1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/MC/MCAsmInfo.h" 16 #include "llvm/MC/MCExpr.h" 17 #include "llvm/Target/TargetData.h" 18 #include "llvm/Target/TargetLoweringObjectFile.h" 19 #include "llvm/Target/TargetMachine.h" 20 #include "llvm/Target/TargetRegisterInfo.h" 21 #include "llvm/GlobalVariable.h" 22 #include "llvm/DerivedTypes.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineJumpTableInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/SelectionDAG.h" 28 #include "llvm/ADT/STLExtras.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/MathExtras.h" 32 #include <cctype> 33 using namespace llvm; 34 35 /// We are in the process of implementing a new TypeLegalization action 36 /// - the promotion of vector elements. This feature is disabled by default 37 /// and only enabled using this flag. 38 static cl::opt<bool> 39 AllowPromoteIntElem("promote-elements", cl::Hidden, cl::init(true), 40 cl::desc("Allow promotion of integer vector element types")); 41 42 namespace llvm { 43 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) { 44 bool isLocal = GV->hasLocalLinkage(); 45 bool isDeclaration = GV->isDeclaration(); 46 // FIXME: what should we do for protected and internal visibility? 47 // For variables, is internal different from hidden? 48 bool isHidden = GV->hasHiddenVisibility(); 49 50 if (reloc == Reloc::PIC_) { 51 if (isLocal || isHidden) 52 return TLSModel::LocalDynamic; 53 else 54 return TLSModel::GeneralDynamic; 55 } else { 56 if (!isDeclaration || isHidden) 57 return TLSModel::LocalExec; 58 else 59 return TLSModel::InitialExec; 60 } 61 } 62 } 63 64 /// InitLibcallNames - Set default libcall names. 65 /// 66 static void InitLibcallNames(const char **Names) { 67 Names[RTLIB::SHL_I16] = "__ashlhi3"; 68 Names[RTLIB::SHL_I32] = "__ashlsi3"; 69 Names[RTLIB::SHL_I64] = "__ashldi3"; 70 Names[RTLIB::SHL_I128] = "__ashlti3"; 71 Names[RTLIB::SRL_I16] = "__lshrhi3"; 72 Names[RTLIB::SRL_I32] = "__lshrsi3"; 73 Names[RTLIB::SRL_I64] = "__lshrdi3"; 74 Names[RTLIB::SRL_I128] = "__lshrti3"; 75 Names[RTLIB::SRA_I16] = "__ashrhi3"; 76 Names[RTLIB::SRA_I32] = "__ashrsi3"; 77 Names[RTLIB::SRA_I64] = "__ashrdi3"; 78 Names[RTLIB::SRA_I128] = "__ashrti3"; 79 Names[RTLIB::MUL_I8] = "__mulqi3"; 80 Names[RTLIB::MUL_I16] = "__mulhi3"; 81 Names[RTLIB::MUL_I32] = "__mulsi3"; 82 Names[RTLIB::MUL_I64] = "__muldi3"; 83 Names[RTLIB::MUL_I128] = "__multi3"; 84 Names[RTLIB::MULO_I32] = "__mulosi4"; 85 Names[RTLIB::MULO_I64] = "__mulodi4"; 86 Names[RTLIB::MULO_I128] = "__muloti4"; 87 Names[RTLIB::SDIV_I8] = "__divqi3"; 88 Names[RTLIB::SDIV_I16] = "__divhi3"; 89 Names[RTLIB::SDIV_I32] = "__divsi3"; 90 Names[RTLIB::SDIV_I64] = "__divdi3"; 91 Names[RTLIB::SDIV_I128] = "__divti3"; 92 Names[RTLIB::UDIV_I8] = "__udivqi3"; 93 Names[RTLIB::UDIV_I16] = "__udivhi3"; 94 Names[RTLIB::UDIV_I32] = "__udivsi3"; 95 Names[RTLIB::UDIV_I64] = "__udivdi3"; 96 Names[RTLIB::UDIV_I128] = "__udivti3"; 97 Names[RTLIB::SREM_I8] = "__modqi3"; 98 Names[RTLIB::SREM_I16] = "__modhi3"; 99 Names[RTLIB::SREM_I32] = "__modsi3"; 100 Names[RTLIB::SREM_I64] = "__moddi3"; 101 Names[RTLIB::SREM_I128] = "__modti3"; 102 Names[RTLIB::UREM_I8] = "__umodqi3"; 103 Names[RTLIB::UREM_I16] = "__umodhi3"; 104 Names[RTLIB::UREM_I32] = "__umodsi3"; 105 Names[RTLIB::UREM_I64] = "__umoddi3"; 106 Names[RTLIB::UREM_I128] = "__umodti3"; 107 108 // These are generally not available. 109 Names[RTLIB::SDIVREM_I8] = 0; 110 Names[RTLIB::SDIVREM_I16] = 0; 111 Names[RTLIB::SDIVREM_I32] = 0; 112 Names[RTLIB::SDIVREM_I64] = 0; 113 Names[RTLIB::SDIVREM_I128] = 0; 114 Names[RTLIB::UDIVREM_I8] = 0; 115 Names[RTLIB::UDIVREM_I16] = 0; 116 Names[RTLIB::UDIVREM_I32] = 0; 117 Names[RTLIB::UDIVREM_I64] = 0; 118 Names[RTLIB::UDIVREM_I128] = 0; 119 120 Names[RTLIB::NEG_I32] = "__negsi2"; 121 Names[RTLIB::NEG_I64] = "__negdi2"; 122 Names[RTLIB::ADD_F32] = "__addsf3"; 123 Names[RTLIB::ADD_F64] = "__adddf3"; 124 Names[RTLIB::ADD_F80] = "__addxf3"; 125 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 126 Names[RTLIB::SUB_F32] = "__subsf3"; 127 Names[RTLIB::SUB_F64] = "__subdf3"; 128 Names[RTLIB::SUB_F80] = "__subxf3"; 129 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 130 Names[RTLIB::MUL_F32] = "__mulsf3"; 131 Names[RTLIB::MUL_F64] = "__muldf3"; 132 Names[RTLIB::MUL_F80] = "__mulxf3"; 133 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 134 Names[RTLIB::DIV_F32] = "__divsf3"; 135 Names[RTLIB::DIV_F64] = "__divdf3"; 136 Names[RTLIB::DIV_F80] = "__divxf3"; 137 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 138 Names[RTLIB::REM_F32] = "fmodf"; 139 Names[RTLIB::REM_F64] = "fmod"; 140 Names[RTLIB::REM_F80] = "fmodl"; 141 Names[RTLIB::REM_PPCF128] = "fmodl"; 142 Names[RTLIB::FMA_F32] = "fmaf"; 143 Names[RTLIB::FMA_F64] = "fma"; 144 Names[RTLIB::FMA_F80] = "fmal"; 145 Names[RTLIB::FMA_PPCF128] = "fmal"; 146 Names[RTLIB::POWI_F32] = "__powisf2"; 147 Names[RTLIB::POWI_F64] = "__powidf2"; 148 Names[RTLIB::POWI_F80] = "__powixf2"; 149 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 150 Names[RTLIB::SQRT_F32] = "sqrtf"; 151 Names[RTLIB::SQRT_F64] = "sqrt"; 152 Names[RTLIB::SQRT_F80] = "sqrtl"; 153 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 154 Names[RTLIB::LOG_F32] = "logf"; 155 Names[RTLIB::LOG_F64] = "log"; 156 Names[RTLIB::LOG_F80] = "logl"; 157 Names[RTLIB::LOG_PPCF128] = "logl"; 158 Names[RTLIB::LOG2_F32] = "log2f"; 159 Names[RTLIB::LOG2_F64] = "log2"; 160 Names[RTLIB::LOG2_F80] = "log2l"; 161 Names[RTLIB::LOG2_PPCF128] = "log2l"; 162 Names[RTLIB::LOG10_F32] = "log10f"; 163 Names[RTLIB::LOG10_F64] = "log10"; 164 Names[RTLIB::LOG10_F80] = "log10l"; 165 Names[RTLIB::LOG10_PPCF128] = "log10l"; 166 Names[RTLIB::EXP_F32] = "expf"; 167 Names[RTLIB::EXP_F64] = "exp"; 168 Names[RTLIB::EXP_F80] = "expl"; 169 Names[RTLIB::EXP_PPCF128] = "expl"; 170 Names[RTLIB::EXP2_F32] = "exp2f"; 171 Names[RTLIB::EXP2_F64] = "exp2"; 172 Names[RTLIB::EXP2_F80] = "exp2l"; 173 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 174 Names[RTLIB::SIN_F32] = "sinf"; 175 Names[RTLIB::SIN_F64] = "sin"; 176 Names[RTLIB::SIN_F80] = "sinl"; 177 Names[RTLIB::SIN_PPCF128] = "sinl"; 178 Names[RTLIB::COS_F32] = "cosf"; 179 Names[RTLIB::COS_F64] = "cos"; 180 Names[RTLIB::COS_F80] = "cosl"; 181 Names[RTLIB::COS_PPCF128] = "cosl"; 182 Names[RTLIB::POW_F32] = "powf"; 183 Names[RTLIB::POW_F64] = "pow"; 184 Names[RTLIB::POW_F80] = "powl"; 185 Names[RTLIB::POW_PPCF128] = "powl"; 186 Names[RTLIB::CEIL_F32] = "ceilf"; 187 Names[RTLIB::CEIL_F64] = "ceil"; 188 Names[RTLIB::CEIL_F80] = "ceill"; 189 Names[RTLIB::CEIL_PPCF128] = "ceill"; 190 Names[RTLIB::TRUNC_F32] = "truncf"; 191 Names[RTLIB::TRUNC_F64] = "trunc"; 192 Names[RTLIB::TRUNC_F80] = "truncl"; 193 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 194 Names[RTLIB::RINT_F32] = "rintf"; 195 Names[RTLIB::RINT_F64] = "rint"; 196 Names[RTLIB::RINT_F80] = "rintl"; 197 Names[RTLIB::RINT_PPCF128] = "rintl"; 198 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 199 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 200 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 201 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 202 Names[RTLIB::FLOOR_F32] = "floorf"; 203 Names[RTLIB::FLOOR_F64] = "floor"; 204 Names[RTLIB::FLOOR_F80] = "floorl"; 205 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 206 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 207 Names[RTLIB::COPYSIGN_F64] = "copysign"; 208 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 209 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 210 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 211 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 212 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 213 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 214 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 215 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 216 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 217 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 218 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; 219 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; 220 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 221 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 222 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 223 Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; 224 Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; 225 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 226 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 227 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 228 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 229 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 230 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 231 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 232 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 233 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 234 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; 235 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; 236 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 237 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 238 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 239 Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; 240 Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; 241 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 242 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 243 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 244 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 245 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 246 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 247 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 248 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 249 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 250 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 251 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 252 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 253 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 254 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 255 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 256 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 257 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 258 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 259 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 260 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 261 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 262 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 263 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 264 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 265 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 266 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 267 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 268 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 269 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 270 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 271 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 272 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 273 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 274 Names[RTLIB::OEQ_F32] = "__eqsf2"; 275 Names[RTLIB::OEQ_F64] = "__eqdf2"; 276 Names[RTLIB::UNE_F32] = "__nesf2"; 277 Names[RTLIB::UNE_F64] = "__nedf2"; 278 Names[RTLIB::OGE_F32] = "__gesf2"; 279 Names[RTLIB::OGE_F64] = "__gedf2"; 280 Names[RTLIB::OLT_F32] = "__ltsf2"; 281 Names[RTLIB::OLT_F64] = "__ltdf2"; 282 Names[RTLIB::OLE_F32] = "__lesf2"; 283 Names[RTLIB::OLE_F64] = "__ledf2"; 284 Names[RTLIB::OGT_F32] = "__gtsf2"; 285 Names[RTLIB::OGT_F64] = "__gtdf2"; 286 Names[RTLIB::UO_F32] = "__unordsf2"; 287 Names[RTLIB::UO_F64] = "__unorddf2"; 288 Names[RTLIB::O_F32] = "__unordsf2"; 289 Names[RTLIB::O_F64] = "__unorddf2"; 290 Names[RTLIB::MEMCPY] = "memcpy"; 291 Names[RTLIB::MEMMOVE] = "memmove"; 292 Names[RTLIB::MEMSET] = "memset"; 293 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 294 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 295 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 296 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 297 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 298 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 299 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 300 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 301 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 302 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 303 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 304 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 305 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 306 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 307 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 308 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 309 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 310 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 311 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 312 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 313 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 314 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 315 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 316 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 317 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 318 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 319 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 320 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; 321 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 322 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 323 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 324 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 325 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 326 } 327 328 /// InitLibcallCallingConvs - Set default libcall CallingConvs. 329 /// 330 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 331 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 332 CCs[i] = CallingConv::C; 333 } 334 } 335 336 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 337 /// UNKNOWN_LIBCALL if there is none. 338 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 339 if (OpVT == MVT::f32) { 340 if (RetVT == MVT::f64) 341 return FPEXT_F32_F64; 342 } 343 344 return UNKNOWN_LIBCALL; 345 } 346 347 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 348 /// UNKNOWN_LIBCALL if there is none. 349 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 350 if (RetVT == MVT::f32) { 351 if (OpVT == MVT::f64) 352 return FPROUND_F64_F32; 353 if (OpVT == MVT::f80) 354 return FPROUND_F80_F32; 355 if (OpVT == MVT::ppcf128) 356 return FPROUND_PPCF128_F32; 357 } else if (RetVT == MVT::f64) { 358 if (OpVT == MVT::f80) 359 return FPROUND_F80_F64; 360 if (OpVT == MVT::ppcf128) 361 return FPROUND_PPCF128_F64; 362 } 363 364 return UNKNOWN_LIBCALL; 365 } 366 367 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 368 /// UNKNOWN_LIBCALL if there is none. 369 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 370 if (OpVT == MVT::f32) { 371 if (RetVT == MVT::i8) 372 return FPTOSINT_F32_I8; 373 if (RetVT == MVT::i16) 374 return FPTOSINT_F32_I16; 375 if (RetVT == MVT::i32) 376 return FPTOSINT_F32_I32; 377 if (RetVT == MVT::i64) 378 return FPTOSINT_F32_I64; 379 if (RetVT == MVT::i128) 380 return FPTOSINT_F32_I128; 381 } else if (OpVT == MVT::f64) { 382 if (RetVT == MVT::i8) 383 return FPTOSINT_F64_I8; 384 if (RetVT == MVT::i16) 385 return FPTOSINT_F64_I16; 386 if (RetVT == MVT::i32) 387 return FPTOSINT_F64_I32; 388 if (RetVT == MVT::i64) 389 return FPTOSINT_F64_I64; 390 if (RetVT == MVT::i128) 391 return FPTOSINT_F64_I128; 392 } else if (OpVT == MVT::f80) { 393 if (RetVT == MVT::i32) 394 return FPTOSINT_F80_I32; 395 if (RetVT == MVT::i64) 396 return FPTOSINT_F80_I64; 397 if (RetVT == MVT::i128) 398 return FPTOSINT_F80_I128; 399 } else if (OpVT == MVT::ppcf128) { 400 if (RetVT == MVT::i32) 401 return FPTOSINT_PPCF128_I32; 402 if (RetVT == MVT::i64) 403 return FPTOSINT_PPCF128_I64; 404 if (RetVT == MVT::i128) 405 return FPTOSINT_PPCF128_I128; 406 } 407 return UNKNOWN_LIBCALL; 408 } 409 410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 411 /// UNKNOWN_LIBCALL if there is none. 412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 413 if (OpVT == MVT::f32) { 414 if (RetVT == MVT::i8) 415 return FPTOUINT_F32_I8; 416 if (RetVT == MVT::i16) 417 return FPTOUINT_F32_I16; 418 if (RetVT == MVT::i32) 419 return FPTOUINT_F32_I32; 420 if (RetVT == MVT::i64) 421 return FPTOUINT_F32_I64; 422 if (RetVT == MVT::i128) 423 return FPTOUINT_F32_I128; 424 } else if (OpVT == MVT::f64) { 425 if (RetVT == MVT::i8) 426 return FPTOUINT_F64_I8; 427 if (RetVT == MVT::i16) 428 return FPTOUINT_F64_I16; 429 if (RetVT == MVT::i32) 430 return FPTOUINT_F64_I32; 431 if (RetVT == MVT::i64) 432 return FPTOUINT_F64_I64; 433 if (RetVT == MVT::i128) 434 return FPTOUINT_F64_I128; 435 } else if (OpVT == MVT::f80) { 436 if (RetVT == MVT::i32) 437 return FPTOUINT_F80_I32; 438 if (RetVT == MVT::i64) 439 return FPTOUINT_F80_I64; 440 if (RetVT == MVT::i128) 441 return FPTOUINT_F80_I128; 442 } else if (OpVT == MVT::ppcf128) { 443 if (RetVT == MVT::i32) 444 return FPTOUINT_PPCF128_I32; 445 if (RetVT == MVT::i64) 446 return FPTOUINT_PPCF128_I64; 447 if (RetVT == MVT::i128) 448 return FPTOUINT_PPCF128_I128; 449 } 450 return UNKNOWN_LIBCALL; 451 } 452 453 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 454 /// UNKNOWN_LIBCALL if there is none. 455 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 456 if (OpVT == MVT::i32) { 457 if (RetVT == MVT::f32) 458 return SINTTOFP_I32_F32; 459 else if (RetVT == MVT::f64) 460 return SINTTOFP_I32_F64; 461 else if (RetVT == MVT::f80) 462 return SINTTOFP_I32_F80; 463 else if (RetVT == MVT::ppcf128) 464 return SINTTOFP_I32_PPCF128; 465 } else if (OpVT == MVT::i64) { 466 if (RetVT == MVT::f32) 467 return SINTTOFP_I64_F32; 468 else if (RetVT == MVT::f64) 469 return SINTTOFP_I64_F64; 470 else if (RetVT == MVT::f80) 471 return SINTTOFP_I64_F80; 472 else if (RetVT == MVT::ppcf128) 473 return SINTTOFP_I64_PPCF128; 474 } else if (OpVT == MVT::i128) { 475 if (RetVT == MVT::f32) 476 return SINTTOFP_I128_F32; 477 else if (RetVT == MVT::f64) 478 return SINTTOFP_I128_F64; 479 else if (RetVT == MVT::f80) 480 return SINTTOFP_I128_F80; 481 else if (RetVT == MVT::ppcf128) 482 return SINTTOFP_I128_PPCF128; 483 } 484 return UNKNOWN_LIBCALL; 485 } 486 487 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 488 /// UNKNOWN_LIBCALL if there is none. 489 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 490 if (OpVT == MVT::i32) { 491 if (RetVT == MVT::f32) 492 return UINTTOFP_I32_F32; 493 else if (RetVT == MVT::f64) 494 return UINTTOFP_I32_F64; 495 else if (RetVT == MVT::f80) 496 return UINTTOFP_I32_F80; 497 else if (RetVT == MVT::ppcf128) 498 return UINTTOFP_I32_PPCF128; 499 } else if (OpVT == MVT::i64) { 500 if (RetVT == MVT::f32) 501 return UINTTOFP_I64_F32; 502 else if (RetVT == MVT::f64) 503 return UINTTOFP_I64_F64; 504 else if (RetVT == MVT::f80) 505 return UINTTOFP_I64_F80; 506 else if (RetVT == MVT::ppcf128) 507 return UINTTOFP_I64_PPCF128; 508 } else if (OpVT == MVT::i128) { 509 if (RetVT == MVT::f32) 510 return UINTTOFP_I128_F32; 511 else if (RetVT == MVT::f64) 512 return UINTTOFP_I128_F64; 513 else if (RetVT == MVT::f80) 514 return UINTTOFP_I128_F80; 515 else if (RetVT == MVT::ppcf128) 516 return UINTTOFP_I128_PPCF128; 517 } 518 return UNKNOWN_LIBCALL; 519 } 520 521 /// InitCmpLibcallCCs - Set default comparison libcall CC. 522 /// 523 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 524 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 525 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 526 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 527 CCs[RTLIB::UNE_F32] = ISD::SETNE; 528 CCs[RTLIB::UNE_F64] = ISD::SETNE; 529 CCs[RTLIB::OGE_F32] = ISD::SETGE; 530 CCs[RTLIB::OGE_F64] = ISD::SETGE; 531 CCs[RTLIB::OLT_F32] = ISD::SETLT; 532 CCs[RTLIB::OLT_F64] = ISD::SETLT; 533 CCs[RTLIB::OLE_F32] = ISD::SETLE; 534 CCs[RTLIB::OLE_F64] = ISD::SETLE; 535 CCs[RTLIB::OGT_F32] = ISD::SETGT; 536 CCs[RTLIB::OGT_F64] = ISD::SETGT; 537 CCs[RTLIB::UO_F32] = ISD::SETNE; 538 CCs[RTLIB::UO_F64] = ISD::SETNE; 539 CCs[RTLIB::O_F32] = ISD::SETEQ; 540 CCs[RTLIB::O_F64] = ISD::SETEQ; 541 } 542 543 /// NOTE: The constructor takes ownership of TLOF. 544 TargetLowering::TargetLowering(const TargetMachine &tm, 545 const TargetLoweringObjectFile *tlof) 546 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof), 547 mayPromoteElements(AllowPromoteIntElem) { 548 // All operations default to being supported. 549 memset(OpActions, 0, sizeof(OpActions)); 550 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 551 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 552 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 553 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 554 555 // Set default actions for various operations. 556 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) { 557 // Default all indexed load / store to expand. 558 for (unsigned IM = (unsigned)ISD::PRE_INC; 559 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 560 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand); 561 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand); 562 } 563 564 // These operations default to expand. 565 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand); 566 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand); 567 } 568 569 // Most targets ignore the @llvm.prefetch intrinsic. 570 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 571 572 // ConstantFP nodes default to expand. Targets can either change this to 573 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 574 // to optimize expansions for certain constants. 575 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 576 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 577 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 578 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 579 580 // These library functions default to expand. 581 setOperationAction(ISD::FLOG , MVT::f16, Expand); 582 setOperationAction(ISD::FLOG2, MVT::f16, Expand); 583 setOperationAction(ISD::FLOG10, MVT::f16, Expand); 584 setOperationAction(ISD::FEXP , MVT::f16, Expand); 585 setOperationAction(ISD::FEXP2, MVT::f16, Expand); 586 setOperationAction(ISD::FFLOOR, MVT::f16, Expand); 587 setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand); 588 setOperationAction(ISD::FCEIL, MVT::f16, Expand); 589 setOperationAction(ISD::FRINT, MVT::f16, Expand); 590 setOperationAction(ISD::FTRUNC, MVT::f16, Expand); 591 setOperationAction(ISD::FLOG , MVT::f32, Expand); 592 setOperationAction(ISD::FLOG2, MVT::f32, Expand); 593 setOperationAction(ISD::FLOG10, MVT::f32, Expand); 594 setOperationAction(ISD::FEXP , MVT::f32, Expand); 595 setOperationAction(ISD::FEXP2, MVT::f32, Expand); 596 setOperationAction(ISD::FFLOOR, MVT::f32, Expand); 597 setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand); 598 setOperationAction(ISD::FCEIL, MVT::f32, Expand); 599 setOperationAction(ISD::FRINT, MVT::f32, Expand); 600 setOperationAction(ISD::FTRUNC, MVT::f32, Expand); 601 setOperationAction(ISD::FLOG , MVT::f64, Expand); 602 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 603 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 604 setOperationAction(ISD::FEXP , MVT::f64, Expand); 605 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 606 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 607 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 608 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 609 setOperationAction(ISD::FRINT, MVT::f64, Expand); 610 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 611 612 // Default ISD::TRAP to expand (which turns it into abort). 613 setOperationAction(ISD::TRAP, MVT::Other, Expand); 614 615 IsLittleEndian = TD->isLittleEndian(); 616 PointerTy = MVT::getIntegerVT(8*TD->getPointerSize()); 617 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 618 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 619 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8; 620 maxStoresPerMemsetOptSize = maxStoresPerMemcpyOptSize 621 = maxStoresPerMemmoveOptSize = 4; 622 benefitFromCodePlacementOpt = false; 623 UseUnderscoreSetJmp = false; 624 UseUnderscoreLongJmp = false; 625 SelectIsExpensive = false; 626 IntDivIsCheap = false; 627 Pow2DivIsCheap = false; 628 JumpIsExpensive = false; 629 StackPointerRegisterToSaveRestore = 0; 630 ExceptionPointerRegister = 0; 631 ExceptionSelectorRegister = 0; 632 BooleanContents = UndefinedBooleanContent; 633 BooleanVectorContents = UndefinedBooleanContent; 634 SchedPreferenceInfo = Sched::ILP; 635 JumpBufSize = 0; 636 JumpBufAlignment = 0; 637 MinFunctionAlignment = 0; 638 PrefFunctionAlignment = 0; 639 PrefLoopAlignment = 0; 640 MinStackArgumentAlignment = 1; 641 ShouldFoldAtomicFences = false; 642 InsertFencesForAtomic = false; 643 644 InitLibcallNames(LibcallRoutineNames); 645 InitCmpLibcallCCs(CmpLibcallCCs); 646 InitLibcallCallingConvs(LibcallCallingConvs); 647 } 648 649 TargetLowering::~TargetLowering() { 650 delete &TLOF; 651 } 652 653 MVT TargetLowering::getShiftAmountTy(EVT LHSTy) const { 654 return MVT::getIntegerVT(8*TD->getPointerSize()); 655 } 656 657 /// canOpTrap - Returns true if the operation can trap for the value type. 658 /// VT must be a legal type. 659 bool TargetLowering::canOpTrap(unsigned Op, EVT VT) const { 660 assert(isTypeLegal(VT)); 661 switch (Op) { 662 default: 663 return false; 664 case ISD::FDIV: 665 case ISD::FREM: 666 case ISD::SDIV: 667 case ISD::UDIV: 668 case ISD::SREM: 669 case ISD::UREM: 670 return true; 671 } 672 } 673 674 675 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 676 unsigned &NumIntermediates, 677 EVT &RegisterVT, 678 TargetLowering *TLI) { 679 // Figure out the right, legal destination reg to copy into. 680 unsigned NumElts = VT.getVectorNumElements(); 681 MVT EltTy = VT.getVectorElementType(); 682 683 unsigned NumVectorRegs = 1; 684 685 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 686 // could break down into LHS/RHS like LegalizeDAG does. 687 if (!isPowerOf2_32(NumElts)) { 688 NumVectorRegs = NumElts; 689 NumElts = 1; 690 } 691 692 // Divide the input until we get to a supported size. This will always 693 // end with a scalar if the target doesn't support vectors. 694 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 695 NumElts >>= 1; 696 NumVectorRegs <<= 1; 697 } 698 699 NumIntermediates = NumVectorRegs; 700 701 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 702 if (!TLI->isTypeLegal(NewVT)) 703 NewVT = EltTy; 704 IntermediateVT = NewVT; 705 706 unsigned NewVTSize = NewVT.getSizeInBits(); 707 708 // Convert sizes such as i33 to i64. 709 if (!isPowerOf2_32(NewVTSize)) 710 NewVTSize = NextPowerOf2(NewVTSize); 711 712 EVT DestVT = TLI->getRegisterType(NewVT); 713 RegisterVT = DestVT; 714 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 715 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 716 717 // Otherwise, promotion or legal types use the same number of registers as 718 // the vector decimated to the appropriate level. 719 return NumVectorRegs; 720 } 721 722 /// isLegalRC - Return true if the value types that can be represented by the 723 /// specified register class are all legal. 724 bool TargetLowering::isLegalRC(const TargetRegisterClass *RC) const { 725 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 726 I != E; ++I) { 727 if (isTypeLegal(*I)) 728 return true; 729 } 730 return false; 731 } 732 733 /// hasLegalSuperRegRegClasses - Return true if the specified register class 734 /// has one or more super-reg register classes that are legal. 735 bool 736 TargetLowering::hasLegalSuperRegRegClasses(const TargetRegisterClass *RC) const{ 737 if (*RC->superregclasses_begin() == 0) 738 return false; 739 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 740 E = RC->superregclasses_end(); I != E; ++I) { 741 const TargetRegisterClass *RRC = *I; 742 if (isLegalRC(RRC)) 743 return true; 744 } 745 return false; 746 } 747 748 /// findRepresentativeClass - Return the largest legal super-reg register class 749 /// of the register class for the specified type and its associated "cost". 750 std::pair<const TargetRegisterClass*, uint8_t> 751 TargetLowering::findRepresentativeClass(EVT VT) const { 752 const TargetRegisterClass *RC = RegClassForVT[VT.getSimpleVT().SimpleTy]; 753 if (!RC) 754 return std::make_pair(RC, 0); 755 const TargetRegisterClass *BestRC = RC; 756 for (TargetRegisterInfo::regclass_iterator I = RC->superregclasses_begin(), 757 E = RC->superregclasses_end(); I != E; ++I) { 758 const TargetRegisterClass *RRC = *I; 759 if (RRC->isASubClass() || !isLegalRC(RRC)) 760 continue; 761 if (!hasLegalSuperRegRegClasses(RRC)) 762 return std::make_pair(RRC, 1); 763 BestRC = RRC; 764 } 765 return std::make_pair(BestRC, 1); 766 } 767 768 769 /// computeRegisterProperties - Once all of the register classes are added, 770 /// this allows us to compute derived properties we expose. 771 void TargetLowering::computeRegisterProperties() { 772 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE && 773 "Too many value types for ValueTypeActions to hold!"); 774 775 // Everything defaults to needing one register. 776 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 777 NumRegistersForVT[i] = 1; 778 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 779 } 780 // ...except isVoid, which doesn't need any registers. 781 NumRegistersForVT[MVT::isVoid] = 0; 782 783 // Find the largest integer register class. 784 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 785 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg) 786 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 787 788 // Every integer value type larger than this largest register takes twice as 789 // many registers to represent as the previous ValueType. 790 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) { 791 EVT ExpandedVT = (MVT::SimpleValueType)ExpandedReg; 792 if (!ExpandedVT.isInteger()) 793 break; 794 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 795 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 796 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 797 ValueTypeActions.setTypeAction(ExpandedVT, TypeExpandInteger); 798 } 799 800 // Inspect all of the ValueType's smaller than the largest integer 801 // register to see which ones need promotion. 802 unsigned LegalIntReg = LargestIntReg; 803 for (unsigned IntReg = LargestIntReg - 1; 804 IntReg >= (unsigned)MVT::i1; --IntReg) { 805 EVT IVT = (MVT::SimpleValueType)IntReg; 806 if (isTypeLegal(IVT)) { 807 LegalIntReg = IntReg; 808 } else { 809 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 810 (MVT::SimpleValueType)LegalIntReg; 811 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 812 } 813 } 814 815 // ppcf128 type is really two f64's. 816 if (!isTypeLegal(MVT::ppcf128)) { 817 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 818 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 819 TransformToType[MVT::ppcf128] = MVT::f64; 820 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 821 } 822 823 // Decide how to handle f64. If the target does not have native f64 support, 824 // expand it to i64 and we will be generating soft float library calls. 825 if (!isTypeLegal(MVT::f64)) { 826 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 827 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 828 TransformToType[MVT::f64] = MVT::i64; 829 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 830 } 831 832 // Decide how to handle f32. If the target does not have native support for 833 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32. 834 if (!isTypeLegal(MVT::f32)) { 835 if (isTypeLegal(MVT::f64)) { 836 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64]; 837 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64]; 838 TransformToType[MVT::f32] = MVT::f64; 839 ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger); 840 } else { 841 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 842 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 843 TransformToType[MVT::f32] = MVT::i32; 844 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 845 } 846 } 847 848 // Loop over all of the vector value types to see which need transformations. 849 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 850 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 851 MVT VT = (MVT::SimpleValueType)i; 852 if (isTypeLegal(VT)) continue; 853 854 // Determine if there is a legal wider type. If so, we should promote to 855 // that wider vector type. 856 EVT EltVT = VT.getVectorElementType(); 857 unsigned NElts = VT.getVectorNumElements(); 858 if (NElts != 1) { 859 bool IsLegalWiderType = false; 860 // If we allow the promotion of vector elements using a flag, 861 // then return TypePromoteInteger on vector elements. 862 // First try to promote the elements of integer vectors. If no legal 863 // promotion was found, fallback to the widen-vector method. 864 if (mayPromoteElements) 865 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 866 EVT SVT = (MVT::SimpleValueType)nVT; 867 // Promote vectors of integers to vectors with the same number 868 // of elements, with a wider element type. 869 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 870 && SVT.getVectorNumElements() == NElts && 871 isTypeLegal(SVT) && SVT.getScalarType().isInteger()) { 872 TransformToType[i] = SVT; 873 RegisterTypeForVT[i] = SVT; 874 NumRegistersForVT[i] = 1; 875 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 876 IsLegalWiderType = true; 877 break; 878 } 879 } 880 881 if (IsLegalWiderType) continue; 882 883 // Try to widen the vector. 884 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 885 EVT SVT = (MVT::SimpleValueType)nVT; 886 if (SVT.getVectorElementType() == EltVT && 887 SVT.getVectorNumElements() > NElts && 888 isTypeLegal(SVT)) { 889 TransformToType[i] = SVT; 890 RegisterTypeForVT[i] = SVT; 891 NumRegistersForVT[i] = 1; 892 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 893 IsLegalWiderType = true; 894 break; 895 } 896 } 897 if (IsLegalWiderType) continue; 898 } 899 900 MVT IntermediateVT; 901 EVT RegisterVT; 902 unsigned NumIntermediates; 903 NumRegistersForVT[i] = 904 getVectorTypeBreakdownMVT(VT, IntermediateVT, NumIntermediates, 905 RegisterVT, this); 906 RegisterTypeForVT[i] = RegisterVT; 907 908 EVT NVT = VT.getPow2VectorType(); 909 if (NVT == VT) { 910 // Type is already a power of 2. The default action is to split. 911 TransformToType[i] = MVT::Other; 912 unsigned NumElts = VT.getVectorNumElements(); 913 ValueTypeActions.setTypeAction(VT, 914 NumElts > 1 ? TypeSplitVector : TypeScalarizeVector); 915 } else { 916 TransformToType[i] = NVT; 917 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 918 } 919 } 920 921 // Determine the 'representative' register class for each value type. 922 // An representative register class is the largest (meaning one which is 923 // not a sub-register class / subreg register class) legal register class for 924 // a group of value types. For example, on i386, i8, i16, and i32 925 // representative would be GR32; while on x86_64 it's GR64. 926 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 927 const TargetRegisterClass* RRC; 928 uint8_t Cost; 929 tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i); 930 RepRegClassForVT[i] = RRC; 931 RepRegClassCostForVT[i] = Cost; 932 } 933 } 934 935 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 936 return NULL; 937 } 938 939 940 EVT TargetLowering::getSetCCResultType(EVT VT) const { 941 assert(!VT.isVector() && "No default SetCC type for vectors!"); 942 return PointerTy.SimpleTy; 943 } 944 945 MVT::SimpleValueType TargetLowering::getCmpLibcallReturnType() const { 946 return MVT::i32; // return the default value 947 } 948 949 /// getVectorTypeBreakdown - Vector types are broken down into some number of 950 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 951 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 952 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 953 /// 954 /// This method returns the number of registers needed, and the VT for each 955 /// register. It also returns the VT and quantity of the intermediate values 956 /// before they are promoted/expanded. 957 /// 958 unsigned TargetLowering::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 959 EVT &IntermediateVT, 960 unsigned &NumIntermediates, 961 EVT &RegisterVT) const { 962 unsigned NumElts = VT.getVectorNumElements(); 963 964 // If there is a wider vector type with the same element type as this one, 965 // we should widen to that legal vector type. This handles things like 966 // <2 x float> -> <4 x float>. 967 if (NumElts != 1 && getTypeAction(Context, VT) == TypeWidenVector) { 968 RegisterVT = getTypeToTransformTo(Context, VT); 969 if (isTypeLegal(RegisterVT)) { 970 IntermediateVT = RegisterVT; 971 NumIntermediates = 1; 972 return 1; 973 } 974 } 975 976 // Figure out the right, legal destination reg to copy into. 977 EVT EltTy = VT.getVectorElementType(); 978 979 unsigned NumVectorRegs = 1; 980 981 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 982 // could break down into LHS/RHS like LegalizeDAG does. 983 if (!isPowerOf2_32(NumElts)) { 984 NumVectorRegs = NumElts; 985 NumElts = 1; 986 } 987 988 // Divide the input until we get to a supported size. This will always 989 // end with a scalar if the target doesn't support vectors. 990 while (NumElts > 1 && !isTypeLegal( 991 EVT::getVectorVT(Context, EltTy, NumElts))) { 992 NumElts >>= 1; 993 NumVectorRegs <<= 1; 994 } 995 996 NumIntermediates = NumVectorRegs; 997 998 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 999 if (!isTypeLegal(NewVT)) 1000 NewVT = EltTy; 1001 IntermediateVT = NewVT; 1002 1003 EVT DestVT = getRegisterType(Context, NewVT); 1004 RegisterVT = DestVT; 1005 unsigned NewVTSize = NewVT.getSizeInBits(); 1006 1007 // Convert sizes such as i33 to i64. 1008 if (!isPowerOf2_32(NewVTSize)) 1009 NewVTSize = NextPowerOf2(NewVTSize); 1010 1011 if (DestVT.bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1012 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1013 1014 // Otherwise, promotion or legal types use the same number of registers as 1015 // the vector decimated to the appropriate level. 1016 return NumVectorRegs; 1017 } 1018 1019 /// Get the EVTs and ArgFlags collections that represent the legalized return 1020 /// type of the given function. This does not require a DAG or a return value, 1021 /// and is suitable for use before any DAGs for the function are constructed. 1022 /// TODO: Move this out of TargetLowering.cpp. 1023 void llvm::GetReturnInfo(Type* ReturnType, Attributes attr, 1024 SmallVectorImpl<ISD::OutputArg> &Outs, 1025 const TargetLowering &TLI, 1026 SmallVectorImpl<uint64_t> *Offsets) { 1027 SmallVector<EVT, 4> ValueVTs; 1028 ComputeValueVTs(TLI, ReturnType, ValueVTs); 1029 unsigned NumValues = ValueVTs.size(); 1030 if (NumValues == 0) return; 1031 unsigned Offset = 0; 1032 1033 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1034 EVT VT = ValueVTs[j]; 1035 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1036 1037 if (attr & Attribute::SExt) 1038 ExtendKind = ISD::SIGN_EXTEND; 1039 else if (attr & Attribute::ZExt) 1040 ExtendKind = ISD::ZERO_EXTEND; 1041 1042 // FIXME: C calling convention requires the return type to be promoted to 1043 // at least 32-bit. But this is not necessary for non-C calling 1044 // conventions. The frontend should mark functions whose return values 1045 // require promoting with signext or zeroext attributes. 1046 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1047 EVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1048 if (VT.bitsLT(MinVT)) 1049 VT = MinVT; 1050 } 1051 1052 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1053 EVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1054 unsigned PartSize = TLI.getTargetData()->getTypeAllocSize( 1055 PartVT.getTypeForEVT(ReturnType->getContext())); 1056 1057 // 'inreg' on function refers to return value 1058 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1059 if (attr & Attribute::InReg) 1060 Flags.setInReg(); 1061 1062 // Propagate extension type if any 1063 if (attr & Attribute::SExt) 1064 Flags.setSExt(); 1065 else if (attr & Attribute::ZExt) 1066 Flags.setZExt(); 1067 1068 for (unsigned i = 0; i < NumParts; ++i) { 1069 Outs.push_back(ISD::OutputArg(Flags, PartVT, /*isFixed=*/true)); 1070 if (Offsets) { 1071 Offsets->push_back(Offset); 1072 Offset += PartSize; 1073 } 1074 } 1075 } 1076 } 1077 1078 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1079 /// function arguments in the caller parameter area. This is the actual 1080 /// alignment, not its logarithm. 1081 unsigned TargetLowering::getByValTypeAlignment(Type *Ty) const { 1082 return TD->getCallFrameTypeAlignment(Ty); 1083 } 1084 1085 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 1086 /// current function. The returned value is a member of the 1087 /// MachineJumpTableInfo::JTEntryKind enum. 1088 unsigned TargetLowering::getJumpTableEncoding() const { 1089 // In non-pic modes, just use the address of a block. 1090 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 1091 return MachineJumpTableInfo::EK_BlockAddress; 1092 1093 // In PIC mode, if the target supports a GPRel32 directive, use it. 1094 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != 0) 1095 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 1096 1097 // Otherwise, use a label difference. 1098 return MachineJumpTableInfo::EK_LabelDifference32; 1099 } 1100 1101 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 1102 SelectionDAG &DAG) const { 1103 // If our PIC model is GP relative, use the global offset table as the base. 1104 if (getJumpTableEncoding() == MachineJumpTableInfo::EK_GPRel32BlockAddress) 1105 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy()); 1106 return Table; 1107 } 1108 1109 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 1110 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 1111 /// MCExpr. 1112 const MCExpr * 1113 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 1114 unsigned JTI,MCContext &Ctx) const{ 1115 // The normal PIC reloc base is the label at the start of the jump table. 1116 return MCSymbolRefExpr::Create(MF->getJTISymbol(JTI, Ctx), Ctx); 1117 } 1118 1119 bool 1120 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 1121 // Assume that everything is safe in static mode. 1122 if (getTargetMachine().getRelocationModel() == Reloc::Static) 1123 return true; 1124 1125 // In dynamic-no-pic mode, assume that known defined values are safe. 1126 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 1127 GA && 1128 !GA->getGlobal()->isDeclaration() && 1129 !GA->getGlobal()->isWeakForLinker()) 1130 return true; 1131 1132 // Otherwise assume nothing is safe. 1133 return false; 1134 } 1135 1136 //===----------------------------------------------------------------------===// 1137 // Optimization Methods 1138 //===----------------------------------------------------------------------===// 1139 1140 /// ShrinkDemandedConstant - Check to see if the specified operand of the 1141 /// specified instruction is a constant integer. If so, check to see if there 1142 /// are any bits set in the constant that are not demanded. If so, shrink the 1143 /// constant and return true. 1144 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 1145 const APInt &Demanded) { 1146 DebugLoc dl = Op.getDebugLoc(); 1147 1148 // FIXME: ISD::SELECT, ISD::SELECT_CC 1149 switch (Op.getOpcode()) { 1150 default: break; 1151 case ISD::XOR: 1152 case ISD::AND: 1153 case ISD::OR: { 1154 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1155 if (!C) return false; 1156 1157 if (Op.getOpcode() == ISD::XOR && 1158 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 1159 return false; 1160 1161 // if we can expand it to have all bits set, do it 1162 if (C->getAPIntValue().intersects(~Demanded)) { 1163 EVT VT = Op.getValueType(); 1164 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 1165 DAG.getConstant(Demanded & 1166 C->getAPIntValue(), 1167 VT)); 1168 return CombineTo(Op, New); 1169 } 1170 1171 break; 1172 } 1173 } 1174 1175 return false; 1176 } 1177 1178 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 1179 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 1180 /// cast, but it could be generalized for targets with other types of 1181 /// implicit widening casts. 1182 bool 1183 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 1184 unsigned BitWidth, 1185 const APInt &Demanded, 1186 DebugLoc dl) { 1187 assert(Op.getNumOperands() == 2 && 1188 "ShrinkDemandedOp only supports binary operators!"); 1189 assert(Op.getNode()->getNumValues() == 1 && 1190 "ShrinkDemandedOp only supports nodes with one result!"); 1191 1192 // Don't do this if the node has another user, which may require the 1193 // full value. 1194 if (!Op.getNode()->hasOneUse()) 1195 return false; 1196 1197 // Search for the smallest integer type with free casts to and from 1198 // Op's type. For expedience, just check power-of-2 integer types. 1199 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1200 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros(); 1201 if (!isPowerOf2_32(SmallVTBits)) 1202 SmallVTBits = NextPowerOf2(SmallVTBits); 1203 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 1204 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 1205 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 1206 TLI.isZExtFree(SmallVT, Op.getValueType())) { 1207 // We found a type with free casts. 1208 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 1209 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1210 Op.getNode()->getOperand(0)), 1211 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 1212 Op.getNode()->getOperand(1))); 1213 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X); 1214 return CombineTo(Op, Z); 1215 } 1216 } 1217 return false; 1218 } 1219 1220 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 1221 /// DemandedMask bits of the result of Op are ever used downstream. If we can 1222 /// use this information to simplify Op, create a new simplified DAG node and 1223 /// return true, returning the original and new nodes in Old and New. Otherwise, 1224 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 1225 /// the expression (used to simplify the caller). The KnownZero/One bits may 1226 /// only be accurate for those bits in the DemandedMask. 1227 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 1228 const APInt &DemandedMask, 1229 APInt &KnownZero, 1230 APInt &KnownOne, 1231 TargetLoweringOpt &TLO, 1232 unsigned Depth) const { 1233 unsigned BitWidth = DemandedMask.getBitWidth(); 1234 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 1235 "Mask size mismatches value type size!"); 1236 APInt NewMask = DemandedMask; 1237 DebugLoc dl = Op.getDebugLoc(); 1238 1239 // Don't know anything. 1240 KnownZero = KnownOne = APInt(BitWidth, 0); 1241 1242 // Other users may use these bits. 1243 if (!Op.getNode()->hasOneUse()) { 1244 if (Depth != 0) { 1245 // If not at the root, Just compute the KnownZero/KnownOne bits to 1246 // simplify things downstream. 1247 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 1248 return false; 1249 } 1250 // If this is the root being simplified, allow it to have multiple uses, 1251 // just set the NewMask to all bits. 1252 NewMask = APInt::getAllOnesValue(BitWidth); 1253 } else if (DemandedMask == 0) { 1254 // Not demanding any bits from Op. 1255 if (Op.getOpcode() != ISD::UNDEF) 1256 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 1257 return false; 1258 } else if (Depth == 6) { // Limit search depth. 1259 return false; 1260 } 1261 1262 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 1263 switch (Op.getOpcode()) { 1264 case ISD::Constant: 1265 // We know all of the bits for a constant! 1266 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 1267 KnownZero = ~KnownOne; 1268 return false; // Don't fall through, will infinitely loop. 1269 case ISD::AND: 1270 // If the RHS is a constant, check to see if the LHS would be zero without 1271 // using the bits from the RHS. Below, we use knowledge about the RHS to 1272 // simplify the LHS, here we're using information from the LHS to simplify 1273 // the RHS. 1274 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1275 APInt LHSZero, LHSOne; 1276 // Do not increment Depth here; that can cause an infinite loop. 1277 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 1278 // If the LHS already has zeros where RHSC does, this and is dead. 1279 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 1280 return TLO.CombineTo(Op, Op.getOperand(0)); 1281 // If any of the set bits in the RHS are known zero on the LHS, shrink 1282 // the constant. 1283 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 1284 return true; 1285 } 1286 1287 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1288 KnownOne, TLO, Depth+1)) 1289 return true; 1290 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1291 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 1292 KnownZero2, KnownOne2, TLO, Depth+1)) 1293 return true; 1294 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1295 1296 // If all of the demanded bits are known one on one side, return the other. 1297 // These bits cannot contribute to the result of the 'and'. 1298 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1299 return TLO.CombineTo(Op, Op.getOperand(0)); 1300 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1301 return TLO.CombineTo(Op, Op.getOperand(1)); 1302 // If all of the demanded bits in the inputs are known zeros, return zero. 1303 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 1304 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType())); 1305 // If the RHS is a constant, see if we can simplify it. 1306 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 1307 return true; 1308 // If the operation can be done in a smaller type, do so. 1309 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1310 return true; 1311 1312 // Output known-1 bits are only known if set in both the LHS & RHS. 1313 KnownOne &= KnownOne2; 1314 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1315 KnownZero |= KnownZero2; 1316 break; 1317 case ISD::OR: 1318 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1319 KnownOne, TLO, Depth+1)) 1320 return true; 1321 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1322 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 1323 KnownZero2, KnownOne2, TLO, Depth+1)) 1324 return true; 1325 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1326 1327 // If all of the demanded bits are known zero on one side, return the other. 1328 // These bits cannot contribute to the result of the 'or'. 1329 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 1330 return TLO.CombineTo(Op, Op.getOperand(0)); 1331 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 1332 return TLO.CombineTo(Op, Op.getOperand(1)); 1333 // If all of the potentially set bits on one side are known to be set on 1334 // the other side, just use the 'other' side. 1335 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 1336 return TLO.CombineTo(Op, Op.getOperand(0)); 1337 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 1338 return TLO.CombineTo(Op, Op.getOperand(1)); 1339 // If the RHS is a constant, see if we can simplify it. 1340 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1341 return true; 1342 // If the operation can be done in a smaller type, do so. 1343 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1344 return true; 1345 1346 // Output known-0 bits are only known if clear in both the LHS & RHS. 1347 KnownZero &= KnownZero2; 1348 // Output known-1 are known to be set if set in either the LHS | RHS. 1349 KnownOne |= KnownOne2; 1350 break; 1351 case ISD::XOR: 1352 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 1353 KnownOne, TLO, Depth+1)) 1354 return true; 1355 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1356 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 1357 KnownOne2, TLO, Depth+1)) 1358 return true; 1359 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1360 1361 // If all of the demanded bits are known zero on one side, return the other. 1362 // These bits cannot contribute to the result of the 'xor'. 1363 if ((KnownZero & NewMask) == NewMask) 1364 return TLO.CombineTo(Op, Op.getOperand(0)); 1365 if ((KnownZero2 & NewMask) == NewMask) 1366 return TLO.CombineTo(Op, Op.getOperand(1)); 1367 // If the operation can be done in a smaller type, do so. 1368 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1369 return true; 1370 1371 // If all of the unknown bits are known to be zero on one side or the other 1372 // (but not both) turn this into an *inclusive* or. 1373 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1374 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 1375 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 1376 Op.getOperand(0), 1377 Op.getOperand(1))); 1378 1379 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1380 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1381 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1382 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1383 1384 // If all of the demanded bits on one side are known, and all of the set 1385 // bits on that side are also known to be set on the other side, turn this 1386 // into an AND, as we know the bits will be cleared. 1387 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1388 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known 1389 if ((KnownOne & KnownOne2) == KnownOne) { 1390 EVT VT = Op.getValueType(); 1391 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT); 1392 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 1393 Op.getOperand(0), ANDC)); 1394 } 1395 } 1396 1397 // If the RHS is a constant, see if we can simplify it. 1398 // for XOR, we prefer to force bits to 1 if they will make a -1. 1399 // if we can't force bits, try to shrink constant 1400 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1401 APInt Expanded = C->getAPIntValue() | (~NewMask); 1402 // if we can expand it to have all bits set, do it 1403 if (Expanded.isAllOnesValue()) { 1404 if (Expanded != C->getAPIntValue()) { 1405 EVT VT = Op.getValueType(); 1406 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 1407 TLO.DAG.getConstant(Expanded, VT)); 1408 return TLO.CombineTo(Op, New); 1409 } 1410 // if it already has all the bits set, nothing to change 1411 // but don't shrink either! 1412 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 1413 return true; 1414 } 1415 } 1416 1417 KnownZero = KnownZeroOut; 1418 KnownOne = KnownOneOut; 1419 break; 1420 case ISD::SELECT: 1421 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 1422 KnownOne, TLO, Depth+1)) 1423 return true; 1424 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 1425 KnownOne2, TLO, Depth+1)) 1426 return true; 1427 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1428 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1429 1430 // If the operands are constants, see if we can simplify them. 1431 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1432 return true; 1433 1434 // Only known if known in both the LHS and RHS. 1435 KnownOne &= KnownOne2; 1436 KnownZero &= KnownZero2; 1437 break; 1438 case ISD::SELECT_CC: 1439 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 1440 KnownOne, TLO, Depth+1)) 1441 return true; 1442 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 1443 KnownOne2, TLO, Depth+1)) 1444 return true; 1445 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1446 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 1447 1448 // If the operands are constants, see if we can simplify them. 1449 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 1450 return true; 1451 1452 // Only known if known in both the LHS and RHS. 1453 KnownOne &= KnownOne2; 1454 KnownZero &= KnownZero2; 1455 break; 1456 case ISD::SHL: 1457 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1458 unsigned ShAmt = SA->getZExtValue(); 1459 SDValue InOp = Op.getOperand(0); 1460 1461 // If the shift count is an invalid immediate, don't do anything. 1462 if (ShAmt >= BitWidth) 1463 break; 1464 1465 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1466 // single shift. We can do this if the bottom bits (which are shifted 1467 // out) are never demanded. 1468 if (InOp.getOpcode() == ISD::SRL && 1469 isa<ConstantSDNode>(InOp.getOperand(1))) { 1470 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1471 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1472 unsigned Opc = ISD::SHL; 1473 int Diff = ShAmt-C1; 1474 if (Diff < 0) { 1475 Diff = -Diff; 1476 Opc = ISD::SRL; 1477 } 1478 1479 SDValue NewSA = 1480 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1481 EVT VT = Op.getValueType(); 1482 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1483 InOp.getOperand(0), NewSA)); 1484 } 1485 } 1486 1487 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 1488 KnownZero, KnownOne, TLO, Depth+1)) 1489 return true; 1490 1491 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1492 // are not demanded. This will likely allow the anyext to be folded away. 1493 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 1494 SDValue InnerOp = InOp.getNode()->getOperand(0); 1495 EVT InnerVT = InnerOp.getValueType(); 1496 unsigned InnerBits = InnerVT.getSizeInBits(); 1497 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 1498 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1499 EVT ShTy = getShiftAmountTy(InnerVT); 1500 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1501 ShTy = InnerVT; 1502 SDValue NarrowShl = 1503 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1504 TLO.DAG.getConstant(ShAmt, ShTy)); 1505 return 1506 TLO.CombineTo(Op, 1507 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 1508 NarrowShl)); 1509 } 1510 } 1511 1512 KnownZero <<= SA->getZExtValue(); 1513 KnownOne <<= SA->getZExtValue(); 1514 // low bits known zero. 1515 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 1516 } 1517 break; 1518 case ISD::SRL: 1519 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1520 EVT VT = Op.getValueType(); 1521 unsigned ShAmt = SA->getZExtValue(); 1522 unsigned VTSize = VT.getSizeInBits(); 1523 SDValue InOp = Op.getOperand(0); 1524 1525 // If the shift count is an invalid immediate, don't do anything. 1526 if (ShAmt >= BitWidth) 1527 break; 1528 1529 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1530 // single shift. We can do this if the top bits (which are shifted out) 1531 // are never demanded. 1532 if (InOp.getOpcode() == ISD::SHL && 1533 isa<ConstantSDNode>(InOp.getOperand(1))) { 1534 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 1535 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 1536 unsigned Opc = ISD::SRL; 1537 int Diff = ShAmt-C1; 1538 if (Diff < 0) { 1539 Diff = -Diff; 1540 Opc = ISD::SHL; 1541 } 1542 1543 SDValue NewSA = 1544 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType()); 1545 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 1546 InOp.getOperand(0), NewSA)); 1547 } 1548 } 1549 1550 // Compute the new bits that are at the top now. 1551 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt), 1552 KnownZero, KnownOne, TLO, Depth+1)) 1553 return true; 1554 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1555 KnownZero = KnownZero.lshr(ShAmt); 1556 KnownOne = KnownOne.lshr(ShAmt); 1557 1558 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1559 KnownZero |= HighBits; // High bits known zero. 1560 } 1561 break; 1562 case ISD::SRA: 1563 // If this is an arithmetic shift right and only the low-bit is set, we can 1564 // always convert this into a logical shr, even if the shift amount is 1565 // variable. The low bit of the shift cannot be an input sign bit unless 1566 // the shift amount is >= the size of the datatype, which is undefined. 1567 if (NewMask == 1) 1568 return TLO.CombineTo(Op, 1569 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 1570 Op.getOperand(0), Op.getOperand(1))); 1571 1572 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 1573 EVT VT = Op.getValueType(); 1574 unsigned ShAmt = SA->getZExtValue(); 1575 1576 // If the shift count is an invalid immediate, don't do anything. 1577 if (ShAmt >= BitWidth) 1578 break; 1579 1580 APInt InDemandedMask = (NewMask << ShAmt); 1581 1582 // If any of the demanded bits are produced by the sign extension, we also 1583 // demand the input sign bit. 1584 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 1585 if (HighBits.intersects(NewMask)) 1586 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 1587 1588 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 1589 KnownZero, KnownOne, TLO, Depth+1)) 1590 return true; 1591 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1592 KnownZero = KnownZero.lshr(ShAmt); 1593 KnownOne = KnownOne.lshr(ShAmt); 1594 1595 // Handle the sign bit, adjusted to where it is now in the mask. 1596 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 1597 1598 // If the input sign bit is known to be zero, or if none of the top bits 1599 // are demanded, turn this into an unsigned shift right. 1600 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 1601 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 1602 Op.getOperand(0), 1603 Op.getOperand(1))); 1604 } else if (KnownOne.intersects(SignBit)) { // New bits are known one. 1605 KnownOne |= HighBits; 1606 } 1607 } 1608 break; 1609 case ISD::SIGN_EXTEND_INREG: { 1610 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1611 1612 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 1613 // If we only care about the highest bit, don't bother shifting right. 1614 if (MsbMask == DemandedMask) { 1615 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 1616 SDValue InOp = Op.getOperand(0); 1617 1618 // Compute the correct shift amount type, which must be getShiftAmountTy 1619 // for scalar types after legalization. 1620 EVT ShiftAmtTy = Op.getValueType(); 1621 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1622 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy); 1623 1624 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, ShiftAmtTy); 1625 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1626 Op.getValueType(), InOp, ShiftAmt)); 1627 } 1628 1629 // Sign extension. Compute the demanded bits in the result that are not 1630 // present in the input. 1631 APInt NewBits = 1632 APInt::getHighBitsSet(BitWidth, 1633 BitWidth - ExVT.getScalarType().getSizeInBits()); 1634 1635 // If none of the extended bits are demanded, eliminate the sextinreg. 1636 if ((NewBits & NewMask) == 0) 1637 return TLO.CombineTo(Op, Op.getOperand(0)); 1638 1639 APInt InSignBit = 1640 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 1641 APInt InputDemandedBits = 1642 APInt::getLowBitsSet(BitWidth, 1643 ExVT.getScalarType().getSizeInBits()) & 1644 NewMask; 1645 1646 // Since the sign extended bits are demanded, we know that the sign 1647 // bit is demanded. 1648 InputDemandedBits |= InSignBit; 1649 1650 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1651 KnownZero, KnownOne, TLO, Depth+1)) 1652 return true; 1653 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1654 1655 // If the sign bit of the input is known set or clear, then we know the 1656 // top bits of the result. 1657 1658 // If the input sign bit is known zero, convert this into a zero extension. 1659 if (KnownZero.intersects(InSignBit)) 1660 return TLO.CombineTo(Op, 1661 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 1662 1663 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1664 KnownOne |= NewBits; 1665 KnownZero &= ~NewBits; 1666 } else { // Input sign bit unknown 1667 KnownZero &= ~NewBits; 1668 KnownOne &= ~NewBits; 1669 } 1670 break; 1671 } 1672 case ISD::ZERO_EXTEND: { 1673 unsigned OperandBitWidth = 1674 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1675 APInt InMask = NewMask.trunc(OperandBitWidth); 1676 1677 // If none of the top bits are demanded, convert this into an any_extend. 1678 APInt NewBits = 1679 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1680 if (!NewBits.intersects(NewMask)) 1681 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1682 Op.getValueType(), 1683 Op.getOperand(0))); 1684 1685 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1686 KnownZero, KnownOne, TLO, Depth+1)) 1687 return true; 1688 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1689 KnownZero = KnownZero.zext(BitWidth); 1690 KnownOne = KnownOne.zext(BitWidth); 1691 KnownZero |= NewBits; 1692 break; 1693 } 1694 case ISD::SIGN_EXTEND: { 1695 EVT InVT = Op.getOperand(0).getValueType(); 1696 unsigned InBits = InVT.getScalarType().getSizeInBits(); 1697 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1698 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 1699 APInt NewBits = ~InMask & NewMask; 1700 1701 // If none of the top bits are demanded, convert this into an any_extend. 1702 if (NewBits == 0) 1703 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1704 Op.getValueType(), 1705 Op.getOperand(0))); 1706 1707 // Since some of the sign extended bits are demanded, we know that the sign 1708 // bit is demanded. 1709 APInt InDemandedBits = InMask & NewMask; 1710 InDemandedBits |= InSignBit; 1711 InDemandedBits = InDemandedBits.trunc(InBits); 1712 1713 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1714 KnownOne, TLO, Depth+1)) 1715 return true; 1716 KnownZero = KnownZero.zext(BitWidth); 1717 KnownOne = KnownOne.zext(BitWidth); 1718 1719 // If the sign bit is known zero, convert this to a zero extend. 1720 if (KnownZero.intersects(InSignBit)) 1721 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1722 Op.getValueType(), 1723 Op.getOperand(0))); 1724 1725 // If the sign bit is known one, the top bits match. 1726 if (KnownOne.intersects(InSignBit)) { 1727 KnownOne |= NewBits; 1728 assert((KnownZero & NewBits) == 0); 1729 } else { // Otherwise, top bits aren't known. 1730 assert((KnownOne & NewBits) == 0); 1731 assert((KnownZero & NewBits) == 0); 1732 } 1733 break; 1734 } 1735 case ISD::ANY_EXTEND: { 1736 unsigned OperandBitWidth = 1737 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1738 APInt InMask = NewMask.trunc(OperandBitWidth); 1739 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1740 KnownZero, KnownOne, TLO, Depth+1)) 1741 return true; 1742 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1743 KnownZero = KnownZero.zext(BitWidth); 1744 KnownOne = KnownOne.zext(BitWidth); 1745 break; 1746 } 1747 case ISD::TRUNCATE: { 1748 // Simplify the input, using demanded bit information, and compute the known 1749 // zero/one bits live out. 1750 unsigned OperandBitWidth = 1751 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 1752 APInt TruncMask = NewMask.zext(OperandBitWidth); 1753 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1754 KnownZero, KnownOne, TLO, Depth+1)) 1755 return true; 1756 KnownZero = KnownZero.trunc(BitWidth); 1757 KnownOne = KnownOne.trunc(BitWidth); 1758 1759 // If the input is only used by this truncate, see if we can shrink it based 1760 // on the known demanded bits. 1761 if (Op.getOperand(0).getNode()->hasOneUse()) { 1762 SDValue In = Op.getOperand(0); 1763 switch (In.getOpcode()) { 1764 default: break; 1765 case ISD::SRL: 1766 // Shrink SRL by a constant if none of the high bits shifted in are 1767 // demanded. 1768 if (TLO.LegalTypes() && 1769 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1770 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1771 // undesirable. 1772 break; 1773 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1774 if (!ShAmt) 1775 break; 1776 SDValue Shift = In.getOperand(1); 1777 if (TLO.LegalTypes()) { 1778 uint64_t ShVal = ShAmt->getZExtValue(); 1779 Shift = 1780 TLO.DAG.getConstant(ShVal, getShiftAmountTy(Op.getValueType())); 1781 } 1782 1783 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1784 OperandBitWidth - BitWidth); 1785 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1786 1787 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1788 // None of the shifted in bits are needed. Add a truncate of the 1789 // shift input, then shift it. 1790 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1791 Op.getValueType(), 1792 In.getOperand(0)); 1793 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1794 Op.getValueType(), 1795 NewTrunc, 1796 Shift)); 1797 } 1798 break; 1799 } 1800 } 1801 1802 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1803 break; 1804 } 1805 case ISD::AssertZext: { 1806 // AssertZext demands all of the high bits, plus any of the low bits 1807 // demanded by its users. 1808 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1809 APInt InMask = APInt::getLowBitsSet(BitWidth, 1810 VT.getSizeInBits()); 1811 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1812 KnownZero, KnownOne, TLO, Depth+1)) 1813 return true; 1814 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1815 1816 KnownZero |= ~InMask & NewMask; 1817 break; 1818 } 1819 case ISD::BITCAST: 1820 // If this is an FP->Int bitcast and if the sign bit is the only 1821 // thing demanded, turn this into a FGETSIGN. 1822 if (!TLO.LegalOperations() && 1823 !Op.getValueType().isVector() && 1824 !Op.getOperand(0).getValueType().isVector() && 1825 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1826 Op.getOperand(0).getValueType().isFloatingPoint()) { 1827 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1828 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1829 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1830 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1831 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1832 // place. We expect the SHL to be eliminated by other optimizations. 1833 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1834 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1835 if (!OpVTLegal && OpVTSizeInBits > 32) 1836 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1837 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1838 SDValue ShAmt = TLO.DAG.getConstant(ShVal, Op.getValueType()); 1839 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1840 Op.getValueType(), 1841 Sign, ShAmt)); 1842 } 1843 } 1844 break; 1845 case ISD::ADD: 1846 case ISD::MUL: 1847 case ISD::SUB: { 1848 // Add, Sub, and Mul don't demand any bits in positions beyond that 1849 // of the highest bit demanded of them. 1850 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1851 BitWidth - NewMask.countLeadingZeros()); 1852 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1853 KnownOne2, TLO, Depth+1)) 1854 return true; 1855 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1856 KnownOne2, TLO, Depth+1)) 1857 return true; 1858 // See if the operation should be performed at a smaller bit width. 1859 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1860 return true; 1861 } 1862 // FALL THROUGH 1863 default: 1864 // Just use ComputeMaskedBits to compute output bits. 1865 TLO.DAG.ComputeMaskedBits(Op, KnownZero, KnownOne, Depth); 1866 break; 1867 } 1868 1869 // If we know the value of all of the demanded bits, return this as a 1870 // constant. 1871 if ((NewMask & (KnownZero|KnownOne)) == NewMask) 1872 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType())); 1873 1874 return false; 1875 } 1876 1877 /// computeMaskedBitsForTargetNode - Determine which of the bits specified 1878 /// in Mask are known to be either zero or one and return them in the 1879 /// KnownZero/KnownOne bitsets. 1880 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, 1881 APInt &KnownZero, 1882 APInt &KnownOne, 1883 const SelectionDAG &DAG, 1884 unsigned Depth) const { 1885 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1886 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1887 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1888 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1889 "Should use MaskedValueIsZero if you don't know whether Op" 1890 " is a target node!"); 1891 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1892 } 1893 1894 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1895 /// targets that want to expose additional information about sign bits to the 1896 /// DAG Combiner. 1897 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1898 unsigned Depth) const { 1899 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1900 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1901 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1902 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1903 "Should use ComputeNumSignBits if you don't know whether Op" 1904 " is a target node!"); 1905 return 1; 1906 } 1907 1908 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1909 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to 1910 /// determine which bit is set. 1911 /// 1912 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1913 // A left-shift of a constant one will have exactly one bit set, because 1914 // shifting the bit off the end is undefined. 1915 if (Val.getOpcode() == ISD::SHL) 1916 if (ConstantSDNode *C = 1917 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1918 if (C->getAPIntValue() == 1) 1919 return true; 1920 1921 // Similarly, a right-shift of a constant sign-bit will have exactly 1922 // one bit set. 1923 if (Val.getOpcode() == ISD::SRL) 1924 if (ConstantSDNode *C = 1925 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1926 if (C->getAPIntValue().isSignBit()) 1927 return true; 1928 1929 // More could be done here, though the above checks are enough 1930 // to handle some common cases. 1931 1932 // Fall back to ComputeMaskedBits to catch other known cases. 1933 EVT OpVT = Val.getValueType(); 1934 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1935 APInt KnownZero, KnownOne; 1936 DAG.ComputeMaskedBits(Val, KnownZero, KnownOne); 1937 return (KnownZero.countPopulation() == BitWidth - 1) && 1938 (KnownOne.countPopulation() == 1); 1939 } 1940 1941 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1942 /// and cc. If it is unable to simplify it, return a null SDValue. 1943 SDValue 1944 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1945 ISD::CondCode Cond, bool foldBooleans, 1946 DAGCombinerInfo &DCI, DebugLoc dl) const { 1947 SelectionDAG &DAG = DCI.DAG; 1948 1949 // These setcc operations always fold. 1950 switch (Cond) { 1951 default: break; 1952 case ISD::SETFALSE: 1953 case ISD::SETFALSE2: return DAG.getConstant(0, VT); 1954 case ISD::SETTRUE: 1955 case ISD::SETTRUE2: return DAG.getConstant(1, VT); 1956 } 1957 1958 // Ensure that the constant occurs on the RHS, and fold constant 1959 // comparisons. 1960 if (isa<ConstantSDNode>(N0.getNode())) 1961 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond)); 1962 1963 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1964 const APInt &C1 = N1C->getAPIntValue(); 1965 1966 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1967 // equality comparison, then we're just comparing whether X itself is 1968 // zero. 1969 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1970 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1971 N0.getOperand(1).getOpcode() == ISD::Constant) { 1972 const APInt &ShAmt 1973 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1974 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1975 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1976 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1977 // (srl (ctlz x), 5) == 0 -> X != 0 1978 // (srl (ctlz x), 5) != 1 -> X != 0 1979 Cond = ISD::SETNE; 1980 } else { 1981 // (srl (ctlz x), 5) != 0 -> X == 0 1982 // (srl (ctlz x), 5) == 1 -> X == 0 1983 Cond = ISD::SETEQ; 1984 } 1985 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 1986 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1987 Zero, Cond); 1988 } 1989 } 1990 1991 SDValue CTPOP = N0; 1992 // Look through truncs that don't change the value of a ctpop. 1993 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1994 CTPOP = N0.getOperand(0); 1995 1996 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1997 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1998 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1999 EVT CTVT = CTPOP.getValueType(); 2000 SDValue CTOp = CTPOP.getOperand(0); 2001 2002 // (ctpop x) u< 2 -> (x & x-1) == 0 2003 // (ctpop x) u> 1 -> (x & x-1) != 0 2004 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2005 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2006 DAG.getConstant(1, CTVT)); 2007 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2008 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2009 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, CTVT), CC); 2010 } 2011 2012 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2013 } 2014 2015 // (zext x) == C --> x == (trunc C) 2016 if (DCI.isBeforeLegalize() && N0->hasOneUse() && 2017 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2018 unsigned MinBits = N0.getValueSizeInBits(); 2019 SDValue PreZExt; 2020 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2021 // ZExt 2022 MinBits = N0->getOperand(0).getValueSizeInBits(); 2023 PreZExt = N0->getOperand(0); 2024 } else if (N0->getOpcode() == ISD::AND) { 2025 // DAGCombine turns costly ZExts into ANDs 2026 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2027 if ((C->getAPIntValue()+1).isPowerOf2()) { 2028 MinBits = C->getAPIntValue().countTrailingOnes(); 2029 PreZExt = N0->getOperand(0); 2030 } 2031 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 2032 // ZEXTLOAD 2033 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2034 MinBits = LN0->getMemoryVT().getSizeInBits(); 2035 PreZExt = N0; 2036 } 2037 } 2038 2039 // Make sure we're not loosing bits from the constant. 2040 if (MinBits < C1.getBitWidth() && MinBits > C1.getActiveBits()) { 2041 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2042 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2043 // Will get folded away. 2044 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreZExt); 2045 SDValue C = DAG.getConstant(C1.trunc(MinBits), MinVT); 2046 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2047 } 2048 } 2049 } 2050 2051 // If the LHS is '(and load, const)', the RHS is 0, 2052 // the test is for equality or unsigned, and all 1 bits of the const are 2053 // in the same partial word, see if we can shorten the load. 2054 if (DCI.isBeforeLegalize() && 2055 N0.getOpcode() == ISD::AND && C1 == 0 && 2056 N0.getNode()->hasOneUse() && 2057 isa<LoadSDNode>(N0.getOperand(0)) && 2058 N0.getOperand(0).getNode()->hasOneUse() && 2059 isa<ConstantSDNode>(N0.getOperand(1))) { 2060 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2061 APInt bestMask; 2062 unsigned bestWidth = 0, bestOffset = 0; 2063 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2064 unsigned origWidth = N0.getValueType().getSizeInBits(); 2065 unsigned maskWidth = origWidth; 2066 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2067 // 8 bits, but have to be careful... 2068 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2069 origWidth = Lod->getMemoryVT().getSizeInBits(); 2070 const APInt &Mask = 2071 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2072 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2073 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2074 for (unsigned offset=0; offset<origWidth/width; offset++) { 2075 if ((newMask & Mask) == Mask) { 2076 if (!TD->isLittleEndian()) 2077 bestOffset = (origWidth/width - offset - 1) * (width/8); 2078 else 2079 bestOffset = (uint64_t)offset * (width/8); 2080 bestMask = Mask.lshr(offset * (width/8) * 8); 2081 bestWidth = width; 2082 break; 2083 } 2084 newMask = newMask << width; 2085 } 2086 } 2087 } 2088 if (bestWidth) { 2089 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2090 if (newVT.isRound()) { 2091 EVT PtrType = Lod->getOperand(1).getValueType(); 2092 SDValue Ptr = Lod->getBasePtr(); 2093 if (bestOffset != 0) 2094 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2095 DAG.getConstant(bestOffset, PtrType)); 2096 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2097 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 2098 Lod->getPointerInfo().getWithOffset(bestOffset), 2099 false, false, false, NewAlign); 2100 return DAG.getSetCC(dl, VT, 2101 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2102 DAG.getConstant(bestMask.trunc(bestWidth), 2103 newVT)), 2104 DAG.getConstant(0LL, newVT), Cond); 2105 } 2106 } 2107 } 2108 2109 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2110 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2111 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 2112 2113 // If the comparison constant has bits in the upper part, the 2114 // zero-extended value could never match. 2115 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2116 C1.getBitWidth() - InSize))) { 2117 switch (Cond) { 2118 case ISD::SETUGT: 2119 case ISD::SETUGE: 2120 case ISD::SETEQ: return DAG.getConstant(0, VT); 2121 case ISD::SETULT: 2122 case ISD::SETULE: 2123 case ISD::SETNE: return DAG.getConstant(1, VT); 2124 case ISD::SETGT: 2125 case ISD::SETGE: 2126 // True if the sign bit of C1 is set. 2127 return DAG.getConstant(C1.isNegative(), VT); 2128 case ISD::SETLT: 2129 case ISD::SETLE: 2130 // True if the sign bit of C1 isn't set. 2131 return DAG.getConstant(C1.isNonNegative(), VT); 2132 default: 2133 break; 2134 } 2135 } 2136 2137 // Otherwise, we can perform the comparison with the low bits. 2138 switch (Cond) { 2139 case ISD::SETEQ: 2140 case ISD::SETNE: 2141 case ISD::SETUGT: 2142 case ISD::SETUGE: 2143 case ISD::SETULT: 2144 case ISD::SETULE: { 2145 EVT newVT = N0.getOperand(0).getValueType(); 2146 if (DCI.isBeforeLegalizeOps() || 2147 (isOperationLegal(ISD::SETCC, newVT) && 2148 getCondCodeAction(Cond, newVT)==Legal)) 2149 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2150 DAG.getConstant(C1.trunc(InSize), newVT), 2151 Cond); 2152 break; 2153 } 2154 default: 2155 break; // todo, be more careful with signed comparisons 2156 } 2157 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2158 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2159 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2160 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2161 EVT ExtDstTy = N0.getValueType(); 2162 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2163 2164 // If the constant doesn't fit into the number of bits for the source of 2165 // the sign extension, it is impossible for both sides to be equal. 2166 if (C1.getMinSignedBits() > ExtSrcTyBits) 2167 return DAG.getConstant(Cond == ISD::SETNE, VT); 2168 2169 SDValue ZextOp; 2170 EVT Op0Ty = N0.getOperand(0).getValueType(); 2171 if (Op0Ty == ExtSrcTy) { 2172 ZextOp = N0.getOperand(0); 2173 } else { 2174 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2175 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2176 DAG.getConstant(Imm, Op0Ty)); 2177 } 2178 if (!DCI.isCalledByLegalizer()) 2179 DCI.AddToWorklist(ZextOp.getNode()); 2180 // Otherwise, make this a use of a zext. 2181 return DAG.getSetCC(dl, VT, ZextOp, 2182 DAG.getConstant(C1 & APInt::getLowBitsSet( 2183 ExtDstTyBits, 2184 ExtSrcTyBits), 2185 ExtDstTy), 2186 Cond); 2187 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 2188 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2189 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2190 if (N0.getOpcode() == ISD::SETCC && 2191 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2192 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 2193 if (TrueWhenTrue) 2194 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2195 // Invert the condition. 2196 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2197 CC = ISD::getSetCCInverse(CC, 2198 N0.getOperand(0).getValueType().isInteger()); 2199 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2200 } 2201 2202 if ((N0.getOpcode() == ISD::XOR || 2203 (N0.getOpcode() == ISD::AND && 2204 N0.getOperand(0).getOpcode() == ISD::XOR && 2205 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2206 isa<ConstantSDNode>(N0.getOperand(1)) && 2207 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 2208 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2209 // can only do this if the top bits are known zero. 2210 unsigned BitWidth = N0.getValueSizeInBits(); 2211 if (DAG.MaskedValueIsZero(N0, 2212 APInt::getHighBitsSet(BitWidth, 2213 BitWidth-1))) { 2214 // Okay, get the un-inverted input value. 2215 SDValue Val; 2216 if (N0.getOpcode() == ISD::XOR) 2217 Val = N0.getOperand(0); 2218 else { 2219 assert(N0.getOpcode() == ISD::AND && 2220 N0.getOperand(0).getOpcode() == ISD::XOR); 2221 // ((X^1)&1)^1 -> X & 1 2222 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2223 N0.getOperand(0).getOperand(0), 2224 N0.getOperand(1)); 2225 } 2226 2227 return DAG.getSetCC(dl, VT, Val, N1, 2228 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2229 } 2230 } else if (N1C->getAPIntValue() == 1 && 2231 (VT == MVT::i1 || 2232 getBooleanContents(false) == ZeroOrOneBooleanContent)) { 2233 SDValue Op0 = N0; 2234 if (Op0.getOpcode() == ISD::TRUNCATE) 2235 Op0 = Op0.getOperand(0); 2236 2237 if ((Op0.getOpcode() == ISD::XOR) && 2238 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2239 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2240 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2241 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2242 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2243 Cond); 2244 } else if (Op0.getOpcode() == ISD::AND && 2245 isa<ConstantSDNode>(Op0.getOperand(1)) && 2246 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 2247 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2248 if (Op0.getValueType().bitsGT(VT)) 2249 Op0 = DAG.getNode(ISD::AND, dl, VT, 2250 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2251 DAG.getConstant(1, VT)); 2252 else if (Op0.getValueType().bitsLT(VT)) 2253 Op0 = DAG.getNode(ISD::AND, dl, VT, 2254 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2255 DAG.getConstant(1, VT)); 2256 2257 return DAG.getSetCC(dl, VT, Op0, 2258 DAG.getConstant(0, Op0.getValueType()), 2259 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2260 } 2261 } 2262 } 2263 2264 APInt MinVal, MaxVal; 2265 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 2266 if (ISD::isSignedIntSetCC(Cond)) { 2267 MinVal = APInt::getSignedMinValue(OperandBitSize); 2268 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2269 } else { 2270 MinVal = APInt::getMinValue(OperandBitSize); 2271 MaxVal = APInt::getMaxValue(OperandBitSize); 2272 } 2273 2274 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2275 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2276 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true 2277 // X >= C0 --> X > (C0-1) 2278 return DAG.getSetCC(dl, VT, N0, 2279 DAG.getConstant(C1-1, N1.getValueType()), 2280 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT); 2281 } 2282 2283 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2284 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true 2285 // X <= C0 --> X < (C0+1) 2286 return DAG.getSetCC(dl, VT, N0, 2287 DAG.getConstant(C1+1, N1.getValueType()), 2288 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT); 2289 } 2290 2291 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 2292 return DAG.getConstant(0, VT); // X < MIN --> false 2293 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 2294 return DAG.getConstant(1, VT); // X >= MIN --> true 2295 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 2296 return DAG.getConstant(0, VT); // X > MAX --> false 2297 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 2298 return DAG.getConstant(1, VT); // X <= MAX --> true 2299 2300 // Canonicalize setgt X, Min --> setne X, Min 2301 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 2302 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2303 // Canonicalize setlt X, Max --> setne X, Max 2304 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 2305 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2306 2307 // If we have setult X, 1, turn it into seteq X, 0 2308 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 2309 return DAG.getSetCC(dl, VT, N0, 2310 DAG.getConstant(MinVal, N0.getValueType()), 2311 ISD::SETEQ); 2312 // If we have setugt X, Max-1, turn it into seteq X, Max 2313 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 2314 return DAG.getSetCC(dl, VT, N0, 2315 DAG.getConstant(MaxVal, N0.getValueType()), 2316 ISD::SETEQ); 2317 2318 // If we have "setcc X, C0", check to see if we can shrink the immediate 2319 // by changing cc. 2320 2321 // SETUGT X, SINTMAX -> SETLT X, 0 2322 if (Cond == ISD::SETUGT && 2323 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2324 return DAG.getSetCC(dl, VT, N0, 2325 DAG.getConstant(0, N1.getValueType()), 2326 ISD::SETLT); 2327 2328 // SETULT X, SINTMIN -> SETGT X, -1 2329 if (Cond == ISD::SETULT && 2330 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2331 SDValue ConstMinusOne = 2332 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), 2333 N1.getValueType()); 2334 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2335 } 2336 2337 // Fold bit comparisons when we can. 2338 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2339 (VT == N0.getValueType() || 2340 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2341 N0.getOpcode() == ISD::AND) 2342 if (ConstantSDNode *AndRHS = 2343 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2344 EVT ShiftTy = DCI.isBeforeLegalize() ? 2345 getPointerTy() : getShiftAmountTy(N0.getValueType()); 2346 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2347 // Perform the xform if the AND RHS is a single bit. 2348 if (AndRHS->getAPIntValue().isPowerOf2()) { 2349 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2350 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2351 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), ShiftTy))); 2352 } 2353 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2354 // (X & 8) == 8 --> (X & 8) >> 3 2355 // Perform the xform if C1 is a single bit. 2356 if (C1.isPowerOf2()) { 2357 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2358 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2359 DAG.getConstant(C1.logBase2(), ShiftTy))); 2360 } 2361 } 2362 } 2363 } 2364 2365 if (isa<ConstantFPSDNode>(N0.getNode())) { 2366 // Constant fold or commute setcc. 2367 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2368 if (O.getNode()) return O; 2369 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2370 // If the RHS of an FP comparison is a constant, simplify it away in 2371 // some cases. 2372 if (CFP->getValueAPF().isNaN()) { 2373 // If an operand is known to be a nan, we can fold it. 2374 switch (ISD::getUnorderedFlavor(Cond)) { 2375 default: llvm_unreachable("Unknown flavor!"); 2376 case 0: // Known false. 2377 return DAG.getConstant(0, VT); 2378 case 1: // Known true. 2379 return DAG.getConstant(1, VT); 2380 case 2: // Undefined. 2381 return DAG.getUNDEF(VT); 2382 } 2383 } 2384 2385 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2386 // constant if knowing that the operand is non-nan is enough. We prefer to 2387 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2388 // materialize 0.0. 2389 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2390 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2391 2392 // If the condition is not legal, see if we can find an equivalent one 2393 // which is legal. 2394 if (!isCondCodeLegal(Cond, N0.getValueType())) { 2395 // If the comparison was an awkward floating-point == or != and one of 2396 // the comparison operands is infinity or negative infinity, convert the 2397 // condition to a less-awkward <= or >=. 2398 if (CFP->getValueAPF().isInfinity()) { 2399 if (CFP->getValueAPF().isNegative()) { 2400 if (Cond == ISD::SETOEQ && 2401 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2402 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2403 if (Cond == ISD::SETUEQ && 2404 isCondCodeLegal(ISD::SETOLE, N0.getValueType())) 2405 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2406 if (Cond == ISD::SETUNE && 2407 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2408 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2409 if (Cond == ISD::SETONE && 2410 isCondCodeLegal(ISD::SETUGT, N0.getValueType())) 2411 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2412 } else { 2413 if (Cond == ISD::SETOEQ && 2414 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2415 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2416 if (Cond == ISD::SETUEQ && 2417 isCondCodeLegal(ISD::SETOGE, N0.getValueType())) 2418 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2419 if (Cond == ISD::SETUNE && 2420 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2421 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2422 if (Cond == ISD::SETONE && 2423 isCondCodeLegal(ISD::SETULT, N0.getValueType())) 2424 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2425 } 2426 } 2427 } 2428 } 2429 2430 if (N0 == N1) { 2431 // We can always fold X == X for integer setcc's. 2432 if (N0.getValueType().isInteger()) { 2433 switch (getBooleanContents(N0.getValueType().isVector())) { 2434 case UndefinedBooleanContent: 2435 case ZeroOrOneBooleanContent: 2436 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2437 case ZeroOrNegativeOneBooleanContent: 2438 return DAG.getConstant(ISD::isTrueWhenEqual(Cond) ? -1 : 0, VT); 2439 } 2440 } 2441 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2442 if (UOF == 2) // FP operators that are undefined on NaNs. 2443 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT); 2444 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2445 return DAG.getConstant(UOF, VT); 2446 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2447 // if it is not already. 2448 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2449 if (NewCond != Cond) 2450 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2451 } 2452 2453 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2454 N0.getValueType().isInteger()) { 2455 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2456 N0.getOpcode() == ISD::XOR) { 2457 // Simplify (X+Y) == (X+Z) --> Y == Z 2458 if (N0.getOpcode() == N1.getOpcode()) { 2459 if (N0.getOperand(0) == N1.getOperand(0)) 2460 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2461 if (N0.getOperand(1) == N1.getOperand(1)) 2462 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2463 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2464 // If X op Y == Y op X, try other combinations. 2465 if (N0.getOperand(0) == N1.getOperand(1)) 2466 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2467 Cond); 2468 if (N0.getOperand(1) == N1.getOperand(0)) 2469 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2470 Cond); 2471 } 2472 } 2473 2474 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2475 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2476 // Turn (X+C1) == C2 --> X == C2-C1 2477 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2478 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2479 DAG.getConstant(RHSC->getAPIntValue()- 2480 LHSR->getAPIntValue(), 2481 N0.getValueType()), Cond); 2482 } 2483 2484 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2485 if (N0.getOpcode() == ISD::XOR) 2486 // If we know that all of the inverted bits are zero, don't bother 2487 // performing the inversion. 2488 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2489 return 2490 DAG.getSetCC(dl, VT, N0.getOperand(0), 2491 DAG.getConstant(LHSR->getAPIntValue() ^ 2492 RHSC->getAPIntValue(), 2493 N0.getValueType()), 2494 Cond); 2495 } 2496 2497 // Turn (C1-X) == C2 --> X == C1-C2 2498 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2499 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2500 return 2501 DAG.getSetCC(dl, VT, N0.getOperand(1), 2502 DAG.getConstant(SUBC->getAPIntValue() - 2503 RHSC->getAPIntValue(), 2504 N0.getValueType()), 2505 Cond); 2506 } 2507 } 2508 } 2509 2510 // Simplify (X+Z) == X --> Z == 0 2511 if (N0.getOperand(0) == N1) 2512 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2513 DAG.getConstant(0, N0.getValueType()), Cond); 2514 if (N0.getOperand(1) == N1) { 2515 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2516 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2517 DAG.getConstant(0, N0.getValueType()), Cond); 2518 else if (N0.getNode()->hasOneUse()) { 2519 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2520 // (Z-X) == X --> Z == X<<1 2521 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), 2522 N1, 2523 DAG.getConstant(1, getShiftAmountTy(N1.getValueType()))); 2524 if (!DCI.isCalledByLegalizer()) 2525 DCI.AddToWorklist(SH.getNode()); 2526 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2527 } 2528 } 2529 } 2530 2531 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2532 N1.getOpcode() == ISD::XOR) { 2533 // Simplify X == (X+Z) --> Z == 0 2534 if (N1.getOperand(0) == N0) { 2535 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2536 DAG.getConstant(0, N1.getValueType()), Cond); 2537 } else if (N1.getOperand(1) == N0) { 2538 if (DAG.isCommutativeBinOp(N1.getOpcode())) { 2539 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2540 DAG.getConstant(0, N1.getValueType()), Cond); 2541 } else if (N1.getNode()->hasOneUse()) { 2542 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2543 // X == (Z-X) --> X<<1 == Z 2544 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0, 2545 DAG.getConstant(1, getShiftAmountTy(N0.getValueType()))); 2546 if (!DCI.isCalledByLegalizer()) 2547 DCI.AddToWorklist(SH.getNode()); 2548 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2549 } 2550 } 2551 } 2552 2553 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 2554 // Note that where y is variable and is known to have at most 2555 // one bit set (for example, if it is z&1) we cannot do this; 2556 // the expressions are not equivalent when y==0. 2557 if (N0.getOpcode() == ISD::AND) 2558 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2559 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2560 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2561 SDValue Zero = DAG.getConstant(0, N1.getValueType()); 2562 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2563 } 2564 } 2565 if (N1.getOpcode() == ISD::AND) 2566 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2567 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2568 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2569 SDValue Zero = DAG.getConstant(0, N0.getValueType()); 2570 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2571 } 2572 } 2573 } 2574 2575 // Fold away ALL boolean setcc's. 2576 SDValue Temp; 2577 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2578 switch (Cond) { 2579 default: llvm_unreachable("Unknown integer setcc!"); 2580 case ISD::SETEQ: // X == Y -> ~(X^Y) 2581 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2582 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2583 if (!DCI.isCalledByLegalizer()) 2584 DCI.AddToWorklist(Temp.getNode()); 2585 break; 2586 case ISD::SETNE: // X != Y --> (X^Y) 2587 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2588 break; 2589 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2590 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2591 Temp = DAG.getNOT(dl, N0, MVT::i1); 2592 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2593 if (!DCI.isCalledByLegalizer()) 2594 DCI.AddToWorklist(Temp.getNode()); 2595 break; 2596 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2597 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2598 Temp = DAG.getNOT(dl, N1, MVT::i1); 2599 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2600 if (!DCI.isCalledByLegalizer()) 2601 DCI.AddToWorklist(Temp.getNode()); 2602 break; 2603 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2604 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2605 Temp = DAG.getNOT(dl, N0, MVT::i1); 2606 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2607 if (!DCI.isCalledByLegalizer()) 2608 DCI.AddToWorklist(Temp.getNode()); 2609 break; 2610 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2611 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2612 Temp = DAG.getNOT(dl, N1, MVT::i1); 2613 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2614 break; 2615 } 2616 if (VT != MVT::i1) { 2617 if (!DCI.isCalledByLegalizer()) 2618 DCI.AddToWorklist(N0.getNode()); 2619 // FIXME: If running after legalize, we probably can't do this. 2620 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2621 } 2622 return N0; 2623 } 2624 2625 // Could not fold it. 2626 return SDValue(); 2627 } 2628 2629 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2630 /// node is a GlobalAddress + offset. 2631 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2632 int64_t &Offset) const { 2633 if (isa<GlobalAddressSDNode>(N)) { 2634 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2635 GA = GASD->getGlobal(); 2636 Offset += GASD->getOffset(); 2637 return true; 2638 } 2639 2640 if (N->getOpcode() == ISD::ADD) { 2641 SDValue N1 = N->getOperand(0); 2642 SDValue N2 = N->getOperand(1); 2643 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2644 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2645 if (V) { 2646 Offset += V->getSExtValue(); 2647 return true; 2648 } 2649 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2650 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2651 if (V) { 2652 Offset += V->getSExtValue(); 2653 return true; 2654 } 2655 } 2656 } 2657 2658 return false; 2659 } 2660 2661 2662 SDValue TargetLowering:: 2663 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2664 // Default implementation: no optimization. 2665 return SDValue(); 2666 } 2667 2668 //===----------------------------------------------------------------------===// 2669 // Inline Assembler Implementation Methods 2670 //===----------------------------------------------------------------------===// 2671 2672 2673 TargetLowering::ConstraintType 2674 TargetLowering::getConstraintType(const std::string &Constraint) const { 2675 if (Constraint.size() == 1) { 2676 switch (Constraint[0]) { 2677 default: break; 2678 case 'r': return C_RegisterClass; 2679 case 'm': // memory 2680 case 'o': // offsetable 2681 case 'V': // not offsetable 2682 return C_Memory; 2683 case 'i': // Simple Integer or Relocatable Constant 2684 case 'n': // Simple Integer 2685 case 'E': // Floating Point Constant 2686 case 'F': // Floating Point Constant 2687 case 's': // Relocatable Constant 2688 case 'p': // Address. 2689 case 'X': // Allow ANY value. 2690 case 'I': // Target registers. 2691 case 'J': 2692 case 'K': 2693 case 'L': 2694 case 'M': 2695 case 'N': 2696 case 'O': 2697 case 'P': 2698 case '<': 2699 case '>': 2700 return C_Other; 2701 } 2702 } 2703 2704 if (Constraint.size() > 1 && Constraint[0] == '{' && 2705 Constraint[Constraint.size()-1] == '}') 2706 return C_Register; 2707 return C_Unknown; 2708 } 2709 2710 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2711 /// with another that has more specific requirements based on the type of the 2712 /// corresponding operand. 2713 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2714 if (ConstraintVT.isInteger()) 2715 return "r"; 2716 if (ConstraintVT.isFloatingPoint()) 2717 return "f"; // works for many targets 2718 return 0; 2719 } 2720 2721 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2722 /// vector. If it is invalid, don't add anything to Ops. 2723 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2724 std::string &Constraint, 2725 std::vector<SDValue> &Ops, 2726 SelectionDAG &DAG) const { 2727 2728 if (Constraint.length() > 1) return; 2729 2730 char ConstraintLetter = Constraint[0]; 2731 switch (ConstraintLetter) { 2732 default: break; 2733 case 'X': // Allows any operand; labels (basic block) use this. 2734 if (Op.getOpcode() == ISD::BasicBlock) { 2735 Ops.push_back(Op); 2736 return; 2737 } 2738 // fall through 2739 case 'i': // Simple Integer or Relocatable Constant 2740 case 'n': // Simple Integer 2741 case 's': { // Relocatable Constant 2742 // These operands are interested in values of the form (GV+C), where C may 2743 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2744 // is possible and fine if either GV or C are missing. 2745 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2746 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2747 2748 // If we have "(add GV, C)", pull out GV/C 2749 if (Op.getOpcode() == ISD::ADD) { 2750 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2751 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2752 if (C == 0 || GA == 0) { 2753 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2754 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2755 } 2756 if (C == 0 || GA == 0) 2757 C = 0, GA = 0; 2758 } 2759 2760 // If we find a valid operand, map to the TargetXXX version so that the 2761 // value itself doesn't get selected. 2762 if (GA) { // Either &GV or &GV+C 2763 if (ConstraintLetter != 'n') { 2764 int64_t Offs = GA->getOffset(); 2765 if (C) Offs += C->getZExtValue(); 2766 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2767 C ? C->getDebugLoc() : DebugLoc(), 2768 Op.getValueType(), Offs)); 2769 return; 2770 } 2771 } 2772 if (C) { // just C, no GV. 2773 // Simple constants are not allowed for 's'. 2774 if (ConstraintLetter != 's') { 2775 // gcc prints these as sign extended. Sign extend value to 64 bits 2776 // now; without this it would get ZExt'd later in 2777 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2778 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2779 MVT::i64)); 2780 return; 2781 } 2782 } 2783 break; 2784 } 2785 } 2786 } 2787 2788 std::pair<unsigned, const TargetRegisterClass*> TargetLowering:: 2789 getRegForInlineAsmConstraint(const std::string &Constraint, 2790 EVT VT) const { 2791 if (Constraint[0] != '{') 2792 return std::make_pair(0u, static_cast<TargetRegisterClass*>(0)); 2793 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2794 2795 // Remove the braces from around the name. 2796 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2797 2798 // Figure out which register class contains this reg. 2799 const TargetRegisterInfo *RI = TM.getRegisterInfo(); 2800 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2801 E = RI->regclass_end(); RCI != E; ++RCI) { 2802 const TargetRegisterClass *RC = *RCI; 2803 2804 // If none of the value types for this register class are valid, we 2805 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2806 if (!isLegalRC(RC)) 2807 continue; 2808 2809 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2810 I != E; ++I) { 2811 if (RegName.equals_lower(RI->getName(*I))) 2812 return std::make_pair(*I, RC); 2813 } 2814 } 2815 2816 return std::make_pair(0u, static_cast<const TargetRegisterClass*>(0)); 2817 } 2818 2819 //===----------------------------------------------------------------------===// 2820 // Constraint Selection. 2821 2822 /// isMatchingInputConstraint - Return true of this is an input operand that is 2823 /// a matching constraint like "4". 2824 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2825 assert(!ConstraintCode.empty() && "No known constraint!"); 2826 return isdigit(ConstraintCode[0]); 2827 } 2828 2829 /// getMatchedOperand - If this is an input matching constraint, this method 2830 /// returns the output operand it matches. 2831 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2832 assert(!ConstraintCode.empty() && "No known constraint!"); 2833 return atoi(ConstraintCode.c_str()); 2834 } 2835 2836 2837 /// ParseConstraints - Split up the constraint string from the inline 2838 /// assembly value into the specific constraints and their prefixes, 2839 /// and also tie in the associated operand values. 2840 /// If this returns an empty vector, and if the constraint string itself 2841 /// isn't empty, there was an error parsing. 2842 TargetLowering::AsmOperandInfoVector TargetLowering::ParseConstraints( 2843 ImmutableCallSite CS) const { 2844 /// ConstraintOperands - Information about all of the constraints. 2845 AsmOperandInfoVector ConstraintOperands; 2846 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2847 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2848 2849 // Do a prepass over the constraints, canonicalizing them, and building up the 2850 // ConstraintOperands list. 2851 InlineAsm::ConstraintInfoVector 2852 ConstraintInfos = IA->ParseConstraints(); 2853 2854 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2855 unsigned ResNo = 0; // ResNo - The result number of the next output. 2856 2857 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) { 2858 ConstraintOperands.push_back(AsmOperandInfo(ConstraintInfos[i])); 2859 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2860 2861 // Update multiple alternative constraint count. 2862 if (OpInfo.multipleAlternatives.size() > maCount) 2863 maCount = OpInfo.multipleAlternatives.size(); 2864 2865 OpInfo.ConstraintVT = MVT::Other; 2866 2867 // Compute the value type for each operand. 2868 switch (OpInfo.Type) { 2869 case InlineAsm::isOutput: 2870 // Indirect outputs just consume an argument. 2871 if (OpInfo.isIndirect) { 2872 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2873 break; 2874 } 2875 2876 // The return value of the call is this value. As such, there is no 2877 // corresponding argument. 2878 assert(!CS.getType()->isVoidTy() && 2879 "Bad inline asm!"); 2880 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2881 OpInfo.ConstraintVT = getValueType(STy->getElementType(ResNo)); 2882 } else { 2883 assert(ResNo == 0 && "Asm only has one result!"); 2884 OpInfo.ConstraintVT = getValueType(CS.getType()); 2885 } 2886 ++ResNo; 2887 break; 2888 case InlineAsm::isInput: 2889 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2890 break; 2891 case InlineAsm::isClobber: 2892 // Nothing to do. 2893 break; 2894 } 2895 2896 if (OpInfo.CallOperandVal) { 2897 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2898 if (OpInfo.isIndirect) { 2899 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2900 if (!PtrTy) 2901 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2902 OpTy = PtrTy->getElementType(); 2903 } 2904 2905 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2906 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2907 if (STy->getNumElements() == 1) 2908 OpTy = STy->getElementType(0); 2909 2910 // If OpTy is not a single value, it may be a struct/union that we 2911 // can tile with integers. 2912 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2913 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 2914 switch (BitSize) { 2915 default: break; 2916 case 1: 2917 case 8: 2918 case 16: 2919 case 32: 2920 case 64: 2921 case 128: 2922 OpInfo.ConstraintVT = 2923 EVT::getEVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2924 break; 2925 } 2926 } else if (dyn_cast<PointerType>(OpTy)) { 2927 OpInfo.ConstraintVT = MVT::getIntegerVT(8*TD->getPointerSize()); 2928 } else { 2929 OpInfo.ConstraintVT = EVT::getEVT(OpTy, true); 2930 } 2931 } 2932 } 2933 2934 // If we have multiple alternative constraints, select the best alternative. 2935 if (ConstraintInfos.size()) { 2936 if (maCount) { 2937 unsigned bestMAIndex = 0; 2938 int bestWeight = -1; 2939 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2940 int weight = -1; 2941 unsigned maIndex; 2942 // Compute the sums of the weights for each alternative, keeping track 2943 // of the best (highest weight) one so far. 2944 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2945 int weightSum = 0; 2946 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2947 cIndex != eIndex; ++cIndex) { 2948 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2949 if (OpInfo.Type == InlineAsm::isClobber) 2950 continue; 2951 2952 // If this is an output operand with a matching input operand, 2953 // look up the matching input. If their types mismatch, e.g. one 2954 // is an integer, the other is floating point, or their sizes are 2955 // different, flag it as an maCantMatch. 2956 if (OpInfo.hasMatchingInput()) { 2957 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2958 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2959 if ((OpInfo.ConstraintVT.isInteger() != 2960 Input.ConstraintVT.isInteger()) || 2961 (OpInfo.ConstraintVT.getSizeInBits() != 2962 Input.ConstraintVT.getSizeInBits())) { 2963 weightSum = -1; // Can't match. 2964 break; 2965 } 2966 } 2967 } 2968 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2969 if (weight == -1) { 2970 weightSum = -1; 2971 break; 2972 } 2973 weightSum += weight; 2974 } 2975 // Update best. 2976 if (weightSum > bestWeight) { 2977 bestWeight = weightSum; 2978 bestMAIndex = maIndex; 2979 } 2980 } 2981 2982 // Now select chosen alternative in each constraint. 2983 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2984 cIndex != eIndex; ++cIndex) { 2985 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2986 if (cInfo.Type == InlineAsm::isClobber) 2987 continue; 2988 cInfo.selectAlternative(bestMAIndex); 2989 } 2990 } 2991 } 2992 2993 // Check and hook up tied operands, choose constraint code to use. 2994 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2995 cIndex != eIndex; ++cIndex) { 2996 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2997 2998 // If this is an output operand with a matching input operand, look up the 2999 // matching input. If their types mismatch, e.g. one is an integer, the 3000 // other is floating point, or their sizes are different, flag it as an 3001 // error. 3002 if (OpInfo.hasMatchingInput()) { 3003 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3004 3005 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3006 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 3007 getRegForInlineAsmConstraint(OpInfo.ConstraintCode, OpInfo.ConstraintVT); 3008 std::pair<unsigned, const TargetRegisterClass*> InputRC = 3009 getRegForInlineAsmConstraint(Input.ConstraintCode, Input.ConstraintVT); 3010 if ((OpInfo.ConstraintVT.isInteger() != 3011 Input.ConstraintVT.isInteger()) || 3012 (MatchRC.second != InputRC.second)) { 3013 report_fatal_error("Unsupported asm: input constraint" 3014 " with a matching output constraint of" 3015 " incompatible type!"); 3016 } 3017 } 3018 3019 } 3020 } 3021 3022 return ConstraintOperands; 3023 } 3024 3025 3026 /// getConstraintGenerality - Return an integer indicating how general CT 3027 /// is. 3028 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3029 switch (CT) { 3030 case TargetLowering::C_Other: 3031 case TargetLowering::C_Unknown: 3032 return 0; 3033 case TargetLowering::C_Register: 3034 return 1; 3035 case TargetLowering::C_RegisterClass: 3036 return 2; 3037 case TargetLowering::C_Memory: 3038 return 3; 3039 } 3040 llvm_unreachable("Invalid constraint type"); 3041 } 3042 3043 /// Examine constraint type and operand type and determine a weight value. 3044 /// This object must already have been set up with the operand type 3045 /// and the current alternative constraint selected. 3046 TargetLowering::ConstraintWeight 3047 TargetLowering::getMultipleConstraintMatchWeight( 3048 AsmOperandInfo &info, int maIndex) const { 3049 InlineAsm::ConstraintCodeVector *rCodes; 3050 if (maIndex >= (int)info.multipleAlternatives.size()) 3051 rCodes = &info.Codes; 3052 else 3053 rCodes = &info.multipleAlternatives[maIndex].Codes; 3054 ConstraintWeight BestWeight = CW_Invalid; 3055 3056 // Loop over the options, keeping track of the most general one. 3057 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3058 ConstraintWeight weight = 3059 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3060 if (weight > BestWeight) 3061 BestWeight = weight; 3062 } 3063 3064 return BestWeight; 3065 } 3066 3067 /// Examine constraint type and operand type and determine a weight value. 3068 /// This object must already have been set up with the operand type 3069 /// and the current alternative constraint selected. 3070 TargetLowering::ConstraintWeight 3071 TargetLowering::getSingleConstraintMatchWeight( 3072 AsmOperandInfo &info, const char *constraint) const { 3073 ConstraintWeight weight = CW_Invalid; 3074 Value *CallOperandVal = info.CallOperandVal; 3075 // If we don't have a value, we can't do a match, 3076 // but allow it at the lowest weight. 3077 if (CallOperandVal == NULL) 3078 return CW_Default; 3079 // Look at the constraint type. 3080 switch (*constraint) { 3081 case 'i': // immediate integer. 3082 case 'n': // immediate integer with a known value. 3083 if (isa<ConstantInt>(CallOperandVal)) 3084 weight = CW_Constant; 3085 break; 3086 case 's': // non-explicit intregal immediate. 3087 if (isa<GlobalValue>(CallOperandVal)) 3088 weight = CW_Constant; 3089 break; 3090 case 'E': // immediate float if host format. 3091 case 'F': // immediate float. 3092 if (isa<ConstantFP>(CallOperandVal)) 3093 weight = CW_Constant; 3094 break; 3095 case '<': // memory operand with autodecrement. 3096 case '>': // memory operand with autoincrement. 3097 case 'm': // memory operand. 3098 case 'o': // offsettable memory operand 3099 case 'V': // non-offsettable memory operand 3100 weight = CW_Memory; 3101 break; 3102 case 'r': // general register. 3103 case 'g': // general register, memory operand or immediate integer. 3104 // note: Clang converts "g" to "imr". 3105 if (CallOperandVal->getType()->isIntegerTy()) 3106 weight = CW_Register; 3107 break; 3108 case 'X': // any operand. 3109 default: 3110 weight = CW_Default; 3111 break; 3112 } 3113 return weight; 3114 } 3115 3116 /// ChooseConstraint - If there are multiple different constraints that we 3117 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 3118 /// This is somewhat tricky: constraints fall into four classes: 3119 /// Other -> immediates and magic values 3120 /// Register -> one specific register 3121 /// RegisterClass -> a group of regs 3122 /// Memory -> memory 3123 /// Ideally, we would pick the most specific constraint possible: if we have 3124 /// something that fits into a register, we would pick it. The problem here 3125 /// is that if we have something that could either be in a register or in 3126 /// memory that use of the register could cause selection of *other* 3127 /// operands to fail: they might only succeed if we pick memory. Because of 3128 /// this the heuristic we use is: 3129 /// 3130 /// 1) If there is an 'other' constraint, and if the operand is valid for 3131 /// that constraint, use it. This makes us take advantage of 'i' 3132 /// constraints when available. 3133 /// 2) Otherwise, pick the most general constraint present. This prefers 3134 /// 'm' over 'r', for example. 3135 /// 3136 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3137 const TargetLowering &TLI, 3138 SDValue Op, SelectionDAG *DAG) { 3139 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3140 unsigned BestIdx = 0; 3141 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3142 int BestGenerality = -1; 3143 3144 // Loop over the options, keeping track of the most general one. 3145 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3146 TargetLowering::ConstraintType CType = 3147 TLI.getConstraintType(OpInfo.Codes[i]); 3148 3149 // If this is an 'other' constraint, see if the operand is valid for it. 3150 // For example, on X86 we might have an 'rI' constraint. If the operand 3151 // is an integer in the range [0..31] we want to use I (saving a load 3152 // of a register), otherwise we must use 'r'. 3153 if (CType == TargetLowering::C_Other && Op.getNode()) { 3154 assert(OpInfo.Codes[i].size() == 1 && 3155 "Unhandled multi-letter 'other' constraint"); 3156 std::vector<SDValue> ResultOps; 3157 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3158 ResultOps, *DAG); 3159 if (!ResultOps.empty()) { 3160 BestType = CType; 3161 BestIdx = i; 3162 break; 3163 } 3164 } 3165 3166 // Things with matching constraints can only be registers, per gcc 3167 // documentation. This mainly affects "g" constraints. 3168 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3169 continue; 3170 3171 // This constraint letter is more general than the previous one, use it. 3172 int Generality = getConstraintGenerality(CType); 3173 if (Generality > BestGenerality) { 3174 BestType = CType; 3175 BestIdx = i; 3176 BestGenerality = Generality; 3177 } 3178 } 3179 3180 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3181 OpInfo.ConstraintType = BestType; 3182 } 3183 3184 /// ComputeConstraintToUse - Determines the constraint code and constraint 3185 /// type to use for the specific AsmOperandInfo, setting 3186 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 3187 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3188 SDValue Op, 3189 SelectionDAG *DAG) const { 3190 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3191 3192 // Single-letter constraints ('r') are very common. 3193 if (OpInfo.Codes.size() == 1) { 3194 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3195 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3196 } else { 3197 ChooseConstraint(OpInfo, *this, Op, DAG); 3198 } 3199 3200 // 'X' matches anything. 3201 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3202 // Labels and constants are handled elsewhere ('X' is the only thing 3203 // that matches labels). For Functions, the type here is the type of 3204 // the result, which is not what we want to look at; leave them alone. 3205 Value *v = OpInfo.CallOperandVal; 3206 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3207 OpInfo.CallOperandVal = v; 3208 return; 3209 } 3210 3211 // Otherwise, try to resolve it to something we know about by looking at 3212 // the actual operand type. 3213 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3214 OpInfo.ConstraintCode = Repl; 3215 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3216 } 3217 } 3218 } 3219 3220 //===----------------------------------------------------------------------===// 3221 // Loop Strength Reduction hooks 3222 //===----------------------------------------------------------------------===// 3223 3224 /// isLegalAddressingMode - Return true if the addressing mode represented 3225 /// by AM is legal for this target, for a load/store of the specified type. 3226 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM, 3227 Type *Ty) const { 3228 // The default implementation of this implements a conservative RISCy, r+r and 3229 // r+i addr mode. 3230 3231 // Allows a sign-extended 16-bit immediate field. 3232 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 3233 return false; 3234 3235 // No global is ever allowed as a base. 3236 if (AM.BaseGV) 3237 return false; 3238 3239 // Only support r+r, 3240 switch (AM.Scale) { 3241 case 0: // "r+i" or just "i", depending on HasBaseReg. 3242 break; 3243 case 1: 3244 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 3245 return false; 3246 // Otherwise we have r+r or r+i. 3247 break; 3248 case 2: 3249 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 3250 return false; 3251 // Allow 2*r as r+r. 3252 break; 3253 } 3254 3255 return true; 3256 } 3257 3258 /// BuildExactDiv - Given an exact SDIV by a constant, create a multiplication 3259 /// with the multiplicative inverse of the constant. 3260 SDValue TargetLowering::BuildExactSDIV(SDValue Op1, SDValue Op2, DebugLoc dl, 3261 SelectionDAG &DAG) const { 3262 ConstantSDNode *C = cast<ConstantSDNode>(Op2); 3263 APInt d = C->getAPIntValue(); 3264 assert(d != 0 && "Division by zero!"); 3265 3266 // Shift the value upfront if it is even, so the LSB is one. 3267 unsigned ShAmt = d.countTrailingZeros(); 3268 if (ShAmt) { 3269 // TODO: For UDIV use SRL instead of SRA. 3270 SDValue Amt = DAG.getConstant(ShAmt, getShiftAmountTy(Op1.getValueType())); 3271 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt); 3272 d = d.ashr(ShAmt); 3273 } 3274 3275 // Calculate the multiplicative inverse, using Newton's method. 3276 APInt t, xn = d; 3277 while ((t = d*xn) != 1) 3278 xn *= APInt(d.getBitWidth(), 2) - t; 3279 3280 Op2 = DAG.getConstant(xn, Op1.getValueType()); 3281 return DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 3282 } 3283 3284 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant, 3285 /// return a DAG expression to select that will generate the same value by 3286 /// multiplying by a magic number. See: 3287 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3288 SDValue TargetLowering:: 3289 BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 3290 std::vector<SDNode*>* Created) const { 3291 EVT VT = N->getValueType(0); 3292 DebugLoc dl= N->getDebugLoc(); 3293 3294 // Check to see if we can do this. 3295 // FIXME: We should be more aggressive here. 3296 if (!isTypeLegal(VT)) 3297 return SDValue(); 3298 3299 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3300 APInt::ms magics = d.magic(); 3301 3302 // Multiply the numerator (operand 0) by the magic value 3303 // FIXME: We should support doing a MUL in a wider type 3304 SDValue Q; 3305 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3306 isOperationLegalOrCustom(ISD::MULHS, VT)) 3307 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3308 DAG.getConstant(magics.m, VT)); 3309 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3310 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3311 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3312 N->getOperand(0), 3313 DAG.getConstant(magics.m, VT)).getNode(), 1); 3314 else 3315 return SDValue(); // No mulhs or equvialent 3316 // If d > 0 and m < 0, add the numerator 3317 if (d.isStrictlyPositive() && magics.m.isNegative()) { 3318 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3319 if (Created) 3320 Created->push_back(Q.getNode()); 3321 } 3322 // If d < 0 and m > 0, subtract the numerator. 3323 if (d.isNegative() && magics.m.isStrictlyPositive()) { 3324 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3325 if (Created) 3326 Created->push_back(Q.getNode()); 3327 } 3328 // Shift right algebraic if shift value is nonzero 3329 if (magics.s > 0) { 3330 Q = DAG.getNode(ISD::SRA, dl, VT, Q, 3331 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3332 if (Created) 3333 Created->push_back(Q.getNode()); 3334 } 3335 // Extract the sign bit and add it to the quotient 3336 SDValue T = 3337 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1, 3338 getShiftAmountTy(Q.getValueType()))); 3339 if (Created) 3340 Created->push_back(T.getNode()); 3341 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3342 } 3343 3344 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant, 3345 /// return a DAG expression to select that will generate the same value by 3346 /// multiplying by a magic number. See: 3347 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html> 3348 SDValue TargetLowering:: 3349 BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, 3350 std::vector<SDNode*>* Created) const { 3351 EVT VT = N->getValueType(0); 3352 DebugLoc dl = N->getDebugLoc(); 3353 3354 // Check to see if we can do this. 3355 // FIXME: We should be more aggressive here. 3356 if (!isTypeLegal(VT)) 3357 return SDValue(); 3358 3359 // FIXME: We should use a narrower constant when the upper 3360 // bits are known to be zero. 3361 const APInt &N1C = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue(); 3362 APInt::mu magics = N1C.magicu(); 3363 3364 SDValue Q = N->getOperand(0); 3365 3366 // If the divisor is even, we can avoid using the expensive fixup by shifting 3367 // the divided value upfront. 3368 if (magics.a != 0 && !N1C[0]) { 3369 unsigned Shift = N1C.countTrailingZeros(); 3370 Q = DAG.getNode(ISD::SRL, dl, VT, Q, 3371 DAG.getConstant(Shift, getShiftAmountTy(Q.getValueType()))); 3372 if (Created) 3373 Created->push_back(Q.getNode()); 3374 3375 // Get magic number for the shifted divisor. 3376 magics = N1C.lshr(Shift).magicu(Shift); 3377 assert(magics.a == 0 && "Should use cheap fixup now"); 3378 } 3379 3380 // Multiply the numerator (operand 0) by the magic value 3381 // FIXME: We should support doing a MUL in a wider type 3382 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3383 isOperationLegalOrCustom(ISD::MULHU, VT)) 3384 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, VT)); 3385 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3386 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3387 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3388 DAG.getConstant(magics.m, VT)).getNode(), 1); 3389 else 3390 return SDValue(); // No mulhu or equvialent 3391 if (Created) 3392 Created->push_back(Q.getNode()); 3393 3394 if (magics.a == 0) { 3395 assert(magics.s < N1C.getBitWidth() && 3396 "We shouldn't generate an undefined shift!"); 3397 return DAG.getNode(ISD::SRL, dl, VT, Q, 3398 DAG.getConstant(magics.s, getShiftAmountTy(Q.getValueType()))); 3399 } else { 3400 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3401 if (Created) 3402 Created->push_back(NPQ.getNode()); 3403 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, 3404 DAG.getConstant(1, getShiftAmountTy(NPQ.getValueType()))); 3405 if (Created) 3406 Created->push_back(NPQ.getNode()); 3407 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3408 if (Created) 3409 Created->push_back(NPQ.getNode()); 3410 return DAG.getNode(ISD::SRL, dl, VT, NPQ, 3411 DAG.getConstant(magics.s-1, getShiftAmountTy(NPQ.getValueType()))); 3412 } 3413 } 3414