1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115 }
116 
117 /// Generate a libcall taking the given operands as arguments and returning a
118 /// result of type RetVT.
119 std::pair<SDValue, SDValue>
120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
121                             ArrayRef<SDValue> Ops, bool isSigned,
122                             const SDLoc &dl, bool doesNotReturn,
123                             bool isReturnValueUsed,
124                             bool isPostTypeLegalization) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setIsPostTypeLegalization(isPostTypeLegalization)
151       .setSExtResult(signExtend)
152       .setZExtResult(!signExtend);
153   return LowerCallTo(CLI);
154 }
155 
156 /// Soften the operands of a comparison. This code is shared among BR_CC,
157 /// SELECT_CC, and SETCC handlers.
158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
159                                          SDValue &NewLHS, SDValue &NewRHS,
160                                          ISD::CondCode &CCCode,
161                                          const SDLoc &dl) const {
162   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
163          && "Unsupported setcc type!");
164 
165   // Expand into one or more soft-fp libcall(s).
166   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
167   bool ShouldInvertCC = false;
168   switch (CCCode) {
169   case ISD::SETEQ:
170   case ISD::SETOEQ:
171     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
172           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
173           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
174     break;
175   case ISD::SETNE:
176   case ISD::SETUNE:
177     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
178           (VT == MVT::f64) ? RTLIB::UNE_F64 :
179           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
180     break;
181   case ISD::SETGE:
182   case ISD::SETOGE:
183     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
184           (VT == MVT::f64) ? RTLIB::OGE_F64 :
185           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
186     break;
187   case ISD::SETLT:
188   case ISD::SETOLT:
189     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
190           (VT == MVT::f64) ? RTLIB::OLT_F64 :
191           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
192     break;
193   case ISD::SETLE:
194   case ISD::SETOLE:
195     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
196           (VT == MVT::f64) ? RTLIB::OLE_F64 :
197           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
198     break;
199   case ISD::SETGT:
200   case ISD::SETOGT:
201     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
202           (VT == MVT::f64) ? RTLIB::OGT_F64 :
203           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
204     break;
205   case ISD::SETUO:
206     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
207           (VT == MVT::f64) ? RTLIB::UO_F64 :
208           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
209     break;
210   case ISD::SETO:
211     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
212           (VT == MVT::f64) ? RTLIB::O_F64 :
213           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
214     break;
215   case ISD::SETONE:
216     // SETONE = SETOLT | SETOGT
217     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
218           (VT == MVT::f64) ? RTLIB::OLT_F64 :
219           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
220     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
221           (VT == MVT::f64) ? RTLIB::OGT_F64 :
222           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
223     break;
224   case ISD::SETUEQ:
225     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
226           (VT == MVT::f64) ? RTLIB::UO_F64 :
227           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
228     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
229           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
230           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
231     break;
232   default:
233     // Invert CC for unordered comparisons
234     ShouldInvertCC = true;
235     switch (CCCode) {
236     case ISD::SETULT:
237       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
238             (VT == MVT::f64) ? RTLIB::OGE_F64 :
239             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
240       break;
241     case ISD::SETULE:
242       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
243             (VT == MVT::f64) ? RTLIB::OGT_F64 :
244             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
245       break;
246     case ISD::SETUGT:
247       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
248             (VT == MVT::f64) ? RTLIB::OLE_F64 :
249             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
250       break;
251     case ISD::SETUGE:
252       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
253             (VT == MVT::f64) ? RTLIB::OLT_F64 :
254             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
255       break;
256     default: llvm_unreachable("Do not know how to soften this setcc!");
257     }
258   }
259 
260   // Use the target specific return value for comparions lib calls.
261   EVT RetVT = getCmpLibcallReturnType();
262   SDValue Ops[2] = {NewLHS, NewRHS};
263   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
264                        dl).first;
265   NewRHS = DAG.getConstant(0, dl, RetVT);
266 
267   CCCode = getCmpLibcallCC(LC1);
268   if (ShouldInvertCC)
269     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
270 
271   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
272     SDValue Tmp = DAG.getNode(
273         ISD::SETCC, dl,
274         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
275         NewLHS, NewRHS, DAG.getCondCode(CCCode));
276     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
277                          dl).first;
278     NewLHS = DAG.getNode(
279         ISD::SETCC, dl,
280         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
281         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
282     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
283     NewRHS = SDValue();
284   }
285 }
286 
287 /// Return the entry encoding for a jump table in the current function. The
288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
289 unsigned TargetLowering::getJumpTableEncoding() const {
290   // In non-pic modes, just use the address of a block.
291   if (!isPositionIndependent())
292     return MachineJumpTableInfo::EK_BlockAddress;
293 
294   // In PIC mode, if the target supports a GPRel32 directive, use it.
295   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
296     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
297 
298   // Otherwise, use a label difference.
299   return MachineJumpTableInfo::EK_LabelDifference32;
300 }
301 
302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
303                                                  SelectionDAG &DAG) const {
304   // If our PIC model is GP relative, use the global offset table as the base.
305   unsigned JTEncoding = getJumpTableEncoding();
306 
307   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
308       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
309     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
310 
311   return Table;
312 }
313 
314 /// This returns the relocation base for the given PIC jumptable, the same as
315 /// getPICJumpTableRelocBase, but as an MCExpr.
316 const MCExpr *
317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
318                                              unsigned JTI,MCContext &Ctx) const{
319   // The normal PIC reloc base is the label at the start of the jump table.
320   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
321 }
322 
323 bool
324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
325   const TargetMachine &TM = getTargetMachine();
326   const GlobalValue *GV = GA->getGlobal();
327 
328   // If the address is not even local to this DSO we will have to load it from
329   // a got and then add the offset.
330   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
331     return false;
332 
333   // If the code is position independent we will have to add a base register.
334   if (isPositionIndependent())
335     return false;
336 
337   // Otherwise we can do it.
338   return true;
339 }
340 
341 //===----------------------------------------------------------------------===//
342 //  Optimization Methods
343 //===----------------------------------------------------------------------===//
344 
345 /// If the specified instruction has a constant integer operand and there are
346 /// bits set in that constant that are not demanded, then clear those bits and
347 /// return true.
348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
349                                             TargetLoweringOpt &TLO) const {
350   SelectionDAG &DAG = TLO.DAG;
351   SDLoc DL(Op);
352   unsigned Opcode = Op.getOpcode();
353 
354   // Do target-specific constant optimization.
355   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
356     return TLO.New.getNode();
357 
358   // FIXME: ISD::SELECT, ISD::SELECT_CC
359   switch (Opcode) {
360   default:
361     break;
362   case ISD::XOR:
363   case ISD::AND:
364   case ISD::OR: {
365     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
366     if (!Op1C)
367       return false;
368 
369     // If this is a 'not' op, don't touch it because that's a canonical form.
370     const APInt &C = Op1C->getAPIntValue();
371     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
372       return false;
373 
374     if (!C.isSubsetOf(Demanded)) {
375       EVT VT = Op.getValueType();
376       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
377       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
378       return TLO.CombineTo(Op, NewOp);
379     }
380 
381     break;
382   }
383   }
384 
385   return false;
386 }
387 
388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
390 /// generalized for targets with other types of implicit widening casts.
391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
392                                       const APInt &Demanded,
393                                       TargetLoweringOpt &TLO) const {
394   assert(Op.getNumOperands() == 2 &&
395          "ShrinkDemandedOp only supports binary operators!");
396   assert(Op.getNode()->getNumValues() == 1 &&
397          "ShrinkDemandedOp only supports nodes with one result!");
398 
399   SelectionDAG &DAG = TLO.DAG;
400   SDLoc dl(Op);
401 
402   // Early return, as this function cannot handle vector types.
403   if (Op.getValueType().isVector())
404     return false;
405 
406   // Don't do this if the node has another user, which may require the
407   // full value.
408   if (!Op.getNode()->hasOneUse())
409     return false;
410 
411   // Search for the smallest integer type with free casts to and from
412   // Op's type. For expedience, just check power-of-2 integer types.
413   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
414   unsigned DemandedSize = Demanded.getActiveBits();
415   unsigned SmallVTBits = DemandedSize;
416   if (!isPowerOf2_32(SmallVTBits))
417     SmallVTBits = NextPowerOf2(SmallVTBits);
418   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
419     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
420     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
421         TLI.isZExtFree(SmallVT, Op.getValueType())) {
422       // We found a type with free casts.
423       SDValue X = DAG.getNode(
424           Op.getOpcode(), dl, SmallVT,
425           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
426           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
427       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
428       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
429       return TLO.CombineTo(Op, Z);
430     }
431   }
432   return false;
433 }
434 
435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
436                                           DAGCombinerInfo &DCI) const {
437   SelectionDAG &DAG = DCI.DAG;
438   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
439                         !DCI.isBeforeLegalizeOps());
440   KnownBits Known;
441 
442   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
443   if (Simplified) {
444     DCI.AddToWorklist(Op.getNode());
445     DCI.CommitTargetLoweringOpt(TLO);
446   }
447   return Simplified;
448 }
449 
450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
451                                           KnownBits &Known,
452                                           TargetLoweringOpt &TLO,
453                                           unsigned Depth,
454                                           bool AssumeSingleUse) const {
455   EVT VT = Op.getValueType();
456   APInt DemandedElts = VT.isVector()
457                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
458                            : APInt(1, 1);
459   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
460                               AssumeSingleUse);
461 }
462 
463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
464 /// result of Op are ever used downstream. If we can use this information to
465 /// simplify Op, create a new simplified DAG node and return true, returning the
466 /// original and new nodes in Old and New. Otherwise, analyze the expression and
467 /// return a mask of Known bits for the expression (used to simplify the
468 /// caller).  The Known bits may only be accurate for those bits in the
469 /// OriginalDemandedBits and OriginalDemandedElts.
470 bool TargetLowering::SimplifyDemandedBits(
471     SDValue Op, const APInt &OriginalDemandedBits,
472     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
473     unsigned Depth, bool AssumeSingleUse) const {
474   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
475   assert(Op.getScalarValueSizeInBits() == BitWidth &&
476          "Mask size mismatches value type size!");
477 
478   unsigned NumElts = OriginalDemandedElts.getBitWidth();
479   assert((!Op.getValueType().isVector() ||
480           NumElts == Op.getValueType().getVectorNumElements()) &&
481          "Unexpected vector size");
482 
483   APInt DemandedBits = OriginalDemandedBits;
484   APInt DemandedElts = OriginalDemandedElts;
485   SDLoc dl(Op);
486   auto &DL = TLO.DAG.getDataLayout();
487 
488   // Don't know anything.
489   Known = KnownBits(BitWidth);
490 
491   if (Op.getOpcode() == ISD::Constant) {
492     // We know all of the bits for a constant!
493     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
494     Known.Zero = ~Known.One;
495     return false;
496   }
497 
498   // Other users may use these bits.
499   EVT VT = Op.getValueType();
500   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
501     if (Depth != 0) {
502       // If not at the root, Just compute the Known bits to
503       // simplify things downstream.
504       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
505       return false;
506     }
507     // If this is the root being simplified, allow it to have multiple uses,
508     // just set the DemandedBits/Elts to all bits.
509     DemandedBits = APInt::getAllOnesValue(BitWidth);
510     DemandedElts = APInt::getAllOnesValue(NumElts);
511   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
512     // Not demanding any bits/elts from Op.
513     if (!Op.isUndef())
514       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
515     return false;
516   } else if (Depth == 6) { // Limit search depth.
517     return false;
518   }
519 
520   KnownBits Known2, KnownOut;
521   switch (Op.getOpcode()) {
522   case ISD::SCALAR_TO_VECTOR: {
523     if (!DemandedElts[0])
524       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
525 
526     KnownBits SrcKnown;
527     SDValue Src = Op.getOperand(0);
528     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
529     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
530     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
531       return true;
532     Known = SrcKnown.zextOrTrunc(BitWidth, false);
533     break;
534   }
535   case ISD::BUILD_VECTOR:
536     // Collect the known bits that are shared by every constant vector element.
537     Known.Zero.setAllBits(); Known.One.setAllBits();
538     for (SDValue SrcOp : Op->ops()) {
539       if (!isa<ConstantSDNode>(SrcOp)) {
540         // We can only handle all constant values - bail out with no known bits.
541         Known = KnownBits(BitWidth);
542         return false;
543       }
544       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
545       Known2.Zero = ~Known2.One;
546 
547       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
548       if (Known2.One.getBitWidth() != BitWidth) {
549         assert(Known2.getBitWidth() > BitWidth &&
550                "Expected BUILD_VECTOR implicit truncation");
551         Known2 = Known2.trunc(BitWidth);
552       }
553 
554       // Known bits are the values that are shared by every element.
555       // TODO: support per-element known bits.
556       Known.One &= Known2.One;
557       Known.Zero &= Known2.Zero;
558     }
559     return false; // Don't fall through, will infinitely loop.
560   case ISD::INSERT_VECTOR_ELT: {
561     SDValue Vec = Op.getOperand(0);
562     SDValue Scl = Op.getOperand(1);
563     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
564     EVT VecVT = Vec.getValueType();
565 
566     // If index isn't constant, assume we need all vector elements AND the
567     // inserted element.
568     APInt DemandedVecElts(OriginalDemandedElts);
569     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
570       unsigned Idx = CIdx->getZExtValue();
571       DemandedVecElts.clearBit(Idx);
572 
573       // Inserted element is not required.
574       if (!OriginalDemandedElts[Idx])
575         return TLO.CombineTo(Op, Vec);
576     }
577 
578     KnownBits KnownScl;
579     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
580     APInt DemandedSclBits = OriginalDemandedBits.zextOrTrunc(NumSclBits);
581     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
582       return true;
583 
584     Known = KnownScl.zextOrTrunc(BitWidth, false);
585 
586     KnownBits KnownVec;
587     if (SimplifyDemandedBits(Vec, OriginalDemandedBits, DemandedVecElts,
588                              KnownVec, TLO, Depth + 1))
589       return true;
590 
591     if (!!DemandedVecElts) {
592       Known.One &= KnownVec.One;
593       Known.Zero &= KnownVec.Zero;
594     }
595 
596     return false;
597   }
598   case ISD::INSERT_SUBVECTOR: {
599     SDValue Base = Op.getOperand(0);
600     SDValue Sub = Op.getOperand(1);
601     EVT SubVT = Sub.getValueType();
602     unsigned NumSubElts = SubVT.getVectorNumElements();
603 
604     // If index isn't constant, assume we need the original demanded base
605     // elements and ALL the inserted subvector elements.
606     APInt BaseElts = DemandedElts;
607     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
608     if (isa<ConstantSDNode>(Op.getOperand(2))) {
609       const APInt &Idx = Op.getConstantOperandAPInt(2);
610       if (Idx.ule(NumElts - NumSubElts)) {
611         unsigned SubIdx = Idx.getZExtValue();
612         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
613         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
614       }
615     }
616 
617     KnownBits KnownSub, KnownBase;
618     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
619                              Depth + 1))
620       return true;
621     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
622                              Depth + 1))
623       return true;
624 
625     Known.Zero.setAllBits();
626     Known.One.setAllBits();
627     if (!!SubElts) {
628         Known.One &= KnownSub.One;
629         Known.Zero &= KnownSub.Zero;
630     }
631     if (!!BaseElts) {
632         Known.One &= KnownBase.One;
633         Known.Zero &= KnownBase.Zero;
634     }
635     break;
636   }
637   case ISD::CONCAT_VECTORS: {
638     Known.Zero.setAllBits();
639     Known.One.setAllBits();
640     EVT SubVT = Op.getOperand(0).getValueType();
641     unsigned NumSubVecs = Op.getNumOperands();
642     unsigned NumSubElts = SubVT.getVectorNumElements();
643     for (unsigned i = 0; i != NumSubVecs; ++i) {
644       APInt DemandedSubElts =
645           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
646       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
647                                Known2, TLO, Depth + 1))
648         return true;
649       // Known bits are shared by every demanded subvector element.
650       if (!!DemandedSubElts) {
651         Known.One &= Known2.One;
652         Known.Zero &= Known2.Zero;
653       }
654     }
655     break;
656   }
657   case ISD::VECTOR_SHUFFLE: {
658     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
659 
660     // Collect demanded elements from shuffle operands..
661     APInt DemandedLHS(NumElts, 0);
662     APInt DemandedRHS(NumElts, 0);
663     for (unsigned i = 0; i != NumElts; ++i) {
664       if (!DemandedElts[i])
665         continue;
666       int M = ShuffleMask[i];
667       if (M < 0) {
668         // For UNDEF elements, we don't know anything about the common state of
669         // the shuffle result.
670         DemandedLHS.clearAllBits();
671         DemandedRHS.clearAllBits();
672         break;
673       }
674       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
675       if (M < (int)NumElts)
676         DemandedLHS.setBit(M);
677       else
678         DemandedRHS.setBit(M - NumElts);
679     }
680 
681     if (!!DemandedLHS || !!DemandedRHS) {
682       Known.Zero.setAllBits();
683       Known.One.setAllBits();
684       if (!!DemandedLHS) {
685         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
686                                  Known2, TLO, Depth + 1))
687           return true;
688         Known.One &= Known2.One;
689         Known.Zero &= Known2.Zero;
690       }
691       if (!!DemandedRHS) {
692         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
693                                  Known2, TLO, Depth + 1))
694           return true;
695         Known.One &= Known2.One;
696         Known.Zero &= Known2.Zero;
697       }
698     }
699     break;
700   }
701   case ISD::AND: {
702     SDValue Op0 = Op.getOperand(0);
703     SDValue Op1 = Op.getOperand(1);
704 
705     // If the RHS is a constant, check to see if the LHS would be zero without
706     // using the bits from the RHS.  Below, we use knowledge about the RHS to
707     // simplify the LHS, here we're using information from the LHS to simplify
708     // the RHS.
709     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
710       // Do not increment Depth here; that can cause an infinite loop.
711       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
712       // If the LHS already has zeros where RHSC does, this 'and' is dead.
713       if ((LHSKnown.Zero & DemandedBits) ==
714           (~RHSC->getAPIntValue() & DemandedBits))
715         return TLO.CombineTo(Op, Op0);
716 
717       // If any of the set bits in the RHS are known zero on the LHS, shrink
718       // the constant.
719       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
720         return true;
721 
722       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
723       // constant, but if this 'and' is only clearing bits that were just set by
724       // the xor, then this 'and' can be eliminated by shrinking the mask of
725       // the xor. For example, for a 32-bit X:
726       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
727       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
728           LHSKnown.One == ~RHSC->getAPIntValue()) {
729         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
730         return TLO.CombineTo(Op, Xor);
731       }
732     }
733 
734     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
735                              Depth + 1))
736       return true;
737     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
738     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
739                              Known2, TLO, Depth + 1))
740       return true;
741     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
742 
743     // If all of the demanded bits are known one on one side, return the other.
744     // These bits cannot contribute to the result of the 'and'.
745     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
746       return TLO.CombineTo(Op, Op0);
747     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
748       return TLO.CombineTo(Op, Op1);
749     // If all of the demanded bits in the inputs are known zeros, return zero.
750     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
751       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
752     // If the RHS is a constant, see if we can simplify it.
753     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
754       return true;
755     // If the operation can be done in a smaller type, do so.
756     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
757       return true;
758 
759     // Output known-1 bits are only known if set in both the LHS & RHS.
760     Known.One &= Known2.One;
761     // Output known-0 are known to be clear if zero in either the LHS | RHS.
762     Known.Zero |= Known2.Zero;
763     break;
764   }
765   case ISD::OR: {
766     SDValue Op0 = Op.getOperand(0);
767     SDValue Op1 = Op.getOperand(1);
768 
769     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
770                              Depth + 1))
771       return true;
772     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
773     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
774                              Known2, TLO, Depth + 1))
775       return true;
776     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
777 
778     // If all of the demanded bits are known zero on one side, return the other.
779     // These bits cannot contribute to the result of the 'or'.
780     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
781       return TLO.CombineTo(Op, Op0);
782     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
783       return TLO.CombineTo(Op, Op1);
784     // If the RHS is a constant, see if we can simplify it.
785     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
786       return true;
787     // If the operation can be done in a smaller type, do so.
788     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
789       return true;
790 
791     // Output known-0 bits are only known if clear in both the LHS & RHS.
792     Known.Zero &= Known2.Zero;
793     // Output known-1 are known to be set if set in either the LHS | RHS.
794     Known.One |= Known2.One;
795     break;
796   }
797   case ISD::XOR: {
798     SDValue Op0 = Op.getOperand(0);
799     SDValue Op1 = Op.getOperand(1);
800 
801     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
802                              Depth + 1))
803       return true;
804     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
805     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
806                              Depth + 1))
807       return true;
808     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
809 
810     // If all of the demanded bits are known zero on one side, return the other.
811     // These bits cannot contribute to the result of the 'xor'.
812     if (DemandedBits.isSubsetOf(Known.Zero))
813       return TLO.CombineTo(Op, Op0);
814     if (DemandedBits.isSubsetOf(Known2.Zero))
815       return TLO.CombineTo(Op, Op1);
816     // If the operation can be done in a smaller type, do so.
817     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
818       return true;
819 
820     // If all of the unknown bits are known to be zero on one side or the other
821     // (but not both) turn this into an *inclusive* or.
822     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
823     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
824       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
825 
826     // Output known-0 bits are known if clear or set in both the LHS & RHS.
827     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
828     // Output known-1 are known to be set if set in only one of the LHS, RHS.
829     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
830 
831     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
832       // If one side is a constant, and all of the known set bits on the other
833       // side are also set in the constant, turn this into an AND, as we know
834       // the bits will be cleared.
835       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
836       // NB: it is okay if more bits are known than are requested
837       if (C->getAPIntValue() == Known2.One) {
838         SDValue ANDC =
839             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
840         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
841       }
842 
843       // If the RHS is a constant, see if we can change it. Don't alter a -1
844       // constant because that's a 'not' op, and that is better for combining
845       // and codegen.
846       if (!C->isAllOnesValue()) {
847         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
848           // We're flipping all demanded bits. Flip the undemanded bits too.
849           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
850           return TLO.CombineTo(Op, New);
851         }
852         // If we can't turn this into a 'not', try to shrink the constant.
853         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
854           return true;
855       }
856     }
857 
858     Known = std::move(KnownOut);
859     break;
860   }
861   case ISD::SELECT:
862     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
863                              Depth + 1))
864       return true;
865     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
866                              Depth + 1))
867       return true;
868     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
869     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
870 
871     // If the operands are constants, see if we can simplify them.
872     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
873       return true;
874 
875     // Only known if known in both the LHS and RHS.
876     Known.One &= Known2.One;
877     Known.Zero &= Known2.Zero;
878     break;
879   case ISD::SELECT_CC:
880     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
881                              Depth + 1))
882       return true;
883     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
884                              Depth + 1))
885       return true;
886     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
887     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
888 
889     // If the operands are constants, see if we can simplify them.
890     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
891       return true;
892 
893     // Only known if known in both the LHS and RHS.
894     Known.One &= Known2.One;
895     Known.Zero &= Known2.Zero;
896     break;
897   case ISD::SETCC: {
898     SDValue Op0 = Op.getOperand(0);
899     SDValue Op1 = Op.getOperand(1);
900     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
901     // If (1) we only need the sign-bit, (2) the setcc operands are the same
902     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
903     // -1, we may be able to bypass the setcc.
904     if (DemandedBits.isSignMask() &&
905         Op0.getScalarValueSizeInBits() == BitWidth &&
906         getBooleanContents(VT) ==
907             BooleanContent::ZeroOrNegativeOneBooleanContent) {
908       // If we're testing X < 0, then this compare isn't needed - just use X!
909       // FIXME: We're limiting to integer types here, but this should also work
910       // if we don't care about FP signed-zero. The use of SETLT with FP means
911       // that we don't care about NaNs.
912       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
913           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
914         return TLO.CombineTo(Op, Op0);
915 
916       // TODO: Should we check for other forms of sign-bit comparisons?
917       // Examples: X <= -1, X >= 0
918     }
919     if (getBooleanContents(Op0.getValueType()) ==
920             TargetLowering::ZeroOrOneBooleanContent &&
921         BitWidth > 1)
922       Known.Zero.setBitsFrom(1);
923     break;
924   }
925   case ISD::SHL: {
926     SDValue Op0 = Op.getOperand(0);
927     SDValue Op1 = Op.getOperand(1);
928 
929     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
930       // If the shift count is an invalid immediate, don't do anything.
931       if (SA->getAPIntValue().uge(BitWidth))
932         break;
933 
934       unsigned ShAmt = SA->getZExtValue();
935 
936       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
937       // single shift.  We can do this if the bottom bits (which are shifted
938       // out) are never demanded.
939       if (Op0.getOpcode() == ISD::SRL) {
940         if (ShAmt &&
941             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
942           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
943             if (SA2->getAPIntValue().ult(BitWidth)) {
944               unsigned C1 = SA2->getZExtValue();
945               unsigned Opc = ISD::SHL;
946               int Diff = ShAmt - C1;
947               if (Diff < 0) {
948                 Diff = -Diff;
949                 Opc = ISD::SRL;
950               }
951 
952               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
953               return TLO.CombineTo(
954                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
955             }
956           }
957         }
958       }
959 
960       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
961                                Known, TLO, Depth + 1))
962         return true;
963 
964       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
965       // are not demanded. This will likely allow the anyext to be folded away.
966       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
967         SDValue InnerOp = Op0.getOperand(0);
968         EVT InnerVT = InnerOp.getValueType();
969         unsigned InnerBits = InnerVT.getScalarSizeInBits();
970         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
971             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
972           EVT ShTy = getShiftAmountTy(InnerVT, DL);
973           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
974             ShTy = InnerVT;
975           SDValue NarrowShl =
976               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
977                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
978           return TLO.CombineTo(
979               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
980         }
981         // Repeat the SHL optimization above in cases where an extension
982         // intervenes: (shl (anyext (shr x, c1)), c2) to
983         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
984         // aren't demanded (as above) and that the shifted upper c1 bits of
985         // x aren't demanded.
986         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
987             InnerOp.hasOneUse()) {
988           if (ConstantSDNode *SA2 =
989                   isConstOrConstSplat(InnerOp.getOperand(1))) {
990             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
991             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
992                 DemandedBits.getActiveBits() <=
993                     (InnerBits - InnerShAmt + ShAmt) &&
994                 DemandedBits.countTrailingZeros() >= ShAmt) {
995               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
996                                                   Op1.getValueType());
997               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
998                                                InnerOp.getOperand(0));
999               return TLO.CombineTo(
1000                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1001             }
1002           }
1003         }
1004       }
1005 
1006       Known.Zero <<= ShAmt;
1007       Known.One <<= ShAmt;
1008       // low bits known zero.
1009       Known.Zero.setLowBits(ShAmt);
1010     }
1011     break;
1012   }
1013   case ISD::SRL: {
1014     SDValue Op0 = Op.getOperand(0);
1015     SDValue Op1 = Op.getOperand(1);
1016 
1017     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1018       // If the shift count is an invalid immediate, don't do anything.
1019       if (SA->getAPIntValue().uge(BitWidth))
1020         break;
1021 
1022       unsigned ShAmt = SA->getZExtValue();
1023       APInt InDemandedMask = (DemandedBits << ShAmt);
1024 
1025       // If the shift is exact, then it does demand the low bits (and knows that
1026       // they are zero).
1027       if (Op->getFlags().hasExact())
1028         InDemandedMask.setLowBits(ShAmt);
1029 
1030       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1031       // single shift.  We can do this if the top bits (which are shifted out)
1032       // are never demanded.
1033       if (Op0.getOpcode() == ISD::SHL) {
1034         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
1035           if (ShAmt &&
1036               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1037             if (SA2->getAPIntValue().ult(BitWidth)) {
1038               unsigned C1 = SA2->getZExtValue();
1039               unsigned Opc = ISD::SRL;
1040               int Diff = ShAmt - C1;
1041               if (Diff < 0) {
1042                 Diff = -Diff;
1043                 Opc = ISD::SHL;
1044               }
1045 
1046               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1047               return TLO.CombineTo(
1048                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1049             }
1050           }
1051         }
1052       }
1053 
1054       // Compute the new bits that are at the top now.
1055       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1056                                Depth + 1))
1057         return true;
1058       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1059       Known.Zero.lshrInPlace(ShAmt);
1060       Known.One.lshrInPlace(ShAmt);
1061 
1062       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1063     }
1064     break;
1065   }
1066   case ISD::SRA: {
1067     SDValue Op0 = Op.getOperand(0);
1068     SDValue Op1 = Op.getOperand(1);
1069 
1070     // If this is an arithmetic shift right and only the low-bit is set, we can
1071     // always convert this into a logical shr, even if the shift amount is
1072     // variable.  The low bit of the shift cannot be an input sign bit unless
1073     // the shift amount is >= the size of the datatype, which is undefined.
1074     if (DemandedBits.isOneValue())
1075       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1076 
1077     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1078       // If the shift count is an invalid immediate, don't do anything.
1079       if (SA->getAPIntValue().uge(BitWidth))
1080         break;
1081 
1082       unsigned ShAmt = SA->getZExtValue();
1083       APInt InDemandedMask = (DemandedBits << ShAmt);
1084 
1085       // If the shift is exact, then it does demand the low bits (and knows that
1086       // they are zero).
1087       if (Op->getFlags().hasExact())
1088         InDemandedMask.setLowBits(ShAmt);
1089 
1090       // If any of the demanded bits are produced by the sign extension, we also
1091       // demand the input sign bit.
1092       if (DemandedBits.countLeadingZeros() < ShAmt)
1093         InDemandedMask.setSignBit();
1094 
1095       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1096                                Depth + 1))
1097         return true;
1098       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1099       Known.Zero.lshrInPlace(ShAmt);
1100       Known.One.lshrInPlace(ShAmt);
1101 
1102       // If the input sign bit is known to be zero, or if none of the top bits
1103       // are demanded, turn this into an unsigned shift right.
1104       if (Known.Zero[BitWidth - ShAmt - 1] ||
1105           DemandedBits.countLeadingZeros() >= ShAmt) {
1106         SDNodeFlags Flags;
1107         Flags.setExact(Op->getFlags().hasExact());
1108         return TLO.CombineTo(
1109             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1110       }
1111 
1112       int Log2 = DemandedBits.exactLogBase2();
1113       if (Log2 >= 0) {
1114         // The bit must come from the sign.
1115         SDValue NewSA =
1116             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1117         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1118       }
1119 
1120       if (Known.One[BitWidth - ShAmt - 1])
1121         // New bits are known one.
1122         Known.One.setHighBits(ShAmt);
1123     }
1124     break;
1125   }
1126   case ISD::FSHL:
1127   case ISD::FSHR: {
1128     SDValue Op0 = Op.getOperand(0);
1129     SDValue Op1 = Op.getOperand(1);
1130     SDValue Op2 = Op.getOperand(2);
1131     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1132 
1133     if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) {
1134       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1135 
1136       // For fshl, 0-shift returns the 1st arg.
1137       // For fshr, 0-shift returns the 2nd arg.
1138       if (Amt == 0) {
1139         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1140                                  Known, TLO, Depth + 1))
1141           return true;
1142         break;
1143       }
1144 
1145       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1146       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1147       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1148       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1149       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1150                                Depth + 1))
1151         return true;
1152       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1153                                Depth + 1))
1154         return true;
1155 
1156       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1157       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1158       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1159       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1160       Known.One |= Known2.One;
1161       Known.Zero |= Known2.Zero;
1162     }
1163     break;
1164   }
1165   case ISD::SIGN_EXTEND_INREG: {
1166     SDValue Op0 = Op.getOperand(0);
1167     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1168     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1169 
1170     // If we only care about the highest bit, don't bother shifting right.
1171     if (DemandedBits.isSignMask()) {
1172       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1173       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1174       // However if the input is already sign extended we expect the sign
1175       // extension to be dropped altogether later and do not simplify.
1176       if (!AlreadySignExtended) {
1177         // Compute the correct shift amount type, which must be getShiftAmountTy
1178         // for scalar types after legalization.
1179         EVT ShiftAmtTy = VT;
1180         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1181           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1182 
1183         SDValue ShiftAmt =
1184             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1185         return TLO.CombineTo(Op,
1186                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1187       }
1188     }
1189 
1190     // If none of the extended bits are demanded, eliminate the sextinreg.
1191     if (DemandedBits.getActiveBits() <= ExVTBits)
1192       return TLO.CombineTo(Op, Op0);
1193 
1194     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1195 
1196     // Since the sign extended bits are demanded, we know that the sign
1197     // bit is demanded.
1198     InputDemandedBits.setBit(ExVTBits - 1);
1199 
1200     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1201       return true;
1202     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1203 
1204     // If the sign bit of the input is known set or clear, then we know the
1205     // top bits of the result.
1206 
1207     // If the input sign bit is known zero, convert this into a zero extension.
1208     if (Known.Zero[ExVTBits - 1])
1209       return TLO.CombineTo(
1210           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1211 
1212     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1213     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1214       Known.One.setBitsFrom(ExVTBits);
1215       Known.Zero &= Mask;
1216     } else { // Input sign bit unknown
1217       Known.Zero &= Mask;
1218       Known.One &= Mask;
1219     }
1220     break;
1221   }
1222   case ISD::BUILD_PAIR: {
1223     EVT HalfVT = Op.getOperand(0).getValueType();
1224     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1225 
1226     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1227     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1228 
1229     KnownBits KnownLo, KnownHi;
1230 
1231     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1232       return true;
1233 
1234     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1235       return true;
1236 
1237     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1238                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1239 
1240     Known.One = KnownLo.One.zext(BitWidth) |
1241                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1242     break;
1243   }
1244   case ISD::ZERO_EXTEND: {
1245     SDValue Src = Op.getOperand(0);
1246     unsigned InBits = Src.getScalarValueSizeInBits();
1247 
1248     // If none of the top bits are demanded, convert this into an any_extend.
1249     if (DemandedBits.getActiveBits() <= InBits)
1250       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1251 
1252     APInt InDemandedBits = DemandedBits.trunc(InBits);
1253     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1254       return true;
1255     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1256     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1257     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1258     break;
1259   }
1260   case ISD::SIGN_EXTEND: {
1261     SDValue Src = Op.getOperand(0);
1262     unsigned InBits = Src.getScalarValueSizeInBits();
1263 
1264     // If none of the top bits are demanded, convert this into an any_extend.
1265     if (DemandedBits.getActiveBits() <= InBits)
1266       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1267 
1268     // Since some of the sign extended bits are demanded, we know that the sign
1269     // bit is demanded.
1270     APInt InDemandedBits = DemandedBits.trunc(InBits);
1271     InDemandedBits.setBit(InBits - 1);
1272 
1273     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1274       return true;
1275     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1276     // If the sign bit is known one, the top bits match.
1277     Known = Known.sext(BitWidth);
1278 
1279     // If the sign bit is known zero, convert this to a zero extend.
1280     if (Known.isNonNegative())
1281       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1282     break;
1283   }
1284   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1285     // TODO - merge this with SIGN_EXTEND above?
1286     SDValue Src = Op.getOperand(0);
1287     unsigned InBits = Src.getScalarValueSizeInBits();
1288 
1289     APInt InDemandedBits = DemandedBits.trunc(InBits);
1290 
1291     // If some of the sign extended bits are demanded, we know that the sign
1292     // bit is demanded.
1293     if (InBits < DemandedBits.getActiveBits())
1294       InDemandedBits.setBit(InBits - 1);
1295 
1296     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1297       return true;
1298     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1299     // If the sign bit is known one, the top bits match.
1300     Known = Known.sext(BitWidth);
1301     break;
1302   }
1303   case ISD::ANY_EXTEND: {
1304     SDValue Src = Op.getOperand(0);
1305     unsigned InBits = Src.getScalarValueSizeInBits();
1306     APInt InDemandedBits = DemandedBits.trunc(InBits);
1307     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1308       return true;
1309     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1310     Known = Known.zext(BitWidth, false /* => any extend */);
1311     break;
1312   }
1313   case ISD::TRUNCATE: {
1314     SDValue Src = Op.getOperand(0);
1315 
1316     // Simplify the input, using demanded bit information, and compute the known
1317     // zero/one bits live out.
1318     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1319     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1320     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1321       return true;
1322     Known = Known.trunc(BitWidth);
1323 
1324     // If the input is only used by this truncate, see if we can shrink it based
1325     // on the known demanded bits.
1326     if (Src.getNode()->hasOneUse()) {
1327       switch (Src.getOpcode()) {
1328       default:
1329         break;
1330       case ISD::SRL:
1331         // Shrink SRL by a constant if none of the high bits shifted in are
1332         // demanded.
1333         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1334           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1335           // undesirable.
1336           break;
1337 
1338         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1339         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1340           break;
1341 
1342         SDValue Shift = Src.getOperand(1);
1343         uint64_t ShVal = ShAmt->getZExtValue();
1344 
1345         if (TLO.LegalTypes())
1346           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1347 
1348         APInt HighBits =
1349             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1350         HighBits.lshrInPlace(ShVal);
1351         HighBits = HighBits.trunc(BitWidth);
1352 
1353         if (!(HighBits & DemandedBits)) {
1354           // None of the shifted in bits are needed.  Add a truncate of the
1355           // shift input, then shift it.
1356           SDValue NewTrunc =
1357               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1358           return TLO.CombineTo(
1359               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1360         }
1361         break;
1362       }
1363     }
1364 
1365     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1366     break;
1367   }
1368   case ISD::AssertZext: {
1369     // AssertZext demands all of the high bits, plus any of the low bits
1370     // demanded by its users.
1371     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1372     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1373     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1374                              TLO, Depth + 1))
1375       return true;
1376     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1377 
1378     Known.Zero |= ~InMask;
1379     break;
1380   }
1381   case ISD::EXTRACT_VECTOR_ELT: {
1382     SDValue Src = Op.getOperand(0);
1383     SDValue Idx = Op.getOperand(1);
1384     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1385     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1386 
1387     // Demand the bits from every vector element without a constant index.
1388     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1389     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1390       if (CIdx->getAPIntValue().ult(NumSrcElts))
1391         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1392 
1393     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1394     // anything about the extended bits.
1395     APInt DemandedSrcBits = DemandedBits;
1396     if (BitWidth > EltBitWidth)
1397       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1398 
1399     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402 
1403     Known = Known2;
1404     if (BitWidth > EltBitWidth)
1405       Known = Known.zext(BitWidth, false /* => any extend */);
1406     break;
1407   }
1408   case ISD::BITCAST: {
1409     SDValue Src = Op.getOperand(0);
1410     EVT SrcVT = Src.getValueType();
1411     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1412 
1413     // If this is an FP->Int bitcast and if the sign bit is the only
1414     // thing demanded, turn this into a FGETSIGN.
1415     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1416         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1417         SrcVT.isFloatingPoint()) {
1418       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1419       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1420       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1421           SrcVT != MVT::f128) {
1422         // Cannot eliminate/lower SHL for f128 yet.
1423         EVT Ty = OpVTLegal ? VT : MVT::i32;
1424         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1425         // place.  We expect the SHL to be eliminated by other optimizations.
1426         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1427         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1428         if (!OpVTLegal && OpVTSizeInBits > 32)
1429           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1430         unsigned ShVal = Op.getValueSizeInBits() - 1;
1431         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1432         return TLO.CombineTo(Op,
1433                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1434       }
1435     }
1436 
1437     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1438     // Demand the elt/bit if any of the original elts/bits are demanded.
1439     // TODO - bigendian once we have test coverage.
1440     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1441     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1442         (BitWidth % NumSrcEltBits) == 0 &&
1443         TLO.DAG.getDataLayout().isLittleEndian()) {
1444       unsigned Scale = BitWidth / NumSrcEltBits;
1445       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1446       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1447       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1448       for (unsigned i = 0; i != Scale; ++i) {
1449         unsigned Offset = i * NumSrcEltBits;
1450         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1451         if (!Sub.isNullValue()) {
1452           DemandedSrcBits |= Sub;
1453           for (unsigned j = 0; j != NumElts; ++j)
1454             if (DemandedElts[j])
1455               DemandedSrcElts.setBit((j * Scale) + i);
1456         }
1457       }
1458 
1459       APInt KnownSrcUndef, KnownSrcZero;
1460       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1461                                      KnownSrcZero, TLO, Depth + 1))
1462         return true;
1463 
1464       KnownBits KnownSrcBits;
1465       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1466                                KnownSrcBits, TLO, Depth + 1))
1467         return true;
1468     }
1469 
1470     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1471     // recursive call where Known may be useful to the caller.
1472     if (Depth > 0) {
1473       Known = TLO.DAG.computeKnownBits(Op, Depth);
1474       return false;
1475     }
1476     break;
1477   }
1478   case ISD::ADD:
1479   case ISD::MUL:
1480   case ISD::SUB: {
1481     // Add, Sub, and Mul don't demand any bits in positions beyond that
1482     // of the highest bit demanded of them.
1483     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1484     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1485     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1486     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1487                              Depth + 1) ||
1488         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1489                              Depth + 1) ||
1490         // See if the operation should be performed at a smaller bit width.
1491         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1492       SDNodeFlags Flags = Op.getNode()->getFlags();
1493       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1494         // Disable the nsw and nuw flags. We can no longer guarantee that we
1495         // won't wrap after simplification.
1496         Flags.setNoSignedWrap(false);
1497         Flags.setNoUnsignedWrap(false);
1498         SDValue NewOp =
1499             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1500         return TLO.CombineTo(Op, NewOp);
1501       }
1502       return true;
1503     }
1504 
1505     // If we have a constant operand, we may be able to turn it into -1 if we
1506     // do not demand the high bits. This can make the constant smaller to
1507     // encode, allow more general folding, or match specialized instruction
1508     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1509     // is probably not useful (and could be detrimental).
1510     ConstantSDNode *C = isConstOrConstSplat(Op1);
1511     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1512     if (C && !C->isAllOnesValue() && !C->isOne() &&
1513         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1514       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1515       // We can't guarantee that the new math op doesn't wrap, so explicitly
1516       // clear those flags to prevent folding with a potential existing node
1517       // that has those flags set.
1518       SDNodeFlags Flags;
1519       Flags.setNoSignedWrap(false);
1520       Flags.setNoUnsignedWrap(false);
1521       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1522       return TLO.CombineTo(Op, NewOp);
1523     }
1524 
1525     LLVM_FALLTHROUGH;
1526   }
1527   default:
1528     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1529       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1530                                             Known, TLO, Depth))
1531         return true;
1532       break;
1533     }
1534 
1535     // Just use computeKnownBits to compute output bits.
1536     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1537     break;
1538   }
1539 
1540   // If we know the value of all of the demanded bits, return this as a
1541   // constant.
1542   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1543     // Avoid folding to a constant if any OpaqueConstant is involved.
1544     const SDNode *N = Op.getNode();
1545     for (SDNodeIterator I = SDNodeIterator::begin(N),
1546                         E = SDNodeIterator::end(N);
1547          I != E; ++I) {
1548       SDNode *Op = *I;
1549       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1550         if (C->isOpaque())
1551           return false;
1552     }
1553     // TODO: Handle float bits as well.
1554     if (VT.isInteger())
1555       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1556   }
1557 
1558   return false;
1559 }
1560 
1561 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1562                                                 const APInt &DemandedElts,
1563                                                 APInt &KnownUndef,
1564                                                 APInt &KnownZero,
1565                                                 DAGCombinerInfo &DCI) const {
1566   SelectionDAG &DAG = DCI.DAG;
1567   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1568                         !DCI.isBeforeLegalizeOps());
1569 
1570   bool Simplified =
1571       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1572   if (Simplified) {
1573     DCI.AddToWorklist(Op.getNode());
1574     DCI.CommitTargetLoweringOpt(TLO);
1575   }
1576   return Simplified;
1577 }
1578 
1579 /// Given a vector binary operation and known undefined elements for each input
1580 /// operand, compute whether each element of the output is undefined.
1581 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1582                                          const APInt &UndefOp0,
1583                                          const APInt &UndefOp1) {
1584   EVT VT = BO.getValueType();
1585   assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only");
1586 
1587   EVT EltVT = VT.getVectorElementType();
1588   unsigned NumElts = VT.getVectorNumElements();
1589   assert(UndefOp0.getBitWidth() == NumElts &&
1590          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1591 
1592   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1593                                    const APInt &UndefVals) {
1594     if (UndefVals[Index])
1595       return DAG.getUNDEF(EltVT);
1596 
1597     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1598       // Try hard to make sure that the getNode() call is not creating temporary
1599       // nodes. Ignore opaque integers because they do not constant fold.
1600       SDValue Elt = BV->getOperand(Index);
1601       auto *C = dyn_cast<ConstantSDNode>(Elt);
1602       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1603         return Elt;
1604     }
1605 
1606     return SDValue();
1607   };
1608 
1609   APInt KnownUndef = APInt::getNullValue(NumElts);
1610   for (unsigned i = 0; i != NumElts; ++i) {
1611     // If both inputs for this element are either constant or undef and match
1612     // the element type, compute the constant/undef result for this element of
1613     // the vector.
1614     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1615     // not handle FP constants. The code within getNode() should be refactored
1616     // to avoid the danger of creating a bogus temporary node here.
1617     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1618     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1619     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1620       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1621         KnownUndef.setBit(i);
1622   }
1623   return KnownUndef;
1624 }
1625 
1626 bool TargetLowering::SimplifyDemandedVectorElts(
1627     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1628     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1629     bool AssumeSingleUse) const {
1630   EVT VT = Op.getValueType();
1631   APInt DemandedElts = DemandedEltMask;
1632   unsigned NumElts = DemandedElts.getBitWidth();
1633   assert(VT.isVector() && "Expected vector op");
1634   assert(VT.getVectorNumElements() == NumElts &&
1635          "Mask size mismatches value type element count!");
1636 
1637   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1638 
1639   // Undef operand.
1640   if (Op.isUndef()) {
1641     KnownUndef.setAllBits();
1642     return false;
1643   }
1644 
1645   // If Op has other users, assume that all elements are needed.
1646   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1647     DemandedElts.setAllBits();
1648 
1649   // Not demanding any elements from Op.
1650   if (DemandedElts == 0) {
1651     KnownUndef.setAllBits();
1652     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1653   }
1654 
1655   // Limit search depth.
1656   if (Depth >= 6)
1657     return false;
1658 
1659   SDLoc DL(Op);
1660   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1661 
1662   switch (Op.getOpcode()) {
1663   case ISD::SCALAR_TO_VECTOR: {
1664     if (!DemandedElts[0]) {
1665       KnownUndef.setAllBits();
1666       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1667     }
1668     KnownUndef.setHighBits(NumElts - 1);
1669     break;
1670   }
1671   case ISD::BITCAST: {
1672     SDValue Src = Op.getOperand(0);
1673     EVT SrcVT = Src.getValueType();
1674 
1675     // We only handle vectors here.
1676     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1677     if (!SrcVT.isVector())
1678       break;
1679 
1680     // Fast handling of 'identity' bitcasts.
1681     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1682     if (NumSrcElts == NumElts)
1683       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1684                                         KnownZero, TLO, Depth + 1);
1685 
1686     APInt SrcZero, SrcUndef;
1687     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1688 
1689     // Bitcast from 'large element' src vector to 'small element' vector, we
1690     // must demand a source element if any DemandedElt maps to it.
1691     if ((NumElts % NumSrcElts) == 0) {
1692       unsigned Scale = NumElts / NumSrcElts;
1693       for (unsigned i = 0; i != NumElts; ++i)
1694         if (DemandedElts[i])
1695           SrcDemandedElts.setBit(i / Scale);
1696 
1697       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1698                                      TLO, Depth + 1))
1699         return true;
1700 
1701       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1702       // of the large element.
1703       // TODO - bigendian once we have test coverage.
1704       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1705         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1706         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1707         for (unsigned i = 0; i != NumElts; ++i)
1708           if (DemandedElts[i]) {
1709             unsigned Ofs = (i % Scale) * EltSizeInBits;
1710             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1711           }
1712 
1713         KnownBits Known;
1714         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1715           return true;
1716       }
1717 
1718       // If the src element is zero/undef then all the output elements will be -
1719       // only demanded elements are guaranteed to be correct.
1720       for (unsigned i = 0; i != NumSrcElts; ++i) {
1721         if (SrcDemandedElts[i]) {
1722           if (SrcZero[i])
1723             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1724           if (SrcUndef[i])
1725             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1726         }
1727       }
1728     }
1729 
1730     // Bitcast from 'small element' src vector to 'large element' vector, we
1731     // demand all smaller source elements covered by the larger demanded element
1732     // of this vector.
1733     if ((NumSrcElts % NumElts) == 0) {
1734       unsigned Scale = NumSrcElts / NumElts;
1735       for (unsigned i = 0; i != NumElts; ++i)
1736         if (DemandedElts[i])
1737           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1738 
1739       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1740                                      TLO, Depth + 1))
1741         return true;
1742 
1743       // If all the src elements covering an output element are zero/undef, then
1744       // the output element will be as well, assuming it was demanded.
1745       for (unsigned i = 0; i != NumElts; ++i) {
1746         if (DemandedElts[i]) {
1747           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1748             KnownZero.setBit(i);
1749           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1750             KnownUndef.setBit(i);
1751         }
1752       }
1753     }
1754     break;
1755   }
1756   case ISD::BUILD_VECTOR: {
1757     // Check all elements and simplify any unused elements with UNDEF.
1758     if (!DemandedElts.isAllOnesValue()) {
1759       // Don't simplify BROADCASTS.
1760       if (llvm::any_of(Op->op_values(),
1761                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1762         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1763         bool Updated = false;
1764         for (unsigned i = 0; i != NumElts; ++i) {
1765           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1766             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1767             KnownUndef.setBit(i);
1768             Updated = true;
1769           }
1770         }
1771         if (Updated)
1772           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1773       }
1774     }
1775     for (unsigned i = 0; i != NumElts; ++i) {
1776       SDValue SrcOp = Op.getOperand(i);
1777       if (SrcOp.isUndef()) {
1778         KnownUndef.setBit(i);
1779       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1780                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1781         KnownZero.setBit(i);
1782       }
1783     }
1784     break;
1785   }
1786   case ISD::CONCAT_VECTORS: {
1787     EVT SubVT = Op.getOperand(0).getValueType();
1788     unsigned NumSubVecs = Op.getNumOperands();
1789     unsigned NumSubElts = SubVT.getVectorNumElements();
1790     for (unsigned i = 0; i != NumSubVecs; ++i) {
1791       SDValue SubOp = Op.getOperand(i);
1792       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1793       APInt SubUndef, SubZero;
1794       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1795                                      Depth + 1))
1796         return true;
1797       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1798       KnownZero.insertBits(SubZero, i * NumSubElts);
1799     }
1800     break;
1801   }
1802   case ISD::INSERT_SUBVECTOR: {
1803     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1804       break;
1805     SDValue Base = Op.getOperand(0);
1806     SDValue Sub = Op.getOperand(1);
1807     EVT SubVT = Sub.getValueType();
1808     unsigned NumSubElts = SubVT.getVectorNumElements();
1809     const APInt &Idx = Op.getConstantOperandAPInt(2);
1810     if (Idx.ugt(NumElts - NumSubElts))
1811       break;
1812     unsigned SubIdx = Idx.getZExtValue();
1813     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1814     APInt SubUndef, SubZero;
1815     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1816                                    Depth + 1))
1817       return true;
1818     APInt BaseElts = DemandedElts;
1819     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1820     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1821                                    Depth + 1))
1822       return true;
1823     KnownUndef.insertBits(SubUndef, SubIdx);
1824     KnownZero.insertBits(SubZero, SubIdx);
1825     break;
1826   }
1827   case ISD::EXTRACT_SUBVECTOR: {
1828     SDValue Src = Op.getOperand(0);
1829     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1830     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1831     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1832       // Offset the demanded elts by the subvector index.
1833       uint64_t Idx = SubIdx->getZExtValue();
1834       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1835       APInt SrcUndef, SrcZero;
1836       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1837                                      Depth + 1))
1838         return true;
1839       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1840       KnownZero = SrcZero.extractBits(NumElts, Idx);
1841     }
1842     break;
1843   }
1844   case ISD::INSERT_VECTOR_ELT: {
1845     SDValue Vec = Op.getOperand(0);
1846     SDValue Scl = Op.getOperand(1);
1847     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1848 
1849     // For a legal, constant insertion index, if we don't need this insertion
1850     // then strip it, else remove it from the demanded elts.
1851     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1852       unsigned Idx = CIdx->getZExtValue();
1853       if (!DemandedElts[Idx])
1854         return TLO.CombineTo(Op, Vec);
1855 
1856       APInt DemandedVecElts(DemandedElts);
1857       DemandedVecElts.clearBit(Idx);
1858       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1859                                      KnownZero, TLO, Depth + 1))
1860         return true;
1861 
1862       KnownUndef.clearBit(Idx);
1863       if (Scl.isUndef())
1864         KnownUndef.setBit(Idx);
1865 
1866       KnownZero.clearBit(Idx);
1867       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1868         KnownZero.setBit(Idx);
1869       break;
1870     }
1871 
1872     APInt VecUndef, VecZero;
1873     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1874                                    Depth + 1))
1875       return true;
1876     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1877     break;
1878   }
1879   case ISD::VSELECT: {
1880     // Try to transform the select condition based on the current demanded
1881     // elements.
1882     // TODO: If a condition element is undef, we can choose from one arm of the
1883     //       select (and if one arm is undef, then we can propagate that to the
1884     //       result).
1885     // TODO - add support for constant vselect masks (see IR version of this).
1886     APInt UnusedUndef, UnusedZero;
1887     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1888                                    UnusedZero, TLO, Depth + 1))
1889       return true;
1890 
1891     // See if we can simplify either vselect operand.
1892     APInt DemandedLHS(DemandedElts);
1893     APInt DemandedRHS(DemandedElts);
1894     APInt UndefLHS, ZeroLHS;
1895     APInt UndefRHS, ZeroRHS;
1896     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1897                                    ZeroLHS, TLO, Depth + 1))
1898       return true;
1899     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1900                                    ZeroRHS, TLO, Depth + 1))
1901       return true;
1902 
1903     KnownUndef = UndefLHS & UndefRHS;
1904     KnownZero = ZeroLHS & ZeroRHS;
1905     break;
1906   }
1907   case ISD::VECTOR_SHUFFLE: {
1908     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1909 
1910     // Collect demanded elements from shuffle operands..
1911     APInt DemandedLHS(NumElts, 0);
1912     APInt DemandedRHS(NumElts, 0);
1913     for (unsigned i = 0; i != NumElts; ++i) {
1914       int M = ShuffleMask[i];
1915       if (M < 0 || !DemandedElts[i])
1916         continue;
1917       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1918       if (M < (int)NumElts)
1919         DemandedLHS.setBit(M);
1920       else
1921         DemandedRHS.setBit(M - NumElts);
1922     }
1923 
1924     // See if we can simplify either shuffle operand.
1925     APInt UndefLHS, ZeroLHS;
1926     APInt UndefRHS, ZeroRHS;
1927     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1928                                    ZeroLHS, TLO, Depth + 1))
1929       return true;
1930     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1931                                    ZeroRHS, TLO, Depth + 1))
1932       return true;
1933 
1934     // Simplify mask using undef elements from LHS/RHS.
1935     bool Updated = false;
1936     bool IdentityLHS = true, IdentityRHS = true;
1937     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1938     for (unsigned i = 0; i != NumElts; ++i) {
1939       int &M = NewMask[i];
1940       if (M < 0)
1941         continue;
1942       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1943           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1944         Updated = true;
1945         M = -1;
1946       }
1947       IdentityLHS &= (M < 0) || (M == (int)i);
1948       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1949     }
1950 
1951     // Update legal shuffle masks based on demanded elements if it won't reduce
1952     // to Identity which can cause premature removal of the shuffle mask.
1953     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1954         isShuffleMaskLegal(NewMask, VT))
1955       return TLO.CombineTo(Op,
1956                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1957                                                     Op.getOperand(1), NewMask));
1958 
1959     // Propagate undef/zero elements from LHS/RHS.
1960     for (unsigned i = 0; i != NumElts; ++i) {
1961       int M = ShuffleMask[i];
1962       if (M < 0) {
1963         KnownUndef.setBit(i);
1964       } else if (M < (int)NumElts) {
1965         if (UndefLHS[M])
1966           KnownUndef.setBit(i);
1967         if (ZeroLHS[M])
1968           KnownZero.setBit(i);
1969       } else {
1970         if (UndefRHS[M - NumElts])
1971           KnownUndef.setBit(i);
1972         if (ZeroRHS[M - NumElts])
1973           KnownZero.setBit(i);
1974       }
1975     }
1976     break;
1977   }
1978   case ISD::SIGN_EXTEND_VECTOR_INREG:
1979   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1980     APInt SrcUndef, SrcZero;
1981     SDValue Src = Op.getOperand(0);
1982     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1983     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1984     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
1985                                    Depth + 1))
1986       return true;
1987     KnownZero = SrcZero.zextOrTrunc(NumElts);
1988     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1989 
1990     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
1991       // zext(undef) upper bits are guaranteed to be zero.
1992       if (DemandedElts.isSubsetOf(KnownUndef))
1993         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1994       KnownUndef.clearAllBits();
1995     }
1996     break;
1997   }
1998 
1999   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2000   // MAX, saturated math, etc.
2001   case ISD::OR:
2002   case ISD::XOR:
2003   case ISD::ADD:
2004   case ISD::SUB:
2005   case ISD::FADD:
2006   case ISD::FSUB:
2007   case ISD::FMUL:
2008   case ISD::FDIV:
2009   case ISD::FREM: {
2010     APInt UndefRHS, ZeroRHS;
2011     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2012                                    ZeroRHS, TLO, Depth + 1))
2013       return true;
2014     APInt UndefLHS, ZeroLHS;
2015     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2016                                    ZeroLHS, TLO, Depth + 1))
2017       return true;
2018 
2019     KnownZero = ZeroLHS & ZeroRHS;
2020     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2021     break;
2022   }
2023   case ISD::AND: {
2024     APInt SrcUndef, SrcZero;
2025     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2026                                    SrcZero, TLO, Depth + 1))
2027       return true;
2028     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2029                                    KnownZero, TLO, Depth + 1))
2030       return true;
2031 
2032     // If either side has a zero element, then the result element is zero, even
2033     // if the other is an UNDEF.
2034     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2035     // and then handle 'and' nodes with the rest of the binop opcodes.
2036     KnownZero |= SrcZero;
2037     KnownUndef &= SrcUndef;
2038     KnownUndef &= ~KnownZero;
2039     break;
2040   }
2041   case ISD::TRUNCATE:
2042   case ISD::SIGN_EXTEND:
2043   case ISD::ZERO_EXTEND:
2044     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2045                                    KnownZero, TLO, Depth + 1))
2046       return true;
2047 
2048     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2049       // zext(undef) upper bits are guaranteed to be zero.
2050       if (DemandedElts.isSubsetOf(KnownUndef))
2051         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2052       KnownUndef.clearAllBits();
2053     }
2054     break;
2055   default: {
2056     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2057       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2058                                                   KnownZero, TLO, Depth))
2059         return true;
2060     } else {
2061       KnownBits Known;
2062       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2063       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
2064                                Depth, AssumeSingleUse))
2065         return true;
2066     }
2067     break;
2068   }
2069   }
2070   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2071 
2072   // Constant fold all undef cases.
2073   // TODO: Handle zero cases as well.
2074   if (DemandedElts.isSubsetOf(KnownUndef))
2075     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2076 
2077   return false;
2078 }
2079 
2080 /// Determine which of the bits specified in Mask are known to be either zero or
2081 /// one and return them in the Known.
2082 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2083                                                    KnownBits &Known,
2084                                                    const APInt &DemandedElts,
2085                                                    const SelectionDAG &DAG,
2086                                                    unsigned Depth) const {
2087   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2088           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2089           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2090           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2091          "Should use MaskedValueIsZero if you don't know whether Op"
2092          " is a target node!");
2093   Known.resetAll();
2094 }
2095 
2096 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2097                                                    KnownBits &Known,
2098                                                    const APInt &DemandedElts,
2099                                                    const SelectionDAG &DAG,
2100                                                    unsigned Depth) const {
2101   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2102 
2103   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2104     // The low bits are known zero if the pointer is aligned.
2105     Known.Zero.setLowBits(Log2_32(Align));
2106   }
2107 }
2108 
2109 /// This method can be implemented by targets that want to expose additional
2110 /// information about sign bits to the DAG Combiner.
2111 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2112                                                          const APInt &,
2113                                                          const SelectionDAG &,
2114                                                          unsigned Depth) const {
2115   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2116           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2117           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2118           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2119          "Should use ComputeNumSignBits if you don't know whether Op"
2120          " is a target node!");
2121   return 1;
2122 }
2123 
2124 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2125     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2126     TargetLoweringOpt &TLO, unsigned Depth) const {
2127   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2128           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2129           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2130           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2131          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2132          " is a target node!");
2133   return false;
2134 }
2135 
2136 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2137     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2138     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2139   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2140           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2141           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2142           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2143          "Should use SimplifyDemandedBits if you don't know whether Op"
2144          " is a target node!");
2145   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2146   return false;
2147 }
2148 
2149 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2150                                                   const SelectionDAG &DAG,
2151                                                   bool SNaN,
2152                                                   unsigned Depth) const {
2153   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2154           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2155           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2156           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2157          "Should use isKnownNeverNaN if you don't know whether Op"
2158          " is a target node!");
2159   return false;
2160 }
2161 
2162 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2163 // work with truncating build vectors and vectors with elements of less than
2164 // 8 bits.
2165 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2166   if (!N)
2167     return false;
2168 
2169   APInt CVal;
2170   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2171     CVal = CN->getAPIntValue();
2172   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2173     auto *CN = BV->getConstantSplatNode();
2174     if (!CN)
2175       return false;
2176 
2177     // If this is a truncating build vector, truncate the splat value.
2178     // Otherwise, we may fail to match the expected values below.
2179     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2180     CVal = CN->getAPIntValue();
2181     if (BVEltWidth < CVal.getBitWidth())
2182       CVal = CVal.trunc(BVEltWidth);
2183   } else {
2184     return false;
2185   }
2186 
2187   switch (getBooleanContents(N->getValueType(0))) {
2188   case UndefinedBooleanContent:
2189     return CVal[0];
2190   case ZeroOrOneBooleanContent:
2191     return CVal.isOneValue();
2192   case ZeroOrNegativeOneBooleanContent:
2193     return CVal.isAllOnesValue();
2194   }
2195 
2196   llvm_unreachable("Invalid boolean contents");
2197 }
2198 
2199 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2200   if (!N)
2201     return false;
2202 
2203   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2204   if (!CN) {
2205     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2206     if (!BV)
2207       return false;
2208 
2209     // Only interested in constant splats, we don't care about undef
2210     // elements in identifying boolean constants and getConstantSplatNode
2211     // returns NULL if all ops are undef;
2212     CN = BV->getConstantSplatNode();
2213     if (!CN)
2214       return false;
2215   }
2216 
2217   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2218     return !CN->getAPIntValue()[0];
2219 
2220   return CN->isNullValue();
2221 }
2222 
2223 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2224                                        bool SExt) const {
2225   if (VT == MVT::i1)
2226     return N->isOne();
2227 
2228   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2229   switch (Cnt) {
2230   case TargetLowering::ZeroOrOneBooleanContent:
2231     // An extended value of 1 is always true, unless its original type is i1,
2232     // in which case it will be sign extended to -1.
2233     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2234   case TargetLowering::UndefinedBooleanContent:
2235   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2236     return N->isAllOnesValue() && SExt;
2237   }
2238   llvm_unreachable("Unexpected enumeration.");
2239 }
2240 
2241 /// This helper function of SimplifySetCC tries to optimize the comparison when
2242 /// either operand of the SetCC node is a bitwise-and instruction.
2243 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2244                                          ISD::CondCode Cond, const SDLoc &DL,
2245                                          DAGCombinerInfo &DCI) const {
2246   // Match these patterns in any of their permutations:
2247   // (X & Y) == Y
2248   // (X & Y) != Y
2249   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2250     std::swap(N0, N1);
2251 
2252   EVT OpVT = N0.getValueType();
2253   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2254       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2255     return SDValue();
2256 
2257   SDValue X, Y;
2258   if (N0.getOperand(0) == N1) {
2259     X = N0.getOperand(1);
2260     Y = N0.getOperand(0);
2261   } else if (N0.getOperand(1) == N1) {
2262     X = N0.getOperand(0);
2263     Y = N0.getOperand(1);
2264   } else {
2265     return SDValue();
2266   }
2267 
2268   SelectionDAG &DAG = DCI.DAG;
2269   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2270   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2271     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2272     // Note that where Y is variable and is known to have at most one bit set
2273     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2274     // equivalent when Y == 0.
2275     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2276     if (DCI.isBeforeLegalizeOps() ||
2277         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2278       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2279   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2280     // If the target supports an 'and-not' or 'and-complement' logic operation,
2281     // try to use that to make a comparison operation more efficient.
2282     // But don't do this transform if the mask is a single bit because there are
2283     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2284     // 'rlwinm' on PPC).
2285 
2286     // Bail out if the compare operand that we want to turn into a zero is
2287     // already a zero (otherwise, infinite loop).
2288     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2289     if (YConst && YConst->isNullValue())
2290       return SDValue();
2291 
2292     // Transform this into: ~X & Y == 0.
2293     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2294     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2295     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2296   }
2297 
2298   return SDValue();
2299 }
2300 
2301 /// There are multiple IR patterns that could be checking whether certain
2302 /// truncation of a signed number would be lossy or not. The pattern which is
2303 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2304 /// We are looking for the following pattern: (KeptBits is a constant)
2305 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2306 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2307 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2308 /// We will unfold it into the natural trunc+sext pattern:
2309 ///   ((%x << C) a>> C) dstcond %x
2310 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2311 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2312     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2313     const SDLoc &DL) const {
2314   // We must be comparing with a constant.
2315   ConstantSDNode *C1;
2316   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2317     return SDValue();
2318 
2319   // N0 should be:  add %x, (1 << (KeptBits-1))
2320   if (N0->getOpcode() != ISD::ADD)
2321     return SDValue();
2322 
2323   // And we must be 'add'ing a constant.
2324   ConstantSDNode *C01;
2325   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2326     return SDValue();
2327 
2328   SDValue X = N0->getOperand(0);
2329   EVT XVT = X.getValueType();
2330 
2331   // Validate constants ...
2332 
2333   APInt I1 = C1->getAPIntValue();
2334 
2335   ISD::CondCode NewCond;
2336   if (Cond == ISD::CondCode::SETULT) {
2337     NewCond = ISD::CondCode::SETEQ;
2338   } else if (Cond == ISD::CondCode::SETULE) {
2339     NewCond = ISD::CondCode::SETEQ;
2340     // But need to 'canonicalize' the constant.
2341     I1 += 1;
2342   } else if (Cond == ISD::CondCode::SETUGT) {
2343     NewCond = ISD::CondCode::SETNE;
2344     // But need to 'canonicalize' the constant.
2345     I1 += 1;
2346   } else if (Cond == ISD::CondCode::SETUGE) {
2347     NewCond = ISD::CondCode::SETNE;
2348   } else
2349     return SDValue();
2350 
2351   APInt I01 = C01->getAPIntValue();
2352 
2353   auto checkConstants = [&I1, &I01]() -> bool {
2354     // Both of them must be power-of-two, and the constant from setcc is bigger.
2355     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2356   };
2357 
2358   if (checkConstants()) {
2359     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2360   } else {
2361     // What if we invert constants? (and the target predicate)
2362     I1.negate();
2363     I01.negate();
2364     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2365     if (!checkConstants())
2366       return SDValue();
2367     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2368   }
2369 
2370   // They are power-of-two, so which bit is set?
2371   const unsigned KeptBits = I1.logBase2();
2372   const unsigned KeptBitsMinusOne = I01.logBase2();
2373 
2374   // Magic!
2375   if (KeptBits != (KeptBitsMinusOne + 1))
2376     return SDValue();
2377   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2378 
2379   // We don't want to do this in every single case.
2380   SelectionDAG &DAG = DCI.DAG;
2381   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2382           XVT, KeptBits))
2383     return SDValue();
2384 
2385   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2386   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2387 
2388   // Unfold into:  ((%x << C) a>> C) cond %x
2389   // Where 'cond' will be either 'eq' or 'ne'.
2390   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2391   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2392   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2393   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2394 
2395   return T2;
2396 }
2397 
2398 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2399 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2400 /// handle the commuted versions of these patterns.
2401 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2402                                            ISD::CondCode Cond, const SDLoc &DL,
2403                                            DAGCombinerInfo &DCI) const {
2404   unsigned BOpcode = N0.getOpcode();
2405   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2406          "Unexpected binop");
2407   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2408 
2409   // (X + Y) == X --> Y == 0
2410   // (X - Y) == X --> Y == 0
2411   // (X ^ Y) == X --> Y == 0
2412   SelectionDAG &DAG = DCI.DAG;
2413   EVT OpVT = N0.getValueType();
2414   SDValue X = N0.getOperand(0);
2415   SDValue Y = N0.getOperand(1);
2416   if (X == N1)
2417     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2418 
2419   if (Y != N1)
2420     return SDValue();
2421 
2422   // (X + Y) == Y --> X == 0
2423   // (X ^ Y) == Y --> X == 0
2424   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2425     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2426 
2427   // The shift would not be valid if the operands are boolean (i1).
2428   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2429     return SDValue();
2430 
2431   // (X - Y) == Y --> X == Y << 1
2432   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2433                                  !DCI.isBeforeLegalize());
2434   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2435   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2436   if (!DCI.isCalledByLegalizer())
2437     DCI.AddToWorklist(YShl1.getNode());
2438   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2439 }
2440 
2441 /// Try to simplify a setcc built with the specified operands and cc. If it is
2442 /// unable to simplify it, return a null SDValue.
2443 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2444                                       ISD::CondCode Cond, bool foldBooleans,
2445                                       DAGCombinerInfo &DCI,
2446                                       const SDLoc &dl) const {
2447   SelectionDAG &DAG = DCI.DAG;
2448   EVT OpVT = N0.getValueType();
2449 
2450   // Constant fold or commute setcc.
2451   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2452     return Fold;
2453 
2454   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2455   // TODO: Handle non-splat vector constants. All undef causes trouble.
2456   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2457   if (isConstOrConstSplat(N0) &&
2458       (DCI.isBeforeLegalizeOps() ||
2459        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2460     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2461 
2462   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2463     const APInt &C1 = N1C->getAPIntValue();
2464 
2465     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2466     // equality comparison, then we're just comparing whether X itself is
2467     // zero.
2468     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2469         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2470         N0.getOperand(1).getOpcode() == ISD::Constant) {
2471       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
2472       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2473           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2474         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2475           // (srl (ctlz x), 5) == 0  -> X != 0
2476           // (srl (ctlz x), 5) != 1  -> X != 0
2477           Cond = ISD::SETNE;
2478         } else {
2479           // (srl (ctlz x), 5) != 0  -> X == 0
2480           // (srl (ctlz x), 5) == 1  -> X == 0
2481           Cond = ISD::SETEQ;
2482         }
2483         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2484         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2485                             Zero, Cond);
2486       }
2487     }
2488 
2489     SDValue CTPOP = N0;
2490     // Look through truncs that don't change the value of a ctpop.
2491     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2492       CTPOP = N0.getOperand(0);
2493 
2494     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2495         (N0 == CTPOP ||
2496          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2497       EVT CTVT = CTPOP.getValueType();
2498       SDValue CTOp = CTPOP.getOperand(0);
2499 
2500       // (ctpop x) u< 2 -> (x & x-1) == 0
2501       // (ctpop x) u> 1 -> (x & x-1) != 0
2502       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2503         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2504                                   DAG.getConstant(1, dl, CTVT));
2505         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2506         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2507         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2508       }
2509 
2510       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2511     }
2512 
2513     // (zext x) == C --> x == (trunc C)
2514     // (sext x) == C --> x == (trunc C)
2515     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2516         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2517       unsigned MinBits = N0.getValueSizeInBits();
2518       SDValue PreExt;
2519       bool Signed = false;
2520       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2521         // ZExt
2522         MinBits = N0->getOperand(0).getValueSizeInBits();
2523         PreExt = N0->getOperand(0);
2524       } else if (N0->getOpcode() == ISD::AND) {
2525         // DAGCombine turns costly ZExts into ANDs
2526         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2527           if ((C->getAPIntValue()+1).isPowerOf2()) {
2528             MinBits = C->getAPIntValue().countTrailingOnes();
2529             PreExt = N0->getOperand(0);
2530           }
2531       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2532         // SExt
2533         MinBits = N0->getOperand(0).getValueSizeInBits();
2534         PreExt = N0->getOperand(0);
2535         Signed = true;
2536       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2537         // ZEXTLOAD / SEXTLOAD
2538         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2539           MinBits = LN0->getMemoryVT().getSizeInBits();
2540           PreExt = N0;
2541         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2542           Signed = true;
2543           MinBits = LN0->getMemoryVT().getSizeInBits();
2544           PreExt = N0;
2545         }
2546       }
2547 
2548       // Figure out how many bits we need to preserve this constant.
2549       unsigned ReqdBits = Signed ?
2550         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2551         C1.getActiveBits();
2552 
2553       // Make sure we're not losing bits from the constant.
2554       if (MinBits > 0 &&
2555           MinBits < C1.getBitWidth() &&
2556           MinBits >= ReqdBits) {
2557         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2558         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2559           // Will get folded away.
2560           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2561           if (MinBits == 1 && C1 == 1)
2562             // Invert the condition.
2563             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2564                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2565           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2566           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2567         }
2568 
2569         // If truncating the setcc operands is not desirable, we can still
2570         // simplify the expression in some cases:
2571         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2572         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2573         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2574         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2575         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2576         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2577         SDValue TopSetCC = N0->getOperand(0);
2578         unsigned N0Opc = N0->getOpcode();
2579         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2580         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2581             TopSetCC.getOpcode() == ISD::SETCC &&
2582             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2583             (isConstFalseVal(N1C) ||
2584              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2585 
2586           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2587                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2588 
2589           if (!Inverse)
2590             return TopSetCC;
2591 
2592           ISD::CondCode InvCond = ISD::getSetCCInverse(
2593               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2594               TopSetCC.getOperand(0).getValueType().isInteger());
2595           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2596                                       TopSetCC.getOperand(1),
2597                                       InvCond);
2598         }
2599       }
2600     }
2601 
2602     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2603     // equality or unsigned, and all 1 bits of the const are in the same
2604     // partial word, see if we can shorten the load.
2605     if (DCI.isBeforeLegalize() &&
2606         !ISD::isSignedIntSetCC(Cond) &&
2607         N0.getOpcode() == ISD::AND && C1 == 0 &&
2608         N0.getNode()->hasOneUse() &&
2609         isa<LoadSDNode>(N0.getOperand(0)) &&
2610         N0.getOperand(0).getNode()->hasOneUse() &&
2611         isa<ConstantSDNode>(N0.getOperand(1))) {
2612       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2613       APInt bestMask;
2614       unsigned bestWidth = 0, bestOffset = 0;
2615       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2616         unsigned origWidth = N0.getValueSizeInBits();
2617         unsigned maskWidth = origWidth;
2618         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2619         // 8 bits, but have to be careful...
2620         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2621           origWidth = Lod->getMemoryVT().getSizeInBits();
2622         const APInt &Mask = N0.getConstantOperandAPInt(1);
2623         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2624           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2625           for (unsigned offset=0; offset<origWidth/width; offset++) {
2626             if (Mask.isSubsetOf(newMask)) {
2627               if (DAG.getDataLayout().isLittleEndian())
2628                 bestOffset = (uint64_t)offset * (width/8);
2629               else
2630                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2631               bestMask = Mask.lshr(offset * (width/8) * 8);
2632               bestWidth = width;
2633               break;
2634             }
2635             newMask <<= width;
2636           }
2637         }
2638       }
2639       if (bestWidth) {
2640         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2641         if (newVT.isRound() &&
2642             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2643           EVT PtrType = Lod->getOperand(1).getValueType();
2644           SDValue Ptr = Lod->getBasePtr();
2645           if (bestOffset != 0)
2646             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2647                               DAG.getConstant(bestOffset, dl, PtrType));
2648           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2649           SDValue NewLoad = DAG.getLoad(
2650               newVT, dl, Lod->getChain(), Ptr,
2651               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2652           return DAG.getSetCC(dl, VT,
2653                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2654                                       DAG.getConstant(bestMask.trunc(bestWidth),
2655                                                       dl, newVT)),
2656                               DAG.getConstant(0LL, dl, newVT), Cond);
2657         }
2658       }
2659     }
2660 
2661     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2662     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2663       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2664 
2665       // If the comparison constant has bits in the upper part, the
2666       // zero-extended value could never match.
2667       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2668                                               C1.getBitWidth() - InSize))) {
2669         switch (Cond) {
2670         case ISD::SETUGT:
2671         case ISD::SETUGE:
2672         case ISD::SETEQ:
2673           return DAG.getConstant(0, dl, VT);
2674         case ISD::SETULT:
2675         case ISD::SETULE:
2676         case ISD::SETNE:
2677           return DAG.getConstant(1, dl, VT);
2678         case ISD::SETGT:
2679         case ISD::SETGE:
2680           // True if the sign bit of C1 is set.
2681           return DAG.getConstant(C1.isNegative(), dl, VT);
2682         case ISD::SETLT:
2683         case ISD::SETLE:
2684           // True if the sign bit of C1 isn't set.
2685           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2686         default:
2687           break;
2688         }
2689       }
2690 
2691       // Otherwise, we can perform the comparison with the low bits.
2692       switch (Cond) {
2693       case ISD::SETEQ:
2694       case ISD::SETNE:
2695       case ISD::SETUGT:
2696       case ISD::SETUGE:
2697       case ISD::SETULT:
2698       case ISD::SETULE: {
2699         EVT newVT = N0.getOperand(0).getValueType();
2700         if (DCI.isBeforeLegalizeOps() ||
2701             (isOperationLegal(ISD::SETCC, newVT) &&
2702              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2703           EVT NewSetCCVT =
2704               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2705           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2706 
2707           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2708                                           NewConst, Cond);
2709           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2710         }
2711         break;
2712       }
2713       default:
2714         break; // todo, be more careful with signed comparisons
2715       }
2716     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2717                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2718       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2719       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2720       EVT ExtDstTy = N0.getValueType();
2721       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2722 
2723       // If the constant doesn't fit into the number of bits for the source of
2724       // the sign extension, it is impossible for both sides to be equal.
2725       if (C1.getMinSignedBits() > ExtSrcTyBits)
2726         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2727 
2728       SDValue ZextOp;
2729       EVT Op0Ty = N0.getOperand(0).getValueType();
2730       if (Op0Ty == ExtSrcTy) {
2731         ZextOp = N0.getOperand(0);
2732       } else {
2733         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2734         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2735                              DAG.getConstant(Imm, dl, Op0Ty));
2736       }
2737       if (!DCI.isCalledByLegalizer())
2738         DCI.AddToWorklist(ZextOp.getNode());
2739       // Otherwise, make this a use of a zext.
2740       return DAG.getSetCC(dl, VT, ZextOp,
2741                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2742                                                               ExtDstTyBits,
2743                                                               ExtSrcTyBits),
2744                                           dl, ExtDstTy),
2745                           Cond);
2746     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2747                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2748       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2749       if (N0.getOpcode() == ISD::SETCC &&
2750           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2751         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2752         if (TrueWhenTrue)
2753           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2754         // Invert the condition.
2755         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2756         CC = ISD::getSetCCInverse(CC,
2757                                   N0.getOperand(0).getValueType().isInteger());
2758         if (DCI.isBeforeLegalizeOps() ||
2759             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2760           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2761       }
2762 
2763       if ((N0.getOpcode() == ISD::XOR ||
2764            (N0.getOpcode() == ISD::AND &&
2765             N0.getOperand(0).getOpcode() == ISD::XOR &&
2766             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2767           isa<ConstantSDNode>(N0.getOperand(1)) &&
2768           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2769         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2770         // can only do this if the top bits are known zero.
2771         unsigned BitWidth = N0.getValueSizeInBits();
2772         if (DAG.MaskedValueIsZero(N0,
2773                                   APInt::getHighBitsSet(BitWidth,
2774                                                         BitWidth-1))) {
2775           // Okay, get the un-inverted input value.
2776           SDValue Val;
2777           if (N0.getOpcode() == ISD::XOR) {
2778             Val = N0.getOperand(0);
2779           } else {
2780             assert(N0.getOpcode() == ISD::AND &&
2781                     N0.getOperand(0).getOpcode() == ISD::XOR);
2782             // ((X^1)&1)^1 -> X & 1
2783             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2784                               N0.getOperand(0).getOperand(0),
2785                               N0.getOperand(1));
2786           }
2787 
2788           return DAG.getSetCC(dl, VT, Val, N1,
2789                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2790         }
2791       } else if (N1C->isOne() &&
2792                  (VT == MVT::i1 ||
2793                   getBooleanContents(N0->getValueType(0)) ==
2794                       ZeroOrOneBooleanContent)) {
2795         SDValue Op0 = N0;
2796         if (Op0.getOpcode() == ISD::TRUNCATE)
2797           Op0 = Op0.getOperand(0);
2798 
2799         if ((Op0.getOpcode() == ISD::XOR) &&
2800             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2801             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2802           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2803           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2804           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2805                               Cond);
2806         }
2807         if (Op0.getOpcode() == ISD::AND &&
2808             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2809             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2810           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2811           if (Op0.getValueType().bitsGT(VT))
2812             Op0 = DAG.getNode(ISD::AND, dl, VT,
2813                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2814                           DAG.getConstant(1, dl, VT));
2815           else if (Op0.getValueType().bitsLT(VT))
2816             Op0 = DAG.getNode(ISD::AND, dl, VT,
2817                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2818                         DAG.getConstant(1, dl, VT));
2819 
2820           return DAG.getSetCC(dl, VT, Op0,
2821                               DAG.getConstant(0, dl, Op0.getValueType()),
2822                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2823         }
2824         if (Op0.getOpcode() == ISD::AssertZext &&
2825             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2826           return DAG.getSetCC(dl, VT, Op0,
2827                               DAG.getConstant(0, dl, Op0.getValueType()),
2828                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2829       }
2830     }
2831 
2832     if (SDValue V =
2833             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2834       return V;
2835   }
2836 
2837   // These simplifications apply to splat vectors as well.
2838   // TODO: Handle more splat vector cases.
2839   if (auto *N1C = isConstOrConstSplat(N1)) {
2840     const APInt &C1 = N1C->getAPIntValue();
2841 
2842     APInt MinVal, MaxVal;
2843     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2844     if (ISD::isSignedIntSetCC(Cond)) {
2845       MinVal = APInt::getSignedMinValue(OperandBitSize);
2846       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2847     } else {
2848       MinVal = APInt::getMinValue(OperandBitSize);
2849       MaxVal = APInt::getMaxValue(OperandBitSize);
2850     }
2851 
2852     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2853     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2854       // X >= MIN --> true
2855       if (C1 == MinVal)
2856         return DAG.getBoolConstant(true, dl, VT, OpVT);
2857 
2858       if (!VT.isVector()) { // TODO: Support this for vectors.
2859         // X >= C0 --> X > (C0 - 1)
2860         APInt C = C1 - 1;
2861         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2862         if ((DCI.isBeforeLegalizeOps() ||
2863              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2864             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2865                                   isLegalICmpImmediate(C.getSExtValue())))) {
2866           return DAG.getSetCC(dl, VT, N0,
2867                               DAG.getConstant(C, dl, N1.getValueType()),
2868                               NewCC);
2869         }
2870       }
2871     }
2872 
2873     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2874       // X <= MAX --> true
2875       if (C1 == MaxVal)
2876         return DAG.getBoolConstant(true, dl, VT, OpVT);
2877 
2878       // X <= C0 --> X < (C0 + 1)
2879       if (!VT.isVector()) { // TODO: Support this for vectors.
2880         APInt C = C1 + 1;
2881         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2882         if ((DCI.isBeforeLegalizeOps() ||
2883              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2884             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2885                                   isLegalICmpImmediate(C.getSExtValue())))) {
2886           return DAG.getSetCC(dl, VT, N0,
2887                               DAG.getConstant(C, dl, N1.getValueType()),
2888                               NewCC);
2889         }
2890       }
2891     }
2892 
2893     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2894       if (C1 == MinVal)
2895         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2896 
2897       // TODO: Support this for vectors after legalize ops.
2898       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2899         // Canonicalize setlt X, Max --> setne X, Max
2900         if (C1 == MaxVal)
2901           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2902 
2903         // If we have setult X, 1, turn it into seteq X, 0
2904         if (C1 == MinVal+1)
2905           return DAG.getSetCC(dl, VT, N0,
2906                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2907                               ISD::SETEQ);
2908       }
2909     }
2910 
2911     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2912       if (C1 == MaxVal)
2913         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2914 
2915       // TODO: Support this for vectors after legalize ops.
2916       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2917         // Canonicalize setgt X, Min --> setne X, Min
2918         if (C1 == MinVal)
2919           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2920 
2921         // If we have setugt X, Max-1, turn it into seteq X, Max
2922         if (C1 == MaxVal-1)
2923           return DAG.getSetCC(dl, VT, N0,
2924                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2925                               ISD::SETEQ);
2926       }
2927     }
2928 
2929     // If we have "setcc X, C0", check to see if we can shrink the immediate
2930     // by changing cc.
2931     // TODO: Support this for vectors after legalize ops.
2932     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2933       // SETUGT X, SINTMAX  -> SETLT X, 0
2934       if (Cond == ISD::SETUGT &&
2935           C1 == APInt::getSignedMaxValue(OperandBitSize))
2936         return DAG.getSetCC(dl, VT, N0,
2937                             DAG.getConstant(0, dl, N1.getValueType()),
2938                             ISD::SETLT);
2939 
2940       // SETULT X, SINTMIN  -> SETGT X, -1
2941       if (Cond == ISD::SETULT &&
2942           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2943         SDValue ConstMinusOne =
2944             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2945                             N1.getValueType());
2946         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2947       }
2948     }
2949   }
2950 
2951   // Back to non-vector simplifications.
2952   // TODO: Can we do these for vector splats?
2953   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2954     const APInt &C1 = N1C->getAPIntValue();
2955 
2956     // Fold bit comparisons when we can.
2957     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2958         (VT == N0.getValueType() ||
2959          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2960         N0.getOpcode() == ISD::AND) {
2961       auto &DL = DAG.getDataLayout();
2962       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2963         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2964                                        !DCI.isBeforeLegalize());
2965         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2966           // Perform the xform if the AND RHS is a single bit.
2967           if (AndRHS->getAPIntValue().isPowerOf2()) {
2968             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2969                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2970                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2971                                    ShiftTy)));
2972           }
2973         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2974           // (X & 8) == 8  -->  (X & 8) >> 3
2975           // Perform the xform if C1 is a single bit.
2976           if (C1.isPowerOf2()) {
2977             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2978                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2979                                       DAG.getConstant(C1.logBase2(), dl,
2980                                                       ShiftTy)));
2981           }
2982         }
2983       }
2984     }
2985 
2986     if (C1.getMinSignedBits() <= 64 &&
2987         !isLegalICmpImmediate(C1.getSExtValue())) {
2988       // (X & -256) == 256 -> (X >> 8) == 1
2989       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2990           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2991         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2992           const APInt &AndRHSC = AndRHS->getAPIntValue();
2993           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2994             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2995             auto &DL = DAG.getDataLayout();
2996             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2997                                            !DCI.isBeforeLegalize());
2998             EVT CmpTy = N0.getValueType();
2999             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3000                                         DAG.getConstant(ShiftBits, dl,
3001                                                         ShiftTy));
3002             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3003             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3004           }
3005         }
3006       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3007                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3008         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3009         // X <  0x100000000 -> (X >> 32) <  1
3010         // X >= 0x100000000 -> (X >> 32) >= 1
3011         // X <= 0x0ffffffff -> (X >> 32) <  1
3012         // X >  0x0ffffffff -> (X >> 32) >= 1
3013         unsigned ShiftBits;
3014         APInt NewC = C1;
3015         ISD::CondCode NewCond = Cond;
3016         if (AdjOne) {
3017           ShiftBits = C1.countTrailingOnes();
3018           NewC = NewC + 1;
3019           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3020         } else {
3021           ShiftBits = C1.countTrailingZeros();
3022         }
3023         NewC.lshrInPlace(ShiftBits);
3024         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3025           isLegalICmpImmediate(NewC.getSExtValue())) {
3026           auto &DL = DAG.getDataLayout();
3027           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3028                                          !DCI.isBeforeLegalize());
3029           EVT CmpTy = N0.getValueType();
3030           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3031                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3032           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3033           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3034         }
3035       }
3036     }
3037   }
3038 
3039   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3040     auto *CFP = cast<ConstantFPSDNode>(N1);
3041     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3042 
3043     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3044     // constant if knowing that the operand is non-nan is enough.  We prefer to
3045     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3046     // materialize 0.0.
3047     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3048       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3049 
3050     // setcc (fneg x), C -> setcc swap(pred) x, -C
3051     if (N0.getOpcode() == ISD::FNEG) {
3052       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3053       if (DCI.isBeforeLegalizeOps() ||
3054           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3055         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3056         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3057       }
3058     }
3059 
3060     // If the condition is not legal, see if we can find an equivalent one
3061     // which is legal.
3062     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3063       // If the comparison was an awkward floating-point == or != and one of
3064       // the comparison operands is infinity or negative infinity, convert the
3065       // condition to a less-awkward <= or >=.
3066       if (CFP->getValueAPF().isInfinity()) {
3067         if (CFP->getValueAPF().isNegative()) {
3068           if (Cond == ISD::SETOEQ &&
3069               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3070             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3071           if (Cond == ISD::SETUEQ &&
3072               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3073             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3074           if (Cond == ISD::SETUNE &&
3075               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3076             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3077           if (Cond == ISD::SETONE &&
3078               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3079             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3080         } else {
3081           if (Cond == ISD::SETOEQ &&
3082               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3083             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3084           if (Cond == ISD::SETUEQ &&
3085               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3086             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3087           if (Cond == ISD::SETUNE &&
3088               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3089             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3090           if (Cond == ISD::SETONE &&
3091               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3092             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3093         }
3094       }
3095     }
3096   }
3097 
3098   if (N0 == N1) {
3099     // The sext(setcc()) => setcc() optimization relies on the appropriate
3100     // constant being emitted.
3101     assert(!N0.getValueType().isInteger() &&
3102            "Integer types should be handled by FoldSetCC");
3103 
3104     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3105     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3106     if (UOF == 2) // FP operators that are undefined on NaNs.
3107       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3108     if (UOF == unsigned(EqTrue))
3109       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3110     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3111     // if it is not already.
3112     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3113     if (NewCond != Cond &&
3114         (DCI.isBeforeLegalizeOps() ||
3115                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3116       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3117   }
3118 
3119   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3120       N0.getValueType().isInteger()) {
3121     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3122         N0.getOpcode() == ISD::XOR) {
3123       // Simplify (X+Y) == (X+Z) -->  Y == Z
3124       if (N0.getOpcode() == N1.getOpcode()) {
3125         if (N0.getOperand(0) == N1.getOperand(0))
3126           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3127         if (N0.getOperand(1) == N1.getOperand(1))
3128           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3129         if (isCommutativeBinOp(N0.getOpcode())) {
3130           // If X op Y == Y op X, try other combinations.
3131           if (N0.getOperand(0) == N1.getOperand(1))
3132             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3133                                 Cond);
3134           if (N0.getOperand(1) == N1.getOperand(0))
3135             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3136                                 Cond);
3137         }
3138       }
3139 
3140       // If RHS is a legal immediate value for a compare instruction, we need
3141       // to be careful about increasing register pressure needlessly.
3142       bool LegalRHSImm = false;
3143 
3144       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3145         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3146           // Turn (X+C1) == C2 --> X == C2-C1
3147           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3148             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3149                                 DAG.getConstant(RHSC->getAPIntValue()-
3150                                                 LHSR->getAPIntValue(),
3151                                 dl, N0.getValueType()), Cond);
3152           }
3153 
3154           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3155           if (N0.getOpcode() == ISD::XOR)
3156             // If we know that all of the inverted bits are zero, don't bother
3157             // performing the inversion.
3158             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3159               return
3160                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3161                              DAG.getConstant(LHSR->getAPIntValue() ^
3162                                                RHSC->getAPIntValue(),
3163                                              dl, N0.getValueType()),
3164                              Cond);
3165         }
3166 
3167         // Turn (C1-X) == C2 --> X == C1-C2
3168         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3169           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3170             return
3171               DAG.getSetCC(dl, VT, N0.getOperand(1),
3172                            DAG.getConstant(SUBC->getAPIntValue() -
3173                                              RHSC->getAPIntValue(),
3174                                            dl, N0.getValueType()),
3175                            Cond);
3176           }
3177         }
3178 
3179         // Could RHSC fold directly into a compare?
3180         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3181           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3182       }
3183 
3184       // (X+Y) == X --> Y == 0 and similar folds.
3185       // Don't do this if X is an immediate that can fold into a cmp
3186       // instruction and X+Y has other uses. It could be an induction variable
3187       // chain, and the transform would increase register pressure.
3188       if (!LegalRHSImm || N0.hasOneUse())
3189         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3190           return V;
3191     }
3192 
3193     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3194         N1.getOpcode() == ISD::XOR)
3195       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3196         return V;
3197 
3198     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3199       return V;
3200   }
3201 
3202   // Fold away ALL boolean setcc's.
3203   SDValue Temp;
3204   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3205     EVT OpVT = N0.getValueType();
3206     switch (Cond) {
3207     default: llvm_unreachable("Unknown integer setcc!");
3208     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3209       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3210       N0 = DAG.getNOT(dl, Temp, OpVT);
3211       if (!DCI.isCalledByLegalizer())
3212         DCI.AddToWorklist(Temp.getNode());
3213       break;
3214     case ISD::SETNE:  // X != Y   -->  (X^Y)
3215       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3216       break;
3217     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3218     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3219       Temp = DAG.getNOT(dl, N0, OpVT);
3220       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3221       if (!DCI.isCalledByLegalizer())
3222         DCI.AddToWorklist(Temp.getNode());
3223       break;
3224     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3225     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3226       Temp = DAG.getNOT(dl, N1, OpVT);
3227       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3228       if (!DCI.isCalledByLegalizer())
3229         DCI.AddToWorklist(Temp.getNode());
3230       break;
3231     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3232     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3233       Temp = DAG.getNOT(dl, N0, OpVT);
3234       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3235       if (!DCI.isCalledByLegalizer())
3236         DCI.AddToWorklist(Temp.getNode());
3237       break;
3238     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3239     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3240       Temp = DAG.getNOT(dl, N1, OpVT);
3241       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3242       break;
3243     }
3244     if (VT.getScalarType() != MVT::i1) {
3245       if (!DCI.isCalledByLegalizer())
3246         DCI.AddToWorklist(N0.getNode());
3247       // FIXME: If running after legalize, we probably can't do this.
3248       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3249       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3250     }
3251     return N0;
3252   }
3253 
3254   // Could not fold it.
3255   return SDValue();
3256 }
3257 
3258 /// Returns true (and the GlobalValue and the offset) if the node is a
3259 /// GlobalAddress + offset.
3260 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3261                                     int64_t &Offset) const {
3262 
3263   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3264 
3265   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3266     GA = GASD->getGlobal();
3267     Offset += GASD->getOffset();
3268     return true;
3269   }
3270 
3271   if (N->getOpcode() == ISD::ADD) {
3272     SDValue N1 = N->getOperand(0);
3273     SDValue N2 = N->getOperand(1);
3274     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3275       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3276         Offset += V->getSExtValue();
3277         return true;
3278       }
3279     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3280       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3281         Offset += V->getSExtValue();
3282         return true;
3283       }
3284     }
3285   }
3286 
3287   return false;
3288 }
3289 
3290 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3291                                           DAGCombinerInfo &DCI) const {
3292   // Default implementation: no optimization.
3293   return SDValue();
3294 }
3295 
3296 //===----------------------------------------------------------------------===//
3297 //  Inline Assembler Implementation Methods
3298 //===----------------------------------------------------------------------===//
3299 
3300 TargetLowering::ConstraintType
3301 TargetLowering::getConstraintType(StringRef Constraint) const {
3302   unsigned S = Constraint.size();
3303 
3304   if (S == 1) {
3305     switch (Constraint[0]) {
3306     default: break;
3307     case 'r': return C_RegisterClass;
3308     case 'm': // memory
3309     case 'o': // offsetable
3310     case 'V': // not offsetable
3311       return C_Memory;
3312     case 'i': // Simple Integer or Relocatable Constant
3313     case 'n': // Simple Integer
3314     case 'E': // Floating Point Constant
3315     case 'F': // Floating Point Constant
3316     case 's': // Relocatable Constant
3317     case 'p': // Address.
3318     case 'X': // Allow ANY value.
3319     case 'I': // Target registers.
3320     case 'J':
3321     case 'K':
3322     case 'L':
3323     case 'M':
3324     case 'N':
3325     case 'O':
3326     case 'P':
3327     case '<':
3328     case '>':
3329       return C_Other;
3330     }
3331   }
3332 
3333   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3334     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3335       return C_Memory;
3336     return C_Register;
3337   }
3338   return C_Unknown;
3339 }
3340 
3341 /// Try to replace an X constraint, which matches anything, with another that
3342 /// has more specific requirements based on the type of the corresponding
3343 /// operand.
3344 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3345   if (ConstraintVT.isInteger())
3346     return "r";
3347   if (ConstraintVT.isFloatingPoint())
3348     return "f"; // works for many targets
3349   return nullptr;
3350 }
3351 
3352 SDValue TargetLowering::LowerAsmOutputForConstraint(
3353     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3354     SelectionDAG &DAG) const {
3355   return SDValue();
3356 }
3357 
3358 /// Lower the specified operand into the Ops vector.
3359 /// If it is invalid, don't add anything to Ops.
3360 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3361                                                   std::string &Constraint,
3362                                                   std::vector<SDValue> &Ops,
3363                                                   SelectionDAG &DAG) const {
3364 
3365   if (Constraint.length() > 1) return;
3366 
3367   char ConstraintLetter = Constraint[0];
3368   switch (ConstraintLetter) {
3369   default: break;
3370   case 'X':     // Allows any operand; labels (basic block) use this.
3371     if (Op.getOpcode() == ISD::BasicBlock ||
3372         Op.getOpcode() == ISD::TargetBlockAddress) {
3373       Ops.push_back(Op);
3374       return;
3375     }
3376     LLVM_FALLTHROUGH;
3377   case 'i':    // Simple Integer or Relocatable Constant
3378   case 'n':    // Simple Integer
3379   case 's': {  // Relocatable Constant
3380     // These operands are interested in values of the form (GV+C), where C may
3381     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3382     // is possible and fine if either GV or C are missing.
3383     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3384     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3385 
3386     // If we have "(add GV, C)", pull out GV/C
3387     if (Op.getOpcode() == ISD::ADD) {
3388       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3389       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3390       if (!C || !GA) {
3391         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3392         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3393       }
3394       if (!C || !GA) {
3395         C = nullptr;
3396         GA = nullptr;
3397       }
3398     }
3399 
3400     // If we find a valid operand, map to the TargetXXX version so that the
3401     // value itself doesn't get selected.
3402     if (GA) {   // Either &GV   or   &GV+C
3403       if (ConstraintLetter != 'n') {
3404         int64_t Offs = GA->getOffset();
3405         if (C) Offs += C->getZExtValue();
3406         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3407                                                  C ? SDLoc(C) : SDLoc(),
3408                                                  Op.getValueType(), Offs));
3409       }
3410       return;
3411     }
3412     if (C) {   // just C, no GV.
3413       // Simple constants are not allowed for 's'.
3414       if (ConstraintLetter != 's') {
3415         // gcc prints these as sign extended.  Sign extend value to 64 bits
3416         // now; without this it would get ZExt'd later in
3417         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3418         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3419                                             SDLoc(C), MVT::i64));
3420       }
3421       return;
3422     }
3423     break;
3424   }
3425   }
3426 }
3427 
3428 std::pair<unsigned, const TargetRegisterClass *>
3429 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3430                                              StringRef Constraint,
3431                                              MVT VT) const {
3432   if (Constraint.empty() || Constraint[0] != '{')
3433     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
3434   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
3435 
3436   // Remove the braces from around the name.
3437   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
3438 
3439   std::pair<unsigned, const TargetRegisterClass *> R =
3440       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
3441 
3442   // Figure out which register class contains this reg.
3443   for (const TargetRegisterClass *RC : RI->regclasses()) {
3444     // If none of the value types for this register class are valid, we
3445     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3446     if (!isLegalRC(*RI, *RC))
3447       continue;
3448 
3449     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3450          I != E; ++I) {
3451       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3452         std::pair<unsigned, const TargetRegisterClass *> S =
3453             std::make_pair(*I, RC);
3454 
3455         // If this register class has the requested value type, return it,
3456         // otherwise keep searching and return the first class found
3457         // if no other is found which explicitly has the requested type.
3458         if (RI->isTypeLegalForClass(*RC, VT))
3459           return S;
3460         if (!R.second)
3461           R = S;
3462       }
3463     }
3464   }
3465 
3466   return R;
3467 }
3468 
3469 //===----------------------------------------------------------------------===//
3470 // Constraint Selection.
3471 
3472 /// Return true of this is an input operand that is a matching constraint like
3473 /// "4".
3474 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3475   assert(!ConstraintCode.empty() && "No known constraint!");
3476   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3477 }
3478 
3479 /// If this is an input matching constraint, this method returns the output
3480 /// operand it matches.
3481 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3482   assert(!ConstraintCode.empty() && "No known constraint!");
3483   return atoi(ConstraintCode.c_str());
3484 }
3485 
3486 /// Split up the constraint string from the inline assembly value into the
3487 /// specific constraints and their prefixes, and also tie in the associated
3488 /// operand values.
3489 /// If this returns an empty vector, and if the constraint string itself
3490 /// isn't empty, there was an error parsing.
3491 TargetLowering::AsmOperandInfoVector
3492 TargetLowering::ParseConstraints(const DataLayout &DL,
3493                                  const TargetRegisterInfo *TRI,
3494                                  ImmutableCallSite CS) const {
3495   /// Information about all of the constraints.
3496   AsmOperandInfoVector ConstraintOperands;
3497   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3498   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3499 
3500   // Do a prepass over the constraints, canonicalizing them, and building up the
3501   // ConstraintOperands list.
3502   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
3503   unsigned ResNo = 0; // ResNo - The result number of the next output.
3504 
3505   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3506     ConstraintOperands.emplace_back(std::move(CI));
3507     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3508 
3509     // Update multiple alternative constraint count.
3510     if (OpInfo.multipleAlternatives.size() > maCount)
3511       maCount = OpInfo.multipleAlternatives.size();
3512 
3513     OpInfo.ConstraintVT = MVT::Other;
3514 
3515     // Compute the value type for each operand.
3516     switch (OpInfo.Type) {
3517     case InlineAsm::isOutput:
3518       // Indirect outputs just consume an argument.
3519       if (OpInfo.isIndirect) {
3520         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3521         break;
3522       }
3523 
3524       // The return value of the call is this value.  As such, there is no
3525       // corresponding argument.
3526       assert(!CS.getType()->isVoidTy() &&
3527              "Bad inline asm!");
3528       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3529         OpInfo.ConstraintVT =
3530             getSimpleValueType(DL, STy->getElementType(ResNo));
3531       } else {
3532         assert(ResNo == 0 && "Asm only has one result!");
3533         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3534       }
3535       ++ResNo;
3536       break;
3537     case InlineAsm::isInput:
3538       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3539       break;
3540     case InlineAsm::isClobber:
3541       // Nothing to do.
3542       break;
3543     }
3544 
3545     if (OpInfo.CallOperandVal) {
3546       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3547       if (OpInfo.isIndirect) {
3548         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3549         if (!PtrTy)
3550           report_fatal_error("Indirect operand for inline asm not a pointer!");
3551         OpTy = PtrTy->getElementType();
3552       }
3553 
3554       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3555       if (StructType *STy = dyn_cast<StructType>(OpTy))
3556         if (STy->getNumElements() == 1)
3557           OpTy = STy->getElementType(0);
3558 
3559       // If OpTy is not a single value, it may be a struct/union that we
3560       // can tile with integers.
3561       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3562         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3563         switch (BitSize) {
3564         default: break;
3565         case 1:
3566         case 8:
3567         case 16:
3568         case 32:
3569         case 64:
3570         case 128:
3571           OpInfo.ConstraintVT =
3572               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3573           break;
3574         }
3575       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3576         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3577         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3578       } else {
3579         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3580       }
3581     }
3582   }
3583 
3584   // If we have multiple alternative constraints, select the best alternative.
3585   if (!ConstraintOperands.empty()) {
3586     if (maCount) {
3587       unsigned bestMAIndex = 0;
3588       int bestWeight = -1;
3589       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3590       int weight = -1;
3591       unsigned maIndex;
3592       // Compute the sums of the weights for each alternative, keeping track
3593       // of the best (highest weight) one so far.
3594       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3595         int weightSum = 0;
3596         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3597              cIndex != eIndex; ++cIndex) {
3598           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3599           if (OpInfo.Type == InlineAsm::isClobber)
3600             continue;
3601 
3602           // If this is an output operand with a matching input operand,
3603           // look up the matching input. If their types mismatch, e.g. one
3604           // is an integer, the other is floating point, or their sizes are
3605           // different, flag it as an maCantMatch.
3606           if (OpInfo.hasMatchingInput()) {
3607             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3608             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3609               if ((OpInfo.ConstraintVT.isInteger() !=
3610                    Input.ConstraintVT.isInteger()) ||
3611                   (OpInfo.ConstraintVT.getSizeInBits() !=
3612                    Input.ConstraintVT.getSizeInBits())) {
3613                 weightSum = -1; // Can't match.
3614                 break;
3615               }
3616             }
3617           }
3618           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3619           if (weight == -1) {
3620             weightSum = -1;
3621             break;
3622           }
3623           weightSum += weight;
3624         }
3625         // Update best.
3626         if (weightSum > bestWeight) {
3627           bestWeight = weightSum;
3628           bestMAIndex = maIndex;
3629         }
3630       }
3631 
3632       // Now select chosen alternative in each constraint.
3633       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3634            cIndex != eIndex; ++cIndex) {
3635         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
3636         if (cInfo.Type == InlineAsm::isClobber)
3637           continue;
3638         cInfo.selectAlternative(bestMAIndex);
3639       }
3640     }
3641   }
3642 
3643   // Check and hook up tied operands, choose constraint code to use.
3644   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3645        cIndex != eIndex; ++cIndex) {
3646     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
3647 
3648     // If this is an output operand with a matching input operand, look up the
3649     // matching input. If their types mismatch, e.g. one is an integer, the
3650     // other is floating point, or their sizes are different, flag it as an
3651     // error.
3652     if (OpInfo.hasMatchingInput()) {
3653       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3654 
3655       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3656         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3657             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3658                                          OpInfo.ConstraintVT);
3659         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3660             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3661                                          Input.ConstraintVT);
3662         if ((OpInfo.ConstraintVT.isInteger() !=
3663              Input.ConstraintVT.isInteger()) ||
3664             (MatchRC.second != InputRC.second)) {
3665           report_fatal_error("Unsupported asm: input constraint"
3666                              " with a matching output constraint of"
3667                              " incompatible type!");
3668         }
3669       }
3670     }
3671   }
3672 
3673   return ConstraintOperands;
3674 }
3675 
3676 /// Return an integer indicating how general CT is.
3677 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3678   switch (CT) {
3679   case TargetLowering::C_Other:
3680   case TargetLowering::C_Unknown:
3681     return 0;
3682   case TargetLowering::C_Register:
3683     return 1;
3684   case TargetLowering::C_RegisterClass:
3685     return 2;
3686   case TargetLowering::C_Memory:
3687     return 3;
3688   }
3689   llvm_unreachable("Invalid constraint type");
3690 }
3691 
3692 /// Examine constraint type and operand type and determine a weight value.
3693 /// This object must already have been set up with the operand type
3694 /// and the current alternative constraint selected.
3695 TargetLowering::ConstraintWeight
3696   TargetLowering::getMultipleConstraintMatchWeight(
3697     AsmOperandInfo &info, int maIndex) const {
3698   InlineAsm::ConstraintCodeVector *rCodes;
3699   if (maIndex >= (int)info.multipleAlternatives.size())
3700     rCodes = &info.Codes;
3701   else
3702     rCodes = &info.multipleAlternatives[maIndex].Codes;
3703   ConstraintWeight BestWeight = CW_Invalid;
3704 
3705   // Loop over the options, keeping track of the most general one.
3706   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3707     ConstraintWeight weight =
3708       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3709     if (weight > BestWeight)
3710       BestWeight = weight;
3711   }
3712 
3713   return BestWeight;
3714 }
3715 
3716 /// Examine constraint type and operand type and determine a weight value.
3717 /// This object must already have been set up with the operand type
3718 /// and the current alternative constraint selected.
3719 TargetLowering::ConstraintWeight
3720   TargetLowering::getSingleConstraintMatchWeight(
3721     AsmOperandInfo &info, const char *constraint) const {
3722   ConstraintWeight weight = CW_Invalid;
3723   Value *CallOperandVal = info.CallOperandVal;
3724     // If we don't have a value, we can't do a match,
3725     // but allow it at the lowest weight.
3726   if (!CallOperandVal)
3727     return CW_Default;
3728   // Look at the constraint type.
3729   switch (*constraint) {
3730     case 'i': // immediate integer.
3731     case 'n': // immediate integer with a known value.
3732       if (isa<ConstantInt>(CallOperandVal))
3733         weight = CW_Constant;
3734       break;
3735     case 's': // non-explicit intregal immediate.
3736       if (isa<GlobalValue>(CallOperandVal))
3737         weight = CW_Constant;
3738       break;
3739     case 'E': // immediate float if host format.
3740     case 'F': // immediate float.
3741       if (isa<ConstantFP>(CallOperandVal))
3742         weight = CW_Constant;
3743       break;
3744     case '<': // memory operand with autodecrement.
3745     case '>': // memory operand with autoincrement.
3746     case 'm': // memory operand.
3747     case 'o': // offsettable memory operand
3748     case 'V': // non-offsettable memory operand
3749       weight = CW_Memory;
3750       break;
3751     case 'r': // general register.
3752     case 'g': // general register, memory operand or immediate integer.
3753               // note: Clang converts "g" to "imr".
3754       if (CallOperandVal->getType()->isIntegerTy())
3755         weight = CW_Register;
3756       break;
3757     case 'X': // any operand.
3758   default:
3759     weight = CW_Default;
3760     break;
3761   }
3762   return weight;
3763 }
3764 
3765 /// If there are multiple different constraints that we could pick for this
3766 /// operand (e.g. "imr") try to pick the 'best' one.
3767 /// This is somewhat tricky: constraints fall into four classes:
3768 ///    Other         -> immediates and magic values
3769 ///    Register      -> one specific register
3770 ///    RegisterClass -> a group of regs
3771 ///    Memory        -> memory
3772 /// Ideally, we would pick the most specific constraint possible: if we have
3773 /// something that fits into a register, we would pick it.  The problem here
3774 /// is that if we have something that could either be in a register or in
3775 /// memory that use of the register could cause selection of *other*
3776 /// operands to fail: they might only succeed if we pick memory.  Because of
3777 /// this the heuristic we use is:
3778 ///
3779 ///  1) If there is an 'other' constraint, and if the operand is valid for
3780 ///     that constraint, use it.  This makes us take advantage of 'i'
3781 ///     constraints when available.
3782 ///  2) Otherwise, pick the most general constraint present.  This prefers
3783 ///     'm' over 'r', for example.
3784 ///
3785 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3786                              const TargetLowering &TLI,
3787                              SDValue Op, SelectionDAG *DAG) {
3788   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3789   unsigned BestIdx = 0;
3790   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3791   int BestGenerality = -1;
3792 
3793   // Loop over the options, keeping track of the most general one.
3794   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3795     TargetLowering::ConstraintType CType =
3796       TLI.getConstraintType(OpInfo.Codes[i]);
3797 
3798     // If this is an 'other' constraint, see if the operand is valid for it.
3799     // For example, on X86 we might have an 'rI' constraint.  If the operand
3800     // is an integer in the range [0..31] we want to use I (saving a load
3801     // of a register), otherwise we must use 'r'.
3802     if (CType == TargetLowering::C_Other && Op.getNode()) {
3803       assert(OpInfo.Codes[i].size() == 1 &&
3804              "Unhandled multi-letter 'other' constraint");
3805       std::vector<SDValue> ResultOps;
3806       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3807                                        ResultOps, *DAG);
3808       if (!ResultOps.empty()) {
3809         BestType = CType;
3810         BestIdx = i;
3811         break;
3812       }
3813     }
3814 
3815     // Things with matching constraints can only be registers, per gcc
3816     // documentation.  This mainly affects "g" constraints.
3817     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3818       continue;
3819 
3820     // This constraint letter is more general than the previous one, use it.
3821     int Generality = getConstraintGenerality(CType);
3822     if (Generality > BestGenerality) {
3823       BestType = CType;
3824       BestIdx = i;
3825       BestGenerality = Generality;
3826     }
3827   }
3828 
3829   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3830   OpInfo.ConstraintType = BestType;
3831 }
3832 
3833 /// Determines the constraint code and constraint type to use for the specific
3834 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3835 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3836                                             SDValue Op,
3837                                             SelectionDAG *DAG) const {
3838   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3839 
3840   // Single-letter constraints ('r') are very common.
3841   if (OpInfo.Codes.size() == 1) {
3842     OpInfo.ConstraintCode = OpInfo.Codes[0];
3843     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3844   } else {
3845     ChooseConstraint(OpInfo, *this, Op, DAG);
3846   }
3847 
3848   // 'X' matches anything.
3849   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3850     // Labels and constants are handled elsewhere ('X' is the only thing
3851     // that matches labels).  For Functions, the type here is the type of
3852     // the result, which is not what we want to look at; leave them alone.
3853     Value *v = OpInfo.CallOperandVal;
3854     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3855       OpInfo.CallOperandVal = v;
3856       return;
3857     }
3858 
3859     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
3860       return;
3861 
3862     // Otherwise, try to resolve it to something we know about by looking at
3863     // the actual operand type.
3864     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3865       OpInfo.ConstraintCode = Repl;
3866       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3867     }
3868   }
3869 }
3870 
3871 /// Given an exact SDIV by a constant, create a multiplication
3872 /// with the multiplicative inverse of the constant.
3873 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3874                               const SDLoc &dl, SelectionDAG &DAG,
3875                               SmallVectorImpl<SDNode *> &Created) {
3876   SDValue Op0 = N->getOperand(0);
3877   SDValue Op1 = N->getOperand(1);
3878   EVT VT = N->getValueType(0);
3879   EVT SVT = VT.getScalarType();
3880   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3881   EVT ShSVT = ShVT.getScalarType();
3882 
3883   bool UseSRA = false;
3884   SmallVector<SDValue, 16> Shifts, Factors;
3885 
3886   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3887     if (C->isNullValue())
3888       return false;
3889     APInt Divisor = C->getAPIntValue();
3890     unsigned Shift = Divisor.countTrailingZeros();
3891     if (Shift) {
3892       Divisor.ashrInPlace(Shift);
3893       UseSRA = true;
3894     }
3895     // Calculate the multiplicative inverse, using Newton's method.
3896     APInt t;
3897     APInt Factor = Divisor;
3898     while ((t = Divisor * Factor) != 1)
3899       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3900     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3901     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3902     return true;
3903   };
3904 
3905   // Collect all magic values from the build vector.
3906   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3907     return SDValue();
3908 
3909   SDValue Shift, Factor;
3910   if (VT.isVector()) {
3911     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3912     Factor = DAG.getBuildVector(VT, dl, Factors);
3913   } else {
3914     Shift = Shifts[0];
3915     Factor = Factors[0];
3916   }
3917 
3918   SDValue Res = Op0;
3919 
3920   // Shift the value upfront if it is even, so the LSB is one.
3921   if (UseSRA) {
3922     // TODO: For UDIV use SRL instead of SRA.
3923     SDNodeFlags Flags;
3924     Flags.setExact(true);
3925     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3926     Created.push_back(Res.getNode());
3927   }
3928 
3929   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3930 }
3931 
3932 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3933                               SelectionDAG &DAG,
3934                               SmallVectorImpl<SDNode *> &Created) const {
3935   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3936   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3937   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3938     return SDValue(N, 0); // Lower SDIV as SDIV
3939   return SDValue();
3940 }
3941 
3942 /// Given an ISD::SDIV node expressing a divide by constant,
3943 /// return a DAG expression to select that will generate the same value by
3944 /// multiplying by a magic number.
3945 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3946 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3947                                   bool IsAfterLegalization,
3948                                   SmallVectorImpl<SDNode *> &Created) const {
3949   SDLoc dl(N);
3950   EVT VT = N->getValueType(0);
3951   EVT SVT = VT.getScalarType();
3952   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3953   EVT ShSVT = ShVT.getScalarType();
3954   unsigned EltBits = VT.getScalarSizeInBits();
3955 
3956   // Check to see if we can do this.
3957   // FIXME: We should be more aggressive here.
3958   if (!isTypeLegal(VT))
3959     return SDValue();
3960 
3961   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3962   if (N->getFlags().hasExact())
3963     return BuildExactSDIV(*this, N, dl, DAG, Created);
3964 
3965   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3966 
3967   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3968     if (C->isNullValue())
3969       return false;
3970 
3971     const APInt &Divisor = C->getAPIntValue();
3972     APInt::ms magics = Divisor.magic();
3973     int NumeratorFactor = 0;
3974     int ShiftMask = -1;
3975 
3976     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3977       // If d is +1/-1, we just multiply the numerator by +1/-1.
3978       NumeratorFactor = Divisor.getSExtValue();
3979       magics.m = 0;
3980       magics.s = 0;
3981       ShiftMask = 0;
3982     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3983       // If d > 0 and m < 0, add the numerator.
3984       NumeratorFactor = 1;
3985     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3986       // If d < 0 and m > 0, subtract the numerator.
3987       NumeratorFactor = -1;
3988     }
3989 
3990     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3991     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3992     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3993     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3994     return true;
3995   };
3996 
3997   SDValue N0 = N->getOperand(0);
3998   SDValue N1 = N->getOperand(1);
3999 
4000   // Collect the shifts / magic values from each element.
4001   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4002     return SDValue();
4003 
4004   SDValue MagicFactor, Factor, Shift, ShiftMask;
4005   if (VT.isVector()) {
4006     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4007     Factor = DAG.getBuildVector(VT, dl, Factors);
4008     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4009     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4010   } else {
4011     MagicFactor = MagicFactors[0];
4012     Factor = Factors[0];
4013     Shift = Shifts[0];
4014     ShiftMask = ShiftMasks[0];
4015   }
4016 
4017   // Multiply the numerator (operand 0) by the magic value.
4018   // FIXME: We should support doing a MUL in a wider type.
4019   SDValue Q;
4020   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4021                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4022     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4023   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4024                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4025     SDValue LoHi =
4026         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4027     Q = SDValue(LoHi.getNode(), 1);
4028   } else
4029     return SDValue(); // No mulhs or equivalent.
4030   Created.push_back(Q.getNode());
4031 
4032   // (Optionally) Add/subtract the numerator using Factor.
4033   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4034   Created.push_back(Factor.getNode());
4035   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4036   Created.push_back(Q.getNode());
4037 
4038   // Shift right algebraic by shift value.
4039   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4040   Created.push_back(Q.getNode());
4041 
4042   // Extract the sign bit, mask it and add it to the quotient.
4043   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4044   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4045   Created.push_back(T.getNode());
4046   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4047   Created.push_back(T.getNode());
4048   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4049 }
4050 
4051 /// Given an ISD::UDIV node expressing a divide by constant,
4052 /// return a DAG expression to select that will generate the same value by
4053 /// multiplying by a magic number.
4054 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4055 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4056                                   bool IsAfterLegalization,
4057                                   SmallVectorImpl<SDNode *> &Created) const {
4058   SDLoc dl(N);
4059   EVT VT = N->getValueType(0);
4060   EVT SVT = VT.getScalarType();
4061   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4062   EVT ShSVT = ShVT.getScalarType();
4063   unsigned EltBits = VT.getScalarSizeInBits();
4064 
4065   // Check to see if we can do this.
4066   // FIXME: We should be more aggressive here.
4067   if (!isTypeLegal(VT))
4068     return SDValue();
4069 
4070   bool UseNPQ = false;
4071   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4072 
4073   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4074     if (C->isNullValue())
4075       return false;
4076     // FIXME: We should use a narrower constant when the upper
4077     // bits are known to be zero.
4078     APInt Divisor = C->getAPIntValue();
4079     APInt::mu magics = Divisor.magicu();
4080     unsigned PreShift = 0, PostShift = 0;
4081 
4082     // If the divisor is even, we can avoid using the expensive fixup by
4083     // shifting the divided value upfront.
4084     if (magics.a != 0 && !Divisor[0]) {
4085       PreShift = Divisor.countTrailingZeros();
4086       // Get magic number for the shifted divisor.
4087       magics = Divisor.lshr(PreShift).magicu(PreShift);
4088       assert(magics.a == 0 && "Should use cheap fixup now");
4089     }
4090 
4091     APInt Magic = magics.m;
4092 
4093     unsigned SelNPQ;
4094     if (magics.a == 0 || Divisor.isOneValue()) {
4095       assert(magics.s < Divisor.getBitWidth() &&
4096              "We shouldn't generate an undefined shift!");
4097       PostShift = magics.s;
4098       SelNPQ = false;
4099     } else {
4100       PostShift = magics.s - 1;
4101       SelNPQ = true;
4102     }
4103 
4104     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4105     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4106     NPQFactors.push_back(
4107         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4108                                : APInt::getNullValue(EltBits),
4109                         dl, SVT));
4110     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4111     UseNPQ |= SelNPQ;
4112     return true;
4113   };
4114 
4115   SDValue N0 = N->getOperand(0);
4116   SDValue N1 = N->getOperand(1);
4117 
4118   // Collect the shifts/magic values from each element.
4119   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4120     return SDValue();
4121 
4122   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4123   if (VT.isVector()) {
4124     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4125     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4126     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4127     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4128   } else {
4129     PreShift = PreShifts[0];
4130     MagicFactor = MagicFactors[0];
4131     PostShift = PostShifts[0];
4132   }
4133 
4134   SDValue Q = N0;
4135   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4136   Created.push_back(Q.getNode());
4137 
4138   // FIXME: We should support doing a MUL in a wider type.
4139   auto GetMULHU = [&](SDValue X, SDValue Y) {
4140     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4141                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4142       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4143     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4144                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4145       SDValue LoHi =
4146           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4147       return SDValue(LoHi.getNode(), 1);
4148     }
4149     return SDValue(); // No mulhu or equivalent
4150   };
4151 
4152   // Multiply the numerator (operand 0) by the magic value.
4153   Q = GetMULHU(Q, MagicFactor);
4154   if (!Q)
4155     return SDValue();
4156 
4157   Created.push_back(Q.getNode());
4158 
4159   if (UseNPQ) {
4160     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4161     Created.push_back(NPQ.getNode());
4162 
4163     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4164     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4165     if (VT.isVector())
4166       NPQ = GetMULHU(NPQ, NPQFactor);
4167     else
4168       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4169 
4170     Created.push_back(NPQ.getNode());
4171 
4172     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4173     Created.push_back(Q.getNode());
4174   }
4175 
4176   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4177   Created.push_back(Q.getNode());
4178 
4179   SDValue One = DAG.getConstant(1, dl, VT);
4180   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4181   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4182 }
4183 
4184 bool TargetLowering::
4185 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4186   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4187     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4188                                 "be a constant integer");
4189     return true;
4190   }
4191 
4192   return false;
4193 }
4194 
4195 //===----------------------------------------------------------------------===//
4196 // Legalization Utilities
4197 //===----------------------------------------------------------------------===//
4198 
4199 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4200                                     SDValue LHS, SDValue RHS,
4201                                     SmallVectorImpl<SDValue> &Result,
4202                                     EVT HiLoVT, SelectionDAG &DAG,
4203                                     MulExpansionKind Kind, SDValue LL,
4204                                     SDValue LH, SDValue RL, SDValue RH) const {
4205   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4206          Opcode == ISD::SMUL_LOHI);
4207 
4208   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4209                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4210   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4211                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4212   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4213                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4214   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4215                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4216 
4217   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4218     return false;
4219 
4220   unsigned OuterBitSize = VT.getScalarSizeInBits();
4221   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4222   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4223   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4224 
4225   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4226   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4227          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4228 
4229   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4230   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4231                           bool Signed) -> bool {
4232     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4233       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4234       Hi = SDValue(Lo.getNode(), 1);
4235       return true;
4236     }
4237     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4238       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4239       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4240       return true;
4241     }
4242     return false;
4243   };
4244 
4245   SDValue Lo, Hi;
4246 
4247   if (!LL.getNode() && !RL.getNode() &&
4248       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4249     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4250     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4251   }
4252 
4253   if (!LL.getNode())
4254     return false;
4255 
4256   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4257   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4258       DAG.MaskedValueIsZero(RHS, HighMask)) {
4259     // The inputs are both zero-extended.
4260     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4261       Result.push_back(Lo);
4262       Result.push_back(Hi);
4263       if (Opcode != ISD::MUL) {
4264         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4265         Result.push_back(Zero);
4266         Result.push_back(Zero);
4267       }
4268       return true;
4269     }
4270   }
4271 
4272   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4273       RHSSB > InnerBitSize) {
4274     // The input values are both sign-extended.
4275     // TODO non-MUL case?
4276     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4277       Result.push_back(Lo);
4278       Result.push_back(Hi);
4279       return true;
4280     }
4281   }
4282 
4283   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4284   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4285   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4286     // FIXME getShiftAmountTy does not always return a sensible result when VT
4287     // is an illegal type, and so the type may be too small to fit the shift
4288     // amount. Override it with i32. The shift will have to be legalized.
4289     ShiftAmountTy = MVT::i32;
4290   }
4291   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4292 
4293   if (!LH.getNode() && !RH.getNode() &&
4294       isOperationLegalOrCustom(ISD::SRL, VT) &&
4295       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4296     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4297     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4298     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4299     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4300   }
4301 
4302   if (!LH.getNode())
4303     return false;
4304 
4305   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4306     return false;
4307 
4308   Result.push_back(Lo);
4309 
4310   if (Opcode == ISD::MUL) {
4311     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4312     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4313     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4314     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4315     Result.push_back(Hi);
4316     return true;
4317   }
4318 
4319   // Compute the full width result.
4320   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4321     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4322     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4323     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4324     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4325   };
4326 
4327   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4328   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4329     return false;
4330 
4331   // This is effectively the add part of a multiply-add of half-sized operands,
4332   // so it cannot overflow.
4333   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4334 
4335   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4336     return false;
4337 
4338   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4339   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4340 
4341   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4342                   isOperationLegalOrCustom(ISD::ADDE, VT));
4343   if (UseGlue)
4344     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4345                        Merge(Lo, Hi));
4346   else
4347     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4348                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4349 
4350   SDValue Carry = Next.getValue(1);
4351   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4352   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4353 
4354   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4355     return false;
4356 
4357   if (UseGlue)
4358     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4359                      Carry);
4360   else
4361     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4362                      Zero, Carry);
4363 
4364   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4365 
4366   if (Opcode == ISD::SMUL_LOHI) {
4367     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4368                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4369     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4370 
4371     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4372                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4373     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4374   }
4375 
4376   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4377   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4378   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4379   return true;
4380 }
4381 
4382 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4383                                SelectionDAG &DAG, MulExpansionKind Kind,
4384                                SDValue LL, SDValue LH, SDValue RL,
4385                                SDValue RH) const {
4386   SmallVector<SDValue, 2> Result;
4387   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4388                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4389                            DAG, Kind, LL, LH, RL, RH);
4390   if (Ok) {
4391     assert(Result.size() == 2);
4392     Lo = Result[0];
4393     Hi = Result[1];
4394   }
4395   return Ok;
4396 }
4397 
4398 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4399                                        SelectionDAG &DAG) const {
4400   EVT VT = Node->getValueType(0);
4401 
4402   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4403                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4404                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4405                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4406     return false;
4407 
4408   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4409   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4410   SDValue X = Node->getOperand(0);
4411   SDValue Y = Node->getOperand(1);
4412   SDValue Z = Node->getOperand(2);
4413 
4414   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4415   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4416   SDLoc DL(SDValue(Node, 0));
4417 
4418   EVT ShVT = Z.getValueType();
4419   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4420   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4421 
4422   SDValue ShAmt;
4423   if (isPowerOf2_32(EltSizeInBits)) {
4424     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4425     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4426   } else {
4427     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4428   }
4429 
4430   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4431   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4432   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4433   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4434 
4435   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4436   // and that is undefined. We must compare and select to avoid UB.
4437   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4438 
4439   // For fshl, 0-shift returns the 1st arg (X).
4440   // For fshr, 0-shift returns the 2nd arg (Y).
4441   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4442   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4443   return true;
4444 }
4445 
4446 // TODO: Merge with expandFunnelShift.
4447 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4448                                SelectionDAG &DAG) const {
4449   EVT VT = Node->getValueType(0);
4450   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4451   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4452   SDValue Op0 = Node->getOperand(0);
4453   SDValue Op1 = Node->getOperand(1);
4454   SDLoc DL(SDValue(Node, 0));
4455 
4456   EVT ShVT = Op1.getValueType();
4457   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4458 
4459   // If a rotate in the other direction is legal, use it.
4460   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4461   if (isOperationLegal(RevRot, VT)) {
4462     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4463     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4464     return true;
4465   }
4466 
4467   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4468                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4469                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4470                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4471                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4472     return false;
4473 
4474   // Otherwise,
4475   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4476   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4477   //
4478   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4479          "Expecting the type bitwidth to be a power of 2");
4480   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4481   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4482   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4483   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4484   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4485   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4486   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4487                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4488   return true;
4489 }
4490 
4491 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4492                                       SelectionDAG &DAG) const {
4493   SDValue Src = Node->getOperand(0);
4494   EVT SrcVT = Src.getValueType();
4495   EVT DstVT = Node->getValueType(0);
4496   SDLoc dl(SDValue(Node, 0));
4497 
4498   // FIXME: Only f32 to i64 conversions are supported.
4499   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4500     return false;
4501 
4502   // Expand f32 -> i64 conversion
4503   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4504   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4505   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4506   EVT IntVT = SrcVT.changeTypeToInteger();
4507   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4508 
4509   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4510   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4511   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4512   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4513   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4514   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4515 
4516   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4517 
4518   SDValue ExponentBits = DAG.getNode(
4519       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4520       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4521   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4522 
4523   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4524                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4525                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4526   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4527 
4528   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4529                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4530                           DAG.getConstant(0x00800000, dl, IntVT));
4531 
4532   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4533 
4534   R = DAG.getSelectCC(
4535       dl, Exponent, ExponentLoBit,
4536       DAG.getNode(ISD::SHL, dl, DstVT, R,
4537                   DAG.getZExtOrTrunc(
4538                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4539                       dl, IntShVT)),
4540       DAG.getNode(ISD::SRL, dl, DstVT, R,
4541                   DAG.getZExtOrTrunc(
4542                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4543                       dl, IntShVT)),
4544       ISD::SETGT);
4545 
4546   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4547                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4548 
4549   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4550                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4551   return true;
4552 }
4553 
4554 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4555                                       SelectionDAG &DAG) const {
4556   SDLoc dl(SDValue(Node, 0));
4557   SDValue Src = Node->getOperand(0);
4558 
4559   EVT SrcVT = Src.getValueType();
4560   EVT DstVT = Node->getValueType(0);
4561   EVT SetCCVT =
4562       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4563 
4564   // Only expand vector types if we have the appropriate vector bit operations.
4565   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4566                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4567     return false;
4568 
4569   // If the maximum float value is smaller then the signed integer range,
4570   // the destination signmask can't be represented by the float, so we can
4571   // just use FP_TO_SINT directly.
4572   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4573   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4574   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4575   if (APFloat::opOverflow &
4576       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4577     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4578     return true;
4579   }
4580 
4581   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4582   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4583 
4584   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4585   if (Strict) {
4586     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4587     // signmask then offset (the result of which should be fully representable).
4588     // Sel = Src < 0x8000000000000000
4589     // Val = select Sel, Src, Src - 0x8000000000000000
4590     // Ofs = select Sel, 0, 0x8000000000000000
4591     // Result = fp_to_sint(Val) ^ Ofs
4592 
4593     // TODO: Should any fast-math-flags be set for the FSUB?
4594     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4595                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4596     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4597                                 DAG.getConstant(SignMask, dl, DstVT));
4598     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4599                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4600   } else {
4601     // Expand based on maximum range of FP_TO_SINT:
4602     // True = fp_to_sint(Src)
4603     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4604     // Result = select (Src < 0x8000000000000000), True, False
4605 
4606     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4607     // TODO: Should any fast-math-flags be set for the FSUB?
4608     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4609                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4610     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4611                         DAG.getConstant(SignMask, dl, DstVT));
4612     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4613   }
4614   return true;
4615 }
4616 
4617 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4618                                       SelectionDAG &DAG) const {
4619   SDValue Src = Node->getOperand(0);
4620   EVT SrcVT = Src.getValueType();
4621   EVT DstVT = Node->getValueType(0);
4622 
4623   if (SrcVT.getScalarType() != MVT::i64)
4624     return false;
4625 
4626   SDLoc dl(SDValue(Node, 0));
4627   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4628 
4629   if (DstVT.getScalarType() == MVT::f32) {
4630     // Only expand vector types if we have the appropriate vector bit
4631     // operations.
4632     if (SrcVT.isVector() &&
4633         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4634          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4635          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4636          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4637          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4638       return false;
4639 
4640     // For unsigned conversions, convert them to signed conversions using the
4641     // algorithm from the x86_64 __floatundidf in compiler_rt.
4642     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4643 
4644     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4645     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4646     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4647     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4648     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4649 
4650     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4651     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4652 
4653     // TODO: This really should be implemented using a branch rather than a
4654     // select.  We happen to get lucky and machinesink does the right
4655     // thing most of the time.  This would be a good candidate for a
4656     // pseudo-op, or, even better, for whole-function isel.
4657     EVT SetCCVT =
4658         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4659 
4660     SDValue SignBitTest = DAG.getSetCC(
4661         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4662     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4663     return true;
4664   }
4665 
4666   if (DstVT.getScalarType() == MVT::f64) {
4667     // Only expand vector types if we have the appropriate vector bit
4668     // operations.
4669     if (SrcVT.isVector() &&
4670         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4671          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4672          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4673          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4674          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4675       return false;
4676 
4677     // Implementation of unsigned i64 to f64 following the algorithm in
4678     // __floatundidf in compiler_rt. This implementation has the advantage
4679     // of performing rounding correctly, both in the default rounding mode
4680     // and in all alternate rounding modes.
4681     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4682     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4683         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4684     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4685     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4686     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4687 
4688     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4689     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4690     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4691     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4692     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4693     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4694     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4695     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4696     return true;
4697   }
4698 
4699   return false;
4700 }
4701 
4702 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4703                                               SelectionDAG &DAG) const {
4704   SDLoc dl(Node);
4705   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4706     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4707   EVT VT = Node->getValueType(0);
4708   if (isOperationLegalOrCustom(NewOp, VT)) {
4709     SDValue Quiet0 = Node->getOperand(0);
4710     SDValue Quiet1 = Node->getOperand(1);
4711 
4712     if (!Node->getFlags().hasNoNaNs()) {
4713       // Insert canonicalizes if it's possible we need to quiet to get correct
4714       // sNaN behavior.
4715       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4716         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4717                              Node->getFlags());
4718       }
4719       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4720         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4721                              Node->getFlags());
4722       }
4723     }
4724 
4725     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4726   }
4727 
4728   return SDValue();
4729 }
4730 
4731 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4732                                  SelectionDAG &DAG) const {
4733   SDLoc dl(Node);
4734   EVT VT = Node->getValueType(0);
4735   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4736   SDValue Op = Node->getOperand(0);
4737   unsigned Len = VT.getScalarSizeInBits();
4738   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4739 
4740   // TODO: Add support for irregular type lengths.
4741   if (!(Len <= 128 && Len % 8 == 0))
4742     return false;
4743 
4744   // Only expand vector types if we have the appropriate vector bit operations.
4745   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4746                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4747                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4748                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4749                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4750     return false;
4751 
4752   // This is the "best" algorithm from
4753   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4754   SDValue Mask55 =
4755       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4756   SDValue Mask33 =
4757       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4758   SDValue Mask0F =
4759       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4760   SDValue Mask01 =
4761       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4762 
4763   // v = v - ((v >> 1) & 0x55555555...)
4764   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4765                    DAG.getNode(ISD::AND, dl, VT,
4766                                DAG.getNode(ISD::SRL, dl, VT, Op,
4767                                            DAG.getConstant(1, dl, ShVT)),
4768                                Mask55));
4769   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4770   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4771                    DAG.getNode(ISD::AND, dl, VT,
4772                                DAG.getNode(ISD::SRL, dl, VT, Op,
4773                                            DAG.getConstant(2, dl, ShVT)),
4774                                Mask33));
4775   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4776   Op = DAG.getNode(ISD::AND, dl, VT,
4777                    DAG.getNode(ISD::ADD, dl, VT, Op,
4778                                DAG.getNode(ISD::SRL, dl, VT, Op,
4779                                            DAG.getConstant(4, dl, ShVT))),
4780                    Mask0F);
4781   // v = (v * 0x01010101...) >> (Len - 8)
4782   if (Len > 8)
4783     Op =
4784         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4785                     DAG.getConstant(Len - 8, dl, ShVT));
4786 
4787   Result = Op;
4788   return true;
4789 }
4790 
4791 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4792                                 SelectionDAG &DAG) const {
4793   SDLoc dl(Node);
4794   EVT VT = Node->getValueType(0);
4795   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4796   SDValue Op = Node->getOperand(0);
4797   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4798 
4799   // If the non-ZERO_UNDEF version is supported we can use that instead.
4800   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4801       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4802     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4803     return true;
4804   }
4805 
4806   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4807   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4808     EVT SetCCVT =
4809         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4810     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4811     SDValue Zero = DAG.getConstant(0, dl, VT);
4812     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4813     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4814                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4815     return true;
4816   }
4817 
4818   // Only expand vector types if we have the appropriate vector bit operations.
4819   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4820                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4821                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4822                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4823     return false;
4824 
4825   // for now, we do this:
4826   // x = x | (x >> 1);
4827   // x = x | (x >> 2);
4828   // ...
4829   // x = x | (x >>16);
4830   // x = x | (x >>32); // for 64-bit input
4831   // return popcount(~x);
4832   //
4833   // Ref: "Hacker's Delight" by Henry Warren
4834   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4835     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4836     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4837                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4838   }
4839   Op = DAG.getNOT(dl, Op, VT);
4840   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4841   return true;
4842 }
4843 
4844 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4845                                 SelectionDAG &DAG) const {
4846   SDLoc dl(Node);
4847   EVT VT = Node->getValueType(0);
4848   SDValue Op = Node->getOperand(0);
4849   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4850 
4851   // If the non-ZERO_UNDEF version is supported we can use that instead.
4852   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4853       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4854     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4855     return true;
4856   }
4857 
4858   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4859   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4860     EVT SetCCVT =
4861         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4862     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4863     SDValue Zero = DAG.getConstant(0, dl, VT);
4864     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4865     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4866                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4867     return true;
4868   }
4869 
4870   // Only expand vector types if we have the appropriate vector bit operations.
4871   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4872                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4873                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4874                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4875                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4876                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4877     return false;
4878 
4879   // for now, we use: { return popcount(~x & (x - 1)); }
4880   // unless the target has ctlz but not ctpop, in which case we use:
4881   // { return 32 - nlz(~x & (x-1)); }
4882   // Ref: "Hacker's Delight" by Henry Warren
4883   SDValue Tmp = DAG.getNode(
4884       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4885       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4886 
4887   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4888   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4889     Result =
4890         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4891                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4892     return true;
4893   }
4894 
4895   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4896   return true;
4897 }
4898 
4899 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
4900                                SelectionDAG &DAG) const {
4901   SDLoc dl(N);
4902   EVT VT = N->getValueType(0);
4903   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4904   SDValue Op = N->getOperand(0);
4905 
4906   // Only expand vector types if we have the appropriate vector operations.
4907   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
4908                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
4909                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4910     return false;
4911 
4912   SDValue Shift =
4913       DAG.getNode(ISD::SRA, dl, VT, Op,
4914                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
4915   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
4916   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
4917   return true;
4918 }
4919 
4920 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4921                                             SelectionDAG &DAG) const {
4922   SDLoc SL(LD);
4923   SDValue Chain = LD->getChain();
4924   SDValue BasePTR = LD->getBasePtr();
4925   EVT SrcVT = LD->getMemoryVT();
4926   ISD::LoadExtType ExtType = LD->getExtensionType();
4927 
4928   unsigned NumElem = SrcVT.getVectorNumElements();
4929 
4930   EVT SrcEltVT = SrcVT.getScalarType();
4931   EVT DstEltVT = LD->getValueType(0).getScalarType();
4932 
4933   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4934   assert(SrcEltVT.isByteSized());
4935 
4936   SmallVector<SDValue, 8> Vals;
4937   SmallVector<SDValue, 8> LoadChains;
4938 
4939   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4940     SDValue ScalarLoad =
4941         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4942                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4943                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4944                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4945 
4946     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4947 
4948     Vals.push_back(ScalarLoad.getValue(0));
4949     LoadChains.push_back(ScalarLoad.getValue(1));
4950   }
4951 
4952   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4953   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4954 
4955   return DAG.getMergeValues({Value, NewChain}, SL);
4956 }
4957 
4958 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4959                                              SelectionDAG &DAG) const {
4960   SDLoc SL(ST);
4961 
4962   SDValue Chain = ST->getChain();
4963   SDValue BasePtr = ST->getBasePtr();
4964   SDValue Value = ST->getValue();
4965   EVT StVT = ST->getMemoryVT();
4966 
4967   // The type of the data we want to save
4968   EVT RegVT = Value.getValueType();
4969   EVT RegSclVT = RegVT.getScalarType();
4970 
4971   // The type of data as saved in memory.
4972   EVT MemSclVT = StVT.getScalarType();
4973 
4974   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4975   unsigned NumElem = StVT.getVectorNumElements();
4976 
4977   // A vector must always be stored in memory as-is, i.e. without any padding
4978   // between the elements, since various code depend on it, e.g. in the
4979   // handling of a bitcast of a vector type to int, which may be done with a
4980   // vector store followed by an integer load. A vector that does not have
4981   // elements that are byte-sized must therefore be stored as an integer
4982   // built out of the extracted vector elements.
4983   if (!MemSclVT.isByteSized()) {
4984     unsigned NumBits = StVT.getSizeInBits();
4985     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4986 
4987     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4988 
4989     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4990       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4991                                 DAG.getConstant(Idx, SL, IdxVT));
4992       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4993       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4994       unsigned ShiftIntoIdx =
4995           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4996       SDValue ShiftAmount =
4997           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4998       SDValue ShiftedElt =
4999           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5000       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5001     }
5002 
5003     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5004                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5005                         ST->getAAInfo());
5006   }
5007 
5008   // Store Stride in bytes
5009   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5010   assert(Stride && "Zero stride!");
5011   // Extract each of the elements from the original vector and save them into
5012   // memory individually.
5013   SmallVector<SDValue, 8> Stores;
5014   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5015     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5016                               DAG.getConstant(Idx, SL, IdxVT));
5017 
5018     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5019 
5020     // This scalar TruncStore may be illegal, but we legalize it later.
5021     SDValue Store = DAG.getTruncStore(
5022         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5023         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5024         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5025 
5026     Stores.push_back(Store);
5027   }
5028 
5029   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5030 }
5031 
5032 std::pair<SDValue, SDValue>
5033 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5034   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5035          "unaligned indexed loads not implemented!");
5036   SDValue Chain = LD->getChain();
5037   SDValue Ptr = LD->getBasePtr();
5038   EVT VT = LD->getValueType(0);
5039   EVT LoadedVT = LD->getMemoryVT();
5040   SDLoc dl(LD);
5041   auto &MF = DAG.getMachineFunction();
5042 
5043   if (VT.isFloatingPoint() || VT.isVector()) {
5044     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5045     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5046       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5047           LoadedVT.isVector()) {
5048         // Scalarize the load and let the individual components be handled.
5049         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5050         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5051           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5052         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5053       }
5054 
5055       // Expand to a (misaligned) integer load of the same size,
5056       // then bitconvert to floating point or vector.
5057       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5058                                     LD->getMemOperand());
5059       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5060       if (LoadedVT != VT)
5061         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5062                              ISD::ANY_EXTEND, dl, VT, Result);
5063 
5064       return std::make_pair(Result, newLoad.getValue(1));
5065     }
5066 
5067     // Copy the value to a (aligned) stack slot using (unaligned) integer
5068     // loads and stores, then do a (aligned) load from the stack slot.
5069     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5070     unsigned LoadedBytes = LoadedVT.getStoreSize();
5071     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5072     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5073 
5074     // Make sure the stack slot is also aligned for the register type.
5075     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5076     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5077     SmallVector<SDValue, 8> Stores;
5078     SDValue StackPtr = StackBase;
5079     unsigned Offset = 0;
5080 
5081     EVT PtrVT = Ptr.getValueType();
5082     EVT StackPtrVT = StackPtr.getValueType();
5083 
5084     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5085     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5086 
5087     // Do all but one copies using the full register width.
5088     for (unsigned i = 1; i < NumRegs; i++) {
5089       // Load one integer register's worth from the original location.
5090       SDValue Load = DAG.getLoad(
5091           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5092           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5093           LD->getAAInfo());
5094       // Follow the load with a store to the stack slot.  Remember the store.
5095       Stores.push_back(DAG.getStore(
5096           Load.getValue(1), dl, Load, StackPtr,
5097           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5098       // Increment the pointers.
5099       Offset += RegBytes;
5100 
5101       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5102       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5103     }
5104 
5105     // The last copy may be partial.  Do an extending load.
5106     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5107                                   8 * (LoadedBytes - Offset));
5108     SDValue Load =
5109         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5110                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5111                        MinAlign(LD->getAlignment(), Offset),
5112                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5113     // Follow the load with a store to the stack slot.  Remember the store.
5114     // On big-endian machines this requires a truncating store to ensure
5115     // that the bits end up in the right place.
5116     Stores.push_back(DAG.getTruncStore(
5117         Load.getValue(1), dl, Load, StackPtr,
5118         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5119 
5120     // The order of the stores doesn't matter - say it with a TokenFactor.
5121     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5122 
5123     // Finally, perform the original load only redirected to the stack slot.
5124     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5125                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5126                           LoadedVT);
5127 
5128     // Callers expect a MERGE_VALUES node.
5129     return std::make_pair(Load, TF);
5130   }
5131 
5132   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5133          "Unaligned load of unsupported type.");
5134 
5135   // Compute the new VT that is half the size of the old one.  This is an
5136   // integer MVT.
5137   unsigned NumBits = LoadedVT.getSizeInBits();
5138   EVT NewLoadedVT;
5139   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5140   NumBits >>= 1;
5141 
5142   unsigned Alignment = LD->getAlignment();
5143   unsigned IncrementSize = NumBits / 8;
5144   ISD::LoadExtType HiExtType = LD->getExtensionType();
5145 
5146   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5147   if (HiExtType == ISD::NON_EXTLOAD)
5148     HiExtType = ISD::ZEXTLOAD;
5149 
5150   // Load the value in two parts
5151   SDValue Lo, Hi;
5152   if (DAG.getDataLayout().isLittleEndian()) {
5153     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5154                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5155                         LD->getAAInfo());
5156 
5157     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5158     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5159                         LD->getPointerInfo().getWithOffset(IncrementSize),
5160                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5161                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5162   } else {
5163     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5164                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5165                         LD->getAAInfo());
5166 
5167     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5168     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5169                         LD->getPointerInfo().getWithOffset(IncrementSize),
5170                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5171                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5172   }
5173 
5174   // aggregate the two parts
5175   SDValue ShiftAmount =
5176       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5177                                                     DAG.getDataLayout()));
5178   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5179   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5180 
5181   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5182                              Hi.getValue(1));
5183 
5184   return std::make_pair(Result, TF);
5185 }
5186 
5187 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5188                                              SelectionDAG &DAG) const {
5189   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5190          "unaligned indexed stores not implemented!");
5191   SDValue Chain = ST->getChain();
5192   SDValue Ptr = ST->getBasePtr();
5193   SDValue Val = ST->getValue();
5194   EVT VT = Val.getValueType();
5195   int Alignment = ST->getAlignment();
5196   auto &MF = DAG.getMachineFunction();
5197   EVT MemVT = ST->getMemoryVT();
5198 
5199   SDLoc dl(ST);
5200   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5201     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5202     if (isTypeLegal(intVT)) {
5203       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5204           MemVT.isVector()) {
5205         // Scalarize the store and let the individual components be handled.
5206         SDValue Result = scalarizeVectorStore(ST, DAG);
5207 
5208         return Result;
5209       }
5210       // Expand to a bitconvert of the value to the integer type of the
5211       // same size, then a (misaligned) int store.
5212       // FIXME: Does not handle truncating floating point stores!
5213       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5214       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5215                             Alignment, ST->getMemOperand()->getFlags());
5216       return Result;
5217     }
5218     // Do a (aligned) store to a stack slot, then copy from the stack slot
5219     // to the final destination using (unaligned) integer loads and stores.
5220     EVT StoredVT = ST->getMemoryVT();
5221     MVT RegVT =
5222       getRegisterType(*DAG.getContext(),
5223                       EVT::getIntegerVT(*DAG.getContext(),
5224                                         StoredVT.getSizeInBits()));
5225     EVT PtrVT = Ptr.getValueType();
5226     unsigned StoredBytes = StoredVT.getStoreSize();
5227     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5228     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5229 
5230     // Make sure the stack slot is also aligned for the register type.
5231     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5232     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5233 
5234     // Perform the original store, only redirected to the stack slot.
5235     SDValue Store = DAG.getTruncStore(
5236         Chain, dl, Val, StackPtr,
5237         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5238 
5239     EVT StackPtrVT = StackPtr.getValueType();
5240 
5241     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5242     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5243     SmallVector<SDValue, 8> Stores;
5244     unsigned Offset = 0;
5245 
5246     // Do all but one copies using the full register width.
5247     for (unsigned i = 1; i < NumRegs; i++) {
5248       // Load one integer register's worth from the stack slot.
5249       SDValue Load = DAG.getLoad(
5250           RegVT, dl, Store, StackPtr,
5251           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5252       // Store it to the final location.  Remember the store.
5253       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5254                                     ST->getPointerInfo().getWithOffset(Offset),
5255                                     MinAlign(ST->getAlignment(), Offset),
5256                                     ST->getMemOperand()->getFlags()));
5257       // Increment the pointers.
5258       Offset += RegBytes;
5259       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5260       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5261     }
5262 
5263     // The last store may be partial.  Do a truncating store.  On big-endian
5264     // machines this requires an extending load from the stack slot to ensure
5265     // that the bits are in the right place.
5266     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5267                                   8 * (StoredBytes - Offset));
5268 
5269     // Load from the stack slot.
5270     SDValue Load = DAG.getExtLoad(
5271         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5272         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5273 
5274     Stores.push_back(
5275         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5276                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5277                           MinAlign(ST->getAlignment(), Offset),
5278                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5279     // The order of the stores doesn't matter - say it with a TokenFactor.
5280     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5281     return Result;
5282   }
5283 
5284   assert(ST->getMemoryVT().isInteger() &&
5285          !ST->getMemoryVT().isVector() &&
5286          "Unaligned store of unknown type.");
5287   // Get the half-size VT
5288   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5289   int NumBits = NewStoredVT.getSizeInBits();
5290   int IncrementSize = NumBits / 8;
5291 
5292   // Divide the stored value in two parts.
5293   SDValue ShiftAmount =
5294       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5295                                                     DAG.getDataLayout()));
5296   SDValue Lo = Val;
5297   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5298 
5299   // Store the two parts
5300   SDValue Store1, Store2;
5301   Store1 = DAG.getTruncStore(Chain, dl,
5302                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5303                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5304                              ST->getMemOperand()->getFlags());
5305 
5306   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5307   Alignment = MinAlign(Alignment, IncrementSize);
5308   Store2 = DAG.getTruncStore(
5309       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5310       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5311       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5312 
5313   SDValue Result =
5314     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5315   return Result;
5316 }
5317 
5318 SDValue
5319 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5320                                        const SDLoc &DL, EVT DataVT,
5321                                        SelectionDAG &DAG,
5322                                        bool IsCompressedMemory) const {
5323   SDValue Increment;
5324   EVT AddrVT = Addr.getValueType();
5325   EVT MaskVT = Mask.getValueType();
5326   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5327          "Incompatible types of Data and Mask");
5328   if (IsCompressedMemory) {
5329     // Incrementing the pointer according to number of '1's in the mask.
5330     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5331     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5332     if (MaskIntVT.getSizeInBits() < 32) {
5333       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5334       MaskIntVT = MVT::i32;
5335     }
5336 
5337     // Count '1's with POPCNT.
5338     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5339     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5340     // Scale is an element size in bytes.
5341     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5342                                     AddrVT);
5343     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5344   } else
5345     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5346 
5347   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5348 }
5349 
5350 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5351                                        SDValue Idx,
5352                                        EVT VecVT,
5353                                        const SDLoc &dl) {
5354   if (isa<ConstantSDNode>(Idx))
5355     return Idx;
5356 
5357   EVT IdxVT = Idx.getValueType();
5358   unsigned NElts = VecVT.getVectorNumElements();
5359   if (isPowerOf2_32(NElts)) {
5360     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5361                                      Log2_32(NElts));
5362     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5363                        DAG.getConstant(Imm, dl, IdxVT));
5364   }
5365 
5366   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5367                      DAG.getConstant(NElts - 1, dl, IdxVT));
5368 }
5369 
5370 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5371                                                 SDValue VecPtr, EVT VecVT,
5372                                                 SDValue Index) const {
5373   SDLoc dl(Index);
5374   // Make sure the index type is big enough to compute in.
5375   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5376 
5377   EVT EltVT = VecVT.getVectorElementType();
5378 
5379   // Calculate the element offset and add it to the pointer.
5380   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5381   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5382          "Converting bits to bytes lost precision");
5383 
5384   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5385 
5386   EVT IdxVT = Index.getValueType();
5387 
5388   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5389                       DAG.getConstant(EltSize, dl, IdxVT));
5390   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5391 }
5392 
5393 //===----------------------------------------------------------------------===//
5394 // Implementation of Emulated TLS Model
5395 //===----------------------------------------------------------------------===//
5396 
5397 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5398                                                 SelectionDAG &DAG) const {
5399   // Access to address of TLS varialbe xyz is lowered to a function call:
5400   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5401   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5402   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5403   SDLoc dl(GA);
5404 
5405   ArgListTy Args;
5406   ArgListEntry Entry;
5407   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5408   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5409   StringRef EmuTlsVarName(NameString);
5410   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5411   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5412   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5413   Entry.Ty = VoidPtrType;
5414   Args.push_back(Entry);
5415 
5416   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5417 
5418   TargetLowering::CallLoweringInfo CLI(DAG);
5419   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5420   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5421   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5422 
5423   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5424   // At last for X86 targets, maybe good for other targets too?
5425   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5426   MFI.setAdjustsStack(true); // Is this only for X86 target?
5427   MFI.setHasCalls(true);
5428 
5429   assert((GA->getOffset() == 0) &&
5430          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5431   return CallResult.first;
5432 }
5433 
5434 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5435                                                 SelectionDAG &DAG) const {
5436   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5437   if (!isCtlzFast())
5438     return SDValue();
5439   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5440   SDLoc dl(Op);
5441   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5442     if (C->isNullValue() && CC == ISD::SETEQ) {
5443       EVT VT = Op.getOperand(0).getValueType();
5444       SDValue Zext = Op.getOperand(0);
5445       if (VT.bitsLT(MVT::i32)) {
5446         VT = MVT::i32;
5447         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5448       }
5449       unsigned Log2b = Log2_32(VT.getSizeInBits());
5450       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5451       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5452                                 DAG.getConstant(Log2b, dl, MVT::i32));
5453       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5454     }
5455   }
5456   return SDValue();
5457 }
5458 
5459 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5460   unsigned Opcode = Node->getOpcode();
5461   SDValue LHS = Node->getOperand(0);
5462   SDValue RHS = Node->getOperand(1);
5463   EVT VT = LHS.getValueType();
5464   SDLoc dl(Node);
5465 
5466   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
5467   assert(VT.isInteger() && "Expected operands to be integers");
5468 
5469   // usub.sat(a, b) -> umax(a, b) - b
5470   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5471     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5472     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5473   }
5474 
5475   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5476     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5477     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5478     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5479   }
5480 
5481   unsigned OverflowOp;
5482   switch (Opcode) {
5483   case ISD::SADDSAT:
5484     OverflowOp = ISD::SADDO;
5485     break;
5486   case ISD::UADDSAT:
5487     OverflowOp = ISD::UADDO;
5488     break;
5489   case ISD::SSUBSAT:
5490     OverflowOp = ISD::SSUBO;
5491     break;
5492   case ISD::USUBSAT:
5493     OverflowOp = ISD::USUBO;
5494     break;
5495   default:
5496     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5497                      "addition or subtraction node.");
5498   }
5499 
5500   unsigned BitWidth = LHS.getScalarValueSizeInBits();
5501   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5502   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
5503                                LHS, RHS);
5504   SDValue SumDiff = Result.getValue(0);
5505   SDValue Overflow = Result.getValue(1);
5506   SDValue Zero = DAG.getConstant(0, dl, VT);
5507   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
5508 
5509   if (Opcode == ISD::UADDSAT) {
5510     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5511       // (LHS + RHS) | OverflowMask
5512       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5513       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
5514     }
5515     // Overflow ? 0xffff.... : (LHS + RHS)
5516     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
5517   } else if (Opcode == ISD::USUBSAT) {
5518     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
5519       // (LHS - RHS) & ~OverflowMask
5520       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
5521       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
5522       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
5523     }
5524     // Overflow ? 0 : (LHS - RHS)
5525     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
5526   } else {
5527     // SatMax -> Overflow && SumDiff < 0
5528     // SatMin -> Overflow && SumDiff >= 0
5529     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5530     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5531     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
5532     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
5533     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5534     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
5535     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
5536   }
5537 }
5538 
5539 SDValue
5540 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
5541   assert((Node->getOpcode() == ISD::SMULFIX ||
5542           Node->getOpcode() == ISD::UMULFIX) &&
5543          "Expected opcode to be SMULFIX or UMULFIX.");
5544 
5545   SDLoc dl(Node);
5546   SDValue LHS = Node->getOperand(0);
5547   SDValue RHS = Node->getOperand(1);
5548   EVT VT = LHS.getValueType();
5549   unsigned Scale = Node->getConstantOperandVal(2);
5550 
5551   // [us]mul.fix(a, b, 0) -> mul(a, b)
5552   if (!Scale) {
5553     if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT))
5554       return SDValue();
5555     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5556   }
5557 
5558   unsigned VTSize = VT.getScalarSizeInBits();
5559   bool Signed = Node->getOpcode() == ISD::SMULFIX;
5560 
5561   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
5562          "Expected scale to be less than the number of bits if signed or at "
5563          "most the number of bits if unsigned.");
5564   assert(LHS.getValueType() == RHS.getValueType() &&
5565          "Expected both operands to be the same type");
5566 
5567   // Get the upper and lower bits of the result.
5568   SDValue Lo, Hi;
5569   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
5570   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
5571   if (isOperationLegalOrCustom(LoHiOp, VT)) {
5572     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
5573     Lo = Result.getValue(0);
5574     Hi = Result.getValue(1);
5575   } else if (isOperationLegalOrCustom(HiOp, VT)) {
5576     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5577     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
5578   } else if (VT.isVector()) {
5579     return SDValue();
5580   } else {
5581     report_fatal_error("Unable to expand fixed point multiplication.");
5582   }
5583 
5584   if (Scale == VTSize)
5585     // Result is just the top half since we'd be shifting by the width of the
5586     // operand.
5587     return Hi;
5588 
5589   // The result will need to be shifted right by the scale since both operands
5590   // are scaled. The result is given to us in 2 halves, so we only want part of
5591   // both in the result.
5592   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5593   return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
5594                      DAG.getConstant(Scale, dl, ShiftTy));
5595 }
5596 
5597 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
5598                                 SDValue &Overflow, SelectionDAG &DAG) const {
5599   SDLoc dl(Node);
5600   EVT VT = Node->getValueType(0);
5601   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5602   SDValue LHS = Node->getOperand(0);
5603   SDValue RHS = Node->getOperand(1);
5604   bool isSigned = Node->getOpcode() == ISD::SMULO;
5605 
5606   // For power-of-two multiplications we can use a simpler shift expansion.
5607   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
5608     const APInt &C = RHSC->getAPIntValue();
5609     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
5610     if (C.isPowerOf2()) {
5611       // smulo(x, signed_min) is same as umulo(x, signed_min).
5612       bool UseArithShift = isSigned && !C.isMinSignedValue();
5613       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
5614       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
5615       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
5616       Overflow = DAG.getSetCC(dl, SetCCVT,
5617           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
5618                       dl, VT, Result, ShiftAmt),
5619           LHS, ISD::SETNE);
5620       return true;
5621     }
5622   }
5623 
5624   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
5625   if (VT.isVector())
5626     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
5627                               VT.getVectorNumElements());
5628 
5629   SDValue BottomHalf;
5630   SDValue TopHalf;
5631   static const unsigned Ops[2][3] =
5632       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
5633         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
5634   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
5635     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5636     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
5637   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
5638     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
5639                              RHS);
5640     TopHalf = BottomHalf.getValue(1);
5641   } else if (isTypeLegal(WideVT)) {
5642     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
5643     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
5644     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
5645     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
5646     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
5647         getShiftAmountTy(WideVT, DAG.getDataLayout()));
5648     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
5649                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
5650   } else {
5651     if (VT.isVector())
5652       return false;
5653 
5654     // We can fall back to a libcall with an illegal type for the MUL if we
5655     // have a libcall big enough.
5656     // Also, we can fall back to a division in some cases, but that's a big
5657     // performance hit in the general case.
5658     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
5659     if (WideVT == MVT::i16)
5660       LC = RTLIB::MUL_I16;
5661     else if (WideVT == MVT::i32)
5662       LC = RTLIB::MUL_I32;
5663     else if (WideVT == MVT::i64)
5664       LC = RTLIB::MUL_I64;
5665     else if (WideVT == MVT::i128)
5666       LC = RTLIB::MUL_I128;
5667     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
5668 
5669     SDValue HiLHS;
5670     SDValue HiRHS;
5671     if (isSigned) {
5672       // The high part is obtained by SRA'ing all but one of the bits of low
5673       // part.
5674       unsigned LoSize = VT.getSizeInBits();
5675       HiLHS =
5676           DAG.getNode(ISD::SRA, dl, VT, LHS,
5677                       DAG.getConstant(LoSize - 1, dl,
5678                                       getPointerTy(DAG.getDataLayout())));
5679       HiRHS =
5680           DAG.getNode(ISD::SRA, dl, VT, RHS,
5681                       DAG.getConstant(LoSize - 1, dl,
5682                                       getPointerTy(DAG.getDataLayout())));
5683     } else {
5684         HiLHS = DAG.getConstant(0, dl, VT);
5685         HiRHS = DAG.getConstant(0, dl, VT);
5686     }
5687 
5688     // Here we're passing the 2 arguments explicitly as 4 arguments that are
5689     // pre-lowered to the correct types. This all depends upon WideVT not
5690     // being a legal type for the architecture and thus has to be split to
5691     // two arguments.
5692     SDValue Ret;
5693     if (DAG.getDataLayout().isLittleEndian()) {
5694       // Halves of WideVT are packed into registers in different order
5695       // depending on platform endianness. This is usually handled by
5696       // the C calling convention, but we can't defer to it in
5697       // the legalizer.
5698       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
5699       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5700           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5701           /* isPostTypeLegalization */ true).first;
5702     } else {
5703       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
5704       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
5705           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
5706           /* isPostTypeLegalization */ true).first;
5707     }
5708     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
5709            "Ret value is a collection of constituent nodes holding result.");
5710     if (DAG.getDataLayout().isLittleEndian()) {
5711       // Same as above.
5712       BottomHalf = Ret.getOperand(0);
5713       TopHalf = Ret.getOperand(1);
5714     } else {
5715       BottomHalf = Ret.getOperand(1);
5716       TopHalf = Ret.getOperand(0);
5717     }
5718   }
5719 
5720   Result = BottomHalf;
5721   if (isSigned) {
5722     SDValue ShiftAmt = DAG.getConstant(
5723         VT.getScalarSizeInBits() - 1, dl,
5724         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
5725     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
5726     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
5727   } else {
5728     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
5729                             DAG.getConstant(0, dl, VT), ISD::SETNE);
5730   }
5731 
5732   // Truncate the result if SetCC returns a larger type than needed.
5733   EVT RType = Node->getValueType(1);
5734   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
5735     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
5736 
5737   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
5738          "Unexpected result type for S/UMULO legalization");
5739   return true;
5740 }
5741 
5742 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
5743   SDLoc dl(Node);
5744   bool NoNaN = Node->getFlags().hasNoNaNs();
5745   unsigned BaseOpcode = 0;
5746   switch (Node->getOpcode()) {
5747   default: llvm_unreachable("Expected VECREDUCE opcode");
5748   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
5749   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
5750   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
5751   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
5752   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
5753   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
5754   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
5755   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
5756   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
5757   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
5758   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
5759   case ISD::VECREDUCE_FMAX:
5760     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
5761     break;
5762   case ISD::VECREDUCE_FMIN:
5763     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
5764     break;
5765   }
5766 
5767   SDValue Op = Node->getOperand(0);
5768   EVT VT = Op.getValueType();
5769 
5770   // Try to use a shuffle reduction for power of two vectors.
5771   if (VT.isPow2VectorType()) {
5772     while (VT.getVectorNumElements() > 1) {
5773       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
5774       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
5775         break;
5776 
5777       SDValue Lo, Hi;
5778       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
5779       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
5780       VT = HalfVT;
5781     }
5782   }
5783 
5784   EVT EltVT = VT.getVectorElementType();
5785   unsigned NumElts = VT.getVectorNumElements();
5786 
5787   SmallVector<SDValue, 8> Ops;
5788   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
5789 
5790   SDValue Res = Ops[0];
5791   for (unsigned i = 1; i < NumElts; i++)
5792     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
5793 
5794   // Result type may be wider than element type.
5795   if (EltVT != Node->getValueType(0))
5796     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
5797   return Res;
5798 }
5799