1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1370                              Known2, TLO, Depth + 1))
1371       return true;
1372     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1373 
1374     // Attempt to avoid multi-use ops if we don't need anything from them.
1375     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1376       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1377           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1379           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1380       if (DemandedOp0 || DemandedOp1) {
1381         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1382         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1383         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1384         return TLO.CombineTo(Op, NewOp);
1385       }
1386     }
1387 
1388     // If all of the demanded bits are known one on one side, return the other.
1389     // These bits cannot contribute to the result of the 'and'.
1390     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1391       return TLO.CombineTo(Op, Op0);
1392     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1393       return TLO.CombineTo(Op, Op1);
1394     // If all of the demanded bits in the inputs are known zeros, return zero.
1395     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1396       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1397     // If the RHS is a constant, see if we can simplify it.
1398     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1399                                TLO))
1400       return true;
1401     // If the operation can be done in a smaller type, do so.
1402     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1403       return true;
1404 
1405     Known &= Known2;
1406     break;
1407   }
1408   case ISD::OR: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411 
1412     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1413                              Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1417                              Known2, TLO, Depth + 1))
1418       return true;
1419     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1420 
1421     // Attempt to avoid multi-use ops if we don't need anything from them.
1422     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1423       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1424           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1426           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       if (DemandedOp0 || DemandedOp1) {
1428         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1429         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1430         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1431         return TLO.CombineTo(Op, NewOp);
1432       }
1433     }
1434 
1435     // If all of the demanded bits are known zero on one side, return the other.
1436     // These bits cannot contribute to the result of the 'or'.
1437     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1438       return TLO.CombineTo(Op, Op0);
1439     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1440       return TLO.CombineTo(Op, Op1);
1441     // If the RHS is a constant, see if we can simplify it.
1442     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1443       return true;
1444     // If the operation can be done in a smaller type, do so.
1445     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1446       return true;
1447 
1448     Known |= Known2;
1449     break;
1450   }
1451   case ISD::XOR: {
1452     SDValue Op0 = Op.getOperand(0);
1453     SDValue Op1 = Op.getOperand(1);
1454 
1455     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1456                              Depth + 1))
1457       return true;
1458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1459     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1460                              Depth + 1))
1461       return true;
1462     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1463 
1464     // Attempt to avoid multi-use ops if we don't need anything from them.
1465     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1466       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1467           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1469           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       if (DemandedOp0 || DemandedOp1) {
1471         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1472         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1474         return TLO.CombineTo(Op, NewOp);
1475       }
1476     }
1477 
1478     // If all of the demanded bits are known zero on one side, return the other.
1479     // These bits cannot contribute to the result of the 'xor'.
1480     if (DemandedBits.isSubsetOf(Known.Zero))
1481       return TLO.CombineTo(Op, Op0);
1482     if (DemandedBits.isSubsetOf(Known2.Zero))
1483       return TLO.CombineTo(Op, Op1);
1484     // If the operation can be done in a smaller type, do so.
1485     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1486       return true;
1487 
1488     // If all of the unknown bits are known to be zero on one side or the other
1489     // turn this into an *inclusive* or.
1490     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1493 
1494     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1495     if (C) {
1496       // If one side is a constant, and all of the set bits in the constant are
1497       // also known set on the other side, turn this into an AND, as we know
1498       // the bits will be cleared.
1499       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1500       // NB: it is okay if more bits are known than are requested
1501       if (C->getAPIntValue() == Known2.One) {
1502         SDValue ANDC =
1503             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1504         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1505       }
1506 
1507       // If the RHS is a constant, see if we can change it. Don't alter a -1
1508       // constant because that's a 'not' op, and that is better for combining
1509       // and codegen.
1510       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1511         // We're flipping all demanded bits. Flip the undemanded bits too.
1512         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1513         return TLO.CombineTo(Op, New);
1514       }
1515     }
1516 
1517     // If we can't turn this into a 'not', try to shrink the constant.
1518     if (!C || !C->isAllOnes())
1519       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1520         return true;
1521 
1522     Known ^= Known2;
1523     break;
1524   }
1525   case ISD::SELECT:
1526     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1527                              Depth + 1))
1528       return true;
1529     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1530                              Depth + 1))
1531       return true;
1532     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1533     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1534 
1535     // If the operands are constants, see if we can simplify them.
1536     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1537       return true;
1538 
1539     // Only known if known in both the LHS and RHS.
1540     Known = KnownBits::commonBits(Known, Known2);
1541     break;
1542   case ISD::SELECT_CC:
1543     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1544                              Depth + 1))
1545       return true;
1546     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1547                              Depth + 1))
1548       return true;
1549     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1550     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1551 
1552     // If the operands are constants, see if we can simplify them.
1553     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1554       return true;
1555 
1556     // Only known if known in both the LHS and RHS.
1557     Known = KnownBits::commonBits(Known, Known2);
1558     break;
1559   case ISD::SETCC: {
1560     SDValue Op0 = Op.getOperand(0);
1561     SDValue Op1 = Op.getOperand(1);
1562     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1563     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1564     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1565     // -1, we may be able to bypass the setcc.
1566     if (DemandedBits.isSignMask() &&
1567         Op0.getScalarValueSizeInBits() == BitWidth &&
1568         getBooleanContents(Op0.getValueType()) ==
1569             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1570       // If we're testing X < 0, then this compare isn't needed - just use X!
1571       // FIXME: We're limiting to integer types here, but this should also work
1572       // if we don't care about FP signed-zero. The use of SETLT with FP means
1573       // that we don't care about NaNs.
1574       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1575           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1576         return TLO.CombineTo(Op, Op0);
1577 
1578       // TODO: Should we check for other forms of sign-bit comparisons?
1579       // Examples: X <= -1, X >= 0
1580     }
1581     if (getBooleanContents(Op0.getValueType()) ==
1582             TargetLowering::ZeroOrOneBooleanContent &&
1583         BitWidth > 1)
1584       Known.Zero.setBitsFrom(1);
1585     break;
1586   }
1587   case ISD::SHL: {
1588     SDValue Op0 = Op.getOperand(0);
1589     SDValue Op1 = Op.getOperand(1);
1590     EVT ShiftVT = Op1.getValueType();
1591 
1592     if (const APInt *SA =
1593             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1594       unsigned ShAmt = SA->getZExtValue();
1595       if (ShAmt == 0)
1596         return TLO.CombineTo(Op, Op0);
1597 
1598       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1599       // single shift.  We can do this if the bottom bits (which are shifted
1600       // out) are never demanded.
1601       // TODO - support non-uniform vector amounts.
1602       if (Op0.getOpcode() == ISD::SRL) {
1603         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1604           if (const APInt *SA2 =
1605                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1606             unsigned C1 = SA2->getZExtValue();
1607             unsigned Opc = ISD::SHL;
1608             int Diff = ShAmt - C1;
1609             if (Diff < 0) {
1610               Diff = -Diff;
1611               Opc = ISD::SRL;
1612             }
1613             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1614             return TLO.CombineTo(
1615                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1616           }
1617         }
1618       }
1619 
1620       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1621       // are not demanded. This will likely allow the anyext to be folded away.
1622       // TODO - support non-uniform vector amounts.
1623       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1624         SDValue InnerOp = Op0.getOperand(0);
1625         EVT InnerVT = InnerOp.getValueType();
1626         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1627         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1628             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1629           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1630           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1631             ShTy = InnerVT;
1632           SDValue NarrowShl =
1633               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1634                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1635           return TLO.CombineTo(
1636               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1637         }
1638 
1639         // Repeat the SHL optimization above in cases where an extension
1640         // intervenes: (shl (anyext (shr x, c1)), c2) to
1641         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1642         // aren't demanded (as above) and that the shifted upper c1 bits of
1643         // x aren't demanded.
1644         // TODO - support non-uniform vector amounts.
1645         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1646             InnerOp.hasOneUse()) {
1647           if (const APInt *SA2 =
1648                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1649             unsigned InnerShAmt = SA2->getZExtValue();
1650             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1651                 DemandedBits.getActiveBits() <=
1652                     (InnerBits - InnerShAmt + ShAmt) &&
1653                 DemandedBits.countTrailingZeros() >= ShAmt) {
1654               SDValue NewSA =
1655                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1656               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1657                                                InnerOp.getOperand(0));
1658               return TLO.CombineTo(
1659                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1660             }
1661           }
1662         }
1663       }
1664 
1665       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1666       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1667                                Depth + 1))
1668         return true;
1669       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1670       Known.Zero <<= ShAmt;
1671       Known.One <<= ShAmt;
1672       // low bits known zero.
1673       Known.Zero.setLowBits(ShAmt);
1674 
1675       // Attempt to avoid multi-use ops if we don't need anything from them.
1676       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1677         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1678             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1679         if (DemandedOp0) {
1680           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1681           return TLO.CombineTo(Op, NewOp);
1682         }
1683       }
1684 
1685       // Try shrinking the operation as long as the shift amount will still be
1686       // in range.
1687       if ((ShAmt < DemandedBits.getActiveBits()) &&
1688           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1689         return true;
1690     }
1691 
1692     // If we are only demanding sign bits then we can use the shift source
1693     // directly.
1694     if (const APInt *MaxSA =
1695             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1696       unsigned ShAmt = MaxSA->getZExtValue();
1697       unsigned NumSignBits =
1698           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1699       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1700       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1701         return TLO.CombineTo(Op, Op0);
1702     }
1703     break;
1704   }
1705   case ISD::SRL: {
1706     SDValue Op0 = Op.getOperand(0);
1707     SDValue Op1 = Op.getOperand(1);
1708     EVT ShiftVT = Op1.getValueType();
1709 
1710     // Try to match AVG patterns.
1711     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1712                                         DemandedElts, Depth + 1))
1713       return TLO.CombineTo(Op, AVG);
1714 
1715     if (const APInt *SA =
1716             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1717       unsigned ShAmt = SA->getZExtValue();
1718       if (ShAmt == 0)
1719         return TLO.CombineTo(Op, Op0);
1720 
1721       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1722       // single shift.  We can do this if the top bits (which are shifted out)
1723       // are never demanded.
1724       // TODO - support non-uniform vector amounts.
1725       if (Op0.getOpcode() == ISD::SHL) {
1726         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1727           if (const APInt *SA2 =
1728                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1729             unsigned C1 = SA2->getZExtValue();
1730             unsigned Opc = ISD::SRL;
1731             int Diff = ShAmt - C1;
1732             if (Diff < 0) {
1733               Diff = -Diff;
1734               Opc = ISD::SHL;
1735             }
1736             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1737             return TLO.CombineTo(
1738                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1739           }
1740         }
1741       }
1742 
1743       APInt InDemandedMask = (DemandedBits << ShAmt);
1744 
1745       // If the shift is exact, then it does demand the low bits (and knows that
1746       // they are zero).
1747       if (Op->getFlags().hasExact())
1748         InDemandedMask.setLowBits(ShAmt);
1749 
1750       // Compute the new bits that are at the top now.
1751       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1752                                Depth + 1))
1753         return true;
1754       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1755       Known.Zero.lshrInPlace(ShAmt);
1756       Known.One.lshrInPlace(ShAmt);
1757       // High bits known zero.
1758       Known.Zero.setHighBits(ShAmt);
1759     }
1760     break;
1761   }
1762   case ISD::SRA: {
1763     SDValue Op0 = Op.getOperand(0);
1764     SDValue Op1 = Op.getOperand(1);
1765     EVT ShiftVT = Op1.getValueType();
1766 
1767     // If we only want bits that already match the signbit then we don't need
1768     // to shift.
1769     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1770     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1771         NumHiDemandedBits)
1772       return TLO.CombineTo(Op, Op0);
1773 
1774     // If this is an arithmetic shift right and only the low-bit is set, we can
1775     // always convert this into a logical shr, even if the shift amount is
1776     // variable.  The low bit of the shift cannot be an input sign bit unless
1777     // the shift amount is >= the size of the datatype, which is undefined.
1778     if (DemandedBits.isOne())
1779       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1780 
1781     // Try to match AVG patterns.
1782     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1783                                         DemandedElts, Depth + 1))
1784       return TLO.CombineTo(Op, AVG);
1785 
1786     if (const APInt *SA =
1787             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1788       unsigned ShAmt = SA->getZExtValue();
1789       if (ShAmt == 0)
1790         return TLO.CombineTo(Op, Op0);
1791 
1792       APInt InDemandedMask = (DemandedBits << ShAmt);
1793 
1794       // If the shift is exact, then it does demand the low bits (and knows that
1795       // they are zero).
1796       if (Op->getFlags().hasExact())
1797         InDemandedMask.setLowBits(ShAmt);
1798 
1799       // If any of the demanded bits are produced by the sign extension, we also
1800       // demand the input sign bit.
1801       if (DemandedBits.countLeadingZeros() < ShAmt)
1802         InDemandedMask.setSignBit();
1803 
1804       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1805                                Depth + 1))
1806         return true;
1807       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808       Known.Zero.lshrInPlace(ShAmt);
1809       Known.One.lshrInPlace(ShAmt);
1810 
1811       // If the input sign bit is known to be zero, or if none of the top bits
1812       // are demanded, turn this into an unsigned shift right.
1813       if (Known.Zero[BitWidth - ShAmt - 1] ||
1814           DemandedBits.countLeadingZeros() >= ShAmt) {
1815         SDNodeFlags Flags;
1816         Flags.setExact(Op->getFlags().hasExact());
1817         return TLO.CombineTo(
1818             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1819       }
1820 
1821       int Log2 = DemandedBits.exactLogBase2();
1822       if (Log2 >= 0) {
1823         // The bit must come from the sign.
1824         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1825         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1826       }
1827 
1828       if (Known.One[BitWidth - ShAmt - 1])
1829         // New bits are known one.
1830         Known.One.setHighBits(ShAmt);
1831 
1832       // Attempt to avoid multi-use ops if we don't need anything from them.
1833       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1834         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1835             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1836         if (DemandedOp0) {
1837           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1838           return TLO.CombineTo(Op, NewOp);
1839         }
1840       }
1841     }
1842     break;
1843   }
1844   case ISD::FSHL:
1845   case ISD::FSHR: {
1846     SDValue Op0 = Op.getOperand(0);
1847     SDValue Op1 = Op.getOperand(1);
1848     SDValue Op2 = Op.getOperand(2);
1849     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1850 
1851     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1852       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1853 
1854       // For fshl, 0-shift returns the 1st arg.
1855       // For fshr, 0-shift returns the 2nd arg.
1856       if (Amt == 0) {
1857         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1858                                  Known, TLO, Depth + 1))
1859           return true;
1860         break;
1861       }
1862 
1863       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1864       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1865       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1866       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1867       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1868                                Depth + 1))
1869         return true;
1870       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1871                                Depth + 1))
1872         return true;
1873 
1874       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1875       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1876       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1877       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1878       Known.One |= Known2.One;
1879       Known.Zero |= Known2.Zero;
1880     }
1881 
1882     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1883     if (isPowerOf2_32(BitWidth)) {
1884       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1885       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1886                                Known2, TLO, Depth + 1))
1887         return true;
1888     }
1889     break;
1890   }
1891   case ISD::ROTL:
1892   case ISD::ROTR: {
1893     SDValue Op0 = Op.getOperand(0);
1894     SDValue Op1 = Op.getOperand(1);
1895     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1896 
1897     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1898     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1899       return TLO.CombineTo(Op, Op0);
1900 
1901     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1902       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1903       unsigned RevAmt = BitWidth - Amt;
1904 
1905       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1906       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1907       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1908       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1909                                Depth + 1))
1910         return true;
1911 
1912       // rot*(x, 0) --> x
1913       if (Amt == 0)
1914         return TLO.CombineTo(Op, Op0);
1915 
1916       // See if we don't demand either half of the rotated bits.
1917       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1918           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1919         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1920         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1921       }
1922       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1923           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1924         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1925         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1926       }
1927     }
1928 
1929     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1930     if (isPowerOf2_32(BitWidth)) {
1931       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1932       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1933                                Depth + 1))
1934         return true;
1935     }
1936     break;
1937   }
1938   case ISD::UMIN: {
1939     // Check if one arg is always less than (or equal) to the other arg.
1940     SDValue Op0 = Op.getOperand(0);
1941     SDValue Op1 = Op.getOperand(1);
1942     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1943     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1944     Known = KnownBits::umin(Known0, Known1);
1945     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1946       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1947     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1948       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1949     break;
1950   }
1951   case ISD::UMAX: {
1952     // Check if one arg is always greater than (or equal) to the other arg.
1953     SDValue Op0 = Op.getOperand(0);
1954     SDValue Op1 = Op.getOperand(1);
1955     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1956     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1957     Known = KnownBits::umax(Known0, Known1);
1958     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1959       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1960     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1961       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1962     break;
1963   }
1964   case ISD::BITREVERSE: {
1965     SDValue Src = Op.getOperand(0);
1966     APInt DemandedSrcBits = DemandedBits.reverseBits();
1967     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1968                              Depth + 1))
1969       return true;
1970     Known.One = Known2.One.reverseBits();
1971     Known.Zero = Known2.Zero.reverseBits();
1972     break;
1973   }
1974   case ISD::BSWAP: {
1975     SDValue Src = Op.getOperand(0);
1976 
1977     // If the only bits demanded come from one byte of the bswap result,
1978     // just shift the input byte into position to eliminate the bswap.
1979     unsigned NLZ = DemandedBits.countLeadingZeros();
1980     unsigned NTZ = DemandedBits.countTrailingZeros();
1981 
1982     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1983     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1984     // have 14 leading zeros, round to 8.
1985     NLZ = alignDown(NLZ, 8);
1986     NTZ = alignDown(NTZ, 8);
1987     // If we need exactly one byte, we can do this transformation.
1988     if (BitWidth - NLZ - NTZ == 8) {
1989       // Replace this with either a left or right shift to get the byte into
1990       // the right place.
1991       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1992       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1993         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1994         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1995         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1996         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1997         return TLO.CombineTo(Op, NewOp);
1998       }
1999     }
2000 
2001     APInt DemandedSrcBits = DemandedBits.byteSwap();
2002     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2003                              Depth + 1))
2004       return true;
2005     Known.One = Known2.One.byteSwap();
2006     Known.Zero = Known2.Zero.byteSwap();
2007     break;
2008   }
2009   case ISD::CTPOP: {
2010     // If only 1 bit is demanded, replace with PARITY as long as we're before
2011     // op legalization.
2012     // FIXME: Limit to scalars for now.
2013     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2014       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2015                                                Op.getOperand(0)));
2016 
2017     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2018     break;
2019   }
2020   case ISD::SIGN_EXTEND_INREG: {
2021     SDValue Op0 = Op.getOperand(0);
2022     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2023     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2024 
2025     // If we only care about the highest bit, don't bother shifting right.
2026     if (DemandedBits.isSignMask()) {
2027       unsigned MinSignedBits =
2028           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2029       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2030       // However if the input is already sign extended we expect the sign
2031       // extension to be dropped altogether later and do not simplify.
2032       if (!AlreadySignExtended) {
2033         // Compute the correct shift amount type, which must be getShiftAmountTy
2034         // for scalar types after legalization.
2035         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2036                                                getShiftAmountTy(VT, DL));
2037         return TLO.CombineTo(Op,
2038                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2039       }
2040     }
2041 
2042     // If none of the extended bits are demanded, eliminate the sextinreg.
2043     if (DemandedBits.getActiveBits() <= ExVTBits)
2044       return TLO.CombineTo(Op, Op0);
2045 
2046     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2047 
2048     // Since the sign extended bits are demanded, we know that the sign
2049     // bit is demanded.
2050     InputDemandedBits.setBit(ExVTBits - 1);
2051 
2052     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2053       return true;
2054     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2055 
2056     // If the sign bit of the input is known set or clear, then we know the
2057     // top bits of the result.
2058 
2059     // If the input sign bit is known zero, convert this into a zero extension.
2060     if (Known.Zero[ExVTBits - 1])
2061       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2062 
2063     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2064     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2065       Known.One.setBitsFrom(ExVTBits);
2066       Known.Zero &= Mask;
2067     } else { // Input sign bit unknown
2068       Known.Zero &= Mask;
2069       Known.One &= Mask;
2070     }
2071     break;
2072   }
2073   case ISD::BUILD_PAIR: {
2074     EVT HalfVT = Op.getOperand(0).getValueType();
2075     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2076 
2077     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2078     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2079 
2080     KnownBits KnownLo, KnownHi;
2081 
2082     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2083       return true;
2084 
2085     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2086       return true;
2087 
2088     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2089                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2090 
2091     Known.One = KnownLo.One.zext(BitWidth) |
2092                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2093     break;
2094   }
2095   case ISD::ZERO_EXTEND:
2096   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2097     SDValue Src = Op.getOperand(0);
2098     EVT SrcVT = Src.getValueType();
2099     unsigned InBits = SrcVT.getScalarSizeInBits();
2100     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2101     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2102 
2103     // If none of the top bits are demanded, convert this into an any_extend.
2104     if (DemandedBits.getActiveBits() <= InBits) {
2105       // If we only need the non-extended bits of the bottom element
2106       // then we can just bitcast to the result.
2107       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2108           VT.getSizeInBits() == SrcVT.getSizeInBits())
2109         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2110 
2111       unsigned Opc =
2112           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2113       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2114         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2115     }
2116 
2117     APInt InDemandedBits = DemandedBits.trunc(InBits);
2118     APInt InDemandedElts = DemandedElts.zext(InElts);
2119     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2120                              Depth + 1))
2121       return true;
2122     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2123     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2124     Known = Known.zext(BitWidth);
2125 
2126     // Attempt to avoid multi-use ops if we don't need anything from them.
2127     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2128             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2129       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2130     break;
2131   }
2132   case ISD::SIGN_EXTEND:
2133   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2134     SDValue Src = Op.getOperand(0);
2135     EVT SrcVT = Src.getValueType();
2136     unsigned InBits = SrcVT.getScalarSizeInBits();
2137     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2138     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2139 
2140     // If none of the top bits are demanded, convert this into an any_extend.
2141     if (DemandedBits.getActiveBits() <= InBits) {
2142       // If we only need the non-extended bits of the bottom element
2143       // then we can just bitcast to the result.
2144       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2145           VT.getSizeInBits() == SrcVT.getSizeInBits())
2146         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2147 
2148       unsigned Opc =
2149           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2150       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2151         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2152     }
2153 
2154     APInt InDemandedBits = DemandedBits.trunc(InBits);
2155     APInt InDemandedElts = DemandedElts.zext(InElts);
2156 
2157     // Since some of the sign extended bits are demanded, we know that the sign
2158     // bit is demanded.
2159     InDemandedBits.setBit(InBits - 1);
2160 
2161     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2162                              Depth + 1))
2163       return true;
2164     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2165     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2166 
2167     // If the sign bit is known one, the top bits match.
2168     Known = Known.sext(BitWidth);
2169 
2170     // If the sign bit is known zero, convert this to a zero extend.
2171     if (Known.isNonNegative()) {
2172       unsigned Opc =
2173           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2174       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2175         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2176     }
2177 
2178     // Attempt to avoid multi-use ops if we don't need anything from them.
2179     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2180             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2181       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2182     break;
2183   }
2184   case ISD::ANY_EXTEND:
2185   case ISD::ANY_EXTEND_VECTOR_INREG: {
2186     SDValue Src = Op.getOperand(0);
2187     EVT SrcVT = Src.getValueType();
2188     unsigned InBits = SrcVT.getScalarSizeInBits();
2189     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2190     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2191 
2192     // If we only need the bottom element then we can just bitcast.
2193     // TODO: Handle ANY_EXTEND?
2194     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2195         VT.getSizeInBits() == SrcVT.getSizeInBits())
2196       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2197 
2198     APInt InDemandedBits = DemandedBits.trunc(InBits);
2199     APInt InDemandedElts = DemandedElts.zext(InElts);
2200     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2201                              Depth + 1))
2202       return true;
2203     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2204     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2205     Known = Known.anyext(BitWidth);
2206 
2207     // Attempt to avoid multi-use ops if we don't need anything from them.
2208     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2209             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2210       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2211     break;
2212   }
2213   case ISD::TRUNCATE: {
2214     SDValue Src = Op.getOperand(0);
2215 
2216     // Simplify the input, using demanded bit information, and compute the known
2217     // zero/one bits live out.
2218     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2219     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2220     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2221                              Depth + 1))
2222       return true;
2223     Known = Known.trunc(BitWidth);
2224 
2225     // Attempt to avoid multi-use ops if we don't need anything from them.
2226     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2227             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2228       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2229 
2230     // If the input is only used by this truncate, see if we can shrink it based
2231     // on the known demanded bits.
2232     if (Src.getNode()->hasOneUse()) {
2233       switch (Src.getOpcode()) {
2234       default:
2235         break;
2236       case ISD::SRL:
2237         // Shrink SRL by a constant if none of the high bits shifted in are
2238         // demanded.
2239         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2240           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2241           // undesirable.
2242           break;
2243 
2244         const APInt *ShAmtC =
2245             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2246         if (!ShAmtC || ShAmtC->uge(BitWidth))
2247           break;
2248         uint64_t ShVal = ShAmtC->getZExtValue();
2249 
2250         APInt HighBits =
2251             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2252         HighBits.lshrInPlace(ShVal);
2253         HighBits = HighBits.trunc(BitWidth);
2254 
2255         if (!(HighBits & DemandedBits)) {
2256           // None of the shifted in bits are needed.  Add a truncate of the
2257           // shift input, then shift it.
2258           SDValue NewShAmt = TLO.DAG.getConstant(
2259               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2260           SDValue NewTrunc =
2261               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2262           return TLO.CombineTo(
2263               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2264         }
2265         break;
2266       }
2267     }
2268 
2269     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2270     break;
2271   }
2272   case ISD::AssertZext: {
2273     // AssertZext demands all of the high bits, plus any of the low bits
2274     // demanded by its users.
2275     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2276     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2277     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2278                              TLO, Depth + 1))
2279       return true;
2280     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2281 
2282     Known.Zero |= ~InMask;
2283     break;
2284   }
2285   case ISD::EXTRACT_VECTOR_ELT: {
2286     SDValue Src = Op.getOperand(0);
2287     SDValue Idx = Op.getOperand(1);
2288     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2289     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2290 
2291     if (SrcEltCnt.isScalable())
2292       return false;
2293 
2294     // Demand the bits from every vector element without a constant index.
2295     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2296     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2297     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2298       if (CIdx->getAPIntValue().ult(NumSrcElts))
2299         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2300 
2301     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2302     // anything about the extended bits.
2303     APInt DemandedSrcBits = DemandedBits;
2304     if (BitWidth > EltBitWidth)
2305       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2306 
2307     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2308                              Depth + 1))
2309       return true;
2310 
2311     // Attempt to avoid multi-use ops if we don't need anything from them.
2312     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2313       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2314               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2315         SDValue NewOp =
2316             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2317         return TLO.CombineTo(Op, NewOp);
2318       }
2319     }
2320 
2321     Known = Known2;
2322     if (BitWidth > EltBitWidth)
2323       Known = Known.anyext(BitWidth);
2324     break;
2325   }
2326   case ISD::BITCAST: {
2327     SDValue Src = Op.getOperand(0);
2328     EVT SrcVT = Src.getValueType();
2329     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2330 
2331     // If this is an FP->Int bitcast and if the sign bit is the only
2332     // thing demanded, turn this into a FGETSIGN.
2333     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2334         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2335         SrcVT.isFloatingPoint()) {
2336       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2337       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2338       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2339           SrcVT != MVT::f128) {
2340         // Cannot eliminate/lower SHL for f128 yet.
2341         EVT Ty = OpVTLegal ? VT : MVT::i32;
2342         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2343         // place.  We expect the SHL to be eliminated by other optimizations.
2344         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2345         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2346         if (!OpVTLegal && OpVTSizeInBits > 32)
2347           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2348         unsigned ShVal = Op.getValueSizeInBits() - 1;
2349         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2350         return TLO.CombineTo(Op,
2351                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2352       }
2353     }
2354 
2355     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2356     // Demand the elt/bit if any of the original elts/bits are demanded.
2357     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2358       unsigned Scale = BitWidth / NumSrcEltBits;
2359       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2360       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2361       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2362       for (unsigned i = 0; i != Scale; ++i) {
2363         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2364         unsigned BitOffset = EltOffset * NumSrcEltBits;
2365         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2366         if (!Sub.isZero()) {
2367           DemandedSrcBits |= Sub;
2368           for (unsigned j = 0; j != NumElts; ++j)
2369             if (DemandedElts[j])
2370               DemandedSrcElts.setBit((j * Scale) + i);
2371         }
2372       }
2373 
2374       APInt KnownSrcUndef, KnownSrcZero;
2375       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2376                                      KnownSrcZero, TLO, Depth + 1))
2377         return true;
2378 
2379       KnownBits KnownSrcBits;
2380       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2381                                KnownSrcBits, TLO, Depth + 1))
2382         return true;
2383     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2384       // TODO - bigendian once we have test coverage.
2385       unsigned Scale = NumSrcEltBits / BitWidth;
2386       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2387       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2388       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2389       for (unsigned i = 0; i != NumElts; ++i)
2390         if (DemandedElts[i]) {
2391           unsigned Offset = (i % Scale) * BitWidth;
2392           DemandedSrcBits.insertBits(DemandedBits, Offset);
2393           DemandedSrcElts.setBit(i / Scale);
2394         }
2395 
2396       if (SrcVT.isVector()) {
2397         APInt KnownSrcUndef, KnownSrcZero;
2398         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2399                                        KnownSrcZero, TLO, Depth + 1))
2400           return true;
2401       }
2402 
2403       KnownBits KnownSrcBits;
2404       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2405                                KnownSrcBits, TLO, Depth + 1))
2406         return true;
2407     }
2408 
2409     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2410     // recursive call where Known may be useful to the caller.
2411     if (Depth > 0) {
2412       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2413       return false;
2414     }
2415     break;
2416   }
2417   case ISD::MUL:
2418     if (DemandedBits.isPowerOf2()) {
2419       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2420       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2421       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2422       unsigned CTZ = DemandedBits.countTrailingZeros();
2423       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2424       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2425         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2426         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2427         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2428         return TLO.CombineTo(Op, Shl);
2429       }
2430     }
2431     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2432     // X * X is odd iff X is odd.
2433     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2434     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2435       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2436       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2437       return TLO.CombineTo(Op, And1);
2438     }
2439     LLVM_FALLTHROUGH;
2440   case ISD::ADD:
2441   case ISD::SUB: {
2442     // Add, Sub, and Mul don't demand any bits in positions beyond that
2443     // of the highest bit demanded of them.
2444     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2445     SDNodeFlags Flags = Op.getNode()->getFlags();
2446     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2447     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2448     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2449                              Depth + 1) ||
2450         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2451                              Depth + 1) ||
2452         // See if the operation should be performed at a smaller bit width.
2453         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2454       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2455         // Disable the nsw and nuw flags. We can no longer guarantee that we
2456         // won't wrap after simplification.
2457         Flags.setNoSignedWrap(false);
2458         Flags.setNoUnsignedWrap(false);
2459         SDValue NewOp =
2460             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2461         return TLO.CombineTo(Op, NewOp);
2462       }
2463       return true;
2464     }
2465 
2466     // Attempt to avoid multi-use ops if we don't need anything from them.
2467     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2468       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2469           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2470       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2471           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2472       if (DemandedOp0 || DemandedOp1) {
2473         Flags.setNoSignedWrap(false);
2474         Flags.setNoUnsignedWrap(false);
2475         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2476         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2477         SDValue NewOp =
2478             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2479         return TLO.CombineTo(Op, NewOp);
2480       }
2481     }
2482 
2483     // If we have a constant operand, we may be able to turn it into -1 if we
2484     // do not demand the high bits. This can make the constant smaller to
2485     // encode, allow more general folding, or match specialized instruction
2486     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2487     // is probably not useful (and could be detrimental).
2488     ConstantSDNode *C = isConstOrConstSplat(Op1);
2489     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2490     if (C && !C->isAllOnes() && !C->isOne() &&
2491         (C->getAPIntValue() | HighMask).isAllOnes()) {
2492       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2493       // Disable the nsw and nuw flags. We can no longer guarantee that we
2494       // won't wrap after simplification.
2495       Flags.setNoSignedWrap(false);
2496       Flags.setNoUnsignedWrap(false);
2497       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2498       return TLO.CombineTo(Op, NewOp);
2499     }
2500 
2501     // Match a multiply with a disguised negated-power-of-2 and convert to a
2502     // an equivalent shift-left amount.
2503     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2504     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2505       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2506         return 0;
2507 
2508       // Don't touch opaque constants. Also, ignore zero and power-of-2
2509       // multiplies. Those will get folded later.
2510       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2511       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2512           !MulC->getAPIntValue().isPowerOf2()) {
2513         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2514         if (UnmaskedC.isNegatedPowerOf2())
2515           return (-UnmaskedC).logBase2();
2516       }
2517       return 0;
2518     };
2519 
2520     auto foldMul = [&](SDValue X, SDValue Y, unsigned ShlAmt) {
2521       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2522       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2523       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2524       SDValue Sub = TLO.DAG.getNode(ISD::SUB, dl, VT, Y, Shl);
2525       return TLO.CombineTo(Op, Sub);
2526     };
2527 
2528     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2529       if (Op.getOpcode() == ISD::ADD) {
2530         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2531         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2532           return foldMul(Op0.getOperand(0), Op1, ShAmt);
2533         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2534         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2535           return foldMul(Op1.getOperand(0), Op0, ShAmt);
2536         // TODO:
2537         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2538       }
2539     }
2540 
2541     LLVM_FALLTHROUGH;
2542   }
2543   default:
2544     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2545       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2546                                             Known, TLO, Depth))
2547         return true;
2548       break;
2549     }
2550 
2551     // Just use computeKnownBits to compute output bits.
2552     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2553     break;
2554   }
2555 
2556   // If we know the value of all of the demanded bits, return this as a
2557   // constant.
2558   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2559     // Avoid folding to a constant if any OpaqueConstant is involved.
2560     const SDNode *N = Op.getNode();
2561     for (SDNode *Op :
2562          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2563       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2564         if (C->isOpaque())
2565           return false;
2566     }
2567     if (VT.isInteger())
2568       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2569     if (VT.isFloatingPoint())
2570       return TLO.CombineTo(
2571           Op,
2572           TLO.DAG.getConstantFP(
2573               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2574   }
2575 
2576   return false;
2577 }
2578 
2579 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2580                                                 const APInt &DemandedElts,
2581                                                 DAGCombinerInfo &DCI) const {
2582   SelectionDAG &DAG = DCI.DAG;
2583   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2584                         !DCI.isBeforeLegalizeOps());
2585 
2586   APInt KnownUndef, KnownZero;
2587   bool Simplified =
2588       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2589   if (Simplified) {
2590     DCI.AddToWorklist(Op.getNode());
2591     DCI.CommitTargetLoweringOpt(TLO);
2592   }
2593 
2594   return Simplified;
2595 }
2596 
2597 /// Given a vector binary operation and known undefined elements for each input
2598 /// operand, compute whether each element of the output is undefined.
2599 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2600                                          const APInt &UndefOp0,
2601                                          const APInt &UndefOp1) {
2602   EVT VT = BO.getValueType();
2603   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2604          "Vector binop only");
2605 
2606   EVT EltVT = VT.getVectorElementType();
2607   unsigned NumElts = VT.getVectorNumElements();
2608   assert(UndefOp0.getBitWidth() == NumElts &&
2609          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2610 
2611   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2612                                    const APInt &UndefVals) {
2613     if (UndefVals[Index])
2614       return DAG.getUNDEF(EltVT);
2615 
2616     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2617       // Try hard to make sure that the getNode() call is not creating temporary
2618       // nodes. Ignore opaque integers because they do not constant fold.
2619       SDValue Elt = BV->getOperand(Index);
2620       auto *C = dyn_cast<ConstantSDNode>(Elt);
2621       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2622         return Elt;
2623     }
2624 
2625     return SDValue();
2626   };
2627 
2628   APInt KnownUndef = APInt::getZero(NumElts);
2629   for (unsigned i = 0; i != NumElts; ++i) {
2630     // If both inputs for this element are either constant or undef and match
2631     // the element type, compute the constant/undef result for this element of
2632     // the vector.
2633     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2634     // not handle FP constants. The code within getNode() should be refactored
2635     // to avoid the danger of creating a bogus temporary node here.
2636     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2637     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2638     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2639       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2640         KnownUndef.setBit(i);
2641   }
2642   return KnownUndef;
2643 }
2644 
2645 bool TargetLowering::SimplifyDemandedVectorElts(
2646     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2647     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2648     bool AssumeSingleUse) const {
2649   EVT VT = Op.getValueType();
2650   unsigned Opcode = Op.getOpcode();
2651   APInt DemandedElts = OriginalDemandedElts;
2652   unsigned NumElts = DemandedElts.getBitWidth();
2653   assert(VT.isVector() && "Expected vector op");
2654 
2655   KnownUndef = KnownZero = APInt::getZero(NumElts);
2656 
2657   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2658   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2659     return false;
2660 
2661   // TODO: For now we assume we know nothing about scalable vectors.
2662   if (VT.isScalableVector())
2663     return false;
2664 
2665   assert(VT.getVectorNumElements() == NumElts &&
2666          "Mask size mismatches value type element count!");
2667 
2668   // Undef operand.
2669   if (Op.isUndef()) {
2670     KnownUndef.setAllBits();
2671     return false;
2672   }
2673 
2674   // If Op has other users, assume that all elements are needed.
2675   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2676     DemandedElts.setAllBits();
2677 
2678   // Not demanding any elements from Op.
2679   if (DemandedElts == 0) {
2680     KnownUndef.setAllBits();
2681     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2682   }
2683 
2684   // Limit search depth.
2685   if (Depth >= SelectionDAG::MaxRecursionDepth)
2686     return false;
2687 
2688   SDLoc DL(Op);
2689   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2690   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2691 
2692   // Helper for demanding the specified elements and all the bits of both binary
2693   // operands.
2694   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2695     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2696                                                            TLO.DAG, Depth + 1);
2697     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2698                                                            TLO.DAG, Depth + 1);
2699     if (NewOp0 || NewOp1) {
2700       SDValue NewOp = TLO.DAG.getNode(
2701           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2702       return TLO.CombineTo(Op, NewOp);
2703     }
2704     return false;
2705   };
2706 
2707   switch (Opcode) {
2708   case ISD::SCALAR_TO_VECTOR: {
2709     if (!DemandedElts[0]) {
2710       KnownUndef.setAllBits();
2711       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2712     }
2713     SDValue ScalarSrc = Op.getOperand(0);
2714     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2715       SDValue Src = ScalarSrc.getOperand(0);
2716       SDValue Idx = ScalarSrc.getOperand(1);
2717       EVT SrcVT = Src.getValueType();
2718 
2719       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2720 
2721       if (SrcEltCnt.isScalable())
2722         return false;
2723 
2724       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2725       if (isNullConstant(Idx)) {
2726         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2727         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2728         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2729         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2730                                        TLO, Depth + 1))
2731           return true;
2732       }
2733     }
2734     KnownUndef.setHighBits(NumElts - 1);
2735     break;
2736   }
2737   case ISD::BITCAST: {
2738     SDValue Src = Op.getOperand(0);
2739     EVT SrcVT = Src.getValueType();
2740 
2741     // We only handle vectors here.
2742     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2743     if (!SrcVT.isVector())
2744       break;
2745 
2746     // Fast handling of 'identity' bitcasts.
2747     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2748     if (NumSrcElts == NumElts)
2749       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2750                                         KnownZero, TLO, Depth + 1);
2751 
2752     APInt SrcDemandedElts, SrcZero, SrcUndef;
2753 
2754     // Bitcast from 'large element' src vector to 'small element' vector, we
2755     // must demand a source element if any DemandedElt maps to it.
2756     if ((NumElts % NumSrcElts) == 0) {
2757       unsigned Scale = NumElts / NumSrcElts;
2758       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2759       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2760                                      TLO, Depth + 1))
2761         return true;
2762 
2763       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2764       // of the large element.
2765       // TODO - bigendian once we have test coverage.
2766       if (IsLE) {
2767         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2768         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2769         for (unsigned i = 0; i != NumElts; ++i)
2770           if (DemandedElts[i]) {
2771             unsigned Ofs = (i % Scale) * EltSizeInBits;
2772             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2773           }
2774 
2775         KnownBits Known;
2776         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2777                                  TLO, Depth + 1))
2778           return true;
2779 
2780         // The bitcast has split each wide element into a number of
2781         // narrow subelements. We have just computed the Known bits
2782         // for wide elements. See if element splitting results in
2783         // some subelements being zero. Only for demanded elements!
2784         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2785           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2786                    .isAllOnes())
2787             continue;
2788           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2789             unsigned Elt = Scale * SrcElt + SubElt;
2790             if (DemandedElts[Elt])
2791               KnownZero.setBit(Elt);
2792           }
2793         }
2794       }
2795 
2796       // If the src element is zero/undef then all the output elements will be -
2797       // only demanded elements are guaranteed to be correct.
2798       for (unsigned i = 0; i != NumSrcElts; ++i) {
2799         if (SrcDemandedElts[i]) {
2800           if (SrcZero[i])
2801             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2802           if (SrcUndef[i])
2803             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2804         }
2805       }
2806     }
2807 
2808     // Bitcast from 'small element' src vector to 'large element' vector, we
2809     // demand all smaller source elements covered by the larger demanded element
2810     // of this vector.
2811     if ((NumSrcElts % NumElts) == 0) {
2812       unsigned Scale = NumSrcElts / NumElts;
2813       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2814       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2815                                      TLO, Depth + 1))
2816         return true;
2817 
2818       // If all the src elements covering an output element are zero/undef, then
2819       // the output element will be as well, assuming it was demanded.
2820       for (unsigned i = 0; i != NumElts; ++i) {
2821         if (DemandedElts[i]) {
2822           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2823             KnownZero.setBit(i);
2824           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2825             KnownUndef.setBit(i);
2826         }
2827       }
2828     }
2829     break;
2830   }
2831   case ISD::BUILD_VECTOR: {
2832     // Check all elements and simplify any unused elements with UNDEF.
2833     if (!DemandedElts.isAllOnes()) {
2834       // Don't simplify BROADCASTS.
2835       if (llvm::any_of(Op->op_values(),
2836                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2837         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2838         bool Updated = false;
2839         for (unsigned i = 0; i != NumElts; ++i) {
2840           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2841             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2842             KnownUndef.setBit(i);
2843             Updated = true;
2844           }
2845         }
2846         if (Updated)
2847           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2848       }
2849     }
2850     for (unsigned i = 0; i != NumElts; ++i) {
2851       SDValue SrcOp = Op.getOperand(i);
2852       if (SrcOp.isUndef()) {
2853         KnownUndef.setBit(i);
2854       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2855                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2856         KnownZero.setBit(i);
2857       }
2858     }
2859     break;
2860   }
2861   case ISD::CONCAT_VECTORS: {
2862     EVT SubVT = Op.getOperand(0).getValueType();
2863     unsigned NumSubVecs = Op.getNumOperands();
2864     unsigned NumSubElts = SubVT.getVectorNumElements();
2865     for (unsigned i = 0; i != NumSubVecs; ++i) {
2866       SDValue SubOp = Op.getOperand(i);
2867       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2868       APInt SubUndef, SubZero;
2869       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2870                                      Depth + 1))
2871         return true;
2872       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2873       KnownZero.insertBits(SubZero, i * NumSubElts);
2874     }
2875 
2876     // Attempt to avoid multi-use ops if we don't need anything from them.
2877     if (!DemandedElts.isAllOnes()) {
2878       bool FoundNewSub = false;
2879       SmallVector<SDValue, 2> DemandedSubOps;
2880       for (unsigned i = 0; i != NumSubVecs; ++i) {
2881         SDValue SubOp = Op.getOperand(i);
2882         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2883         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2884             SubOp, SubElts, TLO.DAG, Depth + 1);
2885         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2886         FoundNewSub = NewSubOp ? true : FoundNewSub;
2887       }
2888       if (FoundNewSub) {
2889         SDValue NewOp =
2890             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2891         return TLO.CombineTo(Op, NewOp);
2892       }
2893     }
2894     break;
2895   }
2896   case ISD::INSERT_SUBVECTOR: {
2897     // Demand any elements from the subvector and the remainder from the src its
2898     // inserted into.
2899     SDValue Src = Op.getOperand(0);
2900     SDValue Sub = Op.getOperand(1);
2901     uint64_t Idx = Op.getConstantOperandVal(2);
2902     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2903     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2904     APInt DemandedSrcElts = DemandedElts;
2905     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2906 
2907     APInt SubUndef, SubZero;
2908     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2909                                    Depth + 1))
2910       return true;
2911 
2912     // If none of the src operand elements are demanded, replace it with undef.
2913     if (!DemandedSrcElts && !Src.isUndef())
2914       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2915                                                TLO.DAG.getUNDEF(VT), Sub,
2916                                                Op.getOperand(2)));
2917 
2918     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2919                                    TLO, Depth + 1))
2920       return true;
2921     KnownUndef.insertBits(SubUndef, Idx);
2922     KnownZero.insertBits(SubZero, Idx);
2923 
2924     // Attempt to avoid multi-use ops if we don't need anything from them.
2925     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2926       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2927           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2928       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2929           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2930       if (NewSrc || NewSub) {
2931         NewSrc = NewSrc ? NewSrc : Src;
2932         NewSub = NewSub ? NewSub : Sub;
2933         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2934                                         NewSub, Op.getOperand(2));
2935         return TLO.CombineTo(Op, NewOp);
2936       }
2937     }
2938     break;
2939   }
2940   case ISD::EXTRACT_SUBVECTOR: {
2941     // Offset the demanded elts by the subvector index.
2942     SDValue Src = Op.getOperand(0);
2943     if (Src.getValueType().isScalableVector())
2944       break;
2945     uint64_t Idx = Op.getConstantOperandVal(1);
2946     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2947     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2948 
2949     APInt SrcUndef, SrcZero;
2950     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2951                                    Depth + 1))
2952       return true;
2953     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2954     KnownZero = SrcZero.extractBits(NumElts, Idx);
2955 
2956     // Attempt to avoid multi-use ops if we don't need anything from them.
2957     if (!DemandedElts.isAllOnes()) {
2958       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2959           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2960       if (NewSrc) {
2961         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2962                                         Op.getOperand(1));
2963         return TLO.CombineTo(Op, NewOp);
2964       }
2965     }
2966     break;
2967   }
2968   case ISD::INSERT_VECTOR_ELT: {
2969     SDValue Vec = Op.getOperand(0);
2970     SDValue Scl = Op.getOperand(1);
2971     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2972 
2973     // For a legal, constant insertion index, if we don't need this insertion
2974     // then strip it, else remove it from the demanded elts.
2975     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2976       unsigned Idx = CIdx->getZExtValue();
2977       if (!DemandedElts[Idx])
2978         return TLO.CombineTo(Op, Vec);
2979 
2980       APInt DemandedVecElts(DemandedElts);
2981       DemandedVecElts.clearBit(Idx);
2982       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2983                                      KnownZero, TLO, Depth + 1))
2984         return true;
2985 
2986       KnownUndef.setBitVal(Idx, Scl.isUndef());
2987 
2988       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2989       break;
2990     }
2991 
2992     APInt VecUndef, VecZero;
2993     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2994                                    Depth + 1))
2995       return true;
2996     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2997     break;
2998   }
2999   case ISD::VSELECT: {
3000     // Try to transform the select condition based on the current demanded
3001     // elements.
3002     // TODO: If a condition element is undef, we can choose from one arm of the
3003     //       select (and if one arm is undef, then we can propagate that to the
3004     //       result).
3005     // TODO - add support for constant vselect masks (see IR version of this).
3006     APInt UnusedUndef, UnusedZero;
3007     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3008                                    UnusedZero, TLO, Depth + 1))
3009       return true;
3010 
3011     // See if we can simplify either vselect operand.
3012     APInt DemandedLHS(DemandedElts);
3013     APInt DemandedRHS(DemandedElts);
3014     APInt UndefLHS, ZeroLHS;
3015     APInt UndefRHS, ZeroRHS;
3016     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3017                                    ZeroLHS, TLO, Depth + 1))
3018       return true;
3019     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3020                                    ZeroRHS, TLO, Depth + 1))
3021       return true;
3022 
3023     KnownUndef = UndefLHS & UndefRHS;
3024     KnownZero = ZeroLHS & ZeroRHS;
3025     break;
3026   }
3027   case ISD::VECTOR_SHUFFLE: {
3028     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3029 
3030     // Collect demanded elements from shuffle operands..
3031     APInt DemandedLHS(NumElts, 0);
3032     APInt DemandedRHS(NumElts, 0);
3033     for (unsigned i = 0; i != NumElts; ++i) {
3034       int M = ShuffleMask[i];
3035       if (M < 0 || !DemandedElts[i])
3036         continue;
3037       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3038       if (M < (int)NumElts)
3039         DemandedLHS.setBit(M);
3040       else
3041         DemandedRHS.setBit(M - NumElts);
3042     }
3043 
3044     // See if we can simplify either shuffle operand.
3045     APInt UndefLHS, ZeroLHS;
3046     APInt UndefRHS, ZeroRHS;
3047     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3048                                    ZeroLHS, TLO, Depth + 1))
3049       return true;
3050     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3051                                    ZeroRHS, TLO, Depth + 1))
3052       return true;
3053 
3054     // Simplify mask using undef elements from LHS/RHS.
3055     bool Updated = false;
3056     bool IdentityLHS = true, IdentityRHS = true;
3057     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3058     for (unsigned i = 0; i != NumElts; ++i) {
3059       int &M = NewMask[i];
3060       if (M < 0)
3061         continue;
3062       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3063           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3064         Updated = true;
3065         M = -1;
3066       }
3067       IdentityLHS &= (M < 0) || (M == (int)i);
3068       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3069     }
3070 
3071     // Update legal shuffle masks based on demanded elements if it won't reduce
3072     // to Identity which can cause premature removal of the shuffle mask.
3073     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3074       SDValue LegalShuffle =
3075           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3076                                   NewMask, TLO.DAG);
3077       if (LegalShuffle)
3078         return TLO.CombineTo(Op, LegalShuffle);
3079     }
3080 
3081     // Propagate undef/zero elements from LHS/RHS.
3082     for (unsigned i = 0; i != NumElts; ++i) {
3083       int M = ShuffleMask[i];
3084       if (M < 0) {
3085         KnownUndef.setBit(i);
3086       } else if (M < (int)NumElts) {
3087         if (UndefLHS[M])
3088           KnownUndef.setBit(i);
3089         if (ZeroLHS[M])
3090           KnownZero.setBit(i);
3091       } else {
3092         if (UndefRHS[M - NumElts])
3093           KnownUndef.setBit(i);
3094         if (ZeroRHS[M - NumElts])
3095           KnownZero.setBit(i);
3096       }
3097     }
3098     break;
3099   }
3100   case ISD::ANY_EXTEND_VECTOR_INREG:
3101   case ISD::SIGN_EXTEND_VECTOR_INREG:
3102   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3103     APInt SrcUndef, SrcZero;
3104     SDValue Src = Op.getOperand(0);
3105     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3106     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3107     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3108                                    Depth + 1))
3109       return true;
3110     KnownZero = SrcZero.zextOrTrunc(NumElts);
3111     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3112 
3113     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3114         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3115         DemandedSrcElts == 1) {
3116       // aext - if we just need the bottom element then we can bitcast.
3117       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3118     }
3119 
3120     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3121       // zext(undef) upper bits are guaranteed to be zero.
3122       if (DemandedElts.isSubsetOf(KnownUndef))
3123         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3124       KnownUndef.clearAllBits();
3125 
3126       // zext - if we just need the bottom element then we can mask:
3127       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3128       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3129           Op->isOnlyUserOf(Src.getNode()) &&
3130           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3131         SDLoc DL(Op);
3132         EVT SrcVT = Src.getValueType();
3133         EVT SrcSVT = SrcVT.getScalarType();
3134         SmallVector<SDValue> MaskElts;
3135         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3136         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3137         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3138         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3139                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3140           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3141           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3142         }
3143       }
3144     }
3145     break;
3146   }
3147 
3148   // TODO: There are more binop opcodes that could be handled here - MIN,
3149   // MAX, saturated math, etc.
3150   case ISD::ADD: {
3151     SDValue Op0 = Op.getOperand(0);
3152     SDValue Op1 = Op.getOperand(1);
3153     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3154       APInt UndefLHS, ZeroLHS;
3155       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3156                                      Depth + 1, /*AssumeSingleUse*/ true))
3157         return true;
3158     }
3159     LLVM_FALLTHROUGH;
3160   }
3161   case ISD::OR:
3162   case ISD::XOR:
3163   case ISD::SUB:
3164   case ISD::FADD:
3165   case ISD::FSUB:
3166   case ISD::FMUL:
3167   case ISD::FDIV:
3168   case ISD::FREM: {
3169     SDValue Op0 = Op.getOperand(0);
3170     SDValue Op1 = Op.getOperand(1);
3171 
3172     APInt UndefRHS, ZeroRHS;
3173     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3174                                    Depth + 1))
3175       return true;
3176     APInt UndefLHS, ZeroLHS;
3177     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3178                                    Depth + 1))
3179       return true;
3180 
3181     KnownZero = ZeroLHS & ZeroRHS;
3182     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3183 
3184     // Attempt to avoid multi-use ops if we don't need anything from them.
3185     // TODO - use KnownUndef to relax the demandedelts?
3186     if (!DemandedElts.isAllOnes())
3187       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3188         return true;
3189     break;
3190   }
3191   case ISD::SHL:
3192   case ISD::SRL:
3193   case ISD::SRA:
3194   case ISD::ROTL:
3195   case ISD::ROTR: {
3196     SDValue Op0 = Op.getOperand(0);
3197     SDValue Op1 = Op.getOperand(1);
3198 
3199     APInt UndefRHS, ZeroRHS;
3200     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3201                                    Depth + 1))
3202       return true;
3203     APInt UndefLHS, ZeroLHS;
3204     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3205                                    Depth + 1))
3206       return true;
3207 
3208     KnownZero = ZeroLHS;
3209     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3210 
3211     // Attempt to avoid multi-use ops if we don't need anything from them.
3212     // TODO - use KnownUndef to relax the demandedelts?
3213     if (!DemandedElts.isAllOnes())
3214       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3215         return true;
3216     break;
3217   }
3218   case ISD::MUL:
3219   case ISD::AND: {
3220     SDValue Op0 = Op.getOperand(0);
3221     SDValue Op1 = Op.getOperand(1);
3222 
3223     APInt SrcUndef, SrcZero;
3224     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3225                                    Depth + 1))
3226       return true;
3227     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3228                                    TLO, Depth + 1))
3229       return true;
3230 
3231     // If either side has a zero element, then the result element is zero, even
3232     // if the other is an UNDEF.
3233     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3234     // and then handle 'and' nodes with the rest of the binop opcodes.
3235     KnownZero |= SrcZero;
3236     KnownUndef &= SrcUndef;
3237     KnownUndef &= ~KnownZero;
3238 
3239     // Attempt to avoid multi-use ops if we don't need anything from them.
3240     // TODO - use KnownUndef to relax the demandedelts?
3241     if (!DemandedElts.isAllOnes())
3242       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3243         return true;
3244     break;
3245   }
3246   case ISD::TRUNCATE:
3247   case ISD::SIGN_EXTEND:
3248   case ISD::ZERO_EXTEND:
3249     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3250                                    KnownZero, TLO, Depth + 1))
3251       return true;
3252 
3253     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3254       // zext(undef) upper bits are guaranteed to be zero.
3255       if (DemandedElts.isSubsetOf(KnownUndef))
3256         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3257       KnownUndef.clearAllBits();
3258     }
3259     break;
3260   default: {
3261     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3262       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3263                                                   KnownZero, TLO, Depth))
3264         return true;
3265     } else {
3266       KnownBits Known;
3267       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3268       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3269                                TLO, Depth, AssumeSingleUse))
3270         return true;
3271     }
3272     break;
3273   }
3274   }
3275   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3276 
3277   // Constant fold all undef cases.
3278   // TODO: Handle zero cases as well.
3279   if (DemandedElts.isSubsetOf(KnownUndef))
3280     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3281 
3282   return false;
3283 }
3284 
3285 /// Determine which of the bits specified in Mask are known to be either zero or
3286 /// one and return them in the Known.
3287 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3288                                                    KnownBits &Known,
3289                                                    const APInt &DemandedElts,
3290                                                    const SelectionDAG &DAG,
3291                                                    unsigned Depth) const {
3292   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3293           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3294           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3295           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3296          "Should use MaskedValueIsZero if you don't know whether Op"
3297          " is a target node!");
3298   Known.resetAll();
3299 }
3300 
3301 void TargetLowering::computeKnownBitsForTargetInstr(
3302     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3303     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3304     unsigned Depth) const {
3305   Known.resetAll();
3306 }
3307 
3308 void TargetLowering::computeKnownBitsForFrameIndex(
3309   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3310   // The low bits are known zero if the pointer is aligned.
3311   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3312 }
3313 
3314 Align TargetLowering::computeKnownAlignForTargetInstr(
3315   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3316   unsigned Depth) const {
3317   return Align(1);
3318 }
3319 
3320 /// This method can be implemented by targets that want to expose additional
3321 /// information about sign bits to the DAG Combiner.
3322 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3323                                                          const APInt &,
3324                                                          const SelectionDAG &,
3325                                                          unsigned Depth) const {
3326   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3327           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3328           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3329           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3330          "Should use ComputeNumSignBits if you don't know whether Op"
3331          " is a target node!");
3332   return 1;
3333 }
3334 
3335 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3336   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3337   const MachineRegisterInfo &MRI, unsigned Depth) const {
3338   return 1;
3339 }
3340 
3341 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3342     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3343     TargetLoweringOpt &TLO, unsigned Depth) const {
3344   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3345           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3346           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3347           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3348          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3349          " is a target node!");
3350   return false;
3351 }
3352 
3353 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3354     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3355     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3356   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3357           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3358           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3359           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3360          "Should use SimplifyDemandedBits if you don't know whether Op"
3361          " is a target node!");
3362   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3363   return false;
3364 }
3365 
3366 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3367     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3368     SelectionDAG &DAG, unsigned Depth) const {
3369   assert(
3370       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3371        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3372        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3373        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3374       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3375       " is a target node!");
3376   return SDValue();
3377 }
3378 
3379 SDValue
3380 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3381                                         SDValue N1, MutableArrayRef<int> Mask,
3382                                         SelectionDAG &DAG) const {
3383   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3384   if (!LegalMask) {
3385     std::swap(N0, N1);
3386     ShuffleVectorSDNode::commuteMask(Mask);
3387     LegalMask = isShuffleMaskLegal(Mask, VT);
3388   }
3389 
3390   if (!LegalMask)
3391     return SDValue();
3392 
3393   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3394 }
3395 
3396 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3397   return nullptr;
3398 }
3399 
3400 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3401     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3402     bool PoisonOnly, unsigned Depth) const {
3403   assert(
3404       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3405        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3406        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3407        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3408       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3409       " is a target node!");
3410   return false;
3411 }
3412 
3413 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3414                                                   const SelectionDAG &DAG,
3415                                                   bool SNaN,
3416                                                   unsigned Depth) const {
3417   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3418           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3419           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3420           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3421          "Should use isKnownNeverNaN if you don't know whether Op"
3422          " is a target node!");
3423   return false;
3424 }
3425 
3426 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3427                                                const APInt &DemandedElts,
3428                                                APInt &UndefElts,
3429                                                unsigned Depth) const {
3430   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3431           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3432           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3433           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3434          "Should use isSplatValue if you don't know whether Op"
3435          " is a target node!");
3436   return false;
3437 }
3438 
3439 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3440 // work with truncating build vectors and vectors with elements of less than
3441 // 8 bits.
3442 bool TargetLowering::isConstTrueVal(SDValue N) const {
3443   if (!N)
3444     return false;
3445 
3446   unsigned EltWidth;
3447   APInt CVal;
3448   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3449                                                /*AllowTruncation=*/true)) {
3450     CVal = CN->getAPIntValue();
3451     EltWidth = N.getValueType().getScalarSizeInBits();
3452   } else
3453     return false;
3454 
3455   // If this is a truncating splat, truncate the splat value.
3456   // Otherwise, we may fail to match the expected values below.
3457   if (EltWidth < CVal.getBitWidth())
3458     CVal = CVal.trunc(EltWidth);
3459 
3460   switch (getBooleanContents(N.getValueType())) {
3461   case UndefinedBooleanContent:
3462     return CVal[0];
3463   case ZeroOrOneBooleanContent:
3464     return CVal.isOne();
3465   case ZeroOrNegativeOneBooleanContent:
3466     return CVal.isAllOnes();
3467   }
3468 
3469   llvm_unreachable("Invalid boolean contents");
3470 }
3471 
3472 bool TargetLowering::isConstFalseVal(SDValue N) const {
3473   if (!N)
3474     return false;
3475 
3476   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3477   if (!CN) {
3478     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3479     if (!BV)
3480       return false;
3481 
3482     // Only interested in constant splats, we don't care about undef
3483     // elements in identifying boolean constants and getConstantSplatNode
3484     // returns NULL if all ops are undef;
3485     CN = BV->getConstantSplatNode();
3486     if (!CN)
3487       return false;
3488   }
3489 
3490   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3491     return !CN->getAPIntValue()[0];
3492 
3493   return CN->isZero();
3494 }
3495 
3496 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3497                                        bool SExt) const {
3498   if (VT == MVT::i1)
3499     return N->isOne();
3500 
3501   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3502   switch (Cnt) {
3503   case TargetLowering::ZeroOrOneBooleanContent:
3504     // An extended value of 1 is always true, unless its original type is i1,
3505     // in which case it will be sign extended to -1.
3506     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3507   case TargetLowering::UndefinedBooleanContent:
3508   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3509     return N->isAllOnes() && SExt;
3510   }
3511   llvm_unreachable("Unexpected enumeration.");
3512 }
3513 
3514 /// This helper function of SimplifySetCC tries to optimize the comparison when
3515 /// either operand of the SetCC node is a bitwise-and instruction.
3516 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3517                                          ISD::CondCode Cond, const SDLoc &DL,
3518                                          DAGCombinerInfo &DCI) const {
3519   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3520     std::swap(N0, N1);
3521 
3522   SelectionDAG &DAG = DCI.DAG;
3523   EVT OpVT = N0.getValueType();
3524   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3525       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3526     return SDValue();
3527 
3528   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3529   // iff everything but LSB is known zero:
3530   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3531       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3532        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3533     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3534     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3535     if (DAG.MaskedValueIsZero(N0, UpperBits))
3536       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3537   }
3538 
3539   // Match these patterns in any of their permutations:
3540   // (X & Y) == Y
3541   // (X & Y) != Y
3542   SDValue X, Y;
3543   if (N0.getOperand(0) == N1) {
3544     X = N0.getOperand(1);
3545     Y = N0.getOperand(0);
3546   } else if (N0.getOperand(1) == N1) {
3547     X = N0.getOperand(0);
3548     Y = N0.getOperand(1);
3549   } else {
3550     return SDValue();
3551   }
3552 
3553   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3554   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3555     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3556     // Note that where Y is variable and is known to have at most one bit set
3557     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3558     // equivalent when Y == 0.
3559     assert(OpVT.isInteger());
3560     Cond = ISD::getSetCCInverse(Cond, OpVT);
3561     if (DCI.isBeforeLegalizeOps() ||
3562         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3563       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3564   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3565     // If the target supports an 'and-not' or 'and-complement' logic operation,
3566     // try to use that to make a comparison operation more efficient.
3567     // But don't do this transform if the mask is a single bit because there are
3568     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3569     // 'rlwinm' on PPC).
3570 
3571     // Bail out if the compare operand that we want to turn into a zero is
3572     // already a zero (otherwise, infinite loop).
3573     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3574     if (YConst && YConst->isZero())
3575       return SDValue();
3576 
3577     // Transform this into: ~X & Y == 0.
3578     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3579     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3580     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3581   }
3582 
3583   return SDValue();
3584 }
3585 
3586 /// There are multiple IR patterns that could be checking whether certain
3587 /// truncation of a signed number would be lossy or not. The pattern which is
3588 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3589 /// We are looking for the following pattern: (KeptBits is a constant)
3590 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3591 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3592 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3593 /// We will unfold it into the natural trunc+sext pattern:
3594 ///   ((%x << C) a>> C) dstcond %x
3595 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3596 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3597     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3598     const SDLoc &DL) const {
3599   // We must be comparing with a constant.
3600   ConstantSDNode *C1;
3601   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3602     return SDValue();
3603 
3604   // N0 should be:  add %x, (1 << (KeptBits-1))
3605   if (N0->getOpcode() != ISD::ADD)
3606     return SDValue();
3607 
3608   // And we must be 'add'ing a constant.
3609   ConstantSDNode *C01;
3610   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3611     return SDValue();
3612 
3613   SDValue X = N0->getOperand(0);
3614   EVT XVT = X.getValueType();
3615 
3616   // Validate constants ...
3617 
3618   APInt I1 = C1->getAPIntValue();
3619 
3620   ISD::CondCode NewCond;
3621   if (Cond == ISD::CondCode::SETULT) {
3622     NewCond = ISD::CondCode::SETEQ;
3623   } else if (Cond == ISD::CondCode::SETULE) {
3624     NewCond = ISD::CondCode::SETEQ;
3625     // But need to 'canonicalize' the constant.
3626     I1 += 1;
3627   } else if (Cond == ISD::CondCode::SETUGT) {
3628     NewCond = ISD::CondCode::SETNE;
3629     // But need to 'canonicalize' the constant.
3630     I1 += 1;
3631   } else if (Cond == ISD::CondCode::SETUGE) {
3632     NewCond = ISD::CondCode::SETNE;
3633   } else
3634     return SDValue();
3635 
3636   APInt I01 = C01->getAPIntValue();
3637 
3638   auto checkConstants = [&I1, &I01]() -> bool {
3639     // Both of them must be power-of-two, and the constant from setcc is bigger.
3640     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3641   };
3642 
3643   if (checkConstants()) {
3644     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3645   } else {
3646     // What if we invert constants? (and the target predicate)
3647     I1.negate();
3648     I01.negate();
3649     assert(XVT.isInteger());
3650     NewCond = getSetCCInverse(NewCond, XVT);
3651     if (!checkConstants())
3652       return SDValue();
3653     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3654   }
3655 
3656   // They are power-of-two, so which bit is set?
3657   const unsigned KeptBits = I1.logBase2();
3658   const unsigned KeptBitsMinusOne = I01.logBase2();
3659 
3660   // Magic!
3661   if (KeptBits != (KeptBitsMinusOne + 1))
3662     return SDValue();
3663   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3664 
3665   // We don't want to do this in every single case.
3666   SelectionDAG &DAG = DCI.DAG;
3667   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3668           XVT, KeptBits))
3669     return SDValue();
3670 
3671   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3672   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3673 
3674   // Unfold into:  ((%x << C) a>> C) cond %x
3675   // Where 'cond' will be either 'eq' or 'ne'.
3676   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3677   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3678   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3679   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3680 
3681   return T2;
3682 }
3683 
3684 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3685 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3686     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3687     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3688   assert(isConstOrConstSplat(N1C) &&
3689          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3690          "Should be a comparison with 0.");
3691   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3692          "Valid only for [in]equality comparisons.");
3693 
3694   unsigned NewShiftOpcode;
3695   SDValue X, C, Y;
3696 
3697   SelectionDAG &DAG = DCI.DAG;
3698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3699 
3700   // Look for '(C l>>/<< Y)'.
3701   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3702     // The shift should be one-use.
3703     if (!V.hasOneUse())
3704       return false;
3705     unsigned OldShiftOpcode = V.getOpcode();
3706     switch (OldShiftOpcode) {
3707     case ISD::SHL:
3708       NewShiftOpcode = ISD::SRL;
3709       break;
3710     case ISD::SRL:
3711       NewShiftOpcode = ISD::SHL;
3712       break;
3713     default:
3714       return false; // must be a logical shift.
3715     }
3716     // We should be shifting a constant.
3717     // FIXME: best to use isConstantOrConstantVector().
3718     C = V.getOperand(0);
3719     ConstantSDNode *CC =
3720         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3721     if (!CC)
3722       return false;
3723     Y = V.getOperand(1);
3724 
3725     ConstantSDNode *XC =
3726         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3727     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3728         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3729   };
3730 
3731   // LHS of comparison should be an one-use 'and'.
3732   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3733     return SDValue();
3734 
3735   X = N0.getOperand(0);
3736   SDValue Mask = N0.getOperand(1);
3737 
3738   // 'and' is commutative!
3739   if (!Match(Mask)) {
3740     std::swap(X, Mask);
3741     if (!Match(Mask))
3742       return SDValue();
3743   }
3744 
3745   EVT VT = X.getValueType();
3746 
3747   // Produce:
3748   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3749   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3750   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3751   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3752   return T2;
3753 }
3754 
3755 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3756 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3757 /// handle the commuted versions of these patterns.
3758 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3759                                            ISD::CondCode Cond, const SDLoc &DL,
3760                                            DAGCombinerInfo &DCI) const {
3761   unsigned BOpcode = N0.getOpcode();
3762   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3763          "Unexpected binop");
3764   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3765 
3766   // (X + Y) == X --> Y == 0
3767   // (X - Y) == X --> Y == 0
3768   // (X ^ Y) == X --> Y == 0
3769   SelectionDAG &DAG = DCI.DAG;
3770   EVT OpVT = N0.getValueType();
3771   SDValue X = N0.getOperand(0);
3772   SDValue Y = N0.getOperand(1);
3773   if (X == N1)
3774     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3775 
3776   if (Y != N1)
3777     return SDValue();
3778 
3779   // (X + Y) == Y --> X == 0
3780   // (X ^ Y) == Y --> X == 0
3781   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3782     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3783 
3784   // The shift would not be valid if the operands are boolean (i1).
3785   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3786     return SDValue();
3787 
3788   // (X - Y) == Y --> X == Y << 1
3789   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3790                                  !DCI.isBeforeLegalize());
3791   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3792   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3793   if (!DCI.isCalledByLegalizer())
3794     DCI.AddToWorklist(YShl1.getNode());
3795   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3796 }
3797 
3798 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3799                                       SDValue N0, const APInt &C1,
3800                                       ISD::CondCode Cond, const SDLoc &dl,
3801                                       SelectionDAG &DAG) {
3802   // Look through truncs that don't change the value of a ctpop.
3803   // FIXME: Add vector support? Need to be careful with setcc result type below.
3804   SDValue CTPOP = N0;
3805   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3806       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3807     CTPOP = N0.getOperand(0);
3808 
3809   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3810     return SDValue();
3811 
3812   EVT CTVT = CTPOP.getValueType();
3813   SDValue CTOp = CTPOP.getOperand(0);
3814 
3815   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3816   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3817   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3818     return SDValue();
3819 
3820   // (ctpop x) u< 2 -> (x & x-1) == 0
3821   // (ctpop x) u> 1 -> (x & x-1) != 0
3822   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3823     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3824     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3825       return SDValue();
3826     if (C1 == 0 && (Cond == ISD::SETULT))
3827       return SDValue(); // This is handled elsewhere.
3828 
3829     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3830 
3831     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3832     SDValue Result = CTOp;
3833     for (unsigned i = 0; i < Passes; i++) {
3834       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3835       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3836     }
3837     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3838     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3839   }
3840 
3841   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3842   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3843     // For scalars, keep CTPOP if it is legal or custom.
3844     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3845       return SDValue();
3846     // This is based on X86's custom lowering for CTPOP which produces more
3847     // instructions than the expansion here.
3848 
3849     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3850     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3851     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3852     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3853     assert(CTVT.isInteger());
3854     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3855     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3856     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3857     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3858     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3859     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3860     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3861   }
3862 
3863   return SDValue();
3864 }
3865 
3866 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3867                                    ISD::CondCode Cond, const SDLoc &dl,
3868                                    SelectionDAG &DAG) {
3869   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3870     return SDValue();
3871 
3872   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3873   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3874     return SDValue();
3875 
3876   auto getRotateSource = [](SDValue X) {
3877     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3878       return X.getOperand(0);
3879     return SDValue();
3880   };
3881 
3882   // Peek through a rotated value compared against 0 or -1:
3883   // (rot X, Y) == 0/-1 --> X == 0/-1
3884   // (rot X, Y) != 0/-1 --> X != 0/-1
3885   if (SDValue R = getRotateSource(N0))
3886     return DAG.getSetCC(dl, VT, R, N1, Cond);
3887 
3888   // Peek through an 'or' of a rotated value compared against 0:
3889   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3890   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3891   //
3892   // TODO: Add the 'and' with -1 sibling.
3893   // TODO: Recurse through a series of 'or' ops to find the rotate.
3894   EVT OpVT = N0.getValueType();
3895   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3896     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3897       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3898       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3899     }
3900     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3901       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3902       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3903     }
3904   }
3905 
3906   return SDValue();
3907 }
3908 
3909 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3910                                         ISD::CondCode Cond, const SDLoc &dl,
3911                                         SelectionDAG &DAG) {
3912   // If we are testing for all-bits-clear, we might be able to do that with
3913   // less shifting since bit-order does not matter.
3914   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3915     return SDValue();
3916 
3917   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3918   if (!C1 || !C1->isZero())
3919     return SDValue();
3920 
3921   if (!N0.hasOneUse() ||
3922       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3923     return SDValue();
3924 
3925   unsigned BitWidth = N0.getScalarValueSizeInBits();
3926   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3927   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3928     return SDValue();
3929 
3930   // Canonicalize fshr as fshl to reduce pattern-matching.
3931   unsigned ShAmt = ShAmtC->getZExtValue();
3932   if (N0.getOpcode() == ISD::FSHR)
3933     ShAmt = BitWidth - ShAmt;
3934 
3935   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3936   SDValue X, Y;
3937   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3938     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3939       return false;
3940     if (Or.getOperand(0) == Other) {
3941       X = Or.getOperand(0);
3942       Y = Or.getOperand(1);
3943       return true;
3944     }
3945     if (Or.getOperand(1) == Other) {
3946       X = Or.getOperand(1);
3947       Y = Or.getOperand(0);
3948       return true;
3949     }
3950     return false;
3951   };
3952 
3953   EVT OpVT = N0.getValueType();
3954   EVT ShAmtVT = N0.getOperand(2).getValueType();
3955   SDValue F0 = N0.getOperand(0);
3956   SDValue F1 = N0.getOperand(1);
3957   if (matchOr(F0, F1)) {
3958     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3959     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3960     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3961     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3962     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3963   }
3964   if (matchOr(F1, F0)) {
3965     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3966     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3967     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3968     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3969     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3970   }
3971 
3972   return SDValue();
3973 }
3974 
3975 /// Try to simplify a setcc built with the specified operands and cc. If it is
3976 /// unable to simplify it, return a null SDValue.
3977 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3978                                       ISD::CondCode Cond, bool foldBooleans,
3979                                       DAGCombinerInfo &DCI,
3980                                       const SDLoc &dl) const {
3981   SelectionDAG &DAG = DCI.DAG;
3982   const DataLayout &Layout = DAG.getDataLayout();
3983   EVT OpVT = N0.getValueType();
3984 
3985   // Constant fold or commute setcc.
3986   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3987     return Fold;
3988 
3989   bool N0ConstOrSplat =
3990       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3991   bool N1ConstOrSplat =
3992       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
3993 
3994   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3995   // TODO: Handle non-splat vector constants. All undef causes trouble.
3996   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3997   // infinite loop here when we encounter one.
3998   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3999   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4000       (DCI.isBeforeLegalizeOps() ||
4001        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4002     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4003 
4004   // If we have a subtract with the same 2 non-constant operands as this setcc
4005   // -- but in reverse order -- then try to commute the operands of this setcc
4006   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4007   // instruction on some targets.
4008   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4009       (DCI.isBeforeLegalizeOps() ||
4010        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4011       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4012       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4013     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4014 
4015   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4016     return V;
4017 
4018   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4019     return V;
4020 
4021   if (auto *N1C = isConstOrConstSplat(N1)) {
4022     const APInt &C1 = N1C->getAPIntValue();
4023 
4024     // Optimize some CTPOP cases.
4025     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4026       return V;
4027 
4028     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4029     // equality comparison, then we're just comparing whether X itself is
4030     // zero.
4031     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4032         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4033         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4034       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4035         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4036             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4037           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4038             // (srl (ctlz x), 5) == 0  -> X != 0
4039             // (srl (ctlz x), 5) != 1  -> X != 0
4040             Cond = ISD::SETNE;
4041           } else {
4042             // (srl (ctlz x), 5) != 0  -> X == 0
4043             // (srl (ctlz x), 5) == 1  -> X == 0
4044             Cond = ISD::SETEQ;
4045           }
4046           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4047           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4048                               Cond);
4049         }
4050       }
4051     }
4052   }
4053 
4054   // FIXME: Support vectors.
4055   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4056     const APInt &C1 = N1C->getAPIntValue();
4057 
4058     // (zext x) == C --> x == (trunc C)
4059     // (sext x) == C --> x == (trunc C)
4060     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4061         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4062       unsigned MinBits = N0.getValueSizeInBits();
4063       SDValue PreExt;
4064       bool Signed = false;
4065       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4066         // ZExt
4067         MinBits = N0->getOperand(0).getValueSizeInBits();
4068         PreExt = N0->getOperand(0);
4069       } else if (N0->getOpcode() == ISD::AND) {
4070         // DAGCombine turns costly ZExts into ANDs
4071         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4072           if ((C->getAPIntValue()+1).isPowerOf2()) {
4073             MinBits = C->getAPIntValue().countTrailingOnes();
4074             PreExt = N0->getOperand(0);
4075           }
4076       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4077         // SExt
4078         MinBits = N0->getOperand(0).getValueSizeInBits();
4079         PreExt = N0->getOperand(0);
4080         Signed = true;
4081       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4082         // ZEXTLOAD / SEXTLOAD
4083         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4084           MinBits = LN0->getMemoryVT().getSizeInBits();
4085           PreExt = N0;
4086         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4087           Signed = true;
4088           MinBits = LN0->getMemoryVT().getSizeInBits();
4089           PreExt = N0;
4090         }
4091       }
4092 
4093       // Figure out how many bits we need to preserve this constant.
4094       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4095 
4096       // Make sure we're not losing bits from the constant.
4097       if (MinBits > 0 &&
4098           MinBits < C1.getBitWidth() &&
4099           MinBits >= ReqdBits) {
4100         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4101         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4102           // Will get folded away.
4103           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4104           if (MinBits == 1 && C1 == 1)
4105             // Invert the condition.
4106             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4107                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4108           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4109           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4110         }
4111 
4112         // If truncating the setcc operands is not desirable, we can still
4113         // simplify the expression in some cases:
4114         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4115         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4116         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4117         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4118         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4119         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4120         SDValue TopSetCC = N0->getOperand(0);
4121         unsigned N0Opc = N0->getOpcode();
4122         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4123         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4124             TopSetCC.getOpcode() == ISD::SETCC &&
4125             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4126             (isConstFalseVal(N1) ||
4127              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4128 
4129           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4130                          (!N1C->isZero() && Cond == ISD::SETNE);
4131 
4132           if (!Inverse)
4133             return TopSetCC;
4134 
4135           ISD::CondCode InvCond = ISD::getSetCCInverse(
4136               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4137               TopSetCC.getOperand(0).getValueType());
4138           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4139                                       TopSetCC.getOperand(1),
4140                                       InvCond);
4141         }
4142       }
4143     }
4144 
4145     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4146     // equality or unsigned, and all 1 bits of the const are in the same
4147     // partial word, see if we can shorten the load.
4148     if (DCI.isBeforeLegalize() &&
4149         !ISD::isSignedIntSetCC(Cond) &&
4150         N0.getOpcode() == ISD::AND && C1 == 0 &&
4151         N0.getNode()->hasOneUse() &&
4152         isa<LoadSDNode>(N0.getOperand(0)) &&
4153         N0.getOperand(0).getNode()->hasOneUse() &&
4154         isa<ConstantSDNode>(N0.getOperand(1))) {
4155       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4156       APInt bestMask;
4157       unsigned bestWidth = 0, bestOffset = 0;
4158       if (Lod->isSimple() && Lod->isUnindexed()) {
4159         unsigned origWidth = N0.getValueSizeInBits();
4160         unsigned maskWidth = origWidth;
4161         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4162         // 8 bits, but have to be careful...
4163         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4164           origWidth = Lod->getMemoryVT().getSizeInBits();
4165         const APInt &Mask = N0.getConstantOperandAPInt(1);
4166         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4167           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4168           for (unsigned offset=0; offset<origWidth/width; offset++) {
4169             if (Mask.isSubsetOf(newMask)) {
4170               if (Layout.isLittleEndian())
4171                 bestOffset = (uint64_t)offset * (width/8);
4172               else
4173                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4174               bestMask = Mask.lshr(offset * (width/8) * 8);
4175               bestWidth = width;
4176               break;
4177             }
4178             newMask <<= width;
4179           }
4180         }
4181       }
4182       if (bestWidth) {
4183         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4184         if (newVT.isRound() &&
4185             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4186           SDValue Ptr = Lod->getBasePtr();
4187           if (bestOffset != 0)
4188             Ptr =
4189                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4190           SDValue NewLoad =
4191               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4192                           Lod->getPointerInfo().getWithOffset(bestOffset),
4193                           Lod->getOriginalAlign());
4194           return DAG.getSetCC(dl, VT,
4195                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4196                                       DAG.getConstant(bestMask.trunc(bestWidth),
4197                                                       dl, newVT)),
4198                               DAG.getConstant(0LL, dl, newVT), Cond);
4199         }
4200       }
4201     }
4202 
4203     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4204     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4205       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4206 
4207       // If the comparison constant has bits in the upper part, the
4208       // zero-extended value could never match.
4209       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4210                                               C1.getBitWidth() - InSize))) {
4211         switch (Cond) {
4212         case ISD::SETUGT:
4213         case ISD::SETUGE:
4214         case ISD::SETEQ:
4215           return DAG.getConstant(0, dl, VT);
4216         case ISD::SETULT:
4217         case ISD::SETULE:
4218         case ISD::SETNE:
4219           return DAG.getConstant(1, dl, VT);
4220         case ISD::SETGT:
4221         case ISD::SETGE:
4222           // True if the sign bit of C1 is set.
4223           return DAG.getConstant(C1.isNegative(), dl, VT);
4224         case ISD::SETLT:
4225         case ISD::SETLE:
4226           // True if the sign bit of C1 isn't set.
4227           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4228         default:
4229           break;
4230         }
4231       }
4232 
4233       // Otherwise, we can perform the comparison with the low bits.
4234       switch (Cond) {
4235       case ISD::SETEQ:
4236       case ISD::SETNE:
4237       case ISD::SETUGT:
4238       case ISD::SETUGE:
4239       case ISD::SETULT:
4240       case ISD::SETULE: {
4241         EVT newVT = N0.getOperand(0).getValueType();
4242         if (DCI.isBeforeLegalizeOps() ||
4243             (isOperationLegal(ISD::SETCC, newVT) &&
4244              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4245           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4246           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4247 
4248           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4249                                           NewConst, Cond);
4250           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4251         }
4252         break;
4253       }
4254       default:
4255         break; // todo, be more careful with signed comparisons
4256       }
4257     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4258                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4259                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4260                                       OpVT)) {
4261       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4262       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4263       EVT ExtDstTy = N0.getValueType();
4264       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4265 
4266       // If the constant doesn't fit into the number of bits for the source of
4267       // the sign extension, it is impossible for both sides to be equal.
4268       if (C1.getMinSignedBits() > ExtSrcTyBits)
4269         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4270 
4271       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4272              ExtDstTy != ExtSrcTy && "Unexpected types!");
4273       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4274       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4275                                    DAG.getConstant(Imm, dl, ExtDstTy));
4276       if (!DCI.isCalledByLegalizer())
4277         DCI.AddToWorklist(ZextOp.getNode());
4278       // Otherwise, make this a use of a zext.
4279       return DAG.getSetCC(dl, VT, ZextOp,
4280                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4281     } else if ((N1C->isZero() || N1C->isOne()) &&
4282                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4283       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4284       if (N0.getOpcode() == ISD::SETCC &&
4285           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4286           (N0.getValueType() == MVT::i1 ||
4287            getBooleanContents(N0.getOperand(0).getValueType()) ==
4288                        ZeroOrOneBooleanContent)) {
4289         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4290         if (TrueWhenTrue)
4291           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4292         // Invert the condition.
4293         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4294         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4295         if (DCI.isBeforeLegalizeOps() ||
4296             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4297           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4298       }
4299 
4300       if ((N0.getOpcode() == ISD::XOR ||
4301            (N0.getOpcode() == ISD::AND &&
4302             N0.getOperand(0).getOpcode() == ISD::XOR &&
4303             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4304           isOneConstant(N0.getOperand(1))) {
4305         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4306         // can only do this if the top bits are known zero.
4307         unsigned BitWidth = N0.getValueSizeInBits();
4308         if (DAG.MaskedValueIsZero(N0,
4309                                   APInt::getHighBitsSet(BitWidth,
4310                                                         BitWidth-1))) {
4311           // Okay, get the un-inverted input value.
4312           SDValue Val;
4313           if (N0.getOpcode() == ISD::XOR) {
4314             Val = N0.getOperand(0);
4315           } else {
4316             assert(N0.getOpcode() == ISD::AND &&
4317                     N0.getOperand(0).getOpcode() == ISD::XOR);
4318             // ((X^1)&1)^1 -> X & 1
4319             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4320                               N0.getOperand(0).getOperand(0),
4321                               N0.getOperand(1));
4322           }
4323 
4324           return DAG.getSetCC(dl, VT, Val, N1,
4325                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4326         }
4327       } else if (N1C->isOne()) {
4328         SDValue Op0 = N0;
4329         if (Op0.getOpcode() == ISD::TRUNCATE)
4330           Op0 = Op0.getOperand(0);
4331 
4332         if ((Op0.getOpcode() == ISD::XOR) &&
4333             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4334             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4335           SDValue XorLHS = Op0.getOperand(0);
4336           SDValue XorRHS = Op0.getOperand(1);
4337           // Ensure that the input setccs return an i1 type or 0/1 value.
4338           if (Op0.getValueType() == MVT::i1 ||
4339               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4340                       ZeroOrOneBooleanContent &&
4341                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4342                         ZeroOrOneBooleanContent)) {
4343             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4344             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4345             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4346           }
4347         }
4348         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4349           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4350           if (Op0.getValueType().bitsGT(VT))
4351             Op0 = DAG.getNode(ISD::AND, dl, VT,
4352                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4353                           DAG.getConstant(1, dl, VT));
4354           else if (Op0.getValueType().bitsLT(VT))
4355             Op0 = DAG.getNode(ISD::AND, dl, VT,
4356                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4357                         DAG.getConstant(1, dl, VT));
4358 
4359           return DAG.getSetCC(dl, VT, Op0,
4360                               DAG.getConstant(0, dl, Op0.getValueType()),
4361                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4362         }
4363         if (Op0.getOpcode() == ISD::AssertZext &&
4364             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4365           return DAG.getSetCC(dl, VT, Op0,
4366                               DAG.getConstant(0, dl, Op0.getValueType()),
4367                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4368       }
4369     }
4370 
4371     // Given:
4372     //   icmp eq/ne (urem %x, %y), 0
4373     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4374     //   icmp eq/ne %x, 0
4375     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4376         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4377       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4378       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4379       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4380         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4381     }
4382 
4383     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4384     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4385     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4386         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4387         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4388         N1C && N1C->isAllOnes()) {
4389       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4390                           DAG.getConstant(0, dl, OpVT),
4391                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4392     }
4393 
4394     if (SDValue V =
4395             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4396       return V;
4397   }
4398 
4399   // These simplifications apply to splat vectors as well.
4400   // TODO: Handle more splat vector cases.
4401   if (auto *N1C = isConstOrConstSplat(N1)) {
4402     const APInt &C1 = N1C->getAPIntValue();
4403 
4404     APInt MinVal, MaxVal;
4405     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4406     if (ISD::isSignedIntSetCC(Cond)) {
4407       MinVal = APInt::getSignedMinValue(OperandBitSize);
4408       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4409     } else {
4410       MinVal = APInt::getMinValue(OperandBitSize);
4411       MaxVal = APInt::getMaxValue(OperandBitSize);
4412     }
4413 
4414     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4415     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4416       // X >= MIN --> true
4417       if (C1 == MinVal)
4418         return DAG.getBoolConstant(true, dl, VT, OpVT);
4419 
4420       if (!VT.isVector()) { // TODO: Support this for vectors.
4421         // X >= C0 --> X > (C0 - 1)
4422         APInt C = C1 - 1;
4423         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4424         if ((DCI.isBeforeLegalizeOps() ||
4425              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4426             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4427                                   isLegalICmpImmediate(C.getSExtValue())))) {
4428           return DAG.getSetCC(dl, VT, N0,
4429                               DAG.getConstant(C, dl, N1.getValueType()),
4430                               NewCC);
4431         }
4432       }
4433     }
4434 
4435     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4436       // X <= MAX --> true
4437       if (C1 == MaxVal)
4438         return DAG.getBoolConstant(true, dl, VT, OpVT);
4439 
4440       // X <= C0 --> X < (C0 + 1)
4441       if (!VT.isVector()) { // TODO: Support this for vectors.
4442         APInt C = C1 + 1;
4443         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4444         if ((DCI.isBeforeLegalizeOps() ||
4445              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4446             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4447                                   isLegalICmpImmediate(C.getSExtValue())))) {
4448           return DAG.getSetCC(dl, VT, N0,
4449                               DAG.getConstant(C, dl, N1.getValueType()),
4450                               NewCC);
4451         }
4452       }
4453     }
4454 
4455     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4456       if (C1 == MinVal)
4457         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4458 
4459       // TODO: Support this for vectors after legalize ops.
4460       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4461         // Canonicalize setlt X, Max --> setne X, Max
4462         if (C1 == MaxVal)
4463           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4464 
4465         // If we have setult X, 1, turn it into seteq X, 0
4466         if (C1 == MinVal+1)
4467           return DAG.getSetCC(dl, VT, N0,
4468                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4469                               ISD::SETEQ);
4470       }
4471     }
4472 
4473     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4474       if (C1 == MaxVal)
4475         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4476 
4477       // TODO: Support this for vectors after legalize ops.
4478       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4479         // Canonicalize setgt X, Min --> setne X, Min
4480         if (C1 == MinVal)
4481           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4482 
4483         // If we have setugt X, Max-1, turn it into seteq X, Max
4484         if (C1 == MaxVal-1)
4485           return DAG.getSetCC(dl, VT, N0,
4486                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4487                               ISD::SETEQ);
4488       }
4489     }
4490 
4491     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4492       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4493       if (C1.isZero())
4494         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4495                 VT, N0, N1, Cond, DCI, dl))
4496           return CC;
4497 
4498       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4499       // For example, when high 32-bits of i64 X are known clear:
4500       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4501       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4502       bool CmpZero = N1C->getAPIntValue().isZero();
4503       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4504       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4505         // Match or(lo,shl(hi,bw/2)) pattern.
4506         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4507           unsigned EltBits = V.getScalarValueSizeInBits();
4508           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4509             return false;
4510           SDValue LHS = V.getOperand(0);
4511           SDValue RHS = V.getOperand(1);
4512           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4513           // Unshifted element must have zero upperbits.
4514           if (RHS.getOpcode() == ISD::SHL &&
4515               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4516               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4517               DAG.MaskedValueIsZero(LHS, HiBits)) {
4518             Lo = LHS;
4519             Hi = RHS.getOperand(0);
4520             return true;
4521           }
4522           if (LHS.getOpcode() == ISD::SHL &&
4523               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4524               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4525               DAG.MaskedValueIsZero(RHS, HiBits)) {
4526             Lo = RHS;
4527             Hi = LHS.getOperand(0);
4528             return true;
4529           }
4530           return false;
4531         };
4532 
4533         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4534           unsigned EltBits = N0.getScalarValueSizeInBits();
4535           unsigned HalfBits = EltBits / 2;
4536           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4537           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4538           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4539           SDValue NewN0 =
4540               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4541           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4542           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4543         };
4544 
4545         SDValue Lo, Hi;
4546         if (IsConcat(N0, Lo, Hi))
4547           return MergeConcat(Lo, Hi);
4548 
4549         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4550           SDValue Lo0, Lo1, Hi0, Hi1;
4551           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4552               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4553             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4554                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4555           }
4556         }
4557       }
4558     }
4559 
4560     // If we have "setcc X, C0", check to see if we can shrink the immediate
4561     // by changing cc.
4562     // TODO: Support this for vectors after legalize ops.
4563     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4564       // SETUGT X, SINTMAX  -> SETLT X, 0
4565       // SETUGE X, SINTMIN -> SETLT X, 0
4566       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4567           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4568         return DAG.getSetCC(dl, VT, N0,
4569                             DAG.getConstant(0, dl, N1.getValueType()),
4570                             ISD::SETLT);
4571 
4572       // SETULT X, SINTMIN  -> SETGT X, -1
4573       // SETULE X, SINTMAX  -> SETGT X, -1
4574       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4575           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4576         return DAG.getSetCC(dl, VT, N0,
4577                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4578                             ISD::SETGT);
4579     }
4580   }
4581 
4582   // Back to non-vector simplifications.
4583   // TODO: Can we do these for vector splats?
4584   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4585     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4586     const APInt &C1 = N1C->getAPIntValue();
4587     EVT ShValTy = N0.getValueType();
4588 
4589     // Fold bit comparisons when we can. This will result in an
4590     // incorrect value when boolean false is negative one, unless
4591     // the bitsize is 1 in which case the false value is the same
4592     // in practice regardless of the representation.
4593     if ((VT.getSizeInBits() == 1 ||
4594          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4595         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4596         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4597         N0.getOpcode() == ISD::AND) {
4598       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4599         EVT ShiftTy =
4600             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4601         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4602           // Perform the xform if the AND RHS is a single bit.
4603           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4604           if (AndRHS->getAPIntValue().isPowerOf2() &&
4605               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4606             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4607                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4608                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4609           }
4610         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4611           // (X & 8) == 8  -->  (X & 8) >> 3
4612           // Perform the xform if C1 is a single bit.
4613           unsigned ShCt = C1.logBase2();
4614           if (C1.isPowerOf2() &&
4615               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4616             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4617                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4618                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4619           }
4620         }
4621       }
4622     }
4623 
4624     if (C1.getMinSignedBits() <= 64 &&
4625         !isLegalICmpImmediate(C1.getSExtValue())) {
4626       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4627       // (X & -256) == 256 -> (X >> 8) == 1
4628       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4629           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4630         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4631           const APInt &AndRHSC = AndRHS->getAPIntValue();
4632           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4633             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4634             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4635               SDValue Shift =
4636                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4637                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4638               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4639               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4640             }
4641           }
4642         }
4643       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4644                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4645         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4646         // X <  0x100000000 -> (X >> 32) <  1
4647         // X >= 0x100000000 -> (X >> 32) >= 1
4648         // X <= 0x0ffffffff -> (X >> 32) <  1
4649         // X >  0x0ffffffff -> (X >> 32) >= 1
4650         unsigned ShiftBits;
4651         APInt NewC = C1;
4652         ISD::CondCode NewCond = Cond;
4653         if (AdjOne) {
4654           ShiftBits = C1.countTrailingOnes();
4655           NewC = NewC + 1;
4656           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4657         } else {
4658           ShiftBits = C1.countTrailingZeros();
4659         }
4660         NewC.lshrInPlace(ShiftBits);
4661         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4662             isLegalICmpImmediate(NewC.getSExtValue()) &&
4663             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4664           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4665                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4666           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4667           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4668         }
4669       }
4670     }
4671   }
4672 
4673   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4674     auto *CFP = cast<ConstantFPSDNode>(N1);
4675     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4676 
4677     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4678     // constant if knowing that the operand is non-nan is enough.  We prefer to
4679     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4680     // materialize 0.0.
4681     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4682       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4683 
4684     // setcc (fneg x), C -> setcc swap(pred) x, -C
4685     if (N0.getOpcode() == ISD::FNEG) {
4686       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4687       if (DCI.isBeforeLegalizeOps() ||
4688           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4689         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4690         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4691       }
4692     }
4693 
4694     // If the condition is not legal, see if we can find an equivalent one
4695     // which is legal.
4696     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4697       // If the comparison was an awkward floating-point == or != and one of
4698       // the comparison operands is infinity or negative infinity, convert the
4699       // condition to a less-awkward <= or >=.
4700       if (CFP->getValueAPF().isInfinity()) {
4701         bool IsNegInf = CFP->getValueAPF().isNegative();
4702         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4703         switch (Cond) {
4704         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4705         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4706         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4707         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4708         default: break;
4709         }
4710         if (NewCond != ISD::SETCC_INVALID &&
4711             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4712           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4713       }
4714     }
4715   }
4716 
4717   if (N0 == N1) {
4718     // The sext(setcc()) => setcc() optimization relies on the appropriate
4719     // constant being emitted.
4720     assert(!N0.getValueType().isInteger() &&
4721            "Integer types should be handled by FoldSetCC");
4722 
4723     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4724     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4725     if (UOF == 2) // FP operators that are undefined on NaNs.
4726       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4727     if (UOF == unsigned(EqTrue))
4728       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4729     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4730     // if it is not already.
4731     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4732     if (NewCond != Cond &&
4733         (DCI.isBeforeLegalizeOps() ||
4734                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4735       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4736   }
4737 
4738   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4739       N0.getValueType().isInteger()) {
4740     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4741         N0.getOpcode() == ISD::XOR) {
4742       // Simplify (X+Y) == (X+Z) -->  Y == Z
4743       if (N0.getOpcode() == N1.getOpcode()) {
4744         if (N0.getOperand(0) == N1.getOperand(0))
4745           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4746         if (N0.getOperand(1) == N1.getOperand(1))
4747           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4748         if (isCommutativeBinOp(N0.getOpcode())) {
4749           // If X op Y == Y op X, try other combinations.
4750           if (N0.getOperand(0) == N1.getOperand(1))
4751             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4752                                 Cond);
4753           if (N0.getOperand(1) == N1.getOperand(0))
4754             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4755                                 Cond);
4756         }
4757       }
4758 
4759       // If RHS is a legal immediate value for a compare instruction, we need
4760       // to be careful about increasing register pressure needlessly.
4761       bool LegalRHSImm = false;
4762 
4763       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4764         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4765           // Turn (X+C1) == C2 --> X == C2-C1
4766           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4767             return DAG.getSetCC(
4768                 dl, VT, N0.getOperand(0),
4769                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4770                                 dl, N0.getValueType()),
4771                 Cond);
4772 
4773           // Turn (X^C1) == C2 --> X == C1^C2
4774           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4775             return DAG.getSetCC(
4776                 dl, VT, N0.getOperand(0),
4777                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4778                                 dl, N0.getValueType()),
4779                 Cond);
4780         }
4781 
4782         // Turn (C1-X) == C2 --> X == C1-C2
4783         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4784           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4785             return DAG.getSetCC(
4786                 dl, VT, N0.getOperand(1),
4787                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4788                                 dl, N0.getValueType()),
4789                 Cond);
4790 
4791         // Could RHSC fold directly into a compare?
4792         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4793           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4794       }
4795 
4796       // (X+Y) == X --> Y == 0 and similar folds.
4797       // Don't do this if X is an immediate that can fold into a cmp
4798       // instruction and X+Y has other uses. It could be an induction variable
4799       // chain, and the transform would increase register pressure.
4800       if (!LegalRHSImm || N0.hasOneUse())
4801         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4802           return V;
4803     }
4804 
4805     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4806         N1.getOpcode() == ISD::XOR)
4807       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4808         return V;
4809 
4810     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4811       return V;
4812   }
4813 
4814   // Fold remainder of division by a constant.
4815   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4816       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4817     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4818 
4819     // When division is cheap or optimizing for minimum size,
4820     // fall through to DIVREM creation by skipping this fold.
4821     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4822       if (N0.getOpcode() == ISD::UREM) {
4823         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4824           return Folded;
4825       } else if (N0.getOpcode() == ISD::SREM) {
4826         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4827           return Folded;
4828       }
4829     }
4830   }
4831 
4832   // Fold away ALL boolean setcc's.
4833   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4834     SDValue Temp;
4835     switch (Cond) {
4836     default: llvm_unreachable("Unknown integer setcc!");
4837     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4838       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4839       N0 = DAG.getNOT(dl, Temp, OpVT);
4840       if (!DCI.isCalledByLegalizer())
4841         DCI.AddToWorklist(Temp.getNode());
4842       break;
4843     case ISD::SETNE:  // X != Y   -->  (X^Y)
4844       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4845       break;
4846     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4847     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4848       Temp = DAG.getNOT(dl, N0, OpVT);
4849       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4850       if (!DCI.isCalledByLegalizer())
4851         DCI.AddToWorklist(Temp.getNode());
4852       break;
4853     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4854     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4855       Temp = DAG.getNOT(dl, N1, OpVT);
4856       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4857       if (!DCI.isCalledByLegalizer())
4858         DCI.AddToWorklist(Temp.getNode());
4859       break;
4860     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4861     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4862       Temp = DAG.getNOT(dl, N0, OpVT);
4863       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4864       if (!DCI.isCalledByLegalizer())
4865         DCI.AddToWorklist(Temp.getNode());
4866       break;
4867     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4868     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4869       Temp = DAG.getNOT(dl, N1, OpVT);
4870       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4871       break;
4872     }
4873     if (VT.getScalarType() != MVT::i1) {
4874       if (!DCI.isCalledByLegalizer())
4875         DCI.AddToWorklist(N0.getNode());
4876       // FIXME: If running after legalize, we probably can't do this.
4877       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4878       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4879     }
4880     return N0;
4881   }
4882 
4883   // Could not fold it.
4884   return SDValue();
4885 }
4886 
4887 /// Returns true (and the GlobalValue and the offset) if the node is a
4888 /// GlobalAddress + offset.
4889 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4890                                     int64_t &Offset) const {
4891 
4892   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4893 
4894   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4895     GA = GASD->getGlobal();
4896     Offset += GASD->getOffset();
4897     return true;
4898   }
4899 
4900   if (N->getOpcode() == ISD::ADD) {
4901     SDValue N1 = N->getOperand(0);
4902     SDValue N2 = N->getOperand(1);
4903     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4904       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4905         Offset += V->getSExtValue();
4906         return true;
4907       }
4908     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4909       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4910         Offset += V->getSExtValue();
4911         return true;
4912       }
4913     }
4914   }
4915 
4916   return false;
4917 }
4918 
4919 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4920                                           DAGCombinerInfo &DCI) const {
4921   // Default implementation: no optimization.
4922   return SDValue();
4923 }
4924 
4925 //===----------------------------------------------------------------------===//
4926 //  Inline Assembler Implementation Methods
4927 //===----------------------------------------------------------------------===//
4928 
4929 TargetLowering::ConstraintType
4930 TargetLowering::getConstraintType(StringRef Constraint) const {
4931   unsigned S = Constraint.size();
4932 
4933   if (S == 1) {
4934     switch (Constraint[0]) {
4935     default: break;
4936     case 'r':
4937       return C_RegisterClass;
4938     case 'm': // memory
4939     case 'o': // offsetable
4940     case 'V': // not offsetable
4941       return C_Memory;
4942     case 'p': // Address.
4943       return C_Address;
4944     case 'n': // Simple Integer
4945     case 'E': // Floating Point Constant
4946     case 'F': // Floating Point Constant
4947       return C_Immediate;
4948     case 'i': // Simple Integer or Relocatable Constant
4949     case 's': // Relocatable Constant
4950     case 'X': // Allow ANY value.
4951     case 'I': // Target registers.
4952     case 'J':
4953     case 'K':
4954     case 'L':
4955     case 'M':
4956     case 'N':
4957     case 'O':
4958     case 'P':
4959     case '<':
4960     case '>':
4961       return C_Other;
4962     }
4963   }
4964 
4965   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4966     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4967       return C_Memory;
4968     return C_Register;
4969   }
4970   return C_Unknown;
4971 }
4972 
4973 /// Try to replace an X constraint, which matches anything, with another that
4974 /// has more specific requirements based on the type of the corresponding
4975 /// operand.
4976 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4977   if (ConstraintVT.isInteger())
4978     return "r";
4979   if (ConstraintVT.isFloatingPoint())
4980     return "f"; // works for many targets
4981   return nullptr;
4982 }
4983 
4984 SDValue TargetLowering::LowerAsmOutputForConstraint(
4985     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4986     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4987   return SDValue();
4988 }
4989 
4990 /// Lower the specified operand into the Ops vector.
4991 /// If it is invalid, don't add anything to Ops.
4992 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4993                                                   std::string &Constraint,
4994                                                   std::vector<SDValue> &Ops,
4995                                                   SelectionDAG &DAG) const {
4996 
4997   if (Constraint.length() > 1) return;
4998 
4999   char ConstraintLetter = Constraint[0];
5000   switch (ConstraintLetter) {
5001   default: break;
5002   case 'X':    // Allows any operand
5003   case 'i':    // Simple Integer or Relocatable Constant
5004   case 'n':    // Simple Integer
5005   case 's': {  // Relocatable Constant
5006 
5007     ConstantSDNode *C;
5008     uint64_t Offset = 0;
5009 
5010     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5011     // etc., since getelementpointer is variadic. We can't use
5012     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5013     // while in this case the GA may be furthest from the root node which is
5014     // likely an ISD::ADD.
5015     while (true) {
5016       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5017         // gcc prints these as sign extended.  Sign extend value to 64 bits
5018         // now; without this it would get ZExt'd later in
5019         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5020         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5021         BooleanContent BCont = getBooleanContents(MVT::i64);
5022         ISD::NodeType ExtOpc =
5023             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5024         int64_t ExtVal =
5025             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5026         Ops.push_back(
5027             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5028         return;
5029       }
5030       if (ConstraintLetter != 'n') {
5031         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5032           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5033                                                    GA->getValueType(0),
5034                                                    Offset + GA->getOffset()));
5035           return;
5036         }
5037         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5038           Ops.push_back(DAG.getTargetBlockAddress(
5039               BA->getBlockAddress(), BA->getValueType(0),
5040               Offset + BA->getOffset(), BA->getTargetFlags()));
5041           return;
5042         }
5043         if (isa<BasicBlockSDNode>(Op)) {
5044           Ops.push_back(Op);
5045           return;
5046         }
5047       }
5048       const unsigned OpCode = Op.getOpcode();
5049       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5050         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5051           Op = Op.getOperand(1);
5052         // Subtraction is not commutative.
5053         else if (OpCode == ISD::ADD &&
5054                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5055           Op = Op.getOperand(0);
5056         else
5057           return;
5058         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5059         continue;
5060       }
5061       return;
5062     }
5063     break;
5064   }
5065   }
5066 }
5067 
5068 std::pair<unsigned, const TargetRegisterClass *>
5069 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5070                                              StringRef Constraint,
5071                                              MVT VT) const {
5072   if (Constraint.empty() || Constraint[0] != '{')
5073     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5074   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5075 
5076   // Remove the braces from around the name.
5077   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5078 
5079   std::pair<unsigned, const TargetRegisterClass *> R =
5080       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5081 
5082   // Figure out which register class contains this reg.
5083   for (const TargetRegisterClass *RC : RI->regclasses()) {
5084     // If none of the value types for this register class are valid, we
5085     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5086     if (!isLegalRC(*RI, *RC))
5087       continue;
5088 
5089     for (const MCPhysReg &PR : *RC) {
5090       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5091         std::pair<unsigned, const TargetRegisterClass *> S =
5092             std::make_pair(PR, RC);
5093 
5094         // If this register class has the requested value type, return it,
5095         // otherwise keep searching and return the first class found
5096         // if no other is found which explicitly has the requested type.
5097         if (RI->isTypeLegalForClass(*RC, VT))
5098           return S;
5099         if (!R.second)
5100           R = S;
5101       }
5102     }
5103   }
5104 
5105   return R;
5106 }
5107 
5108 //===----------------------------------------------------------------------===//
5109 // Constraint Selection.
5110 
5111 /// Return true of this is an input operand that is a matching constraint like
5112 /// "4".
5113 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5114   assert(!ConstraintCode.empty() && "No known constraint!");
5115   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5116 }
5117 
5118 /// If this is an input matching constraint, this method returns the output
5119 /// operand it matches.
5120 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5121   assert(!ConstraintCode.empty() && "No known constraint!");
5122   return atoi(ConstraintCode.c_str());
5123 }
5124 
5125 /// Split up the constraint string from the inline assembly value into the
5126 /// specific constraints and their prefixes, and also tie in the associated
5127 /// operand values.
5128 /// If this returns an empty vector, and if the constraint string itself
5129 /// isn't empty, there was an error parsing.
5130 TargetLowering::AsmOperandInfoVector
5131 TargetLowering::ParseConstraints(const DataLayout &DL,
5132                                  const TargetRegisterInfo *TRI,
5133                                  const CallBase &Call) const {
5134   /// Information about all of the constraints.
5135   AsmOperandInfoVector ConstraintOperands;
5136   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5137   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5138 
5139   // Do a prepass over the constraints, canonicalizing them, and building up the
5140   // ConstraintOperands list.
5141   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5142   unsigned ResNo = 0; // ResNo - The result number of the next output.
5143 
5144   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5145     ConstraintOperands.emplace_back(std::move(CI));
5146     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5147 
5148     // Update multiple alternative constraint count.
5149     if (OpInfo.multipleAlternatives.size() > maCount)
5150       maCount = OpInfo.multipleAlternatives.size();
5151 
5152     OpInfo.ConstraintVT = MVT::Other;
5153 
5154     // Compute the value type for each operand.
5155     switch (OpInfo.Type) {
5156     case InlineAsm::isOutput:
5157       // Indirect outputs just consume an argument.
5158       if (OpInfo.isIndirect) {
5159         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5160         break;
5161       }
5162 
5163       // The return value of the call is this value.  As such, there is no
5164       // corresponding argument.
5165       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5166       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5167         OpInfo.ConstraintVT =
5168             getSimpleValueType(DL, STy->getElementType(ResNo));
5169       } else {
5170         assert(ResNo == 0 && "Asm only has one result!");
5171         OpInfo.ConstraintVT =
5172             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5173       }
5174       ++ResNo;
5175       break;
5176     case InlineAsm::isInput:
5177       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5178       break;
5179     case InlineAsm::isClobber:
5180       // Nothing to do.
5181       break;
5182     }
5183 
5184     if (OpInfo.CallOperandVal) {
5185       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5186       if (OpInfo.isIndirect) {
5187         OpTy = Call.getParamElementType(ArgNo);
5188         assert(OpTy && "Indirect operand must have elementtype attribute");
5189       }
5190 
5191       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5192       if (StructType *STy = dyn_cast<StructType>(OpTy))
5193         if (STy->getNumElements() == 1)
5194           OpTy = STy->getElementType(0);
5195 
5196       // If OpTy is not a single value, it may be a struct/union that we
5197       // can tile with integers.
5198       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5199         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5200         switch (BitSize) {
5201         default: break;
5202         case 1:
5203         case 8:
5204         case 16:
5205         case 32:
5206         case 64:
5207         case 128:
5208           OpInfo.ConstraintVT =
5209               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5210           break;
5211         }
5212       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5213         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5214         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5215       } else {
5216         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5217       }
5218 
5219       ArgNo++;
5220     }
5221   }
5222 
5223   // If we have multiple alternative constraints, select the best alternative.
5224   if (!ConstraintOperands.empty()) {
5225     if (maCount) {
5226       unsigned bestMAIndex = 0;
5227       int bestWeight = -1;
5228       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5229       int weight = -1;
5230       unsigned maIndex;
5231       // Compute the sums of the weights for each alternative, keeping track
5232       // of the best (highest weight) one so far.
5233       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5234         int weightSum = 0;
5235         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5236              cIndex != eIndex; ++cIndex) {
5237           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5238           if (OpInfo.Type == InlineAsm::isClobber)
5239             continue;
5240 
5241           // If this is an output operand with a matching input operand,
5242           // look up the matching input. If their types mismatch, e.g. one
5243           // is an integer, the other is floating point, or their sizes are
5244           // different, flag it as an maCantMatch.
5245           if (OpInfo.hasMatchingInput()) {
5246             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5247             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5248               if ((OpInfo.ConstraintVT.isInteger() !=
5249                    Input.ConstraintVT.isInteger()) ||
5250                   (OpInfo.ConstraintVT.getSizeInBits() !=
5251                    Input.ConstraintVT.getSizeInBits())) {
5252                 weightSum = -1; // Can't match.
5253                 break;
5254               }
5255             }
5256           }
5257           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5258           if (weight == -1) {
5259             weightSum = -1;
5260             break;
5261           }
5262           weightSum += weight;
5263         }
5264         // Update best.
5265         if (weightSum > bestWeight) {
5266           bestWeight = weightSum;
5267           bestMAIndex = maIndex;
5268         }
5269       }
5270 
5271       // Now select chosen alternative in each constraint.
5272       for (AsmOperandInfo &cInfo : ConstraintOperands)
5273         if (cInfo.Type != InlineAsm::isClobber)
5274           cInfo.selectAlternative(bestMAIndex);
5275     }
5276   }
5277 
5278   // Check and hook up tied operands, choose constraint code to use.
5279   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5280        cIndex != eIndex; ++cIndex) {
5281     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5282 
5283     // If this is an output operand with a matching input operand, look up the
5284     // matching input. If their types mismatch, e.g. one is an integer, the
5285     // other is floating point, or their sizes are different, flag it as an
5286     // error.
5287     if (OpInfo.hasMatchingInput()) {
5288       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5289 
5290       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5291         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5292             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5293                                          OpInfo.ConstraintVT);
5294         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5295             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5296                                          Input.ConstraintVT);
5297         if ((OpInfo.ConstraintVT.isInteger() !=
5298              Input.ConstraintVT.isInteger()) ||
5299             (MatchRC.second != InputRC.second)) {
5300           report_fatal_error("Unsupported asm: input constraint"
5301                              " with a matching output constraint of"
5302                              " incompatible type!");
5303         }
5304       }
5305     }
5306   }
5307 
5308   return ConstraintOperands;
5309 }
5310 
5311 /// Return an integer indicating how general CT is.
5312 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5313   switch (CT) {
5314   case TargetLowering::C_Immediate:
5315   case TargetLowering::C_Other:
5316   case TargetLowering::C_Unknown:
5317     return 0;
5318   case TargetLowering::C_Register:
5319     return 1;
5320   case TargetLowering::C_RegisterClass:
5321     return 2;
5322   case TargetLowering::C_Memory:
5323   case TargetLowering::C_Address:
5324     return 3;
5325   }
5326   llvm_unreachable("Invalid constraint type");
5327 }
5328 
5329 /// Examine constraint type and operand type and determine a weight value.
5330 /// This object must already have been set up with the operand type
5331 /// and the current alternative constraint selected.
5332 TargetLowering::ConstraintWeight
5333   TargetLowering::getMultipleConstraintMatchWeight(
5334     AsmOperandInfo &info, int maIndex) const {
5335   InlineAsm::ConstraintCodeVector *rCodes;
5336   if (maIndex >= (int)info.multipleAlternatives.size())
5337     rCodes = &info.Codes;
5338   else
5339     rCodes = &info.multipleAlternatives[maIndex].Codes;
5340   ConstraintWeight BestWeight = CW_Invalid;
5341 
5342   // Loop over the options, keeping track of the most general one.
5343   for (const std::string &rCode : *rCodes) {
5344     ConstraintWeight weight =
5345         getSingleConstraintMatchWeight(info, rCode.c_str());
5346     if (weight > BestWeight)
5347       BestWeight = weight;
5348   }
5349 
5350   return BestWeight;
5351 }
5352 
5353 /// Examine constraint type and operand type and determine a weight value.
5354 /// This object must already have been set up with the operand type
5355 /// and the current alternative constraint selected.
5356 TargetLowering::ConstraintWeight
5357   TargetLowering::getSingleConstraintMatchWeight(
5358     AsmOperandInfo &info, const char *constraint) const {
5359   ConstraintWeight weight = CW_Invalid;
5360   Value *CallOperandVal = info.CallOperandVal;
5361     // If we don't have a value, we can't do a match,
5362     // but allow it at the lowest weight.
5363   if (!CallOperandVal)
5364     return CW_Default;
5365   // Look at the constraint type.
5366   switch (*constraint) {
5367     case 'i': // immediate integer.
5368     case 'n': // immediate integer with a known value.
5369       if (isa<ConstantInt>(CallOperandVal))
5370         weight = CW_Constant;
5371       break;
5372     case 's': // non-explicit intregal immediate.
5373       if (isa<GlobalValue>(CallOperandVal))
5374         weight = CW_Constant;
5375       break;
5376     case 'E': // immediate float if host format.
5377     case 'F': // immediate float.
5378       if (isa<ConstantFP>(CallOperandVal))
5379         weight = CW_Constant;
5380       break;
5381     case '<': // memory operand with autodecrement.
5382     case '>': // memory operand with autoincrement.
5383     case 'm': // memory operand.
5384     case 'o': // offsettable memory operand
5385     case 'V': // non-offsettable memory operand
5386       weight = CW_Memory;
5387       break;
5388     case 'r': // general register.
5389     case 'g': // general register, memory operand or immediate integer.
5390               // note: Clang converts "g" to "imr".
5391       if (CallOperandVal->getType()->isIntegerTy())
5392         weight = CW_Register;
5393       break;
5394     case 'X': // any operand.
5395   default:
5396     weight = CW_Default;
5397     break;
5398   }
5399   return weight;
5400 }
5401 
5402 /// If there are multiple different constraints that we could pick for this
5403 /// operand (e.g. "imr") try to pick the 'best' one.
5404 /// This is somewhat tricky: constraints fall into four classes:
5405 ///    Other         -> immediates and magic values
5406 ///    Register      -> one specific register
5407 ///    RegisterClass -> a group of regs
5408 ///    Memory        -> memory
5409 /// Ideally, we would pick the most specific constraint possible: if we have
5410 /// something that fits into a register, we would pick it.  The problem here
5411 /// is that if we have something that could either be in a register or in
5412 /// memory that use of the register could cause selection of *other*
5413 /// operands to fail: they might only succeed if we pick memory.  Because of
5414 /// this the heuristic we use is:
5415 ///
5416 ///  1) If there is an 'other' constraint, and if the operand is valid for
5417 ///     that constraint, use it.  This makes us take advantage of 'i'
5418 ///     constraints when available.
5419 ///  2) Otherwise, pick the most general constraint present.  This prefers
5420 ///     'm' over 'r', for example.
5421 ///
5422 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5423                              const TargetLowering &TLI,
5424                              SDValue Op, SelectionDAG *DAG) {
5425   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5426   unsigned BestIdx = 0;
5427   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5428   int BestGenerality = -1;
5429 
5430   // Loop over the options, keeping track of the most general one.
5431   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5432     TargetLowering::ConstraintType CType =
5433       TLI.getConstraintType(OpInfo.Codes[i]);
5434 
5435     // Indirect 'other' or 'immediate' constraints are not allowed.
5436     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5437                                CType == TargetLowering::C_Register ||
5438                                CType == TargetLowering::C_RegisterClass))
5439       continue;
5440 
5441     // If this is an 'other' or 'immediate' constraint, see if the operand is
5442     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5443     // the operand is an integer in the range [0..31] we want to use I (saving a
5444     // load of a register), otherwise we must use 'r'.
5445     if ((CType == TargetLowering::C_Other ||
5446          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5447       assert(OpInfo.Codes[i].size() == 1 &&
5448              "Unhandled multi-letter 'other' constraint");
5449       std::vector<SDValue> ResultOps;
5450       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5451                                        ResultOps, *DAG);
5452       if (!ResultOps.empty()) {
5453         BestType = CType;
5454         BestIdx = i;
5455         break;
5456       }
5457     }
5458 
5459     // Things with matching constraints can only be registers, per gcc
5460     // documentation.  This mainly affects "g" constraints.
5461     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5462       continue;
5463 
5464     // This constraint letter is more general than the previous one, use it.
5465     int Generality = getConstraintGenerality(CType);
5466     if (Generality > BestGenerality) {
5467       BestType = CType;
5468       BestIdx = i;
5469       BestGenerality = Generality;
5470     }
5471   }
5472 
5473   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5474   OpInfo.ConstraintType = BestType;
5475 }
5476 
5477 /// Determines the constraint code and constraint type to use for the specific
5478 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5479 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5480                                             SDValue Op,
5481                                             SelectionDAG *DAG) const {
5482   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5483 
5484   // Single-letter constraints ('r') are very common.
5485   if (OpInfo.Codes.size() == 1) {
5486     OpInfo.ConstraintCode = OpInfo.Codes[0];
5487     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5488   } else {
5489     ChooseConstraint(OpInfo, *this, Op, DAG);
5490   }
5491 
5492   // 'X' matches anything.
5493   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5494     // Constants are handled elsewhere.  For Functions, the type here is the
5495     // type of the result, which is not what we want to look at; leave them
5496     // alone.
5497     Value *v = OpInfo.CallOperandVal;
5498     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5499       return;
5500     }
5501 
5502     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5503       OpInfo.ConstraintCode = "i";
5504       return;
5505     }
5506 
5507     // Otherwise, try to resolve it to something we know about by looking at
5508     // the actual operand type.
5509     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5510       OpInfo.ConstraintCode = Repl;
5511       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5512     }
5513   }
5514 }
5515 
5516 /// Given an exact SDIV by a constant, create a multiplication
5517 /// with the multiplicative inverse of the constant.
5518 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5519                               const SDLoc &dl, SelectionDAG &DAG,
5520                               SmallVectorImpl<SDNode *> &Created) {
5521   SDValue Op0 = N->getOperand(0);
5522   SDValue Op1 = N->getOperand(1);
5523   EVT VT = N->getValueType(0);
5524   EVT SVT = VT.getScalarType();
5525   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5526   EVT ShSVT = ShVT.getScalarType();
5527 
5528   bool UseSRA = false;
5529   SmallVector<SDValue, 16> Shifts, Factors;
5530 
5531   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5532     if (C->isZero())
5533       return false;
5534     APInt Divisor = C->getAPIntValue();
5535     unsigned Shift = Divisor.countTrailingZeros();
5536     if (Shift) {
5537       Divisor.ashrInPlace(Shift);
5538       UseSRA = true;
5539     }
5540     // Calculate the multiplicative inverse, using Newton's method.
5541     APInt t;
5542     APInt Factor = Divisor;
5543     while ((t = Divisor * Factor) != 1)
5544       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5545     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5546     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5547     return true;
5548   };
5549 
5550   // Collect all magic values from the build vector.
5551   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5552     return SDValue();
5553 
5554   SDValue Shift, Factor;
5555   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5556     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5557     Factor = DAG.getBuildVector(VT, dl, Factors);
5558   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5559     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5560            "Expected matchUnaryPredicate to return one element for scalable "
5561            "vectors");
5562     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5563     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5564   } else {
5565     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5566     Shift = Shifts[0];
5567     Factor = Factors[0];
5568   }
5569 
5570   SDValue Res = Op0;
5571 
5572   // Shift the value upfront if it is even, so the LSB is one.
5573   if (UseSRA) {
5574     // TODO: For UDIV use SRL instead of SRA.
5575     SDNodeFlags Flags;
5576     Flags.setExact(true);
5577     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5578     Created.push_back(Res.getNode());
5579   }
5580 
5581   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5582 }
5583 
5584 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5585                               SelectionDAG &DAG,
5586                               SmallVectorImpl<SDNode *> &Created) const {
5587   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5588   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5589   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5590     return SDValue(N, 0); // Lower SDIV as SDIV
5591   return SDValue();
5592 }
5593 
5594 SDValue
5595 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5596                               SelectionDAG &DAG,
5597                               SmallVectorImpl<SDNode *> &Created) const {
5598   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5599   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5600   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5601     return SDValue(N, 0); // Lower SREM as SREM
5602   return SDValue();
5603 }
5604 
5605 /// Given an ISD::SDIV node expressing a divide by constant,
5606 /// return a DAG expression to select that will generate the same value by
5607 /// multiplying by a magic number.
5608 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5609 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5610                                   bool IsAfterLegalization,
5611                                   SmallVectorImpl<SDNode *> &Created) const {
5612   SDLoc dl(N);
5613   EVT VT = N->getValueType(0);
5614   EVT SVT = VT.getScalarType();
5615   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5616   EVT ShSVT = ShVT.getScalarType();
5617   unsigned EltBits = VT.getScalarSizeInBits();
5618   EVT MulVT;
5619 
5620   // Check to see if we can do this.
5621   // FIXME: We should be more aggressive here.
5622   if (!isTypeLegal(VT)) {
5623     // Limit this to simple scalars for now.
5624     if (VT.isVector() || !VT.isSimple())
5625       return SDValue();
5626 
5627     // If this type will be promoted to a large enough type with a legal
5628     // multiply operation, we can go ahead and do this transform.
5629     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5630       return SDValue();
5631 
5632     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5633     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5634         !isOperationLegal(ISD::MUL, MulVT))
5635       return SDValue();
5636   }
5637 
5638   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5639   if (N->getFlags().hasExact())
5640     return BuildExactSDIV(*this, N, dl, DAG, Created);
5641 
5642   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5643 
5644   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5645     if (C->isZero())
5646       return false;
5647 
5648     const APInt &Divisor = C->getAPIntValue();
5649     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5650     int NumeratorFactor = 0;
5651     int ShiftMask = -1;
5652 
5653     if (Divisor.isOne() || Divisor.isAllOnes()) {
5654       // If d is +1/-1, we just multiply the numerator by +1/-1.
5655       NumeratorFactor = Divisor.getSExtValue();
5656       magics.Magic = 0;
5657       magics.ShiftAmount = 0;
5658       ShiftMask = 0;
5659     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5660       // If d > 0 and m < 0, add the numerator.
5661       NumeratorFactor = 1;
5662     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5663       // If d < 0 and m > 0, subtract the numerator.
5664       NumeratorFactor = -1;
5665     }
5666 
5667     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5668     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5669     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5670     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5671     return true;
5672   };
5673 
5674   SDValue N0 = N->getOperand(0);
5675   SDValue N1 = N->getOperand(1);
5676 
5677   // Collect the shifts / magic values from each element.
5678   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5679     return SDValue();
5680 
5681   SDValue MagicFactor, Factor, Shift, ShiftMask;
5682   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5683     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5684     Factor = DAG.getBuildVector(VT, dl, Factors);
5685     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5686     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5687   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5688     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5689            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5690            "Expected matchUnaryPredicate to return one element for scalable "
5691            "vectors");
5692     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5693     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5694     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5695     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5696   } else {
5697     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5698     MagicFactor = MagicFactors[0];
5699     Factor = Factors[0];
5700     Shift = Shifts[0];
5701     ShiftMask = ShiftMasks[0];
5702   }
5703 
5704   // Multiply the numerator (operand 0) by the magic value.
5705   // FIXME: We should support doing a MUL in a wider type.
5706   auto GetMULHS = [&](SDValue X, SDValue Y) {
5707     // If the type isn't legal, use a wider mul of the the type calculated
5708     // earlier.
5709     if (!isTypeLegal(VT)) {
5710       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5711       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5712       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5713       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5714                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5715       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5716     }
5717 
5718     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5719       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5720     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5721       SDValue LoHi =
5722           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5723       return SDValue(LoHi.getNode(), 1);
5724     }
5725     return SDValue();
5726   };
5727 
5728   SDValue Q = GetMULHS(N0, MagicFactor);
5729   if (!Q)
5730     return SDValue();
5731 
5732   Created.push_back(Q.getNode());
5733 
5734   // (Optionally) Add/subtract the numerator using Factor.
5735   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5736   Created.push_back(Factor.getNode());
5737   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5738   Created.push_back(Q.getNode());
5739 
5740   // Shift right algebraic by shift value.
5741   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5742   Created.push_back(Q.getNode());
5743 
5744   // Extract the sign bit, mask it and add it to the quotient.
5745   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5746   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5747   Created.push_back(T.getNode());
5748   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5749   Created.push_back(T.getNode());
5750   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5751 }
5752 
5753 /// Given an ISD::UDIV node expressing a divide by constant,
5754 /// return a DAG expression to select that will generate the same value by
5755 /// multiplying by a magic number.
5756 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5757 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5758                                   bool IsAfterLegalization,
5759                                   SmallVectorImpl<SDNode *> &Created) const {
5760   SDLoc dl(N);
5761   EVT VT = N->getValueType(0);
5762   EVT SVT = VT.getScalarType();
5763   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5764   EVT ShSVT = ShVT.getScalarType();
5765   unsigned EltBits = VT.getScalarSizeInBits();
5766   EVT MulVT;
5767 
5768   // Check to see if we can do this.
5769   // FIXME: We should be more aggressive here.
5770   if (!isTypeLegal(VT)) {
5771     // Limit this to simple scalars for now.
5772     if (VT.isVector() || !VT.isSimple())
5773       return SDValue();
5774 
5775     // If this type will be promoted to a large enough type with a legal
5776     // multiply operation, we can go ahead and do this transform.
5777     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5778       return SDValue();
5779 
5780     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5781     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5782         !isOperationLegal(ISD::MUL, MulVT))
5783       return SDValue();
5784   }
5785 
5786   bool UseNPQ = false;
5787   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5788 
5789   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5790     if (C->isZero())
5791       return false;
5792     // FIXME: We should use a narrower constant when the upper
5793     // bits are known to be zero.
5794     const APInt& Divisor = C->getAPIntValue();
5795     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5796     unsigned PreShift = 0, PostShift = 0;
5797 
5798     // If the divisor is even, we can avoid using the expensive fixup by
5799     // shifting the divided value upfront.
5800     if (magics.IsAdd != 0 && !Divisor[0]) {
5801       PreShift = Divisor.countTrailingZeros();
5802       // Get magic number for the shifted divisor.
5803       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5804       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5805     }
5806 
5807     APInt Magic = magics.Magic;
5808 
5809     unsigned SelNPQ;
5810     if (magics.IsAdd == 0 || Divisor.isOne()) {
5811       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5812              "We shouldn't generate an undefined shift!");
5813       PostShift = magics.ShiftAmount;
5814       SelNPQ = false;
5815     } else {
5816       PostShift = magics.ShiftAmount - 1;
5817       SelNPQ = true;
5818     }
5819 
5820     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5821     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5822     NPQFactors.push_back(
5823         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5824                                : APInt::getZero(EltBits),
5825                         dl, SVT));
5826     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5827     UseNPQ |= SelNPQ;
5828     return true;
5829   };
5830 
5831   SDValue N0 = N->getOperand(0);
5832   SDValue N1 = N->getOperand(1);
5833 
5834   // Collect the shifts/magic values from each element.
5835   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5836     return SDValue();
5837 
5838   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5839   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5840     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5841     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5842     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5843     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5844   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5845     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5846            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5847            "Expected matchUnaryPredicate to return one for scalable vectors");
5848     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5849     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5850     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5851     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5852   } else {
5853     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5854     PreShift = PreShifts[0];
5855     MagicFactor = MagicFactors[0];
5856     PostShift = PostShifts[0];
5857   }
5858 
5859   SDValue Q = N0;
5860   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5861   Created.push_back(Q.getNode());
5862 
5863   // FIXME: We should support doing a MUL in a wider type.
5864   auto GetMULHU = [&](SDValue X, SDValue Y) {
5865     // If the type isn't legal, use a wider mul of the the type calculated
5866     // earlier.
5867     if (!isTypeLegal(VT)) {
5868       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5869       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5870       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5871       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5872                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5873       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5874     }
5875 
5876     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5877       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5878     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5879       SDValue LoHi =
5880           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5881       return SDValue(LoHi.getNode(), 1);
5882     }
5883     return SDValue(); // No mulhu or equivalent
5884   };
5885 
5886   // Multiply the numerator (operand 0) by the magic value.
5887   Q = GetMULHU(Q, MagicFactor);
5888   if (!Q)
5889     return SDValue();
5890 
5891   Created.push_back(Q.getNode());
5892 
5893   if (UseNPQ) {
5894     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5895     Created.push_back(NPQ.getNode());
5896 
5897     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5898     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5899     if (VT.isVector())
5900       NPQ = GetMULHU(NPQ, NPQFactor);
5901     else
5902       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5903 
5904     Created.push_back(NPQ.getNode());
5905 
5906     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5907     Created.push_back(Q.getNode());
5908   }
5909 
5910   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5911   Created.push_back(Q.getNode());
5912 
5913   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5914 
5915   SDValue One = DAG.getConstant(1, dl, VT);
5916   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5917   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5918 }
5919 
5920 /// If all values in Values that *don't* match the predicate are same 'splat'
5921 /// value, then replace all values with that splat value.
5922 /// Else, if AlternativeReplacement was provided, then replace all values that
5923 /// do match predicate with AlternativeReplacement value.
5924 static void
5925 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5926                           std::function<bool(SDValue)> Predicate,
5927                           SDValue AlternativeReplacement = SDValue()) {
5928   SDValue Replacement;
5929   // Is there a value for which the Predicate does *NOT* match? What is it?
5930   auto SplatValue = llvm::find_if_not(Values, Predicate);
5931   if (SplatValue != Values.end()) {
5932     // Does Values consist only of SplatValue's and values matching Predicate?
5933     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5934           return Value == *SplatValue || Predicate(Value);
5935         })) // Then we shall replace values matching predicate with SplatValue.
5936       Replacement = *SplatValue;
5937   }
5938   if (!Replacement) {
5939     // Oops, we did not find the "baseline" splat value.
5940     if (!AlternativeReplacement)
5941       return; // Nothing to do.
5942     // Let's replace with provided value then.
5943     Replacement = AlternativeReplacement;
5944   }
5945   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5946 }
5947 
5948 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5949 /// where the divisor is constant and the comparison target is zero,
5950 /// return a DAG expression that will generate the same comparison result
5951 /// using only multiplications, additions and shifts/rotations.
5952 /// Ref: "Hacker's Delight" 10-17.
5953 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5954                                         SDValue CompTargetNode,
5955                                         ISD::CondCode Cond,
5956                                         DAGCombinerInfo &DCI,
5957                                         const SDLoc &DL) const {
5958   SmallVector<SDNode *, 5> Built;
5959   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5960                                          DCI, DL, Built)) {
5961     for (SDNode *N : Built)
5962       DCI.AddToWorklist(N);
5963     return Folded;
5964   }
5965 
5966   return SDValue();
5967 }
5968 
5969 SDValue
5970 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5971                                   SDValue CompTargetNode, ISD::CondCode Cond,
5972                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5973                                   SmallVectorImpl<SDNode *> &Created) const {
5974   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5975   // - D must be constant, with D = D0 * 2^K where D0 is odd
5976   // - P is the multiplicative inverse of D0 modulo 2^W
5977   // - Q = floor(((2^W) - 1) / D)
5978   // where W is the width of the common type of N and D.
5979   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5980          "Only applicable for (in)equality comparisons.");
5981 
5982   SelectionDAG &DAG = DCI.DAG;
5983 
5984   EVT VT = REMNode.getValueType();
5985   EVT SVT = VT.getScalarType();
5986   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5987   EVT ShSVT = ShVT.getScalarType();
5988 
5989   // If MUL is unavailable, we cannot proceed in any case.
5990   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5991     return SDValue();
5992 
5993   bool ComparingWithAllZeros = true;
5994   bool AllComparisonsWithNonZerosAreTautological = true;
5995   bool HadTautologicalLanes = false;
5996   bool AllLanesAreTautological = true;
5997   bool HadEvenDivisor = false;
5998   bool AllDivisorsArePowerOfTwo = true;
5999   bool HadTautologicalInvertedLanes = false;
6000   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6001 
6002   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6003     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6004     if (CDiv->isZero())
6005       return false;
6006 
6007     const APInt &D = CDiv->getAPIntValue();
6008     const APInt &Cmp = CCmp->getAPIntValue();
6009 
6010     ComparingWithAllZeros &= Cmp.isZero();
6011 
6012     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6013     // if C2 is not less than C1, the comparison is always false.
6014     // But we will only be able to produce the comparison that will give the
6015     // opposive tautological answer. So this lane would need to be fixed up.
6016     bool TautologicalInvertedLane = D.ule(Cmp);
6017     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6018 
6019     // If all lanes are tautological (either all divisors are ones, or divisor
6020     // is not greater than the constant we are comparing with),
6021     // we will prefer to avoid the fold.
6022     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6023     HadTautologicalLanes |= TautologicalLane;
6024     AllLanesAreTautological &= TautologicalLane;
6025 
6026     // If we are comparing with non-zero, we need'll need  to subtract said
6027     // comparison value from the LHS. But there is no point in doing that if
6028     // every lane where we are comparing with non-zero is tautological..
6029     if (!Cmp.isZero())
6030       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6031 
6032     // Decompose D into D0 * 2^K
6033     unsigned K = D.countTrailingZeros();
6034     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6035     APInt D0 = D.lshr(K);
6036 
6037     // D is even if it has trailing zeros.
6038     HadEvenDivisor |= (K != 0);
6039     // D is a power-of-two if D0 is one.
6040     // If all divisors are power-of-two, we will prefer to avoid the fold.
6041     AllDivisorsArePowerOfTwo &= D0.isOne();
6042 
6043     // P = inv(D0, 2^W)
6044     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6045     unsigned W = D.getBitWidth();
6046     APInt P = D0.zext(W + 1)
6047                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6048                   .trunc(W);
6049     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6050     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6051 
6052     // Q = floor((2^W - 1) u/ D)
6053     // R = ((2^W - 1) u% D)
6054     APInt Q, R;
6055     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6056 
6057     // If we are comparing with zero, then that comparison constant is okay,
6058     // else it may need to be one less than that.
6059     if (Cmp.ugt(R))
6060       Q -= 1;
6061 
6062     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6063            "We are expecting that K is always less than all-ones for ShSVT");
6064 
6065     // If the lane is tautological the result can be constant-folded.
6066     if (TautologicalLane) {
6067       // Set P and K amount to a bogus values so we can try to splat them.
6068       P = 0;
6069       K = -1;
6070       // And ensure that comparison constant is tautological,
6071       // it will always compare true/false.
6072       Q = -1;
6073     }
6074 
6075     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6076     KAmts.push_back(
6077         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6078     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6079     return true;
6080   };
6081 
6082   SDValue N = REMNode.getOperand(0);
6083   SDValue D = REMNode.getOperand(1);
6084 
6085   // Collect the values from each element.
6086   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6087     return SDValue();
6088 
6089   // If all lanes are tautological, the result can be constant-folded.
6090   if (AllLanesAreTautological)
6091     return SDValue();
6092 
6093   // If this is a urem by a powers-of-two, avoid the fold since it can be
6094   // best implemented as a bit test.
6095   if (AllDivisorsArePowerOfTwo)
6096     return SDValue();
6097 
6098   SDValue PVal, KVal, QVal;
6099   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6100     if (HadTautologicalLanes) {
6101       // Try to turn PAmts into a splat, since we don't care about the values
6102       // that are currently '0'. If we can't, just keep '0'`s.
6103       turnVectorIntoSplatVector(PAmts, isNullConstant);
6104       // Try to turn KAmts into a splat, since we don't care about the values
6105       // that are currently '-1'. If we can't, change them to '0'`s.
6106       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6107                                 DAG.getConstant(0, DL, ShSVT));
6108     }
6109 
6110     PVal = DAG.getBuildVector(VT, DL, PAmts);
6111     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6112     QVal = DAG.getBuildVector(VT, DL, QAmts);
6113   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6114     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6115            "Expected matchBinaryPredicate to return one element for "
6116            "SPLAT_VECTORs");
6117     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6118     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6119     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6120   } else {
6121     PVal = PAmts[0];
6122     KVal = KAmts[0];
6123     QVal = QAmts[0];
6124   }
6125 
6126   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6127     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6128       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6129     assert(CompTargetNode.getValueType() == N.getValueType() &&
6130            "Expecting that the types on LHS and RHS of comparisons match.");
6131     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6132   }
6133 
6134   // (mul N, P)
6135   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6136   Created.push_back(Op0.getNode());
6137 
6138   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6139   // divisors as a performance improvement, since rotating by 0 is a no-op.
6140   if (HadEvenDivisor) {
6141     // We need ROTR to do this.
6142     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6143       return SDValue();
6144     // UREM: (rotr (mul N, P), K)
6145     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6146     Created.push_back(Op0.getNode());
6147   }
6148 
6149   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6150   SDValue NewCC =
6151       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6152                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6153   if (!HadTautologicalInvertedLanes)
6154     return NewCC;
6155 
6156   // If any lanes previously compared always-false, the NewCC will give
6157   // always-true result for them, so we need to fixup those lanes.
6158   // Or the other way around for inequality predicate.
6159   assert(VT.isVector() && "Can/should only get here for vectors.");
6160   Created.push_back(NewCC.getNode());
6161 
6162   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6163   // if C2 is not less than C1, the comparison is always false.
6164   // But we have produced the comparison that will give the
6165   // opposive tautological answer. So these lanes would need to be fixed up.
6166   SDValue TautologicalInvertedChannels =
6167       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6168   Created.push_back(TautologicalInvertedChannels.getNode());
6169 
6170   // NOTE: we avoid letting illegal types through even if we're before legalize
6171   // ops – legalization has a hard time producing good code for this.
6172   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6173     // If we have a vector select, let's replace the comparison results in the
6174     // affected lanes with the correct tautological result.
6175     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6176                                               DL, SETCCVT, SETCCVT);
6177     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6178                        Replacement, NewCC);
6179   }
6180 
6181   // Else, we can just invert the comparison result in the appropriate lanes.
6182   //
6183   // NOTE: see the note above VSELECT above.
6184   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6185     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6186                        TautologicalInvertedChannels);
6187 
6188   return SDValue(); // Don't know how to lower.
6189 }
6190 
6191 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6192 /// where the divisor is constant and the comparison target is zero,
6193 /// return a DAG expression that will generate the same comparison result
6194 /// using only multiplications, additions and shifts/rotations.
6195 /// Ref: "Hacker's Delight" 10-17.
6196 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6197                                         SDValue CompTargetNode,
6198                                         ISD::CondCode Cond,
6199                                         DAGCombinerInfo &DCI,
6200                                         const SDLoc &DL) const {
6201   SmallVector<SDNode *, 7> Built;
6202   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6203                                          DCI, DL, Built)) {
6204     assert(Built.size() <= 7 && "Max size prediction failed.");
6205     for (SDNode *N : Built)
6206       DCI.AddToWorklist(N);
6207     return Folded;
6208   }
6209 
6210   return SDValue();
6211 }
6212 
6213 SDValue
6214 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6215                                   SDValue CompTargetNode, ISD::CondCode Cond,
6216                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6217                                   SmallVectorImpl<SDNode *> &Created) const {
6218   // Fold:
6219   //   (seteq/ne (srem N, D), 0)
6220   // To:
6221   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6222   //
6223   // - D must be constant, with D = D0 * 2^K where D0 is odd
6224   // - P is the multiplicative inverse of D0 modulo 2^W
6225   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6226   // - Q = floor((2 * A) / (2^K))
6227   // where W is the width of the common type of N and D.
6228   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6229          "Only applicable for (in)equality comparisons.");
6230 
6231   SelectionDAG &DAG = DCI.DAG;
6232 
6233   EVT VT = REMNode.getValueType();
6234   EVT SVT = VT.getScalarType();
6235   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6236   EVT ShSVT = ShVT.getScalarType();
6237 
6238   // If we are after ops legalization, and MUL is unavailable, we can not
6239   // proceed.
6240   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6241     return SDValue();
6242 
6243   // TODO: Could support comparing with non-zero too.
6244   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6245   if (!CompTarget || !CompTarget->isZero())
6246     return SDValue();
6247 
6248   bool HadIntMinDivisor = false;
6249   bool HadOneDivisor = false;
6250   bool AllDivisorsAreOnes = true;
6251   bool HadEvenDivisor = false;
6252   bool NeedToApplyOffset = false;
6253   bool AllDivisorsArePowerOfTwo = true;
6254   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6255 
6256   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6257     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6258     if (C->isZero())
6259       return false;
6260 
6261     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6262 
6263     // WARNING: this fold is only valid for positive divisors!
6264     APInt D = C->getAPIntValue();
6265     if (D.isNegative())
6266       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6267 
6268     HadIntMinDivisor |= D.isMinSignedValue();
6269 
6270     // If all divisors are ones, we will prefer to avoid the fold.
6271     HadOneDivisor |= D.isOne();
6272     AllDivisorsAreOnes &= D.isOne();
6273 
6274     // Decompose D into D0 * 2^K
6275     unsigned K = D.countTrailingZeros();
6276     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6277     APInt D0 = D.lshr(K);
6278 
6279     if (!D.isMinSignedValue()) {
6280       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6281       // we don't care about this lane in this fold, we'll special-handle it.
6282       HadEvenDivisor |= (K != 0);
6283     }
6284 
6285     // D is a power-of-two if D0 is one. This includes INT_MIN.
6286     // If all divisors are power-of-two, we will prefer to avoid the fold.
6287     AllDivisorsArePowerOfTwo &= D0.isOne();
6288 
6289     // P = inv(D0, 2^W)
6290     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6291     unsigned W = D.getBitWidth();
6292     APInt P = D0.zext(W + 1)
6293                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6294                   .trunc(W);
6295     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6296     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6297 
6298     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6299     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6300     A.clearLowBits(K);
6301 
6302     if (!D.isMinSignedValue()) {
6303       // If divisor INT_MIN, then we don't care about this lane in this fold,
6304       // we'll special-handle it.
6305       NeedToApplyOffset |= A != 0;
6306     }
6307 
6308     // Q = floor((2 * A) / (2^K))
6309     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6310 
6311     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6312            "We are expecting that A is always less than all-ones for SVT");
6313     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6314            "We are expecting that K is always less than all-ones for ShSVT");
6315 
6316     // If the divisor is 1 the result can be constant-folded. Likewise, we
6317     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6318     if (D.isOne()) {
6319       // Set P, A and K to a bogus values so we can try to splat them.
6320       P = 0;
6321       A = -1;
6322       K = -1;
6323 
6324       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6325       Q = -1;
6326     }
6327 
6328     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6329     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6330     KAmts.push_back(
6331         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6332     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6333     return true;
6334   };
6335 
6336   SDValue N = REMNode.getOperand(0);
6337   SDValue D = REMNode.getOperand(1);
6338 
6339   // Collect the values from each element.
6340   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6341     return SDValue();
6342 
6343   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6344   if (AllDivisorsAreOnes)
6345     return SDValue();
6346 
6347   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6348   // since it can be best implemented as a bit test.
6349   if (AllDivisorsArePowerOfTwo)
6350     return SDValue();
6351 
6352   SDValue PVal, AVal, KVal, QVal;
6353   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6354     if (HadOneDivisor) {
6355       // Try to turn PAmts into a splat, since we don't care about the values
6356       // that are currently '0'. If we can't, just keep '0'`s.
6357       turnVectorIntoSplatVector(PAmts, isNullConstant);
6358       // Try to turn AAmts into a splat, since we don't care about the
6359       // values that are currently '-1'. If we can't, change them to '0'`s.
6360       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6361                                 DAG.getConstant(0, DL, SVT));
6362       // Try to turn KAmts into a splat, since we don't care about the values
6363       // that are currently '-1'. If we can't, change them to '0'`s.
6364       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6365                                 DAG.getConstant(0, DL, ShSVT));
6366     }
6367 
6368     PVal = DAG.getBuildVector(VT, DL, PAmts);
6369     AVal = DAG.getBuildVector(VT, DL, AAmts);
6370     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6371     QVal = DAG.getBuildVector(VT, DL, QAmts);
6372   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6373     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6374            QAmts.size() == 1 &&
6375            "Expected matchUnaryPredicate to return one element for scalable "
6376            "vectors");
6377     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6378     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6379     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6380     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6381   } else {
6382     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6383     PVal = PAmts[0];
6384     AVal = AAmts[0];
6385     KVal = KAmts[0];
6386     QVal = QAmts[0];
6387   }
6388 
6389   // (mul N, P)
6390   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6391   Created.push_back(Op0.getNode());
6392 
6393   if (NeedToApplyOffset) {
6394     // We need ADD to do this.
6395     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6396       return SDValue();
6397 
6398     // (add (mul N, P), A)
6399     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6400     Created.push_back(Op0.getNode());
6401   }
6402 
6403   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6404   // divisors as a performance improvement, since rotating by 0 is a no-op.
6405   if (HadEvenDivisor) {
6406     // We need ROTR to do this.
6407     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6408       return SDValue();
6409     // SREM: (rotr (add (mul N, P), A), K)
6410     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6411     Created.push_back(Op0.getNode());
6412   }
6413 
6414   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6415   SDValue Fold =
6416       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6417                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6418 
6419   // If we didn't have lanes with INT_MIN divisor, then we're done.
6420   if (!HadIntMinDivisor)
6421     return Fold;
6422 
6423   // That fold is only valid for positive divisors. Which effectively means,
6424   // it is invalid for INT_MIN divisors. So if we have such a lane,
6425   // we must fix-up results for said lanes.
6426   assert(VT.isVector() && "Can/should only get here for vectors.");
6427 
6428   // NOTE: we avoid letting illegal types through even if we're before legalize
6429   // ops – legalization has a hard time producing good code for the code that
6430   // follows.
6431   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6432       !isOperationLegalOrCustom(ISD::AND, VT) ||
6433       !isOperationLegalOrCustom(Cond, VT) ||
6434       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6435     return SDValue();
6436 
6437   Created.push_back(Fold.getNode());
6438 
6439   SDValue IntMin = DAG.getConstant(
6440       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6441   SDValue IntMax = DAG.getConstant(
6442       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6443   SDValue Zero =
6444       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6445 
6446   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6447   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6448   Created.push_back(DivisorIsIntMin.getNode());
6449 
6450   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6451   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6452   Created.push_back(Masked.getNode());
6453   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6454   Created.push_back(MaskedIsZero.getNode());
6455 
6456   // To produce final result we need to blend 2 vectors: 'SetCC' and
6457   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6458   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6459   // constant-folded, select can get lowered to a shuffle with constant mask.
6460   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6461                                 MaskedIsZero, Fold);
6462 
6463   return Blended;
6464 }
6465 
6466 bool TargetLowering::
6467 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6468   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6469     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6470                                 "be a constant integer");
6471     return true;
6472   }
6473 
6474   return false;
6475 }
6476 
6477 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6478                                          const DenormalMode &Mode) const {
6479   SDLoc DL(Op);
6480   EVT VT = Op.getValueType();
6481   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6482   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6483   // Testing it with denormal inputs to avoid wrong estimate.
6484   if (Mode.Input == DenormalMode::IEEE) {
6485     // This is specifically a check for the handling of denormal inputs,
6486     // not the result.
6487 
6488     // Test = fabs(X) < SmallestNormal
6489     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6490     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6491     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6492     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6493     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6494   }
6495   // Test = X == 0.0
6496   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6497 }
6498 
6499 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6500                                              bool LegalOps, bool OptForSize,
6501                                              NegatibleCost &Cost,
6502                                              unsigned Depth) const {
6503   // fneg is removable even if it has multiple uses.
6504   if (Op.getOpcode() == ISD::FNEG) {
6505     Cost = NegatibleCost::Cheaper;
6506     return Op.getOperand(0);
6507   }
6508 
6509   // Don't recurse exponentially.
6510   if (Depth > SelectionDAG::MaxRecursionDepth)
6511     return SDValue();
6512 
6513   // Pre-increment recursion depth for use in recursive calls.
6514   ++Depth;
6515   const SDNodeFlags Flags = Op->getFlags();
6516   const TargetOptions &Options = DAG.getTarget().Options;
6517   EVT VT = Op.getValueType();
6518   unsigned Opcode = Op.getOpcode();
6519 
6520   // Don't allow anything with multiple uses unless we know it is free.
6521   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6522     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6523                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6524     if (!IsFreeExtend)
6525       return SDValue();
6526   }
6527 
6528   auto RemoveDeadNode = [&](SDValue N) {
6529     if (N && N.getNode()->use_empty())
6530       DAG.RemoveDeadNode(N.getNode());
6531   };
6532 
6533   SDLoc DL(Op);
6534 
6535   // Because getNegatedExpression can delete nodes we need a handle to keep
6536   // temporary nodes alive in case the recursion manages to create an identical
6537   // node.
6538   std::list<HandleSDNode> Handles;
6539 
6540   switch (Opcode) {
6541   case ISD::ConstantFP: {
6542     // Don't invert constant FP values after legalization unless the target says
6543     // the negated constant is legal.
6544     bool IsOpLegal =
6545         isOperationLegal(ISD::ConstantFP, VT) ||
6546         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6547                      OptForSize);
6548 
6549     if (LegalOps && !IsOpLegal)
6550       break;
6551 
6552     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6553     V.changeSign();
6554     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6555 
6556     // If we already have the use of the negated floating constant, it is free
6557     // to negate it even it has multiple uses.
6558     if (!Op.hasOneUse() && CFP.use_empty())
6559       break;
6560     Cost = NegatibleCost::Neutral;
6561     return CFP;
6562   }
6563   case ISD::BUILD_VECTOR: {
6564     // Only permit BUILD_VECTOR of constants.
6565     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6566           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6567         }))
6568       break;
6569 
6570     bool IsOpLegal =
6571         (isOperationLegal(ISD::ConstantFP, VT) &&
6572          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6573         llvm::all_of(Op->op_values(), [&](SDValue N) {
6574           return N.isUndef() ||
6575                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6576                               OptForSize);
6577         });
6578 
6579     if (LegalOps && !IsOpLegal)
6580       break;
6581 
6582     SmallVector<SDValue, 4> Ops;
6583     for (SDValue C : Op->op_values()) {
6584       if (C.isUndef()) {
6585         Ops.push_back(C);
6586         continue;
6587       }
6588       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6589       V.changeSign();
6590       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6591     }
6592     Cost = NegatibleCost::Neutral;
6593     return DAG.getBuildVector(VT, DL, Ops);
6594   }
6595   case ISD::FADD: {
6596     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6597       break;
6598 
6599     // After operation legalization, it might not be legal to create new FSUBs.
6600     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6601       break;
6602     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6603 
6604     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6605     NegatibleCost CostX = NegatibleCost::Expensive;
6606     SDValue NegX =
6607         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6608     // Prevent this node from being deleted by the next call.
6609     if (NegX)
6610       Handles.emplace_back(NegX);
6611 
6612     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6613     NegatibleCost CostY = NegatibleCost::Expensive;
6614     SDValue NegY =
6615         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6616 
6617     // We're done with the handles.
6618     Handles.clear();
6619 
6620     // Negate the X if its cost is less or equal than Y.
6621     if (NegX && (CostX <= CostY)) {
6622       Cost = CostX;
6623       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6624       if (NegY != N)
6625         RemoveDeadNode(NegY);
6626       return N;
6627     }
6628 
6629     // Negate the Y if it is not expensive.
6630     if (NegY) {
6631       Cost = CostY;
6632       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6633       if (NegX != N)
6634         RemoveDeadNode(NegX);
6635       return N;
6636     }
6637     break;
6638   }
6639   case ISD::FSUB: {
6640     // We can't turn -(A-B) into B-A when we honor signed zeros.
6641     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6642       break;
6643 
6644     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6645     // fold (fneg (fsub 0, Y)) -> Y
6646     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6647       if (C->isZero()) {
6648         Cost = NegatibleCost::Cheaper;
6649         return Y;
6650       }
6651 
6652     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6653     Cost = NegatibleCost::Neutral;
6654     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6655   }
6656   case ISD::FMUL:
6657   case ISD::FDIV: {
6658     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6659 
6660     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6661     NegatibleCost CostX = NegatibleCost::Expensive;
6662     SDValue NegX =
6663         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6664     // Prevent this node from being deleted by the next call.
6665     if (NegX)
6666       Handles.emplace_back(NegX);
6667 
6668     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6669     NegatibleCost CostY = NegatibleCost::Expensive;
6670     SDValue NegY =
6671         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6672 
6673     // We're done with the handles.
6674     Handles.clear();
6675 
6676     // Negate the X if its cost is less or equal than Y.
6677     if (NegX && (CostX <= CostY)) {
6678       Cost = CostX;
6679       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6680       if (NegY != N)
6681         RemoveDeadNode(NegY);
6682       return N;
6683     }
6684 
6685     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6686     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6687       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6688         break;
6689 
6690     // Negate the Y if it is not expensive.
6691     if (NegY) {
6692       Cost = CostY;
6693       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6694       if (NegX != N)
6695         RemoveDeadNode(NegX);
6696       return N;
6697     }
6698     break;
6699   }
6700   case ISD::FMA:
6701   case ISD::FMAD: {
6702     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6703       break;
6704 
6705     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6706     NegatibleCost CostZ = NegatibleCost::Expensive;
6707     SDValue NegZ =
6708         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6709     // Give up if fail to negate the Z.
6710     if (!NegZ)
6711       break;
6712 
6713     // Prevent this node from being deleted by the next two calls.
6714     Handles.emplace_back(NegZ);
6715 
6716     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6717     NegatibleCost CostX = NegatibleCost::Expensive;
6718     SDValue NegX =
6719         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6720     // Prevent this node from being deleted by the next call.
6721     if (NegX)
6722       Handles.emplace_back(NegX);
6723 
6724     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6725     NegatibleCost CostY = NegatibleCost::Expensive;
6726     SDValue NegY =
6727         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6728 
6729     // We're done with the handles.
6730     Handles.clear();
6731 
6732     // Negate the X if its cost is less or equal than Y.
6733     if (NegX && (CostX <= CostY)) {
6734       Cost = std::min(CostX, CostZ);
6735       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6736       if (NegY != N)
6737         RemoveDeadNode(NegY);
6738       return N;
6739     }
6740 
6741     // Negate the Y if it is not expensive.
6742     if (NegY) {
6743       Cost = std::min(CostY, CostZ);
6744       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6745       if (NegX != N)
6746         RemoveDeadNode(NegX);
6747       return N;
6748     }
6749     break;
6750   }
6751 
6752   case ISD::FP_EXTEND:
6753   case ISD::FSIN:
6754     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6755                                             OptForSize, Cost, Depth))
6756       return DAG.getNode(Opcode, DL, VT, NegV);
6757     break;
6758   case ISD::FP_ROUND:
6759     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6760                                             OptForSize, Cost, Depth))
6761       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6762     break;
6763   }
6764 
6765   return SDValue();
6766 }
6767 
6768 //===----------------------------------------------------------------------===//
6769 // Legalization Utilities
6770 //===----------------------------------------------------------------------===//
6771 
6772 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6773                                     SDValue LHS, SDValue RHS,
6774                                     SmallVectorImpl<SDValue> &Result,
6775                                     EVT HiLoVT, SelectionDAG &DAG,
6776                                     MulExpansionKind Kind, SDValue LL,
6777                                     SDValue LH, SDValue RL, SDValue RH) const {
6778   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6779          Opcode == ISD::SMUL_LOHI);
6780 
6781   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6782                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6783   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6784                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6785   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6786                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6787   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6788                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6789 
6790   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6791     return false;
6792 
6793   unsigned OuterBitSize = VT.getScalarSizeInBits();
6794   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6795 
6796   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6797   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6798          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6799 
6800   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6801   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6802                           bool Signed) -> bool {
6803     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6804       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6805       Hi = SDValue(Lo.getNode(), 1);
6806       return true;
6807     }
6808     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6809       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6810       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6811       return true;
6812     }
6813     return false;
6814   };
6815 
6816   SDValue Lo, Hi;
6817 
6818   if (!LL.getNode() && !RL.getNode() &&
6819       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6820     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6821     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6822   }
6823 
6824   if (!LL.getNode())
6825     return false;
6826 
6827   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6828   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6829       DAG.MaskedValueIsZero(RHS, HighMask)) {
6830     // The inputs are both zero-extended.
6831     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6832       Result.push_back(Lo);
6833       Result.push_back(Hi);
6834       if (Opcode != ISD::MUL) {
6835         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6836         Result.push_back(Zero);
6837         Result.push_back(Zero);
6838       }
6839       return true;
6840     }
6841   }
6842 
6843   if (!VT.isVector() && Opcode == ISD::MUL &&
6844       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6845       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6846     // The input values are both sign-extended.
6847     // TODO non-MUL case?
6848     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6849       Result.push_back(Lo);
6850       Result.push_back(Hi);
6851       return true;
6852     }
6853   }
6854 
6855   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6856   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6857   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6858 
6859   if (!LH.getNode() && !RH.getNode() &&
6860       isOperationLegalOrCustom(ISD::SRL, VT) &&
6861       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6862     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6863     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6864     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6865     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6866   }
6867 
6868   if (!LH.getNode())
6869     return false;
6870 
6871   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6872     return false;
6873 
6874   Result.push_back(Lo);
6875 
6876   if (Opcode == ISD::MUL) {
6877     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6878     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6879     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6880     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6881     Result.push_back(Hi);
6882     return true;
6883   }
6884 
6885   // Compute the full width result.
6886   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6887     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6888     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6889     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6890     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6891   };
6892 
6893   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6894   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6895     return false;
6896 
6897   // This is effectively the add part of a multiply-add of half-sized operands,
6898   // so it cannot overflow.
6899   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6900 
6901   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6902     return false;
6903 
6904   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6905   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6906 
6907   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6908                   isOperationLegalOrCustom(ISD::ADDE, VT));
6909   if (UseGlue)
6910     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6911                        Merge(Lo, Hi));
6912   else
6913     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6914                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6915 
6916   SDValue Carry = Next.getValue(1);
6917   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6918   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6919 
6920   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6921     return false;
6922 
6923   if (UseGlue)
6924     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6925                      Carry);
6926   else
6927     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6928                      Zero, Carry);
6929 
6930   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6931 
6932   if (Opcode == ISD::SMUL_LOHI) {
6933     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6934                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6935     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6936 
6937     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6938                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6939     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6940   }
6941 
6942   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6943   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6944   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6945   return true;
6946 }
6947 
6948 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6949                                SelectionDAG &DAG, MulExpansionKind Kind,
6950                                SDValue LL, SDValue LH, SDValue RL,
6951                                SDValue RH) const {
6952   SmallVector<SDValue, 2> Result;
6953   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6954                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6955                            DAG, Kind, LL, LH, RL, RH);
6956   if (Ok) {
6957     assert(Result.size() == 2);
6958     Lo = Result[0];
6959     Hi = Result[1];
6960   }
6961   return Ok;
6962 }
6963 
6964 // Check that (every element of) Z is undef or not an exact multiple of BW.
6965 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6966   return ISD::matchUnaryPredicate(
6967       Z,
6968       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6969       true);
6970 }
6971 
6972 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6973                                           SelectionDAG &DAG) const {
6974   EVT VT = Node->getValueType(0);
6975 
6976   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6977                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6978                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6979                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6980     return SDValue();
6981 
6982   SDValue X = Node->getOperand(0);
6983   SDValue Y = Node->getOperand(1);
6984   SDValue Z = Node->getOperand(2);
6985 
6986   unsigned BW = VT.getScalarSizeInBits();
6987   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6988   SDLoc DL(SDValue(Node, 0));
6989 
6990   EVT ShVT = Z.getValueType();
6991 
6992   // If a funnel shift in the other direction is more supported, use it.
6993   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6994   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6995       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6996     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6997       // fshl X, Y, Z -> fshr X, Y, -Z
6998       // fshr X, Y, Z -> fshl X, Y, -Z
6999       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7000       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7001     } else {
7002       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7003       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7004       SDValue One = DAG.getConstant(1, DL, ShVT);
7005       if (IsFSHL) {
7006         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7007         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7008       } else {
7009         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7010         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7011       }
7012       Z = DAG.getNOT(DL, Z, ShVT);
7013     }
7014     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7015   }
7016 
7017   SDValue ShX, ShY;
7018   SDValue ShAmt, InvShAmt;
7019   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7020     // fshl: X << C | Y >> (BW - C)
7021     // fshr: X << (BW - C) | Y >> C
7022     // where C = Z % BW is not zero
7023     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7024     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7025     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7026     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7027     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7028   } else {
7029     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7030     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7031     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7032     if (isPowerOf2_32(BW)) {
7033       // Z % BW -> Z & (BW - 1)
7034       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7035       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7036       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7037     } else {
7038       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7039       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7040       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7041     }
7042 
7043     SDValue One = DAG.getConstant(1, DL, ShVT);
7044     if (IsFSHL) {
7045       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7046       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7047       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7048     } else {
7049       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7050       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7051       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7052     }
7053   }
7054   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7055 }
7056 
7057 // TODO: Merge with expandFunnelShift.
7058 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7059                                   SelectionDAG &DAG) const {
7060   EVT VT = Node->getValueType(0);
7061   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7062   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7063   SDValue Op0 = Node->getOperand(0);
7064   SDValue Op1 = Node->getOperand(1);
7065   SDLoc DL(SDValue(Node, 0));
7066 
7067   EVT ShVT = Op1.getValueType();
7068   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7069 
7070   // If a rotate in the other direction is more supported, use it.
7071   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7072   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7073       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7074     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7075     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7076   }
7077 
7078   if (!AllowVectorOps && VT.isVector() &&
7079       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7080        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7081        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7082        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7083        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7084     return SDValue();
7085 
7086   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7087   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7088   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7089   SDValue ShVal;
7090   SDValue HsVal;
7091   if (isPowerOf2_32(EltSizeInBits)) {
7092     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7093     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7094     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7095     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7096     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7097     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7098     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7099   } else {
7100     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7101     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7102     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7103     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7104     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7105     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7106     SDValue One = DAG.getConstant(1, DL, ShVT);
7107     HsVal =
7108         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7109   }
7110   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7111 }
7112 
7113 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7114                                       SelectionDAG &DAG) const {
7115   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7116   EVT VT = Node->getValueType(0);
7117   unsigned VTBits = VT.getScalarSizeInBits();
7118   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7119 
7120   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7121   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7122   SDValue ShOpLo = Node->getOperand(0);
7123   SDValue ShOpHi = Node->getOperand(1);
7124   SDValue ShAmt = Node->getOperand(2);
7125   EVT ShAmtVT = ShAmt.getValueType();
7126   EVT ShAmtCCVT =
7127       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7128   SDLoc dl(Node);
7129 
7130   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7131   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7132   // away during isel.
7133   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7134                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7135   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7136                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7137                        : DAG.getConstant(0, dl, VT);
7138 
7139   SDValue Tmp2, Tmp3;
7140   if (IsSHL) {
7141     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7142     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7143   } else {
7144     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7145     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7146   }
7147 
7148   // If the shift amount is larger or equal than the width of a part we don't
7149   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7150   // values for large shift amounts.
7151   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7152                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7153   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7154                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7155 
7156   if (IsSHL) {
7157     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7158     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7159   } else {
7160     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7161     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7162   }
7163 }
7164 
7165 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7166                                       SelectionDAG &DAG) const {
7167   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7168   SDValue Src = Node->getOperand(OpNo);
7169   EVT SrcVT = Src.getValueType();
7170   EVT DstVT = Node->getValueType(0);
7171   SDLoc dl(SDValue(Node, 0));
7172 
7173   // FIXME: Only f32 to i64 conversions are supported.
7174   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7175     return false;
7176 
7177   if (Node->isStrictFPOpcode())
7178     // When a NaN is converted to an integer a trap is allowed. We can't
7179     // use this expansion here because it would eliminate that trap. Other
7180     // traps are also allowed and cannot be eliminated. See
7181     // IEEE 754-2008 sec 5.8.
7182     return false;
7183 
7184   // Expand f32 -> i64 conversion
7185   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7186   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7187   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7188   EVT IntVT = SrcVT.changeTypeToInteger();
7189   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7190 
7191   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7192   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7193   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7194   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7195   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7196   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7197 
7198   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7199 
7200   SDValue ExponentBits = DAG.getNode(
7201       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7202       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7203   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7204 
7205   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7206                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7207                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7208   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7209 
7210   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7211                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7212                           DAG.getConstant(0x00800000, dl, IntVT));
7213 
7214   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7215 
7216   R = DAG.getSelectCC(
7217       dl, Exponent, ExponentLoBit,
7218       DAG.getNode(ISD::SHL, dl, DstVT, R,
7219                   DAG.getZExtOrTrunc(
7220                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7221                       dl, IntShVT)),
7222       DAG.getNode(ISD::SRL, dl, DstVT, R,
7223                   DAG.getZExtOrTrunc(
7224                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7225                       dl, IntShVT)),
7226       ISD::SETGT);
7227 
7228   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7229                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7230 
7231   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7232                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7233   return true;
7234 }
7235 
7236 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7237                                       SDValue &Chain,
7238                                       SelectionDAG &DAG) const {
7239   SDLoc dl(SDValue(Node, 0));
7240   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7241   SDValue Src = Node->getOperand(OpNo);
7242 
7243   EVT SrcVT = Src.getValueType();
7244   EVT DstVT = Node->getValueType(0);
7245   EVT SetCCVT =
7246       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7247   EVT DstSetCCVT =
7248       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7249 
7250   // Only expand vector types if we have the appropriate vector bit operations.
7251   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7252                                                    ISD::FP_TO_SINT;
7253   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7254                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7255     return false;
7256 
7257   // If the maximum float value is smaller then the signed integer range,
7258   // the destination signmask can't be represented by the float, so we can
7259   // just use FP_TO_SINT directly.
7260   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7261   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7262   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7263   if (APFloat::opOverflow &
7264       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7265     if (Node->isStrictFPOpcode()) {
7266       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7267                            { Node->getOperand(0), Src });
7268       Chain = Result.getValue(1);
7269     } else
7270       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7271     return true;
7272   }
7273 
7274   // Don't expand it if there isn't cheap fsub instruction.
7275   if (!isOperationLegalOrCustom(
7276           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7277     return false;
7278 
7279   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7280   SDValue Sel;
7281 
7282   if (Node->isStrictFPOpcode()) {
7283     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7284                        Node->getOperand(0), /*IsSignaling*/ true);
7285     Chain = Sel.getValue(1);
7286   } else {
7287     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7288   }
7289 
7290   bool Strict = Node->isStrictFPOpcode() ||
7291                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7292 
7293   if (Strict) {
7294     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7295     // signmask then offset (the result of which should be fully representable).
7296     // Sel = Src < 0x8000000000000000
7297     // FltOfs = select Sel, 0, 0x8000000000000000
7298     // IntOfs = select Sel, 0, 0x8000000000000000
7299     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7300 
7301     // TODO: Should any fast-math-flags be set for the FSUB?
7302     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7303                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7304     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7305     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7306                                    DAG.getConstant(0, dl, DstVT),
7307                                    DAG.getConstant(SignMask, dl, DstVT));
7308     SDValue SInt;
7309     if (Node->isStrictFPOpcode()) {
7310       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7311                                 { Chain, Src, FltOfs });
7312       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7313                          { Val.getValue(1), Val });
7314       Chain = SInt.getValue(1);
7315     } else {
7316       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7317       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7318     }
7319     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7320   } else {
7321     // Expand based on maximum range of FP_TO_SINT:
7322     // True = fp_to_sint(Src)
7323     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7324     // Result = select (Src < 0x8000000000000000), True, False
7325 
7326     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7327     // TODO: Should any fast-math-flags be set for the FSUB?
7328     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7329                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7330     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7331                         DAG.getConstant(SignMask, dl, DstVT));
7332     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7333     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7334   }
7335   return true;
7336 }
7337 
7338 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7339                                       SDValue &Chain,
7340                                       SelectionDAG &DAG) const {
7341   // This transform is not correct for converting 0 when rounding mode is set
7342   // to round toward negative infinity which will produce -0.0. So disable under
7343   // strictfp.
7344   if (Node->isStrictFPOpcode())
7345     return false;
7346 
7347   SDValue Src = Node->getOperand(0);
7348   EVT SrcVT = Src.getValueType();
7349   EVT DstVT = Node->getValueType(0);
7350 
7351   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7352     return false;
7353 
7354   // Only expand vector types if we have the appropriate vector bit operations.
7355   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7356                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7357                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7358                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7359                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7360     return false;
7361 
7362   SDLoc dl(SDValue(Node, 0));
7363   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7364 
7365   // Implementation of unsigned i64 to f64 following the algorithm in
7366   // __floatundidf in compiler_rt.  This implementation performs rounding
7367   // correctly in all rounding modes with the exception of converting 0
7368   // when rounding toward negative infinity. In that case the fsub will produce
7369   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7370   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7371   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7372       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7373   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7374   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7375   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7376 
7377   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7378   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7379   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7380   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7381   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7382   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7383   SDValue HiSub =
7384       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7385   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7386   return true;
7387 }
7388 
7389 SDValue
7390 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7391                                                SelectionDAG &DAG) const {
7392   unsigned Opcode = Node->getOpcode();
7393   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7394           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7395          "Wrong opcode");
7396 
7397   if (Node->getFlags().hasNoNaNs()) {
7398     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7399     SDValue Op1 = Node->getOperand(0);
7400     SDValue Op2 = Node->getOperand(1);
7401     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7402     // Copy FMF flags, but always set the no-signed-zeros flag
7403     // as this is implied by the FMINNUM/FMAXNUM semantics.
7404     SDNodeFlags Flags = Node->getFlags();
7405     Flags.setNoSignedZeros(true);
7406     SelCC->setFlags(Flags);
7407     return SelCC;
7408   }
7409 
7410   return SDValue();
7411 }
7412 
7413 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7414                                               SelectionDAG &DAG) const {
7415   SDLoc dl(Node);
7416   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7417     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7418   EVT VT = Node->getValueType(0);
7419 
7420   if (VT.isScalableVector())
7421     report_fatal_error(
7422         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7423 
7424   if (isOperationLegalOrCustom(NewOp, VT)) {
7425     SDValue Quiet0 = Node->getOperand(0);
7426     SDValue Quiet1 = Node->getOperand(1);
7427 
7428     if (!Node->getFlags().hasNoNaNs()) {
7429       // Insert canonicalizes if it's possible we need to quiet to get correct
7430       // sNaN behavior.
7431       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7432         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7433                              Node->getFlags());
7434       }
7435       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7436         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7437                              Node->getFlags());
7438       }
7439     }
7440 
7441     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7442   }
7443 
7444   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7445   // instead if there are no NaNs.
7446   if (Node->getFlags().hasNoNaNs()) {
7447     unsigned IEEE2018Op =
7448         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7449     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7450       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7451                          Node->getOperand(1), Node->getFlags());
7452     }
7453   }
7454 
7455   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7456     return SelCC;
7457 
7458   return SDValue();
7459 }
7460 
7461 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7462                                          unsigned Test, SDNodeFlags Flags,
7463                                          const SDLoc &DL,
7464                                          SelectionDAG &DAG) const {
7465   EVT OperandVT = Op.getValueType();
7466   assert(OperandVT.isFloatingPoint());
7467 
7468   // Degenerated cases.
7469   if (Test == 0)
7470     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7471   if ((Test & fcAllFlags) == fcAllFlags)
7472     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7473 
7474   // PPC double double is a pair of doubles, of which the higher part determines
7475   // the value class.
7476   if (OperandVT == MVT::ppcf128) {
7477     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7478                      DAG.getConstant(1, DL, MVT::i32));
7479     OperandVT = MVT::f64;
7480   }
7481 
7482   // Some checks may be represented as inversion of simpler check, for example
7483   // "inf|normal|subnormal|zero" => !"nan".
7484   bool IsInverted = false;
7485   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7486     IsInverted = true;
7487     Test = InvertedCheck;
7488   }
7489 
7490   // Floating-point type properties.
7491   EVT ScalarFloatVT = OperandVT.getScalarType();
7492   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7493   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7494   bool IsF80 = (ScalarFloatVT == MVT::f80);
7495 
7496   // Some checks can be implemented using float comparisons, if floating point
7497   // exceptions are ignored.
7498   if (Flags.hasNoFPExcept() &&
7499       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7500     if (Test == fcZero)
7501       return DAG.getSetCC(DL, ResultVT, Op,
7502                           DAG.getConstantFP(0.0, DL, OperandVT),
7503                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7504     if (Test == fcNan)
7505       return DAG.getSetCC(DL, ResultVT, Op, Op,
7506                           IsInverted ? ISD::SETO : ISD::SETUO);
7507   }
7508 
7509   // In the general case use integer operations.
7510   unsigned BitSize = OperandVT.getScalarSizeInBits();
7511   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7512   if (OperandVT.isVector())
7513     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7514                              OperandVT.getVectorElementCount());
7515   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7516 
7517   // Various masks.
7518   APInt SignBit = APInt::getSignMask(BitSize);
7519   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7520   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7521   const unsigned ExplicitIntBitInF80 = 63;
7522   APInt ExpMask = Inf;
7523   if (IsF80)
7524     ExpMask.clearBit(ExplicitIntBitInF80);
7525   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7526   APInt QNaNBitMask =
7527       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7528   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7529 
7530   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7531   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7532   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7533   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7534   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7535   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7536 
7537   SDValue Res;
7538   const auto appendResult = [&](SDValue PartialRes) {
7539     if (PartialRes) {
7540       if (Res)
7541         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7542       else
7543         Res = PartialRes;
7544     }
7545   };
7546 
7547   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7548   const auto getIntBitIsSet = [&]() -> SDValue {
7549     if (!IntBitIsSetV) {
7550       APInt IntBitMask(BitSize, 0);
7551       IntBitMask.setBit(ExplicitIntBitInF80);
7552       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7553       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7554       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7555     }
7556     return IntBitIsSetV;
7557   };
7558 
7559   // Split the value into sign bit and absolute value.
7560   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7561   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7562                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7563 
7564   // Tests that involve more than one class should be processed first.
7565   SDValue PartialRes;
7566 
7567   if (IsF80)
7568     ; // Detect finite numbers of f80 by checking individual classes because
7569       // they have different settings of the explicit integer bit.
7570   else if ((Test & fcFinite) == fcFinite) {
7571     // finite(V) ==> abs(V) < exp_mask
7572     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7573     Test &= ~fcFinite;
7574   } else if ((Test & fcFinite) == fcPosFinite) {
7575     // finite(V) && V > 0 ==> V < exp_mask
7576     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7577     Test &= ~fcPosFinite;
7578   } else if ((Test & fcFinite) == fcNegFinite) {
7579     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7580     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7581     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7582     Test &= ~fcNegFinite;
7583   }
7584   appendResult(PartialRes);
7585 
7586   // Check for individual classes.
7587 
7588   if (unsigned PartialCheck = Test & fcZero) {
7589     if (PartialCheck == fcPosZero)
7590       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7591     else if (PartialCheck == fcZero)
7592       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7593     else // ISD::fcNegZero
7594       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7595     appendResult(PartialRes);
7596   }
7597 
7598   if (unsigned PartialCheck = Test & fcInf) {
7599     if (PartialCheck == fcPosInf)
7600       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7601     else if (PartialCheck == fcInf)
7602       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7603     else { // ISD::fcNegInf
7604       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7605       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7606       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7607     }
7608     appendResult(PartialRes);
7609   }
7610 
7611   if (unsigned PartialCheck = Test & fcNan) {
7612     APInt InfWithQnanBit = Inf | QNaNBitMask;
7613     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7614     if (PartialCheck == fcNan) {
7615       // isnan(V) ==> abs(V) > int(inf)
7616       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7617       if (IsF80) {
7618         // Recognize unsupported values as NaNs for compatibility with glibc.
7619         // In them (exp(V)==0) == int_bit.
7620         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7621         SDValue ExpIsZero =
7622             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7623         SDValue IsPseudo =
7624             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7625         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7626       }
7627     } else if (PartialCheck == fcQNan) {
7628       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7629       PartialRes =
7630           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7631     } else { // ISD::fcSNan
7632       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7633       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7634       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7635       SDValue IsNotQnan =
7636           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7637       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7638     }
7639     appendResult(PartialRes);
7640   }
7641 
7642   if (unsigned PartialCheck = Test & fcSubnormal) {
7643     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7644     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7645     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7646     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7647     SDValue VMinusOneV =
7648         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7649     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7650     if (PartialCheck == fcNegSubnormal)
7651       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7652     appendResult(PartialRes);
7653   }
7654 
7655   if (unsigned PartialCheck = Test & fcNormal) {
7656     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7657     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7658     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7659     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7660     APInt ExpLimit = ExpMask - ExpLSB;
7661     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7662     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7663     if (PartialCheck == fcNegNormal)
7664       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7665     else if (PartialCheck == fcPosNormal) {
7666       SDValue PosSignV =
7667           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7668       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7669     }
7670     if (IsF80)
7671       PartialRes =
7672           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7673     appendResult(PartialRes);
7674   }
7675 
7676   if (!Res)
7677     return DAG.getConstant(IsInverted, DL, ResultVT);
7678   if (IsInverted)
7679     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7680   return Res;
7681 }
7682 
7683 // Only expand vector types if we have the appropriate vector bit operations.
7684 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7685   assert(VT.isVector() && "Expected vector type");
7686   unsigned Len = VT.getScalarSizeInBits();
7687   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7688          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7689          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7690          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7691          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7692 }
7693 
7694 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7695   SDLoc dl(Node);
7696   EVT VT = Node->getValueType(0);
7697   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7698   SDValue Op = Node->getOperand(0);
7699   unsigned Len = VT.getScalarSizeInBits();
7700   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7701 
7702   // TODO: Add support for irregular type lengths.
7703   if (!(Len <= 128 && Len % 8 == 0))
7704     return SDValue();
7705 
7706   // Only expand vector types if we have the appropriate vector bit operations.
7707   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7708     return SDValue();
7709 
7710   // This is the "best" algorithm from
7711   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7712   SDValue Mask55 =
7713       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7714   SDValue Mask33 =
7715       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7716   SDValue Mask0F =
7717       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7718 
7719   // v = v - ((v >> 1) & 0x55555555...)
7720   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7721                    DAG.getNode(ISD::AND, dl, VT,
7722                                DAG.getNode(ISD::SRL, dl, VT, Op,
7723                                            DAG.getConstant(1, dl, ShVT)),
7724                                Mask55));
7725   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7726   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7727                    DAG.getNode(ISD::AND, dl, VT,
7728                                DAG.getNode(ISD::SRL, dl, VT, Op,
7729                                            DAG.getConstant(2, dl, ShVT)),
7730                                Mask33));
7731   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7732   Op = DAG.getNode(ISD::AND, dl, VT,
7733                    DAG.getNode(ISD::ADD, dl, VT, Op,
7734                                DAG.getNode(ISD::SRL, dl, VT, Op,
7735                                            DAG.getConstant(4, dl, ShVT))),
7736                    Mask0F);
7737 
7738   if (Len <= 8)
7739     return Op;
7740 
7741   // Avoid the multiply if we only have 2 bytes to add.
7742   // TODO: Only doing this for scalars because vectors weren't as obviously
7743   // improved.
7744   if (Len == 16 && !VT.isVector()) {
7745     // v = (v + (v >> 8)) & 0x00FF;
7746     return DAG.getNode(ISD::AND, dl, VT,
7747                      DAG.getNode(ISD::ADD, dl, VT, Op,
7748                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7749                                              DAG.getConstant(8, dl, ShVT))),
7750                      DAG.getConstant(0xFF, dl, VT));
7751   }
7752 
7753   // v = (v * 0x01010101...) >> (Len - 8)
7754   SDValue Mask01 =
7755       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7756   return DAG.getNode(ISD::SRL, dl, VT,
7757                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7758                      DAG.getConstant(Len - 8, dl, ShVT));
7759 }
7760 
7761 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7762   SDLoc dl(Node);
7763   EVT VT = Node->getValueType(0);
7764   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7765   SDValue Op = Node->getOperand(0);
7766   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7767 
7768   // If the non-ZERO_UNDEF version is supported we can use that instead.
7769   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7770       isOperationLegalOrCustom(ISD::CTLZ, VT))
7771     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7772 
7773   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7774   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7775     EVT SetCCVT =
7776         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7777     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7778     SDValue Zero = DAG.getConstant(0, dl, VT);
7779     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7780     return DAG.getSelect(dl, VT, SrcIsZero,
7781                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7782   }
7783 
7784   // Only expand vector types if we have the appropriate vector bit operations.
7785   // This includes the operations needed to expand CTPOP if it isn't supported.
7786   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7787                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7788                          !canExpandVectorCTPOP(*this, VT)) ||
7789                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7790                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7791     return SDValue();
7792 
7793   // for now, we do this:
7794   // x = x | (x >> 1);
7795   // x = x | (x >> 2);
7796   // ...
7797   // x = x | (x >>16);
7798   // x = x | (x >>32); // for 64-bit input
7799   // return popcount(~x);
7800   //
7801   // Ref: "Hacker's Delight" by Henry Warren
7802   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7803     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7804     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7805                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7806   }
7807   Op = DAG.getNOT(dl, Op, VT);
7808   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7809 }
7810 
7811 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7812   SDLoc dl(Node);
7813   EVT VT = Node->getValueType(0);
7814   SDValue Op = Node->getOperand(0);
7815   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7816 
7817   // If the non-ZERO_UNDEF version is supported we can use that instead.
7818   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7819       isOperationLegalOrCustom(ISD::CTTZ, VT))
7820     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7821 
7822   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7823   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7824     EVT SetCCVT =
7825         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7826     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7827     SDValue Zero = DAG.getConstant(0, dl, VT);
7828     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7829     return DAG.getSelect(dl, VT, SrcIsZero,
7830                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7831   }
7832 
7833   // Only expand vector types if we have the appropriate vector bit operations.
7834   // This includes the operations needed to expand CTPOP if it isn't supported.
7835   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7836                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7837                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7838                          !canExpandVectorCTPOP(*this, VT)) ||
7839                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7840                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7841                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7842     return SDValue();
7843 
7844   // for now, we use: { return popcount(~x & (x - 1)); }
7845   // unless the target has ctlz but not ctpop, in which case we use:
7846   // { return 32 - nlz(~x & (x-1)); }
7847   // Ref: "Hacker's Delight" by Henry Warren
7848   SDValue Tmp = DAG.getNode(
7849       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7850       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7851 
7852   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7853   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7854     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7855                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7856   }
7857 
7858   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7859 }
7860 
7861 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7862                                   bool IsNegative) const {
7863   SDLoc dl(N);
7864   EVT VT = N->getValueType(0);
7865   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7866   SDValue Op = N->getOperand(0);
7867 
7868   // abs(x) -> smax(x,sub(0,x))
7869   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7870       isOperationLegal(ISD::SMAX, VT)) {
7871     SDValue Zero = DAG.getConstant(0, dl, VT);
7872     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7873                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7874   }
7875 
7876   // abs(x) -> umin(x,sub(0,x))
7877   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7878       isOperationLegal(ISD::UMIN, VT)) {
7879     SDValue Zero = DAG.getConstant(0, dl, VT);
7880     Op = DAG.getFreeze(Op);
7881     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7882                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7883   }
7884 
7885   // 0 - abs(x) -> smin(x, sub(0,x))
7886   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7887       isOperationLegal(ISD::SMIN, VT)) {
7888     Op = DAG.getFreeze(Op);
7889     SDValue Zero = DAG.getConstant(0, dl, VT);
7890     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7891                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7892   }
7893 
7894   // Only expand vector types if we have the appropriate vector operations.
7895   if (VT.isVector() &&
7896       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7897        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7898        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7899        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7900     return SDValue();
7901 
7902   Op = DAG.getFreeze(Op);
7903   SDValue Shift =
7904       DAG.getNode(ISD::SRA, dl, VT, Op,
7905                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7906   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7907 
7908   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7909   if (!IsNegative)
7910     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7911 
7912   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7913   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7914 }
7915 
7916 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7917   SDLoc dl(N);
7918   EVT VT = N->getValueType(0);
7919   SDValue Op = N->getOperand(0);
7920 
7921   if (!VT.isSimple())
7922     return SDValue();
7923 
7924   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7925   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7926   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7927   default:
7928     return SDValue();
7929   case MVT::i16:
7930     // Use a rotate by 8. This can be further expanded if necessary.
7931     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7932   case MVT::i32:
7933     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7934     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7935     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7936     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7937     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7938                        DAG.getConstant(0xFF0000, dl, VT));
7939     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7940     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7941     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7942     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7943   case MVT::i64:
7944     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7945     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7946     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7947     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7948     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7949     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7950     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7951     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7952     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7953                        DAG.getConstant(255ULL<<48, dl, VT));
7954     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7955                        DAG.getConstant(255ULL<<40, dl, VT));
7956     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7957                        DAG.getConstant(255ULL<<32, dl, VT));
7958     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7959                        DAG.getConstant(255ULL<<24, dl, VT));
7960     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7961                        DAG.getConstant(255ULL<<16, dl, VT));
7962     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7963                        DAG.getConstant(255ULL<<8 , dl, VT));
7964     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7965     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7966     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7967     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7968     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7969     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7970     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7971   }
7972 }
7973 
7974 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7975   SDLoc dl(N);
7976   EVT VT = N->getValueType(0);
7977   SDValue Op = N->getOperand(0);
7978   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7979   unsigned Sz = VT.getScalarSizeInBits();
7980 
7981   SDValue Tmp, Tmp2, Tmp3;
7982 
7983   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7984   // and finally the i1 pairs.
7985   // TODO: We can easily support i4/i2 legal types if any target ever does.
7986   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7987     // Create the masks - repeating the pattern every byte.
7988     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7989     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7990     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7991 
7992     // BSWAP if the type is wider than a single byte.
7993     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7994 
7995     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7996     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7997     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7998     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7999     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8000     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8001 
8002     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8003     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8004     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8005     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8006     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8007     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8008 
8009     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8010     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8011     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8012     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8013     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8014     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8015     return Tmp;
8016   }
8017 
8018   Tmp = DAG.getConstant(0, dl, VT);
8019   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8020     if (I < J)
8021       Tmp2 =
8022           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8023     else
8024       Tmp2 =
8025           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8026 
8027     APInt Shift(Sz, 1);
8028     Shift <<= J;
8029     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8030     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8031   }
8032 
8033   return Tmp;
8034 }
8035 
8036 std::pair<SDValue, SDValue>
8037 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8038                                     SelectionDAG &DAG) const {
8039   SDLoc SL(LD);
8040   SDValue Chain = LD->getChain();
8041   SDValue BasePTR = LD->getBasePtr();
8042   EVT SrcVT = LD->getMemoryVT();
8043   EVT DstVT = LD->getValueType(0);
8044   ISD::LoadExtType ExtType = LD->getExtensionType();
8045 
8046   if (SrcVT.isScalableVector())
8047     report_fatal_error("Cannot scalarize scalable vector loads");
8048 
8049   unsigned NumElem = SrcVT.getVectorNumElements();
8050 
8051   EVT SrcEltVT = SrcVT.getScalarType();
8052   EVT DstEltVT = DstVT.getScalarType();
8053 
8054   // A vector must always be stored in memory as-is, i.e. without any padding
8055   // between the elements, since various code depend on it, e.g. in the
8056   // handling of a bitcast of a vector type to int, which may be done with a
8057   // vector store followed by an integer load. A vector that does not have
8058   // elements that are byte-sized must therefore be stored as an integer
8059   // built out of the extracted vector elements.
8060   if (!SrcEltVT.isByteSized()) {
8061     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8062     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8063 
8064     unsigned NumSrcBits = SrcVT.getSizeInBits();
8065     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8066 
8067     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8068     SDValue SrcEltBitMask = DAG.getConstant(
8069         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8070 
8071     // Load the whole vector and avoid masking off the top bits as it makes
8072     // the codegen worse.
8073     SDValue Load =
8074         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8075                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8076                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8077 
8078     SmallVector<SDValue, 8> Vals;
8079     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8080       unsigned ShiftIntoIdx =
8081           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8082       SDValue ShiftAmount =
8083           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8084                                      LoadVT, SL, /*LegalTypes=*/false);
8085       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8086       SDValue Elt =
8087           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8088       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8089 
8090       if (ExtType != ISD::NON_EXTLOAD) {
8091         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8092         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8093       }
8094 
8095       Vals.push_back(Scalar);
8096     }
8097 
8098     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8099     return std::make_pair(Value, Load.getValue(1));
8100   }
8101 
8102   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8103   assert(SrcEltVT.isByteSized());
8104 
8105   SmallVector<SDValue, 8> Vals;
8106   SmallVector<SDValue, 8> LoadChains;
8107 
8108   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8109     SDValue ScalarLoad =
8110         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8111                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8112                        SrcEltVT, LD->getOriginalAlign(),
8113                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8114 
8115     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8116 
8117     Vals.push_back(ScalarLoad.getValue(0));
8118     LoadChains.push_back(ScalarLoad.getValue(1));
8119   }
8120 
8121   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8122   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8123 
8124   return std::make_pair(Value, NewChain);
8125 }
8126 
8127 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8128                                              SelectionDAG &DAG) const {
8129   SDLoc SL(ST);
8130 
8131   SDValue Chain = ST->getChain();
8132   SDValue BasePtr = ST->getBasePtr();
8133   SDValue Value = ST->getValue();
8134   EVT StVT = ST->getMemoryVT();
8135 
8136   if (StVT.isScalableVector())
8137     report_fatal_error("Cannot scalarize scalable vector stores");
8138 
8139   // The type of the data we want to save
8140   EVT RegVT = Value.getValueType();
8141   EVT RegSclVT = RegVT.getScalarType();
8142 
8143   // The type of data as saved in memory.
8144   EVT MemSclVT = StVT.getScalarType();
8145 
8146   unsigned NumElem = StVT.getVectorNumElements();
8147 
8148   // A vector must always be stored in memory as-is, i.e. without any padding
8149   // between the elements, since various code depend on it, e.g. in the
8150   // handling of a bitcast of a vector type to int, which may be done with a
8151   // vector store followed by an integer load. A vector that does not have
8152   // elements that are byte-sized must therefore be stored as an integer
8153   // built out of the extracted vector elements.
8154   if (!MemSclVT.isByteSized()) {
8155     unsigned NumBits = StVT.getSizeInBits();
8156     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8157 
8158     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8159 
8160     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8161       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8162                                 DAG.getVectorIdxConstant(Idx, SL));
8163       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8164       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8165       unsigned ShiftIntoIdx =
8166           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8167       SDValue ShiftAmount =
8168           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8169       SDValue ShiftedElt =
8170           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8171       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8172     }
8173 
8174     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8175                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8176                         ST->getAAInfo());
8177   }
8178 
8179   // Store Stride in bytes
8180   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8181   assert(Stride && "Zero stride!");
8182   // Extract each of the elements from the original vector and save them into
8183   // memory individually.
8184   SmallVector<SDValue, 8> Stores;
8185   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8186     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8187                               DAG.getVectorIdxConstant(Idx, SL));
8188 
8189     SDValue Ptr =
8190         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8191 
8192     // This scalar TruncStore may be illegal, but we legalize it later.
8193     SDValue Store = DAG.getTruncStore(
8194         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8195         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8196         ST->getAAInfo());
8197 
8198     Stores.push_back(Store);
8199   }
8200 
8201   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8202 }
8203 
8204 std::pair<SDValue, SDValue>
8205 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8206   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8207          "unaligned indexed loads not implemented!");
8208   SDValue Chain = LD->getChain();
8209   SDValue Ptr = LD->getBasePtr();
8210   EVT VT = LD->getValueType(0);
8211   EVT LoadedVT = LD->getMemoryVT();
8212   SDLoc dl(LD);
8213   auto &MF = DAG.getMachineFunction();
8214 
8215   if (VT.isFloatingPoint() || VT.isVector()) {
8216     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8217     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8218       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8219           LoadedVT.isVector()) {
8220         // Scalarize the load and let the individual components be handled.
8221         return scalarizeVectorLoad(LD, DAG);
8222       }
8223 
8224       // Expand to a (misaligned) integer load of the same size,
8225       // then bitconvert to floating point or vector.
8226       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8227                                     LD->getMemOperand());
8228       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8229       if (LoadedVT != VT)
8230         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8231                              ISD::ANY_EXTEND, dl, VT, Result);
8232 
8233       return std::make_pair(Result, newLoad.getValue(1));
8234     }
8235 
8236     // Copy the value to a (aligned) stack slot using (unaligned) integer
8237     // loads and stores, then do a (aligned) load from the stack slot.
8238     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8239     unsigned LoadedBytes = LoadedVT.getStoreSize();
8240     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8241     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8242 
8243     // Make sure the stack slot is also aligned for the register type.
8244     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8245     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8246     SmallVector<SDValue, 8> Stores;
8247     SDValue StackPtr = StackBase;
8248     unsigned Offset = 0;
8249 
8250     EVT PtrVT = Ptr.getValueType();
8251     EVT StackPtrVT = StackPtr.getValueType();
8252 
8253     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8254     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8255 
8256     // Do all but one copies using the full register width.
8257     for (unsigned i = 1; i < NumRegs; i++) {
8258       // Load one integer register's worth from the original location.
8259       SDValue Load = DAG.getLoad(
8260           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8261           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8262           LD->getAAInfo());
8263       // Follow the load with a store to the stack slot.  Remember the store.
8264       Stores.push_back(DAG.getStore(
8265           Load.getValue(1), dl, Load, StackPtr,
8266           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8267       // Increment the pointers.
8268       Offset += RegBytes;
8269 
8270       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8271       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8272     }
8273 
8274     // The last copy may be partial.  Do an extending load.
8275     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8276                                   8 * (LoadedBytes - Offset));
8277     SDValue Load =
8278         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8279                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8280                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8281                        LD->getAAInfo());
8282     // Follow the load with a store to the stack slot.  Remember the store.
8283     // On big-endian machines this requires a truncating store to ensure
8284     // that the bits end up in the right place.
8285     Stores.push_back(DAG.getTruncStore(
8286         Load.getValue(1), dl, Load, StackPtr,
8287         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8288 
8289     // The order of the stores doesn't matter - say it with a TokenFactor.
8290     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8291 
8292     // Finally, perform the original load only redirected to the stack slot.
8293     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8294                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8295                           LoadedVT);
8296 
8297     // Callers expect a MERGE_VALUES node.
8298     return std::make_pair(Load, TF);
8299   }
8300 
8301   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8302          "Unaligned load of unsupported type.");
8303 
8304   // Compute the new VT that is half the size of the old one.  This is an
8305   // integer MVT.
8306   unsigned NumBits = LoadedVT.getSizeInBits();
8307   EVT NewLoadedVT;
8308   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8309   NumBits >>= 1;
8310 
8311   Align Alignment = LD->getOriginalAlign();
8312   unsigned IncrementSize = NumBits / 8;
8313   ISD::LoadExtType HiExtType = LD->getExtensionType();
8314 
8315   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8316   if (HiExtType == ISD::NON_EXTLOAD)
8317     HiExtType = ISD::ZEXTLOAD;
8318 
8319   // Load the value in two parts
8320   SDValue Lo, Hi;
8321   if (DAG.getDataLayout().isLittleEndian()) {
8322     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8323                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8324                         LD->getAAInfo());
8325 
8326     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8327     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8328                         LD->getPointerInfo().getWithOffset(IncrementSize),
8329                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8330                         LD->getAAInfo());
8331   } else {
8332     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8333                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8334                         LD->getAAInfo());
8335 
8336     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8337     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8338                         LD->getPointerInfo().getWithOffset(IncrementSize),
8339                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8340                         LD->getAAInfo());
8341   }
8342 
8343   // aggregate the two parts
8344   SDValue ShiftAmount =
8345       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8346                                                     DAG.getDataLayout()));
8347   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8348   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8349 
8350   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8351                              Hi.getValue(1));
8352 
8353   return std::make_pair(Result, TF);
8354 }
8355 
8356 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8357                                              SelectionDAG &DAG) const {
8358   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8359          "unaligned indexed stores not implemented!");
8360   SDValue Chain = ST->getChain();
8361   SDValue Ptr = ST->getBasePtr();
8362   SDValue Val = ST->getValue();
8363   EVT VT = Val.getValueType();
8364   Align Alignment = ST->getOriginalAlign();
8365   auto &MF = DAG.getMachineFunction();
8366   EVT StoreMemVT = ST->getMemoryVT();
8367 
8368   SDLoc dl(ST);
8369   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8370     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8371     if (isTypeLegal(intVT)) {
8372       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8373           StoreMemVT.isVector()) {
8374         // Scalarize the store and let the individual components be handled.
8375         SDValue Result = scalarizeVectorStore(ST, DAG);
8376         return Result;
8377       }
8378       // Expand to a bitconvert of the value to the integer type of the
8379       // same size, then a (misaligned) int store.
8380       // FIXME: Does not handle truncating floating point stores!
8381       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8382       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8383                             Alignment, ST->getMemOperand()->getFlags());
8384       return Result;
8385     }
8386     // Do a (aligned) store to a stack slot, then copy from the stack slot
8387     // to the final destination using (unaligned) integer loads and stores.
8388     MVT RegVT = getRegisterType(
8389         *DAG.getContext(),
8390         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8391     EVT PtrVT = Ptr.getValueType();
8392     unsigned StoredBytes = StoreMemVT.getStoreSize();
8393     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8394     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8395 
8396     // Make sure the stack slot is also aligned for the register type.
8397     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8398     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8399 
8400     // Perform the original store, only redirected to the stack slot.
8401     SDValue Store = DAG.getTruncStore(
8402         Chain, dl, Val, StackPtr,
8403         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8404 
8405     EVT StackPtrVT = StackPtr.getValueType();
8406 
8407     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8408     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8409     SmallVector<SDValue, 8> Stores;
8410     unsigned Offset = 0;
8411 
8412     // Do all but one copies using the full register width.
8413     for (unsigned i = 1; i < NumRegs; i++) {
8414       // Load one integer register's worth from the stack slot.
8415       SDValue Load = DAG.getLoad(
8416           RegVT, dl, Store, StackPtr,
8417           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8418       // Store it to the final location.  Remember the store.
8419       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8420                                     ST->getPointerInfo().getWithOffset(Offset),
8421                                     ST->getOriginalAlign(),
8422                                     ST->getMemOperand()->getFlags()));
8423       // Increment the pointers.
8424       Offset += RegBytes;
8425       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8426       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8427     }
8428 
8429     // The last store may be partial.  Do a truncating store.  On big-endian
8430     // machines this requires an extending load from the stack slot to ensure
8431     // that the bits are in the right place.
8432     EVT LoadMemVT =
8433         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8434 
8435     // Load from the stack slot.
8436     SDValue Load = DAG.getExtLoad(
8437         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8438         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8439 
8440     Stores.push_back(
8441         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8442                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8443                           ST->getOriginalAlign(),
8444                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8445     // The order of the stores doesn't matter - say it with a TokenFactor.
8446     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8447     return Result;
8448   }
8449 
8450   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8451          "Unaligned store of unknown type.");
8452   // Get the half-size VT
8453   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8454   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8455   unsigned IncrementSize = NumBits / 8;
8456 
8457   // Divide the stored value in two parts.
8458   SDValue ShiftAmount = DAG.getConstant(
8459       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8460   SDValue Lo = Val;
8461   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8462 
8463   // Store the two parts
8464   SDValue Store1, Store2;
8465   Store1 = DAG.getTruncStore(Chain, dl,
8466                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8467                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8468                              ST->getMemOperand()->getFlags());
8469 
8470   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8471   Store2 = DAG.getTruncStore(
8472       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8473       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8474       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8475 
8476   SDValue Result =
8477       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8478   return Result;
8479 }
8480 
8481 SDValue
8482 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8483                                        const SDLoc &DL, EVT DataVT,
8484                                        SelectionDAG &DAG,
8485                                        bool IsCompressedMemory) const {
8486   SDValue Increment;
8487   EVT AddrVT = Addr.getValueType();
8488   EVT MaskVT = Mask.getValueType();
8489   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8490          "Incompatible types of Data and Mask");
8491   if (IsCompressedMemory) {
8492     if (DataVT.isScalableVector())
8493       report_fatal_error(
8494           "Cannot currently handle compressed memory with scalable vectors");
8495     // Incrementing the pointer according to number of '1's in the mask.
8496     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8497     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8498     if (MaskIntVT.getSizeInBits() < 32) {
8499       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8500       MaskIntVT = MVT::i32;
8501     }
8502 
8503     // Count '1's with POPCNT.
8504     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8505     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8506     // Scale is an element size in bytes.
8507     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8508                                     AddrVT);
8509     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8510   } else if (DataVT.isScalableVector()) {
8511     Increment = DAG.getVScale(DL, AddrVT,
8512                               APInt(AddrVT.getFixedSizeInBits(),
8513                                     DataVT.getStoreSize().getKnownMinSize()));
8514   } else
8515     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8516 
8517   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8518 }
8519 
8520 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8521                                        EVT VecVT, const SDLoc &dl,
8522                                        ElementCount SubEC) {
8523   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8524          "Cannot index a scalable vector within a fixed-width vector");
8525 
8526   unsigned NElts = VecVT.getVectorMinNumElements();
8527   unsigned NumSubElts = SubEC.getKnownMinValue();
8528   EVT IdxVT = Idx.getValueType();
8529 
8530   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8531     // If this is a constant index and we know the value plus the number of the
8532     // elements in the subvector minus one is less than the minimum number of
8533     // elements then it's safe to return Idx.
8534     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8535       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8536         return Idx;
8537     SDValue VS =
8538         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8539     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8540     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8541                               DAG.getConstant(NumSubElts, dl, IdxVT));
8542     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8543   }
8544   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8545     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8546     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8547                        DAG.getConstant(Imm, dl, IdxVT));
8548   }
8549   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8550   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8551                      DAG.getConstant(MaxIndex, dl, IdxVT));
8552 }
8553 
8554 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8555                                                 SDValue VecPtr, EVT VecVT,
8556                                                 SDValue Index) const {
8557   return getVectorSubVecPointer(
8558       DAG, VecPtr, VecVT,
8559       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8560       Index);
8561 }
8562 
8563 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8564                                                SDValue VecPtr, EVT VecVT,
8565                                                EVT SubVecVT,
8566                                                SDValue Index) const {
8567   SDLoc dl(Index);
8568   // Make sure the index type is big enough to compute in.
8569   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8570 
8571   EVT EltVT = VecVT.getVectorElementType();
8572 
8573   // Calculate the element offset and add it to the pointer.
8574   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8575   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8576          "Converting bits to bytes lost precision");
8577   assert(SubVecVT.getVectorElementType() == EltVT &&
8578          "Sub-vector must be a vector with matching element type");
8579   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8580                                   SubVecVT.getVectorElementCount());
8581 
8582   EVT IdxVT = Index.getValueType();
8583   if (SubVecVT.isScalableVector())
8584     Index =
8585         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8586                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8587 
8588   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8589                       DAG.getConstant(EltSize, dl, IdxVT));
8590   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8591 }
8592 
8593 //===----------------------------------------------------------------------===//
8594 // Implementation of Emulated TLS Model
8595 //===----------------------------------------------------------------------===//
8596 
8597 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8598                                                 SelectionDAG &DAG) const {
8599   // Access to address of TLS varialbe xyz is lowered to a function call:
8600   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8601   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8602   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8603   SDLoc dl(GA);
8604 
8605   ArgListTy Args;
8606   ArgListEntry Entry;
8607   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8608   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8609   StringRef EmuTlsVarName(NameString);
8610   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8611   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8612   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8613   Entry.Ty = VoidPtrType;
8614   Args.push_back(Entry);
8615 
8616   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8617 
8618   TargetLowering::CallLoweringInfo CLI(DAG);
8619   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8620   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8621   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8622 
8623   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8624   // At last for X86 targets, maybe good for other targets too?
8625   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8626   MFI.setAdjustsStack(true); // Is this only for X86 target?
8627   MFI.setHasCalls(true);
8628 
8629   assert((GA->getOffset() == 0) &&
8630          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8631   return CallResult.first;
8632 }
8633 
8634 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8635                                                 SelectionDAG &DAG) const {
8636   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8637   if (!isCtlzFast())
8638     return SDValue();
8639   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8640   SDLoc dl(Op);
8641   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8642     if (C->isZero() && CC == ISD::SETEQ) {
8643       EVT VT = Op.getOperand(0).getValueType();
8644       SDValue Zext = Op.getOperand(0);
8645       if (VT.bitsLT(MVT::i32)) {
8646         VT = MVT::i32;
8647         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8648       }
8649       unsigned Log2b = Log2_32(VT.getSizeInBits());
8650       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8651       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8652                                 DAG.getConstant(Log2b, dl, MVT::i32));
8653       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8654     }
8655   }
8656   return SDValue();
8657 }
8658 
8659 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8660   SDValue Op0 = Node->getOperand(0);
8661   SDValue Op1 = Node->getOperand(1);
8662   EVT VT = Op0.getValueType();
8663   unsigned Opcode = Node->getOpcode();
8664   SDLoc DL(Node);
8665 
8666   // umin(x,y) -> sub(x,usubsat(x,y))
8667   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8668       isOperationLegal(ISD::USUBSAT, VT)) {
8669     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8670                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8671   }
8672 
8673   // umax(x,y) -> add(x,usubsat(y,x))
8674   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8675       isOperationLegal(ISD::USUBSAT, VT)) {
8676     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8677                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8678   }
8679 
8680   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8681   ISD::CondCode CC;
8682   switch (Opcode) {
8683   default: llvm_unreachable("How did we get here?");
8684   case ISD::SMAX: CC = ISD::SETGT; break;
8685   case ISD::SMIN: CC = ISD::SETLT; break;
8686   case ISD::UMAX: CC = ISD::SETUGT; break;
8687   case ISD::UMIN: CC = ISD::SETULT; break;
8688   }
8689 
8690   // FIXME: Should really try to split the vector in case it's legal on a
8691   // subvector.
8692   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8693     return DAG.UnrollVectorOp(Node);
8694 
8695   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8696   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8697   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8698 }
8699 
8700 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8701   unsigned Opcode = Node->getOpcode();
8702   SDValue LHS = Node->getOperand(0);
8703   SDValue RHS = Node->getOperand(1);
8704   EVT VT = LHS.getValueType();
8705   SDLoc dl(Node);
8706 
8707   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8708   assert(VT.isInteger() && "Expected operands to be integers");
8709 
8710   // usub.sat(a, b) -> umax(a, b) - b
8711   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8712     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8713     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8714   }
8715 
8716   // uadd.sat(a, b) -> umin(a, ~b) + b
8717   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8718     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8719     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8720     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8721   }
8722 
8723   unsigned OverflowOp;
8724   switch (Opcode) {
8725   case ISD::SADDSAT:
8726     OverflowOp = ISD::SADDO;
8727     break;
8728   case ISD::UADDSAT:
8729     OverflowOp = ISD::UADDO;
8730     break;
8731   case ISD::SSUBSAT:
8732     OverflowOp = ISD::SSUBO;
8733     break;
8734   case ISD::USUBSAT:
8735     OverflowOp = ISD::USUBO;
8736     break;
8737   default:
8738     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8739                      "addition or subtraction node.");
8740   }
8741 
8742   // FIXME: Should really try to split the vector in case it's legal on a
8743   // subvector.
8744   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8745     return DAG.UnrollVectorOp(Node);
8746 
8747   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8748   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8749   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8750   SDValue SumDiff = Result.getValue(0);
8751   SDValue Overflow = Result.getValue(1);
8752   SDValue Zero = DAG.getConstant(0, dl, VT);
8753   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8754 
8755   if (Opcode == ISD::UADDSAT) {
8756     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8757       // (LHS + RHS) | OverflowMask
8758       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8759       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8760     }
8761     // Overflow ? 0xffff.... : (LHS + RHS)
8762     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8763   }
8764 
8765   if (Opcode == ISD::USUBSAT) {
8766     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8767       // (LHS - RHS) & ~OverflowMask
8768       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8769       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8770       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8771     }
8772     // Overflow ? 0 : (LHS - RHS)
8773     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8774   }
8775 
8776   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8777   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8778   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8779   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8780                               DAG.getConstant(BitWidth - 1, dl, VT));
8781   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8782   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8783 }
8784 
8785 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8786   unsigned Opcode = Node->getOpcode();
8787   bool IsSigned = Opcode == ISD::SSHLSAT;
8788   SDValue LHS = Node->getOperand(0);
8789   SDValue RHS = Node->getOperand(1);
8790   EVT VT = LHS.getValueType();
8791   SDLoc dl(Node);
8792 
8793   assert((Node->getOpcode() == ISD::SSHLSAT ||
8794           Node->getOpcode() == ISD::USHLSAT) &&
8795           "Expected a SHLSAT opcode");
8796   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8797   assert(VT.isInteger() && "Expected operands to be integers");
8798 
8799   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8800 
8801   unsigned BW = VT.getScalarSizeInBits();
8802   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8803   SDValue Orig =
8804       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8805 
8806   SDValue SatVal;
8807   if (IsSigned) {
8808     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8809     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8810     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8811                              SatMin, SatMax, ISD::SETLT);
8812   } else {
8813     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8814   }
8815   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8816 
8817   return Result;
8818 }
8819 
8820 SDValue
8821 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8822   assert((Node->getOpcode() == ISD::SMULFIX ||
8823           Node->getOpcode() == ISD::UMULFIX ||
8824           Node->getOpcode() == ISD::SMULFIXSAT ||
8825           Node->getOpcode() == ISD::UMULFIXSAT) &&
8826          "Expected a fixed point multiplication opcode");
8827 
8828   SDLoc dl(Node);
8829   SDValue LHS = Node->getOperand(0);
8830   SDValue RHS = Node->getOperand(1);
8831   EVT VT = LHS.getValueType();
8832   unsigned Scale = Node->getConstantOperandVal(2);
8833   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8834                      Node->getOpcode() == ISD::UMULFIXSAT);
8835   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8836                  Node->getOpcode() == ISD::SMULFIXSAT);
8837   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8838   unsigned VTSize = VT.getScalarSizeInBits();
8839 
8840   if (!Scale) {
8841     // [us]mul.fix(a, b, 0) -> mul(a, b)
8842     if (!Saturating) {
8843       if (isOperationLegalOrCustom(ISD::MUL, VT))
8844         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8845     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8846       SDValue Result =
8847           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8848       SDValue Product = Result.getValue(0);
8849       SDValue Overflow = Result.getValue(1);
8850       SDValue Zero = DAG.getConstant(0, dl, VT);
8851 
8852       APInt MinVal = APInt::getSignedMinValue(VTSize);
8853       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8854       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8855       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8856       // Xor the inputs, if resulting sign bit is 0 the product will be
8857       // positive, else negative.
8858       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8859       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8860       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8861       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8862     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8863       SDValue Result =
8864           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8865       SDValue Product = Result.getValue(0);
8866       SDValue Overflow = Result.getValue(1);
8867 
8868       APInt MaxVal = APInt::getMaxValue(VTSize);
8869       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8870       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8871     }
8872   }
8873 
8874   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8875          "Expected scale to be less than the number of bits if signed or at "
8876          "most the number of bits if unsigned.");
8877   assert(LHS.getValueType() == RHS.getValueType() &&
8878          "Expected both operands to be the same type");
8879 
8880   // Get the upper and lower bits of the result.
8881   SDValue Lo, Hi;
8882   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8883   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8884   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8885     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8886     Lo = Result.getValue(0);
8887     Hi = Result.getValue(1);
8888   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8889     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8890     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8891   } else if (VT.isVector()) {
8892     return SDValue();
8893   } else {
8894     report_fatal_error("Unable to expand fixed point multiplication.");
8895   }
8896 
8897   if (Scale == VTSize)
8898     // Result is just the top half since we'd be shifting by the width of the
8899     // operand. Overflow impossible so this works for both UMULFIX and
8900     // UMULFIXSAT.
8901     return Hi;
8902 
8903   // The result will need to be shifted right by the scale since both operands
8904   // are scaled. The result is given to us in 2 halves, so we only want part of
8905   // both in the result.
8906   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8907   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8908                                DAG.getConstant(Scale, dl, ShiftTy));
8909   if (!Saturating)
8910     return Result;
8911 
8912   if (!Signed) {
8913     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8914     // widened multiplication) aren't all zeroes.
8915 
8916     // Saturate to max if ((Hi >> Scale) != 0),
8917     // which is the same as if (Hi > ((1 << Scale) - 1))
8918     APInt MaxVal = APInt::getMaxValue(VTSize);
8919     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8920                                       dl, VT);
8921     Result = DAG.getSelectCC(dl, Hi, LowMask,
8922                              DAG.getConstant(MaxVal, dl, VT), Result,
8923                              ISD::SETUGT);
8924 
8925     return Result;
8926   }
8927 
8928   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8929   // widened multiplication) aren't all ones or all zeroes.
8930 
8931   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8932   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8933 
8934   if (Scale == 0) {
8935     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8936                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8937     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8938     // Saturated to SatMin if wide product is negative, and SatMax if wide
8939     // product is positive ...
8940     SDValue Zero = DAG.getConstant(0, dl, VT);
8941     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8942                                                ISD::SETLT);
8943     // ... but only if we overflowed.
8944     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8945   }
8946 
8947   //  We handled Scale==0 above so all the bits to examine is in Hi.
8948 
8949   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8950   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8951   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8952                                     dl, VT);
8953   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8954   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8955   // which is the same as if (HI < (-1 << (Scale - 1))
8956   SDValue HighMask =
8957       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8958                       dl, VT);
8959   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8960   return Result;
8961 }
8962 
8963 SDValue
8964 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8965                                     SDValue LHS, SDValue RHS,
8966                                     unsigned Scale, SelectionDAG &DAG) const {
8967   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8968           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8969          "Expected a fixed point division opcode");
8970 
8971   EVT VT = LHS.getValueType();
8972   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8973   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8974   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8975 
8976   // If there is enough room in the type to upscale the LHS or downscale the
8977   // RHS before the division, we can perform it in this type without having to
8978   // resize. For signed operations, the LHS headroom is the number of
8979   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8980   // The headroom for the RHS is the number of trailing zeroes.
8981   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8982                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8983   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8984 
8985   // For signed saturating operations, we need to be able to detect true integer
8986   // division overflow; that is, when you have MIN / -EPS. However, this
8987   // is undefined behavior and if we emit divisions that could take such
8988   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8989   // example).
8990   // Avoid this by requiring an extra bit so that we never get this case.
8991   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8992   // signed saturating division, we need to emit a whopping 32-bit division.
8993   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8994     return SDValue();
8995 
8996   unsigned LHSShift = std::min(LHSLead, Scale);
8997   unsigned RHSShift = Scale - LHSShift;
8998 
8999   // At this point, we know that if we shift the LHS up by LHSShift and the
9000   // RHS down by RHSShift, we can emit a regular division with a final scaling
9001   // factor of Scale.
9002 
9003   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9004   if (LHSShift)
9005     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9006                       DAG.getConstant(LHSShift, dl, ShiftTy));
9007   if (RHSShift)
9008     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9009                       DAG.getConstant(RHSShift, dl, ShiftTy));
9010 
9011   SDValue Quot;
9012   if (Signed) {
9013     // For signed operations, if the resulting quotient is negative and the
9014     // remainder is nonzero, subtract 1 from the quotient to round towards
9015     // negative infinity.
9016     SDValue Rem;
9017     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9018     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9019     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9020     if (isTypeLegal(VT) &&
9021         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9022       Quot = DAG.getNode(ISD::SDIVREM, dl,
9023                          DAG.getVTList(VT, VT),
9024                          LHS, RHS);
9025       Rem = Quot.getValue(1);
9026       Quot = Quot.getValue(0);
9027     } else {
9028       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9029                          LHS, RHS);
9030       Rem = DAG.getNode(ISD::SREM, dl, VT,
9031                         LHS, RHS);
9032     }
9033     SDValue Zero = DAG.getConstant(0, dl, VT);
9034     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9035     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9036     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9037     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9038     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9039                                DAG.getConstant(1, dl, VT));
9040     Quot = DAG.getSelect(dl, VT,
9041                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9042                          Sub1, Quot);
9043   } else
9044     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9045                        LHS, RHS);
9046 
9047   return Quot;
9048 }
9049 
9050 void TargetLowering::expandUADDSUBO(
9051     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9052   SDLoc dl(Node);
9053   SDValue LHS = Node->getOperand(0);
9054   SDValue RHS = Node->getOperand(1);
9055   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9056 
9057   // If ADD/SUBCARRY is legal, use that instead.
9058   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9059   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9060     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9061     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9062                                     { LHS, RHS, CarryIn });
9063     Result = SDValue(NodeCarry.getNode(), 0);
9064     Overflow = SDValue(NodeCarry.getNode(), 1);
9065     return;
9066   }
9067 
9068   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9069                             LHS.getValueType(), LHS, RHS);
9070 
9071   EVT ResultType = Node->getValueType(1);
9072   EVT SetCCType = getSetCCResultType(
9073       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9074   SDValue SetCC;
9075   if (IsAdd && isOneConstant(RHS)) {
9076     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9077     // the live range of X. We assume comparing with 0 is cheap.
9078     // The general case (X + C) < C is not necessarily beneficial. Although we
9079     // reduce the live range of X, we may introduce the materialization of
9080     // constant C.
9081     SetCC =
9082         DAG.getSetCC(dl, SetCCType, Result,
9083                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9084   } else {
9085     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9086     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9087   }
9088   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9089 }
9090 
9091 void TargetLowering::expandSADDSUBO(
9092     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9093   SDLoc dl(Node);
9094   SDValue LHS = Node->getOperand(0);
9095   SDValue RHS = Node->getOperand(1);
9096   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9097 
9098   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9099                             LHS.getValueType(), LHS, RHS);
9100 
9101   EVT ResultType = Node->getValueType(1);
9102   EVT OType = getSetCCResultType(
9103       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9104 
9105   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9106   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9107   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9108     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9109     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9110     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9111     return;
9112   }
9113 
9114   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9115 
9116   // For an addition, the result should be less than one of the operands (LHS)
9117   // if and only if the other operand (RHS) is negative, otherwise there will
9118   // be overflow.
9119   // For a subtraction, the result should be less than one of the operands
9120   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9121   // otherwise there will be overflow.
9122   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9123   SDValue ConditionRHS =
9124       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9125 
9126   Overflow = DAG.getBoolExtOrTrunc(
9127       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9128       ResultType, ResultType);
9129 }
9130 
9131 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9132                                 SDValue &Overflow, SelectionDAG &DAG) const {
9133   SDLoc dl(Node);
9134   EVT VT = Node->getValueType(0);
9135   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9136   SDValue LHS = Node->getOperand(0);
9137   SDValue RHS = Node->getOperand(1);
9138   bool isSigned = Node->getOpcode() == ISD::SMULO;
9139 
9140   // For power-of-two multiplications we can use a simpler shift expansion.
9141   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9142     const APInt &C = RHSC->getAPIntValue();
9143     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9144     if (C.isPowerOf2()) {
9145       // smulo(x, signed_min) is same as umulo(x, signed_min).
9146       bool UseArithShift = isSigned && !C.isMinSignedValue();
9147       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9148       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9149       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9150       Overflow = DAG.getSetCC(dl, SetCCVT,
9151           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9152                       dl, VT, Result, ShiftAmt),
9153           LHS, ISD::SETNE);
9154       return true;
9155     }
9156   }
9157 
9158   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9159   if (VT.isVector())
9160     WideVT =
9161         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9162 
9163   SDValue BottomHalf;
9164   SDValue TopHalf;
9165   static const unsigned Ops[2][3] =
9166       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9167         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9168   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9169     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9170     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9171   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9172     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9173                              RHS);
9174     TopHalf = BottomHalf.getValue(1);
9175   } else if (isTypeLegal(WideVT)) {
9176     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9177     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9178     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9179     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9180     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9181         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9182     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9183                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9184   } else {
9185     if (VT.isVector())
9186       return false;
9187 
9188     // We can fall back to a libcall with an illegal type for the MUL if we
9189     // have a libcall big enough.
9190     // Also, we can fall back to a division in some cases, but that's a big
9191     // performance hit in the general case.
9192     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9193     if (WideVT == MVT::i16)
9194       LC = RTLIB::MUL_I16;
9195     else if (WideVT == MVT::i32)
9196       LC = RTLIB::MUL_I32;
9197     else if (WideVT == MVT::i64)
9198       LC = RTLIB::MUL_I64;
9199     else if (WideVT == MVT::i128)
9200       LC = RTLIB::MUL_I128;
9201     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9202 
9203     SDValue HiLHS;
9204     SDValue HiRHS;
9205     if (isSigned) {
9206       // The high part is obtained by SRA'ing all but one of the bits of low
9207       // part.
9208       unsigned LoSize = VT.getFixedSizeInBits();
9209       HiLHS =
9210           DAG.getNode(ISD::SRA, dl, VT, LHS,
9211                       DAG.getConstant(LoSize - 1, dl,
9212                                       getPointerTy(DAG.getDataLayout())));
9213       HiRHS =
9214           DAG.getNode(ISD::SRA, dl, VT, RHS,
9215                       DAG.getConstant(LoSize - 1, dl,
9216                                       getPointerTy(DAG.getDataLayout())));
9217     } else {
9218         HiLHS = DAG.getConstant(0, dl, VT);
9219         HiRHS = DAG.getConstant(0, dl, VT);
9220     }
9221 
9222     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9223     // pre-lowered to the correct types. This all depends upon WideVT not
9224     // being a legal type for the architecture and thus has to be split to
9225     // two arguments.
9226     SDValue Ret;
9227     TargetLowering::MakeLibCallOptions CallOptions;
9228     CallOptions.setSExt(isSigned);
9229     CallOptions.setIsPostTypeLegalization(true);
9230     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9231       // Halves of WideVT are packed into registers in different order
9232       // depending on platform endianness. This is usually handled by
9233       // the C calling convention, but we can't defer to it in
9234       // the legalizer.
9235       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9236       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9237     } else {
9238       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9239       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9240     }
9241     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9242            "Ret value is a collection of constituent nodes holding result.");
9243     if (DAG.getDataLayout().isLittleEndian()) {
9244       // Same as above.
9245       BottomHalf = Ret.getOperand(0);
9246       TopHalf = Ret.getOperand(1);
9247     } else {
9248       BottomHalf = Ret.getOperand(1);
9249       TopHalf = Ret.getOperand(0);
9250     }
9251   }
9252 
9253   Result = BottomHalf;
9254   if (isSigned) {
9255     SDValue ShiftAmt = DAG.getConstant(
9256         VT.getScalarSizeInBits() - 1, dl,
9257         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9258     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9259     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9260   } else {
9261     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9262                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9263   }
9264 
9265   // Truncate the result if SetCC returns a larger type than needed.
9266   EVT RType = Node->getValueType(1);
9267   if (RType.bitsLT(Overflow.getValueType()))
9268     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9269 
9270   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9271          "Unexpected result type for S/UMULO legalization");
9272   return true;
9273 }
9274 
9275 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9276   SDLoc dl(Node);
9277   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9278   SDValue Op = Node->getOperand(0);
9279   EVT VT = Op.getValueType();
9280 
9281   if (VT.isScalableVector())
9282     report_fatal_error(
9283         "Expanding reductions for scalable vectors is undefined.");
9284 
9285   // Try to use a shuffle reduction for power of two vectors.
9286   if (VT.isPow2VectorType()) {
9287     while (VT.getVectorNumElements() > 1) {
9288       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9289       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9290         break;
9291 
9292       SDValue Lo, Hi;
9293       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9294       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9295       VT = HalfVT;
9296     }
9297   }
9298 
9299   EVT EltVT = VT.getVectorElementType();
9300   unsigned NumElts = VT.getVectorNumElements();
9301 
9302   SmallVector<SDValue, 8> Ops;
9303   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9304 
9305   SDValue Res = Ops[0];
9306   for (unsigned i = 1; i < NumElts; i++)
9307     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9308 
9309   // Result type may be wider than element type.
9310   if (EltVT != Node->getValueType(0))
9311     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9312   return Res;
9313 }
9314 
9315 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9316   SDLoc dl(Node);
9317   SDValue AccOp = Node->getOperand(0);
9318   SDValue VecOp = Node->getOperand(1);
9319   SDNodeFlags Flags = Node->getFlags();
9320 
9321   EVT VT = VecOp.getValueType();
9322   EVT EltVT = VT.getVectorElementType();
9323 
9324   if (VT.isScalableVector())
9325     report_fatal_error(
9326         "Expanding reductions for scalable vectors is undefined.");
9327 
9328   unsigned NumElts = VT.getVectorNumElements();
9329 
9330   SmallVector<SDValue, 8> Ops;
9331   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9332 
9333   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9334 
9335   SDValue Res = AccOp;
9336   for (unsigned i = 0; i < NumElts; i++)
9337     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9338 
9339   return Res;
9340 }
9341 
9342 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9343                                SelectionDAG &DAG) const {
9344   EVT VT = Node->getValueType(0);
9345   SDLoc dl(Node);
9346   bool isSigned = Node->getOpcode() == ISD::SREM;
9347   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9348   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9349   SDValue Dividend = Node->getOperand(0);
9350   SDValue Divisor = Node->getOperand(1);
9351   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9352     SDVTList VTs = DAG.getVTList(VT, VT);
9353     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9354     return true;
9355   }
9356   if (isOperationLegalOrCustom(DivOpc, VT)) {
9357     // X % Y -> X-X/Y*Y
9358     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9359     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9360     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9361     return true;
9362   }
9363   return false;
9364 }
9365 
9366 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9367                                             SelectionDAG &DAG) const {
9368   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9369   SDLoc dl(SDValue(Node, 0));
9370   SDValue Src = Node->getOperand(0);
9371 
9372   // DstVT is the result type, while SatVT is the size to which we saturate
9373   EVT SrcVT = Src.getValueType();
9374   EVT DstVT = Node->getValueType(0);
9375 
9376   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9377   unsigned SatWidth = SatVT.getScalarSizeInBits();
9378   unsigned DstWidth = DstVT.getScalarSizeInBits();
9379   assert(SatWidth <= DstWidth &&
9380          "Expected saturation width smaller than result width");
9381 
9382   // Determine minimum and maximum integer values and their corresponding
9383   // floating-point values.
9384   APInt MinInt, MaxInt;
9385   if (IsSigned) {
9386     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9387     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9388   } else {
9389     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9390     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9391   }
9392 
9393   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9394   // libcall emission cannot handle this. Large result types will fail.
9395   if (SrcVT == MVT::f16) {
9396     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9397     SrcVT = Src.getValueType();
9398   }
9399 
9400   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9401   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9402 
9403   APFloat::opStatus MinStatus =
9404       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9405   APFloat::opStatus MaxStatus =
9406       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9407   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9408                              !(MaxStatus & APFloat::opStatus::opInexact);
9409 
9410   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9411   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9412 
9413   // If the integer bounds are exactly representable as floats and min/max are
9414   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9415   // of comparisons and selects.
9416   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9417                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9418   if (AreExactFloatBounds && MinMaxLegal) {
9419     SDValue Clamped = Src;
9420 
9421     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9422     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9423     // Clamp by MaxFloat from above. NaN cannot occur.
9424     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9425     // Convert clamped value to integer.
9426     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9427                                   dl, DstVT, Clamped);
9428 
9429     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9430     // which will cast to zero.
9431     if (!IsSigned)
9432       return FpToInt;
9433 
9434     // Otherwise, select 0 if Src is NaN.
9435     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9436     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9437                            ISD::CondCode::SETUO);
9438   }
9439 
9440   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9441   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9442 
9443   // Result of direct conversion. The assumption here is that the operation is
9444   // non-trapping and it's fine to apply it to an out-of-range value if we
9445   // select it away later.
9446   SDValue FpToInt =
9447       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9448 
9449   SDValue Select = FpToInt;
9450 
9451   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9452   // MinInt if Src is NaN.
9453   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9454                            ISD::CondCode::SETULT);
9455   // If Src OGT MaxFloat, select MaxInt.
9456   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9457                            ISD::CondCode::SETOGT);
9458 
9459   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9460   // is already zero.
9461   if (!IsSigned)
9462     return Select;
9463 
9464   // Otherwise, select 0 if Src is NaN.
9465   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9466   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9467 }
9468 
9469 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9470                                            SelectionDAG &DAG) const {
9471   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9472   assert(Node->getValueType(0).isScalableVector() &&
9473          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9474 
9475   EVT VT = Node->getValueType(0);
9476   SDValue V1 = Node->getOperand(0);
9477   SDValue V2 = Node->getOperand(1);
9478   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9479   SDLoc DL(Node);
9480 
9481   // Expand through memory thusly:
9482   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9483   //  Store V1, Ptr
9484   //  Store V2, Ptr + sizeof(V1)
9485   //  If (Imm < 0)
9486   //    TrailingElts = -Imm
9487   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9488   //  else
9489   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9490   //  Res = Load Ptr
9491 
9492   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9493 
9494   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9495                                VT.getVectorElementCount() * 2);
9496   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9497   EVT PtrVT = StackPtr.getValueType();
9498   auto &MF = DAG.getMachineFunction();
9499   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9500   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9501 
9502   // Store the lo part of CONCAT_VECTORS(V1, V2)
9503   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9504   // Store the hi part of CONCAT_VECTORS(V1, V2)
9505   SDValue OffsetToV2 = DAG.getVScale(
9506       DL, PtrVT,
9507       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9508   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9509   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9510 
9511   if (Imm >= 0) {
9512     // Load back the required element. getVectorElementPointer takes care of
9513     // clamping the index if it's out-of-bounds.
9514     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9515     // Load the spliced result
9516     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9517                        MachinePointerInfo::getUnknownStack(MF));
9518   }
9519 
9520   uint64_t TrailingElts = -Imm;
9521 
9522   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9523   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9524   SDValue TrailingBytes =
9525       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9526 
9527   if (TrailingElts > VT.getVectorMinNumElements()) {
9528     SDValue VLBytes = DAG.getVScale(
9529         DL, PtrVT,
9530         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9531     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9532   }
9533 
9534   // Calculate the start address of the spliced result.
9535   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9536 
9537   // Load the spliced result
9538   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9539                      MachinePointerInfo::getUnknownStack(MF));
9540 }
9541 
9542 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9543                                            SDValue &LHS, SDValue &RHS,
9544                                            SDValue &CC, SDValue Mask,
9545                                            SDValue EVL, bool &NeedInvert,
9546                                            const SDLoc &dl, SDValue &Chain,
9547                                            bool IsSignaling) const {
9548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9549   MVT OpVT = LHS.getSimpleValueType();
9550   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9551   NeedInvert = false;
9552   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9553   bool IsNonVP = !EVL;
9554   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9555   default:
9556     llvm_unreachable("Unknown condition code action!");
9557   case TargetLowering::Legal:
9558     // Nothing to do.
9559     break;
9560   case TargetLowering::Expand: {
9561     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9562     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9563       std::swap(LHS, RHS);
9564       CC = DAG.getCondCode(InvCC);
9565       return true;
9566     }
9567     // Swapping operands didn't work. Try inverting the condition.
9568     bool NeedSwap = false;
9569     InvCC = getSetCCInverse(CCCode, OpVT);
9570     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9571       // If inverting the condition is not enough, try swapping operands
9572       // on top of it.
9573       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9574       NeedSwap = true;
9575     }
9576     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9577       CC = DAG.getCondCode(InvCC);
9578       NeedInvert = true;
9579       if (NeedSwap)
9580         std::swap(LHS, RHS);
9581       return true;
9582     }
9583 
9584     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9585     unsigned Opc = 0;
9586     switch (CCCode) {
9587     default:
9588       llvm_unreachable("Don't know how to expand this condition!");
9589     case ISD::SETUO:
9590       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9591         CC1 = ISD::SETUNE;
9592         CC2 = ISD::SETUNE;
9593         Opc = ISD::OR;
9594         break;
9595       }
9596       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9597              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9598       NeedInvert = true;
9599       LLVM_FALLTHROUGH;
9600     case ISD::SETO:
9601       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9602              "If SETO is expanded, SETOEQ must be legal!");
9603       CC1 = ISD::SETOEQ;
9604       CC2 = ISD::SETOEQ;
9605       Opc = ISD::AND;
9606       break;
9607     case ISD::SETONE:
9608     case ISD::SETUEQ:
9609       // If the SETUO or SETO CC isn't legal, we might be able to use
9610       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9611       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9612       // the operands.
9613       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9614       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9615           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9616            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9617         CC1 = ISD::SETOGT;
9618         CC2 = ISD::SETOLT;
9619         Opc = ISD::OR;
9620         NeedInvert = ((unsigned)CCCode & 0x8U);
9621         break;
9622       }
9623       LLVM_FALLTHROUGH;
9624     case ISD::SETOEQ:
9625     case ISD::SETOGT:
9626     case ISD::SETOGE:
9627     case ISD::SETOLT:
9628     case ISD::SETOLE:
9629     case ISD::SETUNE:
9630     case ISD::SETUGT:
9631     case ISD::SETUGE:
9632     case ISD::SETULT:
9633     case ISD::SETULE:
9634       // If we are floating point, assign and break, otherwise fall through.
9635       if (!OpVT.isInteger()) {
9636         // We can use the 4th bit to tell if we are the unordered
9637         // or ordered version of the opcode.
9638         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9639         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9640         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9641         break;
9642       }
9643       // Fallthrough if we are unsigned integer.
9644       LLVM_FALLTHROUGH;
9645     case ISD::SETLE:
9646     case ISD::SETGT:
9647     case ISD::SETGE:
9648     case ISD::SETLT:
9649     case ISD::SETNE:
9650     case ISD::SETEQ:
9651       // If all combinations of inverting the condition and swapping operands
9652       // didn't work then we have no means to expand the condition.
9653       llvm_unreachable("Don't know how to expand this condition!");
9654     }
9655 
9656     SDValue SetCC1, SetCC2;
9657     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9658       // If we aren't the ordered or unorder operation,
9659       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9660       if (IsNonVP) {
9661         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9662         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9663       } else {
9664         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9665         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9666       }
9667     } else {
9668       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9669       if (IsNonVP) {
9670         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9671         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9672       } else {
9673         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9674         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9675       }
9676     }
9677     if (Chain)
9678       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9679                           SetCC2.getValue(1));
9680     if (IsNonVP)
9681       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9682     else {
9683       // Transform the binary opcode to the VP equivalent.
9684       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9685       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9686       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9687     }
9688     RHS = SDValue();
9689     CC = SDValue();
9690     return true;
9691   }
9692   }
9693   return false;
9694 }
9695