Op has other users, assume that all elements are needed.
2265   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2266     DemandedElts.setAllBits();
2267 
2268   // Not demanding any elements from Op.
2269   if (DemandedElts == 0) {
2270     KnownUndef.setAllBits();
2271     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2272   }
2273 
2274   // Limit search depth.
2275   if (Depth >= SelectionDAG::MaxRecursionDepth)
2276     return false;
2277 
2278   SDLoc DL(Op);
2279   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2280 
2281   // Helper for demanding the specified elements and all the bits of both binary
2282   // operands.
2283   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2284     unsigned NumBits0 = Op0.getScalarValueSizeInBits();
2285     unsigned NumBits1 = Op1.getScalarValueSizeInBits();
2286     APInt DemandedBits0 = APInt::getAllOnesValue(NumBits0);
2287     APInt DemandedBits1 = APInt::getAllOnesValue(NumBits1);
2288     SDValue NewOp0 = SimplifyMultipleUseDemandedBits(
2289         Op0, DemandedBits0, DemandedElts, TLO.DAG, Depth + 1);
2290     SDValue NewOp1 = SimplifyMultipleUseDemandedBits(
2291         Op1, DemandedBits1, DemandedElts, TLO.DAG, Depth + 1);
2292     if (NewOp0 || NewOp1) {
2293       SDValue NewOp = TLO.DAG.getNode(
2294           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2295       return TLO.CombineTo(Op, NewOp);
2296     }
2297     return false;
2298   };
2299 
2300   switch (Opcode) {
2301   case ISD::SCALAR_TO_VECTOR: {
2302     if (!DemandedElts[0]) {
2303       KnownUndef.setAllBits();
2304       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2305     }
2306     KnownUndef.setHighBits(NumElts - 1);
2307     break;
2308   }
2309   case ISD::BITCAST: {
2310     SDValue Src = Op.getOperand(0);
2311     EVT SrcVT = Src.getValueType();
2312 
2313     // We only handle vectors here.
2314     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2315     if (!SrcVT.isVector())
2316       break;
2317 
2318     // Fast handling of 'identity' bitcasts.
2319     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2320     if (NumSrcElts == NumElts)
2321       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2322                                         KnownZero, TLO, Depth + 1);
2323 
2324     APInt SrcZero, SrcUndef;
2325     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2326 
2327     // Bitcast from 'large element' src vector to 'small element' vector, we
2328     // must demand a source element if any DemandedElt maps to it.
2329     if ((NumElts % NumSrcElts) == 0) {
2330       unsigned Scale = NumElts / NumSrcElts;
2331       for (unsigned i = 0; i != NumElts; ++i)
2332         if (DemandedElts[i])
2333           SrcDemandedElts.setBit(i / Scale);
2334 
2335       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2336                                      TLO, Depth + 1))
2337         return true;
2338 
2339       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2340       // of the large element.
2341       // TODO - bigendian once we have test coverage.
2342       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2343         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2344         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2345         for (unsigned i = 0; i != NumElts; ++i)
2346           if (DemandedElts[i]) {
2347             unsigned Ofs = (i % Scale) * EltSizeInBits;
2348             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2349           }
2350 
2351         KnownBits Known;
2352         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2353                                  TLO, Depth + 1))
2354           return true;
2355       }
2356 
2357       // If the src element is zero/undef then all the output elements will be -
2358       // only demanded elements are guaranteed to be correct.
2359       for (unsigned i = 0; i != NumSrcElts; ++i) {
2360         if (SrcDemandedElts[i]) {
2361           if (SrcZero[i])
2362             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2363           if (SrcUndef[i])
2364             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2365         }
2366       }
2367     }
2368 
2369     // Bitcast from 'small element' src vector to 'large element' vector, we
2370     // demand all smaller source elements covered by the larger demanded element
2371     // of this vector.
2372     if ((NumSrcElts % NumElts) == 0) {
2373       unsigned Scale = NumSrcElts / NumElts;
2374       for (unsigned i = 0; i != NumElts; ++i)
2375         if (DemandedElts[i])
2376           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2377 
2378       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2379                                      TLO, Depth + 1))
2380         return true;
2381 
2382       // If all the src elements covering an output element are zero/undef, then
2383       // the output element will be as well, assuming it was demanded.
2384       for (unsigned i = 0; i != NumElts; ++i) {
2385         if (DemandedElts[i]) {
2386           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2387             KnownZero.setBit(i);
2388           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2389             KnownUndef.setBit(i);
2390         }
2391       }
2392     }
2393     break;
2394   }
2395   case ISD::BUILD_VECTOR: {
2396     // Check all elements and simplify any unused elements with UNDEF.
2397     if (!DemandedElts.isAllOnesValue()) {
2398       // Don't simplify BROADCASTS.
2399       if (llvm::any_of(Op->op_values(),
2400                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2401         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2402         bool Updated = false;
2403         for (unsigned i = 0; i != NumElts; ++i) {
2404           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2405             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2406             KnownUndef.setBit(i);
2407             Updated = true;
2408           }
2409         }
2410         if (Updated)
2411           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2412       }
2413     }
2414     for (unsigned i = 0; i != NumElts; ++i) {
2415       SDValue SrcOp = Op.getOperand(i);
2416       if (SrcOp.isUndef()) {
2417         KnownUndef.setBit(i);
2418       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2419                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2420         KnownZero.setBit(i);
2421       }
2422     }
2423     break;
2424   }
2425   case ISD::CONCAT_VECTORS: {
2426     EVT SubVT = Op.getOperand(0).getValueType();
2427     unsigned NumSubVecs = Op.getNumOperands();
2428     unsigned NumSubElts = SubVT.getVectorNumElements();
2429     for (unsigned i = 0; i != NumSubVecs; ++i) {
2430       SDValue SubOp = Op.getOperand(i);
2431       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2432       APInt SubUndef, SubZero;
2433       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2434                                      Depth + 1))
2435         return true;
2436       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2437       KnownZero.insertBits(SubZero, i * NumSubElts);
2438     }
2439     break;
2440   }
2441   case ISD::INSERT_SUBVECTOR: {
2442     // Demand any elements from the subvector and the remainder from the src its
2443     // inserted into.
2444     SDValue Src = Op.getOperand(0);
2445     SDValue Sub = Op.getOperand(1);
2446     uint64_t Idx = Op.getConstantOperandVal(2);
2447     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2448     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2449     APInt DemandedSrcElts = DemandedElts;
2450     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2451 
2452     APInt SubUndef, SubZero;
2453     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2454                                    Depth + 1))
2455       return true;
2456 
2457     // If none of the src operand elements are demanded, replace it with undef.
2458     if (!DemandedSrcElts && !Src.isUndef())
2459       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2460                                                TLO.DAG.getUNDEF(VT), Sub,
2461                                                Op.getOperand(2)));
2462 
2463     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2464                                    TLO, Depth + 1))
2465       return true;
2466     KnownUndef.insertBits(SubUndef, Idx);
2467     KnownZero.insertBits(SubZero, Idx);
2468 
2469     // Attempt to avoid multi-use ops if we don't need anything from them.
2470     if (!DemandedSrcElts.isAllOnesValue() ||
2471         !DemandedSubElts.isAllOnesValue()) {
2472       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2473       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2474           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2475       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2476           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
2477       if (NewSrc || NewSub) {
2478         NewSrc = NewSrc ? NewSrc : Src;
2479         NewSub = NewSub ? NewSub : Sub;
2480         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2481                                         NewSub, Op.getOperand(2));
2482         return TLO.CombineTo(Op, NewOp);
2483       }
2484     }
2485     break;
2486   }
2487   case ISD::EXTRACT_SUBVECTOR: {
2488     // Offset the demanded elts by the subvector index.
2489     SDValue Src = Op.getOperand(0);
2490     uint64_t Idx = Op.getConstantOperandVal(1);
2491     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2492     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2493 
2494     APInt SrcUndef, SrcZero;
2495     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2496                                    Depth + 1))
2497       return true;
2498     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2499     KnownZero = SrcZero.extractBits(NumElts, Idx);
2500 
2501     // Attempt to avoid multi-use ops if we don't need anything from them.
2502     if (!DemandedElts.isAllOnesValue()) {
2503       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2504       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2505           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2506       if (NewSrc) {
2507         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2508                                         Op.getOperand(1));
2509         return TLO.CombineTo(Op, NewOp);
2510       }
2511     }
2512     break;
2513   }
2514   case ISD::INSERT_VECTOR_ELT: {
2515     SDValue Vec = Op.getOperand(0);
2516     SDValue Scl = Op.getOperand(1);
2517     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2518 
2519     // For a legal, constant insertion index, if we don't need this insertion
2520     // then strip it, else remove it from the demanded elts.
2521     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2522       unsigned Idx = CIdx->getZExtValue();
2523       if (!DemandedElts[Idx])
2524         return TLO.CombineTo(Op, Vec);
2525 
2526       APInt DemandedVecElts(DemandedElts);
2527       DemandedVecElts.clearBit(Idx);
2528       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2529                                      KnownZero, TLO, Depth + 1))
2530         return true;
2531 
2532       KnownUndef.clearBit(Idx);
2533       if (Scl.isUndef())
2534         KnownUndef.setBit(Idx);
2535 
2536       KnownZero.clearBit(Idx);
2537       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2538         KnownZero.setBit(Idx);
2539       break;
2540     }
2541 
2542     APInt VecUndef, VecZero;
2543     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2544                                    Depth + 1))
2545       return true;
2546     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2547     break;
2548   }
2549   case ISD::VSELECT: {
2550     // Try to transform the select condition based on the current demanded
2551     // elements.
2552     // TODO: If a condition element is undef, we can choose from one arm of the
2553     //       select (and if one arm is undef, then we can propagate that to the
2554     //       result).
2555     // TODO - add support for constant vselect masks (see IR version of this).
2556     APInt UnusedUndef, UnusedZero;
2557     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2558                                    UnusedZero, TLO, Depth + 1))
2559       return true;
2560 
2561     // See if we can simplify either vselect operand.
2562     APInt DemandedLHS(DemandedElts);
2563     APInt DemandedRHS(DemandedElts);
2564     APInt UndefLHS, ZeroLHS;
2565     APInt UndefRHS, ZeroRHS;
2566     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2567                                    ZeroLHS, TLO, Depth + 1))
2568       return true;
2569     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2570                                    ZeroRHS, TLO, Depth + 1))
2571       return true;
2572 
2573     KnownUndef = UndefLHS & UndefRHS;
2574     KnownZero = ZeroLHS & ZeroRHS;
2575     break;
2576   }
2577   case ISD::VECTOR_SHUFFLE: {
2578     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2579 
2580     // Collect demanded elements from shuffle operands..
2581     APInt DemandedLHS(NumElts, 0);
2582     APInt DemandedRHS(NumElts, 0);
2583     for (unsigned i = 0; i != NumElts; ++i) {
2584       int M = ShuffleMask[i];
2585       if (M < 0 || !DemandedElts[i])
2586         continue;
2587       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2588       if (M < (int)NumElts)
2589         DemandedLHS.setBit(M);
2590       else
2591         DemandedRHS.setBit(M - NumElts);
2592     }
2593 
2594     // See if we can simplify either shuffle operand.
2595     APInt UndefLHS, ZeroLHS;
2596     APInt UndefRHS, ZeroRHS;
2597     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2598                                    ZeroLHS, TLO, Depth + 1))
2599       return true;
2600     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2601                                    ZeroRHS, TLO, Depth + 1))
2602       return true;
2603 
2604     // Simplify mask using undef elements from LHS/RHS.
2605     bool Updated = false;
2606     bool IdentityLHS = true, IdentityRHS = true;
2607     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2608     for (unsigned i = 0; i != NumElts; ++i) {
2609       int &M = NewMask[i];
2610       if (M < 0)
2611         continue;
2612       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2613           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2614         Updated = true;
2615         M = -1;
2616       }
2617       IdentityLHS &= (M < 0) || (M == (int)i);
2618       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2619     }
2620 
2621     // Update legal shuffle masks based on demanded elements if it won't reduce
2622     // to Identity which can cause premature removal of the shuffle mask.
2623     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2624       SDValue LegalShuffle =
2625           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2626                                   NewMask, TLO.DAG);
2627       if (LegalShuffle)
2628         return TLO.CombineTo(Op, LegalShuffle);
2629     }
2630 
2631     // Propagate undef/zero elements from LHS/RHS.
2632     for (unsigned i = 0; i != NumElts; ++i) {
2633       int M = ShuffleMask[i];
2634       if (M < 0) {
2635         KnownUndef.setBit(i);
2636       } else if (M < (int)NumElts) {
2637         if (UndefLHS[M])
2638           KnownUndef.setBit(i);
2639         if (ZeroLHS[M])
2640           KnownZero.setBit(i);
2641       } else {
2642         if (UndefRHS[M - NumElts])
2643           KnownUndef.setBit(i);
2644         if (ZeroRHS[M - NumElts])
2645           KnownZero.setBit(i);
2646       }
2647     }
2648     break;
2649   }
2650   case ISD::ANY_EXTEND_VECTOR_INREG:
2651   case ISD::SIGN_EXTEND_VECTOR_INREG:
2652   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2653     APInt SrcUndef, SrcZero;
2654     SDValue Src = Op.getOperand(0);
2655     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2656     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2657     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2658                                    Depth + 1))
2659       return true;
2660     KnownZero = SrcZero.zextOrTrunc(NumElts);
2661     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2662 
2663     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2664         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2665         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2666       // aext - if we just need the bottom element then we can bitcast.
2667       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2668     }
2669 
2670     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2671       // zext(undef) upper bits are guaranteed to be zero.
2672       if (DemandedElts.isSubsetOf(KnownUndef))
2673         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2674       KnownUndef.clearAllBits();
2675     }
2676     break;
2677   }
2678 
2679   // TODO: There are more binop opcodes that could be handled here - MIN,
2680   // MAX, saturated math, etc.
2681   case ISD::OR:
2682   case ISD::XOR:
2683   case ISD::ADD:
2684   case ISD::SUB:
2685   case ISD::FADD:
2686   case ISD::FSUB:
2687   case ISD::FMUL:
2688   case ISD::FDIV:
2689   case ISD::FREM: {
2690     SDValue Op0 = Op.getOperand(0);
2691     SDValue Op1 = Op.getOperand(1);
2692 
2693     APInt UndefRHS, ZeroRHS;
2694     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2695                                    Depth + 1))
2696       return true;
2697     APInt UndefLHS, ZeroLHS;
2698     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2699                                    Depth + 1))
2700       return true;
2701 
2702     KnownZero = ZeroLHS & ZeroRHS;
2703     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2704 
2705     // Attempt to avoid multi-use ops if we don't need anything from them.
2706     // TODO - use KnownUndef to relax the demandedelts?
2707     if (!DemandedElts.isAllOnesValue())
2708       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2709         return true;
2710     break;
2711   }
2712   case ISD::SHL:
2713   case ISD::SRL:
2714   case ISD::SRA:
2715   case ISD::ROTL:
2716   case ISD::ROTR: {
2717     SDValue Op0 = Op.getOperand(0);
2718     SDValue Op1 = Op.getOperand(1);
2719 
2720     APInt UndefRHS, ZeroRHS;
2721     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2722                                    Depth + 1))
2723       return true;
2724     APInt UndefLHS, ZeroLHS;
2725     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2726                                    Depth + 1))
2727       return true;
2728 
2729     KnownZero = ZeroLHS;
2730     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2731 
2732     // Attempt to avoid multi-use ops if we don't need anything from them.
2733     // TODO - use KnownUndef to relax the demandedelts?
2734     if (!DemandedElts.isAllOnesValue())
2735       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2736         return true;
2737     break;
2738   }
2739   case ISD::MUL:
2740   case ISD::AND: {
2741     SDValue Op0 = Op.getOperand(0);
2742     SDValue Op1 = Op.getOperand(1);
2743 
2744     APInt SrcUndef, SrcZero;
2745     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2746                                    Depth + 1))
2747       return true;
2748     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2749                                    TLO, Depth + 1))
2750       return true;
2751 
2752     // If either side has a zero element, then the result element is zero, even
2753     // if the other is an UNDEF.
2754     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2755     // and then handle 'and' nodes with the rest of the binop opcodes.
2756     KnownZero |= SrcZero;
2757     KnownUndef &= SrcUndef;
2758     KnownUndef &= ~KnownZero;
2759 
2760     // Attempt to avoid multi-use ops if we don't need anything from them.
2761     // TODO - use KnownUndef to relax the demandedelts?
2762     if (!DemandedElts.isAllOnesValue())
2763       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2764         return true;
2765     break;
2766   }
2767   case ISD::TRUNCATE:
2768   case ISD::SIGN_EXTEND:
2769   case ISD::ZERO_EXTEND:
2770     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2771                                    KnownZero, TLO, Depth + 1))
2772       return true;
2773 
2774     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2775       // zext(undef) upper bits are guaranteed to be zero.
2776       if (DemandedElts.isSubsetOf(KnownUndef))
2777         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2778       KnownUndef.clearAllBits();
2779     }
2780     break;
2781   default: {
2782     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2783       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2784                                                   KnownZero, TLO, Depth))
2785         return true;
2786     } else {
2787       KnownBits Known;
2788       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2789       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2790                                TLO, Depth, AssumeSingleUse))
2791         return true;
2792     }
2793     break;
2794   }
2795   }
2796   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2797 
2798   // Constant fold all undef cases.
2799   // TODO: Handle zero cases as well.
2800   if (DemandedElts.isSubsetOf(KnownUndef))
2801     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2802 
2803   return false;
2804 }
2805 
2806 /// Determine which of the bits specified in Mask are known to be either zero or
2807 /// one and return them in the Known.
2808 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2809                                                    KnownBits &Known,
2810                                                    const APInt &DemandedElts,
2811                                                    const SelectionDAG &DAG,
2812                                                    unsigned Depth) const {
2813   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2814           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2815           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2816           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2817          "Should use MaskedValueIsZero if you don't know whether Op"
2818          " is a target node!");
2819   Known.resetAll();
2820 }
2821 
2822 void TargetLowering::computeKnownBitsForTargetInstr(
2823     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2824     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2825     unsigned Depth) const {
2826   Known.resetAll();
2827 }
2828 
2829 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2830                                                    KnownBits &Known,
2831                                                    const APInt &DemandedElts,
2832                                                    const SelectionDAG &DAG,
2833                                                    unsigned Depth) const {
2834   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2835 
2836   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2837     // The low bits are known zero if the pointer is aligned.
2838     Known.Zero.setLowBits(Log2(*Alignment));
2839   }
2840 }
2841 
2842 /// This method can be implemented by targets that want to expose additional
2843 /// information about sign bits to the DAG Combiner.
2844 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2845                                                          const APInt &,
2846                                                          const SelectionDAG &,
2847                                                          unsigned Depth) const {
2848   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2849           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2850           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2851           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2852          "Should use ComputeNumSignBits if you don't know whether Op"
2853          " is a target node!");
2854   return 1;
2855 }
2856 
2857 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2858   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2859   const MachineRegisterInfo &MRI, unsigned Depth) const {
2860   return 1;
2861 }
2862 
2863 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2864     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2865     TargetLoweringOpt &TLO, unsigned Depth) const {
2866   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2867           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2868           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2869           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2870          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2871          " is a target node!");
2872   return false;
2873 }
2874 
2875 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2876     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2877     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2878   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2879           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2880           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2881           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2882          "Should use SimplifyDemandedBits if you don't know whether Op"
2883          " is a target node!");
2884   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2885   return false;
2886 }
2887 
2888 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2889     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2890     SelectionDAG &DAG, unsigned Depth) const {
2891   assert(
2892       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2893        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2894        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2895        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2896       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2897       " is a target node!");
2898   return SDValue();
2899 }
2900 
2901 SDValue
2902 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2903                                         SDValue N1, MutableArrayRef<int> Mask,
2904                                         SelectionDAG &DAG) const {
2905   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2906   if (!LegalMask) {
2907     std::swap(N0, N1);
2908     ShuffleVectorSDNode::commuteMask(Mask);
2909     LegalMask = isShuffleMaskLegal(Mask, VT);
2910   }
2911 
2912   if (!LegalMask)
2913     return SDValue();
2914 
2915   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2916 }
2917 
2918 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2919   return nullptr;
2920 }
2921 
2922 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2923                                                   const SelectionDAG &DAG,
2924                                                   bool SNaN,
2925                                                   unsigned Depth) const {
2926   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2927           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2928           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2929           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2930          "Should use isKnownNeverNaN if you don't know whether Op"
2931          " is a target node!");
2932   return false;
2933 }
2934 
2935 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2936 // work with truncating build vectors and vectors with elements of less than
2937 // 8 bits.
2938 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2939   if (!N)
2940     return false;
2941 
2942   APInt CVal;
2943   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2944     CVal = CN->getAPIntValue();
2945   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2946     auto *CN = BV->getConstantSplatNode();
2947     if (!CN)
2948       return false;
2949 
2950     // If this is a truncating build vector, truncate the splat value.
2951     // Otherwise, we may fail to match the expected values below.
2952     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2953     CVal = CN->getAPIntValue();
2954     if (BVEltWidth < CVal.getBitWidth())
2955       CVal = CVal.trunc(BVEltWidth);
2956   } else {
2957     return false;
2958   }
2959 
2960   switch (getBooleanContents(N->getValueType(0))) {
2961   case UndefinedBooleanContent:
2962     return CVal[0];
2963   case ZeroOrOneBooleanContent:
2964     return CVal.isOneValue();
2965   case ZeroOrNegativeOneBooleanContent:
2966     return CVal.isAllOnesValue();
2967   }
2968 
2969   llvm_unreachable("Invalid boolean contents");
2970 }
2971 
2972 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2973   if (!N)
2974     return false;
2975 
2976   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2977   if (!CN) {
2978     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2979     if (!BV)
2980       return false;
2981 
2982     // Only interested in constant splats, we don't care about undef
2983     // elements in identifying boolean constants and getConstantSplatNode
2984     // returns NULL if all ops are undef;
2985     CN = BV->getConstantSplatNode();
2986     if (!CN)
2987       return false;
2988   }
2989 
2990   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2991     return !CN->getAPIntValue()[0];
2992 
2993   return CN->isNullValue();
2994 }
2995 
2996 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2997                                        bool SExt) const {
2998   if (VT == MVT::i1)
2999     return N->isOne();
3000 
3001   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3002   switch (Cnt) {
3003   case TargetLowering::ZeroOrOneBooleanContent:
3004     // An extended value of 1 is always true, unless its original type is i1,
3005     // in which case it will be sign extended to -1.
3006     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3007   case TargetLowering::UndefinedBooleanContent:
3008   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3009     return N->isAllOnesValue() && SExt;
3010   }
3011   llvm_unreachable("Unexpected enumeration.");
3012 }
3013 
3014 /// This helper function of SimplifySetCC tries to optimize the comparison when
3015 /// either operand of the SetCC node is a bitwise-and instruction.
3016 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3017                                          ISD::CondCode Cond, const SDLoc &DL,
3018                                          DAGCombinerInfo &DCI) const {
3019   // Match these patterns in any of their permutations:
3020   // (X & Y) == Y
3021   // (X & Y) != Y
3022   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3023     std::swap(N0, N1);
3024 
3025   EVT OpVT = N0.getValueType();
3026   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3027       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3028     return SDValue();
3029 
3030   SDValue X, Y;
3031   if (N0.getOperand(0) == N1) {
3032     X = N0.getOperand(1);
3033     Y = N0.getOperand(0);
3034   } else if (N0.getOperand(1) == N1) {
3035     X = N0.getOperand(0);
3036     Y = N0.getOperand(1);
3037   } else {
3038     return SDValue();
3039   }
3040 
3041   SelectionDAG &DAG = DCI.DAG;
3042   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3043   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3044     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3045     // Note that where Y is variable and is known to have at most one bit set
3046     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3047     // equivalent when Y == 0.
3048     assert(OpVT.isInteger());
3049     Cond = ISD::getSetCCInverse(Cond, OpVT);
3050     if (DCI.isBeforeLegalizeOps() ||
3051         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3052       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3053   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3054     // If the target supports an 'and-not' or 'and-complement' logic operation,
3055     // try to use that to make a comparison operation more efficient.
3056     // But don't do this transform if the mask is a single bit because there are
3057     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3058     // 'rlwinm' on PPC).
3059 
3060     // Bail out if the compare operand that we want to turn into a zero is
3061     // already a zero (otherwise, infinite loop).
3062     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3063     if (YConst && YConst->isNullValue())
3064       return SDValue();
3065 
3066     // Transform this into: ~X & Y == 0.
3067     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3068     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3069     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3070   }
3071 
3072   return SDValue();
3073 }
3074 
3075 /// There are multiple IR patterns that could be checking whether certain
3076 /// truncation of a signed number would be lossy or not. The pattern which is
3077 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3078 /// We are looking for the following pattern: (KeptBits is a constant)
3079 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3080 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3081 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3082 /// We will unfold it into the natural trunc+sext pattern:
3083 ///   ((%x << C) a>> C) dstcond %x
3084 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3085 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3086     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3087     const SDLoc &DL) const {
3088   // We must be comparing with a constant.
3089   ConstantSDNode *C1;
3090   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3091     return SDValue();
3092 
3093   // N0 should be:  add %x, (1 << (KeptBits-1))
3094   if (N0->getOpcode() != ISD::ADD)
3095     return SDValue();
3096 
3097   // And we must be 'add'ing a constant.
3098   ConstantSDNode *C01;
3099   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3100     return SDValue();
3101 
3102   SDValue X = N0->getOperand(0);
3103   EVT XVT = X.getValueType();
3104 
3105   // Validate constants ...
3106 
3107   APInt I1 = C1->getAPIntValue();
3108 
3109   ISD::CondCode NewCond;
3110   if (Cond == ISD::CondCode::SETULT) {
3111     NewCond = ISD::CondCode::SETEQ;
3112   } else if (Cond == ISD::CondCode::SETULE) {
3113     NewCond = ISD::CondCode::SETEQ;
3114     // But need to 'canonicalize' the constant.
3115     I1 += 1;
3116   } else if (Cond == ISD::CondCode::SETUGT) {
3117     NewCond = ISD::CondCode::SETNE;
3118     // But need to 'canonicalize' the constant.
3119     I1 += 1;
3120   } else if (Cond == ISD::CondCode::SETUGE) {
3121     NewCond = ISD::CondCode::SETNE;
3122   } else
3123     return SDValue();
3124 
3125   APInt I01 = C01->getAPIntValue();
3126 
3127   auto checkConstants = [&I1, &I01]() -> bool {
3128     // Both of them must be power-of-two, and the constant from setcc is bigger.
3129     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3130   };
3131 
3132   if (checkConstants()) {
3133     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3134   } else {
3135     // What if we invert constants? (and the target predicate)
3136     I1.negate();
3137     I01.negate();
3138     assert(XVT.isInteger());
3139     NewCond = getSetCCInverse(NewCond, XVT);
3140     if (!checkConstants())
3141       return SDValue();
3142     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3143   }
3144 
3145   // They are power-of-two, so which bit is set?
3146   const unsigned KeptBits = I1.logBase2();
3147   const unsigned KeptBitsMinusOne = I01.logBase2();
3148 
3149   // Magic!
3150   if (KeptBits != (KeptBitsMinusOne + 1))
3151     return SDValue();
3152   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3153 
3154   // We don't want to do this in every single case.
3155   SelectionDAG &DAG = DCI.DAG;
3156   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3157           XVT, KeptBits))
3158     return SDValue();
3159 
3160   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3161   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3162 
3163   // Unfold into:  ((%x << C) a>> C) cond %x
3164   // Where 'cond' will be either 'eq' or 'ne'.
3165   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3166   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3167   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3168   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3169 
3170   return T2;
3171 }
3172 
3173 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3174 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3175     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3176     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3177   assert(isConstOrConstSplat(N1C) &&
3178          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3179          "Should be a comparison with 0.");
3180   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3181          "Valid only for [in]equality comparisons.");
3182 
3183   unsigned NewShiftOpcode;
3184   SDValue X, C, Y;
3185 
3186   SelectionDAG &DAG = DCI.DAG;
3187   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3188 
3189   // Look for '(C l>>/<< Y)'.
3190   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3191     // The shift should be one-use.
3192     if (!V.hasOneUse())
3193       return false;
3194     unsigned OldShiftOpcode = V.getOpcode();
3195     switch (OldShiftOpcode) {
3196     case ISD::SHL:
3197       NewShiftOpcode = ISD::SRL;
3198       break;
3199     case ISD::SRL:
3200       NewShiftOpcode = ISD::SHL;
3201       break;
3202     default:
3203       return false; // must be a logical shift.
3204     }
3205     // We should be shifting a constant.
3206     // FIXME: best to use isConstantOrConstantVector().
3207     C = V.getOperand(0);
3208     ConstantSDNode *CC =
3209         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3210     if (!CC)
3211       return false;
3212     Y = V.getOperand(1);
3213 
3214     ConstantSDNode *XC =
3215         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3216     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3217         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3218   };
3219 
3220   // LHS of comparison should be an one-use 'and'.
3221   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3222     return SDValue();
3223 
3224   X = N0.getOperand(0);
3225   SDValue Mask = N0.getOperand(1);
3226 
3227   // 'and' is commutative!
3228   if (!Match(Mask)) {
3229     std::swap(X, Mask);
3230     if (!Match(Mask))
3231       return SDValue();
3232   }
3233 
3234   EVT VT = X.getValueType();
3235 
3236   // Produce:
3237   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3238   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3239   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3240   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3241   return T2;
3242 }
3243 
3244 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3245 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3246 /// handle the commuted versions of these patterns.
3247 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3248                                            ISD::CondCode Cond, const SDLoc &DL,
3249                                            DAGCombinerInfo &DCI) const {
3250   unsigned BOpcode = N0.getOpcode();
3251   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3252          "Unexpected binop");
3253   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3254 
3255   // (X + Y) == X --> Y == 0
3256   // (X - Y) == X --> Y == 0
3257   // (X ^ Y) == X --> Y == 0
3258   SelectionDAG &DAG = DCI.DAG;
3259   EVT OpVT = N0.getValueType();
3260   SDValue X = N0.getOperand(0);
3261   SDValue Y = N0.getOperand(1);
3262   if (X == N1)
3263     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3264 
3265   if (Y != N1)
3266     return SDValue();
3267 
3268   // (X + Y) == Y --> X == 0
3269   // (X ^ Y) == Y --> X == 0
3270   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3271     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3272 
3273   // The shift would not be valid if the operands are boolean (i1).
3274   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3275     return SDValue();
3276 
3277   // (X - Y) == Y --> X == Y << 1
3278   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3279                                  !DCI.isBeforeLegalize());
3280   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3281   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3282   if (!DCI.isCalledByLegalizer())
3283     DCI.AddToWorklist(YShl1.getNode());
3284   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3285 }
3286 
3287 /// Try to simplify a setcc built with the specified operands and cc. If it is
3288 /// unable to simplify it, return a null SDValue.
3289 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3290                                       ISD::CondCode Cond, bool foldBooleans,
3291                                       DAGCombinerInfo &DCI,
3292                                       const SDLoc &dl) const {
3293   SelectionDAG &DAG = DCI.DAG;
3294   const DataLayout &Layout = DAG.getDataLayout();
3295   EVT OpVT = N0.getValueType();
3296 
3297   // Constant fold or commute setcc.
3298   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3299     return Fold;
3300 
3301   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3302   // TODO: Handle non-splat vector constants. All undef causes trouble.
3303   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3304   if (isConstOrConstSplat(N0) &&
3305       (DCI.isBeforeLegalizeOps() ||
3306        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3307     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3308 
3309   // If we have a subtract with the same 2 non-constant operands as this setcc
3310   // -- but in reverse order -- then try to commute the operands of this setcc
3311   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3312   // instruction on some targets.
3313   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3314       (DCI.isBeforeLegalizeOps() ||
3315        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3316       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3317       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3318     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3319 
3320   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3321     const APInt &C1 = N1C->getAPIntValue();
3322 
3323     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3324     // equality comparison, then we're just comparing whether X itself is
3325     // zero.
3326     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3327         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3328         N0.getOperand(1).getOpcode() == ISD::Constant) {
3329       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3330       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3331           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3332         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3333           // (srl (ctlz x), 5) == 0  -> X != 0
3334           // (srl (ctlz x), 5) != 1  -> X != 0
3335           Cond = ISD::SETNE;
3336         } else {
3337           // (srl (ctlz x), 5) != 0  -> X == 0
3338           // (srl (ctlz x), 5) == 1  -> X == 0
3339           Cond = ISD::SETEQ;
3340         }
3341         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3342         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3343                             Zero, Cond);
3344       }
3345     }
3346 
3347     SDValue CTPOP = N0;
3348     // Look through truncs that don't change the value of a ctpop.
3349     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3350       CTPOP = N0.getOperand(0);
3351 
3352     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3353         (N0 == CTPOP ||
3354          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3355       EVT CTVT = CTPOP.getValueType();
3356       SDValue CTOp = CTPOP.getOperand(0);
3357 
3358       // (ctpop x) u< 2 -> (x & x-1) == 0
3359       // (ctpop x) u> 1 -> (x & x-1) != 0
3360       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3361         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3362         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3363         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3364         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3365         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3366       }
3367 
3368       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3369       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3370           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3371         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3372         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3373         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3374         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3375         assert(CTVT.isInteger());
3376         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3377         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3378         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3379         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3380         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3381         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3382         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3383       }
3384     }
3385 
3386     // (zext x) == C --> x == (trunc C)
3387     // (sext x) == C --> x == (trunc C)
3388     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3389         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3390       unsigned MinBits = N0.getValueSizeInBits();
3391       SDValue PreExt;
3392       bool Signed = false;
3393       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3394         // ZExt
3395         MinBits = N0->getOperand(0).getValueSizeInBits();
3396         PreExt = N0->getOperand(0);
3397       } else if (N0->getOpcode() == ISD::AND) {
3398         // DAGCombine turns costly ZExts into ANDs
3399         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3400           if ((C->getAPIntValue()+1).isPowerOf2()) {
3401             MinBits = C->getAPIntValue().countTrailingOnes();
3402             PreExt = N0->getOperand(0);
3403           }
3404       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3405         // SExt
3406         MinBits = N0->getOperand(0).getValueSizeInBits();
3407         PreExt = N0->getOperand(0);
3408         Signed = true;
3409       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3410         // ZEXTLOAD / SEXTLOAD
3411         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3412           MinBits = LN0->getMemoryVT().getSizeInBits();
3413           PreExt = N0;
3414         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3415           Signed = true;
3416           MinBits = LN0->getMemoryVT().getSizeInBits();
3417           PreExt = N0;
3418         }
3419       }
3420 
3421       // Figure out how many bits we need to preserve this constant.
3422       unsigned ReqdBits = Signed ?
3423         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3424         C1.getActiveBits();
3425 
3426       // Make sure we're not losing bits from the constant.
3427       if (MinBits > 0 &&
3428           MinBits < C1.getBitWidth() &&
3429           MinBits >= ReqdBits) {
3430         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3431         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3432           // Will get folded away.
3433           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3434           if (MinBits == 1 && C1 == 1)
3435             // Invert the condition.
3436             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3437                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3438           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3439           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3440         }
3441 
3442         // If truncating the setcc operands is not desirable, we can still
3443         // simplify the expression in some cases:
3444         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3445         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3446         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3447         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3448         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3449         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3450         SDValue TopSetCC = N0->getOperand(0);
3451         unsigned N0Opc = N0->getOpcode();
3452         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3453         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3454             TopSetCC.getOpcode() == ISD::SETCC &&
3455             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3456             (isConstFalseVal(N1C) ||
3457              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3458 
3459           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3460                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3461 
3462           if (!Inverse)
3463             return TopSetCC;
3464 
3465           ISD::CondCode InvCond = ISD::getSetCCInverse(
3466               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3467               TopSetCC.getOperand(0).getValueType());
3468           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3469                                       TopSetCC.getOperand(1),
3470                                       InvCond);
3471         }
3472       }
3473     }
3474 
3475     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3476     // equality or unsigned, and all 1 bits of the const are in the same
3477     // partial word, see if we can shorten the load.
3478     if (DCI.isBeforeLegalize() &&
3479         !ISD::isSignedIntSetCC(Cond) &&
3480         N0.getOpcode() == ISD::AND && C1 == 0 &&
3481         N0.getNode()->hasOneUse() &&
3482         isa<LoadSDNode>(N0.getOperand(0)) &&
3483         N0.getOperand(0).getNode()->hasOneUse() &&
3484         isa<ConstantSDNode>(N0.getOperand(1))) {
3485       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3486       APInt bestMask;
3487       unsigned bestWidth = 0, bestOffset = 0;
3488       if (Lod->isSimple() && Lod->isUnindexed()) {
3489         unsigned origWidth = N0.getValueSizeInBits();
3490         unsigned maskWidth = origWidth;
3491         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3492         // 8 bits, but have to be careful...
3493         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3494           origWidth = Lod->getMemoryVT().getSizeInBits();
3495         const APInt &Mask = N0.getConstantOperandAPInt(1);
3496         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3497           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3498           for (unsigned offset=0; offset<origWidth/width; offset++) {
3499             if (Mask.isSubsetOf(newMask)) {
3500               if (Layout.isLittleEndian())
3501                 bestOffset = (uint64_t)offset * (width/8);
3502               else
3503                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3504               bestMask = Mask.lshr(offset * (width/8) * 8);
3505               bestWidth = width;
3506               break;
3507             }
3508             newMask <<= width;
3509           }
3510         }
3511       }
3512       if (bestWidth) {
3513         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3514         if (newVT.isRound() &&
3515             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3516           SDValue Ptr = Lod->getBasePtr();
3517           if (bestOffset != 0)
3518             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3519           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3520           SDValue NewLoad = DAG.getLoad(
3521               newVT, dl, Lod->getChain(), Ptr,
3522               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3523           return DAG.getSetCC(dl, VT,
3524                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3525                                       DAG.getConstant(bestMask.trunc(bestWidth),
3526                                                       dl, newVT)),
3527                               DAG.getConstant(0LL, dl, newVT), Cond);
3528         }
3529       }
3530     }
3531 
3532     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3533     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3534       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3535 
3536       // If the comparison constant has bits in the upper part, the
3537       // zero-extended value could never match.
3538       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3539                                               C1.getBitWidth() - InSize))) {
3540         switch (Cond) {
3541         case ISD::SETUGT:
3542         case ISD::SETUGE:
3543         case ISD::SETEQ:
3544           return DAG.getConstant(0, dl, VT);
3545         case ISD::SETULT:
3546         case ISD::SETULE:
3547         case ISD::SETNE:
3548           return DAG.getConstant(1, dl, VT);
3549         case ISD::SETGT:
3550         case ISD::SETGE:
3551           // True if the sign bit of C1 is set.
3552           return DAG.getConstant(C1.isNegative(), dl, VT);
3553         case ISD::SETLT:
3554         case ISD::SETLE:
3555           // True if the sign bit of C1 isn't set.
3556           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3557         default:
3558           break;
3559         }
3560       }
3561 
3562       // Otherwise, we can perform the comparison with the low bits.
3563       switch (Cond) {
3564       case ISD::SETEQ:
3565       case ISD::SETNE:
3566       case ISD::SETUGT:
3567       case ISD::SETUGE:
3568       case ISD::SETULT:
3569       case ISD::SETULE: {
3570         EVT newVT = N0.getOperand(0).getValueType();
3571         if (DCI.isBeforeLegalizeOps() ||
3572             (isOperationLegal(ISD::SETCC, newVT) &&
3573              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3574           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3575           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3576 
3577           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3578                                           NewConst, Cond);
3579           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3580         }
3581         break;
3582       }
3583       default:
3584         break; // todo, be more careful with signed comparisons
3585       }
3586     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3587                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3588       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3589       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3590       EVT ExtDstTy = N0.getValueType();
3591       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3592 
3593       // If the constant doesn't fit into the number of bits for the source of
3594       // the sign extension, it is impossible for both sides to be equal.
3595       if (C1.getMinSignedBits() > ExtSrcTyBits)
3596         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3597 
3598       SDValue ZextOp;
3599       EVT Op0Ty = N0.getOperand(0).getValueType();
3600       if (Op0Ty == ExtSrcTy) {
3601         ZextOp = N0.getOperand(0);
3602       } else {
3603         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3604         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3605                              DAG.getConstant(Imm, dl, Op0Ty));
3606       }
3607       if (!DCI.isCalledByLegalizer())
3608         DCI.AddToWorklist(ZextOp.getNode());
3609       // Otherwise, make this a use of a zext.
3610       return DAG.getSetCC(dl, VT, ZextOp,
3611                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3612                                                               ExtDstTyBits,
3613                                                               ExtSrcTyBits),
3614                                           dl, ExtDstTy),
3615                           Cond);
3616     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3617                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3618       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3619       if (N0.getOpcode() == ISD::SETCC &&
3620           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3621           (N0.getValueType() == MVT::i1 ||
3622            getBooleanContents(N0.getOperand(0).getValueType()) ==
3623                        ZeroOrOneBooleanContent)) {
3624         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3625         if (TrueWhenTrue)
3626           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3627         // Invert the condition.
3628         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3629         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3630         if (DCI.isBeforeLegalizeOps() ||
3631             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3632           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3633       }
3634 
3635       if ((N0.getOpcode() == ISD::XOR ||
3636            (N0.getOpcode() == ISD::AND &&
3637             N0.getOperand(0).getOpcode() == ISD::XOR &&
3638             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3639           isa<ConstantSDNode>(N0.getOperand(1)) &&
3640           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3641         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3642         // can only do this if the top bits are known zero.
3643         unsigned BitWidth = N0.getValueSizeInBits();
3644         if (DAG.MaskedValueIsZero(N0,
3645                                   APInt::getHighBitsSet(BitWidth,
3646                                                         BitWidth-1))) {
3647           // Okay, get the un-inverted input value.
3648           SDValue Val;
3649           if (N0.getOpcode() == ISD::XOR) {
3650             Val = N0.getOperand(0);
3651           } else {
3652             assert(N0.getOpcode() == ISD::AND &&
3653                     N0.getOperand(0).getOpcode() == ISD::XOR);
3654             // ((X^1)&1)^1 -> X & 1
3655             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3656                               N0.getOperand(0).getOperand(0),
3657                               N0.getOperand(1));
3658           }
3659 
3660           return DAG.getSetCC(dl, VT, Val, N1,
3661                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3662         }
3663       } else if (N1C->isOne()) {
3664         SDValue Op0 = N0;
3665         if (Op0.getOpcode() == ISD::TRUNCATE)
3666           Op0 = Op0.getOperand(0);
3667 
3668         if ((Op0.getOpcode() == ISD::XOR) &&
3669             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3670             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3671           SDValue XorLHS = Op0.getOperand(0);
3672           SDValue XorRHS = Op0.getOperand(1);
3673           // Ensure that the input setccs return an i1 type or 0/1 value.
3674           if (Op0.getValueType() == MVT::i1 ||
3675               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3676                       ZeroOrOneBooleanContent &&
3677                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3678                         ZeroOrOneBooleanContent)) {
3679             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3680             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3681             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3682           }
3683         }
3684         if (Op0.getOpcode() == ISD::AND &&
3685             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3686             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3687           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3688           if (Op0.getValueType().bitsGT(VT))
3689             Op0 = DAG.getNode(ISD::AND, dl, VT,
3690                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3691                           DAG.getConstant(1, dl, VT));
3692           else if (Op0.getValueType().bitsLT(VT))
3693             Op0 = DAG.getNode(ISD::AND, dl, VT,
3694                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3695                         DAG.getConstant(1, dl, VT));
3696 
3697           return DAG.getSetCC(dl, VT, Op0,
3698                               DAG.getConstant(0, dl, Op0.getValueType()),
3699                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3700         }
3701         if (Op0.getOpcode() == ISD::AssertZext &&
3702             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3703           return DAG.getSetCC(dl, VT, Op0,
3704                               DAG.getConstant(0, dl, Op0.getValueType()),
3705                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3706       }
3707     }
3708 
3709     // Given:
3710     //   icmp eq/ne (urem %x, %y), 0
3711     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3712     //   icmp eq/ne %x, 0
3713     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3714         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3715       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3716       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3717       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3718         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3719     }
3720 
3721     if (SDValue V =
3722             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3723       return V;
3724   }
3725 
3726   // These simplifications apply to splat vectors as well.
3727   // TODO: Handle more splat vector cases.
3728   if (auto *N1C = isConstOrConstSplat(N1)) {
3729     const APInt &C1 = N1C->getAPIntValue();
3730 
3731     APInt MinVal, MaxVal;
3732     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3733     if (ISD::isSignedIntSetCC(Cond)) {
3734       MinVal = APInt::getSignedMinValue(OperandBitSize);
3735       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3736     } else {
3737       MinVal = APInt::getMinValue(OperandBitSize);
3738       MaxVal = APInt::getMaxValue(OperandBitSize);
3739     }
3740 
3741     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3742     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3743       // X >= MIN --> true
3744       if (C1 == MinVal)
3745         return DAG.getBoolConstant(true, dl, VT, OpVT);
3746 
3747       if (!VT.isVector()) { // TODO: Support this for vectors.
3748         // X >= C0 --> X > (C0 - 1)
3749         APInt C = C1 - 1;
3750         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3751         if ((DCI.isBeforeLegalizeOps() ||
3752              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3753             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3754                                   isLegalICmpImmediate(C.getSExtValue())))) {
3755           return DAG.getSetCC(dl, VT, N0,
3756                               DAG.getConstant(C, dl, N1.getValueType()),
3757                               NewCC);
3758         }
3759       }
3760     }
3761 
3762     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3763       // X <= MAX --> true
3764       if (C1 == MaxVal)
3765         return DAG.getBoolConstant(true, dl, VT, OpVT);
3766 
3767       // X <= C0 --> X < (C0 + 1)
3768       if (!VT.isVector()) { // TODO: Support this for vectors.
3769         APInt C = C1 + 1;
3770         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3771         if ((DCI.isBeforeLegalizeOps() ||
3772              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3773             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3774                                   isLegalICmpImmediate(C.getSExtValue())))) {
3775           return DAG.getSetCC(dl, VT, N0,
3776                               DAG.getConstant(C, dl, N1.getValueType()),
3777                               NewCC);
3778         }
3779       }
3780     }
3781 
3782     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3783       if (C1 == MinVal)
3784         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3785 
3786       // TODO: Support this for vectors after legalize ops.
3787       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3788         // Canonicalize setlt X, Max --> setne X, Max
3789         if (C1 == MaxVal)
3790           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3791 
3792         // If we have setult X, 1, turn it into seteq X, 0
3793         if (C1 == MinVal+1)
3794           return DAG.getSetCC(dl, VT, N0,
3795                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3796                               ISD::SETEQ);
3797       }
3798     }
3799 
3800     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3801       if (C1 == MaxVal)
3802         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3803 
3804       // TODO: Support this for vectors after legalize ops.
3805       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3806         // Canonicalize setgt X, Min --> setne X, Min
3807         if (C1 == MinVal)
3808           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3809 
3810         // If we have setugt X, Max-1, turn it into seteq X, Max
3811         if (C1 == MaxVal-1)
3812           return DAG.getSetCC(dl, VT, N0,
3813                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3814                               ISD::SETEQ);
3815       }
3816     }
3817 
3818     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3819       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3820       if (C1.isNullValue())
3821         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3822                 VT, N0, N1, Cond, DCI, dl))
3823           return CC;
3824     }
3825 
3826     // If we have "setcc X, C0", check to see if we can shrink the immediate
3827     // by changing cc.
3828     // TODO: Support this for vectors after legalize ops.
3829     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3830       // SETUGT X, SINTMAX  -> SETLT X, 0
3831       if (Cond == ISD::SETUGT &&
3832           C1 == APInt::getSignedMaxValue(OperandBitSize))
3833         return DAG.getSetCC(dl, VT, N0,
3834                             DAG.getConstant(0, dl, N1.getValueType()),
3835                             ISD::SETLT);
3836 
3837       // SETULT X, SINTMIN  -> SETGT X, -1
3838       if (Cond == ISD::SETULT &&
3839           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3840         SDValue ConstMinusOne =
3841             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3842                             N1.getValueType());
3843         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3844       }
3845     }
3846   }
3847 
3848   // Back to non-vector simplifications.
3849   // TODO: Can we do these for vector splats?
3850   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3851     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3852     const APInt &C1 = N1C->getAPIntValue();
3853     EVT ShValTy = N0.getValueType();
3854 
3855     // Fold bit comparisons when we can.
3856     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3857         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3858         N0.getOpcode() == ISD::AND) {
3859       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3860         EVT ShiftTy =
3861             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3862         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3863           // Perform the xform if the AND RHS is a single bit.
3864           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3865           if (AndRHS->getAPIntValue().isPowerOf2() &&
3866               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3867             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3868                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3869                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3870           }
3871         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3872           // (X & 8) == 8  -->  (X & 8) >> 3
3873           // Perform the xform if C1 is a single bit.
3874           unsigned ShCt = C1.logBase2();
3875           if (C1.isPowerOf2() &&
3876               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3877             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3878                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3879                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3880           }
3881         }
3882       }
3883     }
3884 
3885     if (C1.getMinSignedBits() <= 64 &&
3886         !isLegalICmpImmediate(C1.getSExtValue())) {
3887       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3888       // (X & -256) == 256 -> (X >> 8) == 1
3889       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3890           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3891         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3892           const APInt &AndRHSC = AndRHS->getAPIntValue();
3893           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3894             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3895             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3896               SDValue Shift =
3897                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3898                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3899               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3900               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3901             }
3902           }
3903         }
3904       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3905                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3906         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3907         // X <  0x100000000 -> (X >> 32) <  1
3908         // X >= 0x100000000 -> (X >> 32) >= 1
3909         // X <= 0x0ffffffff -> (X >> 32) <  1
3910         // X >  0x0ffffffff -> (X >> 32) >= 1
3911         unsigned ShiftBits;
3912         APInt NewC = C1;
3913         ISD::CondCode NewCond = Cond;
3914         if (AdjOne) {
3915           ShiftBits = C1.countTrailingOnes();
3916           NewC = NewC + 1;
3917           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3918         } else {
3919           ShiftBits = C1.countTrailingZeros();
3920         }
3921         NewC.lshrInPlace(ShiftBits);
3922         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3923             isLegalICmpImmediate(NewC.getSExtValue()) &&
3924             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3925           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3926                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3927           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3928           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3929         }
3930       }
3931     }
3932   }
3933 
3934   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3935     auto *CFP = cast<ConstantFPSDNode>(N1);
3936     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3937 
3938     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3939     // constant if knowing that the operand is non-nan is enough.  We prefer to
3940     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3941     // materialize 0.0.
3942     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3943       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3944 
3945     // setcc (fneg x), C -> setcc swap(pred) x, -C
3946     if (N0.getOpcode() == ISD::FNEG) {
3947       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3948       if (DCI.isBeforeLegalizeOps() ||
3949           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3950         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3951         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3952       }
3953     }
3954 
3955     // If the condition is not legal, see if we can find an equivalent one
3956     // which is legal.
3957     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3958       // If the comparison was an awkward floating-point == or != and one of
3959       // the comparison operands is infinity or negative infinity, convert the
3960       // condition to a less-awkward <= or >=.
3961       if (CFP->getValueAPF().isInfinity()) {
3962         bool IsNegInf = CFP->getValueAPF().isNegative();
3963         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3964         switch (Cond) {
3965         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3966         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3967         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3968         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3969         default: break;
3970         }
3971         if (NewCond != ISD::SETCC_INVALID &&
3972             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3973           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3974       }
3975     }
3976   }
3977 
3978   if (N0 == N1) {
3979     // The sext(setcc()) => setcc() optimization relies on the appropriate
3980     // constant being emitted.
3981     assert(!N0.getValueType().isInteger() &&
3982            "Integer types should be handled by FoldSetCC");
3983 
3984     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3985     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3986     if (UOF == 2) // FP operators that are undefined on NaNs.
3987       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3988     if (UOF == unsigned(EqTrue))
3989       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3990     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3991     // if it is not already.
3992     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3993     if (NewCond != Cond &&
3994         (DCI.isBeforeLegalizeOps() ||
3995                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3996       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3997   }
3998 
3999   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4000       N0.getValueType().isInteger()) {
4001     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4002         N0.getOpcode() == ISD::XOR) {
4003       // Simplify (X+Y) == (X+Z) -->  Y == Z
4004       if (N0.getOpcode() == N1.getOpcode()) {
4005         if (N0.getOperand(0) == N1.getOperand(0))
4006           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4007         if (N0.getOperand(1) == N1.getOperand(1))
4008           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4009         if (isCommutativeBinOp(N0.getOpcode())) {
4010           // If X op Y == Y op X, try other combinations.
4011           if (N0.getOperand(0) == N1.getOperand(1))
4012             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4013                                 Cond);
4014           if (N0.getOperand(1) == N1.getOperand(0))
4015             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4016                                 Cond);
4017         }
4018       }
4019 
4020       // If RHS is a legal immediate value for a compare instruction, we need
4021       // to be careful about increasing register pressure needlessly.
4022       bool LegalRHSImm = false;
4023 
4024       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4025         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4026           // Turn (X+C1) == C2 --> X == C2-C1
4027           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4028             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4029                                 DAG.getConstant(RHSC->getAPIntValue()-
4030                                                 LHSR->getAPIntValue(),
4031                                 dl, N0.getValueType()), Cond);
4032           }
4033 
4034           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4035           if (N0.getOpcode() == ISD::XOR)
4036             // If we know that all of the inverted bits are zero, don't bother
4037             // performing the inversion.
4038             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4039               return
4040                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4041                              DAG.getConstant(LHSR->getAPIntValue() ^
4042                                                RHSC->getAPIntValue(),
4043                                              dl, N0.getValueType()),
4044                              Cond);
4045         }
4046 
4047         // Turn (C1-X) == C2 --> X == C1-C2
4048         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4049           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4050             return
4051               DAG.getSetCC(dl, VT, N0.getOperand(1),
4052                            DAG.getConstant(SUBC->getAPIntValue() -
4053                                              RHSC->getAPIntValue(),
4054                                            dl, N0.getValueType()),
4055                            Cond);
4056           }
4057         }
4058 
4059         // Could RHSC fold directly into a compare?
4060         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4061           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4062       }
4063 
4064       // (X+Y) == X --> Y == 0 and similar folds.
4065       // Don't do this if X is an immediate that can fold into a cmp
4066       // instruction and X+Y has other uses. It could be an induction variable
4067       // chain, and the transform would increase register pressure.
4068       if (!LegalRHSImm || N0.hasOneUse())
4069         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4070           return V;
4071     }
4072 
4073     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4074         N1.getOpcode() == ISD::XOR)
4075       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4076         return V;
4077 
4078     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4079       return V;
4080   }
4081 
4082   // Fold remainder of division by a constant.
4083   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4084       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4085     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4086 
4087     // When division is cheap or optimizing for minimum size,
4088     // fall through to DIVREM creation by skipping this fold.
4089     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4090       if (N0.getOpcode() == ISD::UREM) {
4091         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4092           return Folded;
4093       } else if (N0.getOpcode() == ISD::SREM) {
4094         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4095           return Folded;
4096       }
4097     }
4098   }
4099 
4100   // Fold away ALL boolean setcc's.
4101   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4102     SDValue Temp;
4103     switch (Cond) {
4104     default: llvm_unreachable("Unknown integer setcc!");
4105     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4106       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4107       N0 = DAG.getNOT(dl, Temp, OpVT);
4108       if (!DCI.isCalledByLegalizer())
4109         DCI.AddToWorklist(Temp.getNode());
4110       break;
4111     case ISD::SETNE:  // X != Y   -->  (X^Y)
4112       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4113       break;
4114     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4115     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4116       Temp = DAG.getNOT(dl, N0, OpVT);
4117       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4118       if (!DCI.isCalledByLegalizer())
4119         DCI.AddToWorklist(Temp.getNode());
4120       break;
4121     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4122     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4123       Temp = DAG.getNOT(dl, N1, OpVT);
4124       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4125       if (!DCI.isCalledByLegalizer())
4126         DCI.AddToWorklist(Temp.getNode());
4127       break;
4128     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4129     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4130       Temp = DAG.getNOT(dl, N0, OpVT);
4131       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4132       if (!DCI.isCalledByLegalizer())
4133         DCI.AddToWorklist(Temp.getNode());
4134       break;
4135     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4136     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4137       Temp = DAG.getNOT(dl, N1, OpVT);
4138       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4139       break;
4140     }
4141     if (VT.getScalarType() != MVT::i1) {
4142       if (!DCI.isCalledByLegalizer())
4143         DCI.AddToWorklist(N0.getNode());
4144       // FIXME: If running after legalize, we probably can't do this.
4145       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4146       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4147     }
4148     return N0;
4149   }
4150 
4151   // Could not fold it.
4152   return SDValue();
4153 }
4154 
4155 /// Returns true (and the GlobalValue and the offset) if the node is a
4156 /// GlobalAddress + offset.
4157 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4158                                     int64_t &Offset) const {
4159 
4160   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4161 
4162   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4163     GA = GASD->getGlobal();
4164     Offset += GASD->getOffset();
4165     return true;
4166   }
4167 
4168   if (N->getOpcode() == ISD::ADD) {
4169     SDValue N1 = N->getOperand(0);
4170     SDValue N2 = N->getOperand(1);
4171     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4172       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4173         Offset += V->getSExtValue();
4174         return true;
4175       }
4176     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4177       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4178         Offset += V->getSExtValue();
4179         return true;
4180       }
4181     }
4182   }
4183 
4184   return false;
4185 }
4186 
4187 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4188                                           DAGCombinerInfo &DCI) const {
4189   // Default implementation: no optimization.
4190   return SDValue();
4191 }
4192 
4193 //===----------------------------------------------------------------------===//
4194 //  Inline Assembler Implementation Methods
4195 //===----------------------------------------------------------------------===//
4196 
4197 TargetLowering::ConstraintType
4198 TargetLowering::getConstraintType(StringRef Constraint) const {
4199   unsigned S = Constraint.size();
4200 
4201   if (S == 1) {
4202     switch (Constraint[0]) {
4203     default: break;
4204     case 'r':
4205       return C_RegisterClass;
4206     case 'm': // memory
4207     case 'o': // offsetable
4208     case 'V': // not offsetable
4209       return C_Memory;
4210     case 'n': // Simple Integer
4211     case 'E': // Floating Point Constant
4212     case 'F': // Floating Point Constant
4213       return C_Immediate;
4214     case 'i': // Simple Integer or Relocatable Constant
4215     case 's': // Relocatable Constant
4216     case 'p': // Address.
4217     case 'X': // Allow ANY value.
4218     case 'I': // Target registers.
4219     case 'J':
4220     case 'K':
4221     case 'L':
4222     case 'M':
4223     case 'N':
4224     case 'O':
4225     case 'P':
4226     case '<':
4227     case '>':
4228       return C_Other;
4229     }
4230   }
4231 
4232   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4233     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4234       return C_Memory;
4235     return C_Register;
4236   }
4237   return C_Unknown;
4238 }
4239 
4240 /// Try to replace an X constraint, which matches anything, with another that
4241 /// has more specific requirements based on the type of the corresponding
4242 /// operand.
4243 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4244   if (ConstraintVT.isInteger())
4245     return "r";
4246   if (ConstraintVT.isFloatingPoint())
4247     return "f"; // works for many targets
4248   return nullptr;
4249 }
4250 
4251 SDValue TargetLowering::LowerAsmOutputForConstraint(
4252     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4253     SelectionDAG &DAG) const {
4254   return SDValue();
4255 }
4256 
4257 /// Lower the specified operand into the Ops vector.
4258 /// If it is invalid, don't add anything to Ops.
4259 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4260                                                   std::string &Constraint,
4261                                                   std::vector<SDValue> &Ops,
4262                                                   SelectionDAG &DAG) const {
4263 
4264   if (Constraint.length() > 1) return;
4265 
4266   char ConstraintLetter = Constraint[0];
4267   switch (ConstraintLetter) {
4268   default: break;
4269   case 'X':     // Allows any operand; labels (basic block) use this.
4270     if (Op.getOpcode() == ISD::BasicBlock ||
4271         Op.getOpcode() == ISD::TargetBlockAddress) {
4272       Ops.push_back(Op);
4273       return;
4274     }
4275     LLVM_FALLTHROUGH;
4276   case 'i':    // Simple Integer or Relocatable Constant
4277   case 'n':    // Simple Integer
4278   case 's': {  // Relocatable Constant
4279 
4280     GlobalAddressSDNode *GA;
4281     ConstantSDNode *C;
4282     BlockAddressSDNode *BA;
4283     uint64_t Offset = 0;
4284 
4285     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4286     // etc., since getelementpointer is variadic. We can't use
4287     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4288     // while in this case the GA may be furthest from the root node which is
4289     // likely an ISD::ADD.
4290     while (1) {
4291       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4292         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4293                                                  GA->getValueType(0),
4294                                                  Offset + GA->getOffset()));
4295         return;
4296       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4297                  ConstraintLetter != 's') {
4298         // gcc prints these as sign extended.  Sign extend value to 64 bits
4299         // now; without this it would get ZExt'd later in
4300         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4301         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4302         BooleanContent BCont = getBooleanContents(MVT::i64);
4303         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4304                                       : ISD::SIGN_EXTEND;
4305         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4306                                                     : C->getSExtValue();
4307         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4308                                             SDLoc(C), MVT::i64));
4309         return;
4310       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4311                  ConstraintLetter != 'n') {
4312         Ops.push_back(DAG.getTargetBlockAddress(
4313             BA->getBlockAddress(), BA->getValueType(0),
4314             Offset + BA->getOffset(), BA->getTargetFlags()));
4315         return;
4316       } else {
4317         const unsigned OpCode = Op.getOpcode();
4318         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4319           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4320             Op = Op.getOperand(1);
4321           // Subtraction is not commutative.
4322           else if (OpCode == ISD::ADD &&
4323                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4324             Op = Op.getOperand(0);
4325           else
4326             return;
4327           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4328           continue;
4329         }
4330       }
4331       return;
4332     }
4333     break;
4334   }
4335   }
4336 }
4337 
4338 std::pair<unsigned, const TargetRegisterClass *>
4339 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4340                                              StringRef Constraint,
4341                                              MVT VT) const {
4342   if (Constraint.empty() || Constraint[0] != '{')
4343     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4344   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4345 
4346   // Remove the braces from around the name.
4347   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4348 
4349   std::pair<unsigned, const TargetRegisterClass *> R =
4350       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4351 
4352   // Figure out which register class contains this reg.
4353   for (const TargetRegisterClass *RC : RI->regclasses()) {
4354     // If none of the value types for this register class are valid, we
4355     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4356     if (!isLegalRC(*RI, *RC))
4357       continue;
4358 
4359     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4360          I != E; ++I) {
4361       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4362         std::pair<unsigned, const TargetRegisterClass *> S =
4363             std::make_pair(*I, RC);
4364 
4365         // If this register class has the requested value type, return it,
4366         // otherwise keep searching and return the first class found
4367         // if no other is found which explicitly has the requested type.
4368         if (RI->isTypeLegalForClass(*RC, VT))
4369           return S;
4370         if (!R.second)
4371           R = S;
4372       }
4373     }
4374   }
4375 
4376   return R;
4377 }
4378 
4379 //===----------------------------------------------------------------------===//
4380 // Constraint Selection.
4381 
4382 /// Return true of this is an input operand that is a matching constraint like
4383 /// "4".
4384 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4385   assert(!ConstraintCode.empty() && "No known constraint!");
4386   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4387 }
4388 
4389 /// If this is an input matching constraint, this method returns the output
4390 /// operand it matches.
4391 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4392   assert(!ConstraintCode.empty() && "No known constraint!");
4393   return atoi(ConstraintCode.c_str());
4394 }
4395 
4396 /// Split up the constraint string from the inline assembly value into the
4397 /// specific constraints and their prefixes, and also tie in the associated
4398 /// operand values.
4399 /// If this returns an empty vector, and if the constraint string itself
4400 /// isn't empty, there was an error parsing.
4401 TargetLowering::AsmOperandInfoVector
4402 TargetLowering::ParseConstraints(const DataLayout &DL,
4403                                  const TargetRegisterInfo *TRI,
4404                                  const CallBase &Call) const {
4405   /// Information about all of the constraints.
4406   AsmOperandInfoVector ConstraintOperands;
4407   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4408   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4409 
4410   // Do a prepass over the constraints, canonicalizing them, and building up the
4411   // ConstraintOperands list.
4412   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4413   unsigned ResNo = 0; // ResNo - The result number of the next output.
4414 
4415   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4416     ConstraintOperands.emplace_back(std::move(CI));
4417     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4418 
4419     // Update multiple alternative constraint count.
4420     if (OpInfo.multipleAlternatives.size() > maCount)
4421       maCount = OpInfo.multipleAlternatives.size();
4422 
4423     OpInfo.ConstraintVT = MVT::Other;
4424 
4425     // Compute the value type for each operand.
4426     switch (OpInfo.Type) {
4427     case InlineAsm::isOutput:
4428       // Indirect outputs just consume an argument.
4429       if (OpInfo.isIndirect) {
4430         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4431         break;
4432       }
4433 
4434       // The return value of the call is this value.  As such, there is no
4435       // corresponding argument.
4436       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4437       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4438         OpInfo.ConstraintVT =
4439             getSimpleValueType(DL, STy->getElementType(ResNo));
4440       } else {
4441         assert(ResNo == 0 && "Asm only has one result!");
4442         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4443       }
4444       ++ResNo;
4445       break;
4446     case InlineAsm::isInput:
4447       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4448       break;
4449     case InlineAsm::isClobber:
4450       // Nothing to do.
4451       break;
4452     }
4453 
4454     if (OpInfo.CallOperandVal) {
4455       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4456       if (OpInfo.isIndirect) {
4457         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4458         if (!PtrTy)
4459           report_fatal_error("Indirect operand for inline asm not a pointer!");
4460         OpTy = PtrTy->getElementType();
4461       }
4462 
4463       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4464       if (StructType *STy = dyn_cast<StructType>(OpTy))
4465         if (STy->getNumElements() == 1)
4466           OpTy = STy->getElementType(0);
4467 
4468       // If OpTy is not a single value, it may be a struct/union that we
4469       // can tile with integers.
4470       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4471         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4472         switch (BitSize) {
4473         default: break;
4474         case 1:
4475         case 8:
4476         case 16:
4477         case 32:
4478         case 64:
4479         case 128:
4480           OpInfo.ConstraintVT =
4481               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4482           break;
4483         }
4484       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4485         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4486         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4487       } else {
4488         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4489       }
4490     }
4491   }
4492 
4493   // If we have multiple alternative constraints, select the best alternative.
4494   if (!ConstraintOperands.empty()) {
4495     if (maCount) {
4496       unsigned bestMAIndex = 0;
4497       int bestWeight = -1;
4498       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4499       int weight = -1;
4500       unsigned maIndex;
4501       // Compute the sums of the weights for each alternative, keeping track
4502       // of the best (highest weight) one so far.
4503       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4504         int weightSum = 0;
4505         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4506              cIndex != eIndex; ++cIndex) {
4507           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4508           if (OpInfo.Type == InlineAsm::isClobber)
4509             continue;
4510 
4511           // If this is an output operand with a matching input operand,
4512           // look up the matching input. If their types mismatch, e.g. one
4513           // is an integer, the other is floating point, or their sizes are
4514           // different, flag it as an maCantMatch.
4515           if (OpInfo.hasMatchingInput()) {
4516             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4517             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4518               if ((OpInfo.ConstraintVT.isInteger() !=
4519                    Input.ConstraintVT.isInteger()) ||
4520                   (OpInfo.ConstraintVT.getSizeInBits() !=
4521                    Input.ConstraintVT.getSizeInBits())) {
4522                 weightSum = -1; // Can't match.
4523                 break;
4524               }
4525             }
4526           }
4527           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4528           if (weight == -1) {
4529             weightSum = -1;
4530             break;
4531           }
4532           weightSum += weight;
4533         }
4534         // Update best.
4535         if (weightSum > bestWeight) {
4536           bestWeight = weightSum;
4537           bestMAIndex = maIndex;
4538         }
4539       }
4540 
4541       // Now select chosen alternative in each constraint.
4542       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4543            cIndex != eIndex; ++cIndex) {
4544         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4545         if (cInfo.Type == InlineAsm::isClobber)
4546           continue;
4547         cInfo.selectAlternative(bestMAIndex);
4548       }
4549     }
4550   }
4551 
4552   // Check and hook up tied operands, choose constraint code to use.
4553   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4554        cIndex != eIndex; ++cIndex) {
4555     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4556 
4557     // If this is an output operand with a matching input operand, look up the
4558     // matching input. If their types mismatch, e.g. one is an integer, the
4559     // other is floating point, or their sizes are different, flag it as an
4560     // error.
4561     if (OpInfo.hasMatchingInput()) {
4562       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4563 
4564       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4565         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4566             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4567                                          OpInfo.ConstraintVT);
4568         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4569             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4570                                          Input.ConstraintVT);
4571         if ((OpInfo.ConstraintVT.isInteger() !=
4572              Input.ConstraintVT.isInteger()) ||
4573             (MatchRC.second != InputRC.second)) {
4574           report_fatal_error("Unsupported asm: input constraint"
4575                              " with a matching output constraint of"
4576                              " incompatible type!");
4577         }
4578       }
4579     }
4580   }
4581 
4582   return ConstraintOperands;
4583 }
4584 
4585 /// Return an integer indicating how general CT is.
4586 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4587   switch (CT) {
4588   case TargetLowering::C_Immediate:
4589   case TargetLowering::C_Other:
4590   case TargetLowering::C_Unknown:
4591     return 0;
4592   case TargetLowering::C_Register:
4593     return 1;
4594   case TargetLowering::C_RegisterClass:
4595     return 2;
4596   case TargetLowering::C_Memory:
4597     return 3;
4598   }
4599   llvm_unreachable("Invalid constraint type");
4600 }
4601 
4602 /// Examine constraint type and operand type and determine a weight value.
4603 /// This object must already have been set up with the operand type
4604 /// and the current alternative constraint selected.
4605 TargetLowering::ConstraintWeight
4606   TargetLowering::getMultipleConstraintMatchWeight(
4607     AsmOperandInfo &info, int maIndex) const {
4608   InlineAsm::ConstraintCodeVector *rCodes;
4609   if (maIndex >= (int)info.multipleAlternatives.size())
4610     rCodes = &info.Codes;
4611   else
4612     rCodes = &info.multipleAlternatives[maIndex].Codes;
4613   ConstraintWeight BestWeight = CW_Invalid;
4614 
4615   // Loop over the options, keeping track of the most general one.
4616   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4617     ConstraintWeight weight =
4618       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4619     if (weight > BestWeight)
4620       BestWeight = weight;
4621   }
4622 
4623   return BestWeight;
4624 }
4625 
4626 /// Examine constraint type and operand type and determine a weight value.
4627 /// This object must already have been set up with the operand type
4628 /// and the current alternative constraint selected.
4629 TargetLowering::ConstraintWeight
4630   TargetLowering::getSingleConstraintMatchWeight(
4631     AsmOperandInfo &info, const char *constraint) const {
4632   ConstraintWeight weight = CW_Invalid;
4633   Value *CallOperandVal = info.CallOperandVal;
4634     // If we don't have a value, we can't do a match,
4635     // but allow it at the lowest weight.
4636   if (!CallOperandVal)
4637     return CW_Default;
4638   // Look at the constraint type.
4639   switch (*constraint) {
4640     case 'i': // immediate integer.
4641     case 'n': // immediate integer with a known value.
4642       if (isa<ConstantInt>(CallOperandVal))
4643         weight = CW_Constant;
4644       break;
4645     case 's': // non-explicit intregal immediate.
4646       if (isa<GlobalValue>(CallOperandVal))
4647         weight = CW_Constant;
4648       break;
4649     case 'E': // immediate float if host format.
4650     case 'F': // immediate float.
4651       if (isa<ConstantFP>(CallOperandVal))
4652         weight = CW_Constant;
4653       break;
4654     case '<': // memory operand with autodecrement.
4655     case '>': // memory operand with autoincrement.
4656     case 'm': // memory operand.
4657     case 'o': // offsettable memory operand
4658     case 'V': // non-offsettable memory operand
4659       weight = CW_Memory;
4660       break;
4661     case 'r': // general register.
4662     case 'g': // general register, memory operand or immediate integer.
4663               // note: Clang converts "g" to "imr".
4664       if (CallOperandVal->getType()->isIntegerTy())
4665         weight = CW_Register;
4666       break;
4667     case 'X': // any operand.
4668   default:
4669     weight = CW_Default;
4670     break;
4671   }
4672   return weight;
4673 }
4674 
4675 /// If there are multiple different constraints that we could pick for this
4676 /// operand (e.g. "imr") try to pick the 'best' one.
4677 /// This is somewhat tricky: constraints fall into four classes:
4678 ///    Other         -> immediates and magic values
4679 ///    Register      -> one specific register
4680 ///    RegisterClass -> a group of regs
4681 ///    Memory        -> memory
4682 /// Ideally, we would pick the most specific constraint possible: if we have
4683 /// something that fits into a register, we would pick it.  The problem here
4684 /// is that if we have something that could either be in a register or in
4685 /// memory that use of the register could cause selection of *other*
4686 /// operands to fail: they might only succeed if we pick memory.  Because of
4687 /// this the heuristic we use is:
4688 ///
4689 ///  1) If there is an 'other' constraint, and if the operand is valid for
4690 ///     that constraint, use it.  This makes us take advantage of 'i'
4691 ///     constraints when available.
4692 ///  2) Otherwise, pick the most general constraint present.  This prefers
4693 ///     'm' over 'r', for example.
4694 ///
4695 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4696                              const TargetLowering &TLI,
4697                              SDValue Op, SelectionDAG *DAG) {
4698   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4699   unsigned BestIdx = 0;
4700   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4701   int BestGenerality = -1;
4702 
4703   // Loop over the options, keeping track of the most general one.
4704   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4705     TargetLowering::ConstraintType CType =
4706       TLI.getConstraintType(OpInfo.Codes[i]);
4707 
4708     // Indirect 'other' or 'immediate' constraints are not allowed.
4709     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4710                                CType == TargetLowering::C_Register ||
4711                                CType == TargetLowering::C_RegisterClass))
4712       continue;
4713 
4714     // If this is an 'other' or 'immediate' constraint, see if the operand is
4715     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4716     // the operand is an integer in the range [0..31] we want to use I (saving a
4717     // load of a register), otherwise we must use 'r'.
4718     if ((CType == TargetLowering::C_Other ||
4719          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4720       assert(OpInfo.Codes[i].size() == 1 &&
4721              "Unhandled multi-letter 'other' constraint");
4722       std::vector<SDValue> ResultOps;
4723       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4724                                        ResultOps, *DAG);
4725       if (!ResultOps.empty()) {
4726         BestType = CType;
4727         BestIdx = i;
4728         break;
4729       }
4730     }
4731 
4732     // Things with matching constraints can only be registers, per gcc
4733     // documentation.  This mainly affects "g" constraints.
4734     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4735       continue;
4736 
4737     // This constraint letter is more general than the previous one, use it.
4738     int Generality = getConstraintGenerality(CType);
4739     if (Generality > BestGenerality) {
4740       BestType = CType;
4741       BestIdx = i;
4742       BestGenerality = Generality;
4743     }
4744   }
4745 
4746   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4747   OpInfo.ConstraintType = BestType;
4748 }
4749 
4750 /// Determines the constraint code and constraint type to use for the specific
4751 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4752 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4753                                             SDValue Op,
4754                                             SelectionDAG *DAG) const {
4755   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4756 
4757   // Single-letter constraints ('r') are very common.
4758   if (OpInfo.Codes.size() == 1) {
4759     OpInfo.ConstraintCode = OpInfo.Codes[0];
4760     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4761   } else {
4762     ChooseConstraint(OpInfo, *this, Op, DAG);
4763   }
4764 
4765   // 'X' matches anything.
4766   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4767     // Labels and constants are handled elsewhere ('X' is the only thing
4768     // that matches labels).  For Functions, the type here is the type of
4769     // the result, which is not what we want to look at; leave them alone.
4770     Value *v = OpInfo.CallOperandVal;
4771     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4772       OpInfo.CallOperandVal = v;
4773       return;
4774     }
4775 
4776     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4777       return;
4778 
4779     // Otherwise, try to resolve it to something we know about by looking at
4780     // the actual operand type.
4781     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4782       OpInfo.ConstraintCode = Repl;
4783       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4784     }
4785   }
4786 }
4787 
4788 /// Given an exact SDIV by a constant, create a multiplication
4789 /// with the multiplicative inverse of the constant.
4790 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4791                               const SDLoc &dl, SelectionDAG &DAG,
4792                               SmallVectorImpl<SDNode *> &Created) {
4793   SDValue Op0 = N->getOperand(0);
4794   SDValue Op1 = N->getOperand(1);
4795   EVT VT = N->getValueType(0);
4796   EVT SVT = VT.getScalarType();
4797   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4798   EVT ShSVT = ShVT.getScalarType();
4799 
4800   bool UseSRA = false;
4801   SmallVector<SDValue, 16> Shifts, Factors;
4802 
4803   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4804     if (C->isNullValue())
4805       return false;
4806     APInt Divisor = C->getAPIntValue();
4807     unsigned Shift = Divisor.countTrailingZeros();
4808     if (Shift) {
4809       Divisor.ashrInPlace(Shift);
4810       UseSRA = true;
4811     }
4812     // Calculate the multiplicative inverse, using Newton's method.
4813     APInt t;
4814     APInt Factor = Divisor;
4815     while ((t = Divisor * Factor) != 1)
4816       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4817     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4818     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4819     return true;
4820   };
4821 
4822   // Collect all magic values from the build vector.
4823   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4824     return SDValue();
4825 
4826   SDValue Shift, Factor;
4827   if (VT.isVector()) {
4828     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4829     Factor = DAG.getBuildVector(VT, dl, Factors);
4830   } else {
4831     Shift = Shifts[0];
4832     Factor = Factors[0];
4833   }
4834 
4835   SDValue Res = Op0;
4836 
4837   // Shift the value upfront if it is even, so the LSB is one.
4838   if (UseSRA) {
4839     // TODO: For UDIV use SRL instead of SRA.
4840     SDNodeFlags Flags;
4841     Flags.setExact(true);
4842     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4843     Created.push_back(Res.getNode());
4844   }
4845 
4846   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4847 }
4848 
4849 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4850                               SelectionDAG &DAG,
4851                               SmallVectorImpl<SDNode *> &Created) const {
4852   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4853   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4854   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4855     return SDValue(N, 0); // Lower SDIV as SDIV
4856   return SDValue();
4857 }
4858 
4859 /// Given an ISD::SDIV node expressing a divide by constant,
4860 /// return a DAG expression to select that will generate the same value by
4861 /// multiplying by a magic number.
4862 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4863 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4864                                   bool IsAfterLegalization,
4865                                   SmallVectorImpl<SDNode *> &Created) const {
4866   SDLoc dl(N);
4867   EVT VT = N->getValueType(0);
4868   EVT SVT = VT.getScalarType();
4869   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4870   EVT ShSVT = ShVT.getScalarType();
4871   unsigned EltBits = VT.getScalarSizeInBits();
4872 
4873   // Check to see if we can do this.
4874   // FIXME: We should be more aggressive here.
4875   if (!isTypeLegal(VT))
4876     return SDValue();
4877 
4878   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4879   if (N->getFlags().hasExact())
4880     return BuildExactSDIV(*this, N, dl, DAG, Created);
4881 
4882   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4883 
4884   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4885     if (C->isNullValue())
4886       return false;
4887 
4888     const APInt &Divisor = C->getAPIntValue();
4889     APInt::ms magics = Divisor.magic();
4890     int NumeratorFactor = 0;
4891     int ShiftMask = -1;
4892 
4893     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4894       // If d is +1/-1, we just multiply the numerator by +1/-1.
4895       NumeratorFactor = Divisor.getSExtValue();
4896       magics.m = 0;
4897       magics.s = 0;
4898       ShiftMask = 0;
4899     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4900       // If d > 0 and m < 0, add the numerator.
4901       NumeratorFactor = 1;
4902     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4903       // If d < 0 and m > 0, subtract the numerator.
4904       NumeratorFactor = -1;
4905     }
4906 
4907     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4908     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4909     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4910     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4911     return true;
4912   };
4913 
4914   SDValue N0 = N->getOperand(0);
4915   SDValue N1 = N->getOperand(1);
4916 
4917   // Collect the shifts / magic values from each element.
4918   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4919     return SDValue();
4920 
4921   SDValue MagicFactor, Factor, Shift, ShiftMask;
4922   if (VT.isVector()) {
4923     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4924     Factor = DAG.getBuildVector(VT, dl, Factors);
4925     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4926     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4927   } else {
4928     MagicFactor = MagicFactors[0];
4929     Factor = Factors[0];
4930     Shift = Shifts[0];
4931     ShiftMask = ShiftMasks[0];
4932   }
4933 
4934   // Multiply the numerator (operand 0) by the magic value.
4935   // FIXME: We should support doing a MUL in a wider type.
4936   SDValue Q;
4937   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4938                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4939     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4940   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4941                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4942     SDValue LoHi =
4943         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4944     Q = SDValue(LoHi.getNode(), 1);
4945   } else
4946     return SDValue(); // No mulhs or equivalent.
4947   Created.push_back(Q.getNode());
4948 
4949   // (Optionally) Add/subtract the numerator using Factor.
4950   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4951   Created.push_back(Factor.getNode());
4952   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4953   Created.push_back(Q.getNode());
4954 
4955   // Shift right algebraic by shift value.
4956   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4957   Created.push_back(Q.getNode());
4958 
4959   // Extract the sign bit, mask it and add it to the quotient.
4960   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4961   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4962   Created.push_back(T.getNode());
4963   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4964   Created.push_back(T.getNode());
4965   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4966 }
4967 
4968 /// Given an ISD::UDIV node expressing a divide by constant,
4969 /// return a DAG expression to select that will generate the same value by
4970 /// multiplying by a magic number.
4971 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4972 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4973                                   bool IsAfterLegalization,
4974                                   SmallVectorImpl<SDNode *> &Created) const {
4975   SDLoc dl(N);
4976   EVT VT = N->getValueType(0);
4977   EVT SVT = VT.getScalarType();
4978   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4979   EVT ShSVT = ShVT.getScalarType();
4980   unsigned EltBits = VT.getScalarSizeInBits();
4981 
4982   // Check to see if we can do this.
4983   // FIXME: We should be more aggressive here.
4984   if (!isTypeLegal(VT))
4985     return SDValue();
4986 
4987   bool UseNPQ = false;
4988   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4989 
4990   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4991     if (C->isNullValue())
4992       return false;
4993     // FIXME: We should use a narrower constant when the upper
4994     // bits are known to be zero.
4995     APInt Divisor = C->getAPIntValue();
4996     APInt::mu magics = Divisor.magicu();
4997     unsigned PreShift = 0, PostShift = 0;
4998 
4999     // If the divisor is even, we can avoid using the expensive fixup by
5000     // shifting the divided value upfront.
5001     if (magics.a != 0 && !Divisor[0]) {
5002       PreShift = Divisor.countTrailingZeros();
5003       // Get magic number for the shifted divisor.
5004       magics = Divisor.lshr(PreShift).magicu(PreShift);
5005       assert(magics.a == 0 && "Should use cheap fixup now");
5006     }
5007 
5008     APInt Magic = magics.m;
5009 
5010     unsigned SelNPQ;
5011     if (magics.a == 0 || Divisor.isOneValue()) {
5012       assert(magics.s < Divisor.getBitWidth() &&
5013              "We shouldn't generate an undefined shift!");
5014       PostShift = magics.s;
5015       SelNPQ = false;
5016     } else {
5017       PostShift = magics.s - 1;
5018       SelNPQ = true;
5019     }
5020 
5021     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5022     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5023     NPQFactors.push_back(
5024         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5025                                : APInt::getNullValue(EltBits),
5026                         dl, SVT));
5027     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5028     UseNPQ |= SelNPQ;
5029     return true;
5030   };
5031 
5032   SDValue N0 = N->getOperand(0);
5033   SDValue N1 = N->getOperand(1);
5034 
5035   // Collect the shifts/magic values from each element.
5036   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5037     return SDValue();
5038 
5039   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5040   if (VT.isVector()) {
5041     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5042     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5043     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5044     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5045   } else {
5046     PreShift = PreShifts[0];
5047     MagicFactor = MagicFactors[0];
5048     PostShift = PostShifts[0];
5049   }
5050 
5051   SDValue Q = N0;
5052   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5053   Created.push_back(Q.getNode());
5054 
5055   // FIXME: We should support doing a MUL in a wider type.
5056   auto GetMULHU = [&](SDValue X, SDValue Y) {
5057     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
5058                             : isOperationLegalOrCustom(ISD::MULHU, VT))
5059       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5060     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
5061                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
5062       SDValue LoHi =
5063           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5064       return SDValue(LoHi.getNode(), 1);
5065     }
5066     return SDValue(); // No mulhu or equivalent
5067   };
5068 
5069   // Multiply the numerator (operand 0) by the magic value.
5070   Q = GetMULHU(Q, MagicFactor);
5071   if (!Q)
5072     return SDValue();
5073 
5074   Created.push_back(Q.getNode());
5075 
5076   if (UseNPQ) {
5077     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5078     Created.push_back(NPQ.getNode());
5079 
5080     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5081     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5082     if (VT.isVector())
5083       NPQ = GetMULHU(NPQ, NPQFactor);
5084     else
5085       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5086 
5087     Created.push_back(NPQ.getNode());
5088 
5089     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5090     Created.push_back(Q.getNode());
5091   }
5092 
5093   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5094   Created.push_back(Q.getNode());
5095 
5096   SDValue One = DAG.getConstant(1, dl, VT);
5097   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5098   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5099 }
5100 
5101 /// If all values in Values that *don't* match the predicate are same 'splat'
5102 /// value, then replace all values with that splat value.
5103 /// Else, if AlternativeReplacement was provided, then replace all values that
5104 /// do match predicate with AlternativeReplacement value.
5105 static void
5106 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5107                           std::function<bool(SDValue)> Predicate,
5108                           SDValue AlternativeReplacement = SDValue()) {
5109   SDValue Replacement;
5110   // Is there a value for which the Predicate does *NOT* match? What is it?
5111   auto SplatValue = llvm::find_if_not(Values, Predicate);
5112   if (SplatValue != Values.end()) {
5113     // Does Values consist only of SplatValue's and values matching Predicate?
5114     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5115           return Value == *SplatValue || Predicate(Value);
5116         })) // Then we shall replace values matching predicate with SplatValue.
5117       Replacement = *SplatValue;
5118   }
5119   if (!Replacement) {
5120     // Oops, we did not find the "baseline" splat value.
5121     if (!AlternativeReplacement)
5122       return; // Nothing to do.
5123     // Let's replace with provided value then.
5124     Replacement = AlternativeReplacement;
5125   }
5126   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5127 }
5128 
5129 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5130 /// where the divisor is constant and the comparison target is zero,
5131 /// return a DAG expression that will generate the same comparison result
5132 /// using only multiplications, additions and shifts/rotations.
5133 /// Ref: "Hacker's Delight" 10-17.
5134 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5135                                         SDValue CompTargetNode,
5136                                         ISD::CondCode Cond,
5137                                         DAGCombinerInfo &DCI,
5138                                         const SDLoc &DL) const {
5139   SmallVector<SDNode *, 5> Built;
5140   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5141                                          DCI, DL, Built)) {
5142     for (SDNode *N : Built)
5143       DCI.AddToWorklist(N);
5144     return Folded;
5145   }
5146 
5147   return SDValue();
5148 }
5149 
5150 SDValue
5151 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5152                                   SDValue CompTargetNode, ISD::CondCode Cond,
5153                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5154                                   SmallVectorImpl<SDNode *> &Created) const {
5155   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5156   // - D must be constant, with D = D0 * 2^K where D0 is odd
5157   // - P is the multiplicative inverse of D0 modulo 2^W
5158   // - Q = floor(((2^W) - 1) / D)
5159   // where W is the width of the common type of N and D.
5160   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5161          "Only applicable for (in)equality comparisons.");
5162 
5163   SelectionDAG &DAG = DCI.DAG;
5164 
5165   EVT VT = REMNode.getValueType();
5166   EVT SVT = VT.getScalarType();
5167   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5168   EVT ShSVT = ShVT.getScalarType();
5169 
5170   // If MUL is unavailable, we cannot proceed in any case.
5171   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5172     return SDValue();
5173 
5174   bool ComparingWithAllZeros = true;
5175   bool AllComparisonsWithNonZerosAreTautological = true;
5176   bool HadTautologicalLanes = false;
5177   bool AllLanesAreTautological = true;
5178   bool HadEvenDivisor = false;
5179   bool AllDivisorsArePowerOfTwo = true;
5180   bool HadTautologicalInvertedLanes = false;
5181   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5182 
5183   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5184     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5185     if (CDiv->isNullValue())
5186       return false;
5187 
5188     const APInt &D = CDiv->getAPIntValue();
5189     const APInt &Cmp = CCmp->getAPIntValue();
5190 
5191     ComparingWithAllZeros &= Cmp.isNullValue();
5192 
5193     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5194     // if C2 is not less than C1, the comparison is always false.
5195     // But we will only be able to produce the comparison that will give the
5196     // opposive tautological answer. So this lane would need to be fixed up.
5197     bool TautologicalInvertedLane = D.ule(Cmp);
5198     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5199 
5200     // If all lanes are tautological (either all divisors are ones, or divisor
5201     // is not greater than the constant we are comparing with),
5202     // we will prefer to avoid the fold.
5203     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5204     HadTautologicalLanes |= TautologicalLane;
5205     AllLanesAreTautological &= TautologicalLane;
5206 
5207     // If we are comparing with non-zero, we need'll need  to subtract said
5208     // comparison value from the LHS. But there is no point in doing that if
5209     // every lane where we are comparing with non-zero is tautological..
5210     if (!Cmp.isNullValue())
5211       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5212 
5213     // Decompose D into D0 * 2^K
5214     unsigned K = D.countTrailingZeros();
5215     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5216     APInt D0 = D.lshr(K);
5217 
5218     // D is even if it has trailing zeros.
5219     HadEvenDivisor |= (K != 0);
5220     // D is a power-of-two if D0 is one.
5221     // If all divisors are power-of-two, we will prefer to avoid the fold.
5222     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5223 
5224     // P = inv(D0, 2^W)
5225     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5226     unsigned W = D.getBitWidth();
5227     APInt P = D0.zext(W + 1)
5228                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5229                   .trunc(W);
5230     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5231     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5232 
5233     // Q = floor((2^W - 1) u/ D)
5234     // R = ((2^W - 1) u% D)
5235     APInt Q, R;
5236     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5237 
5238     // If we are comparing with zero, then that comparison constant is okay,
5239     // else it may need to be one less than that.
5240     if (Cmp.ugt(R))
5241       Q -= 1;
5242 
5243     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5244            "We are expecting that K is always less than all-ones for ShSVT");
5245 
5246     // If the lane is tautological the result can be constant-folded.
5247     if (TautologicalLane) {
5248       // Set P and K amount to a bogus values so we can try to splat them.
5249       P = 0;
5250       K = -1;
5251       // And ensure that comparison constant is tautological,
5252       // it will always compare true/false.
5253       Q = -1;
5254     }
5255 
5256     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5257     KAmts.push_back(
5258         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5259     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5260     return true;
5261   };
5262 
5263   SDValue N = REMNode.getOperand(0);
5264   SDValue D = REMNode.getOperand(1);
5265 
5266   // Collect the values from each element.
5267   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5268     return SDValue();
5269 
5270   // If all lanes are tautological, the result can be constant-folded.
5271   if (AllLanesAreTautological)
5272     return SDValue();
5273 
5274   // If this is a urem by a powers-of-two, avoid the fold since it can be
5275   // best implemented as a bit test.
5276   if (AllDivisorsArePowerOfTwo)
5277     return SDValue();
5278 
5279   SDValue PVal, KVal, QVal;
5280   if (VT.isVector()) {
5281     if (HadTautologicalLanes) {
5282       // Try to turn PAmts into a splat, since we don't care about the values
5283       // that are currently '0'. If we can't, just keep '0'`s.
5284       turnVectorIntoSplatVector(PAmts, isNullConstant);
5285       // Try to turn KAmts into a splat, since we don't care about the values
5286       // that are currently '-1'. If we can't, change them to '0'`s.
5287       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5288                                 DAG.getConstant(0, DL, ShSVT));
5289     }
5290 
5291     PVal = DAG.getBuildVector(VT, DL, PAmts);
5292     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5293     QVal = DAG.getBuildVector(VT, DL, QAmts);
5294   } else {
5295     PVal = PAmts[0];
5296     KVal = KAmts[0];
5297     QVal = QAmts[0];
5298   }
5299 
5300   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5301     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5302       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5303     assert(CompTargetNode.getValueType() == N.getValueType() &&
5304            "Expecting that the types on LHS and RHS of comparisons match.");
5305     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5306   }
5307 
5308   // (mul N, P)
5309   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5310   Created.push_back(Op0.getNode());
5311 
5312   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5313   // divisors as a performance improvement, since rotating by 0 is a no-op.
5314   if (HadEvenDivisor) {
5315     // We need ROTR to do this.
5316     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5317       return SDValue();
5318     SDNodeFlags Flags;
5319     Flags.setExact(true);
5320     // UREM: (rotr (mul N, P), K)
5321     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5322     Created.push_back(Op0.getNode());
5323   }
5324 
5325   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5326   SDValue NewCC =
5327       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5328                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5329   if (!HadTautologicalInvertedLanes)
5330     return NewCC;
5331 
5332   // If any lanes previously compared always-false, the NewCC will give
5333   // always-true result for them, so we need to fixup those lanes.
5334   // Or the other way around for inequality predicate.
5335   assert(VT.isVector() && "Can/should only get here for vectors.");
5336   Created.push_back(NewCC.getNode());
5337 
5338   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5339   // if C2 is not less than C1, the comparison is always false.
5340   // But we have produced the comparison that will give the
5341   // opposive tautological answer. So these lanes would need to be fixed up.
5342   SDValue TautologicalInvertedChannels =
5343       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5344   Created.push_back(TautologicalInvertedChannels.getNode());
5345 
5346   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5347     // If we have a vector select, let's replace the comparison results in the
5348     // affected lanes with the correct tautological result.
5349     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5350                                               DL, SETCCVT, SETCCVT);
5351     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5352                        Replacement, NewCC);
5353   }
5354 
5355   // Else, we can just invert the comparison result in the appropriate lanes.
5356   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5357     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5358                        TautologicalInvertedChannels);
5359 
5360   return SDValue(); // Don't know how to lower.
5361 }
5362 
5363 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5364 /// where the divisor is constant and the comparison target is zero,
5365 /// return a DAG expression that will generate the same comparison result
5366 /// using only multiplications, additions and shifts/rotations.
5367 /// Ref: "Hacker's Delight" 10-17.
5368 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5369                                         SDValue CompTargetNode,
5370                                         ISD::CondCode Cond,
5371                                         DAGCombinerInfo &DCI,
5372                                         const SDLoc &DL) const {
5373   SmallVector<SDNode *, 7> Built;
5374   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5375                                          DCI, DL, Built)) {
5376     assert(Built.size() <= 7 && "Max size prediction failed.");
5377     for (SDNode *N : Built)
5378       DCI.AddToWorklist(N);
5379     return Folded;
5380   }
5381 
5382   return SDValue();
5383 }
5384 
5385 SDValue
5386 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5387                                   SDValue CompTargetNode, ISD::CondCode Cond,
5388                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5389                                   SmallVectorImpl<SDNode *> &Created) const {
5390   // Fold:
5391   //   (seteq/ne (srem N, D), 0)
5392   // To:
5393   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5394   //
5395   // - D must be constant, with D = D0 * 2^K where D0 is odd
5396   // - P is the multiplicative inverse of D0 modulo 2^W
5397   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5398   // - Q = floor((2 * A) / (2^K))
5399   // where W is the width of the common type of N and D.
5400   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5401          "Only applicable for (in)equality comparisons.");
5402 
5403   SelectionDAG &DAG = DCI.DAG;
5404 
5405   EVT VT = REMNode.getValueType();
5406   EVT SVT = VT.getScalarType();
5407   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5408   EVT ShSVT = ShVT.getScalarType();
5409 
5410   // If MUL is unavailable, we cannot proceed in any case.
5411   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5412     return SDValue();
5413 
5414   // TODO: Could support comparing with non-zero too.
5415   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5416   if (!CompTarget || !CompTarget->isNullValue())
5417     return SDValue();
5418 
5419   bool HadIntMinDivisor = false;
5420   bool HadOneDivisor = false;
5421   bool AllDivisorsAreOnes = true;
5422   bool HadEvenDivisor = false;
5423   bool NeedToApplyOffset = false;
5424   bool AllDivisorsArePowerOfTwo = true;
5425   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5426 
5427   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5428     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5429     if (C->isNullValue())
5430       return false;
5431 
5432     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5433 
5434     // WARNING: this fold is only valid for positive divisors!
5435     APInt D = C->getAPIntValue();
5436     if (D.isNegative())
5437       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5438 
5439     HadIntMinDivisor |= D.isMinSignedValue();
5440 
5441     // If all divisors are ones, we will prefer to avoid the fold.
5442     HadOneDivisor |= D.isOneValue();
5443     AllDivisorsAreOnes &= D.isOneValue();
5444 
5445     // Decompose D into D0 * 2^K
5446     unsigned K = D.countTrailingZeros();
5447     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5448     APInt D0 = D.lshr(K);
5449 
5450     if (!D.isMinSignedValue()) {
5451       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5452       // we don't care about this lane in this fold, we'll special-handle it.
5453       HadEvenDivisor |= (K != 0);
5454     }
5455 
5456     // D is a power-of-two if D0 is one. This includes INT_MIN.
5457     // If all divisors are power-of-two, we will prefer to avoid the fold.
5458     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5459 
5460     // P = inv(D0, 2^W)
5461     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5462     unsigned W = D.getBitWidth();
5463     APInt P = D0.zext(W + 1)
5464                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5465                   .trunc(W);
5466     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5467     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5468 
5469     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5470     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5471     A.clearLowBits(K);
5472 
5473     if (!D.isMinSignedValue()) {
5474       // If divisor INT_MIN, then we don't care about this lane in this fold,
5475       // we'll special-handle it.
5476       NeedToApplyOffset |= A != 0;
5477     }
5478 
5479     // Q = floor((2 * A) / (2^K))
5480     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5481 
5482     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5483            "We are expecting that A is always less than all-ones for SVT");
5484     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5485            "We are expecting that K is always less than all-ones for ShSVT");
5486 
5487     // If the divisor is 1 the result can be constant-folded. Likewise, we
5488     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5489     if (D.isOneValue()) {
5490       // Set P, A and K to a bogus values so we can try to splat them.
5491       P = 0;
5492       A = -1;
5493       K = -1;
5494 
5495       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5496       Q = -1;
5497     }
5498 
5499     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5500     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5501     KAmts.push_back(
5502         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5503     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5504     return true;
5505   };
5506 
5507   SDValue N = REMNode.getOperand(0);
5508   SDValue D = REMNode.getOperand(1);
5509 
5510   // Collect the values from each element.
5511   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5512     return SDValue();
5513 
5514   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5515   if (AllDivisorsAreOnes)
5516     return SDValue();
5517 
5518   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5519   // since it can be best implemented as a bit test.
5520   if (AllDivisorsArePowerOfTwo)
5521     return SDValue();
5522 
5523   SDValue PVal, AVal, KVal, QVal;
5524   if (VT.isVector()) {
5525     if (HadOneDivisor) {
5526       // Try to turn PAmts into a splat, since we don't care about the values
5527       // that are currently '0'. If we can't, just keep '0'`s.
5528       turnVectorIntoSplatVector(PAmts, isNullConstant);
5529       // Try to turn AAmts into a splat, since we don't care about the
5530       // values that are currently '-1'. If we can't, change them to '0'`s.
5531       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5532                                 DAG.getConstant(0, DL, SVT));
5533       // Try to turn KAmts into a splat, since we don't care about the values
5534       // that are currently '-1'. If we can't, change them to '0'`s.
5535       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5536                                 DAG.getConstant(0, DL, ShSVT));
5537     }
5538 
5539     PVal = DAG.getBuildVector(VT, DL, PAmts);
5540     AVal = DAG.getBuildVector(VT, DL, AAmts);
5541     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5542     QVal = DAG.getBuildVector(VT, DL, QAmts);
5543   } else {
5544     PVal = PAmts[0];
5545     AVal = AAmts[0];
5546     KVal = KAmts[0];
5547     QVal = QAmts[0];
5548   }
5549 
5550   // (mul N, P)
5551   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5552   Created.push_back(Op0.getNode());
5553 
5554   if (NeedToApplyOffset) {
5555     // We need ADD to do this.
5556     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5557       return SDValue();
5558 
5559     // (add (mul N, P), A)
5560     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5561     Created.push_back(Op0.getNode());
5562   }
5563 
5564   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5565   // divisors as a performance improvement, since rotating by 0 is a no-op.
5566   if (HadEvenDivisor) {
5567     // We need ROTR to do this.
5568     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5569       return SDValue();
5570     SDNodeFlags Flags;
5571     Flags.setExact(true);
5572     // SREM: (rotr (add (mul N, P), A), K)
5573     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5574     Created.push_back(Op0.getNode());
5575   }
5576 
5577   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5578   SDValue Fold =
5579       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5580                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5581 
5582   // If we didn't have lanes with INT_MIN divisor, then we're done.
5583   if (!HadIntMinDivisor)
5584     return Fold;
5585 
5586   // That fold is only valid for positive divisors. Which effectively means,
5587   // it is invalid for INT_MIN divisors. So if we have such a lane,
5588   // we must fix-up results for said lanes.
5589   assert(VT.isVector() && "Can/should only get here for vectors.");
5590 
5591   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5592       !isOperationLegalOrCustom(ISD::AND, VT) ||
5593       !isOperationLegalOrCustom(Cond, VT) ||
5594       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5595     return SDValue();
5596 
5597   Created.push_back(Fold.getNode());
5598 
5599   SDValue IntMin = DAG.getConstant(
5600       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5601   SDValue IntMax = DAG.getConstant(
5602       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5603   SDValue Zero =
5604       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5605 
5606   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5607   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5608   Created.push_back(DivisorIsIntMin.getNode());
5609 
5610   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5611   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5612   Created.push_back(Masked.getNode());
5613   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5614   Created.push_back(MaskedIsZero.getNode());
5615 
5616   // To produce final result we need to blend 2 vectors: 'SetCC' and
5617   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5618   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5619   // constant-folded, select can get lowered to a shuffle with constant mask.
5620   SDValue Blended =
5621       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5622 
5623   return Blended;
5624 }
5625 
5626 bool TargetLowering::
5627 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5628   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5629     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5630                                 "be a constant integer");
5631     return true;
5632   }
5633 
5634   return false;
5635 }
5636 
5637 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5638                                              bool LegalOps, bool OptForSize,
5639                                              NegatibleCost &Cost,
5640                                              unsigned Depth) const {
5641   // fneg is removable even if it has multiple uses.
5642   if (Op.getOpcode() == ISD::FNEG) {
5643     Cost = NegatibleCost::Cheaper;
5644     return Op.getOperand(0);
5645   }
5646 
5647   // Don't recurse exponentially.
5648   if (Depth > SelectionDAG::MaxRecursionDepth)
5649     return SDValue();
5650 
5651   // Pre-increment recursion depth for use in recursive calls.
5652   ++Depth;
5653   const SDNodeFlags Flags = Op->getFlags();
5654   const TargetOptions &Options = DAG.getTarget().Options;
5655   EVT VT = Op.getValueType();
5656   unsigned Opcode = Op.getOpcode();
5657 
5658   // Don't allow anything with multiple uses unless we know it is free.
5659   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5660     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5661                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5662     if (!IsFreeExtend)
5663       return SDValue();
5664   }
5665 
5666   SDLoc DL(Op);
5667 
5668   switch (Opcode) {
5669   case ISD::ConstantFP: {
5670     // Don't invert constant FP values after legalization unless the target says
5671     // the negated constant is legal.
5672     bool IsOpLegal =
5673         isOperationLegal(ISD::ConstantFP, VT) ||
5674         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5675                      OptForSize);
5676 
5677     if (LegalOps && !IsOpLegal)
5678       break;
5679 
5680     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5681     V.changeSign();
5682     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5683 
5684     // If we already have the use of the negated floating constant, it is free
5685     // to negate it even it has multiple uses.
5686     if (!Op.hasOneUse() && CFP.use_empty())
5687       break;
5688     Cost = NegatibleCost::Neutral;
5689     return CFP;
5690   }
5691   case ISD::BUILD_VECTOR: {
5692     // Only permit BUILD_VECTOR of constants.
5693     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5694           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5695         }))
5696       break;
5697 
5698     bool IsOpLegal =
5699         (isOperationLegal(ISD::ConstantFP, VT) &&
5700          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5701         llvm::all_of(Op->op_values(), [&](SDValue N) {
5702           return N.isUndef() ||
5703                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5704                               OptForSize);
5705         });
5706 
5707     if (LegalOps && !IsOpLegal)
5708       break;
5709 
5710     SmallVector<SDValue, 4> Ops;
5711     for (SDValue C : Op->op_values()) {
5712       if (C.isUndef()) {
5713         Ops.push_back(C);
5714         continue;
5715       }
5716       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5717       V.changeSign();
5718       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5719     }
5720     Cost = NegatibleCost::Neutral;
5721     return DAG.getBuildVector(VT, DL, Ops);
5722   }
5723   case ISD::FADD: {
5724     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5725       break;
5726 
5727     // After operation legalization, it might not be legal to create new FSUBs.
5728     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5729       break;
5730     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5731 
5732     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5733     NegatibleCost CostX = NegatibleCost::Expensive;
5734     SDValue NegX =
5735         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5736     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5737     NegatibleCost CostY = NegatibleCost::Expensive;
5738     SDValue NegY =
5739         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5740 
5741     // Negate the X if its cost is less or equal than Y.
5742     if (NegX && (CostX <= CostY)) {
5743       Cost = CostX;
5744       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5745     }
5746 
5747     // Negate the Y if it is not expensive.
5748     if (NegY) {
5749       Cost = CostY;
5750       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5751     }
5752     break;
5753   }
5754   case ISD::FSUB: {
5755     // We can't turn -(A-B) into B-A when we honor signed zeros.
5756     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5757       break;
5758 
5759     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5760     // fold (fneg (fsub 0, Y)) -> Y
5761     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5762       if (C->isZero()) {
5763         Cost = NegatibleCost::Cheaper;
5764         return Y;
5765       }
5766 
5767     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5768     Cost = NegatibleCost::Neutral;
5769     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5770   }
5771   case ISD::FMUL:
5772   case ISD::FDIV: {
5773     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5774 
5775     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5776     NegatibleCost CostX = NegatibleCost::Expensive;
5777     SDValue NegX =
5778         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5779     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5780     NegatibleCost CostY = NegatibleCost::Expensive;
5781     SDValue NegY =
5782         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5783 
5784     // Negate the X if its cost is less or equal than Y.
5785     if (NegX && (CostX <= CostY)) {
5786       Cost = CostX;
5787       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5788     }
5789 
5790     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5791     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5792       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5793         break;
5794 
5795     // Negate the Y if it is not expensive.
5796     if (NegY) {
5797       Cost = CostY;
5798       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5799     }
5800     break;
5801   }
5802   case ISD::FMA:
5803   case ISD::FMAD: {
5804     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5805       break;
5806 
5807     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5808     NegatibleCost CostZ = NegatibleCost::Expensive;
5809     SDValue NegZ =
5810         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5811     // Give up if fail to negate the Z.
5812     if (!NegZ)
5813       break;
5814 
5815     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5816     NegatibleCost CostX = NegatibleCost::Expensive;
5817     SDValue NegX =
5818         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5819     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5820     NegatibleCost CostY = NegatibleCost::Expensive;
5821     SDValue NegY =
5822         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5823 
5824     // Negate the X if its cost is less or equal than Y.
5825     if (NegX && (CostX <= CostY)) {
5826       Cost = std::min(CostX, CostZ);
5827       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5828     }
5829 
5830     // Negate the Y if it is not expensive.
5831     if (NegY) {
5832       Cost = std::min(CostY, CostZ);
5833       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5834     }
5835     break;
5836   }
5837 
5838   case ISD::FP_EXTEND:
5839   case ISD::FSIN:
5840     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5841                                             OptForSize, Cost, Depth))
5842       return DAG.getNode(Opcode, DL, VT, NegV);
5843     break;
5844   case ISD::FP_ROUND:
5845     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5846                                             OptForSize, Cost, Depth))
5847       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5848     break;
5849   }
5850 
5851   return SDValue();
5852 }
5853 
5854 //===----------------------------------------------------------------------===//
5855 // Legalization Utilities
5856 //===----------------------------------------------------------------------===//
5857 
5858 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5859                                     SDValue LHS, SDValue RHS,
5860                                     SmallVectorImpl<SDValue> &Result,
5861                                     EVT HiLoVT, SelectionDAG &DAG,
5862                                     MulExpansionKind Kind, SDValue LL,
5863                                     SDValue LH, SDValue RL, SDValue RH) const {
5864   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5865          Opcode == ISD::SMUL_LOHI);
5866 
5867   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5868                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5869   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5870                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5871   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5872                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5873   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5874                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5875 
5876   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5877     return false;
5878 
5879   unsigned OuterBitSize = VT.getScalarSizeInBits();
5880   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5881   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5882   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5883 
5884   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5885   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5886          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5887 
5888   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5889   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5890                           bool Signed) -> bool {
5891     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5892       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5893       Hi = SDValue(Lo.getNode(), 1);
5894       return true;
5895     }
5896     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5897       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5898       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5899       return true;
5900     }
5901     return false;
5902   };
5903 
5904   SDValue Lo, Hi;
5905 
5906   if (!LL.getNode() && !RL.getNode() &&
5907       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5908     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5909     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5910   }
5911 
5912   if (!LL.getNode())
5913     return false;
5914 
5915   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5916   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5917       DAG.MaskedValueIsZero(RHS, HighMask)) {
5918     // The inputs are both zero-extended.
5919     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5920       Result.push_back(Lo);
5921       Result.push_back(Hi);
5922       if (Opcode != ISD::MUL) {
5923         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5924         Result.push_back(Zero);
5925         Result.push_back(Zero);
5926       }
5927       return true;
5928     }
5929   }
5930 
5931   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5932       RHSSB > InnerBitSize) {
5933     // The input values are both sign-extended.
5934     // TODO non-MUL case?
5935     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5936       Result.push_back(Lo);
5937       Result.push_back(Hi);
5938       return true;
5939     }
5940   }
5941 
5942   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5943   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5944   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5945     // FIXME getShiftAmountTy does not always return a sensible result when VT
5946     // is an illegal type, and so the type may be too small to fit the shift
5947     // amount. Override it with i32. The shift will have to be legalized.
5948     ShiftAmountTy = MVT::i32;
5949   }
5950   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5951 
5952   if (!LH.getNode() && !RH.getNode() &&
5953       isOperationLegalOrCustom(ISD::SRL, VT) &&
5954       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5955     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5956     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5957     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5958     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5959   }
5960 
5961   if (!LH.getNode())
5962     return false;
5963 
5964   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5965     return false;
5966 
5967   Result.push_back(Lo);
5968 
5969   if (Opcode == ISD::MUL) {
5970     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5971     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5972     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5973     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5974     Result.push_back(Hi);
5975     return true;
5976   }
5977 
5978   // Compute the full width result.
5979   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5980     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5981     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5982     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5983     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5984   };
5985 
5986   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5987   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5988     return false;
5989 
5990   // This is effectively the add part of a multiply-add of half-sized operands,
5991   // so it cannot overflow.
5992   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5993 
5994   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5995     return false;
5996 
5997   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5998   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5999 
6000   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6001                   isOperationLegalOrCustom(ISD::ADDE, VT));
6002   if (UseGlue)
6003     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6004                        Merge(Lo, Hi));
6005   else
6006     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6007                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6008 
6009   SDValue Carry = Next.getValue(1);
6010   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6011   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6012 
6013   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6014     return false;
6015 
6016   if (UseGlue)
6017     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6018                      Carry);
6019   else
6020     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6021                      Zero, Carry);
6022 
6023   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6024 
6025   if (Opcode == ISD::SMUL_LOHI) {
6026     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6027                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6028     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6029 
6030     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6031                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6032     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6033   }
6034 
6035   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6036   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6037   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6038   return true;
6039 }
6040 
6041 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6042                                SelectionDAG &DAG, MulExpansionKind Kind,
6043                                SDValue LL, SDValue LH, SDValue RL,
6044                                SDValue RH) const {
6045   SmallVector<SDValue, 2> Result;
6046   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
6047                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6048                            DAG, Kind, LL, LH, RL, RH);
6049   if (Ok) {
6050     assert(Result.size() == 2);
6051     Lo = Result[0];
6052     Hi = Result[1];
6053   }
6054   return Ok;
6055 }
6056 
6057 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6058                                        SelectionDAG &DAG) const {
6059   EVT VT = Node->getValueType(0);
6060 
6061   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6062                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6063                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6064                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6065     return false;
6066 
6067   // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6068   // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6069   SDValue X = Node->getOperand(0);
6070   SDValue Y = Node->getOperand(1);
6071   SDValue Z = Node->getOperand(2);
6072 
6073   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6074   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6075   SDLoc DL(SDValue(Node, 0));
6076 
6077   EVT ShVT = Z.getValueType();
6078   SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6079   SDValue ShAmt, InvShAmt;
6080   if (isPowerOf2_32(EltSizeInBits)) {
6081     // Z % BW -> Z & (BW - 1)
6082     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6083     // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6084     InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6085   } else {
6086     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6087     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6088     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6089   }
6090 
6091   SDValue One = DAG.getConstant(1, DL, ShVT);
6092   SDValue ShX, ShY;
6093   if (IsFSHL) {
6094     ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6095     SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6096     ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6097   } else {
6098     SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6099     ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6100     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6101   }
6102   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6103   return true;
6104 }
6105 
6106 // TODO: Merge with expandFunnelShift.
6107 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6108                                SelectionDAG &DAG) const {
6109   EVT VT = Node->getValueType(0);
6110   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6111   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6112   SDValue Op0 = Node->getOperand(0);
6113   SDValue Op1 = Node->getOperand(1);
6114   SDLoc DL(SDValue(Node, 0));
6115 
6116   EVT ShVT = Op1.getValueType();
6117   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6118 
6119   // If a rotate in the other direction is legal, use it.
6120   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6121   if (isOperationLegal(RevRot, VT)) {
6122     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6123     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6124     return true;
6125   }
6126 
6127   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6128                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6129                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6130                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6131                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6132     return false;
6133 
6134   // Otherwise,
6135   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6136   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6137   //
6138   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6139          "Expecting the type bitwidth to be a power of 2");
6140   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6141   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6142   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6143   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6144   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6145   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6146   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6147                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6148   return true;
6149 }
6150 
6151 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6152                                       SelectionDAG &DAG) const {
6153   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6154   SDValue Src = Node->getOperand(OpNo);
6155   EVT SrcVT = Src.getValueType();
6156   EVT DstVT = Node->getValueType(0);
6157   SDLoc dl(SDValue(Node, 0));
6158 
6159   // FIXME: Only f32 to i64 conversions are supported.
6160   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6161     return false;
6162 
6163   if (Node->isStrictFPOpcode())
6164     // When a NaN is converted to an integer a trap is allowed. We can't
6165     // use this expansion here because it would eliminate that trap. Other
6166     // traps are also allowed and cannot be eliminated. See
6167     // IEEE 754-2008 sec 5.8.
6168     return false;
6169 
6170   // Expand f32 -> i64 conversion
6171   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6172   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6173   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6174   EVT IntVT = SrcVT.changeTypeToInteger();
6175   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6176 
6177   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6178   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6179   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6180   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6181   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6182   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6183 
6184   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6185 
6186   SDValue ExponentBits = DAG.getNode(
6187       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6188       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6189   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6190 
6191   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6192                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6193                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6194   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6195 
6196   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6197                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6198                           DAG.getConstant(0x00800000, dl, IntVT));
6199 
6200   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6201 
6202   R = DAG.getSelectCC(
6203       dl, Exponent, ExponentLoBit,
6204       DAG.getNode(ISD::SHL, dl, DstVT, R,
6205                   DAG.getZExtOrTrunc(
6206                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6207                       dl, IntShVT)),
6208       DAG.getNode(ISD::SRL, dl, DstVT, R,
6209                   DAG.getZExtOrTrunc(
6210                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6211                       dl, IntShVT)),
6212       ISD::SETGT);
6213 
6214   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6215                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6216 
6217   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6218                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6219   return true;
6220 }
6221 
6222 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6223                                       SDValue &Chain,
6224                                       SelectionDAG &DAG) const {
6225   SDLoc dl(SDValue(Node, 0));
6226   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6227   SDValue Src = Node->getOperand(OpNo);
6228 
6229   EVT SrcVT = Src.getValueType();
6230   EVT DstVT = Node->getValueType(0);
6231   EVT SetCCVT =
6232       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6233   EVT DstSetCCVT =
6234       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6235 
6236   // Only expand vector types if we have the appropriate vector bit operations.
6237   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6238                                                    ISD::FP_TO_SINT;
6239   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6240                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6241     return false;
6242 
6243   // If the maximum float value is smaller then the signed integer range,
6244   // the destination signmask can't be represented by the float, so we can
6245   // just use FP_TO_SINT directly.
6246   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6247   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6248   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6249   if (APFloat::opOverflow &
6250       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6251     if (Node->isStrictFPOpcode()) {
6252       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6253                            { Node->getOperand(0), Src });
6254       Chain = Result.getValue(1);
6255     } else
6256       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6257     return true;
6258   }
6259 
6260   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6261   SDValue Sel;
6262 
6263   if (Node->isStrictFPOpcode()) {
6264     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6265                        Node->getOperand(0), /*IsSignaling*/ true);
6266     Chain = Sel.getValue(1);
6267   } else {
6268     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6269   }
6270 
6271   bool Strict = Node->isStrictFPOpcode() ||
6272                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6273 
6274   if (Strict) {
6275     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6276     // signmask then offset (the result of which should be fully representable).
6277     // Sel = Src < 0x8000000000000000
6278     // FltOfs = select Sel, 0, 0x8000000000000000
6279     // IntOfs = select Sel, 0, 0x8000000000000000
6280     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6281 
6282     // TODO: Should any fast-math-flags be set for the FSUB?
6283     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6284                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6285     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6286     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6287                                    DAG.getConstant(0, dl, DstVT),
6288                                    DAG.getConstant(SignMask, dl, DstVT));
6289     SDValue SInt;
6290     if (Node->isStrictFPOpcode()) {
6291       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6292                                 { Chain, Src, FltOfs });
6293       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6294                          { Val.getValue(1), Val });
6295       Chain = SInt.getValue(1);
6296     } else {
6297       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6298       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6299     }
6300     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6301   } else {
6302     // Expand based on maximum range of FP_TO_SINT:
6303     // True = fp_to_sint(Src)
6304     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6305     // Result = select (Src < 0x8000000000000000), True, False
6306 
6307     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6308     // TODO: Should any fast-math-flags be set for the FSUB?
6309     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6310                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6311     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6312                         DAG.getConstant(SignMask, dl, DstVT));
6313     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6314     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6315   }
6316   return true;
6317 }
6318 
6319 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6320                                       SDValue &Chain,
6321                                       SelectionDAG &DAG) const {
6322   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6323   SDValue Src = Node->getOperand(OpNo);
6324   EVT SrcVT = Src.getValueType();
6325   EVT DstVT = Node->getValueType(0);
6326 
6327   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6328     return false;
6329 
6330   // Only expand vector types if we have the appropriate vector bit operations.
6331   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6332                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6333                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6334                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6335                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6336     return false;
6337 
6338   SDLoc dl(SDValue(Node, 0));
6339   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6340 
6341   // Implementation of unsigned i64 to f64 following the algorithm in
6342   // __floatundidf in compiler_rt. This implementation has the advantage
6343   // of performing rounding correctly, both in the default rounding mode
6344   // and in all alternate rounding modes.
6345   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6346   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6347       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6348   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6349   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6350   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6351 
6352   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6353   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6354   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6355   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6356   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6357   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6358   if (Node->isStrictFPOpcode()) {
6359     SDValue HiSub =
6360         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6361                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6362     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6363                          {HiSub.getValue(1), LoFlt, HiSub});
6364     Chain = Result.getValue(1);
6365   } else {
6366     SDValue HiSub =
6367         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6368     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6369   }
6370   return true;
6371 }
6372 
6373 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6374                                               SelectionDAG &DAG) const {
6375   SDLoc dl(Node);
6376   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6377     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6378   EVT VT = Node->getValueType(0);
6379   if (isOperationLegalOrCustom(NewOp, VT)) {
6380     SDValue Quiet0 = Node->getOperand(0);
6381     SDValue Quiet1 = Node->getOperand(1);
6382 
6383     if (!Node->getFlags().hasNoNaNs()) {
6384       // Insert canonicalizes if it's possible we need to quiet to get correct
6385       // sNaN behavior.
6386       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6387         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6388                              Node->getFlags());
6389       }
6390       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6391         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6392                              Node->getFlags());
6393       }
6394     }
6395 
6396     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6397   }
6398 
6399   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6400   // instead if there are no NaNs.
6401   if (Node->getFlags().hasNoNaNs()) {
6402     unsigned IEEE2018Op =
6403         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6404     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6405       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6406                          Node->getOperand(1), Node->getFlags());
6407     }
6408   }
6409 
6410   // If none of the above worked, but there are no NaNs, then expand to
6411   // a compare/select sequence.  This is required for correctness since
6412   // InstCombine might have canonicalized a fcmp+select sequence to a
6413   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6414   // expansion to libcall, we might introduce a link-time dependency
6415   // on libm into a file that originally did not have one.
6416   if (Node->getFlags().hasNoNaNs()) {
6417     ISD::CondCode Pred =
6418         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6419     SDValue Op1 = Node->getOperand(0);
6420     SDValue Op2 = Node->getOperand(1);
6421     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6422     // Copy FMF flags, but always set the no-signed-zeros flag
6423     // as this is implied by the FMINNUM/FMAXNUM semantics.
6424     SDNodeFlags Flags = Node->getFlags();
6425     Flags.setNoSignedZeros(true);
6426     SelCC->setFlags(Flags);
6427     return SelCC;
6428   }
6429 
6430   return SDValue();
6431 }
6432 
6433 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6434                                  SelectionDAG &DAG) const {
6435   SDLoc dl(Node);
6436   EVT VT = Node->getValueType(0);
6437   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6438   SDValue Op = Node->getOperand(0);
6439   unsigned Len = VT.getScalarSizeInBits();
6440   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6441 
6442   // TODO: Add support for irregular type lengths.
6443   if (!(Len <= 128 && Len % 8 == 0))
6444     return false;
6445 
6446   // Only expand vector types if we have the appropriate vector bit operations.
6447   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6448                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6449                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6450                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6451                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6452     return false;
6453 
6454   // This is the "best" algorithm from
6455   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6456   SDValue Mask55 =
6457       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6458   SDValue Mask33 =
6459       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6460   SDValue Mask0F =
6461       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6462   SDValue Mask01 =
6463       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6464 
6465   // v = v - ((v >> 1) & 0x55555555...)
6466   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6467                    DAG.getNode(ISD::AND, dl, VT,
6468                                DAG.getNode(ISD::SRL, dl, VT, Op,
6469                                            DAG.getConstant(1, dl, ShVT)),
6470                                Mask55));
6471   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6472   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6473                    DAG.getNode(ISD::AND, dl, VT,
6474                                DAG.getNode(ISD::SRL, dl, VT, Op,
6475                                            DAG.getConstant(2, dl, ShVT)),
6476                                Mask33));
6477   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6478   Op = DAG.getNode(ISD::AND, dl, VT,
6479                    DAG.getNode(ISD::ADD, dl, VT, Op,
6480                                DAG.getNode(ISD::SRL, dl, VT, Op,
6481                                            DAG.getConstant(4, dl, ShVT))),
6482                    Mask0F);
6483   // v = (v * 0x01010101...) >> (Len - 8)
6484   if (Len > 8)
6485     Op =
6486         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6487                     DAG.getConstant(Len - 8, dl, ShVT));
6488 
6489   Result = Op;
6490   return true;
6491 }
6492 
6493 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6494                                 SelectionDAG &DAG) const {
6495   SDLoc dl(Node);
6496   EVT VT = Node->getValueType(0);
6497   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6498   SDValue Op = Node->getOperand(0);
6499   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6500 
6501   // If the non-ZERO_UNDEF version is supported we can use that instead.
6502   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6503       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6504     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6505     return true;
6506   }
6507 
6508   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6509   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6510     EVT SetCCVT =
6511         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6512     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6513     SDValue Zero = DAG.getConstant(0, dl, VT);
6514     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6515     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6516                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6517     return true;
6518   }
6519 
6520   // Only expand vector types if we have the appropriate vector bit operations.
6521   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6522                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6523                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6524                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6525     return false;
6526 
6527   // for now, we do this:
6528   // x = x | (x >> 1);
6529   // x = x | (x >> 2);
6530   // ...
6531   // x = x | (x >>16);
6532   // x = x | (x >>32); // for 64-bit input
6533   // return popcount(~x);
6534   //
6535   // Ref: "Hacker's Delight" by Henry Warren
6536   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6537     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6538     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6539                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6540   }
6541   Op = DAG.getNOT(dl, Op, VT);
6542   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6543   return true;
6544 }
6545 
6546 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6547                                 SelectionDAG &DAG) const {
6548   SDLoc dl(Node);
6549   EVT VT = Node->getValueType(0);
6550   SDValue Op = Node->getOperand(0);
6551   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6552 
6553   // If the non-ZERO_UNDEF version is supported we can use that instead.
6554   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6555       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6556     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6557     return true;
6558   }
6559 
6560   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6561   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6562     EVT SetCCVT =
6563         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6564     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6565     SDValue Zero = DAG.getConstant(0, dl, VT);
6566     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6567     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6568                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6569     return true;
6570   }
6571 
6572   // Only expand vector types if we have the appropriate vector bit operations.
6573   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6574                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6575                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6576                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6577                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6578                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6579     return false;
6580 
6581   // for now, we use: { return popcount(~x & (x - 1)); }
6582   // unless the target has ctlz but not ctpop, in which case we use:
6583   // { return 32 - nlz(~x & (x-1)); }
6584   // Ref: "Hacker's Delight" by Henry Warren
6585   SDValue Tmp = DAG.getNode(
6586       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6587       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6588 
6589   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6590   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6591     Result =
6592         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6593                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6594     return true;
6595   }
6596 
6597   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6598   return true;
6599 }
6600 
6601 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6602                                SelectionDAG &DAG) const {
6603   SDLoc dl(N);
6604   EVT VT = N->getValueType(0);
6605   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6606   SDValue Op = N->getOperand(0);
6607 
6608   // Only expand vector types if we have the appropriate vector operations.
6609   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6610                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6611                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6612     return false;
6613 
6614   SDValue Shift =
6615       DAG.getNode(ISD::SRA, dl, VT, Op,
6616                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6617   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6618   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6619   return true;
6620 }
6621 
6622 std::pair<SDValue, SDValue>
6623 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6624                                     SelectionDAG &DAG) const {
6625   SDLoc SL(LD);
6626   SDValue Chain = LD->getChain();
6627   SDValue BasePTR = LD->getBasePtr();
6628   EVT SrcVT = LD->getMemoryVT();
6629   EVT DstVT = LD->getValueType(0);
6630   ISD::LoadExtType ExtType = LD->getExtensionType();
6631 
6632   unsigned NumElem = SrcVT.getVectorNumElements();
6633 
6634   EVT SrcEltVT = SrcVT.getScalarType();
6635   EVT DstEltVT = DstVT.getScalarType();
6636 
6637   // A vector must always be stored in memory as-is, i.e. without any padding
6638   // between the elements, since various code depend on it, e.g. in the
6639   // handling of a bitcast of a vector type to int, which may be done with a
6640   // vector store followed by an integer load. A vector that does not have
6641   // elements that are byte-sized must therefore be stored as an integer
6642   // built out of the extracted vector elements.
6643   if (!SrcEltVT.isByteSized()) {
6644     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6645     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6646 
6647     unsigned NumSrcBits = SrcVT.getSizeInBits();
6648     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6649 
6650     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6651     SDValue SrcEltBitMask = DAG.getConstant(
6652         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6653 
6654     // Load the whole vector and avoid masking off the top bits as it makes
6655     // the codegen worse.
6656     SDValue Load =
6657         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6658                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6659                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6660 
6661     SmallVector<SDValue, 8> Vals;
6662     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6663       unsigned ShiftIntoIdx =
6664           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6665       SDValue ShiftAmount =
6666           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6667                                      LoadVT, SL, /*LegalTypes=*/false);
6668       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6669       SDValue Elt =
6670           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6671       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6672 
6673       if (ExtType != ISD::NON_EXTLOAD) {
6674         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6675         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6676       }
6677 
6678       Vals.push_back(Scalar);
6679     }
6680 
6681     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6682     return std::make_pair(Value, Load.getValue(1));
6683   }
6684 
6685   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6686   assert(SrcEltVT.isByteSized());
6687 
6688   SmallVector<SDValue, 8> Vals;
6689   SmallVector<SDValue, 8> LoadChains;
6690 
6691   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6692     SDValue ScalarLoad =
6693         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6694                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6695                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6696                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6697 
6698     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6699 
6700     Vals.push_back(ScalarLoad.getValue(0));
6701     LoadChains.push_back(ScalarLoad.getValue(1));
6702   }
6703 
6704   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6705   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6706 
6707   return std::make_pair(Value, NewChain);
6708 }
6709 
6710 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6711                                              SelectionDAG &DAG) const {
6712   SDLoc SL(ST);
6713 
6714   SDValue Chain = ST->getChain();
6715   SDValue BasePtr = ST->getBasePtr();
6716   SDValue Value = ST->getValue();
6717   EVT StVT = ST->getMemoryVT();
6718 
6719   // The type of the data we want to save
6720   EVT RegVT = Value.getValueType();
6721   EVT RegSclVT = RegVT.getScalarType();
6722 
6723   // The type of data as saved in memory.
6724   EVT MemSclVT = StVT.getScalarType();
6725 
6726   unsigned NumElem = StVT.getVectorNumElements();
6727 
6728   // A vector must always be stored in memory as-is, i.e. without any padding
6729   // between the elements, since various code depend on it, e.g. in the
6730   // handling of a bitcast of a vector type to int, which may be done with a
6731   // vector store followed by an integer load. A vector that does not have
6732   // elements that are byte-sized must therefore be stored as an integer
6733   // built out of the extracted vector elements.
6734   if (!MemSclVT.isByteSized()) {
6735     unsigned NumBits = StVT.getSizeInBits();
6736     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6737 
6738     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6739 
6740     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6741       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6742                                 DAG.getVectorIdxConstant(Idx, SL));
6743       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6744       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6745       unsigned ShiftIntoIdx =
6746           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6747       SDValue ShiftAmount =
6748           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6749       SDValue ShiftedElt =
6750           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6751       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6752     }
6753 
6754     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6755                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6756                         ST->getAAInfo());
6757   }
6758 
6759   // Store Stride in bytes
6760   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6761   assert(Stride && "Zero stride!");
6762   // Extract each of the elements from the original vector and save them into
6763   // memory individually.
6764   SmallVector<SDValue, 8> Stores;
6765   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6766     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6767                               DAG.getVectorIdxConstant(Idx, SL));
6768 
6769     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6770 
6771     // This scalar TruncStore may be illegal, but we legalize it later.
6772     SDValue Store = DAG.getTruncStore(
6773         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6774         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6775         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6776 
6777     Stores.push_back(Store);
6778   }
6779 
6780   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6781 }
6782 
6783 std::pair<SDValue, SDValue>
6784 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6785   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6786          "unaligned indexed loads not implemented!");
6787   SDValue Chain = LD->getChain();
6788   SDValue Ptr = LD->getBasePtr();
6789   EVT VT = LD->getValueType(0);
6790   EVT LoadedVT = LD->getMemoryVT();
6791   SDLoc dl(LD);
6792   auto &MF = DAG.getMachineFunction();
6793 
6794   if (VT.isFloatingPoint() || VT.isVector()) {
6795     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6796     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6797       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6798           LoadedVT.isVector()) {
6799         // Scalarize the load and let the individual components be handled.
6800         return scalarizeVectorLoad(LD, DAG);
6801       }
6802 
6803       // Expand to a (misaligned) integer load of the same size,
6804       // then bitconvert to floating point or vector.
6805       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6806                                     LD->getMemOperand());
6807       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6808       if (LoadedVT != VT)
6809         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6810                              ISD::ANY_EXTEND, dl, VT, Result);
6811 
6812       return std::make_pair(Result, newLoad.getValue(1));
6813     }
6814 
6815     // Copy the value to a (aligned) stack slot using (unaligned) integer
6816     // loads and stores, then do a (aligned) load from the stack slot.
6817     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6818     unsigned LoadedBytes = LoadedVT.getStoreSize();
6819     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6820     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6821 
6822     // Make sure the stack slot is also aligned for the register type.
6823     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6824     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6825     SmallVector<SDValue, 8> Stores;
6826     SDValue StackPtr = StackBase;
6827     unsigned Offset = 0;
6828 
6829     EVT PtrVT = Ptr.getValueType();
6830     EVT StackPtrVT = StackPtr.getValueType();
6831 
6832     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6833     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6834 
6835     // Do all but one copies using the full register width.
6836     for (unsigned i = 1; i < NumRegs; i++) {
6837       // Load one integer register's worth from the original location.
6838       SDValue Load = DAG.getLoad(
6839           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6840           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6841           LD->getAAInfo());
6842       // Follow the load with a store to the stack slot.  Remember the store.
6843       Stores.push_back(DAG.getStore(
6844           Load.getValue(1), dl, Load, StackPtr,
6845           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6846       // Increment the pointers.
6847       Offset += RegBytes;
6848 
6849       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6850       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6851     }
6852 
6853     // The last copy may be partial.  Do an extending load.
6854     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6855                                   8 * (LoadedBytes - Offset));
6856     SDValue Load =
6857         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6858                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6859                        MinAlign(LD->getAlignment(), Offset),
6860                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6861     // Follow the load with a store to the stack slot.  Remember the store.
6862     // On big-endian machines this requires a truncating store to ensure
6863     // that the bits end up in the right place.
6864     Stores.push_back(DAG.getTruncStore(
6865         Load.getValue(1), dl, Load, StackPtr,
6866         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6867 
6868     // The order of the stores doesn't matter - say it with a TokenFactor.
6869     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6870 
6871     // Finally, perform the original load only redirected to the stack slot.
6872     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6873                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6874                           LoadedVT);
6875 
6876     // Callers expect a MERGE_VALUES node.
6877     return std::make_pair(Load, TF);
6878   }
6879 
6880   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6881          "Unaligned load of unsupported type.");
6882 
6883   // Compute the new VT that is half the size of the old one.  This is an
6884   // integer MVT.
6885   unsigned NumBits = LoadedVT.getSizeInBits();
6886   EVT NewLoadedVT;
6887   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6888   NumBits >>= 1;
6889 
6890   unsigned Alignment = LD->getAlignment();
6891   unsigned IncrementSize = NumBits / 8;
6892   ISD::LoadExtType HiExtType = LD->getExtensionType();
6893 
6894   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6895   if (HiExtType == ISD::NON_EXTLOAD)
6896     HiExtType = ISD::ZEXTLOAD;
6897 
6898   // Load the value in two parts
6899   SDValue Lo, Hi;
6900   if (DAG.getDataLayout().isLittleEndian()) {
6901     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6902                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6903                         LD->getAAInfo());
6904 
6905     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6906     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6907                         LD->getPointerInfo().getWithOffset(IncrementSize),
6908                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6909                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6910   } else {
6911     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6912                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6913                         LD->getAAInfo());
6914 
6915     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6916     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6917                         LD->getPointerInfo().getWithOffset(IncrementSize),
6918                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6919                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6920   }
6921 
6922   // aggregate the two parts
6923   SDValue ShiftAmount =
6924       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6925                                                     DAG.getDataLayout()));
6926   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6927   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6928 
6929   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6930                              Hi.getValue(1));
6931 
6932   return std::make_pair(Result, TF);
6933 }
6934 
6935 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6936                                              SelectionDAG &DAG) const {
6937   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6938          "unaligned indexed stores not implemented!");
6939   SDValue Chain = ST->getChain();
6940   SDValue Ptr = ST->getBasePtr();
6941   SDValue Val = ST->getValue();
6942   EVT VT = Val.getValueType();
6943   int Alignment = ST->getAlignment();
6944   auto &MF = DAG.getMachineFunction();
6945   EVT StoreMemVT = ST->getMemoryVT();
6946 
6947   SDLoc dl(ST);
6948   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6949     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6950     if (isTypeLegal(intVT)) {
6951       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6952           StoreMemVT.isVector()) {
6953         // Scalarize the store and let the individual components be handled.
6954         SDValue Result = scalarizeVectorStore(ST, DAG);
6955         return Result;
6956       }
6957       // Expand to a bitconvert of the value to the integer type of the
6958       // same size, then a (misaligned) int store.
6959       // FIXME: Does not handle truncating floating point stores!
6960       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6961       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6962                             Alignment, ST->getMemOperand()->getFlags());
6963       return Result;
6964     }
6965     // Do a (aligned) store to a stack slot, then copy from the stack slot
6966     // to the final destination using (unaligned) integer loads and stores.
6967     MVT RegVT = getRegisterType(
6968         *DAG.getContext(),
6969         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6970     EVT PtrVT = Ptr.getValueType();
6971     unsigned StoredBytes = StoreMemVT.getStoreSize();
6972     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6973     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6974 
6975     // Make sure the stack slot is also aligned for the register type.
6976     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6977     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6978 
6979     // Perform the original store, only redirected to the stack slot.
6980     SDValue Store = DAG.getTruncStore(
6981         Chain, dl, Val, StackPtr,
6982         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6983 
6984     EVT StackPtrVT = StackPtr.getValueType();
6985 
6986     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6987     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6988     SmallVector<SDValue, 8> Stores;
6989     unsigned Offset = 0;
6990 
6991     // Do all but one copies using the full register width.
6992     for (unsigned i = 1; i < NumRegs; i++) {
6993       // Load one integer register's worth from the stack slot.
6994       SDValue Load = DAG.getLoad(
6995           RegVT, dl, Store, StackPtr,
6996           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6997       // Store it to the final location.  Remember the store.
6998       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6999                                     ST->getPointerInfo().getWithOffset(Offset),
7000                                     MinAlign(ST->getAlignment(), Offset),
7001                                     ST->getMemOperand()->getFlags()));
7002       // Increment the pointers.
7003       Offset += RegBytes;
7004       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7005       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7006     }
7007 
7008     // The last store may be partial.  Do a truncating store.  On big-endian
7009     // machines this requires an extending load from the stack slot to ensure
7010     // that the bits are in the right place.
7011     EVT LoadMemVT =
7012         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7013 
7014     // Load from the stack slot.
7015     SDValue Load = DAG.getExtLoad(
7016         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7017         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7018 
7019     Stores.push_back(
7020         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7021                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7022                           MinAlign(ST->getAlignment(), Offset),
7023                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7024     // The order of the stores doesn't matter - say it with a TokenFactor.
7025     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7026     return Result;
7027   }
7028 
7029   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7030          "Unaligned store of unknown type.");
7031   // Get the half-size VT
7032   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7033   int NumBits = NewStoredVT.getSizeInBits();
7034   int IncrementSize = NumBits / 8;
7035 
7036   // Divide the stored value in two parts.
7037   SDValue ShiftAmount = DAG.getConstant(
7038       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7039   SDValue Lo = Val;
7040   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7041 
7042   // Store the two parts
7043   SDValue Store1, Store2;
7044   Store1 = DAG.getTruncStore(Chain, dl,
7045                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7046                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7047                              ST->getMemOperand()->getFlags());
7048 
7049   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
7050   Alignment = MinAlign(Alignment, IncrementSize);
7051   Store2 = DAG.getTruncStore(
7052       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7053       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7054       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7055 
7056   SDValue Result =
7057       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7058   return Result;
7059 }
7060 
7061 SDValue
7062 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7063                                        const SDLoc &DL, EVT DataVT,
7064                                        SelectionDAG &DAG,
7065                                        bool IsCompressedMemory) const {
7066   SDValue Increment;
7067   EVT AddrVT = Addr.getValueType();
7068   EVT MaskVT = Mask.getValueType();
7069   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7070          "Incompatible types of Data and Mask");
7071   if (IsCompressedMemory) {
7072     // Incrementing the pointer according to number of '1's in the mask.
7073     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7074     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7075     if (MaskIntVT.getSizeInBits() < 32) {
7076       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7077       MaskIntVT = MVT::i32;
7078     }
7079 
7080     // Count '1's with POPCNT.
7081     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7082     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7083     // Scale is an element size in bytes.
7084     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7085                                     AddrVT);
7086     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7087   } else
7088     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7089 
7090   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7091 }
7092 
7093 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7094                                        SDValue Idx,
7095                                        EVT VecVT,
7096                                        const SDLoc &dl) {
7097   if (isa<ConstantSDNode>(Idx))
7098     return Idx;
7099 
7100   EVT IdxVT = Idx.getValueType();
7101   unsigned NElts = VecVT.getVectorNumElements();
7102   if (isPowerOf2_32(NElts)) {
7103     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7104                                      Log2_32(NElts));
7105     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7106                        DAG.getConstant(Imm, dl, IdxVT));
7107   }
7108 
7109   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7110                      DAG.getConstant(NElts - 1, dl, IdxVT));
7111 }
7112 
7113 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7114                                                 SDValue VecPtr, EVT VecVT,
7115                                                 SDValue Index) const {
7116   SDLoc dl(Index);
7117   // Make sure the index type is big enough to compute in.
7118   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7119 
7120   EVT EltVT = VecVT.getVectorElementType();
7121 
7122   // Calculate the element offset and add it to the pointer.
7123   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7124   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7125          "Converting bits to bytes lost precision");
7126 
7127   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7128 
7129   EVT IdxVT = Index.getValueType();
7130 
7131   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7132                       DAG.getConstant(EltSize, dl, IdxVT));
7133   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7134 }
7135 
7136 //===----------------------------------------------------------------------===//
7137 // Implementation of Emulated TLS Model
7138 //===----------------------------------------------------------------------===//
7139 
7140 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7141                                                 SelectionDAG &DAG) const {
7142   // Access to address of TLS varialbe xyz is lowered to a function call:
7143   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7144   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7145   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7146   SDLoc dl(GA);
7147 
7148   ArgListTy Args;
7149   ArgListEntry Entry;
7150   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7151   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7152   StringRef EmuTlsVarName(NameString);
7153   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7154   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7155   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7156   Entry.Ty = VoidPtrType;
7157   Args.push_back(Entry);
7158 
7159   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7160 
7161   TargetLowering::CallLoweringInfo CLI(DAG);
7162   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7163   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7164   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7165 
7166   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7167   // At last for X86 targets, maybe good for other targets too?
7168   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7169   MFI.setAdjustsStack(true); // Is this only for X86 target?
7170   MFI.setHasCalls(true);
7171 
7172   assert((GA->getOffset() == 0) &&
7173          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7174   return CallResult.first;
7175 }
7176 
7177 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7178                                                 SelectionDAG &DAG) const {
7179   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7180   if (!isCtlzFast())
7181     return SDValue();
7182   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7183   SDLoc dl(Op);
7184   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7185     if (C->isNullValue() && CC == ISD::SETEQ) {
7186       EVT VT = Op.getOperand(0).getValueType();
7187       SDValue Zext = Op.getOperand(0);
7188       if (VT.bitsLT(MVT::i32)) {
7189         VT = MVT::i32;
7190         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7191       }
7192       unsigned Log2b = Log2_32(VT.getSizeInBits());
7193       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7194       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7195                                 DAG.getConstant(Log2b, dl, MVT::i32));
7196       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7197     }
7198   }
7199   return SDValue();
7200 }
7201 
7202 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7203   unsigned Opcode = Node->getOpcode();
7204   SDValue LHS = Node->getOperand(0);
7205   SDValue RHS = Node->getOperand(1);
7206   EVT VT = LHS.getValueType();
7207   SDLoc dl(Node);
7208 
7209   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7210   assert(VT.isInteger() && "Expected operands to be integers");
7211 
7212   // usub.sat(a, b) -> umax(a, b) - b
7213   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7214     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7215     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7216   }
7217 
7218   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7219     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7220     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7221     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7222   }
7223 
7224   unsigned OverflowOp;
7225   switch (Opcode) {
7226   case ISD::SADDSAT:
7227     OverflowOp = ISD::SADDO;
7228     break;
7229   case ISD::UADDSAT:
7230     OverflowOp = ISD::UADDO;
7231     break;
7232   case ISD::SSUBSAT:
7233     OverflowOp = ISD::SSUBO;
7234     break;
7235   case ISD::USUBSAT:
7236     OverflowOp = ISD::USUBO;
7237     break;
7238   default:
7239     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7240                      "addition or subtraction node.");
7241   }
7242 
7243   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7244   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7245   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7246                                LHS, RHS);
7247   SDValue SumDiff = Result.getValue(0);
7248   SDValue Overflow = Result.getValue(1);
7249   SDValue Zero = DAG.getConstant(0, dl, VT);
7250   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7251 
7252   if (Opcode == ISD::UADDSAT) {
7253     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7254       // (LHS + RHS) | OverflowMask
7255       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7256       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7257     }
7258     // Overflow ? 0xffff.... : (LHS + RHS)
7259     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7260   } else if (Opcode == ISD::USUBSAT) {
7261     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7262       // (LHS - RHS) & ~OverflowMask
7263       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7264       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7265       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7266     }
7267     // Overflow ? 0 : (LHS - RHS)
7268     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7269   } else {
7270     // SatMax -> Overflow && SumDiff < 0
7271     // SatMin -> Overflow && SumDiff >= 0
7272     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7273     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7274     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7275     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7276     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7277     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7278     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7279   }
7280 }
7281 
7282 SDValue
7283 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7284   assert((Node->getOpcode() == ISD::SMULFIX ||
7285           Node->getOpcode() == ISD::UMULFIX ||
7286           Node->getOpcode() == ISD::SMULFIXSAT ||
7287           Node->getOpcode() == ISD::UMULFIXSAT) &&
7288          "Expected a fixed point multiplication opcode");
7289 
7290   SDLoc dl(Node);
7291   SDValue LHS = Node->getOperand(0);
7292   SDValue RHS = Node->getOperand(1);
7293   EVT VT = LHS.getValueType();
7294   unsigned Scale = Node->getConstantOperandVal(2);
7295   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7296                      Node->getOpcode() == ISD::UMULFIXSAT);
7297   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7298                  Node->getOpcode() == ISD::SMULFIXSAT);
7299   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7300   unsigned VTSize = VT.getScalarSizeInBits();
7301 
7302   if (!Scale) {
7303     // [us]mul.fix(a, b, 0) -> mul(a, b)
7304     if (!Saturating) {
7305       if (isOperationLegalOrCustom(ISD::MUL, VT))
7306         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7307     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7308       SDValue Result =
7309           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7310       SDValue Product = Result.getValue(0);
7311       SDValue Overflow = Result.getValue(1);
7312       SDValue Zero = DAG.getConstant(0, dl, VT);
7313 
7314       APInt MinVal = APInt::getSignedMinValue(VTSize);
7315       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7316       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7317       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7318       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7319       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7320       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7321     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7322       SDValue Result =
7323           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7324       SDValue Product = Result.getValue(0);
7325       SDValue Overflow = Result.getValue(1);
7326 
7327       APInt MaxVal = APInt::getMaxValue(VTSize);
7328       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7329       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7330     }
7331   }
7332 
7333   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7334          "Expected scale to be less than the number of bits if signed or at "
7335          "most the number of bits if unsigned.");
7336   assert(LHS.getValueType() == RHS.getValueType() &&
7337          "Expected both operands to be the same type");
7338 
7339   // Get the upper and lower bits of the result.
7340   SDValue Lo, Hi;
7341   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7342   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7343   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7344     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7345     Lo = Result.getValue(0);
7346     Hi = Result.getValue(1);
7347   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7348     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7349     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7350   } else if (VT.isVector()) {
7351     return SDValue();
7352   } else {
7353     report_fatal_error("Unable to expand fixed point multiplication.");
7354   }
7355 
7356   if (Scale == VTSize)
7357     // Result is just the top half since we'd be shifting by the width of the
7358     // operand. Overflow impossible so this works for both UMULFIX and
7359     // UMULFIXSAT.
7360     return Hi;
7361 
7362   // The result will need to be shifted right by the scale since both operands
7363   // are scaled. The result is given to us in 2 halves, so we only want part of
7364   // both in the result.
7365   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7366   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7367                                DAG.getConstant(Scale, dl, ShiftTy));
7368   if (!Saturating)
7369     return Result;
7370 
7371   if (!Signed) {
7372     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7373     // widened multiplication) aren't all zeroes.
7374 
7375     // Saturate to max if ((Hi >> Scale) != 0),
7376     // which is the same as if (Hi > ((1 << Scale) - 1))
7377     APInt MaxVal = APInt::getMaxValue(VTSize);
7378     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7379                                       dl, VT);
7380     Result = DAG.getSelectCC(dl, Hi, LowMask,
7381                              DAG.getConstant(MaxVal, dl, VT), Result,
7382                              ISD::SETUGT);
7383 
7384     return Result;
7385   }
7386 
7387   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7388   // widened multiplication) aren't all ones or all zeroes.
7389 
7390   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7391   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7392 
7393   if (Scale == 0) {
7394     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7395                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7396     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7397     // Saturated to SatMin if wide product is negative, and SatMax if wide
7398     // product is positive ...
7399     SDValue Zero = DAG.getConstant(0, dl, VT);
7400     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7401                                                ISD::SETLT);
7402     // ... but only if we overflowed.
7403     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7404   }
7405 
7406   //  We handled Scale==0 above so all the bits to examine is in Hi.
7407 
7408   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7409   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7410   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7411                                     dl, VT);
7412   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7413   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7414   // which is the same as if (HI < (-1 << (Scale - 1))
7415   SDValue HighMask =
7416       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7417                       dl, VT);
7418   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7419   return Result;
7420 }
7421 
7422 SDValue
7423 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7424                                     SDValue LHS, SDValue RHS,
7425                                     unsigned Scale, SelectionDAG &DAG) const {
7426   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7427           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7428          "Expected a fixed point division opcode");
7429 
7430   EVT VT = LHS.getValueType();
7431   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7432   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7433   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7434 
7435   // If there is enough room in the type to upscale the LHS or downscale the
7436   // RHS before the division, we can perform it in this type without having to
7437   // resize. For signed operations, the LHS headroom is the number of
7438   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7439   // The headroom for the RHS is the number of trailing zeroes.
7440   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7441                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7442   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7443 
7444   // For signed saturating operations, we need to be able to detect true integer
7445   // division overflow; that is, when you have MIN / -EPS. However, this
7446   // is undefined behavior and if we emit divisions that could take such
7447   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7448   // example).
7449   // Avoid this by requiring an extra bit so that we never get this case.
7450   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7451   // signed saturating division, we need to emit a whopping 32-bit division.
7452   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7453     return SDValue();
7454 
7455   unsigned LHSShift = std::min(LHSLead, Scale);
7456   unsigned RHSShift = Scale - LHSShift;
7457 
7458   // At this point, we know that if we shift the LHS up by LHSShift and the
7459   // RHS down by RHSShift, we can emit a regular division with a final scaling
7460   // factor of Scale.
7461 
7462   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7463   if (LHSShift)
7464     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7465                       DAG.getConstant(LHSShift, dl, ShiftTy));
7466   if (RHSShift)
7467     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7468                       DAG.getConstant(RHSShift, dl, ShiftTy));
7469 
7470   SDValue Quot;
7471   if (Signed) {
7472     // For signed operations, if the resulting quotient is negative and the
7473     // remainder is nonzero, subtract 1 from the quotient to round towards
7474     // negative infinity.
7475     SDValue Rem;
7476     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7477     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7478     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7479     if (isTypeLegal(VT) &&
7480         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7481       Quot = DAG.getNode(ISD::SDIVREM, dl,
7482                          DAG.getVTList(VT, VT),
7483                          LHS, RHS);
7484       Rem = Quot.getValue(1);
7485       Quot = Quot.getValue(0);
7486     } else {
7487       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7488                          LHS, RHS);
7489       Rem = DAG.getNode(ISD::SREM, dl, VT,
7490                         LHS, RHS);
7491     }
7492     SDValue Zero = DAG.getConstant(0, dl, VT);
7493     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7494     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7495     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7496     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7497     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7498                                DAG.getConstant(1, dl, VT));
7499     Quot = DAG.getSelect(dl, VT,
7500                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7501                          Sub1, Quot);
7502   } else
7503     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7504                        LHS, RHS);
7505 
7506   return Quot;
7507 }
7508 
7509 void TargetLowering::expandUADDSUBO(
7510     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7511   SDLoc dl(Node);
7512   SDValue LHS = Node->getOperand(0);
7513   SDValue RHS = Node->getOperand(1);
7514   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7515 
7516   // If ADD/SUBCARRY is legal, use that instead.
7517   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7518   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7519     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7520     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7521                                     { LHS, RHS, CarryIn });
7522     Result = SDValue(NodeCarry.getNode(), 0);
7523     Overflow = SDValue(NodeCarry.getNode(), 1);
7524     return;
7525   }
7526 
7527   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7528                             LHS.getValueType(), LHS, RHS);
7529 
7530   EVT ResultType = Node->getValueType(1);
7531   EVT SetCCType = getSetCCResultType(
7532       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7533   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7534   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7535   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7536 }
7537 
7538 void TargetLowering::expandSADDSUBO(
7539     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7540   SDLoc dl(Node);
7541   SDValue LHS = Node->getOperand(0);
7542   SDValue RHS = Node->getOperand(1);
7543   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7544 
7545   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7546                             LHS.getValueType(), LHS, RHS);
7547 
7548   EVT ResultType = Node->getValueType(1);
7549   EVT OType = getSetCCResultType(
7550       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7551 
7552   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7553   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7554   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7555     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7556     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7557     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7558     return;
7559   }
7560 
7561   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7562 
7563   // For an addition, the result should be less than one of the operands (LHS)
7564   // if and only if the other operand (RHS) is negative, otherwise there will
7565   // be overflow.
7566   // For a subtraction, the result should be less than one of the operands
7567   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7568   // otherwise there will be overflow.
7569   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7570   SDValue ConditionRHS =
7571       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7572 
7573   Overflow = DAG.getBoolExtOrTrunc(
7574       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7575       ResultType, ResultType);
7576 }
7577 
7578 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7579                                 SDValue &Overflow, SelectionDAG &DAG) const {
7580   SDLoc dl(Node);
7581   EVT VT = Node->getValueType(0);
7582   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7583   SDValue LHS = Node->getOperand(0);
7584   SDValue RHS = Node->getOperand(1);
7585   bool isSigned = Node->getOpcode() == ISD::SMULO;
7586 
7587   // For power-of-two multiplications we can use a simpler shift expansion.
7588   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7589     const APInt &C = RHSC->getAPIntValue();
7590     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7591     if (C.isPowerOf2()) {
7592       // smulo(x, signed_min) is same as umulo(x, signed_min).
7593       bool UseArithShift = isSigned && !C.isMinSignedValue();
7594       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7595       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7596       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7597       Overflow = DAG.getSetCC(dl, SetCCVT,
7598           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7599                       dl, VT, Result, ShiftAmt),
7600           LHS, ISD::SETNE);
7601       return true;
7602     }
7603   }
7604 
7605   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7606   if (VT.isVector())
7607     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7608                               VT.getVectorNumElements());
7609 
7610   SDValue BottomHalf;
7611   SDValue TopHalf;
7612   static const unsigned Ops[2][3] =
7613       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7614         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7615   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7616     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7617     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7618   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7619     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7620                              RHS);
7621     TopHalf = BottomHalf.getValue(1);
7622   } else if (isTypeLegal(WideVT)) {
7623     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7624     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7625     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7626     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7627     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7628         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7629     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7630                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7631   } else {
7632     if (VT.isVector())
7633       return false;
7634 
7635     // We can fall back to a libcall with an illegal type for the MUL if we
7636     // have a libcall big enough.
7637     // Also, we can fall back to a division in some cases, but that's a big
7638     // performance hit in the general case.
7639     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7640     if (WideVT == MVT::i16)
7641       LC = RTLIB::MUL_I16;
7642     else if (WideVT == MVT::i32)
7643       LC = RTLIB::MUL_I32;
7644     else if (WideVT == MVT::i64)
7645       LC = RTLIB::MUL_I64;
7646     else if (WideVT == MVT::i128)
7647       LC = RTLIB::MUL_I128;
7648     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7649 
7650     SDValue HiLHS;
7651     SDValue HiRHS;
7652     if (isSigned) {
7653       // The high part is obtained by SRA'ing all but one of the bits of low
7654       // part.
7655       unsigned LoSize = VT.getSizeInBits();
7656       HiLHS =
7657           DAG.getNode(ISD::SRA, dl, VT, LHS,
7658                       DAG.getConstant(LoSize - 1, dl,
7659                                       getPointerTy(DAG.getDataLayout())));
7660       HiRHS =
7661           DAG.getNode(ISD::SRA, dl, VT, RHS,
7662                       DAG.getConstant(LoSize - 1, dl,
7663                                       getPointerTy(DAG.getDataLayout())));
7664     } else {
7665         HiLHS = DAG.getConstant(0, dl, VT);
7666         HiRHS = DAG.getConstant(0, dl, VT);
7667     }
7668 
7669     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7670     // pre-lowered to the correct types. This all depends upon WideVT not
7671     // being a legal type for the architecture and thus has to be split to
7672     // two arguments.
7673     SDValue Ret;
7674     TargetLowering::MakeLibCallOptions CallOptions;
7675     CallOptions.setSExt(isSigned);
7676     CallOptions.setIsPostTypeLegalization(true);
7677     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7678       // Halves of WideVT are packed into registers in different order
7679       // depending on platform endianness. This is usually handled by
7680       // the C calling convention, but we can't defer to it in
7681       // the legalizer.
7682       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7683       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7684     } else {
7685       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7686       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7687     }
7688     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7689            "Ret value is a collection of constituent nodes holding result.");
7690     if (DAG.getDataLayout().isLittleEndian()) {
7691       // Same as above.
7692       BottomHalf = Ret.getOperand(0);
7693       TopHalf = Ret.getOperand(1);
7694     } else {
7695       BottomHalf = Ret.getOperand(1);
7696       TopHalf = Ret.getOperand(0);
7697     }
7698   }
7699 
7700   Result = BottomHalf;
7701   if (isSigned) {
7702     SDValue ShiftAmt = DAG.getConstant(
7703         VT.getScalarSizeInBits() - 1, dl,
7704         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7705     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7706     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7707   } else {
7708     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7709                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7710   }
7711 
7712   // Truncate the result if SetCC returns a larger type than needed.
7713   EVT RType = Node->getValueType(1);
7714   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7715     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7716 
7717   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7718          "Unexpected result type for S/UMULO legalization");
7719   return true;
7720 }
7721 
7722 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7723   SDLoc dl(Node);
7724   bool NoNaN = Node->getFlags().hasNoNaNs();
7725   unsigned BaseOpcode = 0;
7726   switch (Node->getOpcode()) {
7727   default: llvm_unreachable("Expected VECREDUCE opcode");
7728   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7729   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7730   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7731   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7732   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7733   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7734   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7735   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7736   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7737   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7738   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7739   case ISD::VECREDUCE_FMAX:
7740     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7741     break;
7742   case ISD::VECREDUCE_FMIN:
7743     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7744     break;
7745   }
7746 
7747   SDValue Op = Node->getOperand(0);
7748   EVT VT = Op.getValueType();
7749 
7750   // Try to use a shuffle reduction for power of two vectors.
7751   if (VT.isPow2VectorType()) {
7752     while (VT.getVectorNumElements() > 1) {
7753       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7754       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7755         break;
7756 
7757       SDValue Lo, Hi;
7758       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7759       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7760       VT = HalfVT;
7761     }
7762   }
7763 
7764   EVT EltVT = VT.getVectorElementType();
7765   unsigned NumElts = VT.getVectorNumElements();
7766 
7767   SmallVector<SDValue, 8> Ops;
7768   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7769 
7770   SDValue Res = Ops[0];
7771   for (unsigned i = 1; i < NumElts; i++)
7772     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7773 
7774   // Result type may be wider than element type.
7775   if (EltVT != Node->getValueType(0))
7776     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7777   return Res;
7778 }
7779