1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 // AND(INSERT_SUBVECTOR(C,X,I),M) -> INSERT_SUBVECTOR(AND(C,M),X,I) 1366 // iff 'C' is Undef/Constant and AND(X,M) == X (for DemandedBits). 1367 if (Op0.getOpcode() == ISD::INSERT_SUBVECTOR && 1368 (Op0.getOperand(0).isUndef() || 1369 ISD::isBuildVectorOfConstantSDNodes(Op0.getOperand(0).getNode())) && 1370 Op0->hasOneUse()) { 1371 unsigned NumSubElts = 1372 Op0.getOperand(1).getValueType().getVectorNumElements(); 1373 unsigned SubIdx = Op0.getConstantOperandVal(2); 1374 APInt DemandedSub = 1375 APInt::getBitsSet(NumElts, SubIdx, SubIdx + NumSubElts); 1376 KnownBits KnownSubMask = 1377 TLO.DAG.computeKnownBits(Op1, DemandedSub & DemandedElts, Depth + 1); 1378 if (DemandedBits.isSubsetOf(KnownSubMask.One)) { 1379 SDValue NewAnd = 1380 TLO.DAG.getNode(ISD::AND, dl, VT, Op0.getOperand(0), Op1); 1381 SDValue NewInsert = 1382 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VT, NewAnd, 1383 Op0.getOperand(1), Op0.getOperand(2)); 1384 return TLO.CombineTo(Op, NewInsert); 1385 } 1386 } 1387 1388 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1389 Depth + 1)) 1390 return true; 1391 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1392 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1393 Known2, TLO, Depth + 1)) 1394 return true; 1395 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1396 1397 // Attempt to avoid multi-use ops if we don't need anything from them. 1398 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1399 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1400 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1401 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1402 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1403 if (DemandedOp0 || DemandedOp1) { 1404 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1405 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1406 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1407 return TLO.CombineTo(Op, NewOp); 1408 } 1409 } 1410 1411 // If all of the demanded bits are known one on one side, return the other. 1412 // These bits cannot contribute to the result of the 'and'. 1413 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1414 return TLO.CombineTo(Op, Op0); 1415 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1416 return TLO.CombineTo(Op, Op1); 1417 // If all of the demanded bits in the inputs are known zeros, return zero. 1418 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1419 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1420 // If the RHS is a constant, see if we can simplify it. 1421 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1422 TLO)) 1423 return true; 1424 // If the operation can be done in a smaller type, do so. 1425 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1426 return true; 1427 1428 Known &= Known2; 1429 break; 1430 } 1431 case ISD::OR: { 1432 SDValue Op0 = Op.getOperand(0); 1433 SDValue Op1 = Op.getOperand(1); 1434 1435 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1436 Depth + 1)) 1437 return true; 1438 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1439 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1440 Known2, TLO, Depth + 1)) 1441 return true; 1442 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1443 1444 // Attempt to avoid multi-use ops if we don't need anything from them. 1445 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1446 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1447 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1448 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1449 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1450 if (DemandedOp0 || DemandedOp1) { 1451 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1452 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1453 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1454 return TLO.CombineTo(Op, NewOp); 1455 } 1456 } 1457 1458 // If all of the demanded bits are known zero on one side, return the other. 1459 // These bits cannot contribute to the result of the 'or'. 1460 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1461 return TLO.CombineTo(Op, Op0); 1462 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1463 return TLO.CombineTo(Op, Op1); 1464 // If the RHS is a constant, see if we can simplify it. 1465 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1466 return true; 1467 // If the operation can be done in a smaller type, do so. 1468 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1469 return true; 1470 1471 Known |= Known2; 1472 break; 1473 } 1474 case ISD::XOR: { 1475 SDValue Op0 = Op.getOperand(0); 1476 SDValue Op1 = Op.getOperand(1); 1477 1478 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1479 Depth + 1)) 1480 return true; 1481 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1482 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1483 Depth + 1)) 1484 return true; 1485 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1486 1487 // Attempt to avoid multi-use ops if we don't need anything from them. 1488 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1489 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1490 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1491 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1492 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1493 if (DemandedOp0 || DemandedOp1) { 1494 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1495 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1496 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1497 return TLO.CombineTo(Op, NewOp); 1498 } 1499 } 1500 1501 // If all of the demanded bits are known zero on one side, return the other. 1502 // These bits cannot contribute to the result of the 'xor'. 1503 if (DemandedBits.isSubsetOf(Known.Zero)) 1504 return TLO.CombineTo(Op, Op0); 1505 if (DemandedBits.isSubsetOf(Known2.Zero)) 1506 return TLO.CombineTo(Op, Op1); 1507 // If the operation can be done in a smaller type, do so. 1508 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1509 return true; 1510 1511 // If all of the unknown bits are known to be zero on one side or the other 1512 // turn this into an *inclusive* or. 1513 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1514 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1515 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1516 1517 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1518 if (C) { 1519 // If one side is a constant, and all of the set bits in the constant are 1520 // also known set on the other side, turn this into an AND, as we know 1521 // the bits will be cleared. 1522 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1523 // NB: it is okay if more bits are known than are requested 1524 if (C->getAPIntValue() == Known2.One) { 1525 SDValue ANDC = 1526 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1527 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1528 } 1529 1530 // If the RHS is a constant, see if we can change it. Don't alter a -1 1531 // constant because that's a 'not' op, and that is better for combining 1532 // and codegen. 1533 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1534 // We're flipping all demanded bits. Flip the undemanded bits too. 1535 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1536 return TLO.CombineTo(Op, New); 1537 } 1538 } 1539 1540 // If we can't turn this into a 'not', try to shrink the constant. 1541 if (!C || !C->isAllOnes()) 1542 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1543 return true; 1544 1545 Known ^= Known2; 1546 break; 1547 } 1548 case ISD::SELECT: 1549 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1550 Depth + 1)) 1551 return true; 1552 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1553 Depth + 1)) 1554 return true; 1555 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1556 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1557 1558 // If the operands are constants, see if we can simplify them. 1559 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1560 return true; 1561 1562 // Only known if known in both the LHS and RHS. 1563 Known = KnownBits::commonBits(Known, Known2); 1564 break; 1565 case ISD::VSELECT: 1566 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, DemandedElts, 1567 Known, TLO, Depth + 1)) 1568 return true; 1569 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedElts, 1570 Known2, TLO, Depth + 1)) 1571 return true; 1572 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1573 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1574 1575 // Only known if known in both the LHS and RHS. 1576 Known = KnownBits::commonBits(Known, Known2); 1577 break; 1578 case ISD::SELECT_CC: 1579 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1580 Depth + 1)) 1581 return true; 1582 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1583 Depth + 1)) 1584 return true; 1585 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1586 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1587 1588 // If the operands are constants, see if we can simplify them. 1589 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1590 return true; 1591 1592 // Only known if known in both the LHS and RHS. 1593 Known = KnownBits::commonBits(Known, Known2); 1594 break; 1595 case ISD::SETCC: { 1596 SDValue Op0 = Op.getOperand(0); 1597 SDValue Op1 = Op.getOperand(1); 1598 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1599 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1600 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1601 // -1, we may be able to bypass the setcc. 1602 if (DemandedBits.isSignMask() && 1603 Op0.getScalarValueSizeInBits() == BitWidth && 1604 getBooleanContents(Op0.getValueType()) == 1605 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1606 // If we're testing X < 0, then this compare isn't needed - just use X! 1607 // FIXME: We're limiting to integer types here, but this should also work 1608 // if we don't care about FP signed-zero. The use of SETLT with FP means 1609 // that we don't care about NaNs. 1610 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1611 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1612 return TLO.CombineTo(Op, Op0); 1613 1614 // TODO: Should we check for other forms of sign-bit comparisons? 1615 // Examples: X <= -1, X >= 0 1616 } 1617 if (getBooleanContents(Op0.getValueType()) == 1618 TargetLowering::ZeroOrOneBooleanContent && 1619 BitWidth > 1) 1620 Known.Zero.setBitsFrom(1); 1621 break; 1622 } 1623 case ISD::SHL: { 1624 SDValue Op0 = Op.getOperand(0); 1625 SDValue Op1 = Op.getOperand(1); 1626 EVT ShiftVT = Op1.getValueType(); 1627 1628 if (const APInt *SA = 1629 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1630 unsigned ShAmt = SA->getZExtValue(); 1631 if (ShAmt == 0) 1632 return TLO.CombineTo(Op, Op0); 1633 1634 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1635 // single shift. We can do this if the bottom bits (which are shifted 1636 // out) are never demanded. 1637 // TODO - support non-uniform vector amounts. 1638 if (Op0.getOpcode() == ISD::SRL) { 1639 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1640 if (const APInt *SA2 = 1641 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1642 unsigned C1 = SA2->getZExtValue(); 1643 unsigned Opc = ISD::SHL; 1644 int Diff = ShAmt - C1; 1645 if (Diff < 0) { 1646 Diff = -Diff; 1647 Opc = ISD::SRL; 1648 } 1649 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1650 return TLO.CombineTo( 1651 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1652 } 1653 } 1654 } 1655 1656 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1657 // are not demanded. This will likely allow the anyext to be folded away. 1658 // TODO - support non-uniform vector amounts. 1659 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1660 SDValue InnerOp = Op0.getOperand(0); 1661 EVT InnerVT = InnerOp.getValueType(); 1662 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1663 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1664 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1665 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1666 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1667 ShTy = InnerVT; 1668 SDValue NarrowShl = 1669 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1670 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1671 return TLO.CombineTo( 1672 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1673 } 1674 1675 // Repeat the SHL optimization above in cases where an extension 1676 // intervenes: (shl (anyext (shr x, c1)), c2) to 1677 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1678 // aren't demanded (as above) and that the shifted upper c1 bits of 1679 // x aren't demanded. 1680 // TODO - support non-uniform vector amounts. 1681 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1682 InnerOp.hasOneUse()) { 1683 if (const APInt *SA2 = 1684 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1685 unsigned InnerShAmt = SA2->getZExtValue(); 1686 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1687 DemandedBits.getActiveBits() <= 1688 (InnerBits - InnerShAmt + ShAmt) && 1689 DemandedBits.countTrailingZeros() >= ShAmt) { 1690 SDValue NewSA = 1691 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1692 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1693 InnerOp.getOperand(0)); 1694 return TLO.CombineTo( 1695 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1696 } 1697 } 1698 } 1699 } 1700 1701 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1702 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1703 Depth + 1)) 1704 return true; 1705 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1706 Known.Zero <<= ShAmt; 1707 Known.One <<= ShAmt; 1708 // low bits known zero. 1709 Known.Zero.setLowBits(ShAmt); 1710 1711 // Attempt to avoid multi-use ops if we don't need anything from them. 1712 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1713 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1714 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1715 if (DemandedOp0) { 1716 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1717 return TLO.CombineTo(Op, NewOp); 1718 } 1719 } 1720 1721 // Try shrinking the operation as long as the shift amount will still be 1722 // in range. 1723 if ((ShAmt < DemandedBits.getActiveBits()) && 1724 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1725 return true; 1726 } 1727 1728 // If we are only demanding sign bits then we can use the shift source 1729 // directly. 1730 if (const APInt *MaxSA = 1731 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1732 unsigned ShAmt = MaxSA->getZExtValue(); 1733 unsigned NumSignBits = 1734 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1735 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1736 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1737 return TLO.CombineTo(Op, Op0); 1738 } 1739 break; 1740 } 1741 case ISD::SRL: { 1742 SDValue Op0 = Op.getOperand(0); 1743 SDValue Op1 = Op.getOperand(1); 1744 EVT ShiftVT = Op1.getValueType(); 1745 1746 // Try to match AVG patterns. 1747 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1748 DemandedElts, Depth + 1)) 1749 return TLO.CombineTo(Op, AVG); 1750 1751 if (const APInt *SA = 1752 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1753 unsigned ShAmt = SA->getZExtValue(); 1754 if (ShAmt == 0) 1755 return TLO.CombineTo(Op, Op0); 1756 1757 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1758 // single shift. We can do this if the top bits (which are shifted out) 1759 // are never demanded. 1760 // TODO - support non-uniform vector amounts. 1761 if (Op0.getOpcode() == ISD::SHL) { 1762 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1763 if (const APInt *SA2 = 1764 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1765 unsigned C1 = SA2->getZExtValue(); 1766 unsigned Opc = ISD::SRL; 1767 int Diff = ShAmt - C1; 1768 if (Diff < 0) { 1769 Diff = -Diff; 1770 Opc = ISD::SHL; 1771 } 1772 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1773 return TLO.CombineTo( 1774 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1775 } 1776 } 1777 } 1778 1779 APInt InDemandedMask = (DemandedBits << ShAmt); 1780 1781 // If the shift is exact, then it does demand the low bits (and knows that 1782 // they are zero). 1783 if (Op->getFlags().hasExact()) 1784 InDemandedMask.setLowBits(ShAmt); 1785 1786 // Compute the new bits that are at the top now. 1787 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1788 Depth + 1)) 1789 return true; 1790 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1791 Known.Zero.lshrInPlace(ShAmt); 1792 Known.One.lshrInPlace(ShAmt); 1793 // High bits known zero. 1794 Known.Zero.setHighBits(ShAmt); 1795 } 1796 break; 1797 } 1798 case ISD::SRA: { 1799 SDValue Op0 = Op.getOperand(0); 1800 SDValue Op1 = Op.getOperand(1); 1801 EVT ShiftVT = Op1.getValueType(); 1802 1803 // If we only want bits that already match the signbit then we don't need 1804 // to shift. 1805 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1806 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1807 NumHiDemandedBits) 1808 return TLO.CombineTo(Op, Op0); 1809 1810 // If this is an arithmetic shift right and only the low-bit is set, we can 1811 // always convert this into a logical shr, even if the shift amount is 1812 // variable. The low bit of the shift cannot be an input sign bit unless 1813 // the shift amount is >= the size of the datatype, which is undefined. 1814 if (DemandedBits.isOne()) 1815 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1816 1817 // Try to match AVG patterns. 1818 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1819 DemandedElts, Depth + 1)) 1820 return TLO.CombineTo(Op, AVG); 1821 1822 if (const APInt *SA = 1823 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1824 unsigned ShAmt = SA->getZExtValue(); 1825 if (ShAmt == 0) 1826 return TLO.CombineTo(Op, Op0); 1827 1828 APInt InDemandedMask = (DemandedBits << ShAmt); 1829 1830 // If the shift is exact, then it does demand the low bits (and knows that 1831 // they are zero). 1832 if (Op->getFlags().hasExact()) 1833 InDemandedMask.setLowBits(ShAmt); 1834 1835 // If any of the demanded bits are produced by the sign extension, we also 1836 // demand the input sign bit. 1837 if (DemandedBits.countLeadingZeros() < ShAmt) 1838 InDemandedMask.setSignBit(); 1839 1840 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1841 Depth + 1)) 1842 return true; 1843 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1844 Known.Zero.lshrInPlace(ShAmt); 1845 Known.One.lshrInPlace(ShAmt); 1846 1847 // If the input sign bit is known to be zero, or if none of the top bits 1848 // are demanded, turn this into an unsigned shift right. 1849 if (Known.Zero[BitWidth - ShAmt - 1] || 1850 DemandedBits.countLeadingZeros() >= ShAmt) { 1851 SDNodeFlags Flags; 1852 Flags.setExact(Op->getFlags().hasExact()); 1853 return TLO.CombineTo( 1854 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1855 } 1856 1857 int Log2 = DemandedBits.exactLogBase2(); 1858 if (Log2 >= 0) { 1859 // The bit must come from the sign. 1860 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1861 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1862 } 1863 1864 if (Known.One[BitWidth - ShAmt - 1]) 1865 // New bits are known one. 1866 Known.One.setHighBits(ShAmt); 1867 1868 // Attempt to avoid multi-use ops if we don't need anything from them. 1869 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1870 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1871 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1872 if (DemandedOp0) { 1873 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1874 return TLO.CombineTo(Op, NewOp); 1875 } 1876 } 1877 } 1878 break; 1879 } 1880 case ISD::FSHL: 1881 case ISD::FSHR: { 1882 SDValue Op0 = Op.getOperand(0); 1883 SDValue Op1 = Op.getOperand(1); 1884 SDValue Op2 = Op.getOperand(2); 1885 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1886 1887 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1888 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1889 1890 // For fshl, 0-shift returns the 1st arg. 1891 // For fshr, 0-shift returns the 2nd arg. 1892 if (Amt == 0) { 1893 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1894 Known, TLO, Depth + 1)) 1895 return true; 1896 break; 1897 } 1898 1899 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1900 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1901 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1902 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1903 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1904 Depth + 1)) 1905 return true; 1906 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1907 Depth + 1)) 1908 return true; 1909 1910 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1911 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1912 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1913 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1914 Known.One |= Known2.One; 1915 Known.Zero |= Known2.Zero; 1916 1917 // Attempt to avoid multi-use ops if we don't need anything from them. 1918 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1919 !DemandedElts.isAllOnes()) { 1920 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1921 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1922 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1923 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1924 if (DemandedOp0 || DemandedOp1) { 1925 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1926 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1927 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1928 DemandedOp1, Op2); 1929 return TLO.CombineTo(Op, NewOp); 1930 } 1931 } 1932 } 1933 1934 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1935 if (isPowerOf2_32(BitWidth)) { 1936 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1937 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1938 Known2, TLO, Depth + 1)) 1939 return true; 1940 } 1941 break; 1942 } 1943 case ISD::ROTL: 1944 case ISD::ROTR: { 1945 SDValue Op0 = Op.getOperand(0); 1946 SDValue Op1 = Op.getOperand(1); 1947 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1948 1949 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1950 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1951 return TLO.CombineTo(Op, Op0); 1952 1953 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1954 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1955 unsigned RevAmt = BitWidth - Amt; 1956 1957 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1958 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1959 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1960 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1961 Depth + 1)) 1962 return true; 1963 1964 // rot*(x, 0) --> x 1965 if (Amt == 0) 1966 return TLO.CombineTo(Op, Op0); 1967 1968 // See if we don't demand either half of the rotated bits. 1969 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1970 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1971 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1972 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1973 } 1974 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1975 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1976 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1977 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1978 } 1979 } 1980 1981 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1982 if (isPowerOf2_32(BitWidth)) { 1983 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1984 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1985 Depth + 1)) 1986 return true; 1987 } 1988 break; 1989 } 1990 case ISD::UMIN: { 1991 // Check if one arg is always less than (or equal) to the other arg. 1992 SDValue Op0 = Op.getOperand(0); 1993 SDValue Op1 = Op.getOperand(1); 1994 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1995 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1996 Known = KnownBits::umin(Known0, Known1); 1997 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1998 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1999 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 2000 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 2001 break; 2002 } 2003 case ISD::UMAX: { 2004 // Check if one arg is always greater than (or equal) to the other arg. 2005 SDValue Op0 = Op.getOperand(0); 2006 SDValue Op1 = Op.getOperand(1); 2007 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 2008 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 2009 Known = KnownBits::umax(Known0, Known1); 2010 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 2011 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 2012 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 2013 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 2014 break; 2015 } 2016 case ISD::BITREVERSE: { 2017 SDValue Src = Op.getOperand(0); 2018 APInt DemandedSrcBits = DemandedBits.reverseBits(); 2019 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2020 Depth + 1)) 2021 return true; 2022 Known.One = Known2.One.reverseBits(); 2023 Known.Zero = Known2.Zero.reverseBits(); 2024 break; 2025 } 2026 case ISD::BSWAP: { 2027 SDValue Src = Op.getOperand(0); 2028 2029 // If the only bits demanded come from one byte of the bswap result, 2030 // just shift the input byte into position to eliminate the bswap. 2031 unsigned NLZ = DemandedBits.countLeadingZeros(); 2032 unsigned NTZ = DemandedBits.countTrailingZeros(); 2033 2034 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 2035 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2036 // have 14 leading zeros, round to 8. 2037 NLZ = alignDown(NLZ, 8); 2038 NTZ = alignDown(NTZ, 8); 2039 // If we need exactly one byte, we can do this transformation. 2040 if (BitWidth - NLZ - NTZ == 8) { 2041 // Replace this with either a left or right shift to get the byte into 2042 // the right place. 2043 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2044 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2045 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2046 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2047 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2048 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2049 return TLO.CombineTo(Op, NewOp); 2050 } 2051 } 2052 2053 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2054 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2055 Depth + 1)) 2056 return true; 2057 Known.One = Known2.One.byteSwap(); 2058 Known.Zero = Known2.Zero.byteSwap(); 2059 break; 2060 } 2061 case ISD::CTPOP: { 2062 // If only 1 bit is demanded, replace with PARITY as long as we're before 2063 // op legalization. 2064 // FIXME: Limit to scalars for now. 2065 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2066 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2067 Op.getOperand(0))); 2068 2069 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2070 break; 2071 } 2072 case ISD::SIGN_EXTEND_INREG: { 2073 SDValue Op0 = Op.getOperand(0); 2074 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2075 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2076 2077 // If we only care about the highest bit, don't bother shifting right. 2078 if (DemandedBits.isSignMask()) { 2079 unsigned MinSignedBits = 2080 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2081 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2082 // However if the input is already sign extended we expect the sign 2083 // extension to be dropped altogether later and do not simplify. 2084 if (!AlreadySignExtended) { 2085 // Compute the correct shift amount type, which must be getShiftAmountTy 2086 // for scalar types after legalization. 2087 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2088 getShiftAmountTy(VT, DL)); 2089 return TLO.CombineTo(Op, 2090 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2091 } 2092 } 2093 2094 // If none of the extended bits are demanded, eliminate the sextinreg. 2095 if (DemandedBits.getActiveBits() <= ExVTBits) 2096 return TLO.CombineTo(Op, Op0); 2097 2098 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2099 2100 // Since the sign extended bits are demanded, we know that the sign 2101 // bit is demanded. 2102 InputDemandedBits.setBit(ExVTBits - 1); 2103 2104 if (SimplifyDemandedBits(Op0, InputDemandedBits, DemandedElts, Known, TLO, 2105 Depth + 1)) 2106 return true; 2107 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2108 2109 // If the sign bit of the input is known set or clear, then we know the 2110 // top bits of the result. 2111 2112 // If the input sign bit is known zero, convert this into a zero extension. 2113 if (Known.Zero[ExVTBits - 1]) 2114 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2115 2116 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2117 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2118 Known.One.setBitsFrom(ExVTBits); 2119 Known.Zero &= Mask; 2120 } else { // Input sign bit unknown 2121 Known.Zero &= Mask; 2122 Known.One &= Mask; 2123 } 2124 break; 2125 } 2126 case ISD::BUILD_PAIR: { 2127 EVT HalfVT = Op.getOperand(0).getValueType(); 2128 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2129 2130 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2131 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2132 2133 KnownBits KnownLo, KnownHi; 2134 2135 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2136 return true; 2137 2138 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2139 return true; 2140 2141 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2142 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2143 2144 Known.One = KnownLo.One.zext(BitWidth) | 2145 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2146 break; 2147 } 2148 case ISD::ZERO_EXTEND: 2149 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2150 SDValue Src = Op.getOperand(0); 2151 EVT SrcVT = Src.getValueType(); 2152 unsigned InBits = SrcVT.getScalarSizeInBits(); 2153 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2154 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2155 2156 // If none of the top bits are demanded, convert this into an any_extend. 2157 if (DemandedBits.getActiveBits() <= InBits) { 2158 // If we only need the non-extended bits of the bottom element 2159 // then we can just bitcast to the result. 2160 if (IsLE && IsVecInReg && DemandedElts == 1 && 2161 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2162 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2163 2164 unsigned Opc = 2165 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2166 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2168 } 2169 2170 APInt InDemandedBits = DemandedBits.trunc(InBits); 2171 APInt InDemandedElts = DemandedElts.zext(InElts); 2172 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2173 Depth + 1)) 2174 return true; 2175 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2176 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2177 Known = Known.zext(BitWidth); 2178 2179 // Attempt to avoid multi-use ops if we don't need anything from them. 2180 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2181 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2182 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2183 break; 2184 } 2185 case ISD::SIGN_EXTEND: 2186 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2187 SDValue Src = Op.getOperand(0); 2188 EVT SrcVT = Src.getValueType(); 2189 unsigned InBits = SrcVT.getScalarSizeInBits(); 2190 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2191 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2192 2193 // If none of the top bits are demanded, convert this into an any_extend. 2194 if (DemandedBits.getActiveBits() <= InBits) { 2195 // If we only need the non-extended bits of the bottom element 2196 // then we can just bitcast to the result. 2197 if (IsLE && IsVecInReg && DemandedElts == 1 && 2198 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2199 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2200 2201 unsigned Opc = 2202 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2203 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2204 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2205 } 2206 2207 APInt InDemandedBits = DemandedBits.trunc(InBits); 2208 APInt InDemandedElts = DemandedElts.zext(InElts); 2209 2210 // Since some of the sign extended bits are demanded, we know that the sign 2211 // bit is demanded. 2212 InDemandedBits.setBit(InBits - 1); 2213 2214 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2215 Depth + 1)) 2216 return true; 2217 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2218 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2219 2220 // If the sign bit is known one, the top bits match. 2221 Known = Known.sext(BitWidth); 2222 2223 // If the sign bit is known zero, convert this to a zero extend. 2224 if (Known.isNonNegative()) { 2225 unsigned Opc = 2226 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2227 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2228 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2229 } 2230 2231 // Attempt to avoid multi-use ops if we don't need anything from them. 2232 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2233 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2234 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2235 break; 2236 } 2237 case ISD::ANY_EXTEND: 2238 case ISD::ANY_EXTEND_VECTOR_INREG: { 2239 SDValue Src = Op.getOperand(0); 2240 EVT SrcVT = Src.getValueType(); 2241 unsigned InBits = SrcVT.getScalarSizeInBits(); 2242 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2243 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2244 2245 // If we only need the bottom element then we can just bitcast. 2246 // TODO: Handle ANY_EXTEND? 2247 if (IsLE && IsVecInReg && DemandedElts == 1 && 2248 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2249 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2250 2251 APInt InDemandedBits = DemandedBits.trunc(InBits); 2252 APInt InDemandedElts = DemandedElts.zext(InElts); 2253 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2254 Depth + 1)) 2255 return true; 2256 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2257 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2258 Known = Known.anyext(BitWidth); 2259 2260 // Attempt to avoid multi-use ops if we don't need anything from them. 2261 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2262 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2263 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2264 break; 2265 } 2266 case ISD::TRUNCATE: { 2267 SDValue Src = Op.getOperand(0); 2268 2269 // Simplify the input, using demanded bit information, and compute the known 2270 // zero/one bits live out. 2271 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2272 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2273 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2274 Depth + 1)) 2275 return true; 2276 Known = Known.trunc(BitWidth); 2277 2278 // Attempt to avoid multi-use ops if we don't need anything from them. 2279 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2280 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2281 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2282 2283 // If the input is only used by this truncate, see if we can shrink it based 2284 // on the known demanded bits. 2285 if (Src.getNode()->hasOneUse()) { 2286 switch (Src.getOpcode()) { 2287 default: 2288 break; 2289 case ISD::SRL: 2290 // Shrink SRL by a constant if none of the high bits shifted in are 2291 // demanded. 2292 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2293 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2294 // undesirable. 2295 break; 2296 2297 const APInt *ShAmtC = 2298 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2299 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2300 break; 2301 uint64_t ShVal = ShAmtC->getZExtValue(); 2302 2303 APInt HighBits = 2304 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2305 HighBits.lshrInPlace(ShVal); 2306 HighBits = HighBits.trunc(BitWidth); 2307 2308 if (!(HighBits & DemandedBits)) { 2309 // None of the shifted in bits are needed. Add a truncate of the 2310 // shift input, then shift it. 2311 SDValue NewShAmt = TLO.DAG.getConstant( 2312 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2313 SDValue NewTrunc = 2314 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2315 return TLO.CombineTo( 2316 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2317 } 2318 break; 2319 } 2320 } 2321 2322 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2323 break; 2324 } 2325 case ISD::AssertZext: { 2326 // AssertZext demands all of the high bits, plus any of the low bits 2327 // demanded by its users. 2328 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2329 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2330 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2331 TLO, Depth + 1)) 2332 return true; 2333 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2334 2335 Known.Zero |= ~InMask; 2336 break; 2337 } 2338 case ISD::EXTRACT_VECTOR_ELT: { 2339 SDValue Src = Op.getOperand(0); 2340 SDValue Idx = Op.getOperand(1); 2341 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2342 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2343 2344 if (SrcEltCnt.isScalable()) 2345 return false; 2346 2347 // Demand the bits from every vector element without a constant index. 2348 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2349 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2350 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2351 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2352 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2353 2354 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2355 // anything about the extended bits. 2356 APInt DemandedSrcBits = DemandedBits; 2357 if (BitWidth > EltBitWidth) 2358 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2359 2360 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2361 Depth + 1)) 2362 return true; 2363 2364 // Attempt to avoid multi-use ops if we don't need anything from them. 2365 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2366 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2367 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2368 SDValue NewOp = 2369 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2370 return TLO.CombineTo(Op, NewOp); 2371 } 2372 } 2373 2374 Known = Known2; 2375 if (BitWidth > EltBitWidth) 2376 Known = Known.anyext(BitWidth); 2377 break; 2378 } 2379 case ISD::BITCAST: { 2380 SDValue Src = Op.getOperand(0); 2381 EVT SrcVT = Src.getValueType(); 2382 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2383 2384 // If this is an FP->Int bitcast and if the sign bit is the only 2385 // thing demanded, turn this into a FGETSIGN. 2386 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2387 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2388 SrcVT.isFloatingPoint()) { 2389 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2390 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2391 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2392 SrcVT != MVT::f128) { 2393 // Cannot eliminate/lower SHL for f128 yet. 2394 EVT Ty = OpVTLegal ? VT : MVT::i32; 2395 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2396 // place. We expect the SHL to be eliminated by other optimizations. 2397 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2398 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2399 if (!OpVTLegal && OpVTSizeInBits > 32) 2400 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2401 unsigned ShVal = Op.getValueSizeInBits() - 1; 2402 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2403 return TLO.CombineTo(Op, 2404 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2405 } 2406 } 2407 2408 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2409 // Demand the elt/bit if any of the original elts/bits are demanded. 2410 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2411 unsigned Scale = BitWidth / NumSrcEltBits; 2412 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2413 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2414 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2415 for (unsigned i = 0; i != Scale; ++i) { 2416 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2417 unsigned BitOffset = EltOffset * NumSrcEltBits; 2418 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2419 if (!Sub.isZero()) { 2420 DemandedSrcBits |= Sub; 2421 for (unsigned j = 0; j != NumElts; ++j) 2422 if (DemandedElts[j]) 2423 DemandedSrcElts.setBit((j * Scale) + i); 2424 } 2425 } 2426 2427 APInt KnownSrcUndef, KnownSrcZero; 2428 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2429 KnownSrcZero, TLO, Depth + 1)) 2430 return true; 2431 2432 KnownBits KnownSrcBits; 2433 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2434 KnownSrcBits, TLO, Depth + 1)) 2435 return true; 2436 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2437 // TODO - bigendian once we have test coverage. 2438 unsigned Scale = NumSrcEltBits / BitWidth; 2439 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2440 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2441 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2442 for (unsigned i = 0; i != NumElts; ++i) 2443 if (DemandedElts[i]) { 2444 unsigned Offset = (i % Scale) * BitWidth; 2445 DemandedSrcBits.insertBits(DemandedBits, Offset); 2446 DemandedSrcElts.setBit(i / Scale); 2447 } 2448 2449 if (SrcVT.isVector()) { 2450 APInt KnownSrcUndef, KnownSrcZero; 2451 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2452 KnownSrcZero, TLO, Depth + 1)) 2453 return true; 2454 } 2455 2456 KnownBits KnownSrcBits; 2457 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2458 KnownSrcBits, TLO, Depth + 1)) 2459 return true; 2460 } 2461 2462 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2463 // recursive call where Known may be useful to the caller. 2464 if (Depth > 0) { 2465 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2466 return false; 2467 } 2468 break; 2469 } 2470 case ISD::MUL: 2471 if (DemandedBits.isPowerOf2()) { 2472 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2473 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2474 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2475 unsigned CTZ = DemandedBits.countTrailingZeros(); 2476 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2477 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2478 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2479 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2480 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2481 return TLO.CombineTo(Op, Shl); 2482 } 2483 } 2484 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2485 // X * X is odd iff X is odd. 2486 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2487 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2488 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2489 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2490 return TLO.CombineTo(Op, And1); 2491 } 2492 LLVM_FALLTHROUGH; 2493 case ISD::ADD: 2494 case ISD::SUB: { 2495 // Add, Sub, and Mul don't demand any bits in positions beyond that 2496 // of the highest bit demanded of them. 2497 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2498 SDNodeFlags Flags = Op.getNode()->getFlags(); 2499 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2500 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2501 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2502 Depth + 1) || 2503 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2504 Depth + 1) || 2505 // See if the operation should be performed at a smaller bit width. 2506 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2507 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2508 // Disable the nsw and nuw flags. We can no longer guarantee that we 2509 // won't wrap after simplification. 2510 Flags.setNoSignedWrap(false); 2511 Flags.setNoUnsignedWrap(false); 2512 SDValue NewOp = 2513 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2514 return TLO.CombineTo(Op, NewOp); 2515 } 2516 return true; 2517 } 2518 2519 // Attempt to avoid multi-use ops if we don't need anything from them. 2520 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2521 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2522 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2523 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2524 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2525 if (DemandedOp0 || DemandedOp1) { 2526 Flags.setNoSignedWrap(false); 2527 Flags.setNoUnsignedWrap(false); 2528 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2529 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2530 SDValue NewOp = 2531 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2532 return TLO.CombineTo(Op, NewOp); 2533 } 2534 } 2535 2536 // If we have a constant operand, we may be able to turn it into -1 if we 2537 // do not demand the high bits. This can make the constant smaller to 2538 // encode, allow more general folding, or match specialized instruction 2539 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2540 // is probably not useful (and could be detrimental). 2541 ConstantSDNode *C = isConstOrConstSplat(Op1); 2542 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2543 if (C && !C->isAllOnes() && !C->isOne() && 2544 (C->getAPIntValue() | HighMask).isAllOnes()) { 2545 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2546 // Disable the nsw and nuw flags. We can no longer guarantee that we 2547 // won't wrap after simplification. 2548 Flags.setNoSignedWrap(false); 2549 Flags.setNoUnsignedWrap(false); 2550 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2551 return TLO.CombineTo(Op, NewOp); 2552 } 2553 2554 // Match a multiply with a disguised negated-power-of-2 and convert to a 2555 // an equivalent shift-left amount. 2556 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2557 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2558 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2559 return 0; 2560 2561 // Don't touch opaque constants. Also, ignore zero and power-of-2 2562 // multiplies. Those will get folded later. 2563 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2564 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2565 !MulC->getAPIntValue().isPowerOf2()) { 2566 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2567 if (UnmaskedC.isNegatedPowerOf2()) 2568 return (-UnmaskedC).logBase2(); 2569 } 2570 return 0; 2571 }; 2572 2573 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2574 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2575 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2576 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2577 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2578 return TLO.CombineTo(Op, Res); 2579 }; 2580 2581 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2582 if (Op.getOpcode() == ISD::ADD) { 2583 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2584 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2585 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2586 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2587 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2588 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2589 } 2590 if (Op.getOpcode() == ISD::SUB) { 2591 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2592 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2593 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2594 } 2595 } 2596 2597 LLVM_FALLTHROUGH; 2598 } 2599 default: 2600 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2601 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2602 Known, TLO, Depth)) 2603 return true; 2604 break; 2605 } 2606 2607 // Just use computeKnownBits to compute output bits. 2608 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2609 break; 2610 } 2611 2612 // If we know the value of all of the demanded bits, return this as a 2613 // constant. 2614 if (!isTargetCanonicalConstantNode(Op) && 2615 DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2616 // Avoid folding to a constant if any OpaqueConstant is involved. 2617 const SDNode *N = Op.getNode(); 2618 for (SDNode *Op : 2619 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2620 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2621 if (C->isOpaque()) 2622 return false; 2623 } 2624 if (VT.isInteger()) 2625 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2626 if (VT.isFloatingPoint()) 2627 return TLO.CombineTo( 2628 Op, 2629 TLO.DAG.getConstantFP( 2630 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2631 } 2632 2633 return false; 2634 } 2635 2636 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2637 const APInt &DemandedElts, 2638 DAGCombinerInfo &DCI) const { 2639 SelectionDAG &DAG = DCI.DAG; 2640 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2641 !DCI.isBeforeLegalizeOps()); 2642 2643 APInt KnownUndef, KnownZero; 2644 bool Simplified = 2645 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2646 if (Simplified) { 2647 DCI.AddToWorklist(Op.getNode()); 2648 DCI.CommitTargetLoweringOpt(TLO); 2649 } 2650 2651 return Simplified; 2652 } 2653 2654 /// Given a vector binary operation and known undefined elements for each input 2655 /// operand, compute whether each element of the output is undefined. 2656 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2657 const APInt &UndefOp0, 2658 const APInt &UndefOp1) { 2659 EVT VT = BO.getValueType(); 2660 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2661 "Vector binop only"); 2662 2663 EVT EltVT = VT.getVectorElementType(); 2664 unsigned NumElts = VT.getVectorNumElements(); 2665 assert(UndefOp0.getBitWidth() == NumElts && 2666 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2667 2668 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2669 const APInt &UndefVals) { 2670 if (UndefVals[Index]) 2671 return DAG.getUNDEF(EltVT); 2672 2673 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2674 // Try hard to make sure that the getNode() call is not creating temporary 2675 // nodes. Ignore opaque integers because they do not constant fold. 2676 SDValue Elt = BV->getOperand(Index); 2677 auto *C = dyn_cast<ConstantSDNode>(Elt); 2678 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2679 return Elt; 2680 } 2681 2682 return SDValue(); 2683 }; 2684 2685 APInt KnownUndef = APInt::getZero(NumElts); 2686 for (unsigned i = 0; i != NumElts; ++i) { 2687 // If both inputs for this element are either constant or undef and match 2688 // the element type, compute the constant/undef result for this element of 2689 // the vector. 2690 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2691 // not handle FP constants. The code within getNode() should be refactored 2692 // to avoid the danger of creating a bogus temporary node here. 2693 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2694 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2695 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2696 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2697 KnownUndef.setBit(i); 2698 } 2699 return KnownUndef; 2700 } 2701 2702 bool TargetLowering::SimplifyDemandedVectorElts( 2703 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2704 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2705 bool AssumeSingleUse) const { 2706 EVT VT = Op.getValueType(); 2707 unsigned Opcode = Op.getOpcode(); 2708 APInt DemandedElts = OriginalDemandedElts; 2709 unsigned NumElts = DemandedElts.getBitWidth(); 2710 assert(VT.isVector() && "Expected vector op"); 2711 2712 KnownUndef = KnownZero = APInt::getZero(NumElts); 2713 2714 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2715 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2716 return false; 2717 2718 // TODO: For now we assume we know nothing about scalable vectors. 2719 if (VT.isScalableVector()) 2720 return false; 2721 2722 assert(VT.getVectorNumElements() == NumElts && 2723 "Mask size mismatches value type element count!"); 2724 2725 // Undef operand. 2726 if (Op.isUndef()) { 2727 KnownUndef.setAllBits(); 2728 return false; 2729 } 2730 2731 // If Op has other users, assume that all elements are needed. 2732 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2733 DemandedElts.setAllBits(); 2734 2735 // Not demanding any elements from Op. 2736 if (DemandedElts == 0) { 2737 KnownUndef.setAllBits(); 2738 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2739 } 2740 2741 // Limit search depth. 2742 if (Depth >= SelectionDAG::MaxRecursionDepth) 2743 return false; 2744 2745 SDLoc DL(Op); 2746 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2747 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2748 2749 // Helper for demanding the specified elements and all the bits of both binary 2750 // operands. 2751 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2752 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2753 TLO.DAG, Depth + 1); 2754 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2755 TLO.DAG, Depth + 1); 2756 if (NewOp0 || NewOp1) { 2757 SDValue NewOp = TLO.DAG.getNode( 2758 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2759 return TLO.CombineTo(Op, NewOp); 2760 } 2761 return false; 2762 }; 2763 2764 switch (Opcode) { 2765 case ISD::SCALAR_TO_VECTOR: { 2766 if (!DemandedElts[0]) { 2767 KnownUndef.setAllBits(); 2768 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2769 } 2770 SDValue ScalarSrc = Op.getOperand(0); 2771 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2772 SDValue Src = ScalarSrc.getOperand(0); 2773 SDValue Idx = ScalarSrc.getOperand(1); 2774 EVT SrcVT = Src.getValueType(); 2775 2776 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2777 2778 if (SrcEltCnt.isScalable()) 2779 return false; 2780 2781 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2782 if (isNullConstant(Idx)) { 2783 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2784 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2785 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2786 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2787 TLO, Depth + 1)) 2788 return true; 2789 } 2790 } 2791 KnownUndef.setHighBits(NumElts - 1); 2792 break; 2793 } 2794 case ISD::BITCAST: { 2795 SDValue Src = Op.getOperand(0); 2796 EVT SrcVT = Src.getValueType(); 2797 2798 // We only handle vectors here. 2799 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2800 if (!SrcVT.isVector()) 2801 break; 2802 2803 // Fast handling of 'identity' bitcasts. 2804 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2805 if (NumSrcElts == NumElts) 2806 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2807 KnownZero, TLO, Depth + 1); 2808 2809 APInt SrcDemandedElts, SrcZero, SrcUndef; 2810 2811 // Bitcast from 'large element' src vector to 'small element' vector, we 2812 // must demand a source element if any DemandedElt maps to it. 2813 if ((NumElts % NumSrcElts) == 0) { 2814 unsigned Scale = NumElts / NumSrcElts; 2815 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2816 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2817 TLO, Depth + 1)) 2818 return true; 2819 2820 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2821 // of the large element. 2822 // TODO - bigendian once we have test coverage. 2823 if (IsLE) { 2824 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2825 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2826 for (unsigned i = 0; i != NumElts; ++i) 2827 if (DemandedElts[i]) { 2828 unsigned Ofs = (i % Scale) * EltSizeInBits; 2829 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2830 } 2831 2832 KnownBits Known; 2833 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2834 TLO, Depth + 1)) 2835 return true; 2836 2837 // The bitcast has split each wide element into a number of 2838 // narrow subelements. We have just computed the Known bits 2839 // for wide elements. See if element splitting results in 2840 // some subelements being zero. Only for demanded elements! 2841 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2842 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2843 .isAllOnes()) 2844 continue; 2845 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2846 unsigned Elt = Scale * SrcElt + SubElt; 2847 if (DemandedElts[Elt]) 2848 KnownZero.setBit(Elt); 2849 } 2850 } 2851 } 2852 2853 // If the src element is zero/undef then all the output elements will be - 2854 // only demanded elements are guaranteed to be correct. 2855 for (unsigned i = 0; i != NumSrcElts; ++i) { 2856 if (SrcDemandedElts[i]) { 2857 if (SrcZero[i]) 2858 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2859 if (SrcUndef[i]) 2860 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2861 } 2862 } 2863 } 2864 2865 // Bitcast from 'small element' src vector to 'large element' vector, we 2866 // demand all smaller source elements covered by the larger demanded element 2867 // of this vector. 2868 if ((NumSrcElts % NumElts) == 0) { 2869 unsigned Scale = NumSrcElts / NumElts; 2870 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2871 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2872 TLO, Depth + 1)) 2873 return true; 2874 2875 // If all the src elements covering an output element are zero/undef, then 2876 // the output element will be as well, assuming it was demanded. 2877 for (unsigned i = 0; i != NumElts; ++i) { 2878 if (DemandedElts[i]) { 2879 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2880 KnownZero.setBit(i); 2881 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2882 KnownUndef.setBit(i); 2883 } 2884 } 2885 } 2886 break; 2887 } 2888 case ISD::BUILD_VECTOR: { 2889 // Check all elements and simplify any unused elements with UNDEF. 2890 if (!DemandedElts.isAllOnes()) { 2891 // Don't simplify BROADCASTS. 2892 if (llvm::any_of(Op->op_values(), 2893 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2894 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2895 bool Updated = false; 2896 for (unsigned i = 0; i != NumElts; ++i) { 2897 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2898 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2899 KnownUndef.setBit(i); 2900 Updated = true; 2901 } 2902 } 2903 if (Updated) 2904 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2905 } 2906 } 2907 for (unsigned i = 0; i != NumElts; ++i) { 2908 SDValue SrcOp = Op.getOperand(i); 2909 if (SrcOp.isUndef()) { 2910 KnownUndef.setBit(i); 2911 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2912 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2913 KnownZero.setBit(i); 2914 } 2915 } 2916 break; 2917 } 2918 case ISD::CONCAT_VECTORS: { 2919 EVT SubVT = Op.getOperand(0).getValueType(); 2920 unsigned NumSubVecs = Op.getNumOperands(); 2921 unsigned NumSubElts = SubVT.getVectorNumElements(); 2922 for (unsigned i = 0; i != NumSubVecs; ++i) { 2923 SDValue SubOp = Op.getOperand(i); 2924 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2925 APInt SubUndef, SubZero; 2926 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2927 Depth + 1)) 2928 return true; 2929 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2930 KnownZero.insertBits(SubZero, i * NumSubElts); 2931 } 2932 2933 // Attempt to avoid multi-use ops if we don't need anything from them. 2934 if (!DemandedElts.isAllOnes()) { 2935 bool FoundNewSub = false; 2936 SmallVector<SDValue, 2> DemandedSubOps; 2937 for (unsigned i = 0; i != NumSubVecs; ++i) { 2938 SDValue SubOp = Op.getOperand(i); 2939 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2940 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2941 SubOp, SubElts, TLO.DAG, Depth + 1); 2942 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2943 FoundNewSub = NewSubOp ? true : FoundNewSub; 2944 } 2945 if (FoundNewSub) { 2946 SDValue NewOp = 2947 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2948 return TLO.CombineTo(Op, NewOp); 2949 } 2950 } 2951 break; 2952 } 2953 case ISD::INSERT_SUBVECTOR: { 2954 // Demand any elements from the subvector and the remainder from the src its 2955 // inserted into. 2956 SDValue Src = Op.getOperand(0); 2957 SDValue Sub = Op.getOperand(1); 2958 uint64_t Idx = Op.getConstantOperandVal(2); 2959 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2960 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2961 APInt DemandedSrcElts = DemandedElts; 2962 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2963 2964 APInt SubUndef, SubZero; 2965 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2966 Depth + 1)) 2967 return true; 2968 2969 // If none of the src operand elements are demanded, replace it with undef. 2970 if (!DemandedSrcElts && !Src.isUndef()) 2971 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2972 TLO.DAG.getUNDEF(VT), Sub, 2973 Op.getOperand(2))); 2974 2975 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2976 TLO, Depth + 1)) 2977 return true; 2978 KnownUndef.insertBits(SubUndef, Idx); 2979 KnownZero.insertBits(SubZero, Idx); 2980 2981 // Attempt to avoid multi-use ops if we don't need anything from them. 2982 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2983 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2984 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2985 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2986 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2987 if (NewSrc || NewSub) { 2988 NewSrc = NewSrc ? NewSrc : Src; 2989 NewSub = NewSub ? NewSub : Sub; 2990 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2991 NewSub, Op.getOperand(2)); 2992 return TLO.CombineTo(Op, NewOp); 2993 } 2994 } 2995 break; 2996 } 2997 case ISD::EXTRACT_SUBVECTOR: { 2998 // Offset the demanded elts by the subvector index. 2999 SDValue Src = Op.getOperand(0); 3000 if (Src.getValueType().isScalableVector()) 3001 break; 3002 uint64_t Idx = Op.getConstantOperandVal(1); 3003 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3004 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 3005 3006 APInt SrcUndef, SrcZero; 3007 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3008 Depth + 1)) 3009 return true; 3010 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 3011 KnownZero = SrcZero.extractBits(NumElts, Idx); 3012 3013 // Attempt to avoid multi-use ops if we don't need anything from them. 3014 if (!DemandedElts.isAllOnes()) { 3015 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 3016 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 3017 if (NewSrc) { 3018 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 3019 Op.getOperand(1)); 3020 return TLO.CombineTo(Op, NewOp); 3021 } 3022 } 3023 break; 3024 } 3025 case ISD::INSERT_VECTOR_ELT: { 3026 SDValue Vec = Op.getOperand(0); 3027 SDValue Scl = Op.getOperand(1); 3028 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 3029 3030 // For a legal, constant insertion index, if we don't need this insertion 3031 // then strip it, else remove it from the demanded elts. 3032 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 3033 unsigned Idx = CIdx->getZExtValue(); 3034 if (!DemandedElts[Idx]) 3035 return TLO.CombineTo(Op, Vec); 3036 3037 APInt DemandedVecElts(DemandedElts); 3038 DemandedVecElts.clearBit(Idx); 3039 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3040 KnownZero, TLO, Depth + 1)) 3041 return true; 3042 3043 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3044 3045 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3046 break; 3047 } 3048 3049 APInt VecUndef, VecZero; 3050 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3051 Depth + 1)) 3052 return true; 3053 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3054 break; 3055 } 3056 case ISD::VSELECT: { 3057 // Try to transform the select condition based on the current demanded 3058 // elements. 3059 // TODO: If a condition element is undef, we can choose from one arm of the 3060 // select (and if one arm is undef, then we can propagate that to the 3061 // result). 3062 // TODO - add support for constant vselect masks (see IR version of this). 3063 APInt UnusedUndef, UnusedZero; 3064 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 3065 UnusedZero, TLO, Depth + 1)) 3066 return true; 3067 3068 // See if we can simplify either vselect operand. 3069 APInt DemandedLHS(DemandedElts); 3070 APInt DemandedRHS(DemandedElts); 3071 APInt UndefLHS, ZeroLHS; 3072 APInt UndefRHS, ZeroRHS; 3073 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 3074 ZeroLHS, TLO, Depth + 1)) 3075 return true; 3076 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 3077 ZeroRHS, TLO, Depth + 1)) 3078 return true; 3079 3080 KnownUndef = UndefLHS & UndefRHS; 3081 KnownZero = ZeroLHS & ZeroRHS; 3082 break; 3083 } 3084 case ISD::VECTOR_SHUFFLE: { 3085 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3086 3087 // Collect demanded elements from shuffle operands.. 3088 APInt DemandedLHS(NumElts, 0); 3089 APInt DemandedRHS(NumElts, 0); 3090 for (unsigned i = 0; i != NumElts; ++i) { 3091 int M = ShuffleMask[i]; 3092 if (M < 0 || !DemandedElts[i]) 3093 continue; 3094 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3095 if (M < (int)NumElts) 3096 DemandedLHS.setBit(M); 3097 else 3098 DemandedRHS.setBit(M - NumElts); 3099 } 3100 3101 // See if we can simplify either shuffle operand. 3102 APInt UndefLHS, ZeroLHS; 3103 APInt UndefRHS, ZeroRHS; 3104 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3105 ZeroLHS, TLO, Depth + 1)) 3106 return true; 3107 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3108 ZeroRHS, TLO, Depth + 1)) 3109 return true; 3110 3111 // Simplify mask using undef elements from LHS/RHS. 3112 bool Updated = false; 3113 bool IdentityLHS = true, IdentityRHS = true; 3114 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3115 for (unsigned i = 0; i != NumElts; ++i) { 3116 int &M = NewMask[i]; 3117 if (M < 0) 3118 continue; 3119 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3120 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3121 Updated = true; 3122 M = -1; 3123 } 3124 IdentityLHS &= (M < 0) || (M == (int)i); 3125 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3126 } 3127 3128 // Update legal shuffle masks based on demanded elements if it won't reduce 3129 // to Identity which can cause premature removal of the shuffle mask. 3130 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3131 SDValue LegalShuffle = 3132 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3133 NewMask, TLO.DAG); 3134 if (LegalShuffle) 3135 return TLO.CombineTo(Op, LegalShuffle); 3136 } 3137 3138 // Propagate undef/zero elements from LHS/RHS. 3139 for (unsigned i = 0; i != NumElts; ++i) { 3140 int M = ShuffleMask[i]; 3141 if (M < 0) { 3142 KnownUndef.setBit(i); 3143 } else if (M < (int)NumElts) { 3144 if (UndefLHS[M]) 3145 KnownUndef.setBit(i); 3146 if (ZeroLHS[M]) 3147 KnownZero.setBit(i); 3148 } else { 3149 if (UndefRHS[M - NumElts]) 3150 KnownUndef.setBit(i); 3151 if (ZeroRHS[M - NumElts]) 3152 KnownZero.setBit(i); 3153 } 3154 } 3155 break; 3156 } 3157 case ISD::ANY_EXTEND_VECTOR_INREG: 3158 case ISD::SIGN_EXTEND_VECTOR_INREG: 3159 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3160 APInt SrcUndef, SrcZero; 3161 SDValue Src = Op.getOperand(0); 3162 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3163 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3164 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3165 Depth + 1)) 3166 return true; 3167 KnownZero = SrcZero.zextOrTrunc(NumElts); 3168 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3169 3170 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3171 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3172 DemandedSrcElts == 1) { 3173 // aext - if we just need the bottom element then we can bitcast. 3174 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3175 } 3176 3177 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3178 // zext(undef) upper bits are guaranteed to be zero. 3179 if (DemandedElts.isSubsetOf(KnownUndef)) 3180 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3181 KnownUndef.clearAllBits(); 3182 3183 // zext - if we just need the bottom element then we can mask: 3184 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3185 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3186 Op->isOnlyUserOf(Src.getNode()) && 3187 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3188 SDLoc DL(Op); 3189 EVT SrcVT = Src.getValueType(); 3190 EVT SrcSVT = SrcVT.getScalarType(); 3191 SmallVector<SDValue> MaskElts; 3192 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3193 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3194 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3195 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3196 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3197 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3198 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3199 } 3200 } 3201 } 3202 break; 3203 } 3204 3205 // TODO: There are more binop opcodes that could be handled here - MIN, 3206 // MAX, saturated math, etc. 3207 case ISD::ADD: { 3208 SDValue Op0 = Op.getOperand(0); 3209 SDValue Op1 = Op.getOperand(1); 3210 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3211 APInt UndefLHS, ZeroLHS; 3212 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3213 Depth + 1, /*AssumeSingleUse*/ true)) 3214 return true; 3215 } 3216 LLVM_FALLTHROUGH; 3217 } 3218 case ISD::OR: 3219 case ISD::XOR: 3220 case ISD::SUB: 3221 case ISD::FADD: 3222 case ISD::FSUB: 3223 case ISD::FMUL: 3224 case ISD::FDIV: 3225 case ISD::FREM: { 3226 SDValue Op0 = Op.getOperand(0); 3227 SDValue Op1 = Op.getOperand(1); 3228 3229 APInt UndefRHS, ZeroRHS; 3230 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3231 Depth + 1)) 3232 return true; 3233 APInt UndefLHS, ZeroLHS; 3234 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3235 Depth + 1)) 3236 return true; 3237 3238 KnownZero = ZeroLHS & ZeroRHS; 3239 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3240 3241 // Attempt to avoid multi-use ops if we don't need anything from them. 3242 // TODO - use KnownUndef to relax the demandedelts? 3243 if (!DemandedElts.isAllOnes()) 3244 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3245 return true; 3246 break; 3247 } 3248 case ISD::SHL: 3249 case ISD::SRL: 3250 case ISD::SRA: 3251 case ISD::ROTL: 3252 case ISD::ROTR: { 3253 SDValue Op0 = Op.getOperand(0); 3254 SDValue Op1 = Op.getOperand(1); 3255 3256 APInt UndefRHS, ZeroRHS; 3257 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3258 Depth + 1)) 3259 return true; 3260 APInt UndefLHS, ZeroLHS; 3261 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3262 Depth + 1)) 3263 return true; 3264 3265 KnownZero = ZeroLHS; 3266 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3267 3268 // Attempt to avoid multi-use ops if we don't need anything from them. 3269 // TODO - use KnownUndef to relax the demandedelts? 3270 if (!DemandedElts.isAllOnes()) 3271 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3272 return true; 3273 break; 3274 } 3275 case ISD::MUL: 3276 case ISD::AND: { 3277 SDValue Op0 = Op.getOperand(0); 3278 SDValue Op1 = Op.getOperand(1); 3279 3280 APInt SrcUndef, SrcZero; 3281 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3282 Depth + 1)) 3283 return true; 3284 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3285 TLO, Depth + 1)) 3286 return true; 3287 3288 // If either side has a zero element, then the result element is zero, even 3289 // if the other is an UNDEF. 3290 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3291 // and then handle 'and' nodes with the rest of the binop opcodes. 3292 KnownZero |= SrcZero; 3293 KnownUndef &= SrcUndef; 3294 KnownUndef &= ~KnownZero; 3295 3296 // Attempt to avoid multi-use ops if we don't need anything from them. 3297 // TODO - use KnownUndef to relax the demandedelts? 3298 if (!DemandedElts.isAllOnes()) 3299 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3300 return true; 3301 break; 3302 } 3303 case ISD::TRUNCATE: 3304 case ISD::SIGN_EXTEND: 3305 case ISD::ZERO_EXTEND: 3306 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3307 KnownZero, TLO, Depth + 1)) 3308 return true; 3309 3310 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3311 // zext(undef) upper bits are guaranteed to be zero. 3312 if (DemandedElts.isSubsetOf(KnownUndef)) 3313 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3314 KnownUndef.clearAllBits(); 3315 } 3316 break; 3317 default: { 3318 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3319 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3320 KnownZero, TLO, Depth)) 3321 return true; 3322 } else { 3323 KnownBits Known; 3324 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3325 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3326 TLO, Depth, AssumeSingleUse)) 3327 return true; 3328 } 3329 break; 3330 } 3331 } 3332 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3333 3334 // Constant fold all undef cases. 3335 // TODO: Handle zero cases as well. 3336 if (DemandedElts.isSubsetOf(KnownUndef)) 3337 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3338 3339 return false; 3340 } 3341 3342 /// Determine which of the bits specified in Mask are known to be either zero or 3343 /// one and return them in the Known. 3344 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3345 KnownBits &Known, 3346 const APInt &DemandedElts, 3347 const SelectionDAG &DAG, 3348 unsigned Depth) const { 3349 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3350 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3351 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3352 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3353 "Should use MaskedValueIsZero if you don't know whether Op" 3354 " is a target node!"); 3355 Known.resetAll(); 3356 } 3357 3358 void TargetLowering::computeKnownBitsForTargetInstr( 3359 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3360 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3361 unsigned Depth) const { 3362 Known.resetAll(); 3363 } 3364 3365 void TargetLowering::computeKnownBitsForFrameIndex( 3366 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3367 // The low bits are known zero if the pointer is aligned. 3368 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3369 } 3370 3371 Align TargetLowering::computeKnownAlignForTargetInstr( 3372 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3373 unsigned Depth) const { 3374 return Align(1); 3375 } 3376 3377 /// This method can be implemented by targets that want to expose additional 3378 /// information about sign bits to the DAG Combiner. 3379 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3380 const APInt &, 3381 const SelectionDAG &, 3382 unsigned Depth) const { 3383 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3384 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3385 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3386 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3387 "Should use ComputeNumSignBits if you don't know whether Op" 3388 " is a target node!"); 3389 return 1; 3390 } 3391 3392 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3393 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3394 const MachineRegisterInfo &MRI, unsigned Depth) const { 3395 return 1; 3396 } 3397 3398 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3399 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3400 TargetLoweringOpt &TLO, unsigned Depth) const { 3401 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3402 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3403 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3404 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3405 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3406 " is a target node!"); 3407 return false; 3408 } 3409 3410 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3411 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3412 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3413 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3414 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3415 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3416 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3417 "Should use SimplifyDemandedBits if you don't know whether Op" 3418 " is a target node!"); 3419 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3420 return false; 3421 } 3422 3423 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3424 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3425 SelectionDAG &DAG, unsigned Depth) const { 3426 assert( 3427 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3428 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3429 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3430 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3431 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3432 " is a target node!"); 3433 return SDValue(); 3434 } 3435 3436 SDValue 3437 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3438 SDValue N1, MutableArrayRef<int> Mask, 3439 SelectionDAG &DAG) const { 3440 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3441 if (!LegalMask) { 3442 std::swap(N0, N1); 3443 ShuffleVectorSDNode::commuteMask(Mask); 3444 LegalMask = isShuffleMaskLegal(Mask, VT); 3445 } 3446 3447 if (!LegalMask) 3448 return SDValue(); 3449 3450 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3451 } 3452 3453 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3454 return nullptr; 3455 } 3456 3457 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3458 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3459 bool PoisonOnly, unsigned Depth) const { 3460 assert( 3461 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3462 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3463 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3464 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3465 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3466 " is a target node!"); 3467 return false; 3468 } 3469 3470 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3471 const SelectionDAG &DAG, 3472 bool SNaN, 3473 unsigned Depth) const { 3474 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3475 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3476 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3477 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3478 "Should use isKnownNeverNaN if you don't know whether Op" 3479 " is a target node!"); 3480 return false; 3481 } 3482 3483 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3484 const APInt &DemandedElts, 3485 APInt &UndefElts, 3486 unsigned Depth) const { 3487 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3488 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3489 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3490 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3491 "Should use isSplatValue if you don't know whether Op" 3492 " is a target node!"); 3493 return false; 3494 } 3495 3496 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3497 // work with truncating build vectors and vectors with elements of less than 3498 // 8 bits. 3499 bool TargetLowering::isConstTrueVal(SDValue N) const { 3500 if (!N) 3501 return false; 3502 3503 unsigned EltWidth; 3504 APInt CVal; 3505 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3506 /*AllowTruncation=*/true)) { 3507 CVal = CN->getAPIntValue(); 3508 EltWidth = N.getValueType().getScalarSizeInBits(); 3509 } else 3510 return false; 3511 3512 // If this is a truncating splat, truncate the splat value. 3513 // Otherwise, we may fail to match the expected values below. 3514 if (EltWidth < CVal.getBitWidth()) 3515 CVal = CVal.trunc(EltWidth); 3516 3517 switch (getBooleanContents(N.getValueType())) { 3518 case UndefinedBooleanContent: 3519 return CVal[0]; 3520 case ZeroOrOneBooleanContent: 3521 return CVal.isOne(); 3522 case ZeroOrNegativeOneBooleanContent: 3523 return CVal.isAllOnes(); 3524 } 3525 3526 llvm_unreachable("Invalid boolean contents"); 3527 } 3528 3529 bool TargetLowering::isConstFalseVal(SDValue N) const { 3530 if (!N) 3531 return false; 3532 3533 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3534 if (!CN) { 3535 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3536 if (!BV) 3537 return false; 3538 3539 // Only interested in constant splats, we don't care about undef 3540 // elements in identifying boolean constants and getConstantSplatNode 3541 // returns NULL if all ops are undef; 3542 CN = BV->getConstantSplatNode(); 3543 if (!CN) 3544 return false; 3545 } 3546 3547 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3548 return !CN->getAPIntValue()[0]; 3549 3550 return CN->isZero(); 3551 } 3552 3553 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3554 bool SExt) const { 3555 if (VT == MVT::i1) 3556 return N->isOne(); 3557 3558 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3559 switch (Cnt) { 3560 case TargetLowering::ZeroOrOneBooleanContent: 3561 // An extended value of 1 is always true, unless its original type is i1, 3562 // in which case it will be sign extended to -1. 3563 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3564 case TargetLowering::UndefinedBooleanContent: 3565 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3566 return N->isAllOnes() && SExt; 3567 } 3568 llvm_unreachable("Unexpected enumeration."); 3569 } 3570 3571 /// This helper function of SimplifySetCC tries to optimize the comparison when 3572 /// either operand of the SetCC node is a bitwise-and instruction. 3573 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3574 ISD::CondCode Cond, const SDLoc &DL, 3575 DAGCombinerInfo &DCI) const { 3576 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3577 std::swap(N0, N1); 3578 3579 SelectionDAG &DAG = DCI.DAG; 3580 EVT OpVT = N0.getValueType(); 3581 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3582 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3583 return SDValue(); 3584 3585 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3586 // iff everything but LSB is known zero: 3587 if (Cond == ISD::SETNE && isNullConstant(N1) && 3588 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3589 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3590 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3591 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3592 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3593 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3594 } 3595 3596 // Match these patterns in any of their permutations: 3597 // (X & Y) == Y 3598 // (X & Y) != Y 3599 SDValue X, Y; 3600 if (N0.getOperand(0) == N1) { 3601 X = N0.getOperand(1); 3602 Y = N0.getOperand(0); 3603 } else if (N0.getOperand(1) == N1) { 3604 X = N0.getOperand(0); 3605 Y = N0.getOperand(1); 3606 } else { 3607 return SDValue(); 3608 } 3609 3610 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3611 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3612 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3613 // Note that where Y is variable and is known to have at most one bit set 3614 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3615 // equivalent when Y == 0. 3616 assert(OpVT.isInteger()); 3617 Cond = ISD::getSetCCInverse(Cond, OpVT); 3618 if (DCI.isBeforeLegalizeOps() || 3619 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3620 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3621 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3622 // If the target supports an 'and-not' or 'and-complement' logic operation, 3623 // try to use that to make a comparison operation more efficient. 3624 // But don't do this transform if the mask is a single bit because there are 3625 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3626 // 'rlwinm' on PPC). 3627 3628 // Bail out if the compare operand that we want to turn into a zero is 3629 // already a zero (otherwise, infinite loop). 3630 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3631 if (YConst && YConst->isZero()) 3632 return SDValue(); 3633 3634 // Transform this into: ~X & Y == 0. 3635 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3636 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3637 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3638 } 3639 3640 return SDValue(); 3641 } 3642 3643 /// There are multiple IR patterns that could be checking whether certain 3644 /// truncation of a signed number would be lossy or not. The pattern which is 3645 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3646 /// We are looking for the following pattern: (KeptBits is a constant) 3647 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3648 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3649 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3650 /// We will unfold it into the natural trunc+sext pattern: 3651 /// ((%x << C) a>> C) dstcond %x 3652 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3653 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3654 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3655 const SDLoc &DL) const { 3656 // We must be comparing with a constant. 3657 ConstantSDNode *C1; 3658 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3659 return SDValue(); 3660 3661 // N0 should be: add %x, (1 << (KeptBits-1)) 3662 if (N0->getOpcode() != ISD::ADD) 3663 return SDValue(); 3664 3665 // And we must be 'add'ing a constant. 3666 ConstantSDNode *C01; 3667 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3668 return SDValue(); 3669 3670 SDValue X = N0->getOperand(0); 3671 EVT XVT = X.getValueType(); 3672 3673 // Validate constants ... 3674 3675 APInt I1 = C1->getAPIntValue(); 3676 3677 ISD::CondCode NewCond; 3678 if (Cond == ISD::CondCode::SETULT) { 3679 NewCond = ISD::CondCode::SETEQ; 3680 } else if (Cond == ISD::CondCode::SETULE) { 3681 NewCond = ISD::CondCode::SETEQ; 3682 // But need to 'canonicalize' the constant. 3683 I1 += 1; 3684 } else if (Cond == ISD::CondCode::SETUGT) { 3685 NewCond = ISD::CondCode::SETNE; 3686 // But need to 'canonicalize' the constant. 3687 I1 += 1; 3688 } else if (Cond == ISD::CondCode::SETUGE) { 3689 NewCond = ISD::CondCode::SETNE; 3690 } else 3691 return SDValue(); 3692 3693 APInt I01 = C01->getAPIntValue(); 3694 3695 auto checkConstants = [&I1, &I01]() -> bool { 3696 // Both of them must be power-of-two, and the constant from setcc is bigger. 3697 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3698 }; 3699 3700 if (checkConstants()) { 3701 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3702 } else { 3703 // What if we invert constants? (and the target predicate) 3704 I1.negate(); 3705 I01.negate(); 3706 assert(XVT.isInteger()); 3707 NewCond = getSetCCInverse(NewCond, XVT); 3708 if (!checkConstants()) 3709 return SDValue(); 3710 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3711 } 3712 3713 // They are power-of-two, so which bit is set? 3714 const unsigned KeptBits = I1.logBase2(); 3715 const unsigned KeptBitsMinusOne = I01.logBase2(); 3716 3717 // Magic! 3718 if (KeptBits != (KeptBitsMinusOne + 1)) 3719 return SDValue(); 3720 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3721 3722 // We don't want to do this in every single case. 3723 SelectionDAG &DAG = DCI.DAG; 3724 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3725 XVT, KeptBits)) 3726 return SDValue(); 3727 3728 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3729 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3730 3731 // Unfold into: ((%x << C) a>> C) cond %x 3732 // Where 'cond' will be either 'eq' or 'ne'. 3733 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3734 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3735 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3736 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3737 3738 return T2; 3739 } 3740 3741 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3742 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3743 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3744 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3745 assert(isConstOrConstSplat(N1C) && 3746 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3747 "Should be a comparison with 0."); 3748 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3749 "Valid only for [in]equality comparisons."); 3750 3751 unsigned NewShiftOpcode; 3752 SDValue X, C, Y; 3753 3754 SelectionDAG &DAG = DCI.DAG; 3755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3756 3757 // Look for '(C l>>/<< Y)'. 3758 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3759 // The shift should be one-use. 3760 if (!V.hasOneUse()) 3761 return false; 3762 unsigned OldShiftOpcode = V.getOpcode(); 3763 switch (OldShiftOpcode) { 3764 case ISD::SHL: 3765 NewShiftOpcode = ISD::SRL; 3766 break; 3767 case ISD::SRL: 3768 NewShiftOpcode = ISD::SHL; 3769 break; 3770 default: 3771 return false; // must be a logical shift. 3772 } 3773 // We should be shifting a constant. 3774 // FIXME: best to use isConstantOrConstantVector(). 3775 C = V.getOperand(0); 3776 ConstantSDNode *CC = 3777 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3778 if (!CC) 3779 return false; 3780 Y = V.getOperand(1); 3781 3782 ConstantSDNode *XC = 3783 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3784 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3785 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3786 }; 3787 3788 // LHS of comparison should be an one-use 'and'. 3789 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3790 return SDValue(); 3791 3792 X = N0.getOperand(0); 3793 SDValue Mask = N0.getOperand(1); 3794 3795 // 'and' is commutative! 3796 if (!Match(Mask)) { 3797 std::swap(X, Mask); 3798 if (!Match(Mask)) 3799 return SDValue(); 3800 } 3801 3802 EVT VT = X.getValueType(); 3803 3804 // Produce: 3805 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3806 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3807 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3808 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3809 return T2; 3810 } 3811 3812 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3813 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3814 /// handle the commuted versions of these patterns. 3815 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3816 ISD::CondCode Cond, const SDLoc &DL, 3817 DAGCombinerInfo &DCI) const { 3818 unsigned BOpcode = N0.getOpcode(); 3819 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3820 "Unexpected binop"); 3821 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3822 3823 // (X + Y) == X --> Y == 0 3824 // (X - Y) == X --> Y == 0 3825 // (X ^ Y) == X --> Y == 0 3826 SelectionDAG &DAG = DCI.DAG; 3827 EVT OpVT = N0.getValueType(); 3828 SDValue X = N0.getOperand(0); 3829 SDValue Y = N0.getOperand(1); 3830 if (X == N1) 3831 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3832 3833 if (Y != N1) 3834 return SDValue(); 3835 3836 // (X + Y) == Y --> X == 0 3837 // (X ^ Y) == Y --> X == 0 3838 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3839 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3840 3841 // The shift would not be valid if the operands are boolean (i1). 3842 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3843 return SDValue(); 3844 3845 // (X - Y) == Y --> X == Y << 1 3846 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3847 !DCI.isBeforeLegalize()); 3848 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3849 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3850 if (!DCI.isCalledByLegalizer()) 3851 DCI.AddToWorklist(YShl1.getNode()); 3852 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3853 } 3854 3855 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3856 SDValue N0, const APInt &C1, 3857 ISD::CondCode Cond, const SDLoc &dl, 3858 SelectionDAG &DAG) { 3859 // Look through truncs that don't change the value of a ctpop. 3860 // FIXME: Add vector support? Need to be careful with setcc result type below. 3861 SDValue CTPOP = N0; 3862 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3863 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3864 CTPOP = N0.getOperand(0); 3865 3866 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3867 return SDValue(); 3868 3869 EVT CTVT = CTPOP.getValueType(); 3870 SDValue CTOp = CTPOP.getOperand(0); 3871 3872 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3873 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3874 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3875 return SDValue(); 3876 3877 // (ctpop x) u< 2 -> (x & x-1) == 0 3878 // (ctpop x) u> 1 -> (x & x-1) != 0 3879 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3880 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3881 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3882 return SDValue(); 3883 if (C1 == 0 && (Cond == ISD::SETULT)) 3884 return SDValue(); // This is handled elsewhere. 3885 3886 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3887 3888 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3889 SDValue Result = CTOp; 3890 for (unsigned i = 0; i < Passes; i++) { 3891 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3892 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3893 } 3894 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3895 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3896 } 3897 3898 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3899 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3900 // For scalars, keep CTPOP if it is legal or custom. 3901 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3902 return SDValue(); 3903 // This is based on X86's custom lowering for CTPOP which produces more 3904 // instructions than the expansion here. 3905 3906 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3907 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3908 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3909 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3910 assert(CTVT.isInteger()); 3911 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3912 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3913 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3914 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3915 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3916 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3917 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3918 } 3919 3920 return SDValue(); 3921 } 3922 3923 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3924 ISD::CondCode Cond, const SDLoc &dl, 3925 SelectionDAG &DAG) { 3926 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3927 return SDValue(); 3928 3929 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3930 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3931 return SDValue(); 3932 3933 auto getRotateSource = [](SDValue X) { 3934 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3935 return X.getOperand(0); 3936 return SDValue(); 3937 }; 3938 3939 // Peek through a rotated value compared against 0 or -1: 3940 // (rot X, Y) == 0/-1 --> X == 0/-1 3941 // (rot X, Y) != 0/-1 --> X != 0/-1 3942 if (SDValue R = getRotateSource(N0)) 3943 return DAG.getSetCC(dl, VT, R, N1, Cond); 3944 3945 // Peek through an 'or' of a rotated value compared against 0: 3946 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3947 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3948 // 3949 // TODO: Add the 'and' with -1 sibling. 3950 // TODO: Recurse through a series of 'or' ops to find the rotate. 3951 EVT OpVT = N0.getValueType(); 3952 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3953 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3954 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3955 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3956 } 3957 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3958 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3959 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3960 } 3961 } 3962 3963 return SDValue(); 3964 } 3965 3966 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3967 ISD::CondCode Cond, const SDLoc &dl, 3968 SelectionDAG &DAG) { 3969 // If we are testing for all-bits-clear, we might be able to do that with 3970 // less shifting since bit-order does not matter. 3971 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3972 return SDValue(); 3973 3974 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3975 if (!C1 || !C1->isZero()) 3976 return SDValue(); 3977 3978 if (!N0.hasOneUse() || 3979 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3980 return SDValue(); 3981 3982 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3983 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3984 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3985 return SDValue(); 3986 3987 // Canonicalize fshr as fshl to reduce pattern-matching. 3988 unsigned ShAmt = ShAmtC->getZExtValue(); 3989 if (N0.getOpcode() == ISD::FSHR) 3990 ShAmt = BitWidth - ShAmt; 3991 3992 // Match an 'or' with a specific operand 'Other' in either commuted variant. 3993 SDValue X, Y; 3994 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 3995 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 3996 return false; 3997 if (Or.getOperand(0) == Other) { 3998 X = Or.getOperand(0); 3999 Y = Or.getOperand(1); 4000 return true; 4001 } 4002 if (Or.getOperand(1) == Other) { 4003 X = Or.getOperand(1); 4004 Y = Or.getOperand(0); 4005 return true; 4006 } 4007 return false; 4008 }; 4009 4010 EVT OpVT = N0.getValueType(); 4011 EVT ShAmtVT = N0.getOperand(2).getValueType(); 4012 SDValue F0 = N0.getOperand(0); 4013 SDValue F1 = N0.getOperand(1); 4014 if (matchOr(F0, F1)) { 4015 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 4016 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 4017 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 4018 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4019 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4020 } 4021 if (matchOr(F1, F0)) { 4022 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 4023 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 4024 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 4025 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 4026 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 4027 } 4028 4029 return SDValue(); 4030 } 4031 4032 /// Try to simplify a setcc built with the specified operands and cc. If it is 4033 /// unable to simplify it, return a null SDValue. 4034 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 4035 ISD::CondCode Cond, bool foldBooleans, 4036 DAGCombinerInfo &DCI, 4037 const SDLoc &dl) const { 4038 SelectionDAG &DAG = DCI.DAG; 4039 const DataLayout &Layout = DAG.getDataLayout(); 4040 EVT OpVT = N0.getValueType(); 4041 4042 // Constant fold or commute setcc. 4043 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4044 return Fold; 4045 4046 bool N0ConstOrSplat = 4047 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4048 bool N1ConstOrSplat = 4049 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4050 4051 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4052 // TODO: Handle non-splat vector constants. All undef causes trouble. 4053 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4054 // infinite loop here when we encounter one. 4055 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4056 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4057 (DCI.isBeforeLegalizeOps() || 4058 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4059 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4060 4061 // If we have a subtract with the same 2 non-constant operands as this setcc 4062 // -- but in reverse order -- then try to commute the operands of this setcc 4063 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4064 // instruction on some targets. 4065 if (!N0ConstOrSplat && !N1ConstOrSplat && 4066 (DCI.isBeforeLegalizeOps() || 4067 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4068 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4069 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4070 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4071 4072 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4073 return V; 4074 4075 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4076 return V; 4077 4078 if (auto *N1C = isConstOrConstSplat(N1)) { 4079 const APInt &C1 = N1C->getAPIntValue(); 4080 4081 // Optimize some CTPOP cases. 4082 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4083 return V; 4084 4085 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4086 // equality comparison, then we're just comparing whether X itself is 4087 // zero. 4088 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4089 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4090 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4091 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4092 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4093 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4094 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4095 // (srl (ctlz x), 5) == 0 -> X != 0 4096 // (srl (ctlz x), 5) != 1 -> X != 0 4097 Cond = ISD::SETNE; 4098 } else { 4099 // (srl (ctlz x), 5) != 0 -> X == 0 4100 // (srl (ctlz x), 5) == 1 -> X == 0 4101 Cond = ISD::SETEQ; 4102 } 4103 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4104 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4105 Cond); 4106 } 4107 } 4108 } 4109 } 4110 4111 // FIXME: Support vectors. 4112 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4113 const APInt &C1 = N1C->getAPIntValue(); 4114 4115 // (zext x) == C --> x == (trunc C) 4116 // (sext x) == C --> x == (trunc C) 4117 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4118 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4119 unsigned MinBits = N0.getValueSizeInBits(); 4120 SDValue PreExt; 4121 bool Signed = false; 4122 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4123 // ZExt 4124 MinBits = N0->getOperand(0).getValueSizeInBits(); 4125 PreExt = N0->getOperand(0); 4126 } else if (N0->getOpcode() == ISD::AND) { 4127 // DAGCombine turns costly ZExts into ANDs 4128 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4129 if ((C->getAPIntValue()+1).isPowerOf2()) { 4130 MinBits = C->getAPIntValue().countTrailingOnes(); 4131 PreExt = N0->getOperand(0); 4132 } 4133 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4134 // SExt 4135 MinBits = N0->getOperand(0).getValueSizeInBits(); 4136 PreExt = N0->getOperand(0); 4137 Signed = true; 4138 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4139 // ZEXTLOAD / SEXTLOAD 4140 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4141 MinBits = LN0->getMemoryVT().getSizeInBits(); 4142 PreExt = N0; 4143 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4144 Signed = true; 4145 MinBits = LN0->getMemoryVT().getSizeInBits(); 4146 PreExt = N0; 4147 } 4148 } 4149 4150 // Figure out how many bits we need to preserve this constant. 4151 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4152 4153 // Make sure we're not losing bits from the constant. 4154 if (MinBits > 0 && 4155 MinBits < C1.getBitWidth() && 4156 MinBits >= ReqdBits) { 4157 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4158 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4159 // Will get folded away. 4160 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4161 if (MinBits == 1 && C1 == 1) 4162 // Invert the condition. 4163 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4164 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4165 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4166 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4167 } 4168 4169 // If truncating the setcc operands is not desirable, we can still 4170 // simplify the expression in some cases: 4171 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4172 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4173 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4174 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4175 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4176 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4177 SDValue TopSetCC = N0->getOperand(0); 4178 unsigned N0Opc = N0->getOpcode(); 4179 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4180 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4181 TopSetCC.getOpcode() == ISD::SETCC && 4182 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4183 (isConstFalseVal(N1) || 4184 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4185 4186 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4187 (!N1C->isZero() && Cond == ISD::SETNE); 4188 4189 if (!Inverse) 4190 return TopSetCC; 4191 4192 ISD::CondCode InvCond = ISD::getSetCCInverse( 4193 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4194 TopSetCC.getOperand(0).getValueType()); 4195 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4196 TopSetCC.getOperand(1), 4197 InvCond); 4198 } 4199 } 4200 } 4201 4202 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4203 // equality or unsigned, and all 1 bits of the const are in the same 4204 // partial word, see if we can shorten the load. 4205 if (DCI.isBeforeLegalize() && 4206 !ISD::isSignedIntSetCC(Cond) && 4207 N0.getOpcode() == ISD::AND && C1 == 0 && 4208 N0.getNode()->hasOneUse() && 4209 isa<LoadSDNode>(N0.getOperand(0)) && 4210 N0.getOperand(0).getNode()->hasOneUse() && 4211 isa<ConstantSDNode>(N0.getOperand(1))) { 4212 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4213 APInt bestMask; 4214 unsigned bestWidth = 0, bestOffset = 0; 4215 if (Lod->isSimple() && Lod->isUnindexed()) { 4216 unsigned origWidth = N0.getValueSizeInBits(); 4217 unsigned maskWidth = origWidth; 4218 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4219 // 8 bits, but have to be careful... 4220 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4221 origWidth = Lod->getMemoryVT().getSizeInBits(); 4222 const APInt &Mask = N0.getConstantOperandAPInt(1); 4223 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4224 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4225 for (unsigned offset=0; offset<origWidth/width; offset++) { 4226 if (Mask.isSubsetOf(newMask)) { 4227 if (Layout.isLittleEndian()) 4228 bestOffset = (uint64_t)offset * (width/8); 4229 else 4230 bestOffset = (origWidth/width - offset - 1) * (width/8); 4231 bestMask = Mask.lshr(offset * (width/8) * 8); 4232 bestWidth = width; 4233 break; 4234 } 4235 newMask <<= width; 4236 } 4237 } 4238 } 4239 if (bestWidth) { 4240 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4241 if (newVT.isRound() && 4242 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4243 SDValue Ptr = Lod->getBasePtr(); 4244 if (bestOffset != 0) 4245 Ptr = 4246 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4247 SDValue NewLoad = 4248 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4249 Lod->getPointerInfo().getWithOffset(bestOffset), 4250 Lod->getOriginalAlign()); 4251 return DAG.getSetCC(dl, VT, 4252 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4253 DAG.getConstant(bestMask.trunc(bestWidth), 4254 dl, newVT)), 4255 DAG.getConstant(0LL, dl, newVT), Cond); 4256 } 4257 } 4258 } 4259 4260 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4261 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4262 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4263 4264 // If the comparison constant has bits in the upper part, the 4265 // zero-extended value could never match. 4266 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4267 C1.getBitWidth() - InSize))) { 4268 switch (Cond) { 4269 case ISD::SETUGT: 4270 case ISD::SETUGE: 4271 case ISD::SETEQ: 4272 return DAG.getConstant(0, dl, VT); 4273 case ISD::SETULT: 4274 case ISD::SETULE: 4275 case ISD::SETNE: 4276 return DAG.getConstant(1, dl, VT); 4277 case ISD::SETGT: 4278 case ISD::SETGE: 4279 // True if the sign bit of C1 is set. 4280 return DAG.getConstant(C1.isNegative(), dl, VT); 4281 case ISD::SETLT: 4282 case ISD::SETLE: 4283 // True if the sign bit of C1 isn't set. 4284 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4285 default: 4286 break; 4287 } 4288 } 4289 4290 // Otherwise, we can perform the comparison with the low bits. 4291 switch (Cond) { 4292 case ISD::SETEQ: 4293 case ISD::SETNE: 4294 case ISD::SETUGT: 4295 case ISD::SETUGE: 4296 case ISD::SETULT: 4297 case ISD::SETULE: { 4298 EVT newVT = N0.getOperand(0).getValueType(); 4299 if (DCI.isBeforeLegalizeOps() || 4300 (isOperationLegal(ISD::SETCC, newVT) && 4301 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4302 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4303 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4304 4305 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4306 NewConst, Cond); 4307 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4308 } 4309 break; 4310 } 4311 default: 4312 break; // todo, be more careful with signed comparisons 4313 } 4314 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4315 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4316 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4317 OpVT)) { 4318 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4319 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4320 EVT ExtDstTy = N0.getValueType(); 4321 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4322 4323 // If the constant doesn't fit into the number of bits for the source of 4324 // the sign extension, it is impossible for both sides to be equal. 4325 if (C1.getMinSignedBits() > ExtSrcTyBits) 4326 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4327 4328 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4329 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4330 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4331 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4332 DAG.getConstant(Imm, dl, ExtDstTy)); 4333 if (!DCI.isCalledByLegalizer()) 4334 DCI.AddToWorklist(ZextOp.getNode()); 4335 // Otherwise, make this a use of a zext. 4336 return DAG.getSetCC(dl, VT, ZextOp, 4337 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4338 } else if ((N1C->isZero() || N1C->isOne()) && 4339 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4340 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4341 if (N0.getOpcode() == ISD::SETCC && 4342 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4343 (N0.getValueType() == MVT::i1 || 4344 getBooleanContents(N0.getOperand(0).getValueType()) == 4345 ZeroOrOneBooleanContent)) { 4346 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4347 if (TrueWhenTrue) 4348 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4349 // Invert the condition. 4350 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4351 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4352 if (DCI.isBeforeLegalizeOps() || 4353 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4354 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4355 } 4356 4357 if ((N0.getOpcode() == ISD::XOR || 4358 (N0.getOpcode() == ISD::AND && 4359 N0.getOperand(0).getOpcode() == ISD::XOR && 4360 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4361 isOneConstant(N0.getOperand(1))) { 4362 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4363 // can only do this if the top bits are known zero. 4364 unsigned BitWidth = N0.getValueSizeInBits(); 4365 if (DAG.MaskedValueIsZero(N0, 4366 APInt::getHighBitsSet(BitWidth, 4367 BitWidth-1))) { 4368 // Okay, get the un-inverted input value. 4369 SDValue Val; 4370 if (N0.getOpcode() == ISD::XOR) { 4371 Val = N0.getOperand(0); 4372 } else { 4373 assert(N0.getOpcode() == ISD::AND && 4374 N0.getOperand(0).getOpcode() == ISD::XOR); 4375 // ((X^1)&1)^1 -> X & 1 4376 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4377 N0.getOperand(0).getOperand(0), 4378 N0.getOperand(1)); 4379 } 4380 4381 return DAG.getSetCC(dl, VT, Val, N1, 4382 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4383 } 4384 } else if (N1C->isOne()) { 4385 SDValue Op0 = N0; 4386 if (Op0.getOpcode() == ISD::TRUNCATE) 4387 Op0 = Op0.getOperand(0); 4388 4389 if ((Op0.getOpcode() == ISD::XOR) && 4390 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4391 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4392 SDValue XorLHS = Op0.getOperand(0); 4393 SDValue XorRHS = Op0.getOperand(1); 4394 // Ensure that the input setccs return an i1 type or 0/1 value. 4395 if (Op0.getValueType() == MVT::i1 || 4396 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4397 ZeroOrOneBooleanContent && 4398 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4399 ZeroOrOneBooleanContent)) { 4400 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4401 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4402 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4403 } 4404 } 4405 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4406 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4407 if (Op0.getValueType().bitsGT(VT)) 4408 Op0 = DAG.getNode(ISD::AND, dl, VT, 4409 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4410 DAG.getConstant(1, dl, VT)); 4411 else if (Op0.getValueType().bitsLT(VT)) 4412 Op0 = DAG.getNode(ISD::AND, dl, VT, 4413 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4414 DAG.getConstant(1, dl, VT)); 4415 4416 return DAG.getSetCC(dl, VT, Op0, 4417 DAG.getConstant(0, dl, Op0.getValueType()), 4418 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4419 } 4420 if (Op0.getOpcode() == ISD::AssertZext && 4421 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4422 return DAG.getSetCC(dl, VT, Op0, 4423 DAG.getConstant(0, dl, Op0.getValueType()), 4424 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4425 } 4426 } 4427 4428 // Given: 4429 // icmp eq/ne (urem %x, %y), 0 4430 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4431 // icmp eq/ne %x, 0 4432 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4433 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4434 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4435 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4436 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4437 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4438 } 4439 4440 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4441 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4442 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4443 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4444 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4445 N1C && N1C->isAllOnes()) { 4446 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4447 DAG.getConstant(0, dl, OpVT), 4448 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4449 } 4450 4451 if (SDValue V = 4452 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4453 return V; 4454 } 4455 4456 // These simplifications apply to splat vectors as well. 4457 // TODO: Handle more splat vector cases. 4458 if (auto *N1C = isConstOrConstSplat(N1)) { 4459 const APInt &C1 = N1C->getAPIntValue(); 4460 4461 APInt MinVal, MaxVal; 4462 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4463 if (ISD::isSignedIntSetCC(Cond)) { 4464 MinVal = APInt::getSignedMinValue(OperandBitSize); 4465 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4466 } else { 4467 MinVal = APInt::getMinValue(OperandBitSize); 4468 MaxVal = APInt::getMaxValue(OperandBitSize); 4469 } 4470 4471 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4472 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4473 // X >= MIN --> true 4474 if (C1 == MinVal) 4475 return DAG.getBoolConstant(true, dl, VT, OpVT); 4476 4477 if (!VT.isVector()) { // TODO: Support this for vectors. 4478 // X >= C0 --> X > (C0 - 1) 4479 APInt C = C1 - 1; 4480 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4481 if ((DCI.isBeforeLegalizeOps() || 4482 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4483 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4484 isLegalICmpImmediate(C.getSExtValue())))) { 4485 return DAG.getSetCC(dl, VT, N0, 4486 DAG.getConstant(C, dl, N1.getValueType()), 4487 NewCC); 4488 } 4489 } 4490 } 4491 4492 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4493 // X <= MAX --> true 4494 if (C1 == MaxVal) 4495 return DAG.getBoolConstant(true, dl, VT, OpVT); 4496 4497 // X <= C0 --> X < (C0 + 1) 4498 if (!VT.isVector()) { // TODO: Support this for vectors. 4499 APInt C = C1 + 1; 4500 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4501 if ((DCI.isBeforeLegalizeOps() || 4502 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4503 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4504 isLegalICmpImmediate(C.getSExtValue())))) { 4505 return DAG.getSetCC(dl, VT, N0, 4506 DAG.getConstant(C, dl, N1.getValueType()), 4507 NewCC); 4508 } 4509 } 4510 } 4511 4512 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4513 if (C1 == MinVal) 4514 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4515 4516 // TODO: Support this for vectors after legalize ops. 4517 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4518 // Canonicalize setlt X, Max --> setne X, Max 4519 if (C1 == MaxVal) 4520 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4521 4522 // If we have setult X, 1, turn it into seteq X, 0 4523 if (C1 == MinVal+1) 4524 return DAG.getSetCC(dl, VT, N0, 4525 DAG.getConstant(MinVal, dl, N0.getValueType()), 4526 ISD::SETEQ); 4527 } 4528 } 4529 4530 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4531 if (C1 == MaxVal) 4532 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4533 4534 // TODO: Support this for vectors after legalize ops. 4535 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4536 // Canonicalize setgt X, Min --> setne X, Min 4537 if (C1 == MinVal) 4538 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4539 4540 // If we have setugt X, Max-1, turn it into seteq X, Max 4541 if (C1 == MaxVal-1) 4542 return DAG.getSetCC(dl, VT, N0, 4543 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4544 ISD::SETEQ); 4545 } 4546 } 4547 4548 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4549 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4550 if (C1.isZero()) 4551 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4552 VT, N0, N1, Cond, DCI, dl)) 4553 return CC; 4554 4555 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4556 // For example, when high 32-bits of i64 X are known clear: 4557 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4558 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4559 bool CmpZero = N1C->getAPIntValue().isZero(); 4560 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4561 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4562 // Match or(lo,shl(hi,bw/2)) pattern. 4563 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4564 unsigned EltBits = V.getScalarValueSizeInBits(); 4565 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4566 return false; 4567 SDValue LHS = V.getOperand(0); 4568 SDValue RHS = V.getOperand(1); 4569 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4570 // Unshifted element must have zero upperbits. 4571 if (RHS.getOpcode() == ISD::SHL && 4572 isa<ConstantSDNode>(RHS.getOperand(1)) && 4573 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4574 DAG.MaskedValueIsZero(LHS, HiBits)) { 4575 Lo = LHS; 4576 Hi = RHS.getOperand(0); 4577 return true; 4578 } 4579 if (LHS.getOpcode() == ISD::SHL && 4580 isa<ConstantSDNode>(LHS.getOperand(1)) && 4581 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4582 DAG.MaskedValueIsZero(RHS, HiBits)) { 4583 Lo = RHS; 4584 Hi = LHS.getOperand(0); 4585 return true; 4586 } 4587 return false; 4588 }; 4589 4590 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4591 unsigned EltBits = N0.getScalarValueSizeInBits(); 4592 unsigned HalfBits = EltBits / 2; 4593 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4594 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4595 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4596 SDValue NewN0 = 4597 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4598 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4599 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4600 }; 4601 4602 SDValue Lo, Hi; 4603 if (IsConcat(N0, Lo, Hi)) 4604 return MergeConcat(Lo, Hi); 4605 4606 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4607 SDValue Lo0, Lo1, Hi0, Hi1; 4608 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4609 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4610 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4611 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4612 } 4613 } 4614 } 4615 } 4616 4617 // If we have "setcc X, C0", check to see if we can shrink the immediate 4618 // by changing cc. 4619 // TODO: Support this for vectors after legalize ops. 4620 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4621 // SETUGT X, SINTMAX -> SETLT X, 0 4622 // SETUGE X, SINTMIN -> SETLT X, 0 4623 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4624 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4625 return DAG.getSetCC(dl, VT, N0, 4626 DAG.getConstant(0, dl, N1.getValueType()), 4627 ISD::SETLT); 4628 4629 // SETULT X, SINTMIN -> SETGT X, -1 4630 // SETULE X, SINTMAX -> SETGT X, -1 4631 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4632 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4633 return DAG.getSetCC(dl, VT, N0, 4634 DAG.getAllOnesConstant(dl, N1.getValueType()), 4635 ISD::SETGT); 4636 } 4637 } 4638 4639 // Back to non-vector simplifications. 4640 // TODO: Can we do these for vector splats? 4641 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4642 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4643 const APInt &C1 = N1C->getAPIntValue(); 4644 EVT ShValTy = N0.getValueType(); 4645 4646 // Fold bit comparisons when we can. This will result in an 4647 // incorrect value when boolean false is negative one, unless 4648 // the bitsize is 1 in which case the false value is the same 4649 // in practice regardless of the representation. 4650 if ((VT.getSizeInBits() == 1 || 4651 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4652 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4653 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4654 N0.getOpcode() == ISD::AND) { 4655 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4656 EVT ShiftTy = 4657 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4658 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4659 // Perform the xform if the AND RHS is a single bit. 4660 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4661 if (AndRHS->getAPIntValue().isPowerOf2() && 4662 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4663 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4664 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4665 DAG.getConstant(ShCt, dl, ShiftTy))); 4666 } 4667 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4668 // (X & 8) == 8 --> (X & 8) >> 3 4669 // Perform the xform if C1 is a single bit. 4670 unsigned ShCt = C1.logBase2(); 4671 if (C1.isPowerOf2() && 4672 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4673 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4674 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4675 DAG.getConstant(ShCt, dl, ShiftTy))); 4676 } 4677 } 4678 } 4679 } 4680 4681 if (C1.getMinSignedBits() <= 64 && 4682 !isLegalICmpImmediate(C1.getSExtValue())) { 4683 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4684 // (X & -256) == 256 -> (X >> 8) == 1 4685 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4686 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4687 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4688 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4689 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4690 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4691 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4692 SDValue Shift = 4693 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4694 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4695 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4696 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4697 } 4698 } 4699 } 4700 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4701 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4702 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4703 // X < 0x100000000 -> (X >> 32) < 1 4704 // X >= 0x100000000 -> (X >> 32) >= 1 4705 // X <= 0x0ffffffff -> (X >> 32) < 1 4706 // X > 0x0ffffffff -> (X >> 32) >= 1 4707 unsigned ShiftBits; 4708 APInt NewC = C1; 4709 ISD::CondCode NewCond = Cond; 4710 if (AdjOne) { 4711 ShiftBits = C1.countTrailingOnes(); 4712 NewC = NewC + 1; 4713 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4714 } else { 4715 ShiftBits = C1.countTrailingZeros(); 4716 } 4717 NewC.lshrInPlace(ShiftBits); 4718 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4719 isLegalICmpImmediate(NewC.getSExtValue()) && 4720 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4721 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4722 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4723 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4724 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4725 } 4726 } 4727 } 4728 } 4729 4730 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4731 auto *CFP = cast<ConstantFPSDNode>(N1); 4732 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4733 4734 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4735 // constant if knowing that the operand is non-nan is enough. We prefer to 4736 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4737 // materialize 0.0. 4738 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4739 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4740 4741 // setcc (fneg x), C -> setcc swap(pred) x, -C 4742 if (N0.getOpcode() == ISD::FNEG) { 4743 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4744 if (DCI.isBeforeLegalizeOps() || 4745 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4746 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4747 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4748 } 4749 } 4750 4751 // If the condition is not legal, see if we can find an equivalent one 4752 // which is legal. 4753 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4754 // If the comparison was an awkward floating-point == or != and one of 4755 // the comparison operands is infinity or negative infinity, convert the 4756 // condition to a less-awkward <= or >=. 4757 if (CFP->getValueAPF().isInfinity()) { 4758 bool IsNegInf = CFP->getValueAPF().isNegative(); 4759 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4760 switch (Cond) { 4761 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4762 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4763 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4764 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4765 default: break; 4766 } 4767 if (NewCond != ISD::SETCC_INVALID && 4768 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4769 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4770 } 4771 } 4772 } 4773 4774 if (N0 == N1) { 4775 // The sext(setcc()) => setcc() optimization relies on the appropriate 4776 // constant being emitted. 4777 assert(!N0.getValueType().isInteger() && 4778 "Integer types should be handled by FoldSetCC"); 4779 4780 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4781 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4782 if (UOF == 2) // FP operators that are undefined on NaNs. 4783 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4784 if (UOF == unsigned(EqTrue)) 4785 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4786 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4787 // if it is not already. 4788 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4789 if (NewCond != Cond && 4790 (DCI.isBeforeLegalizeOps() || 4791 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4792 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4793 } 4794 4795 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4796 N0.getValueType().isInteger()) { 4797 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4798 N0.getOpcode() == ISD::XOR) { 4799 // Simplify (X+Y) == (X+Z) --> Y == Z 4800 if (N0.getOpcode() == N1.getOpcode()) { 4801 if (N0.getOperand(0) == N1.getOperand(0)) 4802 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4803 if (N0.getOperand(1) == N1.getOperand(1)) 4804 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4805 if (isCommutativeBinOp(N0.getOpcode())) { 4806 // If X op Y == Y op X, try other combinations. 4807 if (N0.getOperand(0) == N1.getOperand(1)) 4808 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4809 Cond); 4810 if (N0.getOperand(1) == N1.getOperand(0)) 4811 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4812 Cond); 4813 } 4814 } 4815 4816 // If RHS is a legal immediate value for a compare instruction, we need 4817 // to be careful about increasing register pressure needlessly. 4818 bool LegalRHSImm = false; 4819 4820 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4821 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4822 // Turn (X+C1) == C2 --> X == C2-C1 4823 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4824 return DAG.getSetCC( 4825 dl, VT, N0.getOperand(0), 4826 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4827 dl, N0.getValueType()), 4828 Cond); 4829 4830 // Turn (X^C1) == C2 --> X == C1^C2 4831 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4832 return DAG.getSetCC( 4833 dl, VT, N0.getOperand(0), 4834 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4835 dl, N0.getValueType()), 4836 Cond); 4837 } 4838 4839 // Turn (C1-X) == C2 --> X == C1-C2 4840 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4841 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4842 return DAG.getSetCC( 4843 dl, VT, N0.getOperand(1), 4844 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4845 dl, N0.getValueType()), 4846 Cond); 4847 4848 // Could RHSC fold directly into a compare? 4849 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4850 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4851 } 4852 4853 // (X+Y) == X --> Y == 0 and similar folds. 4854 // Don't do this if X is an immediate that can fold into a cmp 4855 // instruction and X+Y has other uses. It could be an induction variable 4856 // chain, and the transform would increase register pressure. 4857 if (!LegalRHSImm || N0.hasOneUse()) 4858 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4859 return V; 4860 } 4861 4862 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4863 N1.getOpcode() == ISD::XOR) 4864 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4865 return V; 4866 4867 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4868 return V; 4869 } 4870 4871 // Fold remainder of division by a constant. 4872 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4873 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4874 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4875 4876 // When division is cheap or optimizing for minimum size, 4877 // fall through to DIVREM creation by skipping this fold. 4878 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4879 if (N0.getOpcode() == ISD::UREM) { 4880 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4881 return Folded; 4882 } else if (N0.getOpcode() == ISD::SREM) { 4883 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4884 return Folded; 4885 } 4886 } 4887 } 4888 4889 // Fold away ALL boolean setcc's. 4890 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4891 SDValue Temp; 4892 switch (Cond) { 4893 default: llvm_unreachable("Unknown integer setcc!"); 4894 case ISD::SETEQ: // X == Y -> ~(X^Y) 4895 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4896 N0 = DAG.getNOT(dl, Temp, OpVT); 4897 if (!DCI.isCalledByLegalizer()) 4898 DCI.AddToWorklist(Temp.getNode()); 4899 break; 4900 case ISD::SETNE: // X != Y --> (X^Y) 4901 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4902 break; 4903 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4904 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4905 Temp = DAG.getNOT(dl, N0, OpVT); 4906 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4907 if (!DCI.isCalledByLegalizer()) 4908 DCI.AddToWorklist(Temp.getNode()); 4909 break; 4910 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4911 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4912 Temp = DAG.getNOT(dl, N1, OpVT); 4913 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4914 if (!DCI.isCalledByLegalizer()) 4915 DCI.AddToWorklist(Temp.getNode()); 4916 break; 4917 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4918 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4919 Temp = DAG.getNOT(dl, N0, OpVT); 4920 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4921 if (!DCI.isCalledByLegalizer()) 4922 DCI.AddToWorklist(Temp.getNode()); 4923 break; 4924 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4925 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4926 Temp = DAG.getNOT(dl, N1, OpVT); 4927 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4928 break; 4929 } 4930 if (VT.getScalarType() != MVT::i1) { 4931 if (!DCI.isCalledByLegalizer()) 4932 DCI.AddToWorklist(N0.getNode()); 4933 // FIXME: If running after legalize, we probably can't do this. 4934 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4935 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4936 } 4937 return N0; 4938 } 4939 4940 // Could not fold it. 4941 return SDValue(); 4942 } 4943 4944 /// Returns true (and the GlobalValue and the offset) if the node is a 4945 /// GlobalAddress + offset. 4946 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4947 int64_t &Offset) const { 4948 4949 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4950 4951 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4952 GA = GASD->getGlobal(); 4953 Offset += GASD->getOffset(); 4954 return true; 4955 } 4956 4957 if (N->getOpcode() == ISD::ADD) { 4958 SDValue N1 = N->getOperand(0); 4959 SDValue N2 = N->getOperand(1); 4960 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4961 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4962 Offset += V->getSExtValue(); 4963 return true; 4964 } 4965 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4966 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4967 Offset += V->getSExtValue(); 4968 return true; 4969 } 4970 } 4971 } 4972 4973 return false; 4974 } 4975 4976 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4977 DAGCombinerInfo &DCI) const { 4978 // Default implementation: no optimization. 4979 return SDValue(); 4980 } 4981 4982 //===----------------------------------------------------------------------===// 4983 // Inline Assembler Implementation Methods 4984 //===----------------------------------------------------------------------===// 4985 4986 TargetLowering::ConstraintType 4987 TargetLowering::getConstraintType(StringRef Constraint) const { 4988 unsigned S = Constraint.size(); 4989 4990 if (S == 1) { 4991 switch (Constraint[0]) { 4992 default: break; 4993 case 'r': 4994 return C_RegisterClass; 4995 case 'm': // memory 4996 case 'o': // offsetable 4997 case 'V': // not offsetable 4998 return C_Memory; 4999 case 'p': // Address. 5000 return C_Address; 5001 case 'n': // Simple Integer 5002 case 'E': // Floating Point Constant 5003 case 'F': // Floating Point Constant 5004 return C_Immediate; 5005 case 'i': // Simple Integer or Relocatable Constant 5006 case 's': // Relocatable Constant 5007 case 'X': // Allow ANY value. 5008 case 'I': // Target registers. 5009 case 'J': 5010 case 'K': 5011 case 'L': 5012 case 'M': 5013 case 'N': 5014 case 'O': 5015 case 'P': 5016 case '<': 5017 case '>': 5018 return C_Other; 5019 } 5020 } 5021 5022 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 5023 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 5024 return C_Memory; 5025 return C_Register; 5026 } 5027 return C_Unknown; 5028 } 5029 5030 /// Try to replace an X constraint, which matches anything, with another that 5031 /// has more specific requirements based on the type of the corresponding 5032 /// operand. 5033 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 5034 if (ConstraintVT.isInteger()) 5035 return "r"; 5036 if (ConstraintVT.isFloatingPoint()) 5037 return "f"; // works for many targets 5038 return nullptr; 5039 } 5040 5041 SDValue TargetLowering::LowerAsmOutputForConstraint( 5042 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5043 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5044 return SDValue(); 5045 } 5046 5047 /// Lower the specified operand into the Ops vector. 5048 /// If it is invalid, don't add anything to Ops. 5049 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5050 std::string &Constraint, 5051 std::vector<SDValue> &Ops, 5052 SelectionDAG &DAG) const { 5053 5054 if (Constraint.length() > 1) return; 5055 5056 char ConstraintLetter = Constraint[0]; 5057 switch (ConstraintLetter) { 5058 default: break; 5059 case 'X': // Allows any operand 5060 case 'i': // Simple Integer or Relocatable Constant 5061 case 'n': // Simple Integer 5062 case 's': { // Relocatable Constant 5063 5064 ConstantSDNode *C; 5065 uint64_t Offset = 0; 5066 5067 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5068 // etc., since getelementpointer is variadic. We can't use 5069 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5070 // while in this case the GA may be furthest from the root node which is 5071 // likely an ISD::ADD. 5072 while (true) { 5073 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5074 // gcc prints these as sign extended. Sign extend value to 64 bits 5075 // now; without this it would get ZExt'd later in 5076 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5077 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5078 BooleanContent BCont = getBooleanContents(MVT::i64); 5079 ISD::NodeType ExtOpc = 5080 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5081 int64_t ExtVal = 5082 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5083 Ops.push_back( 5084 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5085 return; 5086 } 5087 if (ConstraintLetter != 'n') { 5088 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5089 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5090 GA->getValueType(0), 5091 Offset + GA->getOffset())); 5092 return; 5093 } 5094 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5095 Ops.push_back(DAG.getTargetBlockAddress( 5096 BA->getBlockAddress(), BA->getValueType(0), 5097 Offset + BA->getOffset(), BA->getTargetFlags())); 5098 return; 5099 } 5100 if (isa<BasicBlockSDNode>(Op)) { 5101 Ops.push_back(Op); 5102 return; 5103 } 5104 } 5105 const unsigned OpCode = Op.getOpcode(); 5106 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5107 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5108 Op = Op.getOperand(1); 5109 // Subtraction is not commutative. 5110 else if (OpCode == ISD::ADD && 5111 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5112 Op = Op.getOperand(0); 5113 else 5114 return; 5115 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5116 continue; 5117 } 5118 return; 5119 } 5120 break; 5121 } 5122 } 5123 } 5124 5125 std::pair<unsigned, const TargetRegisterClass *> 5126 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5127 StringRef Constraint, 5128 MVT VT) const { 5129 if (Constraint.empty() || Constraint[0] != '{') 5130 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5131 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5132 5133 // Remove the braces from around the name. 5134 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5135 5136 std::pair<unsigned, const TargetRegisterClass *> R = 5137 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5138 5139 // Figure out which register class contains this reg. 5140 for (const TargetRegisterClass *RC : RI->regclasses()) { 5141 // If none of the value types for this register class are valid, we 5142 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5143 if (!isLegalRC(*RI, *RC)) 5144 continue; 5145 5146 for (const MCPhysReg &PR : *RC) { 5147 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5148 std::pair<unsigned, const TargetRegisterClass *> S = 5149 std::make_pair(PR, RC); 5150 5151 // If this register class has the requested value type, return it, 5152 // otherwise keep searching and return the first class found 5153 // if no other is found which explicitly has the requested type. 5154 if (RI->isTypeLegalForClass(*RC, VT)) 5155 return S; 5156 if (!R.second) 5157 R = S; 5158 } 5159 } 5160 } 5161 5162 return R; 5163 } 5164 5165 //===----------------------------------------------------------------------===// 5166 // Constraint Selection. 5167 5168 /// Return true of this is an input operand that is a matching constraint like 5169 /// "4". 5170 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5171 assert(!ConstraintCode.empty() && "No known constraint!"); 5172 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5173 } 5174 5175 /// If this is an input matching constraint, this method returns the output 5176 /// operand it matches. 5177 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5178 assert(!ConstraintCode.empty() && "No known constraint!"); 5179 return atoi(ConstraintCode.c_str()); 5180 } 5181 5182 /// Split up the constraint string from the inline assembly value into the 5183 /// specific constraints and their prefixes, and also tie in the associated 5184 /// operand values. 5185 /// If this returns an empty vector, and if the constraint string itself 5186 /// isn't empty, there was an error parsing. 5187 TargetLowering::AsmOperandInfoVector 5188 TargetLowering::ParseConstraints(const DataLayout &DL, 5189 const TargetRegisterInfo *TRI, 5190 const CallBase &Call) const { 5191 /// Information about all of the constraints. 5192 AsmOperandInfoVector ConstraintOperands; 5193 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5194 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5195 5196 // Do a prepass over the constraints, canonicalizing them, and building up the 5197 // ConstraintOperands list. 5198 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5199 unsigned ResNo = 0; // ResNo - The result number of the next output. 5200 5201 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5202 ConstraintOperands.emplace_back(std::move(CI)); 5203 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5204 5205 // Update multiple alternative constraint count. 5206 if (OpInfo.multipleAlternatives.size() > maCount) 5207 maCount = OpInfo.multipleAlternatives.size(); 5208 5209 OpInfo.ConstraintVT = MVT::Other; 5210 5211 // Compute the value type for each operand. 5212 switch (OpInfo.Type) { 5213 case InlineAsm::isOutput: 5214 // Indirect outputs just consume an argument. 5215 if (OpInfo.isIndirect) { 5216 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5217 break; 5218 } 5219 5220 // The return value of the call is this value. As such, there is no 5221 // corresponding argument. 5222 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5223 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5224 OpInfo.ConstraintVT = 5225 getSimpleValueType(DL, STy->getElementType(ResNo)); 5226 } else { 5227 assert(ResNo == 0 && "Asm only has one result!"); 5228 OpInfo.ConstraintVT = 5229 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5230 } 5231 ++ResNo; 5232 break; 5233 case InlineAsm::isInput: 5234 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5235 break; 5236 case InlineAsm::isClobber: 5237 // Nothing to do. 5238 break; 5239 } 5240 5241 if (OpInfo.CallOperandVal) { 5242 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5243 if (OpInfo.isIndirect) { 5244 OpTy = Call.getParamElementType(ArgNo); 5245 assert(OpTy && "Indirect operand must have elementtype attribute"); 5246 } 5247 5248 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5249 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5250 if (STy->getNumElements() == 1) 5251 OpTy = STy->getElementType(0); 5252 5253 // If OpTy is not a single value, it may be a struct/union that we 5254 // can tile with integers. 5255 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5256 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5257 switch (BitSize) { 5258 default: break; 5259 case 1: 5260 case 8: 5261 case 16: 5262 case 32: 5263 case 64: 5264 case 128: 5265 OpInfo.ConstraintVT = 5266 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5267 break; 5268 } 5269 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5270 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5271 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5272 } else { 5273 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5274 } 5275 5276 ArgNo++; 5277 } 5278 } 5279 5280 // If we have multiple alternative constraints, select the best alternative. 5281 if (!ConstraintOperands.empty()) { 5282 if (maCount) { 5283 unsigned bestMAIndex = 0; 5284 int bestWeight = -1; 5285 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5286 int weight = -1; 5287 unsigned maIndex; 5288 // Compute the sums of the weights for each alternative, keeping track 5289 // of the best (highest weight) one so far. 5290 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5291 int weightSum = 0; 5292 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5293 cIndex != eIndex; ++cIndex) { 5294 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5295 if (OpInfo.Type == InlineAsm::isClobber) 5296 continue; 5297 5298 // If this is an output operand with a matching input operand, 5299 // look up the matching input. If their types mismatch, e.g. one 5300 // is an integer, the other is floating point, or their sizes are 5301 // different, flag it as an maCantMatch. 5302 if (OpInfo.hasMatchingInput()) { 5303 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5304 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5305 if ((OpInfo.ConstraintVT.isInteger() != 5306 Input.ConstraintVT.isInteger()) || 5307 (OpInfo.ConstraintVT.getSizeInBits() != 5308 Input.ConstraintVT.getSizeInBits())) { 5309 weightSum = -1; // Can't match. 5310 break; 5311 } 5312 } 5313 } 5314 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5315 if (weight == -1) { 5316 weightSum = -1; 5317 break; 5318 } 5319 weightSum += weight; 5320 } 5321 // Update best. 5322 if (weightSum > bestWeight) { 5323 bestWeight = weightSum; 5324 bestMAIndex = maIndex; 5325 } 5326 } 5327 5328 // Now select chosen alternative in each constraint. 5329 for (AsmOperandInfo &cInfo : ConstraintOperands) 5330 if (cInfo.Type != InlineAsm::isClobber) 5331 cInfo.selectAlternative(bestMAIndex); 5332 } 5333 } 5334 5335 // Check and hook up tied operands, choose constraint code to use. 5336 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5337 cIndex != eIndex; ++cIndex) { 5338 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5339 5340 // If this is an output operand with a matching input operand, look up the 5341 // matching input. If their types mismatch, e.g. one is an integer, the 5342 // other is floating point, or their sizes are different, flag it as an 5343 // error. 5344 if (OpInfo.hasMatchingInput()) { 5345 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5346 5347 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5348 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5349 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5350 OpInfo.ConstraintVT); 5351 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5352 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5353 Input.ConstraintVT); 5354 if ((OpInfo.ConstraintVT.isInteger() != 5355 Input.ConstraintVT.isInteger()) || 5356 (MatchRC.second != InputRC.second)) { 5357 report_fatal_error("Unsupported asm: input constraint" 5358 " with a matching output constraint of" 5359 " incompatible type!"); 5360 } 5361 } 5362 } 5363 } 5364 5365 return ConstraintOperands; 5366 } 5367 5368 /// Return an integer indicating how general CT is. 5369 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5370 switch (CT) { 5371 case TargetLowering::C_Immediate: 5372 case TargetLowering::C_Other: 5373 case TargetLowering::C_Unknown: 5374 return 0; 5375 case TargetLowering::C_Register: 5376 return 1; 5377 case TargetLowering::C_RegisterClass: 5378 return 2; 5379 case TargetLowering::C_Memory: 5380 case TargetLowering::C_Address: 5381 return 3; 5382 } 5383 llvm_unreachable("Invalid constraint type"); 5384 } 5385 5386 /// Examine constraint type and operand type and determine a weight value. 5387 /// This object must already have been set up with the operand type 5388 /// and the current alternative constraint selected. 5389 TargetLowering::ConstraintWeight 5390 TargetLowering::getMultipleConstraintMatchWeight( 5391 AsmOperandInfo &info, int maIndex) const { 5392 InlineAsm::ConstraintCodeVector *rCodes; 5393 if (maIndex >= (int)info.multipleAlternatives.size()) 5394 rCodes = &info.Codes; 5395 else 5396 rCodes = &info.multipleAlternatives[maIndex].Codes; 5397 ConstraintWeight BestWeight = CW_Invalid; 5398 5399 // Loop over the options, keeping track of the most general one. 5400 for (const std::string &rCode : *rCodes) { 5401 ConstraintWeight weight = 5402 getSingleConstraintMatchWeight(info, rCode.c_str()); 5403 if (weight > BestWeight) 5404 BestWeight = weight; 5405 } 5406 5407 return BestWeight; 5408 } 5409 5410 /// Examine constraint type and operand type and determine a weight value. 5411 /// This object must already have been set up with the operand type 5412 /// and the current alternative constraint selected. 5413 TargetLowering::ConstraintWeight 5414 TargetLowering::getSingleConstraintMatchWeight( 5415 AsmOperandInfo &info, const char *constraint) const { 5416 ConstraintWeight weight = CW_Invalid; 5417 Value *CallOperandVal = info.CallOperandVal; 5418 // If we don't have a value, we can't do a match, 5419 // but allow it at the lowest weight. 5420 if (!CallOperandVal) 5421 return CW_Default; 5422 // Look at the constraint type. 5423 switch (*constraint) { 5424 case 'i': // immediate integer. 5425 case 'n': // immediate integer with a known value. 5426 if (isa<ConstantInt>(CallOperandVal)) 5427 weight = CW_Constant; 5428 break; 5429 case 's': // non-explicit intregal immediate. 5430 if (isa<GlobalValue>(CallOperandVal)) 5431 weight = CW_Constant; 5432 break; 5433 case 'E': // immediate float if host format. 5434 case 'F': // immediate float. 5435 if (isa<ConstantFP>(CallOperandVal)) 5436 weight = CW_Constant; 5437 break; 5438 case '<': // memory operand with autodecrement. 5439 case '>': // memory operand with autoincrement. 5440 case 'm': // memory operand. 5441 case 'o': // offsettable memory operand 5442 case 'V': // non-offsettable memory operand 5443 weight = CW_Memory; 5444 break; 5445 case 'r': // general register. 5446 case 'g': // general register, memory operand or immediate integer. 5447 // note: Clang converts "g" to "imr". 5448 if (CallOperandVal->getType()->isIntegerTy()) 5449 weight = CW_Register; 5450 break; 5451 case 'X': // any operand. 5452 default: 5453 weight = CW_Default; 5454 break; 5455 } 5456 return weight; 5457 } 5458 5459 /// If there are multiple different constraints that we could pick for this 5460 /// operand (e.g. "imr") try to pick the 'best' one. 5461 /// This is somewhat tricky: constraints fall into four classes: 5462 /// Other -> immediates and magic values 5463 /// Register -> one specific register 5464 /// RegisterClass -> a group of regs 5465 /// Memory -> memory 5466 /// Ideally, we would pick the most specific constraint possible: if we have 5467 /// something that fits into a register, we would pick it. The problem here 5468 /// is that if we have something that could either be in a register or in 5469 /// memory that use of the register could cause selection of *other* 5470 /// operands to fail: they might only succeed if we pick memory. Because of 5471 /// this the heuristic we use is: 5472 /// 5473 /// 1) If there is an 'other' constraint, and if the operand is valid for 5474 /// that constraint, use it. This makes us take advantage of 'i' 5475 /// constraints when available. 5476 /// 2) Otherwise, pick the most general constraint present. This prefers 5477 /// 'm' over 'r', for example. 5478 /// 5479 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5480 const TargetLowering &TLI, 5481 SDValue Op, SelectionDAG *DAG) { 5482 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5483 unsigned BestIdx = 0; 5484 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5485 int BestGenerality = -1; 5486 5487 // Loop over the options, keeping track of the most general one. 5488 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5489 TargetLowering::ConstraintType CType = 5490 TLI.getConstraintType(OpInfo.Codes[i]); 5491 5492 // Indirect 'other' or 'immediate' constraints are not allowed. 5493 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5494 CType == TargetLowering::C_Register || 5495 CType == TargetLowering::C_RegisterClass)) 5496 continue; 5497 5498 // If this is an 'other' or 'immediate' constraint, see if the operand is 5499 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5500 // the operand is an integer in the range [0..31] we want to use I (saving a 5501 // load of a register), otherwise we must use 'r'. 5502 if ((CType == TargetLowering::C_Other || 5503 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5504 assert(OpInfo.Codes[i].size() == 1 && 5505 "Unhandled multi-letter 'other' constraint"); 5506 std::vector<SDValue> ResultOps; 5507 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5508 ResultOps, *DAG); 5509 if (!ResultOps.empty()) { 5510 BestType = CType; 5511 BestIdx = i; 5512 break; 5513 } 5514 } 5515 5516 // Things with matching constraints can only be registers, per gcc 5517 // documentation. This mainly affects "g" constraints. 5518 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5519 continue; 5520 5521 // This constraint letter is more general than the previous one, use it. 5522 int Generality = getConstraintGenerality(CType); 5523 if (Generality > BestGenerality) { 5524 BestType = CType; 5525 BestIdx = i; 5526 BestGenerality = Generality; 5527 } 5528 } 5529 5530 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5531 OpInfo.ConstraintType = BestType; 5532 } 5533 5534 /// Determines the constraint code and constraint type to use for the specific 5535 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5536 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5537 SDValue Op, 5538 SelectionDAG *DAG) const { 5539 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5540 5541 // Single-letter constraints ('r') are very common. 5542 if (OpInfo.Codes.size() == 1) { 5543 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5544 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5545 } else { 5546 ChooseConstraint(OpInfo, *this, Op, DAG); 5547 } 5548 5549 // 'X' matches anything. 5550 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5551 // Constants are handled elsewhere. For Functions, the type here is the 5552 // type of the result, which is not what we want to look at; leave them 5553 // alone. 5554 Value *v = OpInfo.CallOperandVal; 5555 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5556 return; 5557 } 5558 5559 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5560 OpInfo.ConstraintCode = "i"; 5561 return; 5562 } 5563 5564 // Otherwise, try to resolve it to something we know about by looking at 5565 // the actual operand type. 5566 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5567 OpInfo.ConstraintCode = Repl; 5568 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5569 } 5570 } 5571 } 5572 5573 /// Given an exact SDIV by a constant, create a multiplication 5574 /// with the multiplicative inverse of the constant. 5575 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5576 const SDLoc &dl, SelectionDAG &DAG, 5577 SmallVectorImpl<SDNode *> &Created) { 5578 SDValue Op0 = N->getOperand(0); 5579 SDValue Op1 = N->getOperand(1); 5580 EVT VT = N->getValueType(0); 5581 EVT SVT = VT.getScalarType(); 5582 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5583 EVT ShSVT = ShVT.getScalarType(); 5584 5585 bool UseSRA = false; 5586 SmallVector<SDValue, 16> Shifts, Factors; 5587 5588 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5589 if (C->isZero()) 5590 return false; 5591 APInt Divisor = C->getAPIntValue(); 5592 unsigned Shift = Divisor.countTrailingZeros(); 5593 if (Shift) { 5594 Divisor.ashrInPlace(Shift); 5595 UseSRA = true; 5596 } 5597 // Calculate the multiplicative inverse, using Newton's method. 5598 APInt t; 5599 APInt Factor = Divisor; 5600 while ((t = Divisor * Factor) != 1) 5601 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5602 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5603 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5604 return true; 5605 }; 5606 5607 // Collect all magic values from the build vector. 5608 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5609 return SDValue(); 5610 5611 SDValue Shift, Factor; 5612 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5613 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5614 Factor = DAG.getBuildVector(VT, dl, Factors); 5615 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5616 assert(Shifts.size() == 1 && Factors.size() == 1 && 5617 "Expected matchUnaryPredicate to return one element for scalable " 5618 "vectors"); 5619 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5620 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5621 } else { 5622 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5623 Shift = Shifts[0]; 5624 Factor = Factors[0]; 5625 } 5626 5627 SDValue Res = Op0; 5628 5629 // Shift the value upfront if it is even, so the LSB is one. 5630 if (UseSRA) { 5631 // TODO: For UDIV use SRL instead of SRA. 5632 SDNodeFlags Flags; 5633 Flags.setExact(true); 5634 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5635 Created.push_back(Res.getNode()); 5636 } 5637 5638 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5639 } 5640 5641 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5642 SelectionDAG &DAG, 5643 SmallVectorImpl<SDNode *> &Created) const { 5644 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5646 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5647 return SDValue(N, 0); // Lower SDIV as SDIV 5648 return SDValue(); 5649 } 5650 5651 SDValue 5652 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5653 SelectionDAG &DAG, 5654 SmallVectorImpl<SDNode *> &Created) const { 5655 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5656 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5657 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5658 return SDValue(N, 0); // Lower SREM as SREM 5659 return SDValue(); 5660 } 5661 5662 /// Given an ISD::SDIV node expressing a divide by constant, 5663 /// return a DAG expression to select that will generate the same value by 5664 /// multiplying by a magic number. 5665 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5666 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5667 bool IsAfterLegalization, 5668 SmallVectorImpl<SDNode *> &Created) const { 5669 SDLoc dl(N); 5670 EVT VT = N->getValueType(0); 5671 EVT SVT = VT.getScalarType(); 5672 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5673 EVT ShSVT = ShVT.getScalarType(); 5674 unsigned EltBits = VT.getScalarSizeInBits(); 5675 EVT MulVT; 5676 5677 // Check to see if we can do this. 5678 // FIXME: We should be more aggressive here. 5679 if (!isTypeLegal(VT)) { 5680 // Limit this to simple scalars for now. 5681 if (VT.isVector() || !VT.isSimple()) 5682 return SDValue(); 5683 5684 // If this type will be promoted to a large enough type with a legal 5685 // multiply operation, we can go ahead and do this transform. 5686 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5687 return SDValue(); 5688 5689 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5690 if (MulVT.getSizeInBits() < (2 * EltBits) || 5691 !isOperationLegal(ISD::MUL, MulVT)) 5692 return SDValue(); 5693 } 5694 5695 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5696 if (N->getFlags().hasExact()) 5697 return BuildExactSDIV(*this, N, dl, DAG, Created); 5698 5699 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5700 5701 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5702 if (C->isZero()) 5703 return false; 5704 5705 const APInt &Divisor = C->getAPIntValue(); 5706 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5707 int NumeratorFactor = 0; 5708 int ShiftMask = -1; 5709 5710 if (Divisor.isOne() || Divisor.isAllOnes()) { 5711 // If d is +1/-1, we just multiply the numerator by +1/-1. 5712 NumeratorFactor = Divisor.getSExtValue(); 5713 magics.Magic = 0; 5714 magics.ShiftAmount = 0; 5715 ShiftMask = 0; 5716 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5717 // If d > 0 and m < 0, add the numerator. 5718 NumeratorFactor = 1; 5719 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5720 // If d < 0 and m > 0, subtract the numerator. 5721 NumeratorFactor = -1; 5722 } 5723 5724 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5725 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5726 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5727 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5728 return true; 5729 }; 5730 5731 SDValue N0 = N->getOperand(0); 5732 SDValue N1 = N->getOperand(1); 5733 5734 // Collect the shifts / magic values from each element. 5735 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5736 return SDValue(); 5737 5738 SDValue MagicFactor, Factor, Shift, ShiftMask; 5739 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5740 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5741 Factor = DAG.getBuildVector(VT, dl, Factors); 5742 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5743 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5744 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5745 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5746 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5747 "Expected matchUnaryPredicate to return one element for scalable " 5748 "vectors"); 5749 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5750 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5751 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5752 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5753 } else { 5754 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5755 MagicFactor = MagicFactors[0]; 5756 Factor = Factors[0]; 5757 Shift = Shifts[0]; 5758 ShiftMask = ShiftMasks[0]; 5759 } 5760 5761 // Multiply the numerator (operand 0) by the magic value. 5762 // FIXME: We should support doing a MUL in a wider type. 5763 auto GetMULHS = [&](SDValue X, SDValue Y) { 5764 // If the type isn't legal, use a wider mul of the the type calculated 5765 // earlier. 5766 if (!isTypeLegal(VT)) { 5767 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5768 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5769 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5770 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5771 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5772 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5773 } 5774 5775 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5776 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5777 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5778 SDValue LoHi = 5779 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5780 return SDValue(LoHi.getNode(), 1); 5781 } 5782 return SDValue(); 5783 }; 5784 5785 SDValue Q = GetMULHS(N0, MagicFactor); 5786 if (!Q) 5787 return SDValue(); 5788 5789 Created.push_back(Q.getNode()); 5790 5791 // (Optionally) Add/subtract the numerator using Factor. 5792 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5793 Created.push_back(Factor.getNode()); 5794 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5795 Created.push_back(Q.getNode()); 5796 5797 // Shift right algebraic by shift value. 5798 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5799 Created.push_back(Q.getNode()); 5800 5801 // Extract the sign bit, mask it and add it to the quotient. 5802 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5803 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5804 Created.push_back(T.getNode()); 5805 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5806 Created.push_back(T.getNode()); 5807 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5808 } 5809 5810 /// Given an ISD::UDIV node expressing a divide by constant, 5811 /// return a DAG expression to select that will generate the same value by 5812 /// multiplying by a magic number. 5813 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5814 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5815 bool IsAfterLegalization, 5816 SmallVectorImpl<SDNode *> &Created) const { 5817 SDLoc dl(N); 5818 EVT VT = N->getValueType(0); 5819 EVT SVT = VT.getScalarType(); 5820 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5821 EVT ShSVT = ShVT.getScalarType(); 5822 unsigned EltBits = VT.getScalarSizeInBits(); 5823 EVT MulVT; 5824 5825 // Check to see if we can do this. 5826 // FIXME: We should be more aggressive here. 5827 if (!isTypeLegal(VT)) { 5828 // Limit this to simple scalars for now. 5829 if (VT.isVector() || !VT.isSimple()) 5830 return SDValue(); 5831 5832 // If this type will be promoted to a large enough type with a legal 5833 // multiply operation, we can go ahead and do this transform. 5834 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5835 return SDValue(); 5836 5837 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5838 if (MulVT.getSizeInBits() < (2 * EltBits) || 5839 !isOperationLegal(ISD::MUL, MulVT)) 5840 return SDValue(); 5841 } 5842 5843 bool UseNPQ = false; 5844 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5845 5846 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5847 if (C->isZero()) 5848 return false; 5849 // FIXME: We should use a narrower constant when the upper 5850 // bits are known to be zero. 5851 const APInt& Divisor = C->getAPIntValue(); 5852 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5853 unsigned PreShift = 0, PostShift = 0; 5854 5855 // If the divisor is even, we can avoid using the expensive fixup by 5856 // shifting the divided value upfront. 5857 if (magics.IsAdd != 0 && !Divisor[0]) { 5858 PreShift = Divisor.countTrailingZeros(); 5859 // Get magic number for the shifted divisor. 5860 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5861 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5862 } 5863 5864 APInt Magic = magics.Magic; 5865 5866 unsigned SelNPQ; 5867 if (magics.IsAdd == 0 || Divisor.isOne()) { 5868 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5869 "We shouldn't generate an undefined shift!"); 5870 PostShift = magics.ShiftAmount; 5871 SelNPQ = false; 5872 } else { 5873 PostShift = magics.ShiftAmount - 1; 5874 SelNPQ = true; 5875 } 5876 5877 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5878 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5879 NPQFactors.push_back( 5880 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5881 : APInt::getZero(EltBits), 5882 dl, SVT)); 5883 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5884 UseNPQ |= SelNPQ; 5885 return true; 5886 }; 5887 5888 SDValue N0 = N->getOperand(0); 5889 SDValue N1 = N->getOperand(1); 5890 5891 // Collect the shifts/magic values from each element. 5892 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5893 return SDValue(); 5894 5895 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5896 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5897 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5898 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5899 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5900 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5901 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5902 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5903 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5904 "Expected matchUnaryPredicate to return one for scalable vectors"); 5905 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5906 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5907 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5908 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5909 } else { 5910 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5911 PreShift = PreShifts[0]; 5912 MagicFactor = MagicFactors[0]; 5913 PostShift = PostShifts[0]; 5914 } 5915 5916 SDValue Q = N0; 5917 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5918 Created.push_back(Q.getNode()); 5919 5920 // FIXME: We should support doing a MUL in a wider type. 5921 auto GetMULHU = [&](SDValue X, SDValue Y) { 5922 // If the type isn't legal, use a wider mul of the the type calculated 5923 // earlier. 5924 if (!isTypeLegal(VT)) { 5925 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5926 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5927 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5928 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5929 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5930 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5931 } 5932 5933 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5934 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5935 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5936 SDValue LoHi = 5937 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5938 return SDValue(LoHi.getNode(), 1); 5939 } 5940 return SDValue(); // No mulhu or equivalent 5941 }; 5942 5943 // Multiply the numerator (operand 0) by the magic value. 5944 Q = GetMULHU(Q, MagicFactor); 5945 if (!Q) 5946 return SDValue(); 5947 5948 Created.push_back(Q.getNode()); 5949 5950 if (UseNPQ) { 5951 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5952 Created.push_back(NPQ.getNode()); 5953 5954 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5955 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5956 if (VT.isVector()) 5957 NPQ = GetMULHU(NPQ, NPQFactor); 5958 else 5959 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5960 5961 Created.push_back(NPQ.getNode()); 5962 5963 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5964 Created.push_back(Q.getNode()); 5965 } 5966 5967 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5968 Created.push_back(Q.getNode()); 5969 5970 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5971 5972 SDValue One = DAG.getConstant(1, dl, VT); 5973 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5974 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5975 } 5976 5977 /// If all values in Values that *don't* match the predicate are same 'splat' 5978 /// value, then replace all values with that splat value. 5979 /// Else, if AlternativeReplacement was provided, then replace all values that 5980 /// do match predicate with AlternativeReplacement value. 5981 static void 5982 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5983 std::function<bool(SDValue)> Predicate, 5984 SDValue AlternativeReplacement = SDValue()) { 5985 SDValue Replacement; 5986 // Is there a value for which the Predicate does *NOT* match? What is it? 5987 auto SplatValue = llvm::find_if_not(Values, Predicate); 5988 if (SplatValue != Values.end()) { 5989 // Does Values consist only of SplatValue's and values matching Predicate? 5990 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5991 return Value == *SplatValue || Predicate(Value); 5992 })) // Then we shall replace values matching predicate with SplatValue. 5993 Replacement = *SplatValue; 5994 } 5995 if (!Replacement) { 5996 // Oops, we did not find the "baseline" splat value. 5997 if (!AlternativeReplacement) 5998 return; // Nothing to do. 5999 // Let's replace with provided value then. 6000 Replacement = AlternativeReplacement; 6001 } 6002 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 6003 } 6004 6005 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 6006 /// where the divisor is constant and the comparison target is zero, 6007 /// return a DAG expression that will generate the same comparison result 6008 /// using only multiplications, additions and shifts/rotations. 6009 /// Ref: "Hacker's Delight" 10-17. 6010 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 6011 SDValue CompTargetNode, 6012 ISD::CondCode Cond, 6013 DAGCombinerInfo &DCI, 6014 const SDLoc &DL) const { 6015 SmallVector<SDNode *, 5> Built; 6016 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6017 DCI, DL, Built)) { 6018 for (SDNode *N : Built) 6019 DCI.AddToWorklist(N); 6020 return Folded; 6021 } 6022 6023 return SDValue(); 6024 } 6025 6026 SDValue 6027 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 6028 SDValue CompTargetNode, ISD::CondCode Cond, 6029 DAGCombinerInfo &DCI, const SDLoc &DL, 6030 SmallVectorImpl<SDNode *> &Created) const { 6031 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 6032 // - D must be constant, with D = D0 * 2^K where D0 is odd 6033 // - P is the multiplicative inverse of D0 modulo 2^W 6034 // - Q = floor(((2^W) - 1) / D) 6035 // where W is the width of the common type of N and D. 6036 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6037 "Only applicable for (in)equality comparisons."); 6038 6039 SelectionDAG &DAG = DCI.DAG; 6040 6041 EVT VT = REMNode.getValueType(); 6042 EVT SVT = VT.getScalarType(); 6043 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6044 EVT ShSVT = ShVT.getScalarType(); 6045 6046 // If MUL is unavailable, we cannot proceed in any case. 6047 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6048 return SDValue(); 6049 6050 bool ComparingWithAllZeros = true; 6051 bool AllComparisonsWithNonZerosAreTautological = true; 6052 bool HadTautologicalLanes = false; 6053 bool AllLanesAreTautological = true; 6054 bool HadEvenDivisor = false; 6055 bool AllDivisorsArePowerOfTwo = true; 6056 bool HadTautologicalInvertedLanes = false; 6057 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6058 6059 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6060 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6061 if (CDiv->isZero()) 6062 return false; 6063 6064 const APInt &D = CDiv->getAPIntValue(); 6065 const APInt &Cmp = CCmp->getAPIntValue(); 6066 6067 ComparingWithAllZeros &= Cmp.isZero(); 6068 6069 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6070 // if C2 is not less than C1, the comparison is always false. 6071 // But we will only be able to produce the comparison that will give the 6072 // opposive tautological answer. So this lane would need to be fixed up. 6073 bool TautologicalInvertedLane = D.ule(Cmp); 6074 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6075 6076 // If all lanes are tautological (either all divisors are ones, or divisor 6077 // is not greater than the constant we are comparing with), 6078 // we will prefer to avoid the fold. 6079 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6080 HadTautologicalLanes |= TautologicalLane; 6081 AllLanesAreTautological &= TautologicalLane; 6082 6083 // If we are comparing with non-zero, we need'll need to subtract said 6084 // comparison value from the LHS. But there is no point in doing that if 6085 // every lane where we are comparing with non-zero is tautological.. 6086 if (!Cmp.isZero()) 6087 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6088 6089 // Decompose D into D0 * 2^K 6090 unsigned K = D.countTrailingZeros(); 6091 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6092 APInt D0 = D.lshr(K); 6093 6094 // D is even if it has trailing zeros. 6095 HadEvenDivisor |= (K != 0); 6096 // D is a power-of-two if D0 is one. 6097 // If all divisors are power-of-two, we will prefer to avoid the fold. 6098 AllDivisorsArePowerOfTwo &= D0.isOne(); 6099 6100 // P = inv(D0, 2^W) 6101 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6102 unsigned W = D.getBitWidth(); 6103 APInt P = D0.zext(W + 1) 6104 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6105 .trunc(W); 6106 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6107 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6108 6109 // Q = floor((2^W - 1) u/ D) 6110 // R = ((2^W - 1) u% D) 6111 APInt Q, R; 6112 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6113 6114 // If we are comparing with zero, then that comparison constant is okay, 6115 // else it may need to be one less than that. 6116 if (Cmp.ugt(R)) 6117 Q -= 1; 6118 6119 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6120 "We are expecting that K is always less than all-ones for ShSVT"); 6121 6122 // If the lane is tautological the result can be constant-folded. 6123 if (TautologicalLane) { 6124 // Set P and K amount to a bogus values so we can try to splat them. 6125 P = 0; 6126 K = -1; 6127 // And ensure that comparison constant is tautological, 6128 // it will always compare true/false. 6129 Q = -1; 6130 } 6131 6132 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6133 KAmts.push_back( 6134 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6135 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6136 return true; 6137 }; 6138 6139 SDValue N = REMNode.getOperand(0); 6140 SDValue D = REMNode.getOperand(1); 6141 6142 // Collect the values from each element. 6143 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6144 return SDValue(); 6145 6146 // If all lanes are tautological, the result can be constant-folded. 6147 if (AllLanesAreTautological) 6148 return SDValue(); 6149 6150 // If this is a urem by a powers-of-two, avoid the fold since it can be 6151 // best implemented as a bit test. 6152 if (AllDivisorsArePowerOfTwo) 6153 return SDValue(); 6154 6155 SDValue PVal, KVal, QVal; 6156 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6157 if (HadTautologicalLanes) { 6158 // Try to turn PAmts into a splat, since we don't care about the values 6159 // that are currently '0'. If we can't, just keep '0'`s. 6160 turnVectorIntoSplatVector(PAmts, isNullConstant); 6161 // Try to turn KAmts into a splat, since we don't care about the values 6162 // that are currently '-1'. If we can't, change them to '0'`s. 6163 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6164 DAG.getConstant(0, DL, ShSVT)); 6165 } 6166 6167 PVal = DAG.getBuildVector(VT, DL, PAmts); 6168 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6169 QVal = DAG.getBuildVector(VT, DL, QAmts); 6170 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6171 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6172 "Expected matchBinaryPredicate to return one element for " 6173 "SPLAT_VECTORs"); 6174 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6175 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6176 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6177 } else { 6178 PVal = PAmts[0]; 6179 KVal = KAmts[0]; 6180 QVal = QAmts[0]; 6181 } 6182 6183 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6184 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6185 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6186 assert(CompTargetNode.getValueType() == N.getValueType() && 6187 "Expecting that the types on LHS and RHS of comparisons match."); 6188 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6189 } 6190 6191 // (mul N, P) 6192 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6193 Created.push_back(Op0.getNode()); 6194 6195 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6196 // divisors as a performance improvement, since rotating by 0 is a no-op. 6197 if (HadEvenDivisor) { 6198 // We need ROTR to do this. 6199 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6200 return SDValue(); 6201 // UREM: (rotr (mul N, P), K) 6202 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6203 Created.push_back(Op0.getNode()); 6204 } 6205 6206 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6207 SDValue NewCC = 6208 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6209 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6210 if (!HadTautologicalInvertedLanes) 6211 return NewCC; 6212 6213 // If any lanes previously compared always-false, the NewCC will give 6214 // always-true result for them, so we need to fixup those lanes. 6215 // Or the other way around for inequality predicate. 6216 assert(VT.isVector() && "Can/should only get here for vectors."); 6217 Created.push_back(NewCC.getNode()); 6218 6219 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6220 // if C2 is not less than C1, the comparison is always false. 6221 // But we have produced the comparison that will give the 6222 // opposive tautological answer. So these lanes would need to be fixed up. 6223 SDValue TautologicalInvertedChannels = 6224 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6225 Created.push_back(TautologicalInvertedChannels.getNode()); 6226 6227 // NOTE: we avoid letting illegal types through even if we're before legalize 6228 // ops – legalization has a hard time producing good code for this. 6229 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6230 // If we have a vector select, let's replace the comparison results in the 6231 // affected lanes with the correct tautological result. 6232 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6233 DL, SETCCVT, SETCCVT); 6234 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6235 Replacement, NewCC); 6236 } 6237 6238 // Else, we can just invert the comparison result in the appropriate lanes. 6239 // 6240 // NOTE: see the note above VSELECT above. 6241 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6242 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6243 TautologicalInvertedChannels); 6244 6245 return SDValue(); // Don't know how to lower. 6246 } 6247 6248 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6249 /// where the divisor is constant and the comparison target is zero, 6250 /// return a DAG expression that will generate the same comparison result 6251 /// using only multiplications, additions and shifts/rotations. 6252 /// Ref: "Hacker's Delight" 10-17. 6253 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6254 SDValue CompTargetNode, 6255 ISD::CondCode Cond, 6256 DAGCombinerInfo &DCI, 6257 const SDLoc &DL) const { 6258 SmallVector<SDNode *, 7> Built; 6259 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6260 DCI, DL, Built)) { 6261 assert(Built.size() <= 7 && "Max size prediction failed."); 6262 for (SDNode *N : Built) 6263 DCI.AddToWorklist(N); 6264 return Folded; 6265 } 6266 6267 return SDValue(); 6268 } 6269 6270 SDValue 6271 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6272 SDValue CompTargetNode, ISD::CondCode Cond, 6273 DAGCombinerInfo &DCI, const SDLoc &DL, 6274 SmallVectorImpl<SDNode *> &Created) const { 6275 // Fold: 6276 // (seteq/ne (srem N, D), 0) 6277 // To: 6278 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6279 // 6280 // - D must be constant, with D = D0 * 2^K where D0 is odd 6281 // - P is the multiplicative inverse of D0 modulo 2^W 6282 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6283 // - Q = floor((2 * A) / (2^K)) 6284 // where W is the width of the common type of N and D. 6285 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6286 "Only applicable for (in)equality comparisons."); 6287 6288 SelectionDAG &DAG = DCI.DAG; 6289 6290 EVT VT = REMNode.getValueType(); 6291 EVT SVT = VT.getScalarType(); 6292 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6293 EVT ShSVT = ShVT.getScalarType(); 6294 6295 // If we are after ops legalization, and MUL is unavailable, we can not 6296 // proceed. 6297 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6298 return SDValue(); 6299 6300 // TODO: Could support comparing with non-zero too. 6301 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6302 if (!CompTarget || !CompTarget->isZero()) 6303 return SDValue(); 6304 6305 bool HadIntMinDivisor = false; 6306 bool HadOneDivisor = false; 6307 bool AllDivisorsAreOnes = true; 6308 bool HadEvenDivisor = false; 6309 bool NeedToApplyOffset = false; 6310 bool AllDivisorsArePowerOfTwo = true; 6311 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6312 6313 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6314 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6315 if (C->isZero()) 6316 return false; 6317 6318 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6319 6320 // WARNING: this fold is only valid for positive divisors! 6321 APInt D = C->getAPIntValue(); 6322 if (D.isNegative()) 6323 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6324 6325 HadIntMinDivisor |= D.isMinSignedValue(); 6326 6327 // If all divisors are ones, we will prefer to avoid the fold. 6328 HadOneDivisor |= D.isOne(); 6329 AllDivisorsAreOnes &= D.isOne(); 6330 6331 // Decompose D into D0 * 2^K 6332 unsigned K = D.countTrailingZeros(); 6333 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6334 APInt D0 = D.lshr(K); 6335 6336 if (!D.isMinSignedValue()) { 6337 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6338 // we don't care about this lane in this fold, we'll special-handle it. 6339 HadEvenDivisor |= (K != 0); 6340 } 6341 6342 // D is a power-of-two if D0 is one. This includes INT_MIN. 6343 // If all divisors are power-of-two, we will prefer to avoid the fold. 6344 AllDivisorsArePowerOfTwo &= D0.isOne(); 6345 6346 // P = inv(D0, 2^W) 6347 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6348 unsigned W = D.getBitWidth(); 6349 APInt P = D0.zext(W + 1) 6350 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6351 .trunc(W); 6352 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6353 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6354 6355 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6356 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6357 A.clearLowBits(K); 6358 6359 if (!D.isMinSignedValue()) { 6360 // If divisor INT_MIN, then we don't care about this lane in this fold, 6361 // we'll special-handle it. 6362 NeedToApplyOffset |= A != 0; 6363 } 6364 6365 // Q = floor((2 * A) / (2^K)) 6366 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6367 6368 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6369 "We are expecting that A is always less than all-ones for SVT"); 6370 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6371 "We are expecting that K is always less than all-ones for ShSVT"); 6372 6373 // If the divisor is 1 the result can be constant-folded. Likewise, we 6374 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6375 if (D.isOne()) { 6376 // Set P, A and K to a bogus values so we can try to splat them. 6377 P = 0; 6378 A = -1; 6379 K = -1; 6380 6381 // x ?% 1 == 0 <--> true <--> x u<= -1 6382 Q = -1; 6383 } 6384 6385 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6386 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6387 KAmts.push_back( 6388 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6389 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6390 return true; 6391 }; 6392 6393 SDValue N = REMNode.getOperand(0); 6394 SDValue D = REMNode.getOperand(1); 6395 6396 // Collect the values from each element. 6397 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6398 return SDValue(); 6399 6400 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6401 if (AllDivisorsAreOnes) 6402 return SDValue(); 6403 6404 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6405 // since it can be best implemented as a bit test. 6406 if (AllDivisorsArePowerOfTwo) 6407 return SDValue(); 6408 6409 SDValue PVal, AVal, KVal, QVal; 6410 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6411 if (HadOneDivisor) { 6412 // Try to turn PAmts into a splat, since we don't care about the values 6413 // that are currently '0'. If we can't, just keep '0'`s. 6414 turnVectorIntoSplatVector(PAmts, isNullConstant); 6415 // Try to turn AAmts into a splat, since we don't care about the 6416 // values that are currently '-1'. If we can't, change them to '0'`s. 6417 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6418 DAG.getConstant(0, DL, SVT)); 6419 // Try to turn KAmts into a splat, since we don't care about the values 6420 // that are currently '-1'. If we can't, change them to '0'`s. 6421 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6422 DAG.getConstant(0, DL, ShSVT)); 6423 } 6424 6425 PVal = DAG.getBuildVector(VT, DL, PAmts); 6426 AVal = DAG.getBuildVector(VT, DL, AAmts); 6427 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6428 QVal = DAG.getBuildVector(VT, DL, QAmts); 6429 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6430 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6431 QAmts.size() == 1 && 6432 "Expected matchUnaryPredicate to return one element for scalable " 6433 "vectors"); 6434 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6435 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6436 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6437 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6438 } else { 6439 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6440 PVal = PAmts[0]; 6441 AVal = AAmts[0]; 6442 KVal = KAmts[0]; 6443 QVal = QAmts[0]; 6444 } 6445 6446 // (mul N, P) 6447 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6448 Created.push_back(Op0.getNode()); 6449 6450 if (NeedToApplyOffset) { 6451 // We need ADD to do this. 6452 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6453 return SDValue(); 6454 6455 // (add (mul N, P), A) 6456 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6457 Created.push_back(Op0.getNode()); 6458 } 6459 6460 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6461 // divisors as a performance improvement, since rotating by 0 is a no-op. 6462 if (HadEvenDivisor) { 6463 // We need ROTR to do this. 6464 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6465 return SDValue(); 6466 // SREM: (rotr (add (mul N, P), A), K) 6467 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6468 Created.push_back(Op0.getNode()); 6469 } 6470 6471 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6472 SDValue Fold = 6473 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6474 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6475 6476 // If we didn't have lanes with INT_MIN divisor, then we're done. 6477 if (!HadIntMinDivisor) 6478 return Fold; 6479 6480 // That fold is only valid for positive divisors. Which effectively means, 6481 // it is invalid for INT_MIN divisors. So if we have such a lane, 6482 // we must fix-up results for said lanes. 6483 assert(VT.isVector() && "Can/should only get here for vectors."); 6484 6485 // NOTE: we avoid letting illegal types through even if we're before legalize 6486 // ops – legalization has a hard time producing good code for the code that 6487 // follows. 6488 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6489 !isOperationLegalOrCustom(ISD::AND, VT) || 6490 !isOperationLegalOrCustom(Cond, VT) || 6491 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6492 return SDValue(); 6493 6494 Created.push_back(Fold.getNode()); 6495 6496 SDValue IntMin = DAG.getConstant( 6497 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6498 SDValue IntMax = DAG.getConstant( 6499 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6500 SDValue Zero = 6501 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6502 6503 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6504 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6505 Created.push_back(DivisorIsIntMin.getNode()); 6506 6507 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6508 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6509 Created.push_back(Masked.getNode()); 6510 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6511 Created.push_back(MaskedIsZero.getNode()); 6512 6513 // To produce final result we need to blend 2 vectors: 'SetCC' and 6514 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6515 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6516 // constant-folded, select can get lowered to a shuffle with constant mask. 6517 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6518 MaskedIsZero, Fold); 6519 6520 return Blended; 6521 } 6522 6523 bool TargetLowering:: 6524 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6525 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6526 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6527 "be a constant integer"); 6528 return true; 6529 } 6530 6531 return false; 6532 } 6533 6534 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6535 const DenormalMode &Mode) const { 6536 SDLoc DL(Op); 6537 EVT VT = Op.getValueType(); 6538 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6539 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6540 // Testing it with denormal inputs to avoid wrong estimate. 6541 if (Mode.Input == DenormalMode::IEEE) { 6542 // This is specifically a check for the handling of denormal inputs, 6543 // not the result. 6544 6545 // Test = fabs(X) < SmallestNormal 6546 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6547 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6548 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6549 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6550 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6551 } 6552 // Test = X == 0.0 6553 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6554 } 6555 6556 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6557 bool LegalOps, bool OptForSize, 6558 NegatibleCost &Cost, 6559 unsigned Depth) const { 6560 // fneg is removable even if it has multiple uses. 6561 if (Op.getOpcode() == ISD::FNEG) { 6562 Cost = NegatibleCost::Cheaper; 6563 return Op.getOperand(0); 6564 } 6565 6566 // Don't recurse exponentially. 6567 if (Depth > SelectionDAG::MaxRecursionDepth) 6568 return SDValue(); 6569 6570 // Pre-increment recursion depth for use in recursive calls. 6571 ++Depth; 6572 const SDNodeFlags Flags = Op->getFlags(); 6573 const TargetOptions &Options = DAG.getTarget().Options; 6574 EVT VT = Op.getValueType(); 6575 unsigned Opcode = Op.getOpcode(); 6576 6577 // Don't allow anything with multiple uses unless we know it is free. 6578 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6579 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6580 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6581 if (!IsFreeExtend) 6582 return SDValue(); 6583 } 6584 6585 auto RemoveDeadNode = [&](SDValue N) { 6586 if (N && N.getNode()->use_empty()) 6587 DAG.RemoveDeadNode(N.getNode()); 6588 }; 6589 6590 SDLoc DL(Op); 6591 6592 // Because getNegatedExpression can delete nodes we need a handle to keep 6593 // temporary nodes alive in case the recursion manages to create an identical 6594 // node. 6595 std::list<HandleSDNode> Handles; 6596 6597 switch (Opcode) { 6598 case ISD::ConstantFP: { 6599 // Don't invert constant FP values after legalization unless the target says 6600 // the negated constant is legal. 6601 bool IsOpLegal = 6602 isOperationLegal(ISD::ConstantFP, VT) || 6603 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6604 OptForSize); 6605 6606 if (LegalOps && !IsOpLegal) 6607 break; 6608 6609 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6610 V.changeSign(); 6611 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6612 6613 // If we already have the use of the negated floating constant, it is free 6614 // to negate it even it has multiple uses. 6615 if (!Op.hasOneUse() && CFP.use_empty()) 6616 break; 6617 Cost = NegatibleCost::Neutral; 6618 return CFP; 6619 } 6620 case ISD::BUILD_VECTOR: { 6621 // Only permit BUILD_VECTOR of constants. 6622 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6623 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6624 })) 6625 break; 6626 6627 bool IsOpLegal = 6628 (isOperationLegal(ISD::ConstantFP, VT) && 6629 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6630 llvm::all_of(Op->op_values(), [&](SDValue N) { 6631 return N.isUndef() || 6632 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6633 OptForSize); 6634 }); 6635 6636 if (LegalOps && !IsOpLegal) 6637 break; 6638 6639 SmallVector<SDValue, 4> Ops; 6640 for (SDValue C : Op->op_values()) { 6641 if (C.isUndef()) { 6642 Ops.push_back(C); 6643 continue; 6644 } 6645 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6646 V.changeSign(); 6647 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6648 } 6649 Cost = NegatibleCost::Neutral; 6650 return DAG.getBuildVector(VT, DL, Ops); 6651 } 6652 case ISD::FADD: { 6653 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6654 break; 6655 6656 // After operation legalization, it might not be legal to create new FSUBs. 6657 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6658 break; 6659 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6660 6661 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6662 NegatibleCost CostX = NegatibleCost::Expensive; 6663 SDValue NegX = 6664 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6665 // Prevent this node from being deleted by the next call. 6666 if (NegX) 6667 Handles.emplace_back(NegX); 6668 6669 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6670 NegatibleCost CostY = NegatibleCost::Expensive; 6671 SDValue NegY = 6672 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6673 6674 // We're done with the handles. 6675 Handles.clear(); 6676 6677 // Negate the X if its cost is less or equal than Y. 6678 if (NegX && (CostX <= CostY)) { 6679 Cost = CostX; 6680 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6681 if (NegY != N) 6682 RemoveDeadNode(NegY); 6683 return N; 6684 } 6685 6686 // Negate the Y if it is not expensive. 6687 if (NegY) { 6688 Cost = CostY; 6689 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6690 if (NegX != N) 6691 RemoveDeadNode(NegX); 6692 return N; 6693 } 6694 break; 6695 } 6696 case ISD::FSUB: { 6697 // We can't turn -(A-B) into B-A when we honor signed zeros. 6698 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6699 break; 6700 6701 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6702 // fold (fneg (fsub 0, Y)) -> Y 6703 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6704 if (C->isZero()) { 6705 Cost = NegatibleCost::Cheaper; 6706 return Y; 6707 } 6708 6709 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6710 Cost = NegatibleCost::Neutral; 6711 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6712 } 6713 case ISD::FMUL: 6714 case ISD::FDIV: { 6715 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6716 6717 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6718 NegatibleCost CostX = NegatibleCost::Expensive; 6719 SDValue NegX = 6720 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6721 // Prevent this node from being deleted by the next call. 6722 if (NegX) 6723 Handles.emplace_back(NegX); 6724 6725 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6726 NegatibleCost CostY = NegatibleCost::Expensive; 6727 SDValue NegY = 6728 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6729 6730 // We're done with the handles. 6731 Handles.clear(); 6732 6733 // Negate the X if its cost is less or equal than Y. 6734 if (NegX && (CostX <= CostY)) { 6735 Cost = CostX; 6736 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6737 if (NegY != N) 6738 RemoveDeadNode(NegY); 6739 return N; 6740 } 6741 6742 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6743 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6744 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6745 break; 6746 6747 // Negate the Y if it is not expensive. 6748 if (NegY) { 6749 Cost = CostY; 6750 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6751 if (NegX != N) 6752 RemoveDeadNode(NegX); 6753 return N; 6754 } 6755 break; 6756 } 6757 case ISD::FMA: 6758 case ISD::FMAD: { 6759 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6760 break; 6761 6762 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6763 NegatibleCost CostZ = NegatibleCost::Expensive; 6764 SDValue NegZ = 6765 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6766 // Give up if fail to negate the Z. 6767 if (!NegZ) 6768 break; 6769 6770 // Prevent this node from being deleted by the next two calls. 6771 Handles.emplace_back(NegZ); 6772 6773 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6774 NegatibleCost CostX = NegatibleCost::Expensive; 6775 SDValue NegX = 6776 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6777 // Prevent this node from being deleted by the next call. 6778 if (NegX) 6779 Handles.emplace_back(NegX); 6780 6781 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6782 NegatibleCost CostY = NegatibleCost::Expensive; 6783 SDValue NegY = 6784 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6785 6786 // We're done with the handles. 6787 Handles.clear(); 6788 6789 // Negate the X if its cost is less or equal than Y. 6790 if (NegX && (CostX <= CostY)) { 6791 Cost = std::min(CostX, CostZ); 6792 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6793 if (NegY != N) 6794 RemoveDeadNode(NegY); 6795 return N; 6796 } 6797 6798 // Negate the Y if it is not expensive. 6799 if (NegY) { 6800 Cost = std::min(CostY, CostZ); 6801 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6802 if (NegX != N) 6803 RemoveDeadNode(NegX); 6804 return N; 6805 } 6806 break; 6807 } 6808 6809 case ISD::FP_EXTEND: 6810 case ISD::FSIN: 6811 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6812 OptForSize, Cost, Depth)) 6813 return DAG.getNode(Opcode, DL, VT, NegV); 6814 break; 6815 case ISD::FP_ROUND: 6816 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6817 OptForSize, Cost, Depth)) 6818 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6819 break; 6820 } 6821 6822 return SDValue(); 6823 } 6824 6825 //===----------------------------------------------------------------------===// 6826 // Legalization Utilities 6827 //===----------------------------------------------------------------------===// 6828 6829 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6830 SDValue LHS, SDValue RHS, 6831 SmallVectorImpl<SDValue> &Result, 6832 EVT HiLoVT, SelectionDAG &DAG, 6833 MulExpansionKind Kind, SDValue LL, 6834 SDValue LH, SDValue RL, SDValue RH) const { 6835 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6836 Opcode == ISD::SMUL_LOHI); 6837 6838 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6839 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6840 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6841 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6842 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6843 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6844 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6845 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6846 6847 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6848 return false; 6849 6850 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6851 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6852 6853 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6854 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6855 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6856 6857 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6858 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6859 bool Signed) -> bool { 6860 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6861 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6862 Hi = SDValue(Lo.getNode(), 1); 6863 return true; 6864 } 6865 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6866 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6867 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6868 return true; 6869 } 6870 return false; 6871 }; 6872 6873 SDValue Lo, Hi; 6874 6875 if (!LL.getNode() && !RL.getNode() && 6876 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6877 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6878 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6879 } 6880 6881 if (!LL.getNode()) 6882 return false; 6883 6884 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6885 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6886 DAG.MaskedValueIsZero(RHS, HighMask)) { 6887 // The inputs are both zero-extended. 6888 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6889 Result.push_back(Lo); 6890 Result.push_back(Hi); 6891 if (Opcode != ISD::MUL) { 6892 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6893 Result.push_back(Zero); 6894 Result.push_back(Zero); 6895 } 6896 return true; 6897 } 6898 } 6899 6900 if (!VT.isVector() && Opcode == ISD::MUL && 6901 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6902 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6903 // The input values are both sign-extended. 6904 // TODO non-MUL case? 6905 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6906 Result.push_back(Lo); 6907 Result.push_back(Hi); 6908 return true; 6909 } 6910 } 6911 6912 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6913 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6914 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6915 6916 if (!LH.getNode() && !RH.getNode() && 6917 isOperationLegalOrCustom(ISD::SRL, VT) && 6918 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6919 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6920 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6921 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6922 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6923 } 6924 6925 if (!LH.getNode()) 6926 return false; 6927 6928 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6929 return false; 6930 6931 Result.push_back(Lo); 6932 6933 if (Opcode == ISD::MUL) { 6934 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6935 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6936 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6937 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6938 Result.push_back(Hi); 6939 return true; 6940 } 6941 6942 // Compute the full width result. 6943 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6944 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6945 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6946 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6947 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6948 }; 6949 6950 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6951 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6952 return false; 6953 6954 // This is effectively the add part of a multiply-add of half-sized operands, 6955 // so it cannot overflow. 6956 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6957 6958 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6959 return false; 6960 6961 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6962 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6963 6964 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6965 isOperationLegalOrCustom(ISD::ADDE, VT)); 6966 if (UseGlue) 6967 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6968 Merge(Lo, Hi)); 6969 else 6970 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6971 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6972 6973 SDValue Carry = Next.getValue(1); 6974 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6975 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6976 6977 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6978 return false; 6979 6980 if (UseGlue) 6981 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6982 Carry); 6983 else 6984 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6985 Zero, Carry); 6986 6987 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6988 6989 if (Opcode == ISD::SMUL_LOHI) { 6990 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6991 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6992 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6993 6994 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6995 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6996 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6997 } 6998 6999 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7000 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 7001 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 7002 return true; 7003 } 7004 7005 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 7006 SelectionDAG &DAG, MulExpansionKind Kind, 7007 SDValue LL, SDValue LH, SDValue RL, 7008 SDValue RH) const { 7009 SmallVector<SDValue, 2> Result; 7010 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 7011 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 7012 DAG, Kind, LL, LH, RL, RH); 7013 if (Ok) { 7014 assert(Result.size() == 2); 7015 Lo = Result[0]; 7016 Hi = Result[1]; 7017 } 7018 return Ok; 7019 } 7020 7021 // Check that (every element of) Z is undef or not an exact multiple of BW. 7022 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 7023 return ISD::matchUnaryPredicate( 7024 Z, 7025 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 7026 true); 7027 } 7028 7029 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 7030 SelectionDAG &DAG) const { 7031 EVT VT = Node->getValueType(0); 7032 7033 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 7034 !isOperationLegalOrCustom(ISD::SRL, VT) || 7035 !isOperationLegalOrCustom(ISD::SUB, VT) || 7036 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7037 return SDValue(); 7038 7039 SDValue X = Node->getOperand(0); 7040 SDValue Y = Node->getOperand(1); 7041 SDValue Z = Node->getOperand(2); 7042 7043 unsigned BW = VT.getScalarSizeInBits(); 7044 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7045 SDLoc DL(SDValue(Node, 0)); 7046 7047 EVT ShVT = Z.getValueType(); 7048 7049 // If a funnel shift in the other direction is more supported, use it. 7050 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7051 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7052 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7053 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7054 // fshl X, Y, Z -> fshr X, Y, -Z 7055 // fshr X, Y, Z -> fshl X, Y, -Z 7056 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7057 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7058 } else { 7059 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7060 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7061 SDValue One = DAG.getConstant(1, DL, ShVT); 7062 if (IsFSHL) { 7063 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7064 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7065 } else { 7066 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7067 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7068 } 7069 Z = DAG.getNOT(DL, Z, ShVT); 7070 } 7071 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7072 } 7073 7074 SDValue ShX, ShY; 7075 SDValue ShAmt, InvShAmt; 7076 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7077 // fshl: X << C | Y >> (BW - C) 7078 // fshr: X << (BW - C) | Y >> C 7079 // where C = Z % BW is not zero 7080 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7081 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7082 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7083 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7084 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7085 } else { 7086 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7087 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7088 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7089 if (isPowerOf2_32(BW)) { 7090 // Z % BW -> Z & (BW - 1) 7091 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7092 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7093 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7094 } else { 7095 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7096 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7097 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7098 } 7099 7100 SDValue One = DAG.getConstant(1, DL, ShVT); 7101 if (IsFSHL) { 7102 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7103 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7104 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7105 } else { 7106 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7107 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7108 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7109 } 7110 } 7111 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7112 } 7113 7114 // TODO: Merge with expandFunnelShift. 7115 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7116 SelectionDAG &DAG) const { 7117 EVT VT = Node->getValueType(0); 7118 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7119 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7120 SDValue Op0 = Node->getOperand(0); 7121 SDValue Op1 = Node->getOperand(1); 7122 SDLoc DL(SDValue(Node, 0)); 7123 7124 EVT ShVT = Op1.getValueType(); 7125 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7126 7127 // If a rotate in the other direction is more supported, use it. 7128 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7129 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7130 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7131 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7132 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7133 } 7134 7135 if (!AllowVectorOps && VT.isVector() && 7136 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7137 !isOperationLegalOrCustom(ISD::SRL, VT) || 7138 !isOperationLegalOrCustom(ISD::SUB, VT) || 7139 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7140 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7141 return SDValue(); 7142 7143 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7144 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7145 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7146 SDValue ShVal; 7147 SDValue HsVal; 7148 if (isPowerOf2_32(EltSizeInBits)) { 7149 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7150 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7151 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7152 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7153 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7154 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7155 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7156 } else { 7157 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7158 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7159 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7160 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7161 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7162 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7163 SDValue One = DAG.getConstant(1, DL, ShVT); 7164 HsVal = 7165 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7166 } 7167 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7168 } 7169 7170 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7171 SelectionDAG &DAG) const { 7172 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7173 EVT VT = Node->getValueType(0); 7174 unsigned VTBits = VT.getScalarSizeInBits(); 7175 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7176 7177 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7178 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7179 SDValue ShOpLo = Node->getOperand(0); 7180 SDValue ShOpHi = Node->getOperand(1); 7181 SDValue ShAmt = Node->getOperand(2); 7182 EVT ShAmtVT = ShAmt.getValueType(); 7183 EVT ShAmtCCVT = 7184 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7185 SDLoc dl(Node); 7186 7187 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7188 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7189 // away during isel. 7190 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7191 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7192 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7193 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7194 : DAG.getConstant(0, dl, VT); 7195 7196 SDValue Tmp2, Tmp3; 7197 if (IsSHL) { 7198 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7199 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7200 } else { 7201 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7202 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7203 } 7204 7205 // If the shift amount is larger or equal than the width of a part we don't 7206 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7207 // values for large shift amounts. 7208 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7209 DAG.getConstant(VTBits, dl, ShAmtVT)); 7210 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7211 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7212 7213 if (IsSHL) { 7214 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7215 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7216 } else { 7217 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7218 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7219 } 7220 } 7221 7222 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7223 SelectionDAG &DAG) const { 7224 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7225 SDValue Src = Node->getOperand(OpNo); 7226 EVT SrcVT = Src.getValueType(); 7227 EVT DstVT = Node->getValueType(0); 7228 SDLoc dl(SDValue(Node, 0)); 7229 7230 // FIXME: Only f32 to i64 conversions are supported. 7231 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7232 return false; 7233 7234 if (Node->isStrictFPOpcode()) 7235 // When a NaN is converted to an integer a trap is allowed. We can't 7236 // use this expansion here because it would eliminate that trap. Other 7237 // traps are also allowed and cannot be eliminated. See 7238 // IEEE 754-2008 sec 5.8. 7239 return false; 7240 7241 // Expand f32 -> i64 conversion 7242 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7243 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7244 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7245 EVT IntVT = SrcVT.changeTypeToInteger(); 7246 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7247 7248 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7249 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7250 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7251 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7252 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7253 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7254 7255 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7256 7257 SDValue ExponentBits = DAG.getNode( 7258 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7259 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7260 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7261 7262 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7263 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7264 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7265 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7266 7267 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7268 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7269 DAG.getConstant(0x00800000, dl, IntVT)); 7270 7271 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7272 7273 R = DAG.getSelectCC( 7274 dl, Exponent, ExponentLoBit, 7275 DAG.getNode(ISD::SHL, dl, DstVT, R, 7276 DAG.getZExtOrTrunc( 7277 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7278 dl, IntShVT)), 7279 DAG.getNode(ISD::SRL, dl, DstVT, R, 7280 DAG.getZExtOrTrunc( 7281 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7282 dl, IntShVT)), 7283 ISD::SETGT); 7284 7285 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7286 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7287 7288 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7289 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7290 return true; 7291 } 7292 7293 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7294 SDValue &Chain, 7295 SelectionDAG &DAG) const { 7296 SDLoc dl(SDValue(Node, 0)); 7297 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7298 SDValue Src = Node->getOperand(OpNo); 7299 7300 EVT SrcVT = Src.getValueType(); 7301 EVT DstVT = Node->getValueType(0); 7302 EVT SetCCVT = 7303 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7304 EVT DstSetCCVT = 7305 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7306 7307 // Only expand vector types if we have the appropriate vector bit operations. 7308 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7309 ISD::FP_TO_SINT; 7310 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7311 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7312 return false; 7313 7314 // If the maximum float value is smaller then the signed integer range, 7315 // the destination signmask can't be represented by the float, so we can 7316 // just use FP_TO_SINT directly. 7317 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7318 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7319 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7320 if (APFloat::opOverflow & 7321 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7322 if (Node->isStrictFPOpcode()) { 7323 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7324 { Node->getOperand(0), Src }); 7325 Chain = Result.getValue(1); 7326 } else 7327 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7328 return true; 7329 } 7330 7331 // Don't expand it if there isn't cheap fsub instruction. 7332 if (!isOperationLegalOrCustom( 7333 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7334 return false; 7335 7336 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7337 SDValue Sel; 7338 7339 if (Node->isStrictFPOpcode()) { 7340 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7341 Node->getOperand(0), /*IsSignaling*/ true); 7342 Chain = Sel.getValue(1); 7343 } else { 7344 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7345 } 7346 7347 bool Strict = Node->isStrictFPOpcode() || 7348 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7349 7350 if (Strict) { 7351 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7352 // signmask then offset (the result of which should be fully representable). 7353 // Sel = Src < 0x8000000000000000 7354 // FltOfs = select Sel, 0, 0x8000000000000000 7355 // IntOfs = select Sel, 0, 0x8000000000000000 7356 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7357 7358 // TODO: Should any fast-math-flags be set for the FSUB? 7359 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7360 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7361 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7362 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7363 DAG.getConstant(0, dl, DstVT), 7364 DAG.getConstant(SignMask, dl, DstVT)); 7365 SDValue SInt; 7366 if (Node->isStrictFPOpcode()) { 7367 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7368 { Chain, Src, FltOfs }); 7369 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7370 { Val.getValue(1), Val }); 7371 Chain = SInt.getValue(1); 7372 } else { 7373 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7374 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7375 } 7376 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7377 } else { 7378 // Expand based on maximum range of FP_TO_SINT: 7379 // True = fp_to_sint(Src) 7380 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7381 // Result = select (Src < 0x8000000000000000), True, False 7382 7383 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7384 // TODO: Should any fast-math-flags be set for the FSUB? 7385 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7386 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7387 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7388 DAG.getConstant(SignMask, dl, DstVT)); 7389 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7390 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7391 } 7392 return true; 7393 } 7394 7395 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7396 SDValue &Chain, 7397 SelectionDAG &DAG) const { 7398 // This transform is not correct for converting 0 when rounding mode is set 7399 // to round toward negative infinity which will produce -0.0. So disable under 7400 // strictfp. 7401 if (Node->isStrictFPOpcode()) 7402 return false; 7403 7404 SDValue Src = Node->getOperand(0); 7405 EVT SrcVT = Src.getValueType(); 7406 EVT DstVT = Node->getValueType(0); 7407 7408 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7409 return false; 7410 7411 // Only expand vector types if we have the appropriate vector bit operations. 7412 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7413 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7414 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7415 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7416 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7417 return false; 7418 7419 SDLoc dl(SDValue(Node, 0)); 7420 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7421 7422 // Implementation of unsigned i64 to f64 following the algorithm in 7423 // __floatundidf in compiler_rt. This implementation performs rounding 7424 // correctly in all rounding modes with the exception of converting 0 7425 // when rounding toward negative infinity. In that case the fsub will produce 7426 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7427 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7428 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7429 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7430 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7431 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7432 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7433 7434 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7435 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7436 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7437 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7438 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7439 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7440 SDValue HiSub = 7441 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7442 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7443 return true; 7444 } 7445 7446 SDValue 7447 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7448 SelectionDAG &DAG) const { 7449 unsigned Opcode = Node->getOpcode(); 7450 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7451 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7452 "Wrong opcode"); 7453 7454 if (Node->getFlags().hasNoNaNs()) { 7455 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7456 SDValue Op1 = Node->getOperand(0); 7457 SDValue Op2 = Node->getOperand(1); 7458 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7459 // Copy FMF flags, but always set the no-signed-zeros flag 7460 // as this is implied by the FMINNUM/FMAXNUM semantics. 7461 SDNodeFlags Flags = Node->getFlags(); 7462 Flags.setNoSignedZeros(true); 7463 SelCC->setFlags(Flags); 7464 return SelCC; 7465 } 7466 7467 return SDValue(); 7468 } 7469 7470 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7471 SelectionDAG &DAG) const { 7472 SDLoc dl(Node); 7473 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7474 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7475 EVT VT = Node->getValueType(0); 7476 7477 if (VT.isScalableVector()) 7478 report_fatal_error( 7479 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7480 7481 if (isOperationLegalOrCustom(NewOp, VT)) { 7482 SDValue Quiet0 = Node->getOperand(0); 7483 SDValue Quiet1 = Node->getOperand(1); 7484 7485 if (!Node->getFlags().hasNoNaNs()) { 7486 // Insert canonicalizes if it's possible we need to quiet to get correct 7487 // sNaN behavior. 7488 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7489 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7490 Node->getFlags()); 7491 } 7492 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7493 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7494 Node->getFlags()); 7495 } 7496 } 7497 7498 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7499 } 7500 7501 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7502 // instead if there are no NaNs. 7503 if (Node->getFlags().hasNoNaNs()) { 7504 unsigned IEEE2018Op = 7505 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7506 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7507 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7508 Node->getOperand(1), Node->getFlags()); 7509 } 7510 } 7511 7512 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7513 return SelCC; 7514 7515 return SDValue(); 7516 } 7517 7518 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7519 unsigned Test, SDNodeFlags Flags, 7520 const SDLoc &DL, 7521 SelectionDAG &DAG) const { 7522 EVT OperandVT = Op.getValueType(); 7523 assert(OperandVT.isFloatingPoint()); 7524 7525 // Degenerated cases. 7526 if (Test == 0) 7527 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7528 if ((Test & fcAllFlags) == fcAllFlags) 7529 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7530 7531 // PPC double double is a pair of doubles, of which the higher part determines 7532 // the value class. 7533 if (OperandVT == MVT::ppcf128) { 7534 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7535 DAG.getConstant(1, DL, MVT::i32)); 7536 OperandVT = MVT::f64; 7537 } 7538 7539 // Some checks may be represented as inversion of simpler check, for example 7540 // "inf|normal|subnormal|zero" => !"nan". 7541 bool IsInverted = false; 7542 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7543 IsInverted = true; 7544 Test = InvertedCheck; 7545 } 7546 7547 // Floating-point type properties. 7548 EVT ScalarFloatVT = OperandVT.getScalarType(); 7549 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7550 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7551 bool IsF80 = (ScalarFloatVT == MVT::f80); 7552 7553 // Some checks can be implemented using float comparisons, if floating point 7554 // exceptions are ignored. 7555 if (Flags.hasNoFPExcept() && 7556 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7557 if (Test == fcZero) 7558 return DAG.getSetCC(DL, ResultVT, Op, 7559 DAG.getConstantFP(0.0, DL, OperandVT), 7560 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7561 if (Test == fcNan) 7562 return DAG.getSetCC(DL, ResultVT, Op, Op, 7563 IsInverted ? ISD::SETO : ISD::SETUO); 7564 } 7565 7566 // In the general case use integer operations. 7567 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7568 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7569 if (OperandVT.isVector()) 7570 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7571 OperandVT.getVectorElementCount()); 7572 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7573 7574 // Various masks. 7575 APInt SignBit = APInt::getSignMask(BitSize); 7576 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7577 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7578 const unsigned ExplicitIntBitInF80 = 63; 7579 APInt ExpMask = Inf; 7580 if (IsF80) 7581 ExpMask.clearBit(ExplicitIntBitInF80); 7582 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7583 APInt QNaNBitMask = 7584 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7585 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7586 7587 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7588 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7589 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7590 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7591 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7592 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7593 7594 SDValue Res; 7595 const auto appendResult = [&](SDValue PartialRes) { 7596 if (PartialRes) { 7597 if (Res) 7598 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7599 else 7600 Res = PartialRes; 7601 } 7602 }; 7603 7604 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7605 const auto getIntBitIsSet = [&]() -> SDValue { 7606 if (!IntBitIsSetV) { 7607 APInt IntBitMask(BitSize, 0); 7608 IntBitMask.setBit(ExplicitIntBitInF80); 7609 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7610 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7611 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7612 } 7613 return IntBitIsSetV; 7614 }; 7615 7616 // Split the value into sign bit and absolute value. 7617 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7618 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7619 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7620 7621 // Tests that involve more than one class should be processed first. 7622 SDValue PartialRes; 7623 7624 if (IsF80) 7625 ; // Detect finite numbers of f80 by checking individual classes because 7626 // they have different settings of the explicit integer bit. 7627 else if ((Test & fcFinite) == fcFinite) { 7628 // finite(V) ==> abs(V) < exp_mask 7629 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7630 Test &= ~fcFinite; 7631 } else if ((Test & fcFinite) == fcPosFinite) { 7632 // finite(V) && V > 0 ==> V < exp_mask 7633 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7634 Test &= ~fcPosFinite; 7635 } else if ((Test & fcFinite) == fcNegFinite) { 7636 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7637 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7638 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7639 Test &= ~fcNegFinite; 7640 } 7641 appendResult(PartialRes); 7642 7643 // Check for individual classes. 7644 7645 if (unsigned PartialCheck = Test & fcZero) { 7646 if (PartialCheck == fcPosZero) 7647 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7648 else if (PartialCheck == fcZero) 7649 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7650 else // ISD::fcNegZero 7651 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7652 appendResult(PartialRes); 7653 } 7654 7655 if (unsigned PartialCheck = Test & fcInf) { 7656 if (PartialCheck == fcPosInf) 7657 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7658 else if (PartialCheck == fcInf) 7659 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7660 else { // ISD::fcNegInf 7661 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7662 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7663 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7664 } 7665 appendResult(PartialRes); 7666 } 7667 7668 if (unsigned PartialCheck = Test & fcNan) { 7669 APInt InfWithQnanBit = Inf | QNaNBitMask; 7670 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7671 if (PartialCheck == fcNan) { 7672 // isnan(V) ==> abs(V) > int(inf) 7673 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7674 if (IsF80) { 7675 // Recognize unsupported values as NaNs for compatibility with glibc. 7676 // In them (exp(V)==0) == int_bit. 7677 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7678 SDValue ExpIsZero = 7679 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7680 SDValue IsPseudo = 7681 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7682 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7683 } 7684 } else if (PartialCheck == fcQNan) { 7685 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7686 PartialRes = 7687 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7688 } else { // ISD::fcSNan 7689 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7690 // abs(V) < (unsigned(Inf) | quiet_bit) 7691 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7692 SDValue IsNotQnan = 7693 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7694 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7695 } 7696 appendResult(PartialRes); 7697 } 7698 7699 if (unsigned PartialCheck = Test & fcSubnormal) { 7700 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7701 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7702 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7703 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7704 SDValue VMinusOneV = 7705 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7706 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7707 if (PartialCheck == fcNegSubnormal) 7708 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7709 appendResult(PartialRes); 7710 } 7711 7712 if (unsigned PartialCheck = Test & fcNormal) { 7713 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7714 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7715 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7716 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7717 APInt ExpLimit = ExpMask - ExpLSB; 7718 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7719 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7720 if (PartialCheck == fcNegNormal) 7721 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7722 else if (PartialCheck == fcPosNormal) { 7723 SDValue PosSignV = 7724 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7725 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7726 } 7727 if (IsF80) 7728 PartialRes = 7729 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7730 appendResult(PartialRes); 7731 } 7732 7733 if (!Res) 7734 return DAG.getConstant(IsInverted, DL, ResultVT); 7735 if (IsInverted) 7736 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7737 return Res; 7738 } 7739 7740 // Only expand vector types if we have the appropriate vector bit operations. 7741 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7742 assert(VT.isVector() && "Expected vector type"); 7743 unsigned Len = VT.getScalarSizeInBits(); 7744 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7745 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7746 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7747 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7748 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7749 } 7750 7751 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7752 SDLoc dl(Node); 7753 EVT VT = Node->getValueType(0); 7754 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7755 SDValue Op = Node->getOperand(0); 7756 unsigned Len = VT.getScalarSizeInBits(); 7757 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7758 7759 // TODO: Add support for irregular type lengths. 7760 if (!(Len <= 128 && Len % 8 == 0)) 7761 return SDValue(); 7762 7763 // Only expand vector types if we have the appropriate vector bit operations. 7764 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7765 return SDValue(); 7766 7767 // This is the "best" algorithm from 7768 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7769 SDValue Mask55 = 7770 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7771 SDValue Mask33 = 7772 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7773 SDValue Mask0F = 7774 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7775 7776 // v = v - ((v >> 1) & 0x55555555...) 7777 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7778 DAG.getNode(ISD::AND, dl, VT, 7779 DAG.getNode(ISD::SRL, dl, VT, Op, 7780 DAG.getConstant(1, dl, ShVT)), 7781 Mask55)); 7782 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7783 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7784 DAG.getNode(ISD::AND, dl, VT, 7785 DAG.getNode(ISD::SRL, dl, VT, Op, 7786 DAG.getConstant(2, dl, ShVT)), 7787 Mask33)); 7788 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7789 Op = DAG.getNode(ISD::AND, dl, VT, 7790 DAG.getNode(ISD::ADD, dl, VT, Op, 7791 DAG.getNode(ISD::SRL, dl, VT, Op, 7792 DAG.getConstant(4, dl, ShVT))), 7793 Mask0F); 7794 7795 if (Len <= 8) 7796 return Op; 7797 7798 // Avoid the multiply if we only have 2 bytes to add. 7799 // TODO: Only doing this for scalars because vectors weren't as obviously 7800 // improved. 7801 if (Len == 16 && !VT.isVector()) { 7802 // v = (v + (v >> 8)) & 0x00FF; 7803 return DAG.getNode(ISD::AND, dl, VT, 7804 DAG.getNode(ISD::ADD, dl, VT, Op, 7805 DAG.getNode(ISD::SRL, dl, VT, Op, 7806 DAG.getConstant(8, dl, ShVT))), 7807 DAG.getConstant(0xFF, dl, VT)); 7808 } 7809 7810 // v = (v * 0x01010101...) >> (Len - 8) 7811 SDValue Mask01 = 7812 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7813 return DAG.getNode(ISD::SRL, dl, VT, 7814 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7815 DAG.getConstant(Len - 8, dl, ShVT)); 7816 } 7817 7818 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7819 SDLoc dl(Node); 7820 EVT VT = Node->getValueType(0); 7821 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7822 SDValue Op = Node->getOperand(0); 7823 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7824 7825 // If the non-ZERO_UNDEF version is supported we can use that instead. 7826 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7827 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7828 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7829 7830 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7831 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7832 EVT SetCCVT = 7833 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7834 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7835 SDValue Zero = DAG.getConstant(0, dl, VT); 7836 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7837 return DAG.getSelect(dl, VT, SrcIsZero, 7838 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7839 } 7840 7841 // Only expand vector types if we have the appropriate vector bit operations. 7842 // This includes the operations needed to expand CTPOP if it isn't supported. 7843 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7844 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7845 !canExpandVectorCTPOP(*this, VT)) || 7846 !isOperationLegalOrCustom(ISD::SRL, VT) || 7847 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7848 return SDValue(); 7849 7850 // for now, we do this: 7851 // x = x | (x >> 1); 7852 // x = x | (x >> 2); 7853 // ... 7854 // x = x | (x >>16); 7855 // x = x | (x >>32); // for 64-bit input 7856 // return popcount(~x); 7857 // 7858 // Ref: "Hacker's Delight" by Henry Warren 7859 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7860 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7861 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7862 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7863 } 7864 Op = DAG.getNOT(dl, Op, VT); 7865 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7866 } 7867 7868 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7869 SDLoc dl(Node); 7870 EVT VT = Node->getValueType(0); 7871 SDValue Op = Node->getOperand(0); 7872 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7873 7874 // If the non-ZERO_UNDEF version is supported we can use that instead. 7875 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7876 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7877 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7878 7879 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7880 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7881 EVT SetCCVT = 7882 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7883 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7884 SDValue Zero = DAG.getConstant(0, dl, VT); 7885 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7886 return DAG.getSelect(dl, VT, SrcIsZero, 7887 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7888 } 7889 7890 // Only expand vector types if we have the appropriate vector bit operations. 7891 // This includes the operations needed to expand CTPOP if it isn't supported. 7892 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7893 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7894 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7895 !canExpandVectorCTPOP(*this, VT)) || 7896 !isOperationLegalOrCustom(ISD::SUB, VT) || 7897 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7898 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7899 return SDValue(); 7900 7901 // for now, we use: { return popcount(~x & (x - 1)); } 7902 // unless the target has ctlz but not ctpop, in which case we use: 7903 // { return 32 - nlz(~x & (x-1)); } 7904 // Ref: "Hacker's Delight" by Henry Warren 7905 SDValue Tmp = DAG.getNode( 7906 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7907 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7908 7909 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7910 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7911 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7912 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7913 } 7914 7915 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7916 } 7917 7918 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7919 bool IsNegative) const { 7920 SDLoc dl(N); 7921 EVT VT = N->getValueType(0); 7922 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7923 SDValue Op = N->getOperand(0); 7924 7925 // abs(x) -> smax(x,sub(0,x)) 7926 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7927 isOperationLegal(ISD::SMAX, VT)) { 7928 SDValue Zero = DAG.getConstant(0, dl, VT); 7929 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7930 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7931 } 7932 7933 // abs(x) -> umin(x,sub(0,x)) 7934 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7935 isOperationLegal(ISD::UMIN, VT)) { 7936 SDValue Zero = DAG.getConstant(0, dl, VT); 7937 Op = DAG.getFreeze(Op); 7938 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7939 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7940 } 7941 7942 // 0 - abs(x) -> smin(x, sub(0,x)) 7943 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7944 isOperationLegal(ISD::SMIN, VT)) { 7945 Op = DAG.getFreeze(Op); 7946 SDValue Zero = DAG.getConstant(0, dl, VT); 7947 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7948 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7949 } 7950 7951 // Only expand vector types if we have the appropriate vector operations. 7952 if (VT.isVector() && 7953 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7954 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7955 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7956 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7957 return SDValue(); 7958 7959 Op = DAG.getFreeze(Op); 7960 SDValue Shift = 7961 DAG.getNode(ISD::SRA, dl, VT, Op, 7962 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7963 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7964 7965 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7966 if (!IsNegative) 7967 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7968 7969 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7970 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7971 } 7972 7973 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7974 SDLoc dl(N); 7975 EVT VT = N->getValueType(0); 7976 SDValue Op = N->getOperand(0); 7977 7978 if (!VT.isSimple()) 7979 return SDValue(); 7980 7981 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7982 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7983 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7984 default: 7985 return SDValue(); 7986 case MVT::i16: 7987 // Use a rotate by 8. This can be further expanded if necessary. 7988 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7989 case MVT::i32: 7990 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7991 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7992 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7993 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7994 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7995 DAG.getConstant(0xFF0000, dl, VT)); 7996 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7997 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7998 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7999 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8000 case MVT::i64: 8001 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8002 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8003 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8004 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8005 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 8006 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 8007 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 8008 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 8009 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 8010 DAG.getConstant(255ULL<<48, dl, VT)); 8011 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 8012 DAG.getConstant(255ULL<<40, dl, VT)); 8013 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 8014 DAG.getConstant(255ULL<<32, dl, VT)); 8015 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 8016 DAG.getConstant(255ULL<<24, dl, VT)); 8017 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 8018 DAG.getConstant(255ULL<<16, dl, VT)); 8019 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 8020 DAG.getConstant(255ULL<<8 , dl, VT)); 8021 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 8022 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 8023 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 8024 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 8025 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 8026 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 8027 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 8028 } 8029 } 8030 8031 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 8032 SDLoc dl(N); 8033 EVT VT = N->getValueType(0); 8034 SDValue Op = N->getOperand(0); 8035 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 8036 unsigned Sz = VT.getScalarSizeInBits(); 8037 8038 SDValue Tmp, Tmp2, Tmp3; 8039 8040 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8041 // and finally the i1 pairs. 8042 // TODO: We can easily support i4/i2 legal types if any target ever does. 8043 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8044 // Create the masks - repeating the pattern every byte. 8045 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8046 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8047 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8048 8049 // BSWAP if the type is wider than a single byte. 8050 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8051 8052 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8053 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8054 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8055 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8056 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8057 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8058 8059 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8060 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8061 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8062 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8063 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8064 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8065 8066 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8067 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8068 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8069 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8070 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8071 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8072 return Tmp; 8073 } 8074 8075 Tmp = DAG.getConstant(0, dl, VT); 8076 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8077 if (I < J) 8078 Tmp2 = 8079 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8080 else 8081 Tmp2 = 8082 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8083 8084 APInt Shift(Sz, 1); 8085 Shift <<= J; 8086 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8087 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8088 } 8089 8090 return Tmp; 8091 } 8092 8093 std::pair<SDValue, SDValue> 8094 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8095 SelectionDAG &DAG) const { 8096 SDLoc SL(LD); 8097 SDValue Chain = LD->getChain(); 8098 SDValue BasePTR = LD->getBasePtr(); 8099 EVT SrcVT = LD->getMemoryVT(); 8100 EVT DstVT = LD->getValueType(0); 8101 ISD::LoadExtType ExtType = LD->getExtensionType(); 8102 8103 if (SrcVT.isScalableVector()) 8104 report_fatal_error("Cannot scalarize scalable vector loads"); 8105 8106 unsigned NumElem = SrcVT.getVectorNumElements(); 8107 8108 EVT SrcEltVT = SrcVT.getScalarType(); 8109 EVT DstEltVT = DstVT.getScalarType(); 8110 8111 // A vector must always be stored in memory as-is, i.e. without any padding 8112 // between the elements, since various code depend on it, e.g. in the 8113 // handling of a bitcast of a vector type to int, which may be done with a 8114 // vector store followed by an integer load. A vector that does not have 8115 // elements that are byte-sized must therefore be stored as an integer 8116 // built out of the extracted vector elements. 8117 if (!SrcEltVT.isByteSized()) { 8118 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8119 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8120 8121 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8122 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8123 8124 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8125 SDValue SrcEltBitMask = DAG.getConstant( 8126 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8127 8128 // Load the whole vector and avoid masking off the top bits as it makes 8129 // the codegen worse. 8130 SDValue Load = 8131 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8132 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8133 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8134 8135 SmallVector<SDValue, 8> Vals; 8136 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8137 unsigned ShiftIntoIdx = 8138 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8139 SDValue ShiftAmount = 8140 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8141 LoadVT, SL, /*LegalTypes=*/false); 8142 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8143 SDValue Elt = 8144 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8145 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8146 8147 if (ExtType != ISD::NON_EXTLOAD) { 8148 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8149 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8150 } 8151 8152 Vals.push_back(Scalar); 8153 } 8154 8155 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8156 return std::make_pair(Value, Load.getValue(1)); 8157 } 8158 8159 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8160 assert(SrcEltVT.isByteSized()); 8161 8162 SmallVector<SDValue, 8> Vals; 8163 SmallVector<SDValue, 8> LoadChains; 8164 8165 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8166 SDValue ScalarLoad = 8167 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8168 LD->getPointerInfo().getWithOffset(Idx * Stride), 8169 SrcEltVT, LD->getOriginalAlign(), 8170 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8171 8172 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8173 8174 Vals.push_back(ScalarLoad.getValue(0)); 8175 LoadChains.push_back(ScalarLoad.getValue(1)); 8176 } 8177 8178 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8179 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8180 8181 return std::make_pair(Value, NewChain); 8182 } 8183 8184 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8185 SelectionDAG &DAG) const { 8186 SDLoc SL(ST); 8187 8188 SDValue Chain = ST->getChain(); 8189 SDValue BasePtr = ST->getBasePtr(); 8190 SDValue Value = ST->getValue(); 8191 EVT StVT = ST->getMemoryVT(); 8192 8193 if (StVT.isScalableVector()) 8194 report_fatal_error("Cannot scalarize scalable vector stores"); 8195 8196 // The type of the data we want to save 8197 EVT RegVT = Value.getValueType(); 8198 EVT RegSclVT = RegVT.getScalarType(); 8199 8200 // The type of data as saved in memory. 8201 EVT MemSclVT = StVT.getScalarType(); 8202 8203 unsigned NumElem = StVT.getVectorNumElements(); 8204 8205 // A vector must always be stored in memory as-is, i.e. without any padding 8206 // between the elements, since various code depend on it, e.g. in the 8207 // handling of a bitcast of a vector type to int, which may be done with a 8208 // vector store followed by an integer load. A vector that does not have 8209 // elements that are byte-sized must therefore be stored as an integer 8210 // built out of the extracted vector elements. 8211 if (!MemSclVT.isByteSized()) { 8212 unsigned NumBits = StVT.getSizeInBits(); 8213 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8214 8215 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8216 8217 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8218 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8219 DAG.getVectorIdxConstant(Idx, SL)); 8220 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8221 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8222 unsigned ShiftIntoIdx = 8223 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8224 SDValue ShiftAmount = 8225 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8226 SDValue ShiftedElt = 8227 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8228 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8229 } 8230 8231 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8232 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8233 ST->getAAInfo()); 8234 } 8235 8236 // Store Stride in bytes 8237 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8238 assert(Stride && "Zero stride!"); 8239 // Extract each of the elements from the original vector and save them into 8240 // memory individually. 8241 SmallVector<SDValue, 8> Stores; 8242 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8243 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8244 DAG.getVectorIdxConstant(Idx, SL)); 8245 8246 SDValue Ptr = 8247 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8248 8249 // This scalar TruncStore may be illegal, but we legalize it later. 8250 SDValue Store = DAG.getTruncStore( 8251 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8252 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8253 ST->getAAInfo()); 8254 8255 Stores.push_back(Store); 8256 } 8257 8258 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8259 } 8260 8261 std::pair<SDValue, SDValue> 8262 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8263 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8264 "unaligned indexed loads not implemented!"); 8265 SDValue Chain = LD->getChain(); 8266 SDValue Ptr = LD->getBasePtr(); 8267 EVT VT = LD->getValueType(0); 8268 EVT LoadedVT = LD->getMemoryVT(); 8269 SDLoc dl(LD); 8270 auto &MF = DAG.getMachineFunction(); 8271 8272 if (VT.isFloatingPoint() || VT.isVector()) { 8273 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8274 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8275 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8276 LoadedVT.isVector()) { 8277 // Scalarize the load and let the individual components be handled. 8278 return scalarizeVectorLoad(LD, DAG); 8279 } 8280 8281 // Expand to a (misaligned) integer load of the same size, 8282 // then bitconvert to floating point or vector. 8283 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8284 LD->getMemOperand()); 8285 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8286 if (LoadedVT != VT) 8287 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8288 ISD::ANY_EXTEND, dl, VT, Result); 8289 8290 return std::make_pair(Result, newLoad.getValue(1)); 8291 } 8292 8293 // Copy the value to a (aligned) stack slot using (unaligned) integer 8294 // loads and stores, then do a (aligned) load from the stack slot. 8295 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8296 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8297 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8298 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8299 8300 // Make sure the stack slot is also aligned for the register type. 8301 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8302 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8303 SmallVector<SDValue, 8> Stores; 8304 SDValue StackPtr = StackBase; 8305 unsigned Offset = 0; 8306 8307 EVT PtrVT = Ptr.getValueType(); 8308 EVT StackPtrVT = StackPtr.getValueType(); 8309 8310 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8311 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8312 8313 // Do all but one copies using the full register width. 8314 for (unsigned i = 1; i < NumRegs; i++) { 8315 // Load one integer register's worth from the original location. 8316 SDValue Load = DAG.getLoad( 8317 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8318 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8319 LD->getAAInfo()); 8320 // Follow the load with a store to the stack slot. Remember the store. 8321 Stores.push_back(DAG.getStore( 8322 Load.getValue(1), dl, Load, StackPtr, 8323 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8324 // Increment the pointers. 8325 Offset += RegBytes; 8326 8327 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8328 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8329 } 8330 8331 // The last copy may be partial. Do an extending load. 8332 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8333 8 * (LoadedBytes - Offset)); 8334 SDValue Load = 8335 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8336 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8337 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8338 LD->getAAInfo()); 8339 // Follow the load with a store to the stack slot. Remember the store. 8340 // On big-endian machines this requires a truncating store to ensure 8341 // that the bits end up in the right place. 8342 Stores.push_back(DAG.getTruncStore( 8343 Load.getValue(1), dl, Load, StackPtr, 8344 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8345 8346 // The order of the stores doesn't matter - say it with a TokenFactor. 8347 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8348 8349 // Finally, perform the original load only redirected to the stack slot. 8350 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8351 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8352 LoadedVT); 8353 8354 // Callers expect a MERGE_VALUES node. 8355 return std::make_pair(Load, TF); 8356 } 8357 8358 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8359 "Unaligned load of unsupported type."); 8360 8361 // Compute the new VT that is half the size of the old one. This is an 8362 // integer MVT. 8363 unsigned NumBits = LoadedVT.getSizeInBits(); 8364 EVT NewLoadedVT; 8365 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8366 NumBits >>= 1; 8367 8368 Align Alignment = LD->getOriginalAlign(); 8369 unsigned IncrementSize = NumBits / 8; 8370 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8371 8372 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8373 if (HiExtType == ISD::NON_EXTLOAD) 8374 HiExtType = ISD::ZEXTLOAD; 8375 8376 // Load the value in two parts 8377 SDValue Lo, Hi; 8378 if (DAG.getDataLayout().isLittleEndian()) { 8379 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8380 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8381 LD->getAAInfo()); 8382 8383 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8384 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8385 LD->getPointerInfo().getWithOffset(IncrementSize), 8386 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8387 LD->getAAInfo()); 8388 } else { 8389 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8390 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8391 LD->getAAInfo()); 8392 8393 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8394 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8395 LD->getPointerInfo().getWithOffset(IncrementSize), 8396 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8397 LD->getAAInfo()); 8398 } 8399 8400 // aggregate the two parts 8401 SDValue ShiftAmount = 8402 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8403 DAG.getDataLayout())); 8404 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8405 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8406 8407 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8408 Hi.getValue(1)); 8409 8410 return std::make_pair(Result, TF); 8411 } 8412 8413 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8414 SelectionDAG &DAG) const { 8415 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8416 "unaligned indexed stores not implemented!"); 8417 SDValue Chain = ST->getChain(); 8418 SDValue Ptr = ST->getBasePtr(); 8419 SDValue Val = ST->getValue(); 8420 EVT VT = Val.getValueType(); 8421 Align Alignment = ST->getOriginalAlign(); 8422 auto &MF = DAG.getMachineFunction(); 8423 EVT StoreMemVT = ST->getMemoryVT(); 8424 8425 SDLoc dl(ST); 8426 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8427 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8428 if (isTypeLegal(intVT)) { 8429 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8430 StoreMemVT.isVector()) { 8431 // Scalarize the store and let the individual components be handled. 8432 SDValue Result = scalarizeVectorStore(ST, DAG); 8433 return Result; 8434 } 8435 // Expand to a bitconvert of the value to the integer type of the 8436 // same size, then a (misaligned) int store. 8437 // FIXME: Does not handle truncating floating point stores! 8438 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8439 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8440 Alignment, ST->getMemOperand()->getFlags()); 8441 return Result; 8442 } 8443 // Do a (aligned) store to a stack slot, then copy from the stack slot 8444 // to the final destination using (unaligned) integer loads and stores. 8445 MVT RegVT = getRegisterType( 8446 *DAG.getContext(), 8447 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8448 EVT PtrVT = Ptr.getValueType(); 8449 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8450 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8451 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8452 8453 // Make sure the stack slot is also aligned for the register type. 8454 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8455 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8456 8457 // Perform the original store, only redirected to the stack slot. 8458 SDValue Store = DAG.getTruncStore( 8459 Chain, dl, Val, StackPtr, 8460 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8461 8462 EVT StackPtrVT = StackPtr.getValueType(); 8463 8464 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8465 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8466 SmallVector<SDValue, 8> Stores; 8467 unsigned Offset = 0; 8468 8469 // Do all but one copies using the full register width. 8470 for (unsigned i = 1; i < NumRegs; i++) { 8471 // Load one integer register's worth from the stack slot. 8472 SDValue Load = DAG.getLoad( 8473 RegVT, dl, Store, StackPtr, 8474 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8475 // Store it to the final location. Remember the store. 8476 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8477 ST->getPointerInfo().getWithOffset(Offset), 8478 ST->getOriginalAlign(), 8479 ST->getMemOperand()->getFlags())); 8480 // Increment the pointers. 8481 Offset += RegBytes; 8482 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8483 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8484 } 8485 8486 // The last store may be partial. Do a truncating store. On big-endian 8487 // machines this requires an extending load from the stack slot to ensure 8488 // that the bits are in the right place. 8489 EVT LoadMemVT = 8490 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8491 8492 // Load from the stack slot. 8493 SDValue Load = DAG.getExtLoad( 8494 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8495 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8496 8497 Stores.push_back( 8498 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8499 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8500 ST->getOriginalAlign(), 8501 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8502 // The order of the stores doesn't matter - say it with a TokenFactor. 8503 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8504 return Result; 8505 } 8506 8507 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8508 "Unaligned store of unknown type."); 8509 // Get the half-size VT 8510 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8511 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8512 unsigned IncrementSize = NumBits / 8; 8513 8514 // Divide the stored value in two parts. 8515 SDValue ShiftAmount = DAG.getConstant( 8516 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8517 SDValue Lo = Val; 8518 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8519 8520 // Store the two parts 8521 SDValue Store1, Store2; 8522 Store1 = DAG.getTruncStore(Chain, dl, 8523 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8524 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8525 ST->getMemOperand()->getFlags()); 8526 8527 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8528 Store2 = DAG.getTruncStore( 8529 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8530 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8531 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8532 8533 SDValue Result = 8534 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8535 return Result; 8536 } 8537 8538 SDValue 8539 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8540 const SDLoc &DL, EVT DataVT, 8541 SelectionDAG &DAG, 8542 bool IsCompressedMemory) const { 8543 SDValue Increment; 8544 EVT AddrVT = Addr.getValueType(); 8545 EVT MaskVT = Mask.getValueType(); 8546 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8547 "Incompatible types of Data and Mask"); 8548 if (IsCompressedMemory) { 8549 if (DataVT.isScalableVector()) 8550 report_fatal_error( 8551 "Cannot currently handle compressed memory with scalable vectors"); 8552 // Incrementing the pointer according to number of '1's in the mask. 8553 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8554 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8555 if (MaskIntVT.getSizeInBits() < 32) { 8556 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8557 MaskIntVT = MVT::i32; 8558 } 8559 8560 // Count '1's with POPCNT. 8561 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8562 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8563 // Scale is an element size in bytes. 8564 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8565 AddrVT); 8566 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8567 } else if (DataVT.isScalableVector()) { 8568 Increment = DAG.getVScale(DL, AddrVT, 8569 APInt(AddrVT.getFixedSizeInBits(), 8570 DataVT.getStoreSize().getKnownMinSize())); 8571 } else 8572 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8573 8574 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8575 } 8576 8577 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8578 EVT VecVT, const SDLoc &dl, 8579 ElementCount SubEC) { 8580 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8581 "Cannot index a scalable vector within a fixed-width vector"); 8582 8583 unsigned NElts = VecVT.getVectorMinNumElements(); 8584 unsigned NumSubElts = SubEC.getKnownMinValue(); 8585 EVT IdxVT = Idx.getValueType(); 8586 8587 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8588 // If this is a constant index and we know the value plus the number of the 8589 // elements in the subvector minus one is less than the minimum number of 8590 // elements then it's safe to return Idx. 8591 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8592 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8593 return Idx; 8594 SDValue VS = 8595 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8596 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8597 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8598 DAG.getConstant(NumSubElts, dl, IdxVT)); 8599 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8600 } 8601 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8602 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8603 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8604 DAG.getConstant(Imm, dl, IdxVT)); 8605 } 8606 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8607 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8608 DAG.getConstant(MaxIndex, dl, IdxVT)); 8609 } 8610 8611 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8612 SDValue VecPtr, EVT VecVT, 8613 SDValue Index) const { 8614 return getVectorSubVecPointer( 8615 DAG, VecPtr, VecVT, 8616 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8617 Index); 8618 } 8619 8620 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8621 SDValue VecPtr, EVT VecVT, 8622 EVT SubVecVT, 8623 SDValue Index) const { 8624 SDLoc dl(Index); 8625 // Make sure the index type is big enough to compute in. 8626 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8627 8628 EVT EltVT = VecVT.getVectorElementType(); 8629 8630 // Calculate the element offset and add it to the pointer. 8631 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8632 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8633 "Converting bits to bytes lost precision"); 8634 assert(SubVecVT.getVectorElementType() == EltVT && 8635 "Sub-vector must be a vector with matching element type"); 8636 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8637 SubVecVT.getVectorElementCount()); 8638 8639 EVT IdxVT = Index.getValueType(); 8640 if (SubVecVT.isScalableVector()) 8641 Index = 8642 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8643 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8644 8645 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8646 DAG.getConstant(EltSize, dl, IdxVT)); 8647 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8648 } 8649 8650 //===----------------------------------------------------------------------===// 8651 // Implementation of Emulated TLS Model 8652 //===----------------------------------------------------------------------===// 8653 8654 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8655 SelectionDAG &DAG) const { 8656 // Access to address of TLS varialbe xyz is lowered to a function call: 8657 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8658 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8659 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8660 SDLoc dl(GA); 8661 8662 ArgListTy Args; 8663 ArgListEntry Entry; 8664 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8665 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8666 StringRef EmuTlsVarName(NameString); 8667 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8668 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8669 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8670 Entry.Ty = VoidPtrType; 8671 Args.push_back(Entry); 8672 8673 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8674 8675 TargetLowering::CallLoweringInfo CLI(DAG); 8676 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8677 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8678 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8679 8680 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8681 // At last for X86 targets, maybe good for other targets too? 8682 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8683 MFI.setAdjustsStack(true); // Is this only for X86 target? 8684 MFI.setHasCalls(true); 8685 8686 assert((GA->getOffset() == 0) && 8687 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8688 return CallResult.first; 8689 } 8690 8691 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8692 SelectionDAG &DAG) const { 8693 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8694 if (!isCtlzFast()) 8695 return SDValue(); 8696 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8697 SDLoc dl(Op); 8698 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8699 if (C->isZero() && CC == ISD::SETEQ) { 8700 EVT VT = Op.getOperand(0).getValueType(); 8701 SDValue Zext = Op.getOperand(0); 8702 if (VT.bitsLT(MVT::i32)) { 8703 VT = MVT::i32; 8704 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8705 } 8706 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8707 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8708 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8709 DAG.getConstant(Log2b, dl, MVT::i32)); 8710 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8711 } 8712 } 8713 return SDValue(); 8714 } 8715 8716 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8717 SDValue Op0 = Node->getOperand(0); 8718 SDValue Op1 = Node->getOperand(1); 8719 EVT VT = Op0.getValueType(); 8720 unsigned Opcode = Node->getOpcode(); 8721 SDLoc DL(Node); 8722 8723 // umin(x,y) -> sub(x,usubsat(x,y)) 8724 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8725 isOperationLegal(ISD::USUBSAT, VT)) { 8726 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8727 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8728 } 8729 8730 // umax(x,y) -> add(x,usubsat(y,x)) 8731 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8732 isOperationLegal(ISD::USUBSAT, VT)) { 8733 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8734 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8735 } 8736 8737 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8738 ISD::CondCode CC; 8739 switch (Opcode) { 8740 default: llvm_unreachable("How did we get here?"); 8741 case ISD::SMAX: CC = ISD::SETGT; break; 8742 case ISD::SMIN: CC = ISD::SETLT; break; 8743 case ISD::UMAX: CC = ISD::SETUGT; break; 8744 case ISD::UMIN: CC = ISD::SETULT; break; 8745 } 8746 8747 // FIXME: Should really try to split the vector in case it's legal on a 8748 // subvector. 8749 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8750 return DAG.UnrollVectorOp(Node); 8751 8752 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8753 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8754 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8755 } 8756 8757 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8758 unsigned Opcode = Node->getOpcode(); 8759 SDValue LHS = Node->getOperand(0); 8760 SDValue RHS = Node->getOperand(1); 8761 EVT VT = LHS.getValueType(); 8762 SDLoc dl(Node); 8763 8764 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8765 assert(VT.isInteger() && "Expected operands to be integers"); 8766 8767 // usub.sat(a, b) -> umax(a, b) - b 8768 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8769 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8770 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8771 } 8772 8773 // uadd.sat(a, b) -> umin(a, ~b) + b 8774 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8775 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8776 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8777 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8778 } 8779 8780 unsigned OverflowOp; 8781 switch (Opcode) { 8782 case ISD::SADDSAT: 8783 OverflowOp = ISD::SADDO; 8784 break; 8785 case ISD::UADDSAT: 8786 OverflowOp = ISD::UADDO; 8787 break; 8788 case ISD::SSUBSAT: 8789 OverflowOp = ISD::SSUBO; 8790 break; 8791 case ISD::USUBSAT: 8792 OverflowOp = ISD::USUBO; 8793 break; 8794 default: 8795 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8796 "addition or subtraction node."); 8797 } 8798 8799 // FIXME: Should really try to split the vector in case it's legal on a 8800 // subvector. 8801 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8802 return DAG.UnrollVectorOp(Node); 8803 8804 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8805 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8806 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8807 SDValue SumDiff = Result.getValue(0); 8808 SDValue Overflow = Result.getValue(1); 8809 SDValue Zero = DAG.getConstant(0, dl, VT); 8810 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8811 8812 if (Opcode == ISD::UADDSAT) { 8813 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8814 // (LHS + RHS) | OverflowMask 8815 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8816 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8817 } 8818 // Overflow ? 0xffff.... : (LHS + RHS) 8819 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8820 } 8821 8822 if (Opcode == ISD::USUBSAT) { 8823 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8824 // (LHS - RHS) & ~OverflowMask 8825 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8826 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8827 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8828 } 8829 // Overflow ? 0 : (LHS - RHS) 8830 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8831 } 8832 8833 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8834 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8835 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8836 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8837 DAG.getConstant(BitWidth - 1, dl, VT)); 8838 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8839 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8840 } 8841 8842 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8843 unsigned Opcode = Node->getOpcode(); 8844 bool IsSigned = Opcode == ISD::SSHLSAT; 8845 SDValue LHS = Node->getOperand(0); 8846 SDValue RHS = Node->getOperand(1); 8847 EVT VT = LHS.getValueType(); 8848 SDLoc dl(Node); 8849 8850 assert((Node->getOpcode() == ISD::SSHLSAT || 8851 Node->getOpcode() == ISD::USHLSAT) && 8852 "Expected a SHLSAT opcode"); 8853 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8854 assert(VT.isInteger() && "Expected operands to be integers"); 8855 8856 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8857 8858 unsigned BW = VT.getScalarSizeInBits(); 8859 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8860 SDValue Orig = 8861 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8862 8863 SDValue SatVal; 8864 if (IsSigned) { 8865 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8866 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8867 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8868 SatMin, SatMax, ISD::SETLT); 8869 } else { 8870 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8871 } 8872 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8873 8874 return Result; 8875 } 8876 8877 SDValue 8878 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8879 assert((Node->getOpcode() == ISD::SMULFIX || 8880 Node->getOpcode() == ISD::UMULFIX || 8881 Node->getOpcode() == ISD::SMULFIXSAT || 8882 Node->getOpcode() == ISD::UMULFIXSAT) && 8883 "Expected a fixed point multiplication opcode"); 8884 8885 SDLoc dl(Node); 8886 SDValue LHS = Node->getOperand(0); 8887 SDValue RHS = Node->getOperand(1); 8888 EVT VT = LHS.getValueType(); 8889 unsigned Scale = Node->getConstantOperandVal(2); 8890 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8891 Node->getOpcode() == ISD::UMULFIXSAT); 8892 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8893 Node->getOpcode() == ISD::SMULFIXSAT); 8894 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8895 unsigned VTSize = VT.getScalarSizeInBits(); 8896 8897 if (!Scale) { 8898 // [us]mul.fix(a, b, 0) -> mul(a, b) 8899 if (!Saturating) { 8900 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8901 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8902 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8903 SDValue Result = 8904 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8905 SDValue Product = Result.getValue(0); 8906 SDValue Overflow = Result.getValue(1); 8907 SDValue Zero = DAG.getConstant(0, dl, VT); 8908 8909 APInt MinVal = APInt::getSignedMinValue(VTSize); 8910 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8911 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8912 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8913 // Xor the inputs, if resulting sign bit is 0 the product will be 8914 // positive, else negative. 8915 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8916 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8917 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8918 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8919 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8920 SDValue Result = 8921 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8922 SDValue Product = Result.getValue(0); 8923 SDValue Overflow = Result.getValue(1); 8924 8925 APInt MaxVal = APInt::getMaxValue(VTSize); 8926 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8927 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8928 } 8929 } 8930 8931 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8932 "Expected scale to be less than the number of bits if signed or at " 8933 "most the number of bits if unsigned."); 8934 assert(LHS.getValueType() == RHS.getValueType() && 8935 "Expected both operands to be the same type"); 8936 8937 // Get the upper and lower bits of the result. 8938 SDValue Lo, Hi; 8939 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8940 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8941 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8942 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8943 Lo = Result.getValue(0); 8944 Hi = Result.getValue(1); 8945 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8946 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8947 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8948 } else if (VT.isVector()) { 8949 return SDValue(); 8950 } else { 8951 report_fatal_error("Unable to expand fixed point multiplication."); 8952 } 8953 8954 if (Scale == VTSize) 8955 // Result is just the top half since we'd be shifting by the width of the 8956 // operand. Overflow impossible so this works for both UMULFIX and 8957 // UMULFIXSAT. 8958 return Hi; 8959 8960 // The result will need to be shifted right by the scale since both operands 8961 // are scaled. The result is given to us in 2 halves, so we only want part of 8962 // both in the result. 8963 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8964 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8965 DAG.getConstant(Scale, dl, ShiftTy)); 8966 if (!Saturating) 8967 return Result; 8968 8969 if (!Signed) { 8970 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8971 // widened multiplication) aren't all zeroes. 8972 8973 // Saturate to max if ((Hi >> Scale) != 0), 8974 // which is the same as if (Hi > ((1 << Scale) - 1)) 8975 APInt MaxVal = APInt::getMaxValue(VTSize); 8976 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8977 dl, VT); 8978 Result = DAG.getSelectCC(dl, Hi, LowMask, 8979 DAG.getConstant(MaxVal, dl, VT), Result, 8980 ISD::SETUGT); 8981 8982 return Result; 8983 } 8984 8985 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8986 // widened multiplication) aren't all ones or all zeroes. 8987 8988 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8989 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8990 8991 if (Scale == 0) { 8992 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8993 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8994 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8995 // Saturated to SatMin if wide product is negative, and SatMax if wide 8996 // product is positive ... 8997 SDValue Zero = DAG.getConstant(0, dl, VT); 8998 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8999 ISD::SETLT); 9000 // ... but only if we overflowed. 9001 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 9002 } 9003 9004 // We handled Scale==0 above so all the bits to examine is in Hi. 9005 9006 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 9007 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 9008 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 9009 dl, VT); 9010 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 9011 // Saturate to min if (Hi >> (Scale - 1)) < -1), 9012 // which is the same as if (HI < (-1 << (Scale - 1)) 9013 SDValue HighMask = 9014 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 9015 dl, VT); 9016 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 9017 return Result; 9018 } 9019 9020 SDValue 9021 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 9022 SDValue LHS, SDValue RHS, 9023 unsigned Scale, SelectionDAG &DAG) const { 9024 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 9025 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 9026 "Expected a fixed point division opcode"); 9027 9028 EVT VT = LHS.getValueType(); 9029 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 9030 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 9031 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9032 9033 // If there is enough room in the type to upscale the LHS or downscale the 9034 // RHS before the division, we can perform it in this type without having to 9035 // resize. For signed operations, the LHS headroom is the number of 9036 // redundant sign bits, and for unsigned ones it is the number of zeroes. 9037 // The headroom for the RHS is the number of trailing zeroes. 9038 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9039 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9040 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9041 9042 // For signed saturating operations, we need to be able to detect true integer 9043 // division overflow; that is, when you have MIN / -EPS. However, this 9044 // is undefined behavior and if we emit divisions that could take such 9045 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9046 // example). 9047 // Avoid this by requiring an extra bit so that we never get this case. 9048 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9049 // signed saturating division, we need to emit a whopping 32-bit division. 9050 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9051 return SDValue(); 9052 9053 unsigned LHSShift = std::min(LHSLead, Scale); 9054 unsigned RHSShift = Scale - LHSShift; 9055 9056 // At this point, we know that if we shift the LHS up by LHSShift and the 9057 // RHS down by RHSShift, we can emit a regular division with a final scaling 9058 // factor of Scale. 9059 9060 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9061 if (LHSShift) 9062 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9063 DAG.getConstant(LHSShift, dl, ShiftTy)); 9064 if (RHSShift) 9065 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9066 DAG.getConstant(RHSShift, dl, ShiftTy)); 9067 9068 SDValue Quot; 9069 if (Signed) { 9070 // For signed operations, if the resulting quotient is negative and the 9071 // remainder is nonzero, subtract 1 from the quotient to round towards 9072 // negative infinity. 9073 SDValue Rem; 9074 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9075 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9076 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9077 if (isTypeLegal(VT) && 9078 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9079 Quot = DAG.getNode(ISD::SDIVREM, dl, 9080 DAG.getVTList(VT, VT), 9081 LHS, RHS); 9082 Rem = Quot.getValue(1); 9083 Quot = Quot.getValue(0); 9084 } else { 9085 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9086 LHS, RHS); 9087 Rem = DAG.getNode(ISD::SREM, dl, VT, 9088 LHS, RHS); 9089 } 9090 SDValue Zero = DAG.getConstant(0, dl, VT); 9091 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9092 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9093 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9094 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9095 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9096 DAG.getConstant(1, dl, VT)); 9097 Quot = DAG.getSelect(dl, VT, 9098 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9099 Sub1, Quot); 9100 } else 9101 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9102 LHS, RHS); 9103 9104 return Quot; 9105 } 9106 9107 void TargetLowering::expandUADDSUBO( 9108 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9109 SDLoc dl(Node); 9110 SDValue LHS = Node->getOperand(0); 9111 SDValue RHS = Node->getOperand(1); 9112 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9113 9114 // If ADD/SUBCARRY is legal, use that instead. 9115 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9116 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9117 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9118 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9119 { LHS, RHS, CarryIn }); 9120 Result = SDValue(NodeCarry.getNode(), 0); 9121 Overflow = SDValue(NodeCarry.getNode(), 1); 9122 return; 9123 } 9124 9125 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9126 LHS.getValueType(), LHS, RHS); 9127 9128 EVT ResultType = Node->getValueType(1); 9129 EVT SetCCType = getSetCCResultType( 9130 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9131 SDValue SetCC; 9132 if (IsAdd && isOneConstant(RHS)) { 9133 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9134 // the live range of X. We assume comparing with 0 is cheap. 9135 // The general case (X + C) < C is not necessarily beneficial. Although we 9136 // reduce the live range of X, we may introduce the materialization of 9137 // constant C. 9138 SetCC = 9139 DAG.getSetCC(dl, SetCCType, Result, 9140 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9141 } else { 9142 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9143 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9144 } 9145 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9146 } 9147 9148 void TargetLowering::expandSADDSUBO( 9149 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9150 SDLoc dl(Node); 9151 SDValue LHS = Node->getOperand(0); 9152 SDValue RHS = Node->getOperand(1); 9153 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9154 9155 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9156 LHS.getValueType(), LHS, RHS); 9157 9158 EVT ResultType = Node->getValueType(1); 9159 EVT OType = getSetCCResultType( 9160 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9161 9162 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9163 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9164 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9165 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9166 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9167 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9168 return; 9169 } 9170 9171 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9172 9173 // For an addition, the result should be less than one of the operands (LHS) 9174 // if and only if the other operand (RHS) is negative, otherwise there will 9175 // be overflow. 9176 // For a subtraction, the result should be less than one of the operands 9177 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9178 // otherwise there will be overflow. 9179 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9180 SDValue ConditionRHS = 9181 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9182 9183 Overflow = DAG.getBoolExtOrTrunc( 9184 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9185 ResultType, ResultType); 9186 } 9187 9188 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9189 SDValue &Overflow, SelectionDAG &DAG) const { 9190 SDLoc dl(Node); 9191 EVT VT = Node->getValueType(0); 9192 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9193 SDValue LHS = Node->getOperand(0); 9194 SDValue RHS = Node->getOperand(1); 9195 bool isSigned = Node->getOpcode() == ISD::SMULO; 9196 9197 // For power-of-two multiplications we can use a simpler shift expansion. 9198 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9199 const APInt &C = RHSC->getAPIntValue(); 9200 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9201 if (C.isPowerOf2()) { 9202 // smulo(x, signed_min) is same as umulo(x, signed_min). 9203 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9204 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9205 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9206 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9207 Overflow = DAG.getSetCC(dl, SetCCVT, 9208 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9209 dl, VT, Result, ShiftAmt), 9210 LHS, ISD::SETNE); 9211 return true; 9212 } 9213 } 9214 9215 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9216 if (VT.isVector()) 9217 WideVT = 9218 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9219 9220 SDValue BottomHalf; 9221 SDValue TopHalf; 9222 static const unsigned Ops[2][3] = 9223 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9224 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9225 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9226 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9227 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9228 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9229 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9230 RHS); 9231 TopHalf = BottomHalf.getValue(1); 9232 } else if (isTypeLegal(WideVT)) { 9233 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9234 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9235 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9236 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9237 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9238 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9239 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9240 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9241 } else { 9242 if (VT.isVector()) 9243 return false; 9244 9245 // We can fall back to a libcall with an illegal type for the MUL if we 9246 // have a libcall big enough. 9247 // Also, we can fall back to a division in some cases, but that's a big 9248 // performance hit in the general case. 9249 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9250 if (WideVT == MVT::i16) 9251 LC = RTLIB::MUL_I16; 9252 else if (WideVT == MVT::i32) 9253 LC = RTLIB::MUL_I32; 9254 else if (WideVT == MVT::i64) 9255 LC = RTLIB::MUL_I64; 9256 else if (WideVT == MVT::i128) 9257 LC = RTLIB::MUL_I128; 9258 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9259 9260 SDValue HiLHS; 9261 SDValue HiRHS; 9262 if (isSigned) { 9263 // The high part is obtained by SRA'ing all but one of the bits of low 9264 // part. 9265 unsigned LoSize = VT.getFixedSizeInBits(); 9266 HiLHS = 9267 DAG.getNode(ISD::SRA, dl, VT, LHS, 9268 DAG.getConstant(LoSize - 1, dl, 9269 getPointerTy(DAG.getDataLayout()))); 9270 HiRHS = 9271 DAG.getNode(ISD::SRA, dl, VT, RHS, 9272 DAG.getConstant(LoSize - 1, dl, 9273 getPointerTy(DAG.getDataLayout()))); 9274 } else { 9275 HiLHS = DAG.getConstant(0, dl, VT); 9276 HiRHS = DAG.getConstant(0, dl, VT); 9277 } 9278 9279 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9280 // pre-lowered to the correct types. This all depends upon WideVT not 9281 // being a legal type for the architecture and thus has to be split to 9282 // two arguments. 9283 SDValue Ret; 9284 TargetLowering::MakeLibCallOptions CallOptions; 9285 CallOptions.setSExt(isSigned); 9286 CallOptions.setIsPostTypeLegalization(true); 9287 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9288 // Halves of WideVT are packed into registers in different order 9289 // depending on platform endianness. This is usually handled by 9290 // the C calling convention, but we can't defer to it in 9291 // the legalizer. 9292 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9293 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9294 } else { 9295 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9296 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9297 } 9298 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9299 "Ret value is a collection of constituent nodes holding result."); 9300 if (DAG.getDataLayout().isLittleEndian()) { 9301 // Same as above. 9302 BottomHalf = Ret.getOperand(0); 9303 TopHalf = Ret.getOperand(1); 9304 } else { 9305 BottomHalf = Ret.getOperand(1); 9306 TopHalf = Ret.getOperand(0); 9307 } 9308 } 9309 9310 Result = BottomHalf; 9311 if (isSigned) { 9312 SDValue ShiftAmt = DAG.getConstant( 9313 VT.getScalarSizeInBits() - 1, dl, 9314 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9315 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9316 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9317 } else { 9318 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9319 DAG.getConstant(0, dl, VT), ISD::SETNE); 9320 } 9321 9322 // Truncate the result if SetCC returns a larger type than needed. 9323 EVT RType = Node->getValueType(1); 9324 if (RType.bitsLT(Overflow.getValueType())) 9325 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9326 9327 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9328 "Unexpected result type for S/UMULO legalization"); 9329 return true; 9330 } 9331 9332 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9333 SDLoc dl(Node); 9334 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9335 SDValue Op = Node->getOperand(0); 9336 EVT VT = Op.getValueType(); 9337 9338 if (VT.isScalableVector()) 9339 report_fatal_error( 9340 "Expanding reductions for scalable vectors is undefined."); 9341 9342 // Try to use a shuffle reduction for power of two vectors. 9343 if (VT.isPow2VectorType()) { 9344 while (VT.getVectorNumElements() > 1) { 9345 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9346 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9347 break; 9348 9349 SDValue Lo, Hi; 9350 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9351 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9352 VT = HalfVT; 9353 } 9354 } 9355 9356 EVT EltVT = VT.getVectorElementType(); 9357 unsigned NumElts = VT.getVectorNumElements(); 9358 9359 SmallVector<SDValue, 8> Ops; 9360 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9361 9362 SDValue Res = Ops[0]; 9363 for (unsigned i = 1; i < NumElts; i++) 9364 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9365 9366 // Result type may be wider than element type. 9367 if (EltVT != Node->getValueType(0)) 9368 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9369 return Res; 9370 } 9371 9372 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9373 SDLoc dl(Node); 9374 SDValue AccOp = Node->getOperand(0); 9375 SDValue VecOp = Node->getOperand(1); 9376 SDNodeFlags Flags = Node->getFlags(); 9377 9378 EVT VT = VecOp.getValueType(); 9379 EVT EltVT = VT.getVectorElementType(); 9380 9381 if (VT.isScalableVector()) 9382 report_fatal_error( 9383 "Expanding reductions for scalable vectors is undefined."); 9384 9385 unsigned NumElts = VT.getVectorNumElements(); 9386 9387 SmallVector<SDValue, 8> Ops; 9388 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9389 9390 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9391 9392 SDValue Res = AccOp; 9393 for (unsigned i = 0; i < NumElts; i++) 9394 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9395 9396 return Res; 9397 } 9398 9399 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9400 SelectionDAG &DAG) const { 9401 EVT VT = Node->getValueType(0); 9402 SDLoc dl(Node); 9403 bool isSigned = Node->getOpcode() == ISD::SREM; 9404 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9405 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9406 SDValue Dividend = Node->getOperand(0); 9407 SDValue Divisor = Node->getOperand(1); 9408 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9409 SDVTList VTs = DAG.getVTList(VT, VT); 9410 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9411 return true; 9412 } 9413 if (isOperationLegalOrCustom(DivOpc, VT)) { 9414 // X % Y -> X-X/Y*Y 9415 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9416 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9417 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9418 return true; 9419 } 9420 return false; 9421 } 9422 9423 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9424 SelectionDAG &DAG) const { 9425 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9426 SDLoc dl(SDValue(Node, 0)); 9427 SDValue Src = Node->getOperand(0); 9428 9429 // DstVT is the result type, while SatVT is the size to which we saturate 9430 EVT SrcVT = Src.getValueType(); 9431 EVT DstVT = Node->getValueType(0); 9432 9433 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9434 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9435 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9436 assert(SatWidth <= DstWidth && 9437 "Expected saturation width smaller than result width"); 9438 9439 // Determine minimum and maximum integer values and their corresponding 9440 // floating-point values. 9441 APInt MinInt, MaxInt; 9442 if (IsSigned) { 9443 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9444 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9445 } else { 9446 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9447 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9448 } 9449 9450 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9451 // libcall emission cannot handle this. Large result types will fail. 9452 if (SrcVT == MVT::f16) { 9453 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9454 SrcVT = Src.getValueType(); 9455 } 9456 9457 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9458 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9459 9460 APFloat::opStatus MinStatus = 9461 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9462 APFloat::opStatus MaxStatus = 9463 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9464 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9465 !(MaxStatus & APFloat::opStatus::opInexact); 9466 9467 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9468 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9469 9470 // If the integer bounds are exactly representable as floats and min/max are 9471 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9472 // of comparisons and selects. 9473 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9474 isOperationLegal(ISD::FMAXNUM, SrcVT); 9475 if (AreExactFloatBounds && MinMaxLegal) { 9476 SDValue Clamped = Src; 9477 9478 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9479 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9480 // Clamp by MaxFloat from above. NaN cannot occur. 9481 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9482 // Convert clamped value to integer. 9483 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9484 dl, DstVT, Clamped); 9485 9486 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9487 // which will cast to zero. 9488 if (!IsSigned) 9489 return FpToInt; 9490 9491 // Otherwise, select 0 if Src is NaN. 9492 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9493 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9494 ISD::CondCode::SETUO); 9495 } 9496 9497 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9498 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9499 9500 // Result of direct conversion. The assumption here is that the operation is 9501 // non-trapping and it's fine to apply it to an out-of-range value if we 9502 // select it away later. 9503 SDValue FpToInt = 9504 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9505 9506 SDValue Select = FpToInt; 9507 9508 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9509 // MinInt if Src is NaN. 9510 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9511 ISD::CondCode::SETULT); 9512 // If Src OGT MaxFloat, select MaxInt. 9513 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9514 ISD::CondCode::SETOGT); 9515 9516 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9517 // is already zero. 9518 if (!IsSigned) 9519 return Select; 9520 9521 // Otherwise, select 0 if Src is NaN. 9522 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9523 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9524 } 9525 9526 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9527 SelectionDAG &DAG) const { 9528 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9529 assert(Node->getValueType(0).isScalableVector() && 9530 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9531 9532 EVT VT = Node->getValueType(0); 9533 SDValue V1 = Node->getOperand(0); 9534 SDValue V2 = Node->getOperand(1); 9535 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9536 SDLoc DL(Node); 9537 9538 // Expand through memory thusly: 9539 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9540 // Store V1, Ptr 9541 // Store V2, Ptr + sizeof(V1) 9542 // If (Imm < 0) 9543 // TrailingElts = -Imm 9544 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9545 // else 9546 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9547 // Res = Load Ptr 9548 9549 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9550 9551 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9552 VT.getVectorElementCount() * 2); 9553 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9554 EVT PtrVT = StackPtr.getValueType(); 9555 auto &MF = DAG.getMachineFunction(); 9556 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9557 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9558 9559 // Store the lo part of CONCAT_VECTORS(V1, V2) 9560 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9561 // Store the hi part of CONCAT_VECTORS(V1, V2) 9562 SDValue OffsetToV2 = DAG.getVScale( 9563 DL, PtrVT, 9564 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9565 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9566 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9567 9568 if (Imm >= 0) { 9569 // Load back the required element. getVectorElementPointer takes care of 9570 // clamping the index if it's out-of-bounds. 9571 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9572 // Load the spliced result 9573 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9574 MachinePointerInfo::getUnknownStack(MF)); 9575 } 9576 9577 uint64_t TrailingElts = -Imm; 9578 9579 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9580 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9581 SDValue TrailingBytes = 9582 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9583 9584 if (TrailingElts > VT.getVectorMinNumElements()) { 9585 SDValue VLBytes = DAG.getVScale( 9586 DL, PtrVT, 9587 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9588 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9589 } 9590 9591 // Calculate the start address of the spliced result. 9592 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9593 9594 // Load the spliced result 9595 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9596 MachinePointerInfo::getUnknownStack(MF)); 9597 } 9598 9599 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9600 SDValue &LHS, SDValue &RHS, 9601 SDValue &CC, SDValue Mask, 9602 SDValue EVL, bool &NeedInvert, 9603 const SDLoc &dl, SDValue &Chain, 9604 bool IsSignaling) const { 9605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9606 MVT OpVT = LHS.getSimpleValueType(); 9607 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9608 NeedInvert = false; 9609 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9610 bool IsNonVP = !EVL; 9611 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9612 default: 9613 llvm_unreachable("Unknown condition code action!"); 9614 case TargetLowering::Legal: 9615 // Nothing to do. 9616 break; 9617 case TargetLowering::Expand: { 9618 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9619 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9620 std::swap(LHS, RHS); 9621 CC = DAG.getCondCode(InvCC); 9622 return true; 9623 } 9624 // Swapping operands didn't work. Try inverting the condition. 9625 bool NeedSwap = false; 9626 InvCC = getSetCCInverse(CCCode, OpVT); 9627 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9628 // If inverting the condition is not enough, try swapping operands 9629 // on top of it. 9630 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9631 NeedSwap = true; 9632 } 9633 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9634 CC = DAG.getCondCode(InvCC); 9635 NeedInvert = true; 9636 if (NeedSwap) 9637 std::swap(LHS, RHS); 9638 return true; 9639 } 9640 9641 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9642 unsigned Opc = 0; 9643 switch (CCCode) { 9644 default: 9645 llvm_unreachable("Don't know how to expand this condition!"); 9646 case ISD::SETUO: 9647 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9648 CC1 = ISD::SETUNE; 9649 CC2 = ISD::SETUNE; 9650 Opc = ISD::OR; 9651 break; 9652 } 9653 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9654 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9655 NeedInvert = true; 9656 LLVM_FALLTHROUGH; 9657 case ISD::SETO: 9658 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9659 "If SETO is expanded, SETOEQ must be legal!"); 9660 CC1 = ISD::SETOEQ; 9661 CC2 = ISD::SETOEQ; 9662 Opc = ISD::AND; 9663 break; 9664 case ISD::SETONE: 9665 case ISD::SETUEQ: 9666 // If the SETUO or SETO CC isn't legal, we might be able to use 9667 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9668 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9669 // the operands. 9670 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9671 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9672 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9673 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9674 CC1 = ISD::SETOGT; 9675 CC2 = ISD::SETOLT; 9676 Opc = ISD::OR; 9677 NeedInvert = ((unsigned)CCCode & 0x8U); 9678 break; 9679 } 9680 LLVM_FALLTHROUGH; 9681 case ISD::SETOEQ: 9682 case ISD::SETOGT: 9683 case ISD::SETOGE: 9684 case ISD::SETOLT: 9685 case ISD::SETOLE: 9686 case ISD::SETUNE: 9687 case ISD::SETUGT: 9688 case ISD::SETUGE: 9689 case ISD::SETULT: 9690 case ISD::SETULE: 9691 // If we are floating point, assign and break, otherwise fall through. 9692 if (!OpVT.isInteger()) { 9693 // We can use the 4th bit to tell if we are the unordered 9694 // or ordered version of the opcode. 9695 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9696 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9697 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9698 break; 9699 } 9700 // Fallthrough if we are unsigned integer. 9701 LLVM_FALLTHROUGH; 9702 case ISD::SETLE: 9703 case ISD::SETGT: 9704 case ISD::SETGE: 9705 case ISD::SETLT: 9706 case ISD::SETNE: 9707 case ISD::SETEQ: 9708 // If all combinations of inverting the condition and swapping operands 9709 // didn't work then we have no means to expand the condition. 9710 llvm_unreachable("Don't know how to expand this condition!"); 9711 } 9712 9713 SDValue SetCC1, SetCC2; 9714 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9715 // If we aren't the ordered or unorder operation, 9716 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9717 if (IsNonVP) { 9718 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9719 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9720 } else { 9721 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9722 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9723 } 9724 } else { 9725 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9726 if (IsNonVP) { 9727 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9728 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9729 } else { 9730 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9731 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9732 } 9733 } 9734 if (Chain) 9735 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9736 SetCC2.getValue(1)); 9737 if (IsNonVP) 9738 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9739 else { 9740 // Transform the binary opcode to the VP equivalent. 9741 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9742 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9743 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9744 } 9745 RHS = SDValue(); 9746 CC = SDValue(); 9747 return true; 9748 } 9749 } 9750 return false; 9751 } 9752