1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/Analysis.h"
18 #include "llvm/CodeGen/CallingConvLower.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineJumpTableInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Target/TargetSubtargetInfo.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 /// Check whether a given call node is in tail position within its function. If
48 /// so, it sets Chain to the input chain of the tail call.
49 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
50                                           SDValue &Chain) const {
51   const Function *F = DAG.getMachineFunction().getFunction();
52 
53   // Conservatively require the attributes of the call to match those of
54   // the return. Ignore noalias because it doesn't affect the call sequence.
55   AttributeSet CallerAttrs = F->getAttributes();
56   if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex)
57       .removeAttribute(Attribute::NoAlias).hasAttributes())
58     return false;
59 
60   // It's not safe to eliminate the sign / zero extension of the return value.
61   if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
62       CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
63     return false;
64 
65   // Check if the only use is a function return node.
66   return isUsedByReturnOnly(Node, Chain);
67 }
68 
69 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
70     const uint32_t *CallerPreservedMask,
71     const SmallVectorImpl<CCValAssign> &ArgLocs,
72     const SmallVectorImpl<SDValue> &OutVals) const {
73   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
74     const CCValAssign &ArgLoc = ArgLocs[I];
75     if (!ArgLoc.isRegLoc())
76       continue;
77     unsigned Reg = ArgLoc.getLocReg();
78     // Only look at callee saved registers.
79     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
80       continue;
81     // Check that we pass the value used for the caller.
82     // (We look for a CopyFromReg reading a virtual register that is used
83     //  for the function live-in value of register Reg)
84     SDValue Value = OutVals[I];
85     if (Value->getOpcode() != ISD::CopyFromReg)
86       return false;
87     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
88     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
89       return false;
90   }
91   return true;
92 }
93 
94 /// \brief Set CallLoweringInfo attribute flags based on a call instruction
95 /// and called function attributes.
96 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS,
97                                                  unsigned AttrIdx) {
98   isSExt     = CS->paramHasAttr(AttrIdx, Attribute::SExt);
99   isZExt     = CS->paramHasAttr(AttrIdx, Attribute::ZExt);
100   isInReg    = CS->paramHasAttr(AttrIdx, Attribute::InReg);
101   isSRet     = CS->paramHasAttr(AttrIdx, Attribute::StructRet);
102   isNest     = CS->paramHasAttr(AttrIdx, Attribute::Nest);
103   isByVal    = CS->paramHasAttr(AttrIdx, Attribute::ByVal);
104   isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca);
105   isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned);
106   isSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf);
107   isSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError);
108   Alignment  = CS->getParamAlignment(AttrIdx);
109 }
110 
111 /// Generate a libcall taking the given operands as arguments and returning a
112 /// result of type RetVT.
113 std::pair<SDValue, SDValue>
114 TargetLowering::makeLibCall(SelectionDAG &DAG,
115                             RTLIB::Libcall LC, EVT RetVT,
116                             ArrayRef<SDValue> Ops,
117                             bool isSigned, SDLoc dl,
118                             bool doesNotReturn,
119                             bool isReturnValueUsed) const {
120   TargetLowering::ArgListTy Args;
121   Args.reserve(Ops.size());
122 
123   TargetLowering::ArgListEntry Entry;
124   for (SDValue Op : Ops) {
125     Entry.Node = Op;
126     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
127     Entry.isSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
128     Entry.isZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
129     Args.push_back(Entry);
130   }
131 
132   if (LC == RTLIB::UNKNOWN_LIBCALL)
133     report_fatal_error("Unsupported library call operation!");
134   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
135                                          getPointerTy(DAG.getDataLayout()));
136 
137   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
138   TargetLowering::CallLoweringInfo CLI(DAG);
139   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
140   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
141     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
142     .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed)
143     .setSExtResult(signExtend).setZExtResult(!signExtend);
144   return LowerCallTo(CLI);
145 }
146 
147 /// Soften the operands of a comparison. This code is shared among BR_CC,
148 /// SELECT_CC, and SETCC handlers.
149 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
150                                          SDValue &NewLHS, SDValue &NewRHS,
151                                          ISD::CondCode &CCCode,
152                                          SDLoc dl) const {
153   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
154          && "Unsupported setcc type!");
155 
156   // Expand into one or more soft-fp libcall(s).
157   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
158   bool ShouldInvertCC = false;
159   switch (CCCode) {
160   case ISD::SETEQ:
161   case ISD::SETOEQ:
162     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
163           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
164           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
165     break;
166   case ISD::SETNE:
167   case ISD::SETUNE:
168     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
169           (VT == MVT::f64) ? RTLIB::UNE_F64 :
170           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
171     break;
172   case ISD::SETGE:
173   case ISD::SETOGE:
174     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
175           (VT == MVT::f64) ? RTLIB::OGE_F64 :
176           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
177     break;
178   case ISD::SETLT:
179   case ISD::SETOLT:
180     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
181           (VT == MVT::f64) ? RTLIB::OLT_F64 :
182           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
183     break;
184   case ISD::SETLE:
185   case ISD::SETOLE:
186     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
187           (VT == MVT::f64) ? RTLIB::OLE_F64 :
188           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
189     break;
190   case ISD::SETGT:
191   case ISD::SETOGT:
192     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
193           (VT == MVT::f64) ? RTLIB::OGT_F64 :
194           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
195     break;
196   case ISD::SETUO:
197     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
198           (VT == MVT::f64) ? RTLIB::UO_F64 :
199           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
200     break;
201   case ISD::SETO:
202     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
203           (VT == MVT::f64) ? RTLIB::O_F64 :
204           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
205     break;
206   case ISD::SETONE:
207     // SETONE = SETOLT | SETOGT
208     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
209           (VT == MVT::f64) ? RTLIB::OLT_F64 :
210           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
211     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
212           (VT == MVT::f64) ? RTLIB::OGT_F64 :
213           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
214     break;
215   case ISD::SETUEQ:
216     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
217           (VT == MVT::f64) ? RTLIB::UO_F64 :
218           (VT == MVT::f128) ? RTLIB::UO_F64 : RTLIB::UO_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
220           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
221           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
222     break;
223   default:
224     // Invert CC for unordered comparisons
225     ShouldInvertCC = true;
226     switch (CCCode) {
227     case ISD::SETULT:
228       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
229             (VT == MVT::f64) ? RTLIB::OGE_F64 :
230             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
231       break;
232     case ISD::SETULE:
233       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
234             (VT == MVT::f64) ? RTLIB::OGT_F64 :
235             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
236       break;
237     case ISD::SETUGT:
238       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
239             (VT == MVT::f64) ? RTLIB::OLE_F64 :
240             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
241       break;
242     case ISD::SETUGE:
243       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
244             (VT == MVT::f64) ? RTLIB::OLT_F64 :
245             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
246       break;
247     default: llvm_unreachable("Do not know how to soften this setcc!");
248     }
249   }
250 
251   // Use the target specific return value for comparions lib calls.
252   EVT RetVT = getCmpLibcallReturnType();
253   SDValue Ops[2] = {NewLHS, NewRHS};
254   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
255                        dl).first;
256   NewRHS = DAG.getConstant(0, dl, RetVT);
257 
258   CCCode = getCmpLibcallCC(LC1);
259   if (ShouldInvertCC)
260     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
261 
262   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
263     SDValue Tmp = DAG.getNode(
264         ISD::SETCC, dl,
265         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
266         NewLHS, NewRHS, DAG.getCondCode(CCCode));
267     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
268                          dl).first;
269     NewLHS = DAG.getNode(
270         ISD::SETCC, dl,
271         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
272         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
273     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
274     NewRHS = SDValue();
275   }
276 }
277 
278 /// Return the entry encoding for a jump table in the current function. The
279 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
280 unsigned TargetLowering::getJumpTableEncoding() const {
281   // In non-pic modes, just use the address of a block.
282   if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
283     return MachineJumpTableInfo::EK_BlockAddress;
284 
285   // In PIC mode, if the target supports a GPRel32 directive, use it.
286   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
287     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
288 
289   // Otherwise, use a label difference.
290   return MachineJumpTableInfo::EK_LabelDifference32;
291 }
292 
293 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
294                                                  SelectionDAG &DAG) const {
295   // If our PIC model is GP relative, use the global offset table as the base.
296   unsigned JTEncoding = getJumpTableEncoding();
297 
298   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
299       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
300     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
301 
302   return Table;
303 }
304 
305 /// This returns the relocation base for the given PIC jumptable, the same as
306 /// getPICJumpTableRelocBase, but as an MCExpr.
307 const MCExpr *
308 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
309                                              unsigned JTI,MCContext &Ctx) const{
310   // The normal PIC reloc base is the label at the start of the jump table.
311   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
312 }
313 
314 bool
315 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
316   // Assume that everything is safe in static mode.
317   if (getTargetMachine().getRelocationModel() == Reloc::Static)
318     return true;
319 
320   // In dynamic-no-pic mode, assume that known defined values are safe.
321   if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
322       GA && GA->getGlobal()->isStrongDefinitionForLinker())
323     return true;
324 
325   // Otherwise assume nothing is safe.
326   return false;
327 }
328 
329 //===----------------------------------------------------------------------===//
330 //  Optimization Methods
331 //===----------------------------------------------------------------------===//
332 
333 /// Check to see if the specified operand of the specified instruction is a
334 /// constant integer. If so, check to see if there are any bits set in the
335 /// constant that are not demanded. If so, shrink the constant and return true.
336 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
337                                                         const APInt &Demanded) {
338   SDLoc dl(Op);
339 
340   // FIXME: ISD::SELECT, ISD::SELECT_CC
341   switch (Op.getOpcode()) {
342   default: break;
343   case ISD::XOR:
344   case ISD::AND:
345   case ISD::OR: {
346     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
347     if (!C) return false;
348 
349     if (Op.getOpcode() == ISD::XOR &&
350         (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
351       return false;
352 
353     // if we can expand it to have all bits set, do it
354     if (C->getAPIntValue().intersects(~Demanded)) {
355       EVT VT = Op.getValueType();
356       SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
357                                 DAG.getConstant(Demanded &
358                                                 C->getAPIntValue(),
359                                                 dl, VT));
360       return CombineTo(Op, New);
361     }
362 
363     break;
364   }
365   }
366 
367   return false;
368 }
369 
370 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
371 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
372 /// generalized for targets with other types of implicit widening casts.
373 bool
374 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
375                                                     unsigned BitWidth,
376                                                     const APInt &Demanded,
377                                                     SDLoc dl) {
378   assert(Op.getNumOperands() == 2 &&
379          "ShrinkDemandedOp only supports binary operators!");
380   assert(Op.getNode()->getNumValues() == 1 &&
381          "ShrinkDemandedOp only supports nodes with one result!");
382 
383   // Early return, as this function cannot handle vector types.
384   if (Op.getValueType().isVector())
385     return false;
386 
387   // Don't do this if the node has another user, which may require the
388   // full value.
389   if (!Op.getNode()->hasOneUse())
390     return false;
391 
392   // Search for the smallest integer type with free casts to and from
393   // Op's type. For expedience, just check power-of-2 integer types.
394   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
395   unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros();
396   unsigned SmallVTBits = DemandedSize;
397   if (!isPowerOf2_32(SmallVTBits))
398     SmallVTBits = NextPowerOf2(SmallVTBits);
399   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
400     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
401     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
402         TLI.isZExtFree(SmallVT, Op.getValueType())) {
403       // We found a type with free casts.
404       SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
405                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
406                                           Op.getNode()->getOperand(0)),
407                               DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
408                                           Op.getNode()->getOperand(1)));
409       bool NeedZext = DemandedSize > SmallVTBits;
410       SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
411                               dl, Op.getValueType(), X);
412       return CombineTo(Op, Z);
413     }
414   }
415   return false;
416 }
417 
418 /// Look at Op. At this point, we know that only the DemandedMask bits of the
419 /// result of Op are ever used downstream. If we can use this information to
420 /// simplify Op, create a new simplified DAG node and return true, returning the
421 /// original and new nodes in Old and New. Otherwise, analyze the expression and
422 /// return a mask of KnownOne and KnownZero bits for the expression (used to
423 /// simplify the caller).  The KnownZero/One bits may only be accurate for those
424 /// bits in the DemandedMask.
425 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
426                                           const APInt &DemandedMask,
427                                           APInt &KnownZero,
428                                           APInt &KnownOne,
429                                           TargetLoweringOpt &TLO,
430                                           unsigned Depth) const {
431   unsigned BitWidth = DemandedMask.getBitWidth();
432   assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth &&
433          "Mask size mismatches value type size!");
434   APInt NewMask = DemandedMask;
435   SDLoc dl(Op);
436   auto &DL = TLO.DAG.getDataLayout();
437 
438   // Don't know anything.
439   KnownZero = KnownOne = APInt(BitWidth, 0);
440 
441   // Other users may use these bits.
442   if (!Op.getNode()->hasOneUse()) {
443     if (Depth != 0) {
444       // If not at the root, Just compute the KnownZero/KnownOne bits to
445       // simplify things downstream.
446       TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
447       return false;
448     }
449     // If this is the root being simplified, allow it to have multiple uses,
450     // just set the NewMask to all bits.
451     NewMask = APInt::getAllOnesValue(BitWidth);
452   } else if (DemandedMask == 0) {
453     // Not demanding any bits from Op.
454     if (!Op.isUndef())
455       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
456     return false;
457   } else if (Depth == 6) {        // Limit search depth.
458     return false;
459   }
460 
461   APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
462   switch (Op.getOpcode()) {
463   case ISD::Constant:
464     // We know all of the bits for a constant!
465     KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
466     KnownZero = ~KnownOne;
467     return false;   // Don't fall through, will infinitely loop.
468   case ISD::AND:
469     // If the RHS is a constant, check to see if the LHS would be zero without
470     // using the bits from the RHS.  Below, we use knowledge about the RHS to
471     // simplify the LHS, here we're using information from the LHS to simplify
472     // the RHS.
473     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
474       APInt LHSZero, LHSOne;
475       // Do not increment Depth here; that can cause an infinite loop.
476       TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth);
477       // If the LHS already has zeros where RHSC does, this and is dead.
478       if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
479         return TLO.CombineTo(Op, Op.getOperand(0));
480       // If any of the set bits in the RHS are known zero on the LHS, shrink
481       // the constant.
482       if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
483         return true;
484     }
485 
486     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
487                              KnownOne, TLO, Depth+1))
488       return true;
489     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
490     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
491                              KnownZero2, KnownOne2, TLO, Depth+1))
492       return true;
493     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
494 
495     // If all of the demanded bits are known one on one side, return the other.
496     // These bits cannot contribute to the result of the 'and'.
497     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
498       return TLO.CombineTo(Op, Op.getOperand(0));
499     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
500       return TLO.CombineTo(Op, Op.getOperand(1));
501     // If all of the demanded bits in the inputs are known zeros, return zero.
502     if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
503       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
504     // If the RHS is a constant, see if we can simplify it.
505     if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
506       return true;
507     // If the operation can be done in a smaller type, do so.
508     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
509       return true;
510 
511     // Output known-1 bits are only known if set in both the LHS & RHS.
512     KnownOne &= KnownOne2;
513     // Output known-0 are known to be clear if zero in either the LHS | RHS.
514     KnownZero |= KnownZero2;
515     break;
516   case ISD::OR:
517     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
518                              KnownOne, TLO, Depth+1))
519       return true;
520     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
521     if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
522                              KnownZero2, KnownOne2, TLO, Depth+1))
523       return true;
524     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
525 
526     // If all of the demanded bits are known zero on one side, return the other.
527     // These bits cannot contribute to the result of the 'or'.
528     if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
529       return TLO.CombineTo(Op, Op.getOperand(0));
530     if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
531       return TLO.CombineTo(Op, Op.getOperand(1));
532     // If all of the potentially set bits on one side are known to be set on
533     // the other side, just use the 'other' side.
534     if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
535       return TLO.CombineTo(Op, Op.getOperand(0));
536     if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
537       return TLO.CombineTo(Op, Op.getOperand(1));
538     // If the RHS is a constant, see if we can simplify it.
539     if (TLO.ShrinkDemandedConstant(Op, NewMask))
540       return true;
541     // If the operation can be done in a smaller type, do so.
542     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
543       return true;
544 
545     // Output known-0 bits are only known if clear in both the LHS & RHS.
546     KnownZero &= KnownZero2;
547     // Output known-1 are known to be set if set in either the LHS | RHS.
548     KnownOne |= KnownOne2;
549     break;
550   case ISD::XOR:
551     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
552                              KnownOne, TLO, Depth+1))
553       return true;
554     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
555     if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
556                              KnownOne2, TLO, Depth+1))
557       return true;
558     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
559 
560     // If all of the demanded bits are known zero on one side, return the other.
561     // These bits cannot contribute to the result of the 'xor'.
562     if ((KnownZero & NewMask) == NewMask)
563       return TLO.CombineTo(Op, Op.getOperand(0));
564     if ((KnownZero2 & NewMask) == NewMask)
565       return TLO.CombineTo(Op, Op.getOperand(1));
566     // If the operation can be done in a smaller type, do so.
567     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
568       return true;
569 
570     // If all of the unknown bits are known to be zero on one side or the other
571     // (but not both) turn this into an *inclusive* or.
572     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
573     if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
574       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
575                                                Op.getOperand(0),
576                                                Op.getOperand(1)));
577 
578     // Output known-0 bits are known if clear or set in both the LHS & RHS.
579     KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
580     // Output known-1 are known to be set if set in only one of the LHS, RHS.
581     KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
582 
583     // If all of the demanded bits on one side are known, and all of the set
584     // bits on that side are also known to be set on the other side, turn this
585     // into an AND, as we know the bits will be cleared.
586     //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
587     // NB: it is okay if more bits are known than are requested
588     if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side
589       if (KnownOne == KnownOne2) { // set bits are the same on both sides
590         EVT VT = Op.getValueType();
591         SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT);
592         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
593                                                  Op.getOperand(0), ANDC));
594       }
595     }
596 
597     // If the RHS is a constant, see if we can simplify it.
598     // for XOR, we prefer to force bits to 1 if they will make a -1.
599     // if we can't force bits, try to shrink constant
600     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
601       APInt Expanded = C->getAPIntValue() | (~NewMask);
602       // if we can expand it to have all bits set, do it
603       if (Expanded.isAllOnesValue()) {
604         if (Expanded != C->getAPIntValue()) {
605           EVT VT = Op.getValueType();
606           SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
607                                         TLO.DAG.getConstant(Expanded, dl, VT));
608           return TLO.CombineTo(Op, New);
609         }
610         // if it already has all the bits set, nothing to change
611         // but don't shrink either!
612       } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
613         return true;
614       }
615     }
616 
617     KnownZero = KnownZeroOut;
618     KnownOne  = KnownOneOut;
619     break;
620   case ISD::SELECT:
621     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
622                              KnownOne, TLO, Depth+1))
623       return true;
624     if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
625                              KnownOne2, TLO, Depth+1))
626       return true;
627     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
628     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
629 
630     // If the operands are constants, see if we can simplify them.
631     if (TLO.ShrinkDemandedConstant(Op, NewMask))
632       return true;
633 
634     // Only known if known in both the LHS and RHS.
635     KnownOne &= KnownOne2;
636     KnownZero &= KnownZero2;
637     break;
638   case ISD::SELECT_CC:
639     if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
640                              KnownOne, TLO, Depth+1))
641       return true;
642     if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
643                              KnownOne2, TLO, Depth+1))
644       return true;
645     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
646     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
647 
648     // If the operands are constants, see if we can simplify them.
649     if (TLO.ShrinkDemandedConstant(Op, NewMask))
650       return true;
651 
652     // Only known if known in both the LHS and RHS.
653     KnownOne &= KnownOne2;
654     KnownZero &= KnownZero2;
655     break;
656   case ISD::SHL:
657     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
658       unsigned ShAmt = SA->getZExtValue();
659       SDValue InOp = Op.getOperand(0);
660 
661       // If the shift count is an invalid immediate, don't do anything.
662       if (ShAmt >= BitWidth)
663         break;
664 
665       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
666       // single shift.  We can do this if the bottom bits (which are shifted
667       // out) are never demanded.
668       if (InOp.getOpcode() == ISD::SRL &&
669           isa<ConstantSDNode>(InOp.getOperand(1))) {
670         if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
671           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
672           unsigned Opc = ISD::SHL;
673           int Diff = ShAmt-C1;
674           if (Diff < 0) {
675             Diff = -Diff;
676             Opc = ISD::SRL;
677           }
678 
679           SDValue NewSA =
680             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
681           EVT VT = Op.getValueType();
682           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
683                                                    InOp.getOperand(0), NewSA));
684         }
685       }
686 
687       if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt),
688                                KnownZero, KnownOne, TLO, Depth+1))
689         return true;
690 
691       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
692       // are not demanded. This will likely allow the anyext to be folded away.
693       if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) {
694         SDValue InnerOp = InOp.getNode()->getOperand(0);
695         EVT InnerVT = InnerOp.getValueType();
696         unsigned InnerBits = InnerVT.getSizeInBits();
697         if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 &&
698             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
699           EVT ShTy = getShiftAmountTy(InnerVT, DL);
700           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
701             ShTy = InnerVT;
702           SDValue NarrowShl =
703             TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
704                             TLO.DAG.getConstant(ShAmt, dl, ShTy));
705           return
706             TLO.CombineTo(Op,
707                           TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(),
708                                           NarrowShl));
709         }
710         // Repeat the SHL optimization above in cases where an extension
711         // intervenes: (shl (anyext (shr x, c1)), c2) to
712         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
713         // aren't demanded (as above) and that the shifted upper c1 bits of
714         // x aren't demanded.
715         if (InOp.hasOneUse() &&
716             InnerOp.getOpcode() == ISD::SRL &&
717             InnerOp.hasOneUse() &&
718             isa<ConstantSDNode>(InnerOp.getOperand(1))) {
719           uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1))
720             ->getZExtValue();
721           if (InnerShAmt < ShAmt &&
722               InnerShAmt < InnerBits &&
723               NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 &&
724               NewMask.trunc(ShAmt) == 0) {
725             SDValue NewSA =
726               TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
727                                   Op.getOperand(1).getValueType());
728             EVT VT = Op.getValueType();
729             SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
730                                              InnerOp.getOperand(0));
731             return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT,
732                                                      NewExt, NewSA));
733           }
734         }
735       }
736 
737       KnownZero <<= SA->getZExtValue();
738       KnownOne  <<= SA->getZExtValue();
739       // low bits known zero.
740       KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
741     }
742     break;
743   case ISD::SRL:
744     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
745       EVT VT = Op.getValueType();
746       unsigned ShAmt = SA->getZExtValue();
747       unsigned VTSize = VT.getSizeInBits();
748       SDValue InOp = Op.getOperand(0);
749 
750       // If the shift count is an invalid immediate, don't do anything.
751       if (ShAmt >= BitWidth)
752         break;
753 
754       APInt InDemandedMask = (NewMask << ShAmt);
755 
756       // If the shift is exact, then it does demand the low bits (and knows that
757       // they are zero).
758       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
759         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
760 
761       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
762       // single shift.  We can do this if the top bits (which are shifted out)
763       // are never demanded.
764       if (InOp.getOpcode() == ISD::SHL &&
765           isa<ConstantSDNode>(InOp.getOperand(1))) {
766         if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
767           unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
768           unsigned Opc = ISD::SRL;
769           int Diff = ShAmt-C1;
770           if (Diff < 0) {
771             Diff = -Diff;
772             Opc = ISD::SHL;
773           }
774 
775           SDValue NewSA =
776             TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType());
777           return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
778                                                    InOp.getOperand(0), NewSA));
779         }
780       }
781 
782       // Compute the new bits that are at the top now.
783       if (SimplifyDemandedBits(InOp, InDemandedMask,
784                                KnownZero, KnownOne, TLO, Depth+1))
785         return true;
786       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
787       KnownZero = KnownZero.lshr(ShAmt);
788       KnownOne  = KnownOne.lshr(ShAmt);
789 
790       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
791       KnownZero |= HighBits;  // High bits known zero.
792     }
793     break;
794   case ISD::SRA:
795     // If this is an arithmetic shift right and only the low-bit is set, we can
796     // always convert this into a logical shr, even if the shift amount is
797     // variable.  The low bit of the shift cannot be an input sign bit unless
798     // the shift amount is >= the size of the datatype, which is undefined.
799     if (NewMask == 1)
800       return TLO.CombineTo(Op,
801                            TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
802                                            Op.getOperand(0), Op.getOperand(1)));
803 
804     if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
805       EVT VT = Op.getValueType();
806       unsigned ShAmt = SA->getZExtValue();
807 
808       // If the shift count is an invalid immediate, don't do anything.
809       if (ShAmt >= BitWidth)
810         break;
811 
812       APInt InDemandedMask = (NewMask << ShAmt);
813 
814       // If the shift is exact, then it does demand the low bits (and knows that
815       // they are zero).
816       if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact())
817         InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt);
818 
819       // If any of the demanded bits are produced by the sign extension, we also
820       // demand the input sign bit.
821       APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
822       if (HighBits.intersects(NewMask))
823         InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits());
824 
825       if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
826                                KnownZero, KnownOne, TLO, Depth+1))
827         return true;
828       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
829       KnownZero = KnownZero.lshr(ShAmt);
830       KnownOne  = KnownOne.lshr(ShAmt);
831 
832       // Handle the sign bit, adjusted to where it is now in the mask.
833       APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
834 
835       // If the input sign bit is known to be zero, or if none of the top bits
836       // are demanded, turn this into an unsigned shift right.
837       if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
838         SDNodeFlags Flags;
839         Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact());
840         return TLO.CombineTo(Op,
841                              TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0),
842                                              Op.getOperand(1), &Flags));
843       }
844 
845       int Log2 = NewMask.exactLogBase2();
846       if (Log2 >= 0) {
847         // The bit must come from the sign.
848         SDValue NewSA =
849           TLO.DAG.getConstant(BitWidth - 1 - Log2, dl,
850                               Op.getOperand(1).getValueType());
851         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
852                                                  Op.getOperand(0), NewSA));
853       }
854 
855       if (KnownOne.intersects(SignBit))
856         // New bits are known one.
857         KnownOne |= HighBits;
858     }
859     break;
860   case ISD::SIGN_EXTEND_INREG: {
861     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
862 
863     APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1);
864     // If we only care about the highest bit, don't bother shifting right.
865     if (MsbMask == NewMask) {
866       unsigned ShAmt = ExVT.getScalarType().getSizeInBits();
867       SDValue InOp = Op.getOperand(0);
868       unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits();
869       bool AlreadySignExtended =
870         TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1;
871       // However if the input is already sign extended we expect the sign
872       // extension to be dropped altogether later and do not simplify.
873       if (!AlreadySignExtended) {
874         // Compute the correct shift amount type, which must be getShiftAmountTy
875         // for scalar types after legalization.
876         EVT ShiftAmtTy = Op.getValueType();
877         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
878           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
879 
880         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl,
881                                                ShiftAmtTy);
882         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
883                                                  Op.getValueType(), InOp,
884                                                  ShiftAmt));
885       }
886     }
887 
888     // Sign extension.  Compute the demanded bits in the result that are not
889     // present in the input.
890     APInt NewBits =
891       APInt::getHighBitsSet(BitWidth,
892                             BitWidth - ExVT.getScalarType().getSizeInBits());
893 
894     // If none of the extended bits are demanded, eliminate the sextinreg.
895     if ((NewBits & NewMask) == 0)
896       return TLO.CombineTo(Op, Op.getOperand(0));
897 
898     APInt InSignBit =
899       APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth);
900     APInt InputDemandedBits =
901       APInt::getLowBitsSet(BitWidth,
902                            ExVT.getScalarType().getSizeInBits()) &
903       NewMask;
904 
905     // Since the sign extended bits are demanded, we know that the sign
906     // bit is demanded.
907     InputDemandedBits |= InSignBit;
908 
909     if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
910                              KnownZero, KnownOne, TLO, Depth+1))
911       return true;
912     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
913 
914     // If the sign bit of the input is known set or clear, then we know the
915     // top bits of the result.
916 
917     // If the input sign bit is known zero, convert this into a zero extension.
918     if (KnownZero.intersects(InSignBit))
919       return TLO.CombineTo(Op,
920                           TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT));
921 
922     if (KnownOne.intersects(InSignBit)) {    // Input sign bit known set
923       KnownOne |= NewBits;
924       KnownZero &= ~NewBits;
925     } else {                       // Input sign bit unknown
926       KnownZero &= ~NewBits;
927       KnownOne &= ~NewBits;
928     }
929     break;
930   }
931   case ISD::BUILD_PAIR: {
932     EVT HalfVT = Op.getOperand(0).getValueType();
933     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
934 
935     APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
936     APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
937 
938     APInt KnownZeroLo, KnownOneLo;
939     APInt KnownZeroHi, KnownOneHi;
940 
941     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo,
942                              KnownOneLo, TLO, Depth + 1))
943       return true;
944 
945     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi,
946                              KnownOneHi, TLO, Depth + 1))
947       return true;
948 
949     KnownZero = KnownZeroLo.zext(BitWidth) |
950                 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth);
951 
952     KnownOne = KnownOneLo.zext(BitWidth) |
953                KnownOneHi.zext(BitWidth).shl(HalfBitWidth);
954     break;
955   }
956   case ISD::ZERO_EXTEND: {
957     unsigned OperandBitWidth =
958       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
959     APInt InMask = NewMask.trunc(OperandBitWidth);
960 
961     // If none of the top bits are demanded, convert this into an any_extend.
962     APInt NewBits =
963       APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
964     if (!NewBits.intersects(NewMask))
965       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
966                                                Op.getValueType(),
967                                                Op.getOperand(0)));
968 
969     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
970                              KnownZero, KnownOne, TLO, Depth+1))
971       return true;
972     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
973     KnownZero = KnownZero.zext(BitWidth);
974     KnownOne = KnownOne.zext(BitWidth);
975     KnownZero |= NewBits;
976     break;
977   }
978   case ISD::SIGN_EXTEND: {
979     EVT InVT = Op.getOperand(0).getValueType();
980     unsigned InBits = InVT.getScalarType().getSizeInBits();
981     APInt InMask    = APInt::getLowBitsSet(BitWidth, InBits);
982     APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
983     APInt NewBits   = ~InMask & NewMask;
984 
985     // If none of the top bits are demanded, convert this into an any_extend.
986     if (NewBits == 0)
987       return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
988                                               Op.getValueType(),
989                                               Op.getOperand(0)));
990 
991     // Since some of the sign extended bits are demanded, we know that the sign
992     // bit is demanded.
993     APInt InDemandedBits = InMask & NewMask;
994     InDemandedBits |= InSignBit;
995     InDemandedBits = InDemandedBits.trunc(InBits);
996 
997     if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
998                              KnownOne, TLO, Depth+1))
999       return true;
1000     KnownZero = KnownZero.zext(BitWidth);
1001     KnownOne = KnownOne.zext(BitWidth);
1002 
1003     // If the sign bit is known zero, convert this to a zero extend.
1004     if (KnownZero.intersects(InSignBit))
1005       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1006                                                Op.getValueType(),
1007                                                Op.getOperand(0)));
1008 
1009     // If the sign bit is known one, the top bits match.
1010     if (KnownOne.intersects(InSignBit)) {
1011       KnownOne |= NewBits;
1012       assert((KnownZero & NewBits) == 0);
1013     } else {   // Otherwise, top bits aren't known.
1014       assert((KnownOne & NewBits) == 0);
1015       assert((KnownZero & NewBits) == 0);
1016     }
1017     break;
1018   }
1019   case ISD::ANY_EXTEND: {
1020     unsigned OperandBitWidth =
1021       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1022     APInt InMask = NewMask.trunc(OperandBitWidth);
1023     if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1024                              KnownZero, KnownOne, TLO, Depth+1))
1025       return true;
1026     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1027     KnownZero = KnownZero.zext(BitWidth);
1028     KnownOne = KnownOne.zext(BitWidth);
1029     break;
1030   }
1031   case ISD::TRUNCATE: {
1032     // Simplify the input, using demanded bit information, and compute the known
1033     // zero/one bits live out.
1034     unsigned OperandBitWidth =
1035       Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
1036     APInt TruncMask = NewMask.zext(OperandBitWidth);
1037     if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1038                              KnownZero, KnownOne, TLO, Depth+1))
1039       return true;
1040     KnownZero = KnownZero.trunc(BitWidth);
1041     KnownOne = KnownOne.trunc(BitWidth);
1042 
1043     // If the input is only used by this truncate, see if we can shrink it based
1044     // on the known demanded bits.
1045     if (Op.getOperand(0).getNode()->hasOneUse()) {
1046       SDValue In = Op.getOperand(0);
1047       switch (In.getOpcode()) {
1048       default: break;
1049       case ISD::SRL:
1050         // Shrink SRL by a constant if none of the high bits shifted in are
1051         // demanded.
1052         if (TLO.LegalTypes() &&
1053             !isTypeDesirableForOp(ISD::SRL, Op.getValueType()))
1054           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1055           // undesirable.
1056           break;
1057         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1));
1058         if (!ShAmt)
1059           break;
1060         SDValue Shift = In.getOperand(1);
1061         if (TLO.LegalTypes()) {
1062           uint64_t ShVal = ShAmt->getZExtValue();
1063           Shift = TLO.DAG.getConstant(ShVal, dl,
1064                                       getShiftAmountTy(Op.getValueType(), DL));
1065         }
1066 
1067         APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1068                                                OperandBitWidth - BitWidth);
1069         HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth);
1070 
1071         if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1072           // None of the shifted in bits are needed.  Add a truncate of the
1073           // shift input, then shift it.
1074           SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1075                                              Op.getValueType(),
1076                                              In.getOperand(0));
1077           return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1078                                                    Op.getValueType(),
1079                                                    NewTrunc,
1080                                                    Shift));
1081         }
1082         break;
1083       }
1084     }
1085 
1086     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1087     break;
1088   }
1089   case ISD::AssertZext: {
1090     // AssertZext demands all of the high bits, plus any of the low bits
1091     // demanded by its users.
1092     EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1093     APInt InMask = APInt::getLowBitsSet(BitWidth,
1094                                         VT.getSizeInBits());
1095     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask,
1096                              KnownZero, KnownOne, TLO, Depth+1))
1097       return true;
1098     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1099 
1100     KnownZero |= ~InMask & NewMask;
1101     break;
1102   }
1103   case ISD::BITCAST:
1104     // If this is an FP->Int bitcast and if the sign bit is the only
1105     // thing demanded, turn this into a FGETSIGN.
1106     if (!TLO.LegalOperations() &&
1107         !Op.getValueType().isVector() &&
1108         !Op.getOperand(0).getValueType().isVector() &&
1109         NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) &&
1110         Op.getOperand(0).getValueType().isFloatingPoint()) {
1111       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType());
1112       bool i32Legal  = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1113       if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() &&
1114            Op.getOperand(0).getValueType() != MVT::f128) {
1115         // Cannot eliminate/lower SHL for f128 yet.
1116         EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32;
1117         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1118         // place.  We expect the SHL to be eliminated by other optimizations.
1119         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0));
1120         unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits();
1121         if (!OpVTLegal && OpVTSizeInBits > 32)
1122           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign);
1123         unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1124         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType());
1125         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl,
1126                                                  Op.getValueType(),
1127                                                  Sign, ShAmt));
1128       }
1129     }
1130     break;
1131   case ISD::ADD:
1132   case ISD::MUL:
1133   case ISD::SUB: {
1134     // Add, Sub, and Mul don't demand any bits in positions beyond that
1135     // of the highest bit demanded of them.
1136     APInt LoMask = APInt::getLowBitsSet(BitWidth,
1137                                         BitWidth - NewMask.countLeadingZeros());
1138     if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1139                              KnownOne2, TLO, Depth+1))
1140       return true;
1141     if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1142                              KnownOne2, TLO, Depth+1))
1143       return true;
1144     // See if the operation should be performed at a smaller bit width.
1145     if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1146       return true;
1147   }
1148   // FALL THROUGH
1149   default:
1150     // Just use computeKnownBits to compute output bits.
1151     TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth);
1152     break;
1153   }
1154 
1155   // If we know the value of all of the demanded bits, return this as a
1156   // constant.
1157   if ((NewMask & (KnownZero|KnownOne)) == NewMask) {
1158     // Avoid folding to a constant if any OpaqueConstant is involved.
1159     const SDNode *N = Op.getNode();
1160     for (SDNodeIterator I = SDNodeIterator::begin(N),
1161          E = SDNodeIterator::end(N); I != E; ++I) {
1162       SDNode *Op = *I;
1163       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1164         if (C->isOpaque())
1165           return false;
1166     }
1167     return TLO.CombineTo(Op,
1168                          TLO.DAG.getConstant(KnownOne, dl, Op.getValueType()));
1169   }
1170 
1171   return false;
1172 }
1173 
1174 /// Determine which of the bits specified in Mask are known to be either zero or
1175 /// one and return them in the KnownZero/KnownOne bitsets.
1176 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1177                                                    APInt &KnownZero,
1178                                                    APInt &KnownOne,
1179                                                    const SelectionDAG &DAG,
1180                                                    unsigned Depth) const {
1181   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1182           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1183           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1184           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1185          "Should use MaskedValueIsZero if you don't know whether Op"
1186          " is a target node!");
1187   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0);
1188 }
1189 
1190 /// This method can be implemented by targets that want to expose additional
1191 /// information about sign bits to the DAG Combiner.
1192 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1193                                                          const SelectionDAG &,
1194                                                          unsigned Depth) const {
1195   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1196           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1197           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1198           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1199          "Should use ComputeNumSignBits if you don't know whether Op"
1200          " is a target node!");
1201   return 1;
1202 }
1203 
1204 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1205   if (!N)
1206     return false;
1207 
1208   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1209   if (!CN) {
1210     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1211     if (!BV)
1212       return false;
1213 
1214     BitVector UndefElements;
1215     CN = BV->getConstantSplatNode(&UndefElements);
1216     // Only interested in constant splats, and we don't try to handle undef
1217     // elements in identifying boolean constants.
1218     if (!CN || UndefElements.none())
1219       return false;
1220   }
1221 
1222   switch (getBooleanContents(N->getValueType(0))) {
1223   case UndefinedBooleanContent:
1224     return CN->getAPIntValue()[0];
1225   case ZeroOrOneBooleanContent:
1226     return CN->isOne();
1227   case ZeroOrNegativeOneBooleanContent:
1228     return CN->isAllOnesValue();
1229   }
1230 
1231   llvm_unreachable("Invalid boolean contents");
1232 }
1233 
1234 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1235   if (!N)
1236     return false;
1237 
1238   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1239   if (!CN) {
1240     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1241     if (!BV)
1242       return false;
1243 
1244     BitVector UndefElements;
1245     CN = BV->getConstantSplatNode(&UndefElements);
1246     // Only interested in constant splats, and we don't try to handle undef
1247     // elements in identifying boolean constants.
1248     if (!CN || UndefElements.none())
1249       return false;
1250   }
1251 
1252   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1253     return !CN->getAPIntValue()[0];
1254 
1255   return CN->isNullValue();
1256 }
1257 
1258 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1259                                        bool SExt) const {
1260   if (VT == MVT::i1)
1261     return N->isOne();
1262 
1263   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1264   switch (Cnt) {
1265   case TargetLowering::ZeroOrOneBooleanContent:
1266     // An extended value of 1 is always true, unless its original type is i1,
1267     // in which case it will be sign extended to -1.
1268     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1269   case TargetLowering::UndefinedBooleanContent:
1270   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1271     return N->isAllOnesValue() && SExt;
1272   }
1273   llvm_unreachable("Unexpected enumeration.");
1274 }
1275 
1276 /// This helper function of SimplifySetCC tries to optimize the comparison when
1277 /// either operand of the SetCC node is a bitwise-and instruction.
1278 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1279                                              ISD::CondCode Cond,
1280                                              DAGCombinerInfo &DCI,
1281                                              SDLoc DL) const {
1282   // Match these patterns in any of their permutations:
1283   // (X & Y) == Y
1284   // (X & Y) != Y
1285   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1286     std::swap(N0, N1);
1287 
1288   EVT OpVT = N0.getValueType();
1289   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1290       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1291     return SDValue();
1292 
1293   SDValue X, Y;
1294   if (N0.getOperand(0) == N1) {
1295     X = N0.getOperand(1);
1296     Y = N0.getOperand(0);
1297   } else if (N0.getOperand(1) == N1) {
1298     X = N0.getOperand(0);
1299     Y = N0.getOperand(1);
1300   } else {
1301     return SDValue();
1302   }
1303 
1304   SelectionDAG &DAG = DCI.DAG;
1305   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1306   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1307     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1308     // Note that where Y is variable and is known to have at most one bit set
1309     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1310     // equivalent when Y == 0.
1311     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1312     if (DCI.isBeforeLegalizeOps() ||
1313         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1314       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1315   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1316     // If the target supports an 'and-not' or 'and-complement' logic operation,
1317     // try to use that to make a comparison operation more efficient.
1318     // But don't do this transform if the mask is a single bit because there are
1319     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1320     // 'rlwinm' on PPC).
1321 
1322     // Bail out if the compare operand that we want to turn into a zero is
1323     // already a zero (otherwise, infinite loop).
1324     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1325     if (YConst && YConst->isNullValue())
1326       return SDValue();
1327 
1328     // Transform this into: ~X & Y == 0.
1329     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1330     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1331     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1332   }
1333 
1334   return SDValue();
1335 }
1336 
1337 /// Try to simplify a setcc built with the specified operands and cc. If it is
1338 /// unable to simplify it, return a null SDValue.
1339 SDValue
1340 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
1341                               ISD::CondCode Cond, bool foldBooleans,
1342                               DAGCombinerInfo &DCI, SDLoc dl) const {
1343   SelectionDAG &DAG = DCI.DAG;
1344 
1345   // These setcc operations always fold.
1346   switch (Cond) {
1347   default: break;
1348   case ISD::SETFALSE:
1349   case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT);
1350   case ISD::SETTRUE:
1351   case ISD::SETTRUE2: {
1352     TargetLowering::BooleanContent Cnt =
1353         getBooleanContents(N0->getValueType(0));
1354     return DAG.getConstant(
1355         Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl,
1356         VT);
1357   }
1358   }
1359 
1360   // Ensure that the constant occurs on the RHS, and fold constant
1361   // comparisons.
1362   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
1363   if (isa<ConstantSDNode>(N0.getNode()) &&
1364       (DCI.isBeforeLegalizeOps() ||
1365        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
1366     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
1367 
1368   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1369     const APInt &C1 = N1C->getAPIntValue();
1370 
1371     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1372     // equality comparison, then we're just comparing whether X itself is
1373     // zero.
1374     if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1375         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1376         N0.getOperand(1).getOpcode() == ISD::Constant) {
1377       const APInt &ShAmt
1378         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1379       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1380           ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1381         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1382           // (srl (ctlz x), 5) == 0  -> X != 0
1383           // (srl (ctlz x), 5) != 1  -> X != 0
1384           Cond = ISD::SETNE;
1385         } else {
1386           // (srl (ctlz x), 5) != 0  -> X == 0
1387           // (srl (ctlz x), 5) == 1  -> X == 0
1388           Cond = ISD::SETEQ;
1389         }
1390         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
1391         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1392                             Zero, Cond);
1393       }
1394     }
1395 
1396     SDValue CTPOP = N0;
1397     // Look through truncs that don't change the value of a ctpop.
1398     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
1399       CTPOP = N0.getOperand(0);
1400 
1401     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
1402         (N0 == CTPOP || N0.getValueType().getSizeInBits() >
1403                         Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) {
1404       EVT CTVT = CTPOP.getValueType();
1405       SDValue CTOp = CTPOP.getOperand(0);
1406 
1407       // (ctpop x) u< 2 -> (x & x-1) == 0
1408       // (ctpop x) u> 1 -> (x & x-1) != 0
1409       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
1410         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
1411                                   DAG.getConstant(1, dl, CTVT));
1412         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
1413         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
1414         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
1415       }
1416 
1417       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
1418     }
1419 
1420     // (zext x) == C --> x == (trunc C)
1421     // (sext x) == C --> x == (trunc C)
1422     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1423         DCI.isBeforeLegalize() && N0->hasOneUse()) {
1424       unsigned MinBits = N0.getValueSizeInBits();
1425       SDValue PreExt;
1426       bool Signed = false;
1427       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
1428         // ZExt
1429         MinBits = N0->getOperand(0).getValueSizeInBits();
1430         PreExt = N0->getOperand(0);
1431       } else if (N0->getOpcode() == ISD::AND) {
1432         // DAGCombine turns costly ZExts into ANDs
1433         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
1434           if ((C->getAPIntValue()+1).isPowerOf2()) {
1435             MinBits = C->getAPIntValue().countTrailingOnes();
1436             PreExt = N0->getOperand(0);
1437           }
1438       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
1439         // SExt
1440         MinBits = N0->getOperand(0).getValueSizeInBits();
1441         PreExt = N0->getOperand(0);
1442         Signed = true;
1443       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
1444         // ZEXTLOAD / SEXTLOAD
1445         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
1446           MinBits = LN0->getMemoryVT().getSizeInBits();
1447           PreExt = N0;
1448         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
1449           Signed = true;
1450           MinBits = LN0->getMemoryVT().getSizeInBits();
1451           PreExt = N0;
1452         }
1453       }
1454 
1455       // Figure out how many bits we need to preserve this constant.
1456       unsigned ReqdBits = Signed ?
1457         C1.getBitWidth() - C1.getNumSignBits() + 1 :
1458         C1.getActiveBits();
1459 
1460       // Make sure we're not losing bits from the constant.
1461       if (MinBits > 0 &&
1462           MinBits < C1.getBitWidth() &&
1463           MinBits >= ReqdBits) {
1464         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
1465         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
1466           // Will get folded away.
1467           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
1468           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
1469           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
1470         }
1471 
1472         // If truncating the setcc operands is not desirable, we can still
1473         // simplify the expression in some cases:
1474         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
1475         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
1476         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
1477         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
1478         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
1479         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
1480         SDValue TopSetCC = N0->getOperand(0);
1481         unsigned N0Opc = N0->getOpcode();
1482         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
1483         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
1484             TopSetCC.getOpcode() == ISD::SETCC &&
1485             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
1486             (isConstFalseVal(N1C) ||
1487              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
1488 
1489           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
1490                          (!N1C->isNullValue() && Cond == ISD::SETNE);
1491 
1492           if (!Inverse)
1493             return TopSetCC;
1494 
1495           ISD::CondCode InvCond = ISD::getSetCCInverse(
1496               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
1497               TopSetCC.getOperand(0).getValueType().isInteger());
1498           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
1499                                       TopSetCC.getOperand(1),
1500                                       InvCond);
1501 
1502         }
1503       }
1504     }
1505 
1506     // If the LHS is '(and load, const)', the RHS is 0,
1507     // the test is for equality or unsigned, and all 1 bits of the const are
1508     // in the same partial word, see if we can shorten the load.
1509     if (DCI.isBeforeLegalize() &&
1510         !ISD::isSignedIntSetCC(Cond) &&
1511         N0.getOpcode() == ISD::AND && C1 == 0 &&
1512         N0.getNode()->hasOneUse() &&
1513         isa<LoadSDNode>(N0.getOperand(0)) &&
1514         N0.getOperand(0).getNode()->hasOneUse() &&
1515         isa<ConstantSDNode>(N0.getOperand(1))) {
1516       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1517       APInt bestMask;
1518       unsigned bestWidth = 0, bestOffset = 0;
1519       if (!Lod->isVolatile() && Lod->isUnindexed()) {
1520         unsigned origWidth = N0.getValueType().getSizeInBits();
1521         unsigned maskWidth = origWidth;
1522         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1523         // 8 bits, but have to be careful...
1524         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1525           origWidth = Lod->getMemoryVT().getSizeInBits();
1526         const APInt &Mask =
1527           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
1528         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1529           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
1530           for (unsigned offset=0; offset<origWidth/width; offset++) {
1531             if ((newMask & Mask) == Mask) {
1532               if (!DAG.getDataLayout().isLittleEndian())
1533                 bestOffset = (origWidth/width - offset - 1) * (width/8);
1534               else
1535                 bestOffset = (uint64_t)offset * (width/8);
1536               bestMask = Mask.lshr(offset * (width/8) * 8);
1537               bestWidth = width;
1538               break;
1539             }
1540             newMask = newMask << width;
1541           }
1542         }
1543       }
1544       if (bestWidth) {
1545         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
1546         if (newVT.isRound()) {
1547           EVT PtrType = Lod->getOperand(1).getValueType();
1548           SDValue Ptr = Lod->getBasePtr();
1549           if (bestOffset != 0)
1550             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1551                               DAG.getConstant(bestOffset, dl, PtrType));
1552           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1553           SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1554                                 Lod->getPointerInfo().getWithOffset(bestOffset),
1555                                         false, false, false, NewAlign);
1556           return DAG.getSetCC(dl, VT,
1557                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1558                                       DAG.getConstant(bestMask.trunc(bestWidth),
1559                                                       dl, newVT)),
1560                               DAG.getConstant(0LL, dl, newVT), Cond);
1561         }
1562       }
1563     }
1564 
1565     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1566     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1567       unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1568 
1569       // If the comparison constant has bits in the upper part, the
1570       // zero-extended value could never match.
1571       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1572                                               C1.getBitWidth() - InSize))) {
1573         switch (Cond) {
1574         case ISD::SETUGT:
1575         case ISD::SETUGE:
1576         case ISD::SETEQ: return DAG.getConstant(0, dl, VT);
1577         case ISD::SETULT:
1578         case ISD::SETULE:
1579         case ISD::SETNE: return DAG.getConstant(1, dl, VT);
1580         case ISD::SETGT:
1581         case ISD::SETGE:
1582           // True if the sign bit of C1 is set.
1583           return DAG.getConstant(C1.isNegative(), dl, VT);
1584         case ISD::SETLT:
1585         case ISD::SETLE:
1586           // True if the sign bit of C1 isn't set.
1587           return DAG.getConstant(C1.isNonNegative(), dl, VT);
1588         default:
1589           break;
1590         }
1591       }
1592 
1593       // Otherwise, we can perform the comparison with the low bits.
1594       switch (Cond) {
1595       case ISD::SETEQ:
1596       case ISD::SETNE:
1597       case ISD::SETUGT:
1598       case ISD::SETUGE:
1599       case ISD::SETULT:
1600       case ISD::SETULE: {
1601         EVT newVT = N0.getOperand(0).getValueType();
1602         if (DCI.isBeforeLegalizeOps() ||
1603             (isOperationLegal(ISD::SETCC, newVT) &&
1604              getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) {
1605           EVT NewSetCCVT =
1606               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
1607           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
1608 
1609           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
1610                                           NewConst, Cond);
1611           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
1612         }
1613         break;
1614       }
1615       default:
1616         break;   // todo, be more careful with signed comparisons
1617       }
1618     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1619                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1620       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1621       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1622       EVT ExtDstTy = N0.getValueType();
1623       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1624 
1625       // If the constant doesn't fit into the number of bits for the source of
1626       // the sign extension, it is impossible for both sides to be equal.
1627       if (C1.getMinSignedBits() > ExtSrcTyBits)
1628         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
1629 
1630       SDValue ZextOp;
1631       EVT Op0Ty = N0.getOperand(0).getValueType();
1632       if (Op0Ty == ExtSrcTy) {
1633         ZextOp = N0.getOperand(0);
1634       } else {
1635         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1636         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1637                               DAG.getConstant(Imm, dl, Op0Ty));
1638       }
1639       if (!DCI.isCalledByLegalizer())
1640         DCI.AddToWorklist(ZextOp.getNode());
1641       // Otherwise, make this a use of a zext.
1642       return DAG.getSetCC(dl, VT, ZextOp,
1643                           DAG.getConstant(C1 & APInt::getLowBitsSet(
1644                                                               ExtDstTyBits,
1645                                                               ExtSrcTyBits),
1646                                           dl, ExtDstTy),
1647                           Cond);
1648     } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1649                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1650       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
1651       if (N0.getOpcode() == ISD::SETCC &&
1652           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
1653         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1);
1654         if (TrueWhenTrue)
1655           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
1656         // Invert the condition.
1657         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1658         CC = ISD::getSetCCInverse(CC,
1659                                   N0.getOperand(0).getValueType().isInteger());
1660         if (DCI.isBeforeLegalizeOps() ||
1661             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
1662           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1663       }
1664 
1665       if ((N0.getOpcode() == ISD::XOR ||
1666            (N0.getOpcode() == ISD::AND &&
1667             N0.getOperand(0).getOpcode() == ISD::XOR &&
1668             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1669           isa<ConstantSDNode>(N0.getOperand(1)) &&
1670           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1671         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
1672         // can only do this if the top bits are known zero.
1673         unsigned BitWidth = N0.getValueSizeInBits();
1674         if (DAG.MaskedValueIsZero(N0,
1675                                   APInt::getHighBitsSet(BitWidth,
1676                                                         BitWidth-1))) {
1677           // Okay, get the un-inverted input value.
1678           SDValue Val;
1679           if (N0.getOpcode() == ISD::XOR)
1680             Val = N0.getOperand(0);
1681           else {
1682             assert(N0.getOpcode() == ISD::AND &&
1683                     N0.getOperand(0).getOpcode() == ISD::XOR);
1684             // ((X^1)&1)^1 -> X & 1
1685             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1686                               N0.getOperand(0).getOperand(0),
1687                               N0.getOperand(1));
1688           }
1689 
1690           return DAG.getSetCC(dl, VT, Val, N1,
1691                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1692         }
1693       } else if (N1C->getAPIntValue() == 1 &&
1694                  (VT == MVT::i1 ||
1695                   getBooleanContents(N0->getValueType(0)) ==
1696                       ZeroOrOneBooleanContent)) {
1697         SDValue Op0 = N0;
1698         if (Op0.getOpcode() == ISD::TRUNCATE)
1699           Op0 = Op0.getOperand(0);
1700 
1701         if ((Op0.getOpcode() == ISD::XOR) &&
1702             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
1703             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
1704           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
1705           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
1706           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
1707                               Cond);
1708         }
1709         if (Op0.getOpcode() == ISD::AND &&
1710             isa<ConstantSDNode>(Op0.getOperand(1)) &&
1711             cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) {
1712           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
1713           if (Op0.getValueType().bitsGT(VT))
1714             Op0 = DAG.getNode(ISD::AND, dl, VT,
1715                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
1716                           DAG.getConstant(1, dl, VT));
1717           else if (Op0.getValueType().bitsLT(VT))
1718             Op0 = DAG.getNode(ISD::AND, dl, VT,
1719                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
1720                         DAG.getConstant(1, dl, VT));
1721 
1722           return DAG.getSetCC(dl, VT, Op0,
1723                               DAG.getConstant(0, dl, Op0.getValueType()),
1724                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1725         }
1726         if (Op0.getOpcode() == ISD::AssertZext &&
1727             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
1728           return DAG.getSetCC(dl, VT, Op0,
1729                               DAG.getConstant(0, dl, Op0.getValueType()),
1730                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1731       }
1732     }
1733 
1734     APInt MinVal, MaxVal;
1735     unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1736     if (ISD::isSignedIntSetCC(Cond)) {
1737       MinVal = APInt::getSignedMinValue(OperandBitSize);
1738       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1739     } else {
1740       MinVal = APInt::getMinValue(OperandBitSize);
1741       MaxVal = APInt::getMaxValue(OperandBitSize);
1742     }
1743 
1744     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1745     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1746       if (C1 == MinVal) return DAG.getConstant(1, dl, VT);  // X >= MIN --> true
1747       // X >= C0 --> X > (C0 - 1)
1748       APInt C = C1 - 1;
1749       ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
1750       if ((DCI.isBeforeLegalizeOps() ||
1751            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1752           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1753                                 isLegalICmpImmediate(C.getSExtValue())))) {
1754         return DAG.getSetCC(dl, VT, N0,
1755                             DAG.getConstant(C, dl, N1.getValueType()),
1756                             NewCC);
1757       }
1758     }
1759 
1760     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1761       if (C1 == MaxVal) return DAG.getConstant(1, dl, VT);  // X <= MAX --> true
1762       // X <= C0 --> X < (C0 + 1)
1763       APInt C = C1 + 1;
1764       ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
1765       if ((DCI.isBeforeLegalizeOps() ||
1766            isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
1767           (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 &&
1768                                 isLegalICmpImmediate(C.getSExtValue())))) {
1769         return DAG.getSetCC(dl, VT, N0,
1770                             DAG.getConstant(C, dl, N1.getValueType()),
1771                             NewCC);
1772       }
1773     }
1774 
1775     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1776       return DAG.getConstant(0, dl, VT);      // X < MIN --> false
1777     if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1778       return DAG.getConstant(1, dl, VT);      // X >= MIN --> true
1779     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1780       return DAG.getConstant(0, dl, VT);      // X > MAX --> false
1781     if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1782       return DAG.getConstant(1, dl, VT);      // X <= MAX --> true
1783 
1784     // Canonicalize setgt X, Min --> setne X, Min
1785     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1786       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1787     // Canonicalize setlt X, Max --> setne X, Max
1788     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1789       return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1790 
1791     // If we have setult X, 1, turn it into seteq X, 0
1792     if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1793       return DAG.getSetCC(dl, VT, N0,
1794                           DAG.getConstant(MinVal, dl, N0.getValueType()),
1795                           ISD::SETEQ);
1796     // If we have setugt X, Max-1, turn it into seteq X, Max
1797     if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1798       return DAG.getSetCC(dl, VT, N0,
1799                           DAG.getConstant(MaxVal, dl, N0.getValueType()),
1800                           ISD::SETEQ);
1801 
1802     // If we have "setcc X, C0", check to see if we can shrink the immediate
1803     // by changing cc.
1804 
1805     // SETUGT X, SINTMAX  -> SETLT X, 0
1806     if (Cond == ISD::SETUGT &&
1807         C1 == APInt::getSignedMaxValue(OperandBitSize))
1808       return DAG.getSetCC(dl, VT, N0,
1809                           DAG.getConstant(0, dl, N1.getValueType()),
1810                           ISD::SETLT);
1811 
1812     // SETULT X, SINTMIN  -> SETGT X, -1
1813     if (Cond == ISD::SETULT &&
1814         C1 == APInt::getSignedMinValue(OperandBitSize)) {
1815       SDValue ConstMinusOne =
1816           DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
1817                           N1.getValueType());
1818       return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1819     }
1820 
1821     // Fold bit comparisons when we can.
1822     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1823         (VT == N0.getValueType() ||
1824          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
1825         N0.getOpcode() == ISD::AND) {
1826       auto &DL = DAG.getDataLayout();
1827       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1828         EVT ShiftTy = DCI.isBeforeLegalize()
1829                           ? getPointerTy(DL)
1830                           : getShiftAmountTy(N0.getValueType(), DL);
1831         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
1832           // Perform the xform if the AND RHS is a single bit.
1833           if (AndRHS->getAPIntValue().isPowerOf2()) {
1834             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1835                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1836                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
1837                                    ShiftTy)));
1838           }
1839         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
1840           // (X & 8) == 8  -->  (X & 8) >> 3
1841           // Perform the xform if C1 is a single bit.
1842           if (C1.isPowerOf2()) {
1843             return DAG.getNode(ISD::TRUNCATE, dl, VT,
1844                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
1845                                       DAG.getConstant(C1.logBase2(), dl,
1846                                                       ShiftTy)));
1847           }
1848         }
1849       }
1850     }
1851 
1852     if (C1.getMinSignedBits() <= 64 &&
1853         !isLegalICmpImmediate(C1.getSExtValue())) {
1854       // (X & -256) == 256 -> (X >> 8) == 1
1855       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1856           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
1857         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1858           const APInt &AndRHSC = AndRHS->getAPIntValue();
1859           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
1860             unsigned ShiftBits = AndRHSC.countTrailingZeros();
1861             auto &DL = DAG.getDataLayout();
1862             EVT ShiftTy = DCI.isBeforeLegalize()
1863                               ? getPointerTy(DL)
1864                               : getShiftAmountTy(N0.getValueType(), DL);
1865             EVT CmpTy = N0.getValueType();
1866             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
1867                                         DAG.getConstant(ShiftBits, dl,
1868                                                         ShiftTy));
1869             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
1870             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
1871           }
1872         }
1873       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
1874                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
1875         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
1876         // X <  0x100000000 -> (X >> 32) <  1
1877         // X >= 0x100000000 -> (X >> 32) >= 1
1878         // X <= 0x0ffffffff -> (X >> 32) <  1
1879         // X >  0x0ffffffff -> (X >> 32) >= 1
1880         unsigned ShiftBits;
1881         APInt NewC = C1;
1882         ISD::CondCode NewCond = Cond;
1883         if (AdjOne) {
1884           ShiftBits = C1.countTrailingOnes();
1885           NewC = NewC + 1;
1886           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
1887         } else {
1888           ShiftBits = C1.countTrailingZeros();
1889         }
1890         NewC = NewC.lshr(ShiftBits);
1891         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
1892           isLegalICmpImmediate(NewC.getSExtValue())) {
1893           auto &DL = DAG.getDataLayout();
1894           EVT ShiftTy = DCI.isBeforeLegalize()
1895                             ? getPointerTy(DL)
1896                             : getShiftAmountTy(N0.getValueType(), DL);
1897           EVT CmpTy = N0.getValueType();
1898           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
1899                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
1900           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
1901           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
1902         }
1903       }
1904     }
1905   }
1906 
1907   if (isa<ConstantFPSDNode>(N0.getNode())) {
1908     // Constant fold or commute setcc.
1909     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1910     if (O.getNode()) return O;
1911   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1912     // If the RHS of an FP comparison is a constant, simplify it away in
1913     // some cases.
1914     if (CFP->getValueAPF().isNaN()) {
1915       // If an operand is known to be a nan, we can fold it.
1916       switch (ISD::getUnorderedFlavor(Cond)) {
1917       default: llvm_unreachable("Unknown flavor!");
1918       case 0:  // Known false.
1919         return DAG.getConstant(0, dl, VT);
1920       case 1:  // Known true.
1921         return DAG.getConstant(1, dl, VT);
1922       case 2:  // Undefined.
1923         return DAG.getUNDEF(VT);
1924       }
1925     }
1926 
1927     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
1928     // constant if knowing that the operand is non-nan is enough.  We prefer to
1929     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1930     // materialize 0.0.
1931     if (Cond == ISD::SETO || Cond == ISD::SETUO)
1932       return DAG.getSetCC(dl, VT, N0, N0, Cond);
1933 
1934     // If the condition is not legal, see if we can find an equivalent one
1935     // which is legal.
1936     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
1937       // If the comparison was an awkward floating-point == or != and one of
1938       // the comparison operands is infinity or negative infinity, convert the
1939       // condition to a less-awkward <= or >=.
1940       if (CFP->getValueAPF().isInfinity()) {
1941         if (CFP->getValueAPF().isNegative()) {
1942           if (Cond == ISD::SETOEQ &&
1943               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1944             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
1945           if (Cond == ISD::SETUEQ &&
1946               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
1947             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
1948           if (Cond == ISD::SETUNE &&
1949               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1950             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
1951           if (Cond == ISD::SETONE &&
1952               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
1953             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
1954         } else {
1955           if (Cond == ISD::SETOEQ &&
1956               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1957             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
1958           if (Cond == ISD::SETUEQ &&
1959               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
1960             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
1961           if (Cond == ISD::SETUNE &&
1962               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1963             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
1964           if (Cond == ISD::SETONE &&
1965               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
1966             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
1967         }
1968       }
1969     }
1970   }
1971 
1972   if (N0 == N1) {
1973     // The sext(setcc()) => setcc() optimization relies on the appropriate
1974     // constant being emitted.
1975     uint64_t EqVal = 0;
1976     switch (getBooleanContents(N0.getValueType())) {
1977     case UndefinedBooleanContent:
1978     case ZeroOrOneBooleanContent:
1979       EqVal = ISD::isTrueWhenEqual(Cond);
1980       break;
1981     case ZeroOrNegativeOneBooleanContent:
1982       EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0;
1983       break;
1984     }
1985 
1986     // We can always fold X == X for integer setcc's.
1987     if (N0.getValueType().isInteger()) {
1988       return DAG.getConstant(EqVal, dl, VT);
1989     }
1990     unsigned UOF = ISD::getUnorderedFlavor(Cond);
1991     if (UOF == 2)   // FP operators that are undefined on NaNs.
1992       return DAG.getConstant(EqVal, dl, VT);
1993     if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1994       return DAG.getConstant(EqVal, dl, VT);
1995     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
1996     // if it is not already.
1997     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1998     if (NewCond != Cond && (DCI.isBeforeLegalizeOps() ||
1999           getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal))
2000       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2001   }
2002 
2003   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2004       N0.getValueType().isInteger()) {
2005     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2006         N0.getOpcode() == ISD::XOR) {
2007       // Simplify (X+Y) == (X+Z) -->  Y == Z
2008       if (N0.getOpcode() == N1.getOpcode()) {
2009         if (N0.getOperand(0) == N1.getOperand(0))
2010           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2011         if (N0.getOperand(1) == N1.getOperand(1))
2012           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2013         if (DAG.isCommutativeBinOp(N0.getOpcode())) {
2014           // If X op Y == Y op X, try other combinations.
2015           if (N0.getOperand(0) == N1.getOperand(1))
2016             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2017                                 Cond);
2018           if (N0.getOperand(1) == N1.getOperand(0))
2019             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2020                                 Cond);
2021         }
2022       }
2023 
2024       // If RHS is a legal immediate value for a compare instruction, we need
2025       // to be careful about increasing register pressure needlessly.
2026       bool LegalRHSImm = false;
2027 
2028       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2029         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2030           // Turn (X+C1) == C2 --> X == C2-C1
2031           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2032             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2033                                 DAG.getConstant(RHSC->getAPIntValue()-
2034                                                 LHSR->getAPIntValue(),
2035                                 dl, N0.getValueType()), Cond);
2036           }
2037 
2038           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2039           if (N0.getOpcode() == ISD::XOR)
2040             // If we know that all of the inverted bits are zero, don't bother
2041             // performing the inversion.
2042             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2043               return
2044                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2045                              DAG.getConstant(LHSR->getAPIntValue() ^
2046                                                RHSC->getAPIntValue(),
2047                                              dl, N0.getValueType()),
2048                              Cond);
2049         }
2050 
2051         // Turn (C1-X) == C2 --> X == C1-C2
2052         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2053           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2054             return
2055               DAG.getSetCC(dl, VT, N0.getOperand(1),
2056                            DAG.getConstant(SUBC->getAPIntValue() -
2057                                              RHSC->getAPIntValue(),
2058                                            dl, N0.getValueType()),
2059                            Cond);
2060           }
2061         }
2062 
2063         // Could RHSC fold directly into a compare?
2064         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2065           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2066       }
2067 
2068       // Simplify (X+Z) == X -->  Z == 0
2069       // Don't do this if X is an immediate that can fold into a cmp
2070       // instruction and X+Z has other uses. It could be an induction variable
2071       // chain, and the transform would increase register pressure.
2072       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2073         if (N0.getOperand(0) == N1)
2074           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2075                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2076         if (N0.getOperand(1) == N1) {
2077           if (DAG.isCommutativeBinOp(N0.getOpcode()))
2078             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2079                                 DAG.getConstant(0, dl, N0.getValueType()),
2080                                 Cond);
2081           if (N0.getNode()->hasOneUse()) {
2082             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2083             auto &DL = DAG.getDataLayout();
2084             // (Z-X) == X  --> Z == X<<1
2085             SDValue SH = DAG.getNode(
2086                 ISD::SHL, dl, N1.getValueType(), N1,
2087                 DAG.getConstant(1, dl,
2088                                 getShiftAmountTy(N1.getValueType(), DL)));
2089             if (!DCI.isCalledByLegalizer())
2090               DCI.AddToWorklist(SH.getNode());
2091             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2092           }
2093         }
2094       }
2095     }
2096 
2097     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2098         N1.getOpcode() == ISD::XOR) {
2099       // Simplify  X == (X+Z) -->  Z == 0
2100       if (N1.getOperand(0) == N0)
2101         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2102                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2103       if (N1.getOperand(1) == N0) {
2104         if (DAG.isCommutativeBinOp(N1.getOpcode()))
2105           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2106                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2107         if (N1.getNode()->hasOneUse()) {
2108           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2109           auto &DL = DAG.getDataLayout();
2110           // X == (Z-X)  --> X<<1 == Z
2111           SDValue SH = DAG.getNode(
2112               ISD::SHL, dl, N1.getValueType(), N0,
2113               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL)));
2114           if (!DCI.isCalledByLegalizer())
2115             DCI.AddToWorklist(SH.getNode());
2116           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2117         }
2118       }
2119     }
2120 
2121     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2122       return V;
2123   }
2124 
2125   // Fold away ALL boolean setcc's.
2126   SDValue Temp;
2127   if (N0.getValueType() == MVT::i1 && foldBooleans) {
2128     switch (Cond) {
2129     default: llvm_unreachable("Unknown integer setcc!");
2130     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2131       Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2132       N0 = DAG.getNOT(dl, Temp, MVT::i1);
2133       if (!DCI.isCalledByLegalizer())
2134         DCI.AddToWorklist(Temp.getNode());
2135       break;
2136     case ISD::SETNE:  // X != Y   -->  (X^Y)
2137       N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2138       break;
2139     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2140     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2141       Temp = DAG.getNOT(dl, N0, MVT::i1);
2142       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2143       if (!DCI.isCalledByLegalizer())
2144         DCI.AddToWorklist(Temp.getNode());
2145       break;
2146     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2147     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2148       Temp = DAG.getNOT(dl, N1, MVT::i1);
2149       N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2150       if (!DCI.isCalledByLegalizer())
2151         DCI.AddToWorklist(Temp.getNode());
2152       break;
2153     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2154     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2155       Temp = DAG.getNOT(dl, N0, MVT::i1);
2156       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2157       if (!DCI.isCalledByLegalizer())
2158         DCI.AddToWorklist(Temp.getNode());
2159       break;
2160     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2161     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2162       Temp = DAG.getNOT(dl, N1, MVT::i1);
2163       N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2164       break;
2165     }
2166     if (VT != MVT::i1) {
2167       if (!DCI.isCalledByLegalizer())
2168         DCI.AddToWorklist(N0.getNode());
2169       // FIXME: If running after legalize, we probably can't do this.
2170       N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2171     }
2172     return N0;
2173   }
2174 
2175   // Could not fold it.
2176   return SDValue();
2177 }
2178 
2179 /// Returns true (and the GlobalValue and the offset) if the node is a
2180 /// GlobalAddress + offset.
2181 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2182                                     int64_t &Offset) const {
2183   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2184     GA = GASD->getGlobal();
2185     Offset += GASD->getOffset();
2186     return true;
2187   }
2188 
2189   if (N->getOpcode() == ISD::ADD) {
2190     SDValue N1 = N->getOperand(0);
2191     SDValue N2 = N->getOperand(1);
2192     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2193       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2194         Offset += V->getSExtValue();
2195         return true;
2196       }
2197     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2198       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
2199         Offset += V->getSExtValue();
2200         return true;
2201       }
2202     }
2203   }
2204 
2205   return false;
2206 }
2207 
2208 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
2209                                           DAGCombinerInfo &DCI) const {
2210   // Default implementation: no optimization.
2211   return SDValue();
2212 }
2213 
2214 //===----------------------------------------------------------------------===//
2215 //  Inline Assembler Implementation Methods
2216 //===----------------------------------------------------------------------===//
2217 
2218 TargetLowering::ConstraintType
2219 TargetLowering::getConstraintType(StringRef Constraint) const {
2220   unsigned S = Constraint.size();
2221 
2222   if (S == 1) {
2223     switch (Constraint[0]) {
2224     default: break;
2225     case 'r': return C_RegisterClass;
2226     case 'm':    // memory
2227     case 'o':    // offsetable
2228     case 'V':    // not offsetable
2229       return C_Memory;
2230     case 'i':    // Simple Integer or Relocatable Constant
2231     case 'n':    // Simple Integer
2232     case 'E':    // Floating Point Constant
2233     case 'F':    // Floating Point Constant
2234     case 's':    // Relocatable Constant
2235     case 'p':    // Address.
2236     case 'X':    // Allow ANY value.
2237     case 'I':    // Target registers.
2238     case 'J':
2239     case 'K':
2240     case 'L':
2241     case 'M':
2242     case 'N':
2243     case 'O':
2244     case 'P':
2245     case '<':
2246     case '>':
2247       return C_Other;
2248     }
2249   }
2250 
2251   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
2252     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
2253       return C_Memory;
2254     return C_Register;
2255   }
2256   return C_Unknown;
2257 }
2258 
2259 /// Try to replace an X constraint, which matches anything, with another that
2260 /// has more specific requirements based on the type of the corresponding
2261 /// operand.
2262 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
2263   if (ConstraintVT.isInteger())
2264     return "r";
2265   if (ConstraintVT.isFloatingPoint())
2266     return "f";      // works for many targets
2267   return nullptr;
2268 }
2269 
2270 /// Lower the specified operand into the Ops vector.
2271 /// If it is invalid, don't add anything to Ops.
2272 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2273                                                   std::string &Constraint,
2274                                                   std::vector<SDValue> &Ops,
2275                                                   SelectionDAG &DAG) const {
2276 
2277   if (Constraint.length() > 1) return;
2278 
2279   char ConstraintLetter = Constraint[0];
2280   switch (ConstraintLetter) {
2281   default: break;
2282   case 'X':     // Allows any operand; labels (basic block) use this.
2283     if (Op.getOpcode() == ISD::BasicBlock) {
2284       Ops.push_back(Op);
2285       return;
2286     }
2287     // fall through
2288   case 'i':    // Simple Integer or Relocatable Constant
2289   case 'n':    // Simple Integer
2290   case 's': {  // Relocatable Constant
2291     // These operands are interested in values of the form (GV+C), where C may
2292     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
2293     // is possible and fine if either GV or C are missing.
2294     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2295     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2296 
2297     // If we have "(add GV, C)", pull out GV/C
2298     if (Op.getOpcode() == ISD::ADD) {
2299       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2300       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2301       if (!C || !GA) {
2302         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2303         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2304       }
2305       if (!C || !GA) {
2306         C = nullptr;
2307         GA = nullptr;
2308       }
2309     }
2310 
2311     // If we find a valid operand, map to the TargetXXX version so that the
2312     // value itself doesn't get selected.
2313     if (GA) {   // Either &GV   or   &GV+C
2314       if (ConstraintLetter != 'n') {
2315         int64_t Offs = GA->getOffset();
2316         if (C) Offs += C->getZExtValue();
2317         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2318                                                  C ? SDLoc(C) : SDLoc(),
2319                                                  Op.getValueType(), Offs));
2320       }
2321       return;
2322     }
2323     if (C) {   // just C, no GV.
2324       // Simple constants are not allowed for 's'.
2325       if (ConstraintLetter != 's') {
2326         // gcc prints these as sign extended.  Sign extend value to 64 bits
2327         // now; without this it would get ZExt'd later in
2328         // ScheduleDAGSDNodes::EmitNode, which is very generic.
2329         Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2330                                             SDLoc(C), MVT::i64));
2331       }
2332       return;
2333     }
2334     break;
2335   }
2336   }
2337 }
2338 
2339 std::pair<unsigned, const TargetRegisterClass *>
2340 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
2341                                              StringRef Constraint,
2342                                              MVT VT) const {
2343   if (Constraint.empty() || Constraint[0] != '{')
2344     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
2345   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2346 
2347   // Remove the braces from around the name.
2348   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
2349 
2350   std::pair<unsigned, const TargetRegisterClass*> R =
2351     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
2352 
2353   // Figure out which register class contains this reg.
2354   for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2355        E = RI->regclass_end(); RCI != E; ++RCI) {
2356     const TargetRegisterClass *RC = *RCI;
2357 
2358     // If none of the value types for this register class are valid, we
2359     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
2360     if (!isLegalRC(RC))
2361       continue;
2362 
2363     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2364          I != E; ++I) {
2365       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
2366         std::pair<unsigned, const TargetRegisterClass*> S =
2367           std::make_pair(*I, RC);
2368 
2369         // If this register class has the requested value type, return it,
2370         // otherwise keep searching and return the first class found
2371         // if no other is found which explicitly has the requested type.
2372         if (RC->hasType(VT))
2373           return S;
2374         else if (!R.second)
2375           R = S;
2376       }
2377     }
2378   }
2379 
2380   return R;
2381 }
2382 
2383 //===----------------------------------------------------------------------===//
2384 // Constraint Selection.
2385 
2386 /// Return true of this is an input operand that is a matching constraint like
2387 /// "4".
2388 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2389   assert(!ConstraintCode.empty() && "No known constraint!");
2390   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
2391 }
2392 
2393 /// If this is an input matching constraint, this method returns the output
2394 /// operand it matches.
2395 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2396   assert(!ConstraintCode.empty() && "No known constraint!");
2397   return atoi(ConstraintCode.c_str());
2398 }
2399 
2400 /// Split up the constraint string from the inline assembly value into the
2401 /// specific constraints and their prefixes, and also tie in the associated
2402 /// operand values.
2403 /// If this returns an empty vector, and if the constraint string itself
2404 /// isn't empty, there was an error parsing.
2405 TargetLowering::AsmOperandInfoVector
2406 TargetLowering::ParseConstraints(const DataLayout &DL,
2407                                  const TargetRegisterInfo *TRI,
2408                                  ImmutableCallSite CS) const {
2409   /// Information about all of the constraints.
2410   AsmOperandInfoVector ConstraintOperands;
2411   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
2412   unsigned maCount = 0; // Largest number of multiple alternative constraints.
2413 
2414   // Do a prepass over the constraints, canonicalizing them, and building up the
2415   // ConstraintOperands list.
2416   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
2417   unsigned ResNo = 0;   // ResNo - The result number of the next output.
2418 
2419   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2420     ConstraintOperands.emplace_back(std::move(CI));
2421     AsmOperandInfo &OpInfo = ConstraintOperands.back();
2422 
2423     // Update multiple alternative constraint count.
2424     if (OpInfo.multipleAlternatives.size() > maCount)
2425       maCount = OpInfo.multipleAlternatives.size();
2426 
2427     OpInfo.ConstraintVT = MVT::Other;
2428 
2429     // Compute the value type for each operand.
2430     switch (OpInfo.Type) {
2431     case InlineAsm::isOutput:
2432       // Indirect outputs just consume an argument.
2433       if (OpInfo.isIndirect) {
2434         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2435         break;
2436       }
2437 
2438       // The return value of the call is this value.  As such, there is no
2439       // corresponding argument.
2440       assert(!CS.getType()->isVoidTy() &&
2441              "Bad inline asm!");
2442       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
2443         OpInfo.ConstraintVT =
2444             getSimpleValueType(DL, STy->getElementType(ResNo));
2445       } else {
2446         assert(ResNo == 0 && "Asm only has one result!");
2447         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
2448       }
2449       ++ResNo;
2450       break;
2451     case InlineAsm::isInput:
2452       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
2453       break;
2454     case InlineAsm::isClobber:
2455       // Nothing to do.
2456       break;
2457     }
2458 
2459     if (OpInfo.CallOperandVal) {
2460       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
2461       if (OpInfo.isIndirect) {
2462         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
2463         if (!PtrTy)
2464           report_fatal_error("Indirect operand for inline asm not a pointer!");
2465         OpTy = PtrTy->getElementType();
2466       }
2467 
2468       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
2469       if (StructType *STy = dyn_cast<StructType>(OpTy))
2470         if (STy->getNumElements() == 1)
2471           OpTy = STy->getElementType(0);
2472 
2473       // If OpTy is not a single value, it may be a struct/union that we
2474       // can tile with integers.
2475       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
2476         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
2477         switch (BitSize) {
2478         default: break;
2479         case 1:
2480         case 8:
2481         case 16:
2482         case 32:
2483         case 64:
2484         case 128:
2485           OpInfo.ConstraintVT =
2486             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
2487           break;
2488         }
2489       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
2490         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
2491         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
2492       } else {
2493         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
2494       }
2495     }
2496   }
2497 
2498   // If we have multiple alternative constraints, select the best alternative.
2499   if (!ConstraintOperands.empty()) {
2500     if (maCount) {
2501       unsigned bestMAIndex = 0;
2502       int bestWeight = -1;
2503       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
2504       int weight = -1;
2505       unsigned maIndex;
2506       // Compute the sums of the weights for each alternative, keeping track
2507       // of the best (highest weight) one so far.
2508       for (maIndex = 0; maIndex < maCount; ++maIndex) {
2509         int weightSum = 0;
2510         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2511             cIndex != eIndex; ++cIndex) {
2512           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2513           if (OpInfo.Type == InlineAsm::isClobber)
2514             continue;
2515 
2516           // If this is an output operand with a matching input operand,
2517           // look up the matching input. If their types mismatch, e.g. one
2518           // is an integer, the other is floating point, or their sizes are
2519           // different, flag it as an maCantMatch.
2520           if (OpInfo.hasMatchingInput()) {
2521             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2522             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2523               if ((OpInfo.ConstraintVT.isInteger() !=
2524                    Input.ConstraintVT.isInteger()) ||
2525                   (OpInfo.ConstraintVT.getSizeInBits() !=
2526                    Input.ConstraintVT.getSizeInBits())) {
2527                 weightSum = -1;  // Can't match.
2528                 break;
2529               }
2530             }
2531           }
2532           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
2533           if (weight == -1) {
2534             weightSum = -1;
2535             break;
2536           }
2537           weightSum += weight;
2538         }
2539         // Update best.
2540         if (weightSum > bestWeight) {
2541           bestWeight = weightSum;
2542           bestMAIndex = maIndex;
2543         }
2544       }
2545 
2546       // Now select chosen alternative in each constraint.
2547       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2548           cIndex != eIndex; ++cIndex) {
2549         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
2550         if (cInfo.Type == InlineAsm::isClobber)
2551           continue;
2552         cInfo.selectAlternative(bestMAIndex);
2553       }
2554     }
2555   }
2556 
2557   // Check and hook up tied operands, choose constraint code to use.
2558   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
2559       cIndex != eIndex; ++cIndex) {
2560     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
2561 
2562     // If this is an output operand with a matching input operand, look up the
2563     // matching input. If their types mismatch, e.g. one is an integer, the
2564     // other is floating point, or their sizes are different, flag it as an
2565     // error.
2566     if (OpInfo.hasMatchingInput()) {
2567       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
2568 
2569       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
2570         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
2571             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
2572                                          OpInfo.ConstraintVT);
2573         std::pair<unsigned, const TargetRegisterClass *> InputRC =
2574             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
2575                                          Input.ConstraintVT);
2576         if ((OpInfo.ConstraintVT.isInteger() !=
2577              Input.ConstraintVT.isInteger()) ||
2578             (MatchRC.second != InputRC.second)) {
2579           report_fatal_error("Unsupported asm: input constraint"
2580                              " with a matching output constraint of"
2581                              " incompatible type!");
2582         }
2583       }
2584     }
2585   }
2586 
2587   return ConstraintOperands;
2588 }
2589 
2590 /// Return an integer indicating how general CT is.
2591 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2592   switch (CT) {
2593   case TargetLowering::C_Other:
2594   case TargetLowering::C_Unknown:
2595     return 0;
2596   case TargetLowering::C_Register:
2597     return 1;
2598   case TargetLowering::C_RegisterClass:
2599     return 2;
2600   case TargetLowering::C_Memory:
2601     return 3;
2602   }
2603   llvm_unreachable("Invalid constraint type");
2604 }
2605 
2606 /// Examine constraint type and operand type and determine a weight value.
2607 /// This object must already have been set up with the operand type
2608 /// and the current alternative constraint selected.
2609 TargetLowering::ConstraintWeight
2610   TargetLowering::getMultipleConstraintMatchWeight(
2611     AsmOperandInfo &info, int maIndex) const {
2612   InlineAsm::ConstraintCodeVector *rCodes;
2613   if (maIndex >= (int)info.multipleAlternatives.size())
2614     rCodes = &info.Codes;
2615   else
2616     rCodes = &info.multipleAlternatives[maIndex].Codes;
2617   ConstraintWeight BestWeight = CW_Invalid;
2618 
2619   // Loop over the options, keeping track of the most general one.
2620   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
2621     ConstraintWeight weight =
2622       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
2623     if (weight > BestWeight)
2624       BestWeight = weight;
2625   }
2626 
2627   return BestWeight;
2628 }
2629 
2630 /// Examine constraint type and operand type and determine a weight value.
2631 /// This object must already have been set up with the operand type
2632 /// and the current alternative constraint selected.
2633 TargetLowering::ConstraintWeight
2634   TargetLowering::getSingleConstraintMatchWeight(
2635     AsmOperandInfo &info, const char *constraint) const {
2636   ConstraintWeight weight = CW_Invalid;
2637   Value *CallOperandVal = info.CallOperandVal;
2638     // If we don't have a value, we can't do a match,
2639     // but allow it at the lowest weight.
2640   if (!CallOperandVal)
2641     return CW_Default;
2642   // Look at the constraint type.
2643   switch (*constraint) {
2644     case 'i': // immediate integer.
2645     case 'n': // immediate integer with a known value.
2646       if (isa<ConstantInt>(CallOperandVal))
2647         weight = CW_Constant;
2648       break;
2649     case 's': // non-explicit intregal immediate.
2650       if (isa<GlobalValue>(CallOperandVal))
2651         weight = CW_Constant;
2652       break;
2653     case 'E': // immediate float if host format.
2654     case 'F': // immediate float.
2655       if (isa<ConstantFP>(CallOperandVal))
2656         weight = CW_Constant;
2657       break;
2658     case '<': // memory operand with autodecrement.
2659     case '>': // memory operand with autoincrement.
2660     case 'm': // memory operand.
2661     case 'o': // offsettable memory operand
2662     case 'V': // non-offsettable memory operand
2663       weight = CW_Memory;
2664       break;
2665     case 'r': // general register.
2666     case 'g': // general register, memory operand or immediate integer.
2667               // note: Clang converts "g" to "imr".
2668       if (CallOperandVal->getType()->isIntegerTy())
2669         weight = CW_Register;
2670       break;
2671     case 'X': // any operand.
2672     default:
2673       weight = CW_Default;
2674       break;
2675   }
2676   return weight;
2677 }
2678 
2679 /// If there are multiple different constraints that we could pick for this
2680 /// operand (e.g. "imr") try to pick the 'best' one.
2681 /// This is somewhat tricky: constraints fall into four classes:
2682 ///    Other         -> immediates and magic values
2683 ///    Register      -> one specific register
2684 ///    RegisterClass -> a group of regs
2685 ///    Memory        -> memory
2686 /// Ideally, we would pick the most specific constraint possible: if we have
2687 /// something that fits into a register, we would pick it.  The problem here
2688 /// is that if we have something that could either be in a register or in
2689 /// memory that use of the register could cause selection of *other*
2690 /// operands to fail: they might only succeed if we pick memory.  Because of
2691 /// this the heuristic we use is:
2692 ///
2693 ///  1) If there is an 'other' constraint, and if the operand is valid for
2694 ///     that constraint, use it.  This makes us take advantage of 'i'
2695 ///     constraints when available.
2696 ///  2) Otherwise, pick the most general constraint present.  This prefers
2697 ///     'm' over 'r', for example.
2698 ///
2699 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2700                              const TargetLowering &TLI,
2701                              SDValue Op, SelectionDAG *DAG) {
2702   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2703   unsigned BestIdx = 0;
2704   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2705   int BestGenerality = -1;
2706 
2707   // Loop over the options, keeping track of the most general one.
2708   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2709     TargetLowering::ConstraintType CType =
2710       TLI.getConstraintType(OpInfo.Codes[i]);
2711 
2712     // If this is an 'other' constraint, see if the operand is valid for it.
2713     // For example, on X86 we might have an 'rI' constraint.  If the operand
2714     // is an integer in the range [0..31] we want to use I (saving a load
2715     // of a register), otherwise we must use 'r'.
2716     if (CType == TargetLowering::C_Other && Op.getNode()) {
2717       assert(OpInfo.Codes[i].size() == 1 &&
2718              "Unhandled multi-letter 'other' constraint");
2719       std::vector<SDValue> ResultOps;
2720       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
2721                                        ResultOps, *DAG);
2722       if (!ResultOps.empty()) {
2723         BestType = CType;
2724         BestIdx = i;
2725         break;
2726       }
2727     }
2728 
2729     // Things with matching constraints can only be registers, per gcc
2730     // documentation.  This mainly affects "g" constraints.
2731     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
2732       continue;
2733 
2734     // This constraint letter is more general than the previous one, use it.
2735     int Generality = getConstraintGenerality(CType);
2736     if (Generality > BestGenerality) {
2737       BestType = CType;
2738       BestIdx = i;
2739       BestGenerality = Generality;
2740     }
2741   }
2742 
2743   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2744   OpInfo.ConstraintType = BestType;
2745 }
2746 
2747 /// Determines the constraint code and constraint type to use for the specific
2748 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
2749 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2750                                             SDValue Op,
2751                                             SelectionDAG *DAG) const {
2752   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2753 
2754   // Single-letter constraints ('r') are very common.
2755   if (OpInfo.Codes.size() == 1) {
2756     OpInfo.ConstraintCode = OpInfo.Codes[0];
2757     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2758   } else {
2759     ChooseConstraint(OpInfo, *this, Op, DAG);
2760   }
2761 
2762   // 'X' matches anything.
2763   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2764     // Labels and constants are handled elsewhere ('X' is the only thing
2765     // that matches labels).  For Functions, the type here is the type of
2766     // the result, which is not what we want to look at; leave them alone.
2767     Value *v = OpInfo.CallOperandVal;
2768     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2769       OpInfo.CallOperandVal = v;
2770       return;
2771     }
2772 
2773     // Otherwise, try to resolve it to something we know about by looking at
2774     // the actual operand type.
2775     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2776       OpInfo.ConstraintCode = Repl;
2777       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2778     }
2779   }
2780 }
2781 
2782 /// \brief Given an exact SDIV by a constant, create a multiplication
2783 /// with the multiplicative inverse of the constant.
2784 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d,
2785                               SDLoc dl, SelectionDAG &DAG,
2786                               std::vector<SDNode *> &Created) {
2787   assert(d != 0 && "Division by zero!");
2788 
2789   // Shift the value upfront if it is even, so the LSB is one.
2790   unsigned ShAmt = d.countTrailingZeros();
2791   if (ShAmt) {
2792     // TODO: For UDIV use SRL instead of SRA.
2793     SDValue Amt =
2794         DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(),
2795                                                         DAG.getDataLayout()));
2796     SDNodeFlags Flags;
2797     Flags.setExact(true);
2798     Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags);
2799     Created.push_back(Op1.getNode());
2800     d = d.ashr(ShAmt);
2801   }
2802 
2803   // Calculate the multiplicative inverse, using Newton's method.
2804   APInt t, xn = d;
2805   while ((t = d*xn) != 1)
2806     xn *= APInt(d.getBitWidth(), 2) - t;
2807 
2808   SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType());
2809   SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2);
2810   Created.push_back(Mul.getNode());
2811   return Mul;
2812 }
2813 
2814 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
2815                                       SelectionDAG &DAG,
2816                                       std::vector<SDNode *> *Created) const {
2817   AttributeSet Attr = DAG.getMachineFunction().getFunction()->getAttributes();
2818   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2819   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
2820     return SDValue(N,0); // Lower SDIV as SDIV
2821   return SDValue();
2822 }
2823 
2824 /// \brief Given an ISD::SDIV node expressing a divide by constant,
2825 /// return a DAG expression to select that will generate the same value by
2826 /// multiplying by a magic number.
2827 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2828 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor,
2829                                   SelectionDAG &DAG, bool IsAfterLegalization,
2830                                   std::vector<SDNode *> *Created) const {
2831   assert(Created && "No vector to hold sdiv ops.");
2832 
2833   EVT VT = N->getValueType(0);
2834   SDLoc dl(N);
2835 
2836   // Check to see if we can do this.
2837   // FIXME: We should be more aggressive here.
2838   if (!isTypeLegal(VT))
2839     return SDValue();
2840 
2841   // If the sdiv has an 'exact' bit we can use a simpler lowering.
2842   if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact())
2843     return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created);
2844 
2845   APInt::ms magics = Divisor.magic();
2846 
2847   // Multiply the numerator (operand 0) by the magic value
2848   // FIXME: We should support doing a MUL in a wider type
2849   SDValue Q;
2850   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) :
2851                             isOperationLegalOrCustom(ISD::MULHS, VT))
2852     Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2853                     DAG.getConstant(magics.m, dl, VT));
2854   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) :
2855                                  isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2856     Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2857                               N->getOperand(0),
2858                               DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2859   else
2860     return SDValue();       // No mulhs or equvialent
2861   // If d > 0 and m < 0, add the numerator
2862   if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
2863     Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2864     Created->push_back(Q.getNode());
2865   }
2866   // If d < 0 and m > 0, subtract the numerator.
2867   if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
2868     Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2869     Created->push_back(Q.getNode());
2870   }
2871   auto &DL = DAG.getDataLayout();
2872   // Shift right algebraic if shift value is nonzero
2873   if (magics.s > 0) {
2874     Q = DAG.getNode(
2875         ISD::SRA, dl, VT, Q,
2876         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2877     Created->push_back(Q.getNode());
2878   }
2879   // Extract the sign bit and add it to the quotient
2880   SDValue T =
2881       DAG.getNode(ISD::SRL, dl, VT, Q,
2882                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl,
2883                                   getShiftAmountTy(Q.getValueType(), DL)));
2884   Created->push_back(T.getNode());
2885   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2886 }
2887 
2888 /// \brief Given an ISD::UDIV node expressing a divide by constant,
2889 /// return a DAG expression to select that will generate the same value by
2890 /// multiplying by a magic number.
2891 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
2892 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor,
2893                                   SelectionDAG &DAG, bool IsAfterLegalization,
2894                                   std::vector<SDNode *> *Created) const {
2895   assert(Created && "No vector to hold udiv ops.");
2896 
2897   EVT VT = N->getValueType(0);
2898   SDLoc dl(N);
2899   auto &DL = DAG.getDataLayout();
2900 
2901   // Check to see if we can do this.
2902   // FIXME: We should be more aggressive here.
2903   if (!isTypeLegal(VT))
2904     return SDValue();
2905 
2906   // FIXME: We should use a narrower constant when the upper
2907   // bits are known to be zero.
2908   APInt::mu magics = Divisor.magicu();
2909 
2910   SDValue Q = N->getOperand(0);
2911 
2912   // If the divisor is even, we can avoid using the expensive fixup by shifting
2913   // the divided value upfront.
2914   if (magics.a != 0 && !Divisor[0]) {
2915     unsigned Shift = Divisor.countTrailingZeros();
2916     Q = DAG.getNode(
2917         ISD::SRL, dl, VT, Q,
2918         DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL)));
2919     Created->push_back(Q.getNode());
2920 
2921     // Get magic number for the shifted divisor.
2922     magics = Divisor.lshr(Shift).magicu(Shift);
2923     assert(magics.a == 0 && "Should use cheap fixup now");
2924   }
2925 
2926   // Multiply the numerator (operand 0) by the magic value
2927   // FIXME: We should support doing a MUL in a wider type
2928   if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) :
2929                             isOperationLegalOrCustom(ISD::MULHU, VT))
2930     Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT));
2931   else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) :
2932                                  isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2933     Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q,
2934                             DAG.getConstant(magics.m, dl, VT)).getNode(), 1);
2935   else
2936     return SDValue();       // No mulhu or equvialent
2937 
2938   Created->push_back(Q.getNode());
2939 
2940   if (magics.a == 0) {
2941     assert(magics.s < Divisor.getBitWidth() &&
2942            "We shouldn't generate an undefined shift!");
2943     return DAG.getNode(
2944         ISD::SRL, dl, VT, Q,
2945         DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL)));
2946   } else {
2947     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2948     Created->push_back(NPQ.getNode());
2949     NPQ = DAG.getNode(
2950         ISD::SRL, dl, VT, NPQ,
2951         DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL)));
2952     Created->push_back(NPQ.getNode());
2953     NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2954     Created->push_back(NPQ.getNode());
2955     return DAG.getNode(
2956         ISD::SRL, dl, VT, NPQ,
2957         DAG.getConstant(magics.s - 1, dl,
2958                         getShiftAmountTy(NPQ.getValueType(), DL)));
2959   }
2960 }
2961 
2962 bool TargetLowering::
2963 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
2964   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
2965     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
2966                                 "be a constant integer");
2967     return true;
2968   }
2969 
2970   return false;
2971 }
2972 
2973 //===----------------------------------------------------------------------===//
2974 // Legalization Utilities
2975 //===----------------------------------------------------------------------===//
2976 
2977 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
2978                                SelectionDAG &DAG, SDValue LL, SDValue LH,
2979                                SDValue RL, SDValue RH) const {
2980   EVT VT = N->getValueType(0);
2981   SDLoc dl(N);
2982 
2983   bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
2984   bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
2985   bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
2986   bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
2987   if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) {
2988     unsigned OuterBitSize = VT.getSizeInBits();
2989     unsigned InnerBitSize = HiLoVT.getSizeInBits();
2990     unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0));
2991     unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1));
2992 
2993     // LL, LH, RL, and RH must be either all NULL or all set to a value.
2994     assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
2995            (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
2996 
2997     if (!LL.getNode() && !RL.getNode() &&
2998         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
2999       LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0));
3000       RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1));
3001     }
3002 
3003     if (!LL.getNode())
3004       return false;
3005 
3006     APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3007     if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) &&
3008         DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) {
3009       // The inputs are both zero-extended.
3010       if (HasUMUL_LOHI) {
3011         // We can emit a umul_lohi.
3012         Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3013                          RL);
3014         Hi = SDValue(Lo.getNode(), 1);
3015         return true;
3016       }
3017       if (HasMULHU) {
3018         // We can emit a mulhu+mul.
3019         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3020         Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3021         return true;
3022       }
3023     }
3024     if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) {
3025       // The input values are both sign-extended.
3026       if (HasSMUL_LOHI) {
3027         // We can emit a smul_lohi.
3028         Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL,
3029                          RL);
3030         Hi = SDValue(Lo.getNode(), 1);
3031         return true;
3032       }
3033       if (HasMULHS) {
3034         // We can emit a mulhs+mul.
3035         Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3036         Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL);
3037         return true;
3038       }
3039     }
3040 
3041     if (!LH.getNode() && !RH.getNode() &&
3042         isOperationLegalOrCustom(ISD::SRL, VT) &&
3043         isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3044       auto &DL = DAG.getDataLayout();
3045       unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits();
3046       SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL));
3047       LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift);
3048       LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
3049       RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift);
3050       RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
3051     }
3052 
3053     if (!LH.getNode())
3054       return false;
3055 
3056     if (HasUMUL_LOHI) {
3057       // Lo,Hi = umul LHS, RHS.
3058       SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl,
3059                                      DAG.getVTList(HiLoVT, HiLoVT), LL, RL);
3060       Lo = UMulLOHI;
3061       Hi = UMulLOHI.getValue(1);
3062       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3063       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3064       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3065       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3066       return true;
3067     }
3068     if (HasMULHU) {
3069       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL);
3070       Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL);
3071       RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
3072       LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
3073       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
3074       Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
3075       return true;
3076     }
3077   }
3078   return false;
3079 }
3080 
3081 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
3082                                SelectionDAG &DAG) const {
3083   EVT VT = Node->getOperand(0).getValueType();
3084   EVT NVT = Node->getValueType(0);
3085   SDLoc dl(SDValue(Node, 0));
3086 
3087   // FIXME: Only f32 to i64 conversions are supported.
3088   if (VT != MVT::f32 || NVT != MVT::i64)
3089     return false;
3090 
3091   // Expand f32 -> i64 conversion
3092   // This algorithm comes from compiler-rt's implementation of fixsfdi:
3093   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
3094   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(),
3095                                 VT.getSizeInBits());
3096   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
3097   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
3098   SDValue Bias = DAG.getConstant(127, dl, IntVT);
3099   SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl,
3100                                      IntVT);
3101   SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT);
3102   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
3103 
3104   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0));
3105 
3106   auto &DL = DAG.getDataLayout();
3107   SDValue ExponentBits = DAG.getNode(
3108       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
3109       DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL)));
3110   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
3111 
3112   SDValue Sign = DAG.getNode(
3113       ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
3114       DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL)));
3115   Sign = DAG.getSExtOrTrunc(Sign, dl, NVT);
3116 
3117   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
3118       DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
3119       DAG.getConstant(0x00800000, dl, IntVT));
3120 
3121   R = DAG.getZExtOrTrunc(R, dl, NVT);
3122 
3123   R = DAG.getSelectCC(
3124       dl, Exponent, ExponentLoBit,
3125       DAG.getNode(ISD::SHL, dl, NVT, R,
3126                   DAG.getZExtOrTrunc(
3127                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
3128                       dl, getShiftAmountTy(IntVT, DL))),
3129       DAG.getNode(ISD::SRL, dl, NVT, R,
3130                   DAG.getZExtOrTrunc(
3131                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
3132                       dl, getShiftAmountTy(IntVT, DL))),
3133       ISD::SETGT);
3134 
3135   SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT,
3136       DAG.getNode(ISD::XOR, dl, NVT, R, Sign),
3137       Sign);
3138 
3139   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
3140       DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT);
3141   return true;
3142 }
3143 
3144 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
3145                                             SelectionDAG &DAG) const {
3146   SDLoc SL(LD);
3147   SDValue Chain = LD->getChain();
3148   SDValue BasePTR = LD->getBasePtr();
3149   EVT SrcVT = LD->getMemoryVT();
3150   ISD::LoadExtType ExtType = LD->getExtensionType();
3151 
3152   unsigned NumElem = SrcVT.getVectorNumElements();
3153 
3154   EVT SrcEltVT = SrcVT.getScalarType();
3155   EVT DstEltVT = LD->getValueType(0).getScalarType();
3156 
3157   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
3158   assert(SrcEltVT.isByteSized());
3159 
3160   EVT PtrVT = BasePTR.getValueType();
3161 
3162   SmallVector<SDValue, 8> Vals;
3163   SmallVector<SDValue, 8> LoadChains;
3164 
3165   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3166     SDValue ScalarLoad = DAG.getExtLoad(
3167       ExtType, SL, DstEltVT,
3168       Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
3169       SrcEltVT,
3170       LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
3171       MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());
3172 
3173     BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR,
3174                           DAG.getConstant(Stride, SL, PtrVT));
3175 
3176     Vals.push_back(ScalarLoad.getValue(0));
3177     LoadChains.push_back(ScalarLoad.getValue(1));
3178   }
3179 
3180   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
3181   SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, SL, LD->getValueType(0), Vals);
3182 
3183   return DAG.getMergeValues({ Value, NewChain }, SL);
3184 }
3185 
3186 // FIXME: This relies on each element having a byte size, otherwise the stride
3187 // is 0 and just overwrites the same location. ExpandStore currently expects
3188 // this broken behavior.
3189 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
3190                                              SelectionDAG &DAG) const {
3191   SDLoc SL(ST);
3192 
3193   SDValue Chain = ST->getChain();
3194   SDValue BasePtr = ST->getBasePtr();
3195   SDValue Value = ST->getValue();
3196   EVT StVT = ST->getMemoryVT();
3197 
3198   unsigned Alignment = ST->getAlignment();
3199   bool isVolatile = ST->isVolatile();
3200   bool isNonTemporal = ST->isNonTemporal();
3201   AAMDNodes AAInfo = ST->getAAInfo();
3202 
3203   // The type of the data we want to save
3204   EVT RegVT = Value.getValueType();
3205   EVT RegSclVT = RegVT.getScalarType();
3206 
3207   // The type of data as saved in memory.
3208   EVT MemSclVT = StVT.getScalarType();
3209 
3210   EVT PtrVT = BasePtr.getValueType();
3211 
3212   // Store Stride in bytes
3213   unsigned Stride = MemSclVT.getSizeInBits() / 8;
3214   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
3215   unsigned NumElem = StVT.getVectorNumElements();
3216 
3217   // Extract each of the elements from the original vector and save them into
3218   // memory individually.
3219   SmallVector<SDValue, 8> Stores;
3220   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
3221     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
3222                               DAG.getConstant(Idx, SL, IdxVT));
3223 
3224     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
3225                               DAG.getConstant(Idx * Stride, SL, PtrVT));
3226 
3227     // This scalar TruncStore may be illegal, but we legalize it later.
3228     SDValue Store = DAG.getTruncStore(
3229       Chain, SL, Elt, Ptr,
3230       ST->getPointerInfo().getWithOffset(Idx * Stride), MemSclVT,
3231       isVolatile, isNonTemporal, MinAlign(Alignment, Idx * Stride),
3232       AAInfo);
3233 
3234     Stores.push_back(Store);
3235   }
3236 
3237   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
3238 }
3239 
3240 std::pair<SDValue, SDValue>
3241 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
3242   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
3243          "unaligned indexed loads not implemented!");
3244   SDValue Chain = LD->getChain();
3245   SDValue Ptr = LD->getBasePtr();
3246   EVT VT = LD->getValueType(0);
3247   EVT LoadedVT = LD->getMemoryVT();
3248   SDLoc dl(LD);
3249   if (VT.isFloatingPoint() || VT.isVector()) {
3250     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
3251     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
3252       if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) {
3253         // Scalarize the load and let the individual components be handled.
3254         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
3255         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
3256       }
3257 
3258       // Expand to a (misaligned) integer load of the same size,
3259       // then bitconvert to floating point or vector.
3260       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
3261                                     LD->getMemOperand());
3262       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
3263       if (LoadedVT != VT)
3264         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
3265                              ISD::ANY_EXTEND, dl, VT, Result);
3266 
3267       return std::make_pair(Result, newLoad.getValue(1));
3268     }
3269 
3270     // Copy the value to a (aligned) stack slot using (unaligned) integer
3271     // loads and stores, then do a (aligned) load from the stack slot.
3272     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
3273     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
3274     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3275     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
3276 
3277     // Make sure the stack slot is also aligned for the register type.
3278     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
3279 
3280     SmallVector<SDValue, 8> Stores;
3281     SDValue StackPtr = StackBase;
3282     unsigned Offset = 0;
3283 
3284     EVT PtrVT = Ptr.getValueType();
3285     EVT StackPtrVT = StackPtr.getValueType();
3286 
3287     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3288     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3289 
3290     // Do all but one copies using the full register width.
3291     for (unsigned i = 1; i < NumRegs; i++) {
3292       // Load one integer register's worth from the original location.
3293       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
3294                                  LD->getPointerInfo().getWithOffset(Offset),
3295                                  LD->isVolatile(), LD->isNonTemporal(),
3296                                  LD->isInvariant(),
3297                                  MinAlign(LD->getAlignment(), Offset),
3298                                  LD->getAAInfo());
3299       // Follow the load with a store to the stack slot.  Remember the store.
3300       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
3301                                     MachinePointerInfo(), false, false, 0));
3302       // Increment the pointers.
3303       Offset += RegBytes;
3304       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3305       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr,
3306                              StackPtrIncrement);
3307     }
3308 
3309     // The last copy may be partial.  Do an extending load.
3310     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3311                                   8 * (LoadedBytes - Offset));
3312     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
3313                                   LD->getPointerInfo().getWithOffset(Offset),
3314                                   MemVT, LD->isVolatile(),
3315                                   LD->isNonTemporal(),
3316                                   LD->isInvariant(),
3317                                   MinAlign(LD->getAlignment(), Offset),
3318                                   LD->getAAInfo());
3319     // Follow the load with a store to the stack slot.  Remember the store.
3320     // On big-endian machines this requires a truncating store to ensure
3321     // that the bits end up in the right place.
3322     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
3323                                        MachinePointerInfo(), MemVT,
3324                                        false, false, 0));
3325 
3326     // The order of the stores doesn't matter - say it with a TokenFactor.
3327     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3328 
3329     // Finally, perform the original load only redirected to the stack slot.
3330     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
3331                           MachinePointerInfo(), LoadedVT, false,false, false,
3332                           0);
3333 
3334     // Callers expect a MERGE_VALUES node.
3335     return std::make_pair(Load, TF);
3336   }
3337 
3338   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
3339          "Unaligned load of unsupported type.");
3340 
3341   // Compute the new VT that is half the size of the old one.  This is an
3342   // integer MVT.
3343   unsigned NumBits = LoadedVT.getSizeInBits();
3344   EVT NewLoadedVT;
3345   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
3346   NumBits >>= 1;
3347 
3348   unsigned Alignment = LD->getAlignment();
3349   unsigned IncrementSize = NumBits / 8;
3350   ISD::LoadExtType HiExtType = LD->getExtensionType();
3351 
3352   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
3353   if (HiExtType == ISD::NON_EXTLOAD)
3354     HiExtType = ISD::ZEXTLOAD;
3355 
3356   // Load the value in two parts
3357   SDValue Lo, Hi;
3358   if (DAG.getDataLayout().isLittleEndian()) {
3359     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3360                         NewLoadedVT, LD->isVolatile(),
3361                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
3362                         LD->getAAInfo());
3363     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3364                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3365     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
3366                         LD->getPointerInfo().getWithOffset(IncrementSize),
3367                         NewLoadedVT, LD->isVolatile(),
3368                         LD->isNonTemporal(),LD->isInvariant(),
3369                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3370   } else {
3371     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
3372                         NewLoadedVT, LD->isVolatile(),
3373                         LD->isNonTemporal(), LD->isInvariant(), Alignment,
3374                         LD->getAAInfo());
3375     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
3376                       DAG.getConstant(IncrementSize, dl, Ptr.getValueType()));
3377     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
3378                         LD->getPointerInfo().getWithOffset(IncrementSize),
3379                         NewLoadedVT, LD->isVolatile(),
3380                         LD->isNonTemporal(), LD->isInvariant(),
3381                         MinAlign(Alignment, IncrementSize), LD->getAAInfo());
3382   }
3383 
3384   // aggregate the two parts
3385   SDValue ShiftAmount =
3386       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
3387                                                     DAG.getDataLayout()));
3388   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
3389   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
3390 
3391   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
3392                              Hi.getValue(1));
3393 
3394   return std::make_pair(Result, TF);
3395 }
3396 
3397 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
3398                                              SelectionDAG &DAG) const {
3399   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
3400          "unaligned indexed stores not implemented!");
3401   SDValue Chain = ST->getChain();
3402   SDValue Ptr = ST->getBasePtr();
3403   SDValue Val = ST->getValue();
3404   EVT VT = Val.getValueType();
3405   int Alignment = ST->getAlignment();
3406 
3407   SDLoc dl(ST);
3408   if (ST->getMemoryVT().isFloatingPoint() ||
3409       ST->getMemoryVT().isVector()) {
3410     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
3411     if (isTypeLegal(intVT)) {
3412       if (!isOperationLegalOrCustom(ISD::STORE, intVT)) {
3413         // Scalarize the store and let the individual components be handled.
3414         SDValue Result = scalarizeVectorStore(ST, DAG);
3415 
3416         return Result;
3417       }
3418       // Expand to a bitconvert of the value to the integer type of the
3419       // same size, then a (misaligned) int store.
3420       // FIXME: Does not handle truncating floating point stores!
3421       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
3422       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
3423                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
3424       return Result;
3425     }
3426     // Do a (aligned) store to a stack slot, then copy from the stack slot
3427     // to the final destination using (unaligned) integer loads and stores.
3428     EVT StoredVT = ST->getMemoryVT();
3429     MVT RegVT =
3430       getRegisterType(*DAG.getContext(),
3431                       EVT::getIntegerVT(*DAG.getContext(),
3432                                         StoredVT.getSizeInBits()));
3433     EVT PtrVT = Ptr.getValueType();
3434     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
3435     unsigned RegBytes = RegVT.getSizeInBits() / 8;
3436     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
3437 
3438     // Make sure the stack slot is also aligned for the register type.
3439     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
3440 
3441     // Perform the original store, only redirected to the stack slot.
3442     SDValue Store = DAG.getTruncStore(Chain, dl,
3443                                       Val, StackPtr, MachinePointerInfo(),
3444                                       StoredVT, false, false, 0);
3445 
3446     EVT StackPtrVT = StackPtr.getValueType();
3447 
3448     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
3449     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
3450     SmallVector<SDValue, 8> Stores;
3451     unsigned Offset = 0;
3452 
3453     // Do all but one copies using the full register width.
3454     for (unsigned i = 1; i < NumRegs; i++) {
3455       // Load one integer register's worth from the stack slot.
3456       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
3457                                  MachinePointerInfo(),
3458                                  false, false, false, 0);
3459       // Store it to the final location.  Remember the store.
3460       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
3461                                   ST->getPointerInfo().getWithOffset(Offset),
3462                                     ST->isVolatile(), ST->isNonTemporal(),
3463                                     MinAlign(ST->getAlignment(), Offset)));
3464       // Increment the pointers.
3465       Offset += RegBytes;
3466       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT,
3467                              StackPtr, StackPtrIncrement);
3468       Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement);
3469     }
3470 
3471     // The last store may be partial.  Do a truncating store.  On big-endian
3472     // machines this requires an extending load from the stack slot to ensure
3473     // that the bits are in the right place.
3474     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
3475                                   8 * (StoredBytes - Offset));
3476 
3477     // Load from the stack slot.
3478     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
3479                                   MachinePointerInfo(),
3480                                   MemVT, false, false, false, 0);
3481 
3482     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
3483                                        ST->getPointerInfo()
3484                                          .getWithOffset(Offset),
3485                                        MemVT, ST->isVolatile(),
3486                                        ST->isNonTemporal(),
3487                                        MinAlign(ST->getAlignment(), Offset),
3488                                        ST->getAAInfo()));
3489     // The order of the stores doesn't matter - say it with a TokenFactor.
3490     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
3491     return Result;
3492   }
3493 
3494   assert(ST->getMemoryVT().isInteger() &&
3495          !ST->getMemoryVT().isVector() &&
3496          "Unaligned store of unknown type.");
3497   // Get the half-size VT
3498   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
3499   int NumBits = NewStoredVT.getSizeInBits();
3500   int IncrementSize = NumBits / 8;
3501 
3502   // Divide the stored value in two parts.
3503   SDValue ShiftAmount =
3504       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
3505                                                     DAG.getDataLayout()));
3506   SDValue Lo = Val;
3507   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
3508 
3509   // Store the two parts
3510   SDValue Store1, Store2;
3511   Store1 = DAG.getTruncStore(Chain, dl,
3512                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
3513                              Ptr, ST->getPointerInfo(), NewStoredVT,
3514                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
3515 
3516   EVT PtrVT = Ptr.getValueType();
3517   Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3518                     DAG.getConstant(IncrementSize, dl, PtrVT));
3519   Alignment = MinAlign(Alignment, IncrementSize);
3520   Store2 = DAG.getTruncStore(
3521       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
3522       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT,
3523       ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo());
3524 
3525   SDValue Result =
3526     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
3527   return Result;
3528 }
3529 
3530 //===----------------------------------------------------------------------===//
3531 // Implementation of Emulated TLS Model
3532 //===----------------------------------------------------------------------===//
3533 
3534 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
3535                                                 SelectionDAG &DAG) const {
3536   // Access to address of TLS varialbe xyz is lowered to a function call:
3537   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
3538   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3539   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
3540   SDLoc dl(GA);
3541 
3542   ArgListTy Args;
3543   ArgListEntry Entry;
3544   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
3545   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
3546   StringRef EmuTlsVarName(NameString);
3547   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
3548   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
3549   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
3550   Entry.Ty = VoidPtrType;
3551   Args.push_back(Entry);
3552 
3553   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
3554 
3555   TargetLowering::CallLoweringInfo CLI(DAG);
3556   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
3557   CLI.setCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args), 0);
3558   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3559 
3560   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
3561   // At last for X86 targets, maybe good for other targets too?
3562   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
3563   MFI->setAdjustsStack(true);  // Is this only for X86 target?
3564   MFI->setHasCalls(true);
3565 
3566   assert((GA->getOffset() == 0) &&
3567          "Emulated TLS must have zero offset in GlobalAddressSDNode");
3568   return CallResult.first;
3569 }
3570