1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getAttributes(), AttributeList::ReturnIndex);
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135 }
136 
137 /// Generate a libcall taking the given operands as arguments and returning a
138 /// result of type RetVT.
139 std::pair<SDValue, SDValue>
140 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
141                             ArrayRef<SDValue> Ops,
142                             MakeLibCallOptions CallOptions,
143                             const SDLoc &dl,
144                             SDValue InChain) const {
145   if (!InChain)
146     InChain = DAG.getEntryNode();
147 
148   TargetLowering::ArgListTy Args;
149   Args.reserve(Ops.size());
150 
151   TargetLowering::ArgListEntry Entry;
152   for (unsigned i = 0; i < Ops.size(); ++i) {
153     SDValue NewOp = Ops[i];
154     Entry.Node = NewOp;
155     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
156     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
157                                                  CallOptions.IsSExt);
158     Entry.IsZExt = !Entry.IsSExt;
159 
160     if (CallOptions.IsSoften &&
161         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
162       Entry.IsSExt = Entry.IsZExt = false;
163     }
164     Args.push_back(Entry);
165   }
166 
167   if (LC == RTLIB::UNKNOWN_LIBCALL)
168     report_fatal_error("Unsupported library call operation!");
169   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
170                                          getPointerTy(DAG.getDataLayout()));
171 
172   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
173   TargetLowering::CallLoweringInfo CLI(DAG);
174   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
175   bool zeroExtend = !signExtend;
176 
177   if (CallOptions.IsSoften &&
178       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
179     signExtend = zeroExtend = false;
180   }
181 
182   CLI.setDebugLoc(dl)
183       .setChain(InChain)
184       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
185       .setNoReturn(CallOptions.DoesNotReturn)
186       .setDiscardResult(!CallOptions.IsReturnValueUsed)
187       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
188       .setSExtResult(signExtend)
189       .setZExtResult(zeroExtend);
190   return LowerCallTo(CLI);
191 }
192 
193 bool TargetLowering::findOptimalMemOpLowering(
194     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
195     unsigned SrcAS, const AttributeList &FuncAttributes) const {
196   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
197     return false;
198 
199   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
200 
201   if (VT == MVT::Other) {
202     // Use the largest integer type whose alignment constraints are satisfied.
203     // We only need to check DstAlign here as SrcAlign is always greater or
204     // equal to DstAlign (or zero).
205     VT = MVT::i64;
206     if (Op.isFixedDstAlign())
207       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
208              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
209         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
210     assert(VT.isInteger());
211 
212     // Find the largest legal integer type.
213     MVT LVT = MVT::i64;
214     while (!isTypeLegal(LVT))
215       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
216     assert(LVT.isInteger());
217 
218     // If the type we've chosen is larger than the largest legal integer type
219     // then use that instead.
220     if (VT.bitsGT(LVT))
221       VT = LVT;
222   }
223 
224   unsigned NumMemOps = 0;
225   uint64_t Size = Op.size();
226   while (Size) {
227     unsigned VTSize = VT.getSizeInBits() / 8;
228     while (VTSize > Size) {
229       // For now, only use non-vector load / store's for the left-over pieces.
230       EVT NewVT = VT;
231       unsigned NewVTSize;
232 
233       bool Found = false;
234       if (VT.isVector() || VT.isFloatingPoint()) {
235         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
236         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
237             isSafeMemOpType(NewVT.getSimpleVT()))
238           Found = true;
239         else if (NewVT == MVT::i64 &&
240                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
241                  isSafeMemOpType(MVT::f64)) {
242           // i64 is usually not legal on 32-bit targets, but f64 may be.
243           NewVT = MVT::f64;
244           Found = true;
245         }
246       }
247 
248       if (!Found) {
249         do {
250           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
251           if (NewVT == MVT::i8)
252             break;
253         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
254       }
255       NewVTSize = NewVT.getSizeInBits() / 8;
256 
257       // If the new VT cannot cover all of the remaining bits, then consider
258       // issuing a (or a pair of) unaligned and overlapping load / store.
259       bool Fast;
260       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
261           allowsMisalignedMemoryAccesses(
262               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
263               MachineMemOperand::MONone, &Fast) &&
264           Fast)
265         VTSize = Size;
266       else {
267         VT = NewVT;
268         VTSize = NewVTSize;
269       }
270     }
271 
272     if (++NumMemOps > Limit)
273       return false;
274 
275     MemOps.push_back(VT);
276     Size -= VTSize;
277   }
278 
279   return true;
280 }
281 
282 /// Soften the operands of a comparison. This code is shared among BR_CC,
283 /// SELECT_CC, and SETCC handlers.
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS) const {
289   SDValue Chain;
290   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
291                              OldRHS, Chain);
292 }
293 
294 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
295                                          SDValue &NewLHS, SDValue &NewRHS,
296                                          ISD::CondCode &CCCode,
297                                          const SDLoc &dl, const SDValue OldLHS,
298                                          const SDValue OldRHS,
299                                          SDValue &Chain,
300                                          bool IsSignaling) const {
301   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
302   // not supporting it. We can update this code when libgcc provides such
303   // functions.
304 
305   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
306          && "Unsupported setcc type!");
307 
308   // Expand into one or more soft-fp libcall(s).
309   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
310   bool ShouldInvertCC = false;
311   switch (CCCode) {
312   case ISD::SETEQ:
313   case ISD::SETOEQ:
314     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
315           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
316           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
317     break;
318   case ISD::SETNE:
319   case ISD::SETUNE:
320     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
321           (VT == MVT::f64) ? RTLIB::UNE_F64 :
322           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
323     break;
324   case ISD::SETGE:
325   case ISD::SETOGE:
326     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
327           (VT == MVT::f64) ? RTLIB::OGE_F64 :
328           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
329     break;
330   case ISD::SETLT:
331   case ISD::SETOLT:
332     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
333           (VT == MVT::f64) ? RTLIB::OLT_F64 :
334           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
335     break;
336   case ISD::SETLE:
337   case ISD::SETOLE:
338     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
339           (VT == MVT::f64) ? RTLIB::OLE_F64 :
340           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
341     break;
342   case ISD::SETGT:
343   case ISD::SETOGT:
344     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
345           (VT == MVT::f64) ? RTLIB::OGT_F64 :
346           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
347     break;
348   case ISD::SETO:
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUO:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     break;
356   case ISD::SETONE:
357     // SETONE = O && UNE
358     ShouldInvertCC = true;
359     LLVM_FALLTHROUGH;
360   case ISD::SETUEQ:
361     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
362           (VT == MVT::f64) ? RTLIB::UO_F64 :
363           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
364     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
365           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
366           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
367     break;
368   default:
369     // Invert CC for unordered comparisons
370     ShouldInvertCC = true;
371     switch (CCCode) {
372     case ISD::SETULT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
374             (VT == MVT::f64) ? RTLIB::OGE_F64 :
375             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
376       break;
377     case ISD::SETULE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
379             (VT == MVT::f64) ? RTLIB::OGT_F64 :
380             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
381       break;
382     case ISD::SETUGT:
383       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
384             (VT == MVT::f64) ? RTLIB::OLE_F64 :
385             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
386       break;
387     case ISD::SETUGE:
388       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
389             (VT == MVT::f64) ? RTLIB::OLT_F64 :
390             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
391       break;
392     default: llvm_unreachable("Do not know how to soften this setcc!");
393     }
394   }
395 
396   // Use the target specific return value for comparions lib calls.
397   EVT RetVT = getCmpLibcallReturnType();
398   SDValue Ops[2] = {NewLHS, NewRHS};
399   TargetLowering::MakeLibCallOptions CallOptions;
400   EVT OpsVT[2] = { OldLHS.getValueType(),
401                    OldRHS.getValueType() };
402   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
403   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
404   NewLHS = Call.first;
405   NewRHS = DAG.getConstant(0, dl, RetVT);
406 
407   CCCode = getCmpLibcallCC(LC1);
408   if (ShouldInvertCC) {
409     assert(RetVT.isInteger());
410     CCCode = getSetCCInverse(CCCode, RetVT);
411   }
412 
413   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
414     // Update Chain.
415     Chain = Call.second;
416   } else {
417     EVT SetCCVT =
418         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
419     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
420     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
421     CCCode = getCmpLibcallCC(LC2);
422     if (ShouldInvertCC)
423       CCCode = getSetCCInverse(CCCode, RetVT);
424     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
425     if (Chain)
426       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
427                           Call2.second);
428     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
429                          Tmp.getValueType(), Tmp, NewLHS);
430     NewRHS = SDValue();
431   }
432 }
433 
434 /// Return the entry encoding for a jump table in the current function. The
435 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
436 unsigned TargetLowering::getJumpTableEncoding() const {
437   // In non-pic modes, just use the address of a block.
438   if (!isPositionIndependent())
439     return MachineJumpTableInfo::EK_BlockAddress;
440 
441   // In PIC mode, if the target supports a GPRel32 directive, use it.
442   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
443     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
444 
445   // Otherwise, use a label difference.
446   return MachineJumpTableInfo::EK_LabelDifference32;
447 }
448 
449 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
450                                                  SelectionDAG &DAG) const {
451   // If our PIC model is GP relative, use the global offset table as the base.
452   unsigned JTEncoding = getJumpTableEncoding();
453 
454   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
455       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
456     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
457 
458   return Table;
459 }
460 
461 /// This returns the relocation base for the given PIC jumptable, the same as
462 /// getPICJumpTableRelocBase, but as an MCExpr.
463 const MCExpr *
464 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
465                                              unsigned JTI,MCContext &Ctx) const{
466   // The normal PIC reloc base is the label at the start of the jump table.
467   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
468 }
469 
470 bool
471 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
472   const TargetMachine &TM = getTargetMachine();
473   const GlobalValue *GV = GA->getGlobal();
474 
475   // If the address is not even local to this DSO we will have to load it from
476   // a got and then add the offset.
477   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
478     return false;
479 
480   // If the code is position independent we will have to add a base register.
481   if (isPositionIndependent())
482     return false;
483 
484   // Otherwise we can do it.
485   return true;
486 }
487 
488 //===----------------------------------------------------------------------===//
489 //  Optimization Methods
490 //===----------------------------------------------------------------------===//
491 
492 /// If the specified instruction has a constant integer operand and there are
493 /// bits set in that constant that are not demanded, then clear those bits and
494 /// return true.
495 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
496                                             const APInt &DemandedBits,
497                                             const APInt &DemandedElts,
498                                             TargetLoweringOpt &TLO) const {
499   SDLoc DL(Op);
500   unsigned Opcode = Op.getOpcode();
501 
502   // Do target-specific constant optimization.
503   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
504     return TLO.New.getNode();
505 
506   // FIXME: ISD::SELECT, ISD::SELECT_CC
507   switch (Opcode) {
508   default:
509     break;
510   case ISD::XOR:
511   case ISD::AND:
512   case ISD::OR: {
513     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
514     if (!Op1C || Op1C->isOpaque())
515       return false;
516 
517     // If this is a 'not' op, don't touch it because that's a canonical form.
518     const APInt &C = Op1C->getAPIntValue();
519     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
520       return false;
521 
522     if (!C.isSubsetOf(DemandedBits)) {
523       EVT VT = Op.getValueType();
524       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
525       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
526       return TLO.CombineTo(Op, NewOp);
527     }
528 
529     break;
530   }
531   }
532 
533   return false;
534 }
535 
536 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
537                                             const APInt &DemandedBits,
538                                             TargetLoweringOpt &TLO) const {
539   EVT VT = Op.getValueType();
540   APInt DemandedElts = VT.isVector()
541                            ? APInt::getAllOnes(VT.getVectorNumElements())
542                            : APInt(1, 1);
543   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
544 }
545 
546 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
547 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
548 /// generalized for targets with other types of implicit widening casts.
549 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
550                                       const APInt &Demanded,
551                                       TargetLoweringOpt &TLO) const {
552   assert(Op.getNumOperands() == 2 &&
553          "ShrinkDemandedOp only supports binary operators!");
554   assert(Op.getNode()->getNumValues() == 1 &&
555          "ShrinkDemandedOp only supports nodes with one result!");
556 
557   SelectionDAG &DAG = TLO.DAG;
558   SDLoc dl(Op);
559 
560   // Early return, as this function cannot handle vector types.
561   if (Op.getValueType().isVector())
562     return false;
563 
564   // Don't do this if the node has another user, which may require the
565   // full value.
566   if (!Op.getNode()->hasOneUse())
567     return false;
568 
569   // Search for the smallest integer type with free casts to and from
570   // Op's type. For expedience, just check power-of-2 integer types.
571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
572   unsigned DemandedSize = Demanded.getActiveBits();
573   unsigned SmallVTBits = DemandedSize;
574   if (!isPowerOf2_32(SmallVTBits))
575     SmallVTBits = NextPowerOf2(SmallVTBits);
576   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
577     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
578     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
579         TLI.isZExtFree(SmallVT, Op.getValueType())) {
580       // We found a type with free casts.
581       SDValue X = DAG.getNode(
582           Op.getOpcode(), dl, SmallVT,
583           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
584           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
585       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
586       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
587       return TLO.CombineTo(Op, Z);
588     }
589   }
590   return false;
591 }
592 
593 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
594                                           DAGCombinerInfo &DCI) const {
595   SelectionDAG &DAG = DCI.DAG;
596   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
597                         !DCI.isBeforeLegalizeOps());
598   KnownBits Known;
599 
600   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
601   if (Simplified) {
602     DCI.AddToWorklist(Op.getNode());
603     DCI.CommitTargetLoweringOpt(TLO);
604   }
605   return Simplified;
606 }
607 
608 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
609                                           KnownBits &Known,
610                                           TargetLoweringOpt &TLO,
611                                           unsigned Depth,
612                                           bool AssumeSingleUse) const {
613   EVT VT = Op.getValueType();
614 
615   // TODO: We can probably do more work on calculating the known bits and
616   // simplifying the operations for scalable vectors, but for now we just
617   // bail out.
618   if (VT.isScalableVector()) {
619     // Pretend we don't know anything for now.
620     Known = KnownBits(DemandedBits.getBitWidth());
621     return false;
622   }
623 
624   APInt DemandedElts = VT.isVector()
625                            ? APInt::getAllOnes(VT.getVectorNumElements())
626                            : APInt(1, 1);
627   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
628                               AssumeSingleUse);
629 }
630 
631 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
632 // TODO: Under what circumstances can we create nodes? Constant folding?
633 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
634     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
635     SelectionDAG &DAG, unsigned Depth) const {
636   // Limit search depth.
637   if (Depth >= SelectionDAG::MaxRecursionDepth)
638     return SDValue();
639 
640   // Ignore UNDEFs.
641   if (Op.isUndef())
642     return SDValue();
643 
644   // Not demanding any bits/elts from Op.
645   if (DemandedBits == 0 || DemandedElts == 0)
646     return DAG.getUNDEF(Op.getValueType());
647 
648   bool IsLE = DAG.getDataLayout().isLittleEndian();
649   unsigned NumElts = DemandedElts.getBitWidth();
650   unsigned BitWidth = DemandedBits.getBitWidth();
651   KnownBits LHSKnown, RHSKnown;
652   switch (Op.getOpcode()) {
653   case ISD::BITCAST: {
654     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
655     EVT SrcVT = Src.getValueType();
656     EVT DstVT = Op.getValueType();
657     if (SrcVT == DstVT)
658       return Src;
659 
660     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
661     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
662     if (NumSrcEltBits == NumDstEltBits)
663       if (SDValue V = SimplifyMultipleUseDemandedBits(
664               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
665         return DAG.getBitcast(DstVT, V);
666 
667     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
668       unsigned Scale = NumDstEltBits / NumSrcEltBits;
669       unsigned NumSrcElts = SrcVT.getVectorNumElements();
670       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
671       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
672       for (unsigned i = 0; i != Scale; ++i) {
673         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
674         unsigned BitOffset = EltOffset * NumSrcEltBits;
675         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
676         if (!Sub.isZero()) {
677           DemandedSrcBits |= Sub;
678           for (unsigned j = 0; j != NumElts; ++j)
679             if (DemandedElts[j])
680               DemandedSrcElts.setBit((j * Scale) + i);
681         }
682       }
683 
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687     }
688 
689     // TODO - bigendian once we have test coverage.
690     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
691       unsigned Scale = NumSrcEltBits / NumDstEltBits;
692       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
693       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
694       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
695       for (unsigned i = 0; i != NumElts; ++i)
696         if (DemandedElts[i]) {
697           unsigned Offset = (i % Scale) * NumDstEltBits;
698           DemandedSrcBits.insertBits(DemandedBits, Offset);
699           DemandedSrcElts.setBit(i / Scale);
700         }
701 
702       if (SDValue V = SimplifyMultipleUseDemandedBits(
703               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
704         return DAG.getBitcast(DstVT, V);
705     }
706 
707     break;
708   }
709   case ISD::AND: {
710     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
711     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
712 
713     // If all of the demanded bits are known 1 on one side, return the other.
714     // These bits cannot contribute to the result of the 'and' in this
715     // context.
716     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
717       return Op.getOperand(0);
718     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
719       return Op.getOperand(1);
720     break;
721   }
722   case ISD::OR: {
723     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
724     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
725 
726     // If all of the demanded bits are known zero on one side, return the
727     // other.  These bits cannot contribute to the result of the 'or' in this
728     // context.
729     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
730       return Op.getOperand(0);
731     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
732       return Op.getOperand(1);
733     break;
734   }
735   case ISD::XOR: {
736     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
737     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
738 
739     // If all of the demanded bits are known zero on one side, return the
740     // other.
741     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
742       return Op.getOperand(0);
743     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
744       return Op.getOperand(1);
745     break;
746   }
747   case ISD::SHL: {
748     // If we are only demanding sign bits then we can use the shift source
749     // directly.
750     if (const APInt *MaxSA =
751             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
752       SDValue Op0 = Op.getOperand(0);
753       unsigned ShAmt = MaxSA->getZExtValue();
754       unsigned NumSignBits =
755           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
756       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
757       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
758         return Op0;
759     }
760     break;
761   }
762   case ISD::SETCC: {
763     SDValue Op0 = Op.getOperand(0);
764     SDValue Op1 = Op.getOperand(1);
765     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
766     // If (1) we only need the sign-bit, (2) the setcc operands are the same
767     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
768     // -1, we may be able to bypass the setcc.
769     if (DemandedBits.isSignMask() &&
770         Op0.getScalarValueSizeInBits() == BitWidth &&
771         getBooleanContents(Op0.getValueType()) ==
772             BooleanContent::ZeroOrNegativeOneBooleanContent) {
773       // If we're testing X < 0, then this compare isn't needed - just use X!
774       // FIXME: We're limiting to integer types here, but this should also work
775       // if we don't care about FP signed-zero. The use of SETLT with FP means
776       // that we don't care about NaNs.
777       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
778           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SIGN_EXTEND_INREG: {
784     // If none of the extended bits are demanded, eliminate the sextinreg.
785     SDValue Op0 = Op.getOperand(0);
786     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
787     unsigned ExBits = ExVT.getScalarSizeInBits();
788     if (DemandedBits.getActiveBits() <= ExBits)
789       return Op0;
790     // If the input is already sign extended, just drop the extension.
791     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
792     if (NumSignBits >= (BitWidth - ExBits + 1))
793       return Op0;
794     break;
795   }
796   case ISD::ANY_EXTEND_VECTOR_INREG:
797   case ISD::SIGN_EXTEND_VECTOR_INREG:
798   case ISD::ZERO_EXTEND_VECTOR_INREG: {
799     // If we only want the lowest element and none of extended bits, then we can
800     // return the bitcasted source vector.
801     SDValue Src = Op.getOperand(0);
802     EVT SrcVT = Src.getValueType();
803     EVT DstVT = Op.getValueType();
804     if (IsLE && DemandedElts == 1 &&
805         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
806         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
807       return DAG.getBitcast(DstVT, Src);
808     }
809     break;
810   }
811   case ISD::INSERT_VECTOR_ELT: {
812     // If we don't demand the inserted element, return the base vector.
813     SDValue Vec = Op.getOperand(0);
814     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
815     EVT VecVT = Vec.getValueType();
816     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
817         !DemandedElts[CIdx->getZExtValue()])
818       return Vec;
819     break;
820   }
821   case ISD::INSERT_SUBVECTOR: {
822     SDValue Vec = Op.getOperand(0);
823     SDValue Sub = Op.getOperand(1);
824     uint64_t Idx = Op.getConstantOperandVal(2);
825     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
826     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
827     // If we don't demand the inserted subvector, return the base vector.
828     if (DemandedSubElts == 0)
829       return Vec;
830     // If this simply widens the lowest subvector, see if we can do it earlier.
831     if (Idx == 0 && Vec.isUndef()) {
832       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
833               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
834         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
835                            Op.getOperand(0), NewSub, Op.getOperand(2));
836     }
837     break;
838   }
839   case ISD::VECTOR_SHUFFLE: {
840     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
841 
842     // If all the demanded elts are from one operand and are inline,
843     // then we can use the operand directly.
844     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
845     for (unsigned i = 0; i != NumElts; ++i) {
846       int M = ShuffleMask[i];
847       if (M < 0 || !DemandedElts[i])
848         continue;
849       AllUndef = false;
850       IdentityLHS &= (M == (int)i);
851       IdentityRHS &= ((M - NumElts) == i);
852     }
853 
854     if (AllUndef)
855       return DAG.getUNDEF(Op.getValueType());
856     if (IdentityLHS)
857       return Op.getOperand(0);
858     if (IdentityRHS)
859       return Op.getOperand(1);
860     break;
861   }
862   default:
863     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
864       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
865               Op, DemandedBits, DemandedElts, DAG, Depth))
866         return V;
867     break;
868   }
869   return SDValue();
870 }
871 
872 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
873     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
874     unsigned Depth) const {
875   EVT VT = Op.getValueType();
876   APInt DemandedElts = VT.isVector()
877                            ? APInt::getAllOnes(VT.getVectorNumElements())
878                            : APInt(1, 1);
879   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
880                                          Depth);
881 }
882 
883 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
884     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
885     unsigned Depth) const {
886   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
887   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
888                                          Depth);
889 }
890 
891 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
892 /// result of Op are ever used downstream. If we can use this information to
893 /// simplify Op, create a new simplified DAG node and return true, returning the
894 /// original and new nodes in Old and New. Otherwise, analyze the expression and
895 /// return a mask of Known bits for the expression (used to simplify the
896 /// caller).  The Known bits may only be accurate for those bits in the
897 /// OriginalDemandedBits and OriginalDemandedElts.
898 bool TargetLowering::SimplifyDemandedBits(
899     SDValue Op, const APInt &OriginalDemandedBits,
900     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
901     unsigned Depth, bool AssumeSingleUse) const {
902   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
903   assert(Op.getScalarValueSizeInBits() == BitWidth &&
904          "Mask size mismatches value type size!");
905 
906   // Don't know anything.
907   Known = KnownBits(BitWidth);
908 
909   // TODO: We can probably do more work on calculating the known bits and
910   // simplifying the operations for scalable vectors, but for now we just
911   // bail out.
912   if (Op.getValueType().isScalableVector())
913     return false;
914 
915   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
916   unsigned NumElts = OriginalDemandedElts.getBitWidth();
917   assert((!Op.getValueType().isVector() ||
918           NumElts == Op.getValueType().getVectorNumElements()) &&
919          "Unexpected vector size");
920 
921   APInt DemandedBits = OriginalDemandedBits;
922   APInt DemandedElts = OriginalDemandedElts;
923   SDLoc dl(Op);
924   auto &DL = TLO.DAG.getDataLayout();
925 
926   // Undef operand.
927   if (Op.isUndef())
928     return false;
929 
930   if (Op.getOpcode() == ISD::Constant) {
931     // We know all of the bits for a constant!
932     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
933     return false;
934   }
935 
936   if (Op.getOpcode() == ISD::ConstantFP) {
937     // We know all of the bits for a floating point constant!
938     Known = KnownBits::makeConstant(
939         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
940     return false;
941   }
942 
943   // Other users may use these bits.
944   EVT VT = Op.getValueType();
945   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
946     if (Depth != 0) {
947       // If not at the root, Just compute the Known bits to
948       // simplify things downstream.
949       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
950       return false;
951     }
952     // If this is the root being simplified, allow it to have multiple uses,
953     // just set the DemandedBits/Elts to all bits.
954     DemandedBits = APInt::getAllOnes(BitWidth);
955     DemandedElts = APInt::getAllOnes(NumElts);
956   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
957     // Not demanding any bits/elts from Op.
958     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
959   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
960     // Limit search depth.
961     return false;
962   }
963 
964   KnownBits Known2;
965   switch (Op.getOpcode()) {
966   case ISD::TargetConstant:
967     llvm_unreachable("Can't simplify this node");
968   case ISD::SCALAR_TO_VECTOR: {
969     if (!DemandedElts[0])
970       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
971 
972     KnownBits SrcKnown;
973     SDValue Src = Op.getOperand(0);
974     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
975     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
976     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
977       return true;
978 
979     // Upper elements are undef, so only get the knownbits if we just demand
980     // the bottom element.
981     if (DemandedElts == 1)
982       Known = SrcKnown.anyextOrTrunc(BitWidth);
983     break;
984   }
985   case ISD::BUILD_VECTOR:
986     // Collect the known bits that are shared by every demanded element.
987     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
988     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
989     return false; // Don't fall through, will infinitely loop.
990   case ISD::LOAD: {
991     auto *LD = cast<LoadSDNode>(Op);
992     if (getTargetConstantFromLoad(LD)) {
993       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
994       return false; // Don't fall through, will infinitely loop.
995     }
996     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
997       // If this is a ZEXTLoad and we are looking at the loaded value.
998       EVT MemVT = LD->getMemoryVT();
999       unsigned MemBits = MemVT.getScalarSizeInBits();
1000       Known.Zero.setBitsFrom(MemBits);
1001       return false; // Don't fall through, will infinitely loop.
1002     }
1003     break;
1004   }
1005   case ISD::INSERT_VECTOR_ELT: {
1006     SDValue Vec = Op.getOperand(0);
1007     SDValue Scl = Op.getOperand(1);
1008     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1009     EVT VecVT = Vec.getValueType();
1010 
1011     // If index isn't constant, assume we need all vector elements AND the
1012     // inserted element.
1013     APInt DemandedVecElts(DemandedElts);
1014     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1015       unsigned Idx = CIdx->getZExtValue();
1016       DemandedVecElts.clearBit(Idx);
1017 
1018       // Inserted element is not required.
1019       if (!DemandedElts[Idx])
1020         return TLO.CombineTo(Op, Vec);
1021     }
1022 
1023     KnownBits KnownScl;
1024     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1025     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1026     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1027       return true;
1028 
1029     Known = KnownScl.anyextOrTrunc(BitWidth);
1030 
1031     KnownBits KnownVec;
1032     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1033                              Depth + 1))
1034       return true;
1035 
1036     if (!!DemandedVecElts)
1037       Known = KnownBits::commonBits(Known, KnownVec);
1038 
1039     return false;
1040   }
1041   case ISD::INSERT_SUBVECTOR: {
1042     // Demand any elements from the subvector and the remainder from the src its
1043     // inserted into.
1044     SDValue Src = Op.getOperand(0);
1045     SDValue Sub = Op.getOperand(1);
1046     uint64_t Idx = Op.getConstantOperandVal(2);
1047     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1048     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1049     APInt DemandedSrcElts = DemandedElts;
1050     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1051 
1052     KnownBits KnownSub, KnownSrc;
1053     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1054                              Depth + 1))
1055       return true;
1056     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1057                              Depth + 1))
1058       return true;
1059 
1060     Known.Zero.setAllBits();
1061     Known.One.setAllBits();
1062     if (!!DemandedSubElts)
1063       Known = KnownBits::commonBits(Known, KnownSub);
1064     if (!!DemandedSrcElts)
1065       Known = KnownBits::commonBits(Known, KnownSrc);
1066 
1067     // Attempt to avoid multi-use src if we don't need anything from it.
1068     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1069         !DemandedSrcElts.isAllOnes()) {
1070       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1071           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1072       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1073           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1074       if (NewSub || NewSrc) {
1075         NewSub = NewSub ? NewSub : Sub;
1076         NewSrc = NewSrc ? NewSrc : Src;
1077         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1078                                         Op.getOperand(2));
1079         return TLO.CombineTo(Op, NewOp);
1080       }
1081     }
1082     break;
1083   }
1084   case ISD::EXTRACT_SUBVECTOR: {
1085     // Offset the demanded elts by the subvector index.
1086     SDValue Src = Op.getOperand(0);
1087     if (Src.getValueType().isScalableVector())
1088       break;
1089     uint64_t Idx = Op.getConstantOperandVal(1);
1090     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1091     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1092 
1093     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1094                              Depth + 1))
1095       return true;
1096 
1097     // Attempt to avoid multi-use src if we don't need anything from it.
1098     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1099       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1100           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1101       if (DemandedSrc) {
1102         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1103                                         Op.getOperand(1));
1104         return TLO.CombineTo(Op, NewOp);
1105       }
1106     }
1107     break;
1108   }
1109   case ISD::CONCAT_VECTORS: {
1110     Known.Zero.setAllBits();
1111     Known.One.setAllBits();
1112     EVT SubVT = Op.getOperand(0).getValueType();
1113     unsigned NumSubVecs = Op.getNumOperands();
1114     unsigned NumSubElts = SubVT.getVectorNumElements();
1115     for (unsigned i = 0; i != NumSubVecs; ++i) {
1116       APInt DemandedSubElts =
1117           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1118       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1119                                Known2, TLO, Depth + 1))
1120         return true;
1121       // Known bits are shared by every demanded subvector element.
1122       if (!!DemandedSubElts)
1123         Known = KnownBits::commonBits(Known, Known2);
1124     }
1125     break;
1126   }
1127   case ISD::VECTOR_SHUFFLE: {
1128     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1129 
1130     // Collect demanded elements from shuffle operands..
1131     APInt DemandedLHS(NumElts, 0);
1132     APInt DemandedRHS(NumElts, 0);
1133     for (unsigned i = 0; i != NumElts; ++i) {
1134       if (!DemandedElts[i])
1135         continue;
1136       int M = ShuffleMask[i];
1137       if (M < 0) {
1138         // For UNDEF elements, we don't know anything about the common state of
1139         // the shuffle result.
1140         DemandedLHS.clearAllBits();
1141         DemandedRHS.clearAllBits();
1142         break;
1143       }
1144       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1145       if (M < (int)NumElts)
1146         DemandedLHS.setBit(M);
1147       else
1148         DemandedRHS.setBit(M - NumElts);
1149     }
1150 
1151     if (!!DemandedLHS || !!DemandedRHS) {
1152       SDValue Op0 = Op.getOperand(0);
1153       SDValue Op1 = Op.getOperand(1);
1154 
1155       Known.Zero.setAllBits();
1156       Known.One.setAllBits();
1157       if (!!DemandedLHS) {
1158         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1159                                  Depth + 1))
1160           return true;
1161         Known = KnownBits::commonBits(Known, Known2);
1162       }
1163       if (!!DemandedRHS) {
1164         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1165                                  Depth + 1))
1166           return true;
1167         Known = KnownBits::commonBits(Known, Known2);
1168       }
1169 
1170       // Attempt to avoid multi-use ops if we don't need anything from them.
1171       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1172           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1173       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1174           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1175       if (DemandedOp0 || DemandedOp1) {
1176         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1177         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1178         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1179         return TLO.CombineTo(Op, NewOp);
1180       }
1181     }
1182     break;
1183   }
1184   case ISD::AND: {
1185     SDValue Op0 = Op.getOperand(0);
1186     SDValue Op1 = Op.getOperand(1);
1187 
1188     // If the RHS is a constant, check to see if the LHS would be zero without
1189     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1190     // simplify the LHS, here we're using information from the LHS to simplify
1191     // the RHS.
1192     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1193       // Do not increment Depth here; that can cause an infinite loop.
1194       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1195       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1196       if ((LHSKnown.Zero & DemandedBits) ==
1197           (~RHSC->getAPIntValue() & DemandedBits))
1198         return TLO.CombineTo(Op, Op0);
1199 
1200       // If any of the set bits in the RHS are known zero on the LHS, shrink
1201       // the constant.
1202       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1203                                  DemandedElts, TLO))
1204         return true;
1205 
1206       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1207       // constant, but if this 'and' is only clearing bits that were just set by
1208       // the xor, then this 'and' can be eliminated by shrinking the mask of
1209       // the xor. For example, for a 32-bit X:
1210       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1211       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1212           LHSKnown.One == ~RHSC->getAPIntValue()) {
1213         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1214         return TLO.CombineTo(Op, Xor);
1215       }
1216     }
1217 
1218     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1219                              Depth + 1))
1220       return true;
1221     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1222     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1223                              Known2, TLO, Depth + 1))
1224       return true;
1225     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1226 
1227     // Attempt to avoid multi-use ops if we don't need anything from them.
1228     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1229       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1230           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1231       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1232           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1233       if (DemandedOp0 || DemandedOp1) {
1234         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1235         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1236         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1237         return TLO.CombineTo(Op, NewOp);
1238       }
1239     }
1240 
1241     // If all of the demanded bits are known one on one side, return the other.
1242     // These bits cannot contribute to the result of the 'and'.
1243     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1244       return TLO.CombineTo(Op, Op0);
1245     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1246       return TLO.CombineTo(Op, Op1);
1247     // If all of the demanded bits in the inputs are known zeros, return zero.
1248     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1249       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1250     // If the RHS is a constant, see if we can simplify it.
1251     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1252                                TLO))
1253       return true;
1254     // If the operation can be done in a smaller type, do so.
1255     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1256       return true;
1257 
1258     Known &= Known2;
1259     break;
1260   }
1261   case ISD::OR: {
1262     SDValue Op0 = Op.getOperand(0);
1263     SDValue Op1 = Op.getOperand(1);
1264 
1265     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1266                              Depth + 1))
1267       return true;
1268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1269     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1270                              Known2, TLO, Depth + 1))
1271       return true;
1272     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1273 
1274     // Attempt to avoid multi-use ops if we don't need anything from them.
1275     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1276       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1277           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1278       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1279           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1280       if (DemandedOp0 || DemandedOp1) {
1281         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1282         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1283         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1284         return TLO.CombineTo(Op, NewOp);
1285       }
1286     }
1287 
1288     // If all of the demanded bits are known zero on one side, return the other.
1289     // These bits cannot contribute to the result of the 'or'.
1290     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1291       return TLO.CombineTo(Op, Op0);
1292     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1293       return TLO.CombineTo(Op, Op1);
1294     // If the RHS is a constant, see if we can simplify it.
1295     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1296       return true;
1297     // If the operation can be done in a smaller type, do so.
1298     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1299       return true;
1300 
1301     Known |= Known2;
1302     break;
1303   }
1304   case ISD::XOR: {
1305     SDValue Op0 = Op.getOperand(0);
1306     SDValue Op1 = Op.getOperand(1);
1307 
1308     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1313                              Depth + 1))
1314       return true;
1315     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1316 
1317     // Attempt to avoid multi-use ops if we don't need anything from them.
1318     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1319       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1320           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1321       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1322           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1323       if (DemandedOp0 || DemandedOp1) {
1324         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1325         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1326         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1327         return TLO.CombineTo(Op, NewOp);
1328       }
1329     }
1330 
1331     // If all of the demanded bits are known zero on one side, return the other.
1332     // These bits cannot contribute to the result of the 'xor'.
1333     if (DemandedBits.isSubsetOf(Known.Zero))
1334       return TLO.CombineTo(Op, Op0);
1335     if (DemandedBits.isSubsetOf(Known2.Zero))
1336       return TLO.CombineTo(Op, Op1);
1337     // If the operation can be done in a smaller type, do so.
1338     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1339       return true;
1340 
1341     // If all of the unknown bits are known to be zero on one side or the other
1342     // turn this into an *inclusive* or.
1343     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1344     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1345       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1346 
1347     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1348     if (C) {
1349       // If one side is a constant, and all of the set bits in the constant are
1350       // also known set on the other side, turn this into an AND, as we know
1351       // the bits will be cleared.
1352       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1353       // NB: it is okay if more bits are known than are requested
1354       if (C->getAPIntValue() == Known2.One) {
1355         SDValue ANDC =
1356             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1357         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1358       }
1359 
1360       // If the RHS is a constant, see if we can change it. Don't alter a -1
1361       // constant because that's a 'not' op, and that is better for combining
1362       // and codegen.
1363       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1364         // We're flipping all demanded bits. Flip the undemanded bits too.
1365         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1366         return TLO.CombineTo(Op, New);
1367       }
1368     }
1369 
1370     // If we can't turn this into a 'not', try to shrink the constant.
1371     if (!C || !C->isAllOnes())
1372       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1373         return true;
1374 
1375     Known ^= Known2;
1376     break;
1377   }
1378   case ISD::SELECT:
1379     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1380                              Depth + 1))
1381       return true;
1382     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1383                              Depth + 1))
1384       return true;
1385     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1386     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1387 
1388     // If the operands are constants, see if we can simplify them.
1389     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1390       return true;
1391 
1392     // Only known if known in both the LHS and RHS.
1393     Known = KnownBits::commonBits(Known, Known2);
1394     break;
1395   case ISD::SELECT_CC:
1396     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1397                              Depth + 1))
1398       return true;
1399     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1400                              Depth + 1))
1401       return true;
1402     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1404 
1405     // If the operands are constants, see if we can simplify them.
1406     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1407       return true;
1408 
1409     // Only known if known in both the LHS and RHS.
1410     Known = KnownBits::commonBits(Known, Known2);
1411     break;
1412   case ISD::SETCC: {
1413     SDValue Op0 = Op.getOperand(0);
1414     SDValue Op1 = Op.getOperand(1);
1415     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1416     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1417     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1418     // -1, we may be able to bypass the setcc.
1419     if (DemandedBits.isSignMask() &&
1420         Op0.getScalarValueSizeInBits() == BitWidth &&
1421         getBooleanContents(Op0.getValueType()) ==
1422             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1423       // If we're testing X < 0, then this compare isn't needed - just use X!
1424       // FIXME: We're limiting to integer types here, but this should also work
1425       // if we don't care about FP signed-zero. The use of SETLT with FP means
1426       // that we don't care about NaNs.
1427       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1428           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1429         return TLO.CombineTo(Op, Op0);
1430 
1431       // TODO: Should we check for other forms of sign-bit comparisons?
1432       // Examples: X <= -1, X >= 0
1433     }
1434     if (getBooleanContents(Op0.getValueType()) ==
1435             TargetLowering::ZeroOrOneBooleanContent &&
1436         BitWidth > 1)
1437       Known.Zero.setBitsFrom(1);
1438     break;
1439   }
1440   case ISD::SHL: {
1441     SDValue Op0 = Op.getOperand(0);
1442     SDValue Op1 = Op.getOperand(1);
1443     EVT ShiftVT = Op1.getValueType();
1444 
1445     if (const APInt *SA =
1446             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1447       unsigned ShAmt = SA->getZExtValue();
1448       if (ShAmt == 0)
1449         return TLO.CombineTo(Op, Op0);
1450 
1451       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1452       // single shift.  We can do this if the bottom bits (which are shifted
1453       // out) are never demanded.
1454       // TODO - support non-uniform vector amounts.
1455       if (Op0.getOpcode() == ISD::SRL) {
1456         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1457           if (const APInt *SA2 =
1458                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1459             unsigned C1 = SA2->getZExtValue();
1460             unsigned Opc = ISD::SHL;
1461             int Diff = ShAmt - C1;
1462             if (Diff < 0) {
1463               Diff = -Diff;
1464               Opc = ISD::SRL;
1465             }
1466             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1467             return TLO.CombineTo(
1468                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1469           }
1470         }
1471       }
1472 
1473       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1474       // are not demanded. This will likely allow the anyext to be folded away.
1475       // TODO - support non-uniform vector amounts.
1476       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1477         SDValue InnerOp = Op0.getOperand(0);
1478         EVT InnerVT = InnerOp.getValueType();
1479         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1480         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1481             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1482           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1483           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1484             ShTy = InnerVT;
1485           SDValue NarrowShl =
1486               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1487                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1488           return TLO.CombineTo(
1489               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1490         }
1491 
1492         // Repeat the SHL optimization above in cases where an extension
1493         // intervenes: (shl (anyext (shr x, c1)), c2) to
1494         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1495         // aren't demanded (as above) and that the shifted upper c1 bits of
1496         // x aren't demanded.
1497         // TODO - support non-uniform vector amounts.
1498         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1499             InnerOp.hasOneUse()) {
1500           if (const APInt *SA2 =
1501                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1502             unsigned InnerShAmt = SA2->getZExtValue();
1503             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1504                 DemandedBits.getActiveBits() <=
1505                     (InnerBits - InnerShAmt + ShAmt) &&
1506                 DemandedBits.countTrailingZeros() >= ShAmt) {
1507               SDValue NewSA =
1508                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1509               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1510                                                InnerOp.getOperand(0));
1511               return TLO.CombineTo(
1512                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1513             }
1514           }
1515         }
1516       }
1517 
1518       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1519       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1520                                Depth + 1))
1521         return true;
1522       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1523       Known.Zero <<= ShAmt;
1524       Known.One <<= ShAmt;
1525       // low bits known zero.
1526       Known.Zero.setLowBits(ShAmt);
1527 
1528       // Try shrinking the operation as long as the shift amount will still be
1529       // in range.
1530       if ((ShAmt < DemandedBits.getActiveBits()) &&
1531           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1532         return true;
1533     }
1534 
1535     // If we are only demanding sign bits then we can use the shift source
1536     // directly.
1537     if (const APInt *MaxSA =
1538             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1539       unsigned ShAmt = MaxSA->getZExtValue();
1540       unsigned NumSignBits =
1541           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1542       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1543       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1544         return TLO.CombineTo(Op, Op0);
1545     }
1546     break;
1547   }
1548   case ISD::SRL: {
1549     SDValue Op0 = Op.getOperand(0);
1550     SDValue Op1 = Op.getOperand(1);
1551     EVT ShiftVT = Op1.getValueType();
1552 
1553     if (const APInt *SA =
1554             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1555       unsigned ShAmt = SA->getZExtValue();
1556       if (ShAmt == 0)
1557         return TLO.CombineTo(Op, Op0);
1558 
1559       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1560       // single shift.  We can do this if the top bits (which are shifted out)
1561       // are never demanded.
1562       // TODO - support non-uniform vector amounts.
1563       if (Op0.getOpcode() == ISD::SHL) {
1564         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1565           if (const APInt *SA2 =
1566                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1567             unsigned C1 = SA2->getZExtValue();
1568             unsigned Opc = ISD::SRL;
1569             int Diff = ShAmt - C1;
1570             if (Diff < 0) {
1571               Diff = -Diff;
1572               Opc = ISD::SHL;
1573             }
1574             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1575             return TLO.CombineTo(
1576                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1577           }
1578         }
1579       }
1580 
1581       APInt InDemandedMask = (DemandedBits << ShAmt);
1582 
1583       // If the shift is exact, then it does demand the low bits (and knows that
1584       // they are zero).
1585       if (Op->getFlags().hasExact())
1586         InDemandedMask.setLowBits(ShAmt);
1587 
1588       // Compute the new bits that are at the top now.
1589       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1590                                Depth + 1))
1591         return true;
1592       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1593       Known.Zero.lshrInPlace(ShAmt);
1594       Known.One.lshrInPlace(ShAmt);
1595       // High bits known zero.
1596       Known.Zero.setHighBits(ShAmt);
1597     }
1598     break;
1599   }
1600   case ISD::SRA: {
1601     SDValue Op0 = Op.getOperand(0);
1602     SDValue Op1 = Op.getOperand(1);
1603     EVT ShiftVT = Op1.getValueType();
1604 
1605     // If we only want bits that already match the signbit then we don't need
1606     // to shift.
1607     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1608     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1609         NumHiDemandedBits)
1610       return TLO.CombineTo(Op, Op0);
1611 
1612     // If this is an arithmetic shift right and only the low-bit is set, we can
1613     // always convert this into a logical shr, even if the shift amount is
1614     // variable.  The low bit of the shift cannot be an input sign bit unless
1615     // the shift amount is >= the size of the datatype, which is undefined.
1616     if (DemandedBits.isOne())
1617       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1618 
1619     if (const APInt *SA =
1620             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1621       unsigned ShAmt = SA->getZExtValue();
1622       if (ShAmt == 0)
1623         return TLO.CombineTo(Op, Op0);
1624 
1625       APInt InDemandedMask = (DemandedBits << ShAmt);
1626 
1627       // If the shift is exact, then it does demand the low bits (and knows that
1628       // they are zero).
1629       if (Op->getFlags().hasExact())
1630         InDemandedMask.setLowBits(ShAmt);
1631 
1632       // If any of the demanded bits are produced by the sign extension, we also
1633       // demand the input sign bit.
1634       if (DemandedBits.countLeadingZeros() < ShAmt)
1635         InDemandedMask.setSignBit();
1636 
1637       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1638                                Depth + 1))
1639         return true;
1640       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1641       Known.Zero.lshrInPlace(ShAmt);
1642       Known.One.lshrInPlace(ShAmt);
1643 
1644       // If the input sign bit is known to be zero, or if none of the top bits
1645       // are demanded, turn this into an unsigned shift right.
1646       if (Known.Zero[BitWidth - ShAmt - 1] ||
1647           DemandedBits.countLeadingZeros() >= ShAmt) {
1648         SDNodeFlags Flags;
1649         Flags.setExact(Op->getFlags().hasExact());
1650         return TLO.CombineTo(
1651             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1652       }
1653 
1654       int Log2 = DemandedBits.exactLogBase2();
1655       if (Log2 >= 0) {
1656         // The bit must come from the sign.
1657         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1658         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1659       }
1660 
1661       if (Known.One[BitWidth - ShAmt - 1])
1662         // New bits are known one.
1663         Known.One.setHighBits(ShAmt);
1664 
1665       // Attempt to avoid multi-use ops if we don't need anything from them.
1666       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1667         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1668             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1669         if (DemandedOp0) {
1670           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1671           return TLO.CombineTo(Op, NewOp);
1672         }
1673       }
1674     }
1675     break;
1676   }
1677   case ISD::FSHL:
1678   case ISD::FSHR: {
1679     SDValue Op0 = Op.getOperand(0);
1680     SDValue Op1 = Op.getOperand(1);
1681     SDValue Op2 = Op.getOperand(2);
1682     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1683 
1684     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1685       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1686 
1687       // For fshl, 0-shift returns the 1st arg.
1688       // For fshr, 0-shift returns the 2nd arg.
1689       if (Amt == 0) {
1690         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1691                                  Known, TLO, Depth + 1))
1692           return true;
1693         break;
1694       }
1695 
1696       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1697       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1698       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1699       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1700       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1701                                Depth + 1))
1702         return true;
1703       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1704                                Depth + 1))
1705         return true;
1706 
1707       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1708       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1709       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1710       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1711       Known.One |= Known2.One;
1712       Known.Zero |= Known2.Zero;
1713     }
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1719                                Known2, TLO, Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::ROTL:
1725   case ISD::ROTR: {
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1729 
1730     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1731     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1732       return TLO.CombineTo(Op, Op0);
1733 
1734     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1735       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1736       unsigned RevAmt = BitWidth - Amt;
1737 
1738       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1739       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1740       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1741       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1742                                Depth + 1))
1743         return true;
1744 
1745       // rot*(x, 0) --> x
1746       if (Amt == 0)
1747         return TLO.CombineTo(Op, Op0);
1748 
1749       // See if we don't demand either half of the rotated bits.
1750       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1751           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1752         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1753         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1754       }
1755       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1756           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1757         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1758         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1759       }
1760     }
1761 
1762     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1763     if (isPowerOf2_32(BitWidth)) {
1764       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1765       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1766                                Depth + 1))
1767         return true;
1768     }
1769     break;
1770   }
1771   case ISD::UMIN: {
1772     // Check if one arg is always less than (or equal) to the other arg.
1773     SDValue Op0 = Op.getOperand(0);
1774     SDValue Op1 = Op.getOperand(1);
1775     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1776     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1777     Known = KnownBits::umin(Known0, Known1);
1778     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1779       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1780     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1781       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1782     break;
1783   }
1784   case ISD::UMAX: {
1785     // Check if one arg is always greater than (or equal) to the other arg.
1786     SDValue Op0 = Op.getOperand(0);
1787     SDValue Op1 = Op.getOperand(1);
1788     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1789     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1790     Known = KnownBits::umax(Known0, Known1);
1791     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1792       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1793     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1794       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1795     break;
1796   }
1797   case ISD::BITREVERSE: {
1798     SDValue Src = Op.getOperand(0);
1799     APInt DemandedSrcBits = DemandedBits.reverseBits();
1800     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1801                              Depth + 1))
1802       return true;
1803     Known.One = Known2.One.reverseBits();
1804     Known.Zero = Known2.Zero.reverseBits();
1805     break;
1806   }
1807   case ISD::BSWAP: {
1808     SDValue Src = Op.getOperand(0);
1809     APInt DemandedSrcBits = DemandedBits.byteSwap();
1810     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1811                              Depth + 1))
1812       return true;
1813     Known.One = Known2.One.byteSwap();
1814     Known.Zero = Known2.Zero.byteSwap();
1815     break;
1816   }
1817   case ISD::CTPOP: {
1818     // If only 1 bit is demanded, replace with PARITY as long as we're before
1819     // op legalization.
1820     // FIXME: Limit to scalars for now.
1821     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
1822       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1823                                                Op.getOperand(0)));
1824 
1825     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1826     break;
1827   }
1828   case ISD::SIGN_EXTEND_INREG: {
1829     SDValue Op0 = Op.getOperand(0);
1830     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1831     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1832 
1833     // If we only care about the highest bit, don't bother shifting right.
1834     if (DemandedBits.isSignMask()) {
1835       unsigned MinSignedBits =
1836           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
1837       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
1838       // However if the input is already sign extended we expect the sign
1839       // extension to be dropped altogether later and do not simplify.
1840       if (!AlreadySignExtended) {
1841         // Compute the correct shift amount type, which must be getShiftAmountTy
1842         // for scalar types after legalization.
1843         EVT ShiftAmtTy = VT;
1844         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1845           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1846 
1847         SDValue ShiftAmt =
1848             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1849         return TLO.CombineTo(Op,
1850                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1851       }
1852     }
1853 
1854     // If none of the extended bits are demanded, eliminate the sextinreg.
1855     if (DemandedBits.getActiveBits() <= ExVTBits)
1856       return TLO.CombineTo(Op, Op0);
1857 
1858     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1859 
1860     // Since the sign extended bits are demanded, we know that the sign
1861     // bit is demanded.
1862     InputDemandedBits.setBit(ExVTBits - 1);
1863 
1864     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1865       return true;
1866     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1867 
1868     // If the sign bit of the input is known set or clear, then we know the
1869     // top bits of the result.
1870 
1871     // If the input sign bit is known zero, convert this into a zero extension.
1872     if (Known.Zero[ExVTBits - 1])
1873       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1874 
1875     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1876     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1877       Known.One.setBitsFrom(ExVTBits);
1878       Known.Zero &= Mask;
1879     } else { // Input sign bit unknown
1880       Known.Zero &= Mask;
1881       Known.One &= Mask;
1882     }
1883     break;
1884   }
1885   case ISD::BUILD_PAIR: {
1886     EVT HalfVT = Op.getOperand(0).getValueType();
1887     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1888 
1889     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1890     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1891 
1892     KnownBits KnownLo, KnownHi;
1893 
1894     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1895       return true;
1896 
1897     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1898       return true;
1899 
1900     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1901                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1902 
1903     Known.One = KnownLo.One.zext(BitWidth) |
1904                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1905     break;
1906   }
1907   case ISD::ZERO_EXTEND:
1908   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1909     SDValue Src = Op.getOperand(0);
1910     EVT SrcVT = Src.getValueType();
1911     unsigned InBits = SrcVT.getScalarSizeInBits();
1912     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1913     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1914 
1915     // If none of the top bits are demanded, convert this into an any_extend.
1916     if (DemandedBits.getActiveBits() <= InBits) {
1917       // If we only need the non-extended bits of the bottom element
1918       // then we can just bitcast to the result.
1919       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1920           VT.getSizeInBits() == SrcVT.getSizeInBits())
1921         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1922 
1923       unsigned Opc =
1924           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1925       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1926         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1927     }
1928 
1929     APInt InDemandedBits = DemandedBits.trunc(InBits);
1930     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1931     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1932                              Depth + 1))
1933       return true;
1934     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1935     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1936     Known = Known.zext(BitWidth);
1937 
1938     // Attempt to avoid multi-use ops if we don't need anything from them.
1939     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1940             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1941       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1942     break;
1943   }
1944   case ISD::SIGN_EXTEND:
1945   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1946     SDValue Src = Op.getOperand(0);
1947     EVT SrcVT = Src.getValueType();
1948     unsigned InBits = SrcVT.getScalarSizeInBits();
1949     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1950     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1951 
1952     // If none of the top bits are demanded, convert this into an any_extend.
1953     if (DemandedBits.getActiveBits() <= InBits) {
1954       // If we only need the non-extended bits of the bottom element
1955       // then we can just bitcast to the result.
1956       if (IsLE && IsVecInReg && DemandedElts == 1 &&
1957           VT.getSizeInBits() == SrcVT.getSizeInBits())
1958         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1959 
1960       unsigned Opc =
1961           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1962       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1963         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1964     }
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968 
1969     // Since some of the sign extended bits are demanded, we know that the sign
1970     // bit is demanded.
1971     InDemandedBits.setBit(InBits - 1);
1972 
1973     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1974                              Depth + 1))
1975       return true;
1976     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1977     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1978 
1979     // If the sign bit is known one, the top bits match.
1980     Known = Known.sext(BitWidth);
1981 
1982     // If the sign bit is known zero, convert this to a zero extend.
1983     if (Known.isNonNegative()) {
1984       unsigned Opc =
1985           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1986       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1987         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1988     }
1989 
1990     // Attempt to avoid multi-use ops if we don't need anything from them.
1991     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1992             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1993       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1994     break;
1995   }
1996   case ISD::ANY_EXTEND:
1997   case ISD::ANY_EXTEND_VECTOR_INREG: {
1998     SDValue Src = Op.getOperand(0);
1999     EVT SrcVT = Src.getValueType();
2000     unsigned InBits = SrcVT.getScalarSizeInBits();
2001     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2002     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2003 
2004     // If we only need the bottom element then we can just bitcast.
2005     // TODO: Handle ANY_EXTEND?
2006     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2007         VT.getSizeInBits() == SrcVT.getSizeInBits())
2008       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2009 
2010     APInt InDemandedBits = DemandedBits.trunc(InBits);
2011     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2012     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2013                              Depth + 1))
2014       return true;
2015     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2016     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2017     Known = Known.anyext(BitWidth);
2018 
2019     // Attempt to avoid multi-use ops if we don't need anything from them.
2020     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2021             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2022       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2023     break;
2024   }
2025   case ISD::TRUNCATE: {
2026     SDValue Src = Op.getOperand(0);
2027 
2028     // Simplify the input, using demanded bit information, and compute the known
2029     // zero/one bits live out.
2030     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2031     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2032     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2033                              Depth + 1))
2034       return true;
2035     Known = Known.trunc(BitWidth);
2036 
2037     // Attempt to avoid multi-use ops if we don't need anything from them.
2038     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2039             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2040       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2041 
2042     // If the input is only used by this truncate, see if we can shrink it based
2043     // on the known demanded bits.
2044     if (Src.getNode()->hasOneUse()) {
2045       switch (Src.getOpcode()) {
2046       default:
2047         break;
2048       case ISD::SRL:
2049         // Shrink SRL by a constant if none of the high bits shifted in are
2050         // demanded.
2051         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2052           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2053           // undesirable.
2054           break;
2055 
2056         const APInt *ShAmtC =
2057             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2058         if (!ShAmtC || ShAmtC->uge(BitWidth))
2059           break;
2060         uint64_t ShVal = ShAmtC->getZExtValue();
2061 
2062         APInt HighBits =
2063             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2064         HighBits.lshrInPlace(ShVal);
2065         HighBits = HighBits.trunc(BitWidth);
2066 
2067         if (!(HighBits & DemandedBits)) {
2068           // None of the shifted in bits are needed.  Add a truncate of the
2069           // shift input, then shift it.
2070           SDValue NewShAmt = TLO.DAG.getConstant(
2071               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2072           SDValue NewTrunc =
2073               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2074           return TLO.CombineTo(
2075               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2076         }
2077         break;
2078       }
2079     }
2080 
2081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2082     break;
2083   }
2084   case ISD::AssertZext: {
2085     // AssertZext demands all of the high bits, plus any of the low bits
2086     // demanded by its users.
2087     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2088     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2089     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2090                              TLO, Depth + 1))
2091       return true;
2092     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2093 
2094     Known.Zero |= ~InMask;
2095     break;
2096   }
2097   case ISD::EXTRACT_VECTOR_ELT: {
2098     SDValue Src = Op.getOperand(0);
2099     SDValue Idx = Op.getOperand(1);
2100     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2101     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2102 
2103     if (SrcEltCnt.isScalable())
2104       return false;
2105 
2106     // Demand the bits from every vector element without a constant index.
2107     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2108     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2109     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2110       if (CIdx->getAPIntValue().ult(NumSrcElts))
2111         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2112 
2113     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2114     // anything about the extended bits.
2115     APInt DemandedSrcBits = DemandedBits;
2116     if (BitWidth > EltBitWidth)
2117       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2118 
2119     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2120                              Depth + 1))
2121       return true;
2122 
2123     // Attempt to avoid multi-use ops if we don't need anything from them.
2124     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2125       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2126               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2127         SDValue NewOp =
2128             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2129         return TLO.CombineTo(Op, NewOp);
2130       }
2131     }
2132 
2133     Known = Known2;
2134     if (BitWidth > EltBitWidth)
2135       Known = Known.anyext(BitWidth);
2136     break;
2137   }
2138   case ISD::BITCAST: {
2139     SDValue Src = Op.getOperand(0);
2140     EVT SrcVT = Src.getValueType();
2141     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2142 
2143     // If this is an FP->Int bitcast and if the sign bit is the only
2144     // thing demanded, turn this into a FGETSIGN.
2145     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2146         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2147         SrcVT.isFloatingPoint()) {
2148       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2149       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2150       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2151           SrcVT != MVT::f128) {
2152         // Cannot eliminate/lower SHL for f128 yet.
2153         EVT Ty = OpVTLegal ? VT : MVT::i32;
2154         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2155         // place.  We expect the SHL to be eliminated by other optimizations.
2156         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2157         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2158         if (!OpVTLegal && OpVTSizeInBits > 32)
2159           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2160         unsigned ShVal = Op.getValueSizeInBits() - 1;
2161         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2162         return TLO.CombineTo(Op,
2163                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2164       }
2165     }
2166 
2167     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2168     // Demand the elt/bit if any of the original elts/bits are demanded.
2169     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2170       unsigned Scale = BitWidth / NumSrcEltBits;
2171       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2172       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2173       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2174       for (unsigned i = 0; i != Scale; ++i) {
2175         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2176         unsigned BitOffset = EltOffset * NumSrcEltBits;
2177         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2178         if (!Sub.isZero()) {
2179           DemandedSrcBits |= Sub;
2180           for (unsigned j = 0; j != NumElts; ++j)
2181             if (DemandedElts[j])
2182               DemandedSrcElts.setBit((j * Scale) + i);
2183         }
2184       }
2185 
2186       APInt KnownSrcUndef, KnownSrcZero;
2187       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2188                                      KnownSrcZero, TLO, Depth + 1))
2189         return true;
2190 
2191       KnownBits KnownSrcBits;
2192       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2193                                KnownSrcBits, TLO, Depth + 1))
2194         return true;
2195     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2196       // TODO - bigendian once we have test coverage.
2197       unsigned Scale = NumSrcEltBits / BitWidth;
2198       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2199       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2200       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2201       for (unsigned i = 0; i != NumElts; ++i)
2202         if (DemandedElts[i]) {
2203           unsigned Offset = (i % Scale) * BitWidth;
2204           DemandedSrcBits.insertBits(DemandedBits, Offset);
2205           DemandedSrcElts.setBit(i / Scale);
2206         }
2207 
2208       if (SrcVT.isVector()) {
2209         APInt KnownSrcUndef, KnownSrcZero;
2210         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2211                                        KnownSrcZero, TLO, Depth + 1))
2212           return true;
2213       }
2214 
2215       KnownBits KnownSrcBits;
2216       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2217                                KnownSrcBits, TLO, Depth + 1))
2218         return true;
2219     }
2220 
2221     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2222     // recursive call where Known may be useful to the caller.
2223     if (Depth > 0) {
2224       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2225       return false;
2226     }
2227     break;
2228   }
2229   case ISD::ADD:
2230   case ISD::MUL:
2231   case ISD::SUB: {
2232     // Add, Sub, and Mul don't demand any bits in positions beyond that
2233     // of the highest bit demanded of them.
2234     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2235     SDNodeFlags Flags = Op.getNode()->getFlags();
2236     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2237     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2238     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2239                              Depth + 1) ||
2240         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2241                              Depth + 1) ||
2242         // See if the operation should be performed at a smaller bit width.
2243         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2244       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2245         // Disable the nsw and nuw flags. We can no longer guarantee that we
2246         // won't wrap after simplification.
2247         Flags.setNoSignedWrap(false);
2248         Flags.setNoUnsignedWrap(false);
2249         SDValue NewOp =
2250             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2251         return TLO.CombineTo(Op, NewOp);
2252       }
2253       return true;
2254     }
2255 
2256     // Attempt to avoid multi-use ops if we don't need anything from them.
2257     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2258       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2259           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2260       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2261           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2262       if (DemandedOp0 || DemandedOp1) {
2263         Flags.setNoSignedWrap(false);
2264         Flags.setNoUnsignedWrap(false);
2265         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2266         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2267         SDValue NewOp =
2268             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2269         return TLO.CombineTo(Op, NewOp);
2270       }
2271     }
2272 
2273     // If we have a constant operand, we may be able to turn it into -1 if we
2274     // do not demand the high bits. This can make the constant smaller to
2275     // encode, allow more general folding, or match specialized instruction
2276     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2277     // is probably not useful (and could be detrimental).
2278     ConstantSDNode *C = isConstOrConstSplat(Op1);
2279     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2280     if (C && !C->isAllOnes() && !C->isOne() &&
2281         (C->getAPIntValue() | HighMask).isAllOnes()) {
2282       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2283       // Disable the nsw and nuw flags. We can no longer guarantee that we
2284       // won't wrap after simplification.
2285       Flags.setNoSignedWrap(false);
2286       Flags.setNoUnsignedWrap(false);
2287       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2288       return TLO.CombineTo(Op, NewOp);
2289     }
2290 
2291     LLVM_FALLTHROUGH;
2292   }
2293   default:
2294     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2295       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2296                                             Known, TLO, Depth))
2297         return true;
2298       break;
2299     }
2300 
2301     // Just use computeKnownBits to compute output bits.
2302     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2303     break;
2304   }
2305 
2306   // If we know the value of all of the demanded bits, return this as a
2307   // constant.
2308   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2309     // Avoid folding to a constant if any OpaqueConstant is involved.
2310     const SDNode *N = Op.getNode();
2311     for (SDNode *Op :
2312          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2313       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2314         if (C->isOpaque())
2315           return false;
2316     }
2317     if (VT.isInteger())
2318       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2319     if (VT.isFloatingPoint())
2320       return TLO.CombineTo(
2321           Op,
2322           TLO.DAG.getConstantFP(
2323               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2324   }
2325 
2326   return false;
2327 }
2328 
2329 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2330                                                 const APInt &DemandedElts,
2331                                                 APInt &KnownUndef,
2332                                                 APInt &KnownZero,
2333                                                 DAGCombinerInfo &DCI) const {
2334   SelectionDAG &DAG = DCI.DAG;
2335   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2336                         !DCI.isBeforeLegalizeOps());
2337 
2338   bool Simplified =
2339       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2340   if (Simplified) {
2341     DCI.AddToWorklist(Op.getNode());
2342     DCI.CommitTargetLoweringOpt(TLO);
2343   }
2344 
2345   return Simplified;
2346 }
2347 
2348 /// Given a vector binary operation and known undefined elements for each input
2349 /// operand, compute whether each element of the output is undefined.
2350 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2351                                          const APInt &UndefOp0,
2352                                          const APInt &UndefOp1) {
2353   EVT VT = BO.getValueType();
2354   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2355          "Vector binop only");
2356 
2357   EVT EltVT = VT.getVectorElementType();
2358   unsigned NumElts = VT.getVectorNumElements();
2359   assert(UndefOp0.getBitWidth() == NumElts &&
2360          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2361 
2362   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2363                                    const APInt &UndefVals) {
2364     if (UndefVals[Index])
2365       return DAG.getUNDEF(EltVT);
2366 
2367     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2368       // Try hard to make sure that the getNode() call is not creating temporary
2369       // nodes. Ignore opaque integers because they do not constant fold.
2370       SDValue Elt = BV->getOperand(Index);
2371       auto *C = dyn_cast<ConstantSDNode>(Elt);
2372       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2373         return Elt;
2374     }
2375 
2376     return SDValue();
2377   };
2378 
2379   APInt KnownUndef = APInt::getZero(NumElts);
2380   for (unsigned i = 0; i != NumElts; ++i) {
2381     // If both inputs for this element are either constant or undef and match
2382     // the element type, compute the constant/undef result for this element of
2383     // the vector.
2384     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2385     // not handle FP constants. The code within getNode() should be refactored
2386     // to avoid the danger of creating a bogus temporary node here.
2387     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2388     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2389     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2390       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2391         KnownUndef.setBit(i);
2392   }
2393   return KnownUndef;
2394 }
2395 
2396 bool TargetLowering::SimplifyDemandedVectorElts(
2397     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2398     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2399     bool AssumeSingleUse) const {
2400   EVT VT = Op.getValueType();
2401   unsigned Opcode = Op.getOpcode();
2402   APInt DemandedElts = OriginalDemandedElts;
2403   unsigned NumElts = DemandedElts.getBitWidth();
2404   assert(VT.isVector() && "Expected vector op");
2405 
2406   KnownUndef = KnownZero = APInt::getZero(NumElts);
2407 
2408   // TODO: For now we assume we know nothing about scalable vectors.
2409   if (VT.isScalableVector())
2410     return false;
2411 
2412   assert(VT.getVectorNumElements() == NumElts &&
2413          "Mask size mismatches value type element count!");
2414 
2415   // Undef operand.
2416   if (Op.isUndef()) {
2417     KnownUndef.setAllBits();
2418     return false;
2419   }
2420 
2421   // If Op has other users, assume that all elements are needed.
2422   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2423     DemandedElts.setAllBits();
2424 
2425   // Not demanding any elements from Op.
2426   if (DemandedElts == 0) {
2427     KnownUndef.setAllBits();
2428     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2429   }
2430 
2431   // Limit search depth.
2432   if (Depth >= SelectionDAG::MaxRecursionDepth)
2433     return false;
2434 
2435   SDLoc DL(Op);
2436   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2437   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2438 
2439   // Helper for demanding the specified elements and all the bits of both binary
2440   // operands.
2441   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2442     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2443                                                            TLO.DAG, Depth + 1);
2444     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2445                                                            TLO.DAG, Depth + 1);
2446     if (NewOp0 || NewOp1) {
2447       SDValue NewOp = TLO.DAG.getNode(
2448           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2449       return TLO.CombineTo(Op, NewOp);
2450     }
2451     return false;
2452   };
2453 
2454   switch (Opcode) {
2455   case ISD::SCALAR_TO_VECTOR: {
2456     if (!DemandedElts[0]) {
2457       KnownUndef.setAllBits();
2458       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2459     }
2460     SDValue ScalarSrc = Op.getOperand(0);
2461     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2462       SDValue Src = ScalarSrc.getOperand(0);
2463       SDValue Idx = ScalarSrc.getOperand(1);
2464       EVT SrcVT = Src.getValueType();
2465 
2466       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2467 
2468       if (SrcEltCnt.isScalable())
2469         return false;
2470 
2471       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2472       if (isNullConstant(Idx)) {
2473         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2474         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2475         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2476         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2477                                        TLO, Depth + 1))
2478           return true;
2479       }
2480     }
2481     KnownUndef.setHighBits(NumElts - 1);
2482     break;
2483   }
2484   case ISD::BITCAST: {
2485     SDValue Src = Op.getOperand(0);
2486     EVT SrcVT = Src.getValueType();
2487 
2488     // We only handle vectors here.
2489     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2490     if (!SrcVT.isVector())
2491       break;
2492 
2493     // Fast handling of 'identity' bitcasts.
2494     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2495     if (NumSrcElts == NumElts)
2496       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2497                                         KnownZero, TLO, Depth + 1);
2498 
2499     APInt SrcDemandedElts, SrcZero, SrcUndef;
2500 
2501     // Bitcast from 'large element' src vector to 'small element' vector, we
2502     // must demand a source element if any DemandedElt maps to it.
2503     if ((NumElts % NumSrcElts) == 0) {
2504       unsigned Scale = NumElts / NumSrcElts;
2505       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2506       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2507                                      TLO, Depth + 1))
2508         return true;
2509 
2510       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2511       // of the large element.
2512       // TODO - bigendian once we have test coverage.
2513       if (IsLE) {
2514         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2515         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2516         for (unsigned i = 0; i != NumElts; ++i)
2517           if (DemandedElts[i]) {
2518             unsigned Ofs = (i % Scale) * EltSizeInBits;
2519             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2520           }
2521 
2522         KnownBits Known;
2523         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2524                                  TLO, Depth + 1))
2525           return true;
2526       }
2527 
2528       // If the src element is zero/undef then all the output elements will be -
2529       // only demanded elements are guaranteed to be correct.
2530       for (unsigned i = 0; i != NumSrcElts; ++i) {
2531         if (SrcDemandedElts[i]) {
2532           if (SrcZero[i])
2533             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2534           if (SrcUndef[i])
2535             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2536         }
2537       }
2538     }
2539 
2540     // Bitcast from 'small element' src vector to 'large element' vector, we
2541     // demand all smaller source elements covered by the larger demanded element
2542     // of this vector.
2543     if ((NumSrcElts % NumElts) == 0) {
2544       unsigned Scale = NumSrcElts / NumElts;
2545       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2546       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2547                                      TLO, Depth + 1))
2548         return true;
2549 
2550       // If all the src elements covering an output element are zero/undef, then
2551       // the output element will be as well, assuming it was demanded.
2552       for (unsigned i = 0; i != NumElts; ++i) {
2553         if (DemandedElts[i]) {
2554           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2555             KnownZero.setBit(i);
2556           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2557             KnownUndef.setBit(i);
2558         }
2559       }
2560     }
2561     break;
2562   }
2563   case ISD::BUILD_VECTOR: {
2564     // Check all elements and simplify any unused elements with UNDEF.
2565     if (!DemandedElts.isAllOnes()) {
2566       // Don't simplify BROADCASTS.
2567       if (llvm::any_of(Op->op_values(),
2568                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2569         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2570         bool Updated = false;
2571         for (unsigned i = 0; i != NumElts; ++i) {
2572           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2573             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2574             KnownUndef.setBit(i);
2575             Updated = true;
2576           }
2577         }
2578         if (Updated)
2579           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2580       }
2581     }
2582     for (unsigned i = 0; i != NumElts; ++i) {
2583       SDValue SrcOp = Op.getOperand(i);
2584       if (SrcOp.isUndef()) {
2585         KnownUndef.setBit(i);
2586       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2587                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2588         KnownZero.setBit(i);
2589       }
2590     }
2591     break;
2592   }
2593   case ISD::CONCAT_VECTORS: {
2594     EVT SubVT = Op.getOperand(0).getValueType();
2595     unsigned NumSubVecs = Op.getNumOperands();
2596     unsigned NumSubElts = SubVT.getVectorNumElements();
2597     for (unsigned i = 0; i != NumSubVecs; ++i) {
2598       SDValue SubOp = Op.getOperand(i);
2599       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2600       APInt SubUndef, SubZero;
2601       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2602                                      Depth + 1))
2603         return true;
2604       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2605       KnownZero.insertBits(SubZero, i * NumSubElts);
2606     }
2607     break;
2608   }
2609   case ISD::INSERT_SUBVECTOR: {
2610     // Demand any elements from the subvector and the remainder from the src its
2611     // inserted into.
2612     SDValue Src = Op.getOperand(0);
2613     SDValue Sub = Op.getOperand(1);
2614     uint64_t Idx = Op.getConstantOperandVal(2);
2615     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2616     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2617     APInt DemandedSrcElts = DemandedElts;
2618     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2619 
2620     APInt SubUndef, SubZero;
2621     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2622                                    Depth + 1))
2623       return true;
2624 
2625     // If none of the src operand elements are demanded, replace it with undef.
2626     if (!DemandedSrcElts && !Src.isUndef())
2627       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2628                                                TLO.DAG.getUNDEF(VT), Sub,
2629                                                Op.getOperand(2)));
2630 
2631     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2632                                    TLO, Depth + 1))
2633       return true;
2634     KnownUndef.insertBits(SubUndef, Idx);
2635     KnownZero.insertBits(SubZero, Idx);
2636 
2637     // Attempt to avoid multi-use ops if we don't need anything from them.
2638     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2639       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2640           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2641       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2642           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2643       if (NewSrc || NewSub) {
2644         NewSrc = NewSrc ? NewSrc : Src;
2645         NewSub = NewSub ? NewSub : Sub;
2646         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2647                                         NewSub, Op.getOperand(2));
2648         return TLO.CombineTo(Op, NewOp);
2649       }
2650     }
2651     break;
2652   }
2653   case ISD::EXTRACT_SUBVECTOR: {
2654     // Offset the demanded elts by the subvector index.
2655     SDValue Src = Op.getOperand(0);
2656     if (Src.getValueType().isScalableVector())
2657       break;
2658     uint64_t Idx = Op.getConstantOperandVal(1);
2659     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2660     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2661 
2662     APInt SrcUndef, SrcZero;
2663     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2664                                    Depth + 1))
2665       return true;
2666     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2667     KnownZero = SrcZero.extractBits(NumElts, Idx);
2668 
2669     // Attempt to avoid multi-use ops if we don't need anything from them.
2670     if (!DemandedElts.isAllOnes()) {
2671       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2672           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2673       if (NewSrc) {
2674         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2675                                         Op.getOperand(1));
2676         return TLO.CombineTo(Op, NewOp);
2677       }
2678     }
2679     break;
2680   }
2681   case ISD::INSERT_VECTOR_ELT: {
2682     SDValue Vec = Op.getOperand(0);
2683     SDValue Scl = Op.getOperand(1);
2684     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2685 
2686     // For a legal, constant insertion index, if we don't need this insertion
2687     // then strip it, else remove it from the demanded elts.
2688     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2689       unsigned Idx = CIdx->getZExtValue();
2690       if (!DemandedElts[Idx])
2691         return TLO.CombineTo(Op, Vec);
2692 
2693       APInt DemandedVecElts(DemandedElts);
2694       DemandedVecElts.clearBit(Idx);
2695       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2696                                      KnownZero, TLO, Depth + 1))
2697         return true;
2698 
2699       KnownUndef.setBitVal(Idx, Scl.isUndef());
2700 
2701       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2702       break;
2703     }
2704 
2705     APInt VecUndef, VecZero;
2706     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2707                                    Depth + 1))
2708       return true;
2709     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2710     break;
2711   }
2712   case ISD::VSELECT: {
2713     // Try to transform the select condition based on the current demanded
2714     // elements.
2715     // TODO: If a condition element is undef, we can choose from one arm of the
2716     //       select (and if one arm is undef, then we can propagate that to the
2717     //       result).
2718     // TODO - add support for constant vselect masks (see IR version of this).
2719     APInt UnusedUndef, UnusedZero;
2720     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2721                                    UnusedZero, TLO, Depth + 1))
2722       return true;
2723 
2724     // See if we can simplify either vselect operand.
2725     APInt DemandedLHS(DemandedElts);
2726     APInt DemandedRHS(DemandedElts);
2727     APInt UndefLHS, ZeroLHS;
2728     APInt UndefRHS, ZeroRHS;
2729     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2730                                    ZeroLHS, TLO, Depth + 1))
2731       return true;
2732     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2733                                    ZeroRHS, TLO, Depth + 1))
2734       return true;
2735 
2736     KnownUndef = UndefLHS & UndefRHS;
2737     KnownZero = ZeroLHS & ZeroRHS;
2738     break;
2739   }
2740   case ISD::VECTOR_SHUFFLE: {
2741     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2742 
2743     // Collect demanded elements from shuffle operands..
2744     APInt DemandedLHS(NumElts, 0);
2745     APInt DemandedRHS(NumElts, 0);
2746     for (unsigned i = 0; i != NumElts; ++i) {
2747       int M = ShuffleMask[i];
2748       if (M < 0 || !DemandedElts[i])
2749         continue;
2750       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2751       if (M < (int)NumElts)
2752         DemandedLHS.setBit(M);
2753       else
2754         DemandedRHS.setBit(M - NumElts);
2755     }
2756 
2757     // See if we can simplify either shuffle operand.
2758     APInt UndefLHS, ZeroLHS;
2759     APInt UndefRHS, ZeroRHS;
2760     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2761                                    ZeroLHS, TLO, Depth + 1))
2762       return true;
2763     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2764                                    ZeroRHS, TLO, Depth + 1))
2765       return true;
2766 
2767     // Simplify mask using undef elements from LHS/RHS.
2768     bool Updated = false;
2769     bool IdentityLHS = true, IdentityRHS = true;
2770     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2771     for (unsigned i = 0; i != NumElts; ++i) {
2772       int &M = NewMask[i];
2773       if (M < 0)
2774         continue;
2775       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2776           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2777         Updated = true;
2778         M = -1;
2779       }
2780       IdentityLHS &= (M < 0) || (M == (int)i);
2781       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2782     }
2783 
2784     // Update legal shuffle masks based on demanded elements if it won't reduce
2785     // to Identity which can cause premature removal of the shuffle mask.
2786     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2787       SDValue LegalShuffle =
2788           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2789                                   NewMask, TLO.DAG);
2790       if (LegalShuffle)
2791         return TLO.CombineTo(Op, LegalShuffle);
2792     }
2793 
2794     // Propagate undef/zero elements from LHS/RHS.
2795     for (unsigned i = 0; i != NumElts; ++i) {
2796       int M = ShuffleMask[i];
2797       if (M < 0) {
2798         KnownUndef.setBit(i);
2799       } else if (M < (int)NumElts) {
2800         if (UndefLHS[M])
2801           KnownUndef.setBit(i);
2802         if (ZeroLHS[M])
2803           KnownZero.setBit(i);
2804       } else {
2805         if (UndefRHS[M - NumElts])
2806           KnownUndef.setBit(i);
2807         if (ZeroRHS[M - NumElts])
2808           KnownZero.setBit(i);
2809       }
2810     }
2811     break;
2812   }
2813   case ISD::ANY_EXTEND_VECTOR_INREG:
2814   case ISD::SIGN_EXTEND_VECTOR_INREG:
2815   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2816     APInt SrcUndef, SrcZero;
2817     SDValue Src = Op.getOperand(0);
2818     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2819     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2820     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2821                                    Depth + 1))
2822       return true;
2823     KnownZero = SrcZero.zextOrTrunc(NumElts);
2824     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2825 
2826     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2827         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2828         DemandedSrcElts == 1) {
2829       // aext - if we just need the bottom element then we can bitcast.
2830       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2831     }
2832 
2833     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2834       // zext(undef) upper bits are guaranteed to be zero.
2835       if (DemandedElts.isSubsetOf(KnownUndef))
2836         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2837       KnownUndef.clearAllBits();
2838 
2839       // zext - if we just need the bottom element then we can mask:
2840       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
2841       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
2842           Op->isOnlyUserOf(Src.getNode()) &&
2843           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
2844         SDLoc DL(Op);
2845         EVT SrcVT = Src.getValueType();
2846         EVT SrcSVT = SrcVT.getScalarType();
2847         SmallVector<SDValue> MaskElts;
2848         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
2849         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
2850         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
2851         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
2852                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
2853           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
2854           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
2855         }
2856       }
2857     }
2858     break;
2859   }
2860 
2861   // TODO: There are more binop opcodes that could be handled here - MIN,
2862   // MAX, saturated math, etc.
2863   case ISD::ADD: {
2864     SDValue Op0 = Op.getOperand(0);
2865     SDValue Op1 = Op.getOperand(1);
2866     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
2867       APInt UndefLHS, ZeroLHS;
2868       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2869                                      Depth + 1, /*AssumeSingleUse*/ true))
2870         return true;
2871     }
2872     LLVM_FALLTHROUGH;
2873   }
2874   case ISD::OR:
2875   case ISD::XOR:
2876   case ISD::SUB:
2877   case ISD::FADD:
2878   case ISD::FSUB:
2879   case ISD::FMUL:
2880   case ISD::FDIV:
2881   case ISD::FREM: {
2882     SDValue Op0 = Op.getOperand(0);
2883     SDValue Op1 = Op.getOperand(1);
2884 
2885     APInt UndefRHS, ZeroRHS;
2886     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2887                                    Depth + 1))
2888       return true;
2889     APInt UndefLHS, ZeroLHS;
2890     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2891                                    Depth + 1))
2892       return true;
2893 
2894     KnownZero = ZeroLHS & ZeroRHS;
2895     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2896 
2897     // Attempt to avoid multi-use ops if we don't need anything from them.
2898     // TODO - use KnownUndef to relax the demandedelts?
2899     if (!DemandedElts.isAllOnes())
2900       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2901         return true;
2902     break;
2903   }
2904   case ISD::SHL:
2905   case ISD::SRL:
2906   case ISD::SRA:
2907   case ISD::ROTL:
2908   case ISD::ROTR: {
2909     SDValue Op0 = Op.getOperand(0);
2910     SDValue Op1 = Op.getOperand(1);
2911 
2912     APInt UndefRHS, ZeroRHS;
2913     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2914                                    Depth + 1))
2915       return true;
2916     APInt UndefLHS, ZeroLHS;
2917     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2918                                    Depth + 1))
2919       return true;
2920 
2921     KnownZero = ZeroLHS;
2922     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2923 
2924     // Attempt to avoid multi-use ops if we don't need anything from them.
2925     // TODO - use KnownUndef to relax the demandedelts?
2926     if (!DemandedElts.isAllOnes())
2927       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2928         return true;
2929     break;
2930   }
2931   case ISD::MUL:
2932   case ISD::AND: {
2933     SDValue Op0 = Op.getOperand(0);
2934     SDValue Op1 = Op.getOperand(1);
2935 
2936     APInt SrcUndef, SrcZero;
2937     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2938                                    Depth + 1))
2939       return true;
2940     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2941                                    TLO, Depth + 1))
2942       return true;
2943 
2944     // If either side has a zero element, then the result element is zero, even
2945     // if the other is an UNDEF.
2946     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2947     // and then handle 'and' nodes with the rest of the binop opcodes.
2948     KnownZero |= SrcZero;
2949     KnownUndef &= SrcUndef;
2950     KnownUndef &= ~KnownZero;
2951 
2952     // Attempt to avoid multi-use ops if we don't need anything from them.
2953     // TODO - use KnownUndef to relax the demandedelts?
2954     if (!DemandedElts.isAllOnes())
2955       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2956         return true;
2957     break;
2958   }
2959   case ISD::TRUNCATE:
2960   case ISD::SIGN_EXTEND:
2961   case ISD::ZERO_EXTEND:
2962     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2963                                    KnownZero, TLO, Depth + 1))
2964       return true;
2965 
2966     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2967       // zext(undef) upper bits are guaranteed to be zero.
2968       if (DemandedElts.isSubsetOf(KnownUndef))
2969         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2970       KnownUndef.clearAllBits();
2971     }
2972     break;
2973   default: {
2974     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2975       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2976                                                   KnownZero, TLO, Depth))
2977         return true;
2978     } else {
2979       KnownBits Known;
2980       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
2981       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2982                                TLO, Depth, AssumeSingleUse))
2983         return true;
2984     }
2985     break;
2986   }
2987   }
2988   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2989 
2990   // Constant fold all undef cases.
2991   // TODO: Handle zero cases as well.
2992   if (DemandedElts.isSubsetOf(KnownUndef))
2993     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2994 
2995   return false;
2996 }
2997 
2998 /// Determine which of the bits specified in Mask are known to be either zero or
2999 /// one and return them in the Known.
3000 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3001                                                    KnownBits &Known,
3002                                                    const APInt &DemandedElts,
3003                                                    const SelectionDAG &DAG,
3004                                                    unsigned Depth) const {
3005   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3006           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3007           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3008           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3009          "Should use MaskedValueIsZero if you don't know whether Op"
3010          " is a target node!");
3011   Known.resetAll();
3012 }
3013 
3014 void TargetLowering::computeKnownBitsForTargetInstr(
3015     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3016     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3017     unsigned Depth) const {
3018   Known.resetAll();
3019 }
3020 
3021 void TargetLowering::computeKnownBitsForFrameIndex(
3022   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3023   // The low bits are known zero if the pointer is aligned.
3024   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3025 }
3026 
3027 Align TargetLowering::computeKnownAlignForTargetInstr(
3028   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3029   unsigned Depth) const {
3030   return Align(1);
3031 }
3032 
3033 /// This method can be implemented by targets that want to expose additional
3034 /// information about sign bits to the DAG Combiner.
3035 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3036                                                          const APInt &,
3037                                                          const SelectionDAG &,
3038                                                          unsigned Depth) const {
3039   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3040           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3041           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3042           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3043          "Should use ComputeNumSignBits if you don't know whether Op"
3044          " is a target node!");
3045   return 1;
3046 }
3047 
3048 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3049   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3050   const MachineRegisterInfo &MRI, unsigned Depth) const {
3051   return 1;
3052 }
3053 
3054 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3055     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3056     TargetLoweringOpt &TLO, unsigned Depth) const {
3057   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3058           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3059           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3060           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3061          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3062          " is a target node!");
3063   return false;
3064 }
3065 
3066 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3067     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3068     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3069   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3070           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3071           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3072           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3073          "Should use SimplifyDemandedBits if you don't know whether Op"
3074          " is a target node!");
3075   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3076   return false;
3077 }
3078 
3079 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3080     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3081     SelectionDAG &DAG, unsigned Depth) const {
3082   assert(
3083       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3084        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3085        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3086        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3087       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3088       " is a target node!");
3089   return SDValue();
3090 }
3091 
3092 SDValue
3093 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3094                                         SDValue N1, MutableArrayRef<int> Mask,
3095                                         SelectionDAG &DAG) const {
3096   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3097   if (!LegalMask) {
3098     std::swap(N0, N1);
3099     ShuffleVectorSDNode::commuteMask(Mask);
3100     LegalMask = isShuffleMaskLegal(Mask, VT);
3101   }
3102 
3103   if (!LegalMask)
3104     return SDValue();
3105 
3106   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3107 }
3108 
3109 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3110   return nullptr;
3111 }
3112 
3113 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3114     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3115     bool PoisonOnly, unsigned Depth) const {
3116   assert(
3117       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3118        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3119        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3120        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3121       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3122       " is a target node!");
3123   return false;
3124 }
3125 
3126 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3127                                                   const SelectionDAG &DAG,
3128                                                   bool SNaN,
3129                                                   unsigned Depth) const {
3130   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3131           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3132           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3133           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3134          "Should use isKnownNeverNaN if you don't know whether Op"
3135          " is a target node!");
3136   return false;
3137 }
3138 
3139 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3140                                                const APInt &DemandedElts,
3141                                                APInt &UndefElts,
3142                                                unsigned Depth) const {
3143   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3144           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3145           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3146           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3147          "Should use isSplatValue if you don't know whether Op"
3148          " is a target node!");
3149   return false;
3150 }
3151 
3152 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3153 // work with truncating build vectors and vectors with elements of less than
3154 // 8 bits.
3155 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3156   if (!N)
3157     return false;
3158 
3159   APInt CVal;
3160   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3161     CVal = CN->getAPIntValue();
3162   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3163     auto *CN = BV->getConstantSplatNode();
3164     if (!CN)
3165       return false;
3166 
3167     // If this is a truncating build vector, truncate the splat value.
3168     // Otherwise, we may fail to match the expected values below.
3169     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3170     CVal = CN->getAPIntValue();
3171     if (BVEltWidth < CVal.getBitWidth())
3172       CVal = CVal.trunc(BVEltWidth);
3173   } else {
3174     return false;
3175   }
3176 
3177   switch (getBooleanContents(N->getValueType(0))) {
3178   case UndefinedBooleanContent:
3179     return CVal[0];
3180   case ZeroOrOneBooleanContent:
3181     return CVal.isOne();
3182   case ZeroOrNegativeOneBooleanContent:
3183     return CVal.isAllOnes();
3184   }
3185 
3186   llvm_unreachable("Invalid boolean contents");
3187 }
3188 
3189 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3190   if (!N)
3191     return false;
3192 
3193   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3194   if (!CN) {
3195     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3196     if (!BV)
3197       return false;
3198 
3199     // Only interested in constant splats, we don't care about undef
3200     // elements in identifying boolean constants and getConstantSplatNode
3201     // returns NULL if all ops are undef;
3202     CN = BV->getConstantSplatNode();
3203     if (!CN)
3204       return false;
3205   }
3206 
3207   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3208     return !CN->getAPIntValue()[0];
3209 
3210   return CN->isZero();
3211 }
3212 
3213 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3214                                        bool SExt) const {
3215   if (VT == MVT::i1)
3216     return N->isOne();
3217 
3218   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3219   switch (Cnt) {
3220   case TargetLowering::ZeroOrOneBooleanContent:
3221     // An extended value of 1 is always true, unless its original type is i1,
3222     // in which case it will be sign extended to -1.
3223     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3224   case TargetLowering::UndefinedBooleanContent:
3225   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3226     return N->isAllOnes() && SExt;
3227   }
3228   llvm_unreachable("Unexpected enumeration.");
3229 }
3230 
3231 /// This helper function of SimplifySetCC tries to optimize the comparison when
3232 /// either operand of the SetCC node is a bitwise-and instruction.
3233 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3234                                          ISD::CondCode Cond, const SDLoc &DL,
3235                                          DAGCombinerInfo &DCI) const {
3236   // Match these patterns in any of their permutations:
3237   // (X & Y) == Y
3238   // (X & Y) != Y
3239   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3240     std::swap(N0, N1);
3241 
3242   EVT OpVT = N0.getValueType();
3243   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3244       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3245     return SDValue();
3246 
3247   SDValue X, Y;
3248   if (N0.getOperand(0) == N1) {
3249     X = N0.getOperand(1);
3250     Y = N0.getOperand(0);
3251   } else if (N0.getOperand(1) == N1) {
3252     X = N0.getOperand(0);
3253     Y = N0.getOperand(1);
3254   } else {
3255     return SDValue();
3256   }
3257 
3258   SelectionDAG &DAG = DCI.DAG;
3259   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3260   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3261     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3262     // Note that where Y is variable and is known to have at most one bit set
3263     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3264     // equivalent when Y == 0.
3265     assert(OpVT.isInteger());
3266     Cond = ISD::getSetCCInverse(Cond, OpVT);
3267     if (DCI.isBeforeLegalizeOps() ||
3268         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3269       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3270   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3271     // If the target supports an 'and-not' or 'and-complement' logic operation,
3272     // try to use that to make a comparison operation more efficient.
3273     // But don't do this transform if the mask is a single bit because there are
3274     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3275     // 'rlwinm' on PPC).
3276 
3277     // Bail out if the compare operand that we want to turn into a zero is
3278     // already a zero (otherwise, infinite loop).
3279     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3280     if (YConst && YConst->isZero())
3281       return SDValue();
3282 
3283     // Transform this into: ~X & Y == 0.
3284     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3285     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3286     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3287   }
3288 
3289   return SDValue();
3290 }
3291 
3292 /// There are multiple IR patterns that could be checking whether certain
3293 /// truncation of a signed number would be lossy or not. The pattern which is
3294 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3295 /// We are looking for the following pattern: (KeptBits is a constant)
3296 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3297 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3298 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3299 /// We will unfold it into the natural trunc+sext pattern:
3300 ///   ((%x << C) a>> C) dstcond %x
3301 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3302 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3303     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3304     const SDLoc &DL) const {
3305   // We must be comparing with a constant.
3306   ConstantSDNode *C1;
3307   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3308     return SDValue();
3309 
3310   // N0 should be:  add %x, (1 << (KeptBits-1))
3311   if (N0->getOpcode() != ISD::ADD)
3312     return SDValue();
3313 
3314   // And we must be 'add'ing a constant.
3315   ConstantSDNode *C01;
3316   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3317     return SDValue();
3318 
3319   SDValue X = N0->getOperand(0);
3320   EVT XVT = X.getValueType();
3321 
3322   // Validate constants ...
3323 
3324   APInt I1 = C1->getAPIntValue();
3325 
3326   ISD::CondCode NewCond;
3327   if (Cond == ISD::CondCode::SETULT) {
3328     NewCond = ISD::CondCode::SETEQ;
3329   } else if (Cond == ISD::CondCode::SETULE) {
3330     NewCond = ISD::CondCode::SETEQ;
3331     // But need to 'canonicalize' the constant.
3332     I1 += 1;
3333   } else if (Cond == ISD::CondCode::SETUGT) {
3334     NewCond = ISD::CondCode::SETNE;
3335     // But need to 'canonicalize' the constant.
3336     I1 += 1;
3337   } else if (Cond == ISD::CondCode::SETUGE) {
3338     NewCond = ISD::CondCode::SETNE;
3339   } else
3340     return SDValue();
3341 
3342   APInt I01 = C01->getAPIntValue();
3343 
3344   auto checkConstants = [&I1, &I01]() -> bool {
3345     // Both of them must be power-of-two, and the constant from setcc is bigger.
3346     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3347   };
3348 
3349   if (checkConstants()) {
3350     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3351   } else {
3352     // What if we invert constants? (and the target predicate)
3353     I1.negate();
3354     I01.negate();
3355     assert(XVT.isInteger());
3356     NewCond = getSetCCInverse(NewCond, XVT);
3357     if (!checkConstants())
3358       return SDValue();
3359     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3360   }
3361 
3362   // They are power-of-two, so which bit is set?
3363   const unsigned KeptBits = I1.logBase2();
3364   const unsigned KeptBitsMinusOne = I01.logBase2();
3365 
3366   // Magic!
3367   if (KeptBits != (KeptBitsMinusOne + 1))
3368     return SDValue();
3369   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3370 
3371   // We don't want to do this in every single case.
3372   SelectionDAG &DAG = DCI.DAG;
3373   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3374           XVT, KeptBits))
3375     return SDValue();
3376 
3377   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3378   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3379 
3380   // Unfold into:  ((%x << C) a>> C) cond %x
3381   // Where 'cond' will be either 'eq' or 'ne'.
3382   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3383   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3384   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3385   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3386 
3387   return T2;
3388 }
3389 
3390 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3391 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3392     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3393     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3394   assert(isConstOrConstSplat(N1C) &&
3395          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3396          "Should be a comparison with 0.");
3397   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3398          "Valid only for [in]equality comparisons.");
3399 
3400   unsigned NewShiftOpcode;
3401   SDValue X, C, Y;
3402 
3403   SelectionDAG &DAG = DCI.DAG;
3404   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405 
3406   // Look for '(C l>>/<< Y)'.
3407   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3408     // The shift should be one-use.
3409     if (!V.hasOneUse())
3410       return false;
3411     unsigned OldShiftOpcode = V.getOpcode();
3412     switch (OldShiftOpcode) {
3413     case ISD::SHL:
3414       NewShiftOpcode = ISD::SRL;
3415       break;
3416     case ISD::SRL:
3417       NewShiftOpcode = ISD::SHL;
3418       break;
3419     default:
3420       return false; // must be a logical shift.
3421     }
3422     // We should be shifting a constant.
3423     // FIXME: best to use isConstantOrConstantVector().
3424     C = V.getOperand(0);
3425     ConstantSDNode *CC =
3426         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3427     if (!CC)
3428       return false;
3429     Y = V.getOperand(1);
3430 
3431     ConstantSDNode *XC =
3432         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3433     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3434         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3435   };
3436 
3437   // LHS of comparison should be an one-use 'and'.
3438   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3439     return SDValue();
3440 
3441   X = N0.getOperand(0);
3442   SDValue Mask = N0.getOperand(1);
3443 
3444   // 'and' is commutative!
3445   if (!Match(Mask)) {
3446     std::swap(X, Mask);
3447     if (!Match(Mask))
3448       return SDValue();
3449   }
3450 
3451   EVT VT = X.getValueType();
3452 
3453   // Produce:
3454   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3455   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3456   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3457   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3458   return T2;
3459 }
3460 
3461 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3462 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3463 /// handle the commuted versions of these patterns.
3464 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3465                                            ISD::CondCode Cond, const SDLoc &DL,
3466                                            DAGCombinerInfo &DCI) const {
3467   unsigned BOpcode = N0.getOpcode();
3468   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3469          "Unexpected binop");
3470   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3471 
3472   // (X + Y) == X --> Y == 0
3473   // (X - Y) == X --> Y == 0
3474   // (X ^ Y) == X --> Y == 0
3475   SelectionDAG &DAG = DCI.DAG;
3476   EVT OpVT = N0.getValueType();
3477   SDValue X = N0.getOperand(0);
3478   SDValue Y = N0.getOperand(1);
3479   if (X == N1)
3480     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3481 
3482   if (Y != N1)
3483     return SDValue();
3484 
3485   // (X + Y) == Y --> X == 0
3486   // (X ^ Y) == Y --> X == 0
3487   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3488     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3489 
3490   // The shift would not be valid if the operands are boolean (i1).
3491   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3492     return SDValue();
3493 
3494   // (X - Y) == Y --> X == Y << 1
3495   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3496                                  !DCI.isBeforeLegalize());
3497   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3498   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3499   if (!DCI.isCalledByLegalizer())
3500     DCI.AddToWorklist(YShl1.getNode());
3501   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3502 }
3503 
3504 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3505                                       SDValue N0, const APInt &C1,
3506                                       ISD::CondCode Cond, const SDLoc &dl,
3507                                       SelectionDAG &DAG) {
3508   // Look through truncs that don't change the value of a ctpop.
3509   // FIXME: Add vector support? Need to be careful with setcc result type below.
3510   SDValue CTPOP = N0;
3511   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3512       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3513     CTPOP = N0.getOperand(0);
3514 
3515   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3516     return SDValue();
3517 
3518   EVT CTVT = CTPOP.getValueType();
3519   SDValue CTOp = CTPOP.getOperand(0);
3520 
3521   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3522   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3523   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3524     return SDValue();
3525 
3526   // (ctpop x) u< 2 -> (x & x-1) == 0
3527   // (ctpop x) u> 1 -> (x & x-1) != 0
3528   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3529     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3530     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3531       return SDValue();
3532     if (C1 == 0 && (Cond == ISD::SETULT))
3533       return SDValue(); // This is handled elsewhere.
3534 
3535     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3536 
3537     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3538     SDValue Result = CTOp;
3539     for (unsigned i = 0; i < Passes; i++) {
3540       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3541       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3542     }
3543     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3544     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3545   }
3546 
3547   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3548   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3549     // For scalars, keep CTPOP if it is legal or custom.
3550     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3551       return SDValue();
3552     // This is based on X86's custom lowering for CTPOP which produces more
3553     // instructions than the expansion here.
3554 
3555     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3556     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3557     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3558     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3559     assert(CTVT.isInteger());
3560     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3561     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3562     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3563     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3564     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3565     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3566     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3567   }
3568 
3569   return SDValue();
3570 }
3571 
3572 /// Try to simplify a setcc built with the specified operands and cc. If it is
3573 /// unable to simplify it, return a null SDValue.
3574 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3575                                       ISD::CondCode Cond, bool foldBooleans,
3576                                       DAGCombinerInfo &DCI,
3577                                       const SDLoc &dl) const {
3578   SelectionDAG &DAG = DCI.DAG;
3579   const DataLayout &Layout = DAG.getDataLayout();
3580   EVT OpVT = N0.getValueType();
3581 
3582   // Constant fold or commute setcc.
3583   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3584     return Fold;
3585 
3586   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3587   // TODO: Handle non-splat vector constants. All undef causes trouble.
3588   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3589   // infinite loop here when we encounter one.
3590   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3591   if (isConstOrConstSplat(N0) &&
3592       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3593       (DCI.isBeforeLegalizeOps() ||
3594        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3595     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3596 
3597   // If we have a subtract with the same 2 non-constant operands as this setcc
3598   // -- but in reverse order -- then try to commute the operands of this setcc
3599   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3600   // instruction on some targets.
3601   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3602       (DCI.isBeforeLegalizeOps() ||
3603        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3604       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3605       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3606     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3607 
3608   if (auto *N1C = isConstOrConstSplat(N1)) {
3609     const APInt &C1 = N1C->getAPIntValue();
3610 
3611     // Optimize some CTPOP cases.
3612     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3613       return V;
3614 
3615     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3616     // equality comparison, then we're just comparing whether X itself is
3617     // zero.
3618     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3619         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3620         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3621       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3622         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3623             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3624           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3625             // (srl (ctlz x), 5) == 0  -> X != 0
3626             // (srl (ctlz x), 5) != 1  -> X != 0
3627             Cond = ISD::SETNE;
3628           } else {
3629             // (srl (ctlz x), 5) != 0  -> X == 0
3630             // (srl (ctlz x), 5) == 1  -> X == 0
3631             Cond = ISD::SETEQ;
3632           }
3633           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3634           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3635                               Cond);
3636         }
3637       }
3638     }
3639   }
3640 
3641   // FIXME: Support vectors.
3642   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3643     const APInt &C1 = N1C->getAPIntValue();
3644 
3645     // (zext x) == C --> x == (trunc C)
3646     // (sext x) == C --> x == (trunc C)
3647     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3648         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3649       unsigned MinBits = N0.getValueSizeInBits();
3650       SDValue PreExt;
3651       bool Signed = false;
3652       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3653         // ZExt
3654         MinBits = N0->getOperand(0).getValueSizeInBits();
3655         PreExt = N0->getOperand(0);
3656       } else if (N0->getOpcode() == ISD::AND) {
3657         // DAGCombine turns costly ZExts into ANDs
3658         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3659           if ((C->getAPIntValue()+1).isPowerOf2()) {
3660             MinBits = C->getAPIntValue().countTrailingOnes();
3661             PreExt = N0->getOperand(0);
3662           }
3663       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3664         // SExt
3665         MinBits = N0->getOperand(0).getValueSizeInBits();
3666         PreExt = N0->getOperand(0);
3667         Signed = true;
3668       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3669         // ZEXTLOAD / SEXTLOAD
3670         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3671           MinBits = LN0->getMemoryVT().getSizeInBits();
3672           PreExt = N0;
3673         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3674           Signed = true;
3675           MinBits = LN0->getMemoryVT().getSizeInBits();
3676           PreExt = N0;
3677         }
3678       }
3679 
3680       // Figure out how many bits we need to preserve this constant.
3681       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3682 
3683       // Make sure we're not losing bits from the constant.
3684       if (MinBits > 0 &&
3685           MinBits < C1.getBitWidth() &&
3686           MinBits >= ReqdBits) {
3687         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3688         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3689           // Will get folded away.
3690           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3691           if (MinBits == 1 && C1 == 1)
3692             // Invert the condition.
3693             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3694                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3695           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3696           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3697         }
3698 
3699         // If truncating the setcc operands is not desirable, we can still
3700         // simplify the expression in some cases:
3701         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3702         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3703         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3704         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3705         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3706         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3707         SDValue TopSetCC = N0->getOperand(0);
3708         unsigned N0Opc = N0->getOpcode();
3709         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3710         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3711             TopSetCC.getOpcode() == ISD::SETCC &&
3712             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3713             (isConstFalseVal(N1C) ||
3714              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3715 
3716           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3717                          (!N1C->isZero() && Cond == ISD::SETNE);
3718 
3719           if (!Inverse)
3720             return TopSetCC;
3721 
3722           ISD::CondCode InvCond = ISD::getSetCCInverse(
3723               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3724               TopSetCC.getOperand(0).getValueType());
3725           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3726                                       TopSetCC.getOperand(1),
3727                                       InvCond);
3728         }
3729       }
3730     }
3731 
3732     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3733     // equality or unsigned, and all 1 bits of the const are in the same
3734     // partial word, see if we can shorten the load.
3735     if (DCI.isBeforeLegalize() &&
3736         !ISD::isSignedIntSetCC(Cond) &&
3737         N0.getOpcode() == ISD::AND && C1 == 0 &&
3738         N0.getNode()->hasOneUse() &&
3739         isa<LoadSDNode>(N0.getOperand(0)) &&
3740         N0.getOperand(0).getNode()->hasOneUse() &&
3741         isa<ConstantSDNode>(N0.getOperand(1))) {
3742       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3743       APInt bestMask;
3744       unsigned bestWidth = 0, bestOffset = 0;
3745       if (Lod->isSimple() && Lod->isUnindexed()) {
3746         unsigned origWidth = N0.getValueSizeInBits();
3747         unsigned maskWidth = origWidth;
3748         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3749         // 8 bits, but have to be careful...
3750         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3751           origWidth = Lod->getMemoryVT().getSizeInBits();
3752         const APInt &Mask = N0.getConstantOperandAPInt(1);
3753         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3754           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3755           for (unsigned offset=0; offset<origWidth/width; offset++) {
3756             if (Mask.isSubsetOf(newMask)) {
3757               if (Layout.isLittleEndian())
3758                 bestOffset = (uint64_t)offset * (width/8);
3759               else
3760                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3761               bestMask = Mask.lshr(offset * (width/8) * 8);
3762               bestWidth = width;
3763               break;
3764             }
3765             newMask <<= width;
3766           }
3767         }
3768       }
3769       if (bestWidth) {
3770         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3771         if (newVT.isRound() &&
3772             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3773           SDValue Ptr = Lod->getBasePtr();
3774           if (bestOffset != 0)
3775             Ptr =
3776                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3777           SDValue NewLoad =
3778               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3779                           Lod->getPointerInfo().getWithOffset(bestOffset),
3780                           Lod->getOriginalAlign());
3781           return DAG.getSetCC(dl, VT,
3782                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3783                                       DAG.getConstant(bestMask.trunc(bestWidth),
3784                                                       dl, newVT)),
3785                               DAG.getConstant(0LL, dl, newVT), Cond);
3786         }
3787       }
3788     }
3789 
3790     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3791     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3792       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3793 
3794       // If the comparison constant has bits in the upper part, the
3795       // zero-extended value could never match.
3796       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3797                                               C1.getBitWidth() - InSize))) {
3798         switch (Cond) {
3799         case ISD::SETUGT:
3800         case ISD::SETUGE:
3801         case ISD::SETEQ:
3802           return DAG.getConstant(0, dl, VT);
3803         case ISD::SETULT:
3804         case ISD::SETULE:
3805         case ISD::SETNE:
3806           return DAG.getConstant(1, dl, VT);
3807         case ISD::SETGT:
3808         case ISD::SETGE:
3809           // True if the sign bit of C1 is set.
3810           return DAG.getConstant(C1.isNegative(), dl, VT);
3811         case ISD::SETLT:
3812         case ISD::SETLE:
3813           // True if the sign bit of C1 isn't set.
3814           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3815         default:
3816           break;
3817         }
3818       }
3819 
3820       // Otherwise, we can perform the comparison with the low bits.
3821       switch (Cond) {
3822       case ISD::SETEQ:
3823       case ISD::SETNE:
3824       case ISD::SETUGT:
3825       case ISD::SETUGE:
3826       case ISD::SETULT:
3827       case ISD::SETULE: {
3828         EVT newVT = N0.getOperand(0).getValueType();
3829         if (DCI.isBeforeLegalizeOps() ||
3830             (isOperationLegal(ISD::SETCC, newVT) &&
3831              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3832           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3833           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3834 
3835           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3836                                           NewConst, Cond);
3837           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3838         }
3839         break;
3840       }
3841       default:
3842         break; // todo, be more careful with signed comparisons
3843       }
3844     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3845                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3846                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3847                                       OpVT)) {
3848       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3849       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3850       EVT ExtDstTy = N0.getValueType();
3851       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3852 
3853       // If the constant doesn't fit into the number of bits for the source of
3854       // the sign extension, it is impossible for both sides to be equal.
3855       if (C1.getMinSignedBits() > ExtSrcTyBits)
3856         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3857 
3858       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3859              ExtDstTy != ExtSrcTy && "Unexpected types!");
3860       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3861       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3862                                    DAG.getConstant(Imm, dl, ExtDstTy));
3863       if (!DCI.isCalledByLegalizer())
3864         DCI.AddToWorklist(ZextOp.getNode());
3865       // Otherwise, make this a use of a zext.
3866       return DAG.getSetCC(dl, VT, ZextOp,
3867                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3868     } else if ((N1C->isZero() || N1C->isOne()) &&
3869                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3870       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3871       if (N0.getOpcode() == ISD::SETCC &&
3872           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3873           (N0.getValueType() == MVT::i1 ||
3874            getBooleanContents(N0.getOperand(0).getValueType()) ==
3875                        ZeroOrOneBooleanContent)) {
3876         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3877         if (TrueWhenTrue)
3878           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3879         // Invert the condition.
3880         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3881         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3882         if (DCI.isBeforeLegalizeOps() ||
3883             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3884           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3885       }
3886 
3887       if ((N0.getOpcode() == ISD::XOR ||
3888            (N0.getOpcode() == ISD::AND &&
3889             N0.getOperand(0).getOpcode() == ISD::XOR &&
3890             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3891           isOneConstant(N0.getOperand(1))) {
3892         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3893         // can only do this if the top bits are known zero.
3894         unsigned BitWidth = N0.getValueSizeInBits();
3895         if (DAG.MaskedValueIsZero(N0,
3896                                   APInt::getHighBitsSet(BitWidth,
3897                                                         BitWidth-1))) {
3898           // Okay, get the un-inverted input value.
3899           SDValue Val;
3900           if (N0.getOpcode() == ISD::XOR) {
3901             Val = N0.getOperand(0);
3902           } else {
3903             assert(N0.getOpcode() == ISD::AND &&
3904                     N0.getOperand(0).getOpcode() == ISD::XOR);
3905             // ((X^1)&1)^1 -> X & 1
3906             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3907                               N0.getOperand(0).getOperand(0),
3908                               N0.getOperand(1));
3909           }
3910 
3911           return DAG.getSetCC(dl, VT, Val, N1,
3912                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3913         }
3914       } else if (N1C->isOne()) {
3915         SDValue Op0 = N0;
3916         if (Op0.getOpcode() == ISD::TRUNCATE)
3917           Op0 = Op0.getOperand(0);
3918 
3919         if ((Op0.getOpcode() == ISD::XOR) &&
3920             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3921             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3922           SDValue XorLHS = Op0.getOperand(0);
3923           SDValue XorRHS = Op0.getOperand(1);
3924           // Ensure that the input setccs return an i1 type or 0/1 value.
3925           if (Op0.getValueType() == MVT::i1 ||
3926               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3927                       ZeroOrOneBooleanContent &&
3928                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3929                         ZeroOrOneBooleanContent)) {
3930             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3931             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3932             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3933           }
3934         }
3935         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3936           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3937           if (Op0.getValueType().bitsGT(VT))
3938             Op0 = DAG.getNode(ISD::AND, dl, VT,
3939                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3940                           DAG.getConstant(1, dl, VT));
3941           else if (Op0.getValueType().bitsLT(VT))
3942             Op0 = DAG.getNode(ISD::AND, dl, VT,
3943                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3944                         DAG.getConstant(1, dl, VT));
3945 
3946           return DAG.getSetCC(dl, VT, Op0,
3947                               DAG.getConstant(0, dl, Op0.getValueType()),
3948                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3949         }
3950         if (Op0.getOpcode() == ISD::AssertZext &&
3951             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3952           return DAG.getSetCC(dl, VT, Op0,
3953                               DAG.getConstant(0, dl, Op0.getValueType()),
3954                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3955       }
3956     }
3957 
3958     // Given:
3959     //   icmp eq/ne (urem %x, %y), 0
3960     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3961     //   icmp eq/ne %x, 0
3962     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
3963         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3964       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3965       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3966       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3967         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3968     }
3969 
3970     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
3971     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
3972     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3973         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
3974         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
3975         N1C && N1C->isAllOnes()) {
3976       return DAG.getSetCC(dl, VT, N0.getOperand(0),
3977                           DAG.getConstant(0, dl, OpVT),
3978                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
3979     }
3980 
3981     if (SDValue V =
3982             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3983       return V;
3984   }
3985 
3986   // These simplifications apply to splat vectors as well.
3987   // TODO: Handle more splat vector cases.
3988   if (auto *N1C = isConstOrConstSplat(N1)) {
3989     const APInt &C1 = N1C->getAPIntValue();
3990 
3991     APInt MinVal, MaxVal;
3992     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3993     if (ISD::isSignedIntSetCC(Cond)) {
3994       MinVal = APInt::getSignedMinValue(OperandBitSize);
3995       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3996     } else {
3997       MinVal = APInt::getMinValue(OperandBitSize);
3998       MaxVal = APInt::getMaxValue(OperandBitSize);
3999     }
4000 
4001     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4002     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4003       // X >= MIN --> true
4004       if (C1 == MinVal)
4005         return DAG.getBoolConstant(true, dl, VT, OpVT);
4006 
4007       if (!VT.isVector()) { // TODO: Support this for vectors.
4008         // X >= C0 --> X > (C0 - 1)
4009         APInt C = C1 - 1;
4010         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4011         if ((DCI.isBeforeLegalizeOps() ||
4012              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4013             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4014                                   isLegalICmpImmediate(C.getSExtValue())))) {
4015           return DAG.getSetCC(dl, VT, N0,
4016                               DAG.getConstant(C, dl, N1.getValueType()),
4017                               NewCC);
4018         }
4019       }
4020     }
4021 
4022     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4023       // X <= MAX --> true
4024       if (C1 == MaxVal)
4025         return DAG.getBoolConstant(true, dl, VT, OpVT);
4026 
4027       // X <= C0 --> X < (C0 + 1)
4028       if (!VT.isVector()) { // TODO: Support this for vectors.
4029         APInt C = C1 + 1;
4030         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4031         if ((DCI.isBeforeLegalizeOps() ||
4032              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4033             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4034                                   isLegalICmpImmediate(C.getSExtValue())))) {
4035           return DAG.getSetCC(dl, VT, N0,
4036                               DAG.getConstant(C, dl, N1.getValueType()),
4037                               NewCC);
4038         }
4039       }
4040     }
4041 
4042     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4043       if (C1 == MinVal)
4044         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4045 
4046       // TODO: Support this for vectors after legalize ops.
4047       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4048         // Canonicalize setlt X, Max --> setne X, Max
4049         if (C1 == MaxVal)
4050           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4051 
4052         // If we have setult X, 1, turn it into seteq X, 0
4053         if (C1 == MinVal+1)
4054           return DAG.getSetCC(dl, VT, N0,
4055                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4056                               ISD::SETEQ);
4057       }
4058     }
4059 
4060     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4061       if (C1 == MaxVal)
4062         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4063 
4064       // TODO: Support this for vectors after legalize ops.
4065       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4066         // Canonicalize setgt X, Min --> setne X, Min
4067         if (C1 == MinVal)
4068           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4069 
4070         // If we have setugt X, Max-1, turn it into seteq X, Max
4071         if (C1 == MaxVal-1)
4072           return DAG.getSetCC(dl, VT, N0,
4073                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4074                               ISD::SETEQ);
4075       }
4076     }
4077 
4078     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4079       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4080       if (C1.isZero())
4081         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4082                 VT, N0, N1, Cond, DCI, dl))
4083           return CC;
4084 
4085       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4086       // For example, when high 32-bits of i64 X are known clear:
4087       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4088       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4089       bool CmpZero = N1C->getAPIntValue().isZero();
4090       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4091       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4092         // Match or(lo,shl(hi,bw/2)) pattern.
4093         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4094           unsigned EltBits = V.getScalarValueSizeInBits();
4095           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4096             return false;
4097           SDValue LHS = V.getOperand(0);
4098           SDValue RHS = V.getOperand(1);
4099           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4100           // Unshifted element must have zero upperbits.
4101           if (RHS.getOpcode() == ISD::SHL &&
4102               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4103               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4104               DAG.MaskedValueIsZero(LHS, HiBits)) {
4105             Lo = LHS;
4106             Hi = RHS.getOperand(0);
4107             return true;
4108           }
4109           if (LHS.getOpcode() == ISD::SHL &&
4110               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4111               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4112               DAG.MaskedValueIsZero(RHS, HiBits)) {
4113             Lo = RHS;
4114             Hi = LHS.getOperand(0);
4115             return true;
4116           }
4117           return false;
4118         };
4119 
4120         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4121           unsigned EltBits = N0.getScalarValueSizeInBits();
4122           unsigned HalfBits = EltBits / 2;
4123           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4124           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4125           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4126           SDValue NewN0 =
4127               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4128           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4129           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4130         };
4131 
4132         SDValue Lo, Hi;
4133         if (IsConcat(N0, Lo, Hi))
4134           return MergeConcat(Lo, Hi);
4135 
4136         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4137           SDValue Lo0, Lo1, Hi0, Hi1;
4138           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4139               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4140             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4141                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4142           }
4143         }
4144       }
4145     }
4146 
4147     // If we have "setcc X, C0", check to see if we can shrink the immediate
4148     // by changing cc.
4149     // TODO: Support this for vectors after legalize ops.
4150     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4151       // SETUGT X, SINTMAX  -> SETLT X, 0
4152       // SETUGE X, SINTMIN -> SETLT X, 0
4153       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4154           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4155         return DAG.getSetCC(dl, VT, N0,
4156                             DAG.getConstant(0, dl, N1.getValueType()),
4157                             ISD::SETLT);
4158 
4159       // SETULT X, SINTMIN  -> SETGT X, -1
4160       // SETULE X, SINTMAX  -> SETGT X, -1
4161       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4162           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4163         return DAG.getSetCC(dl, VT, N0,
4164                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4165                             ISD::SETGT);
4166     }
4167   }
4168 
4169   // Back to non-vector simplifications.
4170   // TODO: Can we do these for vector splats?
4171   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4172     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4173     const APInt &C1 = N1C->getAPIntValue();
4174     EVT ShValTy = N0.getValueType();
4175 
4176     // Fold bit comparisons when we can. This will result in an
4177     // incorrect value when boolean false is negative one, unless
4178     // the bitsize is 1 in which case the false value is the same
4179     // in practice regardless of the representation.
4180     if ((VT.getSizeInBits() == 1 ||
4181          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4182         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4183         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4184         N0.getOpcode() == ISD::AND) {
4185       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4186         EVT ShiftTy =
4187             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4188         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4189           // Perform the xform if the AND RHS is a single bit.
4190           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4191           if (AndRHS->getAPIntValue().isPowerOf2() &&
4192               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4193             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4194                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4195                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4196           }
4197         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4198           // (X & 8) == 8  -->  (X & 8) >> 3
4199           // Perform the xform if C1 is a single bit.
4200           unsigned ShCt = C1.logBase2();
4201           if (C1.isPowerOf2() &&
4202               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4203             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4204                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4205                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4206           }
4207         }
4208       }
4209     }
4210 
4211     if (C1.getMinSignedBits() <= 64 &&
4212         !isLegalICmpImmediate(C1.getSExtValue())) {
4213       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4214       // (X & -256) == 256 -> (X >> 8) == 1
4215       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4216           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4217         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4218           const APInt &AndRHSC = AndRHS->getAPIntValue();
4219           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4220             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4221             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4222               SDValue Shift =
4223                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4224                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4225               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4226               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4227             }
4228           }
4229         }
4230       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4231                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4232         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4233         // X <  0x100000000 -> (X >> 32) <  1
4234         // X >= 0x100000000 -> (X >> 32) >= 1
4235         // X <= 0x0ffffffff -> (X >> 32) <  1
4236         // X >  0x0ffffffff -> (X >> 32) >= 1
4237         unsigned ShiftBits;
4238         APInt NewC = C1;
4239         ISD::CondCode NewCond = Cond;
4240         if (AdjOne) {
4241           ShiftBits = C1.countTrailingOnes();
4242           NewC = NewC + 1;
4243           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4244         } else {
4245           ShiftBits = C1.countTrailingZeros();
4246         }
4247         NewC.lshrInPlace(ShiftBits);
4248         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4249             isLegalICmpImmediate(NewC.getSExtValue()) &&
4250             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4251           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4252                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4253           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4254           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4255         }
4256       }
4257     }
4258   }
4259 
4260   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4261     auto *CFP = cast<ConstantFPSDNode>(N1);
4262     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4263 
4264     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4265     // constant if knowing that the operand is non-nan is enough.  We prefer to
4266     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4267     // materialize 0.0.
4268     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4269       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4270 
4271     // setcc (fneg x), C -> setcc swap(pred) x, -C
4272     if (N0.getOpcode() == ISD::FNEG) {
4273       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4274       if (DCI.isBeforeLegalizeOps() ||
4275           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4276         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4277         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4278       }
4279     }
4280 
4281     // If the condition is not legal, see if we can find an equivalent one
4282     // which is legal.
4283     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4284       // If the comparison was an awkward floating-point == or != and one of
4285       // the comparison operands is infinity or negative infinity, convert the
4286       // condition to a less-awkward <= or >=.
4287       if (CFP->getValueAPF().isInfinity()) {
4288         bool IsNegInf = CFP->getValueAPF().isNegative();
4289         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4290         switch (Cond) {
4291         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4292         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4293         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4294         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4295         default: break;
4296         }
4297         if (NewCond != ISD::SETCC_INVALID &&
4298             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4299           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4300       }
4301     }
4302   }
4303 
4304   if (N0 == N1) {
4305     // The sext(setcc()) => setcc() optimization relies on the appropriate
4306     // constant being emitted.
4307     assert(!N0.getValueType().isInteger() &&
4308            "Integer types should be handled by FoldSetCC");
4309 
4310     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4311     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4312     if (UOF == 2) // FP operators that are undefined on NaNs.
4313       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4314     if (UOF == unsigned(EqTrue))
4315       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4316     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4317     // if it is not already.
4318     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4319     if (NewCond != Cond &&
4320         (DCI.isBeforeLegalizeOps() ||
4321                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4322       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4323   }
4324 
4325   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4326       N0.getValueType().isInteger()) {
4327     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4328         N0.getOpcode() == ISD::XOR) {
4329       // Simplify (X+Y) == (X+Z) -->  Y == Z
4330       if (N0.getOpcode() == N1.getOpcode()) {
4331         if (N0.getOperand(0) == N1.getOperand(0))
4332           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4333         if (N0.getOperand(1) == N1.getOperand(1))
4334           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4335         if (isCommutativeBinOp(N0.getOpcode())) {
4336           // If X op Y == Y op X, try other combinations.
4337           if (N0.getOperand(0) == N1.getOperand(1))
4338             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4339                                 Cond);
4340           if (N0.getOperand(1) == N1.getOperand(0))
4341             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4342                                 Cond);
4343         }
4344       }
4345 
4346       // If RHS is a legal immediate value for a compare instruction, we need
4347       // to be careful about increasing register pressure needlessly.
4348       bool LegalRHSImm = false;
4349 
4350       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4351         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4352           // Turn (X+C1) == C2 --> X == C2-C1
4353           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4354             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4355                                 DAG.getConstant(RHSC->getAPIntValue()-
4356                                                 LHSR->getAPIntValue(),
4357                                 dl, N0.getValueType()), Cond);
4358           }
4359 
4360           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4361           if (N0.getOpcode() == ISD::XOR)
4362             // If we know that all of the inverted bits are zero, don't bother
4363             // performing the inversion.
4364             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4365               return
4366                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4367                              DAG.getConstant(LHSR->getAPIntValue() ^
4368                                                RHSC->getAPIntValue(),
4369                                              dl, N0.getValueType()),
4370                              Cond);
4371         }
4372 
4373         // Turn (C1-X) == C2 --> X == C1-C2
4374         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4375           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4376             return
4377               DAG.getSetCC(dl, VT, N0.getOperand(1),
4378                            DAG.getConstant(SUBC->getAPIntValue() -
4379                                              RHSC->getAPIntValue(),
4380                                            dl, N0.getValueType()),
4381                            Cond);
4382           }
4383         }
4384 
4385         // Could RHSC fold directly into a compare?
4386         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4387           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4388       }
4389 
4390       // (X+Y) == X --> Y == 0 and similar folds.
4391       // Don't do this if X is an immediate that can fold into a cmp
4392       // instruction and X+Y has other uses. It could be an induction variable
4393       // chain, and the transform would increase register pressure.
4394       if (!LegalRHSImm || N0.hasOneUse())
4395         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4396           return V;
4397     }
4398 
4399     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4400         N1.getOpcode() == ISD::XOR)
4401       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4402         return V;
4403 
4404     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4405       return V;
4406   }
4407 
4408   // Fold remainder of division by a constant.
4409   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4410       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4411     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4412 
4413     // When division is cheap or optimizing for minimum size,
4414     // fall through to DIVREM creation by skipping this fold.
4415     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4416       if (N0.getOpcode() == ISD::UREM) {
4417         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4418           return Folded;
4419       } else if (N0.getOpcode() == ISD::SREM) {
4420         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4421           return Folded;
4422       }
4423     }
4424   }
4425 
4426   // Fold away ALL boolean setcc's.
4427   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4428     SDValue Temp;
4429     switch (Cond) {
4430     default: llvm_unreachable("Unknown integer setcc!");
4431     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4432       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4433       N0 = DAG.getNOT(dl, Temp, OpVT);
4434       if (!DCI.isCalledByLegalizer())
4435         DCI.AddToWorklist(Temp.getNode());
4436       break;
4437     case ISD::SETNE:  // X != Y   -->  (X^Y)
4438       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4439       break;
4440     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4441     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4442       Temp = DAG.getNOT(dl, N0, OpVT);
4443       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4444       if (!DCI.isCalledByLegalizer())
4445         DCI.AddToWorklist(Temp.getNode());
4446       break;
4447     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4448     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4449       Temp = DAG.getNOT(dl, N1, OpVT);
4450       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4451       if (!DCI.isCalledByLegalizer())
4452         DCI.AddToWorklist(Temp.getNode());
4453       break;
4454     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4455     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4456       Temp = DAG.getNOT(dl, N0, OpVT);
4457       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4458       if (!DCI.isCalledByLegalizer())
4459         DCI.AddToWorklist(Temp.getNode());
4460       break;
4461     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4462     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4463       Temp = DAG.getNOT(dl, N1, OpVT);
4464       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4465       break;
4466     }
4467     if (VT.getScalarType() != MVT::i1) {
4468       if (!DCI.isCalledByLegalizer())
4469         DCI.AddToWorklist(N0.getNode());
4470       // FIXME: If running after legalize, we probably can't do this.
4471       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4472       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4473     }
4474     return N0;
4475   }
4476 
4477   // Could not fold it.
4478   return SDValue();
4479 }
4480 
4481 /// Returns true (and the GlobalValue and the offset) if the node is a
4482 /// GlobalAddress + offset.
4483 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4484                                     int64_t &Offset) const {
4485 
4486   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4487 
4488   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4489     GA = GASD->getGlobal();
4490     Offset += GASD->getOffset();
4491     return true;
4492   }
4493 
4494   if (N->getOpcode() == ISD::ADD) {
4495     SDValue N1 = N->getOperand(0);
4496     SDValue N2 = N->getOperand(1);
4497     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4498       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4499         Offset += V->getSExtValue();
4500         return true;
4501       }
4502     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4503       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4504         Offset += V->getSExtValue();
4505         return true;
4506       }
4507     }
4508   }
4509 
4510   return false;
4511 }
4512 
4513 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4514                                           DAGCombinerInfo &DCI) const {
4515   // Default implementation: no optimization.
4516   return SDValue();
4517 }
4518 
4519 //===----------------------------------------------------------------------===//
4520 //  Inline Assembler Implementation Methods
4521 //===----------------------------------------------------------------------===//
4522 
4523 TargetLowering::ConstraintType
4524 TargetLowering::getConstraintType(StringRef Constraint) const {
4525   unsigned S = Constraint.size();
4526 
4527   if (S == 1) {
4528     switch (Constraint[0]) {
4529     default: break;
4530     case 'r':
4531       return C_RegisterClass;
4532     case 'm': // memory
4533     case 'o': // offsetable
4534     case 'V': // not offsetable
4535       return C_Memory;
4536     case 'n': // Simple Integer
4537     case 'E': // Floating Point Constant
4538     case 'F': // Floating Point Constant
4539       return C_Immediate;
4540     case 'i': // Simple Integer or Relocatable Constant
4541     case 's': // Relocatable Constant
4542     case 'p': // Address.
4543     case 'X': // Allow ANY value.
4544     case 'I': // Target registers.
4545     case 'J':
4546     case 'K':
4547     case 'L':
4548     case 'M':
4549     case 'N':
4550     case 'O':
4551     case 'P':
4552     case '<':
4553     case '>':
4554       return C_Other;
4555     }
4556   }
4557 
4558   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4559     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4560       return C_Memory;
4561     return C_Register;
4562   }
4563   return C_Unknown;
4564 }
4565 
4566 /// Try to replace an X constraint, which matches anything, with another that
4567 /// has more specific requirements based on the type of the corresponding
4568 /// operand.
4569 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4570   if (ConstraintVT.isInteger())
4571     return "r";
4572   if (ConstraintVT.isFloatingPoint())
4573     return "f"; // works for many targets
4574   return nullptr;
4575 }
4576 
4577 SDValue TargetLowering::LowerAsmOutputForConstraint(
4578     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4579     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4580   return SDValue();
4581 }
4582 
4583 /// Lower the specified operand into the Ops vector.
4584 /// If it is invalid, don't add anything to Ops.
4585 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4586                                                   std::string &Constraint,
4587                                                   std::vector<SDValue> &Ops,
4588                                                   SelectionDAG &DAG) const {
4589 
4590   if (Constraint.length() > 1) return;
4591 
4592   char ConstraintLetter = Constraint[0];
4593   switch (ConstraintLetter) {
4594   default: break;
4595   case 'X':     // Allows any operand; labels (basic block) use this.
4596     if (Op.getOpcode() == ISD::BasicBlock ||
4597         Op.getOpcode() == ISD::TargetBlockAddress) {
4598       Ops.push_back(Op);
4599       return;
4600     }
4601     LLVM_FALLTHROUGH;
4602   case 'i':    // Simple Integer or Relocatable Constant
4603   case 'n':    // Simple Integer
4604   case 's': {  // Relocatable Constant
4605 
4606     GlobalAddressSDNode *GA;
4607     ConstantSDNode *C;
4608     BlockAddressSDNode *BA;
4609     uint64_t Offset = 0;
4610 
4611     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4612     // etc., since getelementpointer is variadic. We can't use
4613     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4614     // while in this case the GA may be furthest from the root node which is
4615     // likely an ISD::ADD.
4616     while (true) {
4617       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4618         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4619                                                  GA->getValueType(0),
4620                                                  Offset + GA->getOffset()));
4621         return;
4622       }
4623       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4624         // gcc prints these as sign extended.  Sign extend value to 64 bits
4625         // now; without this it would get ZExt'd later in
4626         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4627         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4628         BooleanContent BCont = getBooleanContents(MVT::i64);
4629         ISD::NodeType ExtOpc =
4630             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4631         int64_t ExtVal =
4632             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4633         Ops.push_back(
4634             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4635         return;
4636       }
4637       if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4638         Ops.push_back(DAG.getTargetBlockAddress(
4639             BA->getBlockAddress(), BA->getValueType(0),
4640             Offset + BA->getOffset(), BA->getTargetFlags()));
4641         return;
4642       }
4643       const unsigned OpCode = Op.getOpcode();
4644       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4645         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4646           Op = Op.getOperand(1);
4647         // Subtraction is not commutative.
4648         else if (OpCode == ISD::ADD &&
4649                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4650           Op = Op.getOperand(0);
4651         else
4652           return;
4653         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4654         continue;
4655       }
4656       return;
4657     }
4658     break;
4659   }
4660   }
4661 }
4662 
4663 std::pair<unsigned, const TargetRegisterClass *>
4664 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4665                                              StringRef Constraint,
4666                                              MVT VT) const {
4667   if (Constraint.empty() || Constraint[0] != '{')
4668     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4669   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4670 
4671   // Remove the braces from around the name.
4672   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4673 
4674   std::pair<unsigned, const TargetRegisterClass *> R =
4675       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4676 
4677   // Figure out which register class contains this reg.
4678   for (const TargetRegisterClass *RC : RI->regclasses()) {
4679     // If none of the value types for this register class are valid, we
4680     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4681     if (!isLegalRC(*RI, *RC))
4682       continue;
4683 
4684     for (const MCPhysReg &PR : *RC) {
4685       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4686         std::pair<unsigned, const TargetRegisterClass *> S =
4687             std::make_pair(PR, RC);
4688 
4689         // If this register class has the requested value type, return it,
4690         // otherwise keep searching and return the first class found
4691         // if no other is found which explicitly has the requested type.
4692         if (RI->isTypeLegalForClass(*RC, VT))
4693           return S;
4694         if (!R.second)
4695           R = S;
4696       }
4697     }
4698   }
4699 
4700   return R;
4701 }
4702 
4703 //===----------------------------------------------------------------------===//
4704 // Constraint Selection.
4705 
4706 /// Return true of this is an input operand that is a matching constraint like
4707 /// "4".
4708 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4709   assert(!ConstraintCode.empty() && "No known constraint!");
4710   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4711 }
4712 
4713 /// If this is an input matching constraint, this method returns the output
4714 /// operand it matches.
4715 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4716   assert(!ConstraintCode.empty() && "No known constraint!");
4717   return atoi(ConstraintCode.c_str());
4718 }
4719 
4720 /// Split up the constraint string from the inline assembly value into the
4721 /// specific constraints and their prefixes, and also tie in the associated
4722 /// operand values.
4723 /// If this returns an empty vector, and if the constraint string itself
4724 /// isn't empty, there was an error parsing.
4725 TargetLowering::AsmOperandInfoVector
4726 TargetLowering::ParseConstraints(const DataLayout &DL,
4727                                  const TargetRegisterInfo *TRI,
4728                                  const CallBase &Call) const {
4729   /// Information about all of the constraints.
4730   AsmOperandInfoVector ConstraintOperands;
4731   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4732   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4733 
4734   // Do a prepass over the constraints, canonicalizing them, and building up the
4735   // ConstraintOperands list.
4736   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4737   unsigned ResNo = 0; // ResNo - The result number of the next output.
4738 
4739   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4740     ConstraintOperands.emplace_back(std::move(CI));
4741     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4742 
4743     // Update multiple alternative constraint count.
4744     if (OpInfo.multipleAlternatives.size() > maCount)
4745       maCount = OpInfo.multipleAlternatives.size();
4746 
4747     OpInfo.ConstraintVT = MVT::Other;
4748 
4749     // Compute the value type for each operand.
4750     switch (OpInfo.Type) {
4751     case InlineAsm::isOutput:
4752       // Indirect outputs just consume an argument.
4753       if (OpInfo.isIndirect) {
4754         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4755         break;
4756       }
4757 
4758       // The return value of the call is this value.  As such, there is no
4759       // corresponding argument.
4760       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4761       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4762         OpInfo.ConstraintVT =
4763             getSimpleValueType(DL, STy->getElementType(ResNo));
4764       } else {
4765         assert(ResNo == 0 && "Asm only has one result!");
4766         OpInfo.ConstraintVT =
4767             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4768       }
4769       ++ResNo;
4770       break;
4771     case InlineAsm::isInput:
4772       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4773       break;
4774     case InlineAsm::isClobber:
4775       // Nothing to do.
4776       break;
4777     }
4778 
4779     if (OpInfo.CallOperandVal) {
4780       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4781       if (OpInfo.isIndirect) {
4782         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4783         assert(OpTy && "Indirect opernad must have elementtype attribute");
4784       }
4785 
4786       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4787       if (StructType *STy = dyn_cast<StructType>(OpTy))
4788         if (STy->getNumElements() == 1)
4789           OpTy = STy->getElementType(0);
4790 
4791       // If OpTy is not a single value, it may be a struct/union that we
4792       // can tile with integers.
4793       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4794         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4795         switch (BitSize) {
4796         default: break;
4797         case 1:
4798         case 8:
4799         case 16:
4800         case 32:
4801         case 64:
4802         case 128:
4803           OpInfo.ConstraintVT =
4804               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4805           break;
4806         }
4807       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4808         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4809         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4810       } else {
4811         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4812       }
4813 
4814       ArgNo++;
4815     }
4816   }
4817 
4818   // If we have multiple alternative constraints, select the best alternative.
4819   if (!ConstraintOperands.empty()) {
4820     if (maCount) {
4821       unsigned bestMAIndex = 0;
4822       int bestWeight = -1;
4823       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4824       int weight = -1;
4825       unsigned maIndex;
4826       // Compute the sums of the weights for each alternative, keeping track
4827       // of the best (highest weight) one so far.
4828       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4829         int weightSum = 0;
4830         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4831              cIndex != eIndex; ++cIndex) {
4832           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4833           if (OpInfo.Type == InlineAsm::isClobber)
4834             continue;
4835 
4836           // If this is an output operand with a matching input operand,
4837           // look up the matching input. If their types mismatch, e.g. one
4838           // is an integer, the other is floating point, or their sizes are
4839           // different, flag it as an maCantMatch.
4840           if (OpInfo.hasMatchingInput()) {
4841             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4842             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4843               if ((OpInfo.ConstraintVT.isInteger() !=
4844                    Input.ConstraintVT.isInteger()) ||
4845                   (OpInfo.ConstraintVT.getSizeInBits() !=
4846                    Input.ConstraintVT.getSizeInBits())) {
4847                 weightSum = -1; // Can't match.
4848                 break;
4849               }
4850             }
4851           }
4852           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4853           if (weight == -1) {
4854             weightSum = -1;
4855             break;
4856           }
4857           weightSum += weight;
4858         }
4859         // Update best.
4860         if (weightSum > bestWeight) {
4861           bestWeight = weightSum;
4862           bestMAIndex = maIndex;
4863         }
4864       }
4865 
4866       // Now select chosen alternative in each constraint.
4867       for (AsmOperandInfo &cInfo : ConstraintOperands)
4868         if (cInfo.Type != InlineAsm::isClobber)
4869           cInfo.selectAlternative(bestMAIndex);
4870     }
4871   }
4872 
4873   // Check and hook up tied operands, choose constraint code to use.
4874   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4875        cIndex != eIndex; ++cIndex) {
4876     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4877 
4878     // If this is an output operand with a matching input operand, look up the
4879     // matching input. If their types mismatch, e.g. one is an integer, the
4880     // other is floating point, or their sizes are different, flag it as an
4881     // error.
4882     if (OpInfo.hasMatchingInput()) {
4883       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4884 
4885       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4886         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4887             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4888                                          OpInfo.ConstraintVT);
4889         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4890             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4891                                          Input.ConstraintVT);
4892         if ((OpInfo.ConstraintVT.isInteger() !=
4893              Input.ConstraintVT.isInteger()) ||
4894             (MatchRC.second != InputRC.second)) {
4895           report_fatal_error("Unsupported asm: input constraint"
4896                              " with a matching output constraint of"
4897                              " incompatible type!");
4898         }
4899       }
4900     }
4901   }
4902 
4903   return ConstraintOperands;
4904 }
4905 
4906 /// Return an integer indicating how general CT is.
4907 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4908   switch (CT) {
4909   case TargetLowering::C_Immediate:
4910   case TargetLowering::C_Other:
4911   case TargetLowering::C_Unknown:
4912     return 0;
4913   case TargetLowering::C_Register:
4914     return 1;
4915   case TargetLowering::C_RegisterClass:
4916     return 2;
4917   case TargetLowering::C_Memory:
4918     return 3;
4919   }
4920   llvm_unreachable("Invalid constraint type");
4921 }
4922 
4923 /// Examine constraint type and operand type and determine a weight value.
4924 /// This object must already have been set up with the operand type
4925 /// and the current alternative constraint selected.
4926 TargetLowering::ConstraintWeight
4927   TargetLowering::getMultipleConstraintMatchWeight(
4928     AsmOperandInfo &info, int maIndex) const {
4929   InlineAsm::ConstraintCodeVector *rCodes;
4930   if (maIndex >= (int)info.multipleAlternatives.size())
4931     rCodes = &info.Codes;
4932   else
4933     rCodes = &info.multipleAlternatives[maIndex].Codes;
4934   ConstraintWeight BestWeight = CW_Invalid;
4935 
4936   // Loop over the options, keeping track of the most general one.
4937   for (const std::string &rCode : *rCodes) {
4938     ConstraintWeight weight =
4939         getSingleConstraintMatchWeight(info, rCode.c_str());
4940     if (weight > BestWeight)
4941       BestWeight = weight;
4942   }
4943 
4944   return BestWeight;
4945 }
4946 
4947 /// Examine constraint type and operand type and determine a weight value.
4948 /// This object must already have been set up with the operand type
4949 /// and the current alternative constraint selected.
4950 TargetLowering::ConstraintWeight
4951   TargetLowering::getSingleConstraintMatchWeight(
4952     AsmOperandInfo &info, const char *constraint) const {
4953   ConstraintWeight weight = CW_Invalid;
4954   Value *CallOperandVal = info.CallOperandVal;
4955     // If we don't have a value, we can't do a match,
4956     // but allow it at the lowest weight.
4957   if (!CallOperandVal)
4958     return CW_Default;
4959   // Look at the constraint type.
4960   switch (*constraint) {
4961     case 'i': // immediate integer.
4962     case 'n': // immediate integer with a known value.
4963       if (isa<ConstantInt>(CallOperandVal))
4964         weight = CW_Constant;
4965       break;
4966     case 's': // non-explicit intregal immediate.
4967       if (isa<GlobalValue>(CallOperandVal))
4968         weight = CW_Constant;
4969       break;
4970     case 'E': // immediate float if host format.
4971     case 'F': // immediate float.
4972       if (isa<ConstantFP>(CallOperandVal))
4973         weight = CW_Constant;
4974       break;
4975     case '<': // memory operand with autodecrement.
4976     case '>': // memory operand with autoincrement.
4977     case 'm': // memory operand.
4978     case 'o': // offsettable memory operand
4979     case 'V': // non-offsettable memory operand
4980       weight = CW_Memory;
4981       break;
4982     case 'r': // general register.
4983     case 'g': // general register, memory operand or immediate integer.
4984               // note: Clang converts "g" to "imr".
4985       if (CallOperandVal->getType()->isIntegerTy())
4986         weight = CW_Register;
4987       break;
4988     case 'X': // any operand.
4989   default:
4990     weight = CW_Default;
4991     break;
4992   }
4993   return weight;
4994 }
4995 
4996 /// If there are multiple different constraints that we could pick for this
4997 /// operand (e.g. "imr") try to pick the 'best' one.
4998 /// This is somewhat tricky: constraints fall into four classes:
4999 ///    Other         -> immediates and magic values
5000 ///    Register      -> one specific register
5001 ///    RegisterClass -> a group of regs
5002 ///    Memory        -> memory
5003 /// Ideally, we would pick the most specific constraint possible: if we have
5004 /// something that fits into a register, we would pick it.  The problem here
5005 /// is that if we have something that could either be in a register or in
5006 /// memory that use of the register could cause selection of *other*
5007 /// operands to fail: they might only succeed if we pick memory.  Because of
5008 /// this the heuristic we use is:
5009 ///
5010 ///  1) If there is an 'other' constraint, and if the operand is valid for
5011 ///     that constraint, use it.  This makes us take advantage of 'i'
5012 ///     constraints when available.
5013 ///  2) Otherwise, pick the most general constraint present.  This prefers
5014 ///     'm' over 'r', for example.
5015 ///
5016 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5017                              const TargetLowering &TLI,
5018                              SDValue Op, SelectionDAG *DAG) {
5019   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5020   unsigned BestIdx = 0;
5021   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5022   int BestGenerality = -1;
5023 
5024   // Loop over the options, keeping track of the most general one.
5025   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5026     TargetLowering::ConstraintType CType =
5027       TLI.getConstraintType(OpInfo.Codes[i]);
5028 
5029     // Indirect 'other' or 'immediate' constraints are not allowed.
5030     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5031                                CType == TargetLowering::C_Register ||
5032                                CType == TargetLowering::C_RegisterClass))
5033       continue;
5034 
5035     // If this is an 'other' or 'immediate' constraint, see if the operand is
5036     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5037     // the operand is an integer in the range [0..31] we want to use I (saving a
5038     // load of a register), otherwise we must use 'r'.
5039     if ((CType == TargetLowering::C_Other ||
5040          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5041       assert(OpInfo.Codes[i].size() == 1 &&
5042              "Unhandled multi-letter 'other' constraint");
5043       std::vector<SDValue> ResultOps;
5044       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5045                                        ResultOps, *DAG);
5046       if (!ResultOps.empty()) {
5047         BestType = CType;
5048         BestIdx = i;
5049         break;
5050       }
5051     }
5052 
5053     // Things with matching constraints can only be registers, per gcc
5054     // documentation.  This mainly affects "g" constraints.
5055     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5056       continue;
5057 
5058     // This constraint letter is more general than the previous one, use it.
5059     int Generality = getConstraintGenerality(CType);
5060     if (Generality > BestGenerality) {
5061       BestType = CType;
5062       BestIdx = i;
5063       BestGenerality = Generality;
5064     }
5065   }
5066 
5067   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5068   OpInfo.ConstraintType = BestType;
5069 }
5070 
5071 /// Determines the constraint code and constraint type to use for the specific
5072 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5073 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5074                                             SDValue Op,
5075                                             SelectionDAG *DAG) const {
5076   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5077 
5078   // Single-letter constraints ('r') are very common.
5079   if (OpInfo.Codes.size() == 1) {
5080     OpInfo.ConstraintCode = OpInfo.Codes[0];
5081     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5082   } else {
5083     ChooseConstraint(OpInfo, *this, Op, DAG);
5084   }
5085 
5086   // 'X' matches anything.
5087   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5088     // Labels and constants are handled elsewhere ('X' is the only thing
5089     // that matches labels).  For Functions, the type here is the type of
5090     // the result, which is not what we want to look at; leave them alone.
5091     Value *v = OpInfo.CallOperandVal;
5092     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
5093       OpInfo.CallOperandVal = v;
5094       return;
5095     }
5096 
5097     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
5098       return;
5099 
5100     // Otherwise, try to resolve it to something we know about by looking at
5101     // the actual operand type.
5102     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5103       OpInfo.ConstraintCode = Repl;
5104       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5105     }
5106   }
5107 }
5108 
5109 /// Given an exact SDIV by a constant, create a multiplication
5110 /// with the multiplicative inverse of the constant.
5111 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5112                               const SDLoc &dl, SelectionDAG &DAG,
5113                               SmallVectorImpl<SDNode *> &Created) {
5114   SDValue Op0 = N->getOperand(0);
5115   SDValue Op1 = N->getOperand(1);
5116   EVT VT = N->getValueType(0);
5117   EVT SVT = VT.getScalarType();
5118   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5119   EVT ShSVT = ShVT.getScalarType();
5120 
5121   bool UseSRA = false;
5122   SmallVector<SDValue, 16> Shifts, Factors;
5123 
5124   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5125     if (C->isZero())
5126       return false;
5127     APInt Divisor = C->getAPIntValue();
5128     unsigned Shift = Divisor.countTrailingZeros();
5129     if (Shift) {
5130       Divisor.ashrInPlace(Shift);
5131       UseSRA = true;
5132     }
5133     // Calculate the multiplicative inverse, using Newton's method.
5134     APInt t;
5135     APInt Factor = Divisor;
5136     while ((t = Divisor * Factor) != 1)
5137       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5138     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5139     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5140     return true;
5141   };
5142 
5143   // Collect all magic values from the build vector.
5144   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5145     return SDValue();
5146 
5147   SDValue Shift, Factor;
5148   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5149     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5150     Factor = DAG.getBuildVector(VT, dl, Factors);
5151   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5152     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5153            "Expected matchUnaryPredicate to return one element for scalable "
5154            "vectors");
5155     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5156     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5157   } else {
5158     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5159     Shift = Shifts[0];
5160     Factor = Factors[0];
5161   }
5162 
5163   SDValue Res = Op0;
5164 
5165   // Shift the value upfront if it is even, so the LSB is one.
5166   if (UseSRA) {
5167     // TODO: For UDIV use SRL instead of SRA.
5168     SDNodeFlags Flags;
5169     Flags.setExact(true);
5170     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5171     Created.push_back(Res.getNode());
5172   }
5173 
5174   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5175 }
5176 
5177 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5178                               SelectionDAG &DAG,
5179                               SmallVectorImpl<SDNode *> &Created) const {
5180   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5181   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5182   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5183     return SDValue(N, 0); // Lower SDIV as SDIV
5184   return SDValue();
5185 }
5186 
5187 /// Given an ISD::SDIV node expressing a divide by constant,
5188 /// return a DAG expression to select that will generate the same value by
5189 /// multiplying by a magic number.
5190 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5191 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5192                                   bool IsAfterLegalization,
5193                                   SmallVectorImpl<SDNode *> &Created) const {
5194   SDLoc dl(N);
5195   EVT VT = N->getValueType(0);
5196   EVT SVT = VT.getScalarType();
5197   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5198   EVT ShSVT = ShVT.getScalarType();
5199   unsigned EltBits = VT.getScalarSizeInBits();
5200   EVT MulVT;
5201 
5202   // Check to see if we can do this.
5203   // FIXME: We should be more aggressive here.
5204   if (!isTypeLegal(VT)) {
5205     // Limit this to simple scalars for now.
5206     if (VT.isVector() || !VT.isSimple())
5207       return SDValue();
5208 
5209     // If this type will be promoted to a large enough type with a legal
5210     // multiply operation, we can go ahead and do this transform.
5211     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5212       return SDValue();
5213 
5214     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5215     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5216         !isOperationLegal(ISD::MUL, MulVT))
5217       return SDValue();
5218   }
5219 
5220   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5221   if (N->getFlags().hasExact())
5222     return BuildExactSDIV(*this, N, dl, DAG, Created);
5223 
5224   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5225 
5226   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5227     if (C->isZero())
5228       return false;
5229 
5230     const APInt &Divisor = C->getAPIntValue();
5231     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5232     int NumeratorFactor = 0;
5233     int ShiftMask = -1;
5234 
5235     if (Divisor.isOne() || Divisor.isAllOnes()) {
5236       // If d is +1/-1, we just multiply the numerator by +1/-1.
5237       NumeratorFactor = Divisor.getSExtValue();
5238       magics.Magic = 0;
5239       magics.ShiftAmount = 0;
5240       ShiftMask = 0;
5241     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5242       // If d > 0 and m < 0, add the numerator.
5243       NumeratorFactor = 1;
5244     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5245       // If d < 0 and m > 0, subtract the numerator.
5246       NumeratorFactor = -1;
5247     }
5248 
5249     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5250     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5251     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5252     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5253     return true;
5254   };
5255 
5256   SDValue N0 = N->getOperand(0);
5257   SDValue N1 = N->getOperand(1);
5258 
5259   // Collect the shifts / magic values from each element.
5260   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5261     return SDValue();
5262 
5263   SDValue MagicFactor, Factor, Shift, ShiftMask;
5264   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5265     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5266     Factor = DAG.getBuildVector(VT, dl, Factors);
5267     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5268     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5269   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5270     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5271            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5272            "Expected matchUnaryPredicate to return one element for scalable "
5273            "vectors");
5274     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5275     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5276     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5277     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5278   } else {
5279     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5280     MagicFactor = MagicFactors[0];
5281     Factor = Factors[0];
5282     Shift = Shifts[0];
5283     ShiftMask = ShiftMasks[0];
5284   }
5285 
5286   // Multiply the numerator (operand 0) by the magic value.
5287   // FIXME: We should support doing a MUL in a wider type.
5288   auto GetMULHS = [&](SDValue X, SDValue Y) {
5289     // If the type isn't legal, use a wider mul of the the type calculated
5290     // earlier.
5291     if (!isTypeLegal(VT)) {
5292       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5293       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5294       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5295       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5296                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5297       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5298     }
5299 
5300     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5301       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5302     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5303       SDValue LoHi =
5304           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5305       return SDValue(LoHi.getNode(), 1);
5306     }
5307     return SDValue();
5308   };
5309 
5310   SDValue Q = GetMULHS(N0, MagicFactor);
5311   if (!Q)
5312     return SDValue();
5313 
5314   Created.push_back(Q.getNode());
5315 
5316   // (Optionally) Add/subtract the numerator using Factor.
5317   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5318   Created.push_back(Factor.getNode());
5319   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5320   Created.push_back(Q.getNode());
5321 
5322   // Shift right algebraic by shift value.
5323   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5324   Created.push_back(Q.getNode());
5325 
5326   // Extract the sign bit, mask it and add it to the quotient.
5327   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5328   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5329   Created.push_back(T.getNode());
5330   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5331   Created.push_back(T.getNode());
5332   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5333 }
5334 
5335 /// Given an ISD::UDIV node expressing a divide by constant,
5336 /// return a DAG expression to select that will generate the same value by
5337 /// multiplying by a magic number.
5338 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5339 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5340                                   bool IsAfterLegalization,
5341                                   SmallVectorImpl<SDNode *> &Created) const {
5342   SDLoc dl(N);
5343   EVT VT = N->getValueType(0);
5344   EVT SVT = VT.getScalarType();
5345   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5346   EVT ShSVT = ShVT.getScalarType();
5347   unsigned EltBits = VT.getScalarSizeInBits();
5348   EVT MulVT;
5349 
5350   // Check to see if we can do this.
5351   // FIXME: We should be more aggressive here.
5352   if (!isTypeLegal(VT)) {
5353     // Limit this to simple scalars for now.
5354     if (VT.isVector() || !VT.isSimple())
5355       return SDValue();
5356 
5357     // If this type will be promoted to a large enough type with a legal
5358     // multiply operation, we can go ahead and do this transform.
5359     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5360       return SDValue();
5361 
5362     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5363     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5364         !isOperationLegal(ISD::MUL, MulVT))
5365       return SDValue();
5366   }
5367 
5368   bool UseNPQ = false;
5369   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5370 
5371   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5372     if (C->isZero())
5373       return false;
5374     // FIXME: We should use a narrower constant when the upper
5375     // bits are known to be zero.
5376     const APInt& Divisor = C->getAPIntValue();
5377     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5378     unsigned PreShift = 0, PostShift = 0;
5379 
5380     // If the divisor is even, we can avoid using the expensive fixup by
5381     // shifting the divided value upfront.
5382     if (magics.IsAdd != 0 && !Divisor[0]) {
5383       PreShift = Divisor.countTrailingZeros();
5384       // Get magic number for the shifted divisor.
5385       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5386       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5387     }
5388 
5389     APInt Magic = magics.Magic;
5390 
5391     unsigned SelNPQ;
5392     if (magics.IsAdd == 0 || Divisor.isOne()) {
5393       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5394              "We shouldn't generate an undefined shift!");
5395       PostShift = magics.ShiftAmount;
5396       SelNPQ = false;
5397     } else {
5398       PostShift = magics.ShiftAmount - 1;
5399       SelNPQ = true;
5400     }
5401 
5402     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5403     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5404     NPQFactors.push_back(
5405         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5406                                : APInt::getZero(EltBits),
5407                         dl, SVT));
5408     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5409     UseNPQ |= SelNPQ;
5410     return true;
5411   };
5412 
5413   SDValue N0 = N->getOperand(0);
5414   SDValue N1 = N->getOperand(1);
5415 
5416   // Collect the shifts/magic values from each element.
5417   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5418     return SDValue();
5419 
5420   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5421   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5422     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5423     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5424     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5425     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5426   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5427     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5428            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5429            "Expected matchUnaryPredicate to return one for scalable vectors");
5430     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5431     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5432     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5433     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5434   } else {
5435     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5436     PreShift = PreShifts[0];
5437     MagicFactor = MagicFactors[0];
5438     PostShift = PostShifts[0];
5439   }
5440 
5441   SDValue Q = N0;
5442   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5443   Created.push_back(Q.getNode());
5444 
5445   // FIXME: We should support doing a MUL in a wider type.
5446   auto GetMULHU = [&](SDValue X, SDValue Y) {
5447     // If the type isn't legal, use a wider mul of the the type calculated
5448     // earlier.
5449     if (!isTypeLegal(VT)) {
5450       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5451       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5452       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5453       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5454                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5455       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5456     }
5457 
5458     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5459       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5460     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5461       SDValue LoHi =
5462           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5463       return SDValue(LoHi.getNode(), 1);
5464     }
5465     return SDValue(); // No mulhu or equivalent
5466   };
5467 
5468   // Multiply the numerator (operand 0) by the magic value.
5469   Q = GetMULHU(Q, MagicFactor);
5470   if (!Q)
5471     return SDValue();
5472 
5473   Created.push_back(Q.getNode());
5474 
5475   if (UseNPQ) {
5476     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5477     Created.push_back(NPQ.getNode());
5478 
5479     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5480     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5481     if (VT.isVector())
5482       NPQ = GetMULHU(NPQ, NPQFactor);
5483     else
5484       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5485 
5486     Created.push_back(NPQ.getNode());
5487 
5488     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5489     Created.push_back(Q.getNode());
5490   }
5491 
5492   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5493   Created.push_back(Q.getNode());
5494 
5495   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5496 
5497   SDValue One = DAG.getConstant(1, dl, VT);
5498   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5499   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5500 }
5501 
5502 /// If all values in Values that *don't* match the predicate are same 'splat'
5503 /// value, then replace all values with that splat value.
5504 /// Else, if AlternativeReplacement was provided, then replace all values that
5505 /// do match predicate with AlternativeReplacement value.
5506 static void
5507 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5508                           std::function<bool(SDValue)> Predicate,
5509                           SDValue AlternativeReplacement = SDValue()) {
5510   SDValue Replacement;
5511   // Is there a value for which the Predicate does *NOT* match? What is it?
5512   auto SplatValue = llvm::find_if_not(Values, Predicate);
5513   if (SplatValue != Values.end()) {
5514     // Does Values consist only of SplatValue's and values matching Predicate?
5515     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5516           return Value == *SplatValue || Predicate(Value);
5517         })) // Then we shall replace values matching predicate with SplatValue.
5518       Replacement = *SplatValue;
5519   }
5520   if (!Replacement) {
5521     // Oops, we did not find the "baseline" splat value.
5522     if (!AlternativeReplacement)
5523       return; // Nothing to do.
5524     // Let's replace with provided value then.
5525     Replacement = AlternativeReplacement;
5526   }
5527   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5528 }
5529 
5530 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5531 /// where the divisor is constant and the comparison target is zero,
5532 /// return a DAG expression that will generate the same comparison result
5533 /// using only multiplications, additions and shifts/rotations.
5534 /// Ref: "Hacker's Delight" 10-17.
5535 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5536                                         SDValue CompTargetNode,
5537                                         ISD::CondCode Cond,
5538                                         DAGCombinerInfo &DCI,
5539                                         const SDLoc &DL) const {
5540   SmallVector<SDNode *, 5> Built;
5541   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5542                                          DCI, DL, Built)) {
5543     for (SDNode *N : Built)
5544       DCI.AddToWorklist(N);
5545     return Folded;
5546   }
5547 
5548   return SDValue();
5549 }
5550 
5551 SDValue
5552 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5553                                   SDValue CompTargetNode, ISD::CondCode Cond,
5554                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5555                                   SmallVectorImpl<SDNode *> &Created) const {
5556   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5557   // - D must be constant, with D = D0 * 2^K where D0 is odd
5558   // - P is the multiplicative inverse of D0 modulo 2^W
5559   // - Q = floor(((2^W) - 1) / D)
5560   // where W is the width of the common type of N and D.
5561   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5562          "Only applicable for (in)equality comparisons.");
5563 
5564   SelectionDAG &DAG = DCI.DAG;
5565 
5566   EVT VT = REMNode.getValueType();
5567   EVT SVT = VT.getScalarType();
5568   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5569   EVT ShSVT = ShVT.getScalarType();
5570 
5571   // If MUL is unavailable, we cannot proceed in any case.
5572   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5573     return SDValue();
5574 
5575   bool ComparingWithAllZeros = true;
5576   bool AllComparisonsWithNonZerosAreTautological = true;
5577   bool HadTautologicalLanes = false;
5578   bool AllLanesAreTautological = true;
5579   bool HadEvenDivisor = false;
5580   bool AllDivisorsArePowerOfTwo = true;
5581   bool HadTautologicalInvertedLanes = false;
5582   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5583 
5584   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5585     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5586     if (CDiv->isZero())
5587       return false;
5588 
5589     const APInt &D = CDiv->getAPIntValue();
5590     const APInt &Cmp = CCmp->getAPIntValue();
5591 
5592     ComparingWithAllZeros &= Cmp.isZero();
5593 
5594     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5595     // if C2 is not less than C1, the comparison is always false.
5596     // But we will only be able to produce the comparison that will give the
5597     // opposive tautological answer. So this lane would need to be fixed up.
5598     bool TautologicalInvertedLane = D.ule(Cmp);
5599     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5600 
5601     // If all lanes are tautological (either all divisors are ones, or divisor
5602     // is not greater than the constant we are comparing with),
5603     // we will prefer to avoid the fold.
5604     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5605     HadTautologicalLanes |= TautologicalLane;
5606     AllLanesAreTautological &= TautologicalLane;
5607 
5608     // If we are comparing with non-zero, we need'll need  to subtract said
5609     // comparison value from the LHS. But there is no point in doing that if
5610     // every lane where we are comparing with non-zero is tautological..
5611     if (!Cmp.isZero())
5612       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5613 
5614     // Decompose D into D0 * 2^K
5615     unsigned K = D.countTrailingZeros();
5616     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5617     APInt D0 = D.lshr(K);
5618 
5619     // D is even if it has trailing zeros.
5620     HadEvenDivisor |= (K != 0);
5621     // D is a power-of-two if D0 is one.
5622     // If all divisors are power-of-two, we will prefer to avoid the fold.
5623     AllDivisorsArePowerOfTwo &= D0.isOne();
5624 
5625     // P = inv(D0, 2^W)
5626     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5627     unsigned W = D.getBitWidth();
5628     APInt P = D0.zext(W + 1)
5629                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5630                   .trunc(W);
5631     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5632     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5633 
5634     // Q = floor((2^W - 1) u/ D)
5635     // R = ((2^W - 1) u% D)
5636     APInt Q, R;
5637     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5638 
5639     // If we are comparing with zero, then that comparison constant is okay,
5640     // else it may need to be one less than that.
5641     if (Cmp.ugt(R))
5642       Q -= 1;
5643 
5644     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5645            "We are expecting that K is always less than all-ones for ShSVT");
5646 
5647     // If the lane is tautological the result can be constant-folded.
5648     if (TautologicalLane) {
5649       // Set P and K amount to a bogus values so we can try to splat them.
5650       P = 0;
5651       K = -1;
5652       // And ensure that comparison constant is tautological,
5653       // it will always compare true/false.
5654       Q = -1;
5655     }
5656 
5657     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5658     KAmts.push_back(
5659         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5660     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5661     return true;
5662   };
5663 
5664   SDValue N = REMNode.getOperand(0);
5665   SDValue D = REMNode.getOperand(1);
5666 
5667   // Collect the values from each element.
5668   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5669     return SDValue();
5670 
5671   // If all lanes are tautological, the result can be constant-folded.
5672   if (AllLanesAreTautological)
5673     return SDValue();
5674 
5675   // If this is a urem by a powers-of-two, avoid the fold since it can be
5676   // best implemented as a bit test.
5677   if (AllDivisorsArePowerOfTwo)
5678     return SDValue();
5679 
5680   SDValue PVal, KVal, QVal;
5681   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5682     if (HadTautologicalLanes) {
5683       // Try to turn PAmts into a splat, since we don't care about the values
5684       // that are currently '0'. If we can't, just keep '0'`s.
5685       turnVectorIntoSplatVector(PAmts, isNullConstant);
5686       // Try to turn KAmts into a splat, since we don't care about the values
5687       // that are currently '-1'. If we can't, change them to '0'`s.
5688       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5689                                 DAG.getConstant(0, DL, ShSVT));
5690     }
5691 
5692     PVal = DAG.getBuildVector(VT, DL, PAmts);
5693     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5694     QVal = DAG.getBuildVector(VT, DL, QAmts);
5695   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5696     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5697            "Expected matchBinaryPredicate to return one element for "
5698            "SPLAT_VECTORs");
5699     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5700     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5701     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5702   } else {
5703     PVal = PAmts[0];
5704     KVal = KAmts[0];
5705     QVal = QAmts[0];
5706   }
5707 
5708   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5709     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5710       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5711     assert(CompTargetNode.getValueType() == N.getValueType() &&
5712            "Expecting that the types on LHS and RHS of comparisons match.");
5713     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5714   }
5715 
5716   // (mul N, P)
5717   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5718   Created.push_back(Op0.getNode());
5719 
5720   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5721   // divisors as a performance improvement, since rotating by 0 is a no-op.
5722   if (HadEvenDivisor) {
5723     // We need ROTR to do this.
5724     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5725       return SDValue();
5726     // UREM: (rotr (mul N, P), K)
5727     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5728     Created.push_back(Op0.getNode());
5729   }
5730 
5731   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5732   SDValue NewCC =
5733       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5734                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5735   if (!HadTautologicalInvertedLanes)
5736     return NewCC;
5737 
5738   // If any lanes previously compared always-false, the NewCC will give
5739   // always-true result for them, so we need to fixup those lanes.
5740   // Or the other way around for inequality predicate.
5741   assert(VT.isVector() && "Can/should only get here for vectors.");
5742   Created.push_back(NewCC.getNode());
5743 
5744   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5745   // if C2 is not less than C1, the comparison is always false.
5746   // But we have produced the comparison that will give the
5747   // opposive tautological answer. So these lanes would need to be fixed up.
5748   SDValue TautologicalInvertedChannels =
5749       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5750   Created.push_back(TautologicalInvertedChannels.getNode());
5751 
5752   // NOTE: we avoid letting illegal types through even if we're before legalize
5753   // ops – legalization has a hard time producing good code for this.
5754   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5755     // If we have a vector select, let's replace the comparison results in the
5756     // affected lanes with the correct tautological result.
5757     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5758                                               DL, SETCCVT, SETCCVT);
5759     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5760                        Replacement, NewCC);
5761   }
5762 
5763   // Else, we can just invert the comparison result in the appropriate lanes.
5764   //
5765   // NOTE: see the note above VSELECT above.
5766   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5767     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5768                        TautologicalInvertedChannels);
5769 
5770   return SDValue(); // Don't know how to lower.
5771 }
5772 
5773 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5774 /// where the divisor is constant and the comparison target is zero,
5775 /// return a DAG expression that will generate the same comparison result
5776 /// using only multiplications, additions and shifts/rotations.
5777 /// Ref: "Hacker's Delight" 10-17.
5778 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5779                                         SDValue CompTargetNode,
5780                                         ISD::CondCode Cond,
5781                                         DAGCombinerInfo &DCI,
5782                                         const SDLoc &DL) const {
5783   SmallVector<SDNode *, 7> Built;
5784   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5785                                          DCI, DL, Built)) {
5786     assert(Built.size() <= 7 && "Max size prediction failed.");
5787     for (SDNode *N : Built)
5788       DCI.AddToWorklist(N);
5789     return Folded;
5790   }
5791 
5792   return SDValue();
5793 }
5794 
5795 SDValue
5796 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5797                                   SDValue CompTargetNode, ISD::CondCode Cond,
5798                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5799                                   SmallVectorImpl<SDNode *> &Created) const {
5800   // Fold:
5801   //   (seteq/ne (srem N, D), 0)
5802   // To:
5803   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5804   //
5805   // - D must be constant, with D = D0 * 2^K where D0 is odd
5806   // - P is the multiplicative inverse of D0 modulo 2^W
5807   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5808   // - Q = floor((2 * A) / (2^K))
5809   // where W is the width of the common type of N and D.
5810   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5811          "Only applicable for (in)equality comparisons.");
5812 
5813   SelectionDAG &DAG = DCI.DAG;
5814 
5815   EVT VT = REMNode.getValueType();
5816   EVT SVT = VT.getScalarType();
5817   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5818   EVT ShSVT = ShVT.getScalarType();
5819 
5820   // If we are after ops legalization, and MUL is unavailable, we can not
5821   // proceed.
5822   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5823     return SDValue();
5824 
5825   // TODO: Could support comparing with non-zero too.
5826   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5827   if (!CompTarget || !CompTarget->isZero())
5828     return SDValue();
5829 
5830   bool HadIntMinDivisor = false;
5831   bool HadOneDivisor = false;
5832   bool AllDivisorsAreOnes = true;
5833   bool HadEvenDivisor = false;
5834   bool NeedToApplyOffset = false;
5835   bool AllDivisorsArePowerOfTwo = true;
5836   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5837 
5838   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5839     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5840     if (C->isZero())
5841       return false;
5842 
5843     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5844 
5845     // WARNING: this fold is only valid for positive divisors!
5846     APInt D = C->getAPIntValue();
5847     if (D.isNegative())
5848       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5849 
5850     HadIntMinDivisor |= D.isMinSignedValue();
5851 
5852     // If all divisors are ones, we will prefer to avoid the fold.
5853     HadOneDivisor |= D.isOne();
5854     AllDivisorsAreOnes &= D.isOne();
5855 
5856     // Decompose D into D0 * 2^K
5857     unsigned K = D.countTrailingZeros();
5858     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5859     APInt D0 = D.lshr(K);
5860 
5861     if (!D.isMinSignedValue()) {
5862       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5863       // we don't care about this lane in this fold, we'll special-handle it.
5864       HadEvenDivisor |= (K != 0);
5865     }
5866 
5867     // D is a power-of-two if D0 is one. This includes INT_MIN.
5868     // If all divisors are power-of-two, we will prefer to avoid the fold.
5869     AllDivisorsArePowerOfTwo &= D0.isOne();
5870 
5871     // P = inv(D0, 2^W)
5872     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5873     unsigned W = D.getBitWidth();
5874     APInt P = D0.zext(W + 1)
5875                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5876                   .trunc(W);
5877     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5878     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5879 
5880     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5881     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5882     A.clearLowBits(K);
5883 
5884     if (!D.isMinSignedValue()) {
5885       // If divisor INT_MIN, then we don't care about this lane in this fold,
5886       // we'll special-handle it.
5887       NeedToApplyOffset |= A != 0;
5888     }
5889 
5890     // Q = floor((2 * A) / (2^K))
5891     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5892 
5893     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
5894            "We are expecting that A is always less than all-ones for SVT");
5895     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5896            "We are expecting that K is always less than all-ones for ShSVT");
5897 
5898     // If the divisor is 1 the result can be constant-folded. Likewise, we
5899     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5900     if (D.isOne()) {
5901       // Set P, A and K to a bogus values so we can try to splat them.
5902       P = 0;
5903       A = -1;
5904       K = -1;
5905 
5906       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5907       Q = -1;
5908     }
5909 
5910     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5911     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5912     KAmts.push_back(
5913         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5914     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5915     return true;
5916   };
5917 
5918   SDValue N = REMNode.getOperand(0);
5919   SDValue D = REMNode.getOperand(1);
5920 
5921   // Collect the values from each element.
5922   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5923     return SDValue();
5924 
5925   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5926   if (AllDivisorsAreOnes)
5927     return SDValue();
5928 
5929   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5930   // since it can be best implemented as a bit test.
5931   if (AllDivisorsArePowerOfTwo)
5932     return SDValue();
5933 
5934   SDValue PVal, AVal, KVal, QVal;
5935   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5936     if (HadOneDivisor) {
5937       // Try to turn PAmts into a splat, since we don't care about the values
5938       // that are currently '0'. If we can't, just keep '0'`s.
5939       turnVectorIntoSplatVector(PAmts, isNullConstant);
5940       // Try to turn AAmts into a splat, since we don't care about the
5941       // values that are currently '-1'. If we can't, change them to '0'`s.
5942       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5943                                 DAG.getConstant(0, DL, SVT));
5944       // Try to turn KAmts into a splat, since we don't care about the values
5945       // that are currently '-1'. If we can't, change them to '0'`s.
5946       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5947                                 DAG.getConstant(0, DL, ShSVT));
5948     }
5949 
5950     PVal = DAG.getBuildVector(VT, DL, PAmts);
5951     AVal = DAG.getBuildVector(VT, DL, AAmts);
5952     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5953     QVal = DAG.getBuildVector(VT, DL, QAmts);
5954   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5955     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5956            QAmts.size() == 1 &&
5957            "Expected matchUnaryPredicate to return one element for scalable "
5958            "vectors");
5959     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5960     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5961     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5962     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5963   } else {
5964     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5965     PVal = PAmts[0];
5966     AVal = AAmts[0];
5967     KVal = KAmts[0];
5968     QVal = QAmts[0];
5969   }
5970 
5971   // (mul N, P)
5972   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5973   Created.push_back(Op0.getNode());
5974 
5975   if (NeedToApplyOffset) {
5976     // We need ADD to do this.
5977     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5978       return SDValue();
5979 
5980     // (add (mul N, P), A)
5981     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5982     Created.push_back(Op0.getNode());
5983   }
5984 
5985   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5986   // divisors as a performance improvement, since rotating by 0 is a no-op.
5987   if (HadEvenDivisor) {
5988     // We need ROTR to do this.
5989     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5990       return SDValue();
5991     // SREM: (rotr (add (mul N, P), A), K)
5992     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5993     Created.push_back(Op0.getNode());
5994   }
5995 
5996   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5997   SDValue Fold =
5998       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5999                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6000 
6001   // If we didn't have lanes with INT_MIN divisor, then we're done.
6002   if (!HadIntMinDivisor)
6003     return Fold;
6004 
6005   // That fold is only valid for positive divisors. Which effectively means,
6006   // it is invalid for INT_MIN divisors. So if we have such a lane,
6007   // we must fix-up results for said lanes.
6008   assert(VT.isVector() && "Can/should only get here for vectors.");
6009 
6010   // NOTE: we avoid letting illegal types through even if we're before legalize
6011   // ops – legalization has a hard time producing good code for the code that
6012   // follows.
6013   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6014       !isOperationLegalOrCustom(ISD::AND, VT) ||
6015       !isOperationLegalOrCustom(Cond, VT) ||
6016       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6017     return SDValue();
6018 
6019   Created.push_back(Fold.getNode());
6020 
6021   SDValue IntMin = DAG.getConstant(
6022       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6023   SDValue IntMax = DAG.getConstant(
6024       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6025   SDValue Zero =
6026       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6027 
6028   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6029   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6030   Created.push_back(DivisorIsIntMin.getNode());
6031 
6032   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6033   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6034   Created.push_back(Masked.getNode());
6035   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6036   Created.push_back(MaskedIsZero.getNode());
6037 
6038   // To produce final result we need to blend 2 vectors: 'SetCC' and
6039   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6040   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6041   // constant-folded, select can get lowered to a shuffle with constant mask.
6042   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6043                                 MaskedIsZero, Fold);
6044 
6045   return Blended;
6046 }
6047 
6048 bool TargetLowering::
6049 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6050   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6051     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6052                                 "be a constant integer");
6053     return true;
6054   }
6055 
6056   return false;
6057 }
6058 
6059 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6060                                          const DenormalMode &Mode) const {
6061   SDLoc DL(Op);
6062   EVT VT = Op.getValueType();
6063   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6064   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6065   // Testing it with denormal inputs to avoid wrong estimate.
6066   if (Mode.Input == DenormalMode::IEEE) {
6067     // This is specifically a check for the handling of denormal inputs,
6068     // not the result.
6069 
6070     // Test = fabs(X) < SmallestNormal
6071     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6072     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6073     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6074     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6075     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6076   }
6077   // Test = X == 0.0
6078   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6079 }
6080 
6081 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6082                                              bool LegalOps, bool OptForSize,
6083                                              NegatibleCost &Cost,
6084                                              unsigned Depth) const {
6085   // fneg is removable even if it has multiple uses.
6086   if (Op.getOpcode() == ISD::FNEG) {
6087     Cost = NegatibleCost::Cheaper;
6088     return Op.getOperand(0);
6089   }
6090 
6091   // Don't recurse exponentially.
6092   if (Depth > SelectionDAG::MaxRecursionDepth)
6093     return SDValue();
6094 
6095   // Pre-increment recursion depth for use in recursive calls.
6096   ++Depth;
6097   const SDNodeFlags Flags = Op->getFlags();
6098   const TargetOptions &Options = DAG.getTarget().Options;
6099   EVT VT = Op.getValueType();
6100   unsigned Opcode = Op.getOpcode();
6101 
6102   // Don't allow anything with multiple uses unless we know it is free.
6103   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6104     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6105                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6106     if (!IsFreeExtend)
6107       return SDValue();
6108   }
6109 
6110   auto RemoveDeadNode = [&](SDValue N) {
6111     if (N && N.getNode()->use_empty())
6112       DAG.RemoveDeadNode(N.getNode());
6113   };
6114 
6115   SDLoc DL(Op);
6116 
6117   // Because getNegatedExpression can delete nodes we need a handle to keep
6118   // temporary nodes alive in case the recursion manages to create an identical
6119   // node.
6120   std::list<HandleSDNode> Handles;
6121 
6122   switch (Opcode) {
6123   case ISD::ConstantFP: {
6124     // Don't invert constant FP values after legalization unless the target says
6125     // the negated constant is legal.
6126     bool IsOpLegal =
6127         isOperationLegal(ISD::ConstantFP, VT) ||
6128         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6129                      OptForSize);
6130 
6131     if (LegalOps && !IsOpLegal)
6132       break;
6133 
6134     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6135     V.changeSign();
6136     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6137 
6138     // If we already have the use of the negated floating constant, it is free
6139     // to negate it even it has multiple uses.
6140     if (!Op.hasOneUse() && CFP.use_empty())
6141       break;
6142     Cost = NegatibleCost::Neutral;
6143     return CFP;
6144   }
6145   case ISD::BUILD_VECTOR: {
6146     // Only permit BUILD_VECTOR of constants.
6147     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6148           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6149         }))
6150       break;
6151 
6152     bool IsOpLegal =
6153         (isOperationLegal(ISD::ConstantFP, VT) &&
6154          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6155         llvm::all_of(Op->op_values(), [&](SDValue N) {
6156           return N.isUndef() ||
6157                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6158                               OptForSize);
6159         });
6160 
6161     if (LegalOps && !IsOpLegal)
6162       break;
6163 
6164     SmallVector<SDValue, 4> Ops;
6165     for (SDValue C : Op->op_values()) {
6166       if (C.isUndef()) {
6167         Ops.push_back(C);
6168         continue;
6169       }
6170       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6171       V.changeSign();
6172       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6173     }
6174     Cost = NegatibleCost::Neutral;
6175     return DAG.getBuildVector(VT, DL, Ops);
6176   }
6177   case ISD::FADD: {
6178     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6179       break;
6180 
6181     // After operation legalization, it might not be legal to create new FSUBs.
6182     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6183       break;
6184     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6185 
6186     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6187     NegatibleCost CostX = NegatibleCost::Expensive;
6188     SDValue NegX =
6189         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6190     // Prevent this node from being deleted by the next call.
6191     if (NegX)
6192       Handles.emplace_back(NegX);
6193 
6194     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6195     NegatibleCost CostY = NegatibleCost::Expensive;
6196     SDValue NegY =
6197         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6198 
6199     // We're done with the handles.
6200     Handles.clear();
6201 
6202     // Negate the X if its cost is less or equal than Y.
6203     if (NegX && (CostX <= CostY)) {
6204       Cost = CostX;
6205       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6206       if (NegY != N)
6207         RemoveDeadNode(NegY);
6208       return N;
6209     }
6210 
6211     // Negate the Y if it is not expensive.
6212     if (NegY) {
6213       Cost = CostY;
6214       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6215       if (NegX != N)
6216         RemoveDeadNode(NegX);
6217       return N;
6218     }
6219     break;
6220   }
6221   case ISD::FSUB: {
6222     // We can't turn -(A-B) into B-A when we honor signed zeros.
6223     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6224       break;
6225 
6226     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6227     // fold (fneg (fsub 0, Y)) -> Y
6228     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6229       if (C->isZero()) {
6230         Cost = NegatibleCost::Cheaper;
6231         return Y;
6232       }
6233 
6234     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6235     Cost = NegatibleCost::Neutral;
6236     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6237   }
6238   case ISD::FMUL:
6239   case ISD::FDIV: {
6240     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6241 
6242     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6243     NegatibleCost CostX = NegatibleCost::Expensive;
6244     SDValue NegX =
6245         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6246     // Prevent this node from being deleted by the next call.
6247     if (NegX)
6248       Handles.emplace_back(NegX);
6249 
6250     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6251     NegatibleCost CostY = NegatibleCost::Expensive;
6252     SDValue NegY =
6253         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6254 
6255     // We're done with the handles.
6256     Handles.clear();
6257 
6258     // Negate the X if its cost is less or equal than Y.
6259     if (NegX && (CostX <= CostY)) {
6260       Cost = CostX;
6261       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6262       if (NegY != N)
6263         RemoveDeadNode(NegY);
6264       return N;
6265     }
6266 
6267     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6268     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6269       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6270         break;
6271 
6272     // Negate the Y if it is not expensive.
6273     if (NegY) {
6274       Cost = CostY;
6275       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6276       if (NegX != N)
6277         RemoveDeadNode(NegX);
6278       return N;
6279     }
6280     break;
6281   }
6282   case ISD::FMA:
6283   case ISD::FMAD: {
6284     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6285       break;
6286 
6287     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6288     NegatibleCost CostZ = NegatibleCost::Expensive;
6289     SDValue NegZ =
6290         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6291     // Give up if fail to negate the Z.
6292     if (!NegZ)
6293       break;
6294 
6295     // Prevent this node from being deleted by the next two calls.
6296     Handles.emplace_back(NegZ);
6297 
6298     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6299     NegatibleCost CostX = NegatibleCost::Expensive;
6300     SDValue NegX =
6301         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6302     // Prevent this node from being deleted by the next call.
6303     if (NegX)
6304       Handles.emplace_back(NegX);
6305 
6306     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6307     NegatibleCost CostY = NegatibleCost::Expensive;
6308     SDValue NegY =
6309         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6310 
6311     // We're done with the handles.
6312     Handles.clear();
6313 
6314     // Negate the X if its cost is less or equal than Y.
6315     if (NegX && (CostX <= CostY)) {
6316       Cost = std::min(CostX, CostZ);
6317       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6318       if (NegY != N)
6319         RemoveDeadNode(NegY);
6320       return N;
6321     }
6322 
6323     // Negate the Y if it is not expensive.
6324     if (NegY) {
6325       Cost = std::min(CostY, CostZ);
6326       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6327       if (NegX != N)
6328         RemoveDeadNode(NegX);
6329       return N;
6330     }
6331     break;
6332   }
6333 
6334   case ISD::FP_EXTEND:
6335   case ISD::FSIN:
6336     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6337                                             OptForSize, Cost, Depth))
6338       return DAG.getNode(Opcode, DL, VT, NegV);
6339     break;
6340   case ISD::FP_ROUND:
6341     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6342                                             OptForSize, Cost, Depth))
6343       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6344     break;
6345   }
6346 
6347   return SDValue();
6348 }
6349 
6350 //===----------------------------------------------------------------------===//
6351 // Legalization Utilities
6352 //===----------------------------------------------------------------------===//
6353 
6354 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6355                                     SDValue LHS, SDValue RHS,
6356                                     SmallVectorImpl<SDValue> &Result,
6357                                     EVT HiLoVT, SelectionDAG &DAG,
6358                                     MulExpansionKind Kind, SDValue LL,
6359                                     SDValue LH, SDValue RL, SDValue RH) const {
6360   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6361          Opcode == ISD::SMUL_LOHI);
6362 
6363   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6364                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6365   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6366                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6367   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6368                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6369   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6370                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6371 
6372   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6373     return false;
6374 
6375   unsigned OuterBitSize = VT.getScalarSizeInBits();
6376   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6377 
6378   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6379   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6380          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6381 
6382   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6383   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6384                           bool Signed) -> bool {
6385     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6386       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6387       Hi = SDValue(Lo.getNode(), 1);
6388       return true;
6389     }
6390     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6391       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6392       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6393       return true;
6394     }
6395     return false;
6396   };
6397 
6398   SDValue Lo, Hi;
6399 
6400   if (!LL.getNode() && !RL.getNode() &&
6401       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6402     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6403     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6404   }
6405 
6406   if (!LL.getNode())
6407     return false;
6408 
6409   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6410   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6411       DAG.MaskedValueIsZero(RHS, HighMask)) {
6412     // The inputs are both zero-extended.
6413     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6414       Result.push_back(Lo);
6415       Result.push_back(Hi);
6416       if (Opcode != ISD::MUL) {
6417         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6418         Result.push_back(Zero);
6419         Result.push_back(Zero);
6420       }
6421       return true;
6422     }
6423   }
6424 
6425   if (!VT.isVector() && Opcode == ISD::MUL &&
6426       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6427       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6428     // The input values are both sign-extended.
6429     // TODO non-MUL case?
6430     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6431       Result.push_back(Lo);
6432       Result.push_back(Hi);
6433       return true;
6434     }
6435   }
6436 
6437   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6438   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6439   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6440 
6441   if (!LH.getNode() && !RH.getNode() &&
6442       isOperationLegalOrCustom(ISD::SRL, VT) &&
6443       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6444     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6445     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6446     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6447     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6448   }
6449 
6450   if (!LH.getNode())
6451     return false;
6452 
6453   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6454     return false;
6455 
6456   Result.push_back(Lo);
6457 
6458   if (Opcode == ISD::MUL) {
6459     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6460     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6461     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6462     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6463     Result.push_back(Hi);
6464     return true;
6465   }
6466 
6467   // Compute the full width result.
6468   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6469     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6470     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6471     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6472     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6473   };
6474 
6475   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6476   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6477     return false;
6478 
6479   // This is effectively the add part of a multiply-add of half-sized operands,
6480   // so it cannot overflow.
6481   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6482 
6483   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6484     return false;
6485 
6486   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6487   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6488 
6489   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6490                   isOperationLegalOrCustom(ISD::ADDE, VT));
6491   if (UseGlue)
6492     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6493                        Merge(Lo, Hi));
6494   else
6495     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6496                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6497 
6498   SDValue Carry = Next.getValue(1);
6499   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6500   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6501 
6502   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6503     return false;
6504 
6505   if (UseGlue)
6506     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6507                      Carry);
6508   else
6509     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6510                      Zero, Carry);
6511 
6512   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6513 
6514   if (Opcode == ISD::SMUL_LOHI) {
6515     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6516                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6517     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6518 
6519     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6520                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6521     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6522   }
6523 
6524   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6525   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6526   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6527   return true;
6528 }
6529 
6530 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6531                                SelectionDAG &DAG, MulExpansionKind Kind,
6532                                SDValue LL, SDValue LH, SDValue RL,
6533                                SDValue RH) const {
6534   SmallVector<SDValue, 2> Result;
6535   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6536                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6537                            DAG, Kind, LL, LH, RL, RH);
6538   if (Ok) {
6539     assert(Result.size() == 2);
6540     Lo = Result[0];
6541     Hi = Result[1];
6542   }
6543   return Ok;
6544 }
6545 
6546 // Check that (every element of) Z is undef or not an exact multiple of BW.
6547 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6548   return ISD::matchUnaryPredicate(
6549       Z,
6550       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6551       true);
6552 }
6553 
6554 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6555                                           SelectionDAG &DAG) const {
6556   EVT VT = Node->getValueType(0);
6557 
6558   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6559                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6560                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6561                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6562     return SDValue();
6563 
6564   SDValue X = Node->getOperand(0);
6565   SDValue Y = Node->getOperand(1);
6566   SDValue Z = Node->getOperand(2);
6567 
6568   unsigned BW = VT.getScalarSizeInBits();
6569   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6570   SDLoc DL(SDValue(Node, 0));
6571 
6572   EVT ShVT = Z.getValueType();
6573 
6574   // If a funnel shift in the other direction is more supported, use it.
6575   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6576   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6577       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6578     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6579       // fshl X, Y, Z -> fshr X, Y, -Z
6580       // fshr X, Y, Z -> fshl X, Y, -Z
6581       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6582       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6583     } else {
6584       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6585       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6586       SDValue One = DAG.getConstant(1, DL, ShVT);
6587       if (IsFSHL) {
6588         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6589         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6590       } else {
6591         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6592         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6593       }
6594       Z = DAG.getNOT(DL, Z, ShVT);
6595     }
6596     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6597   }
6598 
6599   SDValue ShX, ShY;
6600   SDValue ShAmt, InvShAmt;
6601   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6602     // fshl: X << C | Y >> (BW - C)
6603     // fshr: X << (BW - C) | Y >> C
6604     // where C = Z % BW is not zero
6605     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6606     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6607     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6608     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6609     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6610   } else {
6611     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6612     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6613     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6614     if (isPowerOf2_32(BW)) {
6615       // Z % BW -> Z & (BW - 1)
6616       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6617       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6618       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6619     } else {
6620       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6621       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6622       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6623     }
6624 
6625     SDValue One = DAG.getConstant(1, DL, ShVT);
6626     if (IsFSHL) {
6627       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6628       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6629       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6630     } else {
6631       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6632       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6633       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6634     }
6635   }
6636   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6637 }
6638 
6639 // TODO: Merge with expandFunnelShift.
6640 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6641                                   SelectionDAG &DAG) const {
6642   EVT VT = Node->getValueType(0);
6643   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6644   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6645   SDValue Op0 = Node->getOperand(0);
6646   SDValue Op1 = Node->getOperand(1);
6647   SDLoc DL(SDValue(Node, 0));
6648 
6649   EVT ShVT = Op1.getValueType();
6650   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6651 
6652   // If a rotate in the other direction is more supported, use it.
6653   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6654   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6655       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6656     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6657     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6658   }
6659 
6660   if (!AllowVectorOps && VT.isVector() &&
6661       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6662        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6663        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6664        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6665        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6666     return SDValue();
6667 
6668   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6669   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6670   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6671   SDValue ShVal;
6672   SDValue HsVal;
6673   if (isPowerOf2_32(EltSizeInBits)) {
6674     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6675     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6676     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6677     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6678     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6679     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6680     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6681   } else {
6682     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6683     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6684     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6685     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6686     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6687     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6688     SDValue One = DAG.getConstant(1, DL, ShVT);
6689     HsVal =
6690         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6691   }
6692   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6693 }
6694 
6695 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6696                                       SelectionDAG &DAG) const {
6697   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6698   EVT VT = Node->getValueType(0);
6699   unsigned VTBits = VT.getScalarSizeInBits();
6700   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6701 
6702   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6703   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6704   SDValue ShOpLo = Node->getOperand(0);
6705   SDValue ShOpHi = Node->getOperand(1);
6706   SDValue ShAmt = Node->getOperand(2);
6707   EVT ShAmtVT = ShAmt.getValueType();
6708   EVT ShAmtCCVT =
6709       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6710   SDLoc dl(Node);
6711 
6712   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6713   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6714   // away during isel.
6715   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6716                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6717   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6718                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6719                        : DAG.getConstant(0, dl, VT);
6720 
6721   SDValue Tmp2, Tmp3;
6722   if (IsSHL) {
6723     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6724     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6725   } else {
6726     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6727     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6728   }
6729 
6730   // If the shift amount is larger or equal than the width of a part we don't
6731   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6732   // values for large shift amounts.
6733   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6734                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6735   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6736                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6737 
6738   if (IsSHL) {
6739     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6740     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6741   } else {
6742     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6743     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6744   }
6745 }
6746 
6747 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6748                                       SelectionDAG &DAG) const {
6749   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6750   SDValue Src = Node->getOperand(OpNo);
6751   EVT SrcVT = Src.getValueType();
6752   EVT DstVT = Node->getValueType(0);
6753   SDLoc dl(SDValue(Node, 0));
6754 
6755   // FIXME: Only f32 to i64 conversions are supported.
6756   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6757     return false;
6758 
6759   if (Node->isStrictFPOpcode())
6760     // When a NaN is converted to an integer a trap is allowed. We can't
6761     // use this expansion here because it would eliminate that trap. Other
6762     // traps are also allowed and cannot be eliminated. See
6763     // IEEE 754-2008 sec 5.8.
6764     return false;
6765 
6766   // Expand f32 -> i64 conversion
6767   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6768   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6769   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6770   EVT IntVT = SrcVT.changeTypeToInteger();
6771   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6772 
6773   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6774   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6775   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6776   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6777   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6778   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6779 
6780   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6781 
6782   SDValue ExponentBits = DAG.getNode(
6783       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6784       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6785   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6786 
6787   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6788                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6789                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6790   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6791 
6792   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6793                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6794                           DAG.getConstant(0x00800000, dl, IntVT));
6795 
6796   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6797 
6798   R = DAG.getSelectCC(
6799       dl, Exponent, ExponentLoBit,
6800       DAG.getNode(ISD::SHL, dl, DstVT, R,
6801                   DAG.getZExtOrTrunc(
6802                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6803                       dl, IntShVT)),
6804       DAG.getNode(ISD::SRL, dl, DstVT, R,
6805                   DAG.getZExtOrTrunc(
6806                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6807                       dl, IntShVT)),
6808       ISD::SETGT);
6809 
6810   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6811                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6812 
6813   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6814                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6815   return true;
6816 }
6817 
6818 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6819                                       SDValue &Chain,
6820                                       SelectionDAG &DAG) const {
6821   SDLoc dl(SDValue(Node, 0));
6822   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6823   SDValue Src = Node->getOperand(OpNo);
6824 
6825   EVT SrcVT = Src.getValueType();
6826   EVT DstVT = Node->getValueType(0);
6827   EVT SetCCVT =
6828       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6829   EVT DstSetCCVT =
6830       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6831 
6832   // Only expand vector types if we have the appropriate vector bit operations.
6833   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6834                                                    ISD::FP_TO_SINT;
6835   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6836                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6837     return false;
6838 
6839   // If the maximum float value is smaller then the signed integer range,
6840   // the destination signmask can't be represented by the float, so we can
6841   // just use FP_TO_SINT directly.
6842   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6843   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
6844   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6845   if (APFloat::opOverflow &
6846       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6847     if (Node->isStrictFPOpcode()) {
6848       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6849                            { Node->getOperand(0), Src });
6850       Chain = Result.getValue(1);
6851     } else
6852       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6853     return true;
6854   }
6855 
6856   // Don't expand it if there isn't cheap fsub instruction.
6857   if (!isOperationLegalOrCustom(
6858           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6859     return false;
6860 
6861   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6862   SDValue Sel;
6863 
6864   if (Node->isStrictFPOpcode()) {
6865     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6866                        Node->getOperand(0), /*IsSignaling*/ true);
6867     Chain = Sel.getValue(1);
6868   } else {
6869     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6870   }
6871 
6872   bool Strict = Node->isStrictFPOpcode() ||
6873                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6874 
6875   if (Strict) {
6876     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6877     // signmask then offset (the result of which should be fully representable).
6878     // Sel = Src < 0x8000000000000000
6879     // FltOfs = select Sel, 0, 0x8000000000000000
6880     // IntOfs = select Sel, 0, 0x8000000000000000
6881     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6882 
6883     // TODO: Should any fast-math-flags be set for the FSUB?
6884     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6885                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6886     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6887     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6888                                    DAG.getConstant(0, dl, DstVT),
6889                                    DAG.getConstant(SignMask, dl, DstVT));
6890     SDValue SInt;
6891     if (Node->isStrictFPOpcode()) {
6892       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6893                                 { Chain, Src, FltOfs });
6894       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6895                          { Val.getValue(1), Val });
6896       Chain = SInt.getValue(1);
6897     } else {
6898       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6899       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6900     }
6901     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6902   } else {
6903     // Expand based on maximum range of FP_TO_SINT:
6904     // True = fp_to_sint(Src)
6905     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6906     // Result = select (Src < 0x8000000000000000), True, False
6907 
6908     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6909     // TODO: Should any fast-math-flags be set for the FSUB?
6910     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6911                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6912     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6913                         DAG.getConstant(SignMask, dl, DstVT));
6914     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6915     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6916   }
6917   return true;
6918 }
6919 
6920 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6921                                       SDValue &Chain,
6922                                       SelectionDAG &DAG) const {
6923   // This transform is not correct for converting 0 when rounding mode is set
6924   // to round toward negative infinity which will produce -0.0. So disable under
6925   // strictfp.
6926   if (Node->isStrictFPOpcode())
6927     return false;
6928 
6929   SDValue Src = Node->getOperand(0);
6930   EVT SrcVT = Src.getValueType();
6931   EVT DstVT = Node->getValueType(0);
6932 
6933   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6934     return false;
6935 
6936   // Only expand vector types if we have the appropriate vector bit operations.
6937   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6938                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6939                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6940                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6941                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6942     return false;
6943 
6944   SDLoc dl(SDValue(Node, 0));
6945   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6946 
6947   // Implementation of unsigned i64 to f64 following the algorithm in
6948   // __floatundidf in compiler_rt.  This implementation performs rounding
6949   // correctly in all rounding modes with the exception of converting 0
6950   // when rounding toward negative infinity. In that case the fsub will produce
6951   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6952   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6953   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6954       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6955   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6956   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6957   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6958 
6959   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6960   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6961   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6962   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6963   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6964   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6965   SDValue HiSub =
6966       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6967   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6968   return true;
6969 }
6970 
6971 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6972                                               SelectionDAG &DAG) const {
6973   SDLoc dl(Node);
6974   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6975     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6976   EVT VT = Node->getValueType(0);
6977 
6978   if (VT.isScalableVector())
6979     report_fatal_error(
6980         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6981 
6982   if (isOperationLegalOrCustom(NewOp, VT)) {
6983     SDValue Quiet0 = Node->getOperand(0);
6984     SDValue Quiet1 = Node->getOperand(1);
6985 
6986     if (!Node->getFlags().hasNoNaNs()) {
6987       // Insert canonicalizes if it's possible we need to quiet to get correct
6988       // sNaN behavior.
6989       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6990         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6991                              Node->getFlags());
6992       }
6993       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6994         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6995                              Node->getFlags());
6996       }
6997     }
6998 
6999     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7000   }
7001 
7002   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7003   // instead if there are no NaNs.
7004   if (Node->getFlags().hasNoNaNs()) {
7005     unsigned IEEE2018Op =
7006         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7007     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7008       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7009                          Node->getOperand(1), Node->getFlags());
7010     }
7011   }
7012 
7013   // If none of the above worked, but there are no NaNs, then expand to
7014   // a compare/select sequence.  This is required for correctness since
7015   // InstCombine might have canonicalized a fcmp+select sequence to a
7016   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7017   // expansion to libcall, we might introduce a link-time dependency
7018   // on libm into a file that originally did not have one.
7019   if (Node->getFlags().hasNoNaNs()) {
7020     ISD::CondCode Pred =
7021         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7022     SDValue Op1 = Node->getOperand(0);
7023     SDValue Op2 = Node->getOperand(1);
7024     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7025     // Copy FMF flags, but always set the no-signed-zeros flag
7026     // as this is implied by the FMINNUM/FMAXNUM semantics.
7027     SDNodeFlags Flags = Node->getFlags();
7028     Flags.setNoSignedZeros(true);
7029     SelCC->setFlags(Flags);
7030     return SelCC;
7031   }
7032 
7033   return SDValue();
7034 }
7035 
7036 // Only expand vector types if we have the appropriate vector bit operations.
7037 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7038   assert(VT.isVector() && "Expected vector type");
7039   unsigned Len = VT.getScalarSizeInBits();
7040   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7041          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7042          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7043          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7044          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7045 }
7046 
7047 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7048   SDLoc dl(Node);
7049   EVT VT = Node->getValueType(0);
7050   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7051   SDValue Op = Node->getOperand(0);
7052   unsigned Len = VT.getScalarSizeInBits();
7053   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7054 
7055   // TODO: Add support for irregular type lengths.
7056   if (!(Len <= 128 && Len % 8 == 0))
7057     return SDValue();
7058 
7059   // Only expand vector types if we have the appropriate vector bit operations.
7060   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7061     return SDValue();
7062 
7063   // This is the "best" algorithm from
7064   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7065   SDValue Mask55 =
7066       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7067   SDValue Mask33 =
7068       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7069   SDValue Mask0F =
7070       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7071   SDValue Mask01 =
7072       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7073 
7074   // v = v - ((v >> 1) & 0x55555555...)
7075   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7076                    DAG.getNode(ISD::AND, dl, VT,
7077                                DAG.getNode(ISD::SRL, dl, VT, Op,
7078                                            DAG.getConstant(1, dl, ShVT)),
7079                                Mask55));
7080   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7081   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7082                    DAG.getNode(ISD::AND, dl, VT,
7083                                DAG.getNode(ISD::SRL, dl, VT, Op,
7084                                            DAG.getConstant(2, dl, ShVT)),
7085                                Mask33));
7086   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7087   Op = DAG.getNode(ISD::AND, dl, VT,
7088                    DAG.getNode(ISD::ADD, dl, VT, Op,
7089                                DAG.getNode(ISD::SRL, dl, VT, Op,
7090                                            DAG.getConstant(4, dl, ShVT))),
7091                    Mask0F);
7092   // v = (v * 0x01010101...) >> (Len - 8)
7093   if (Len > 8)
7094     Op =
7095         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7096                     DAG.getConstant(Len - 8, dl, ShVT));
7097 
7098   return Op;
7099 }
7100 
7101 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7102   SDLoc dl(Node);
7103   EVT VT = Node->getValueType(0);
7104   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7105   SDValue Op = Node->getOperand(0);
7106   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7107 
7108   // If the non-ZERO_UNDEF version is supported we can use that instead.
7109   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7110       isOperationLegalOrCustom(ISD::CTLZ, VT))
7111     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7112 
7113   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7114   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7115     EVT SetCCVT =
7116         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7117     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7118     SDValue Zero = DAG.getConstant(0, dl, VT);
7119     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7120     return DAG.getSelect(dl, VT, SrcIsZero,
7121                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7122   }
7123 
7124   // Only expand vector types if we have the appropriate vector bit operations.
7125   // This includes the operations needed to expand CTPOP if it isn't supported.
7126   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7127                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7128                          !canExpandVectorCTPOP(*this, VT)) ||
7129                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7130                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7131     return SDValue();
7132 
7133   // for now, we do this:
7134   // x = x | (x >> 1);
7135   // x = x | (x >> 2);
7136   // ...
7137   // x = x | (x >>16);
7138   // x = x | (x >>32); // for 64-bit input
7139   // return popcount(~x);
7140   //
7141   // Ref: "Hacker's Delight" by Henry Warren
7142   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7143     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7144     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7145                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7146   }
7147   Op = DAG.getNOT(dl, Op, VT);
7148   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7149 }
7150 
7151 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7152   SDLoc dl(Node);
7153   EVT VT = Node->getValueType(0);
7154   SDValue Op = Node->getOperand(0);
7155   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7156 
7157   // If the non-ZERO_UNDEF version is supported we can use that instead.
7158   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7159       isOperationLegalOrCustom(ISD::CTTZ, VT))
7160     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7161 
7162   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7163   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7164     EVT SetCCVT =
7165         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7166     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7167     SDValue Zero = DAG.getConstant(0, dl, VT);
7168     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7169     return DAG.getSelect(dl, VT, SrcIsZero,
7170                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7171   }
7172 
7173   // Only expand vector types if we have the appropriate vector bit operations.
7174   // This includes the operations needed to expand CTPOP if it isn't supported.
7175   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7176                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7177                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7178                          !canExpandVectorCTPOP(*this, VT)) ||
7179                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7180                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7181                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7182     return SDValue();
7183 
7184   // for now, we use: { return popcount(~x & (x - 1)); }
7185   // unless the target has ctlz but not ctpop, in which case we use:
7186   // { return 32 - nlz(~x & (x-1)); }
7187   // Ref: "Hacker's Delight" by Henry Warren
7188   SDValue Tmp = DAG.getNode(
7189       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7190       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7191 
7192   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7193   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7194     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7195                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7196   }
7197 
7198   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7199 }
7200 
7201 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7202                                   bool IsNegative) const {
7203   SDLoc dl(N);
7204   EVT VT = N->getValueType(0);
7205   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7206   SDValue Op = N->getOperand(0);
7207 
7208   // abs(x) -> smax(x,sub(0,x))
7209   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7210       isOperationLegal(ISD::SMAX, VT)) {
7211     SDValue Zero = DAG.getConstant(0, dl, VT);
7212     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7213                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7214   }
7215 
7216   // abs(x) -> umin(x,sub(0,x))
7217   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7218       isOperationLegal(ISD::UMIN, VT)) {
7219     SDValue Zero = DAG.getConstant(0, dl, VT);
7220     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7221                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7222   }
7223 
7224   // 0 - abs(x) -> smin(x, sub(0,x))
7225   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7226       isOperationLegal(ISD::SMIN, VT)) {
7227     SDValue Zero = DAG.getConstant(0, dl, VT);
7228     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7229                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7230   }
7231 
7232   // Only expand vector types if we have the appropriate vector operations.
7233   if (VT.isVector() &&
7234       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7235        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7236        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7237        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7238     return SDValue();
7239 
7240   SDValue Shift =
7241       DAG.getNode(ISD::SRA, dl, VT, Op,
7242                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7243   if (!IsNegative) {
7244     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7245     return DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7246   }
7247 
7248   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7249   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7250   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7251 }
7252 
7253 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7254   SDLoc dl(N);
7255   EVT VT = N->getValueType(0);
7256   SDValue Op = N->getOperand(0);
7257 
7258   if (!VT.isSimple())
7259     return SDValue();
7260 
7261   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7262   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7263   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7264   default:
7265     return SDValue();
7266   case MVT::i16:
7267     // Use a rotate by 8. This can be further expanded if necessary.
7268     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7269   case MVT::i32:
7270     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7271     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7272     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7273     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7274     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7275                        DAG.getConstant(0xFF0000, dl, VT));
7276     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7277     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7278     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7279     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7280   case MVT::i64:
7281     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7282     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7283     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7284     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7285     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7286     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7287     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7288     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7289     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7290                        DAG.getConstant(255ULL<<48, dl, VT));
7291     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7292                        DAG.getConstant(255ULL<<40, dl, VT));
7293     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7294                        DAG.getConstant(255ULL<<32, dl, VT));
7295     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7296                        DAG.getConstant(255ULL<<24, dl, VT));
7297     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7298                        DAG.getConstant(255ULL<<16, dl, VT));
7299     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7300                        DAG.getConstant(255ULL<<8 , dl, VT));
7301     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7302     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7303     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7304     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7305     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7306     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7307     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7308   }
7309 }
7310 
7311 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7312   SDLoc dl(N);
7313   EVT VT = N->getValueType(0);
7314   SDValue Op = N->getOperand(0);
7315   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7316   unsigned Sz = VT.getScalarSizeInBits();
7317 
7318   SDValue Tmp, Tmp2, Tmp3;
7319 
7320   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7321   // and finally the i1 pairs.
7322   // TODO: We can easily support i4/i2 legal types if any target ever does.
7323   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7324     // Create the masks - repeating the pattern every byte.
7325     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7326     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7327     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7328 
7329     // BSWAP if the type is wider than a single byte.
7330     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7331 
7332     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7333     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7334     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7335     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7336     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7337     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7338 
7339     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7340     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7341     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7342     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7343     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7344     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7345 
7346     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7347     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7348     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7349     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7350     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7351     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7352     return Tmp;
7353   }
7354 
7355   Tmp = DAG.getConstant(0, dl, VT);
7356   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7357     if (I < J)
7358       Tmp2 =
7359           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7360     else
7361       Tmp2 =
7362           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7363 
7364     APInt Shift(Sz, 1);
7365     Shift <<= J;
7366     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7367     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7368   }
7369 
7370   return Tmp;
7371 }
7372 
7373 std::pair<SDValue, SDValue>
7374 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7375                                     SelectionDAG &DAG) const {
7376   SDLoc SL(LD);
7377   SDValue Chain = LD->getChain();
7378   SDValue BasePTR = LD->getBasePtr();
7379   EVT SrcVT = LD->getMemoryVT();
7380   EVT DstVT = LD->getValueType(0);
7381   ISD::LoadExtType ExtType = LD->getExtensionType();
7382 
7383   if (SrcVT.isScalableVector())
7384     report_fatal_error("Cannot scalarize scalable vector loads");
7385 
7386   unsigned NumElem = SrcVT.getVectorNumElements();
7387 
7388   EVT SrcEltVT = SrcVT.getScalarType();
7389   EVT DstEltVT = DstVT.getScalarType();
7390 
7391   // A vector must always be stored in memory as-is, i.e. without any padding
7392   // between the elements, since various code depend on it, e.g. in the
7393   // handling of a bitcast of a vector type to int, which may be done with a
7394   // vector store followed by an integer load. A vector that does not have
7395   // elements that are byte-sized must therefore be stored as an integer
7396   // built out of the extracted vector elements.
7397   if (!SrcEltVT.isByteSized()) {
7398     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7399     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7400 
7401     unsigned NumSrcBits = SrcVT.getSizeInBits();
7402     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7403 
7404     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7405     SDValue SrcEltBitMask = DAG.getConstant(
7406         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7407 
7408     // Load the whole vector and avoid masking off the top bits as it makes
7409     // the codegen worse.
7410     SDValue Load =
7411         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7412                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7413                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7414 
7415     SmallVector<SDValue, 8> Vals;
7416     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7417       unsigned ShiftIntoIdx =
7418           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7419       SDValue ShiftAmount =
7420           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7421                                      LoadVT, SL, /*LegalTypes=*/false);
7422       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7423       SDValue Elt =
7424           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7425       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7426 
7427       if (ExtType != ISD::NON_EXTLOAD) {
7428         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7429         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7430       }
7431 
7432       Vals.push_back(Scalar);
7433     }
7434 
7435     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7436     return std::make_pair(Value, Load.getValue(1));
7437   }
7438 
7439   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7440   assert(SrcEltVT.isByteSized());
7441 
7442   SmallVector<SDValue, 8> Vals;
7443   SmallVector<SDValue, 8> LoadChains;
7444 
7445   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7446     SDValue ScalarLoad =
7447         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7448                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7449                        SrcEltVT, LD->getOriginalAlign(),
7450                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7451 
7452     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7453 
7454     Vals.push_back(ScalarLoad.getValue(0));
7455     LoadChains.push_back(ScalarLoad.getValue(1));
7456   }
7457 
7458   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7459   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7460 
7461   return std::make_pair(Value, NewChain);
7462 }
7463 
7464 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7465                                              SelectionDAG &DAG) const {
7466   SDLoc SL(ST);
7467 
7468   SDValue Chain = ST->getChain();
7469   SDValue BasePtr = ST->getBasePtr();
7470   SDValue Value = ST->getValue();
7471   EVT StVT = ST->getMemoryVT();
7472 
7473   if (StVT.isScalableVector())
7474     report_fatal_error("Cannot scalarize scalable vector stores");
7475 
7476   // The type of the data we want to save
7477   EVT RegVT = Value.getValueType();
7478   EVT RegSclVT = RegVT.getScalarType();
7479 
7480   // The type of data as saved in memory.
7481   EVT MemSclVT = StVT.getScalarType();
7482 
7483   unsigned NumElem = StVT.getVectorNumElements();
7484 
7485   // A vector must always be stored in memory as-is, i.e. without any padding
7486   // between the elements, since various code depend on it, e.g. in the
7487   // handling of a bitcast of a vector type to int, which may be done with a
7488   // vector store followed by an integer load. A vector that does not have
7489   // elements that are byte-sized must therefore be stored as an integer
7490   // built out of the extracted vector elements.
7491   if (!MemSclVT.isByteSized()) {
7492     unsigned NumBits = StVT.getSizeInBits();
7493     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7494 
7495     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7496 
7497     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7498       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7499                                 DAG.getVectorIdxConstant(Idx, SL));
7500       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7501       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7502       unsigned ShiftIntoIdx =
7503           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7504       SDValue ShiftAmount =
7505           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7506       SDValue ShiftedElt =
7507           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7508       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7509     }
7510 
7511     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7512                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7513                         ST->getAAInfo());
7514   }
7515 
7516   // Store Stride in bytes
7517   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7518   assert(Stride && "Zero stride!");
7519   // Extract each of the elements from the original vector and save them into
7520   // memory individually.
7521   SmallVector<SDValue, 8> Stores;
7522   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7523     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7524                               DAG.getVectorIdxConstant(Idx, SL));
7525 
7526     SDValue Ptr =
7527         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7528 
7529     // This scalar TruncStore may be illegal, but we legalize it later.
7530     SDValue Store = DAG.getTruncStore(
7531         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7532         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7533         ST->getAAInfo());
7534 
7535     Stores.push_back(Store);
7536   }
7537 
7538   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7539 }
7540 
7541 std::pair<SDValue, SDValue>
7542 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7543   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7544          "unaligned indexed loads not implemented!");
7545   SDValue Chain = LD->getChain();
7546   SDValue Ptr = LD->getBasePtr();
7547   EVT VT = LD->getValueType(0);
7548   EVT LoadedVT = LD->getMemoryVT();
7549   SDLoc dl(LD);
7550   auto &MF = DAG.getMachineFunction();
7551 
7552   if (VT.isFloatingPoint() || VT.isVector()) {
7553     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7554     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7555       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7556           LoadedVT.isVector()) {
7557         // Scalarize the load and let the individual components be handled.
7558         return scalarizeVectorLoad(LD, DAG);
7559       }
7560 
7561       // Expand to a (misaligned) integer load of the same size,
7562       // then bitconvert to floating point or vector.
7563       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7564                                     LD->getMemOperand());
7565       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7566       if (LoadedVT != VT)
7567         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7568                              ISD::ANY_EXTEND, dl, VT, Result);
7569 
7570       return std::make_pair(Result, newLoad.getValue(1));
7571     }
7572 
7573     // Copy the value to a (aligned) stack slot using (unaligned) integer
7574     // loads and stores, then do a (aligned) load from the stack slot.
7575     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7576     unsigned LoadedBytes = LoadedVT.getStoreSize();
7577     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7578     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7579 
7580     // Make sure the stack slot is also aligned for the register type.
7581     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7582     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7583     SmallVector<SDValue, 8> Stores;
7584     SDValue StackPtr = StackBase;
7585     unsigned Offset = 0;
7586 
7587     EVT PtrVT = Ptr.getValueType();
7588     EVT StackPtrVT = StackPtr.getValueType();
7589 
7590     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7591     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7592 
7593     // Do all but one copies using the full register width.
7594     for (unsigned i = 1; i < NumRegs; i++) {
7595       // Load one integer register's worth from the original location.
7596       SDValue Load = DAG.getLoad(
7597           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7598           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7599           LD->getAAInfo());
7600       // Follow the load with a store to the stack slot.  Remember the store.
7601       Stores.push_back(DAG.getStore(
7602           Load.getValue(1), dl, Load, StackPtr,
7603           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7604       // Increment the pointers.
7605       Offset += RegBytes;
7606 
7607       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7608       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7609     }
7610 
7611     // The last copy may be partial.  Do an extending load.
7612     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7613                                   8 * (LoadedBytes - Offset));
7614     SDValue Load =
7615         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7616                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7617                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7618                        LD->getAAInfo());
7619     // Follow the load with a store to the stack slot.  Remember the store.
7620     // On big-endian machines this requires a truncating store to ensure
7621     // that the bits end up in the right place.
7622     Stores.push_back(DAG.getTruncStore(
7623         Load.getValue(1), dl, Load, StackPtr,
7624         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7625 
7626     // The order of the stores doesn't matter - say it with a TokenFactor.
7627     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7628 
7629     // Finally, perform the original load only redirected to the stack slot.
7630     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7631                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7632                           LoadedVT);
7633 
7634     // Callers expect a MERGE_VALUES node.
7635     return std::make_pair(Load, TF);
7636   }
7637 
7638   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7639          "Unaligned load of unsupported type.");
7640 
7641   // Compute the new VT that is half the size of the old one.  This is an
7642   // integer MVT.
7643   unsigned NumBits = LoadedVT.getSizeInBits();
7644   EVT NewLoadedVT;
7645   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7646   NumBits >>= 1;
7647 
7648   Align Alignment = LD->getOriginalAlign();
7649   unsigned IncrementSize = NumBits / 8;
7650   ISD::LoadExtType HiExtType = LD->getExtensionType();
7651 
7652   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7653   if (HiExtType == ISD::NON_EXTLOAD)
7654     HiExtType = ISD::ZEXTLOAD;
7655 
7656   // Load the value in two parts
7657   SDValue Lo, Hi;
7658   if (DAG.getDataLayout().isLittleEndian()) {
7659     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7660                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7661                         LD->getAAInfo());
7662 
7663     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7664     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7665                         LD->getPointerInfo().getWithOffset(IncrementSize),
7666                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7667                         LD->getAAInfo());
7668   } else {
7669     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7670                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7671                         LD->getAAInfo());
7672 
7673     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7674     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7675                         LD->getPointerInfo().getWithOffset(IncrementSize),
7676                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7677                         LD->getAAInfo());
7678   }
7679 
7680   // aggregate the two parts
7681   SDValue ShiftAmount =
7682       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7683                                                     DAG.getDataLayout()));
7684   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7685   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7686 
7687   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7688                              Hi.getValue(1));
7689 
7690   return std::make_pair(Result, TF);
7691 }
7692 
7693 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7694                                              SelectionDAG &DAG) const {
7695   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7696          "unaligned indexed stores not implemented!");
7697   SDValue Chain = ST->getChain();
7698   SDValue Ptr = ST->getBasePtr();
7699   SDValue Val = ST->getValue();
7700   EVT VT = Val.getValueType();
7701   Align Alignment = ST->getOriginalAlign();
7702   auto &MF = DAG.getMachineFunction();
7703   EVT StoreMemVT = ST->getMemoryVT();
7704 
7705   SDLoc dl(ST);
7706   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7707     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7708     if (isTypeLegal(intVT)) {
7709       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7710           StoreMemVT.isVector()) {
7711         // Scalarize the store and let the individual components be handled.
7712         SDValue Result = scalarizeVectorStore(ST, DAG);
7713         return Result;
7714       }
7715       // Expand to a bitconvert of the value to the integer type of the
7716       // same size, then a (misaligned) int store.
7717       // FIXME: Does not handle truncating floating point stores!
7718       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7719       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7720                             Alignment, ST->getMemOperand()->getFlags());
7721       return Result;
7722     }
7723     // Do a (aligned) store to a stack slot, then copy from the stack slot
7724     // to the final destination using (unaligned) integer loads and stores.
7725     MVT RegVT = getRegisterType(
7726         *DAG.getContext(),
7727         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7728     EVT PtrVT = Ptr.getValueType();
7729     unsigned StoredBytes = StoreMemVT.getStoreSize();
7730     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7731     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7732 
7733     // Make sure the stack slot is also aligned for the register type.
7734     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7735     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7736 
7737     // Perform the original store, only redirected to the stack slot.
7738     SDValue Store = DAG.getTruncStore(
7739         Chain, dl, Val, StackPtr,
7740         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7741 
7742     EVT StackPtrVT = StackPtr.getValueType();
7743 
7744     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7745     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7746     SmallVector<SDValue, 8> Stores;
7747     unsigned Offset = 0;
7748 
7749     // Do all but one copies using the full register width.
7750     for (unsigned i = 1; i < NumRegs; i++) {
7751       // Load one integer register's worth from the stack slot.
7752       SDValue Load = DAG.getLoad(
7753           RegVT, dl, Store, StackPtr,
7754           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7755       // Store it to the final location.  Remember the store.
7756       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7757                                     ST->getPointerInfo().getWithOffset(Offset),
7758                                     ST->getOriginalAlign(),
7759                                     ST->getMemOperand()->getFlags()));
7760       // Increment the pointers.
7761       Offset += RegBytes;
7762       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7763       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7764     }
7765 
7766     // The last store may be partial.  Do a truncating store.  On big-endian
7767     // machines this requires an extending load from the stack slot to ensure
7768     // that the bits are in the right place.
7769     EVT LoadMemVT =
7770         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7771 
7772     // Load from the stack slot.
7773     SDValue Load = DAG.getExtLoad(
7774         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7775         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7776 
7777     Stores.push_back(
7778         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7779                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7780                           ST->getOriginalAlign(),
7781                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7782     // The order of the stores doesn't matter - say it with a TokenFactor.
7783     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7784     return Result;
7785   }
7786 
7787   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7788          "Unaligned store of unknown type.");
7789   // Get the half-size VT
7790   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7791   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7792   unsigned IncrementSize = NumBits / 8;
7793 
7794   // Divide the stored value in two parts.
7795   SDValue ShiftAmount = DAG.getConstant(
7796       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7797   SDValue Lo = Val;
7798   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7799 
7800   // Store the two parts
7801   SDValue Store1, Store2;
7802   Store1 = DAG.getTruncStore(Chain, dl,
7803                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7804                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7805                              ST->getMemOperand()->getFlags());
7806 
7807   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7808   Store2 = DAG.getTruncStore(
7809       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7810       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7811       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7812 
7813   SDValue Result =
7814       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7815   return Result;
7816 }
7817 
7818 SDValue
7819 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7820                                        const SDLoc &DL, EVT DataVT,
7821                                        SelectionDAG &DAG,
7822                                        bool IsCompressedMemory) const {
7823   SDValue Increment;
7824   EVT AddrVT = Addr.getValueType();
7825   EVT MaskVT = Mask.getValueType();
7826   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7827          "Incompatible types of Data and Mask");
7828   if (IsCompressedMemory) {
7829     if (DataVT.isScalableVector())
7830       report_fatal_error(
7831           "Cannot currently handle compressed memory with scalable vectors");
7832     // Incrementing the pointer according to number of '1's in the mask.
7833     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7834     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7835     if (MaskIntVT.getSizeInBits() < 32) {
7836       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7837       MaskIntVT = MVT::i32;
7838     }
7839 
7840     // Count '1's with POPCNT.
7841     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7842     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7843     // Scale is an element size in bytes.
7844     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7845                                     AddrVT);
7846     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7847   } else if (DataVT.isScalableVector()) {
7848     Increment = DAG.getVScale(DL, AddrVT,
7849                               APInt(AddrVT.getFixedSizeInBits(),
7850                                     DataVT.getStoreSize().getKnownMinSize()));
7851   } else
7852     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7853 
7854   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7855 }
7856 
7857 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
7858                                        EVT VecVT, const SDLoc &dl,
7859                                        ElementCount SubEC) {
7860   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
7861          "Cannot index a scalable vector within a fixed-width vector");
7862 
7863   unsigned NElts = VecVT.getVectorMinNumElements();
7864   unsigned NumSubElts = SubEC.getKnownMinValue();
7865   EVT IdxVT = Idx.getValueType();
7866 
7867   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
7868     // If this is a constant index and we know the value plus the number of the
7869     // elements in the subvector minus one is less than the minimum number of
7870     // elements then it's safe to return Idx.
7871     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
7872       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
7873         return Idx;
7874     SDValue VS =
7875         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
7876     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
7877     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
7878                               DAG.getConstant(NumSubElts, dl, IdxVT));
7879     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7880   }
7881   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
7882     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
7883     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7884                        DAG.getConstant(Imm, dl, IdxVT));
7885   }
7886   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
7887   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7888                      DAG.getConstant(MaxIndex, dl, IdxVT));
7889 }
7890 
7891 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7892                                                 SDValue VecPtr, EVT VecVT,
7893                                                 SDValue Index) const {
7894   return getVectorSubVecPointer(
7895       DAG, VecPtr, VecVT,
7896       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
7897       Index);
7898 }
7899 
7900 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
7901                                                SDValue VecPtr, EVT VecVT,
7902                                                EVT SubVecVT,
7903                                                SDValue Index) const {
7904   SDLoc dl(Index);
7905   // Make sure the index type is big enough to compute in.
7906   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7907 
7908   EVT EltVT = VecVT.getVectorElementType();
7909 
7910   // Calculate the element offset and add it to the pointer.
7911   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7912   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7913          "Converting bits to bytes lost precision");
7914   assert(SubVecVT.getVectorElementType() == EltVT &&
7915          "Sub-vector must be a vector with matching element type");
7916   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
7917                                   SubVecVT.getVectorElementCount());
7918 
7919   EVT IdxVT = Index.getValueType();
7920   if (SubVecVT.isScalableVector())
7921     Index =
7922         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7923                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
7924 
7925   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7926                       DAG.getConstant(EltSize, dl, IdxVT));
7927   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7928 }
7929 
7930 //===----------------------------------------------------------------------===//
7931 // Implementation of Emulated TLS Model
7932 //===----------------------------------------------------------------------===//
7933 
7934 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7935                                                 SelectionDAG &DAG) const {
7936   // Access to address of TLS varialbe xyz is lowered to a function call:
7937   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7938   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7939   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7940   SDLoc dl(GA);
7941 
7942   ArgListTy Args;
7943   ArgListEntry Entry;
7944   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7945   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7946   StringRef EmuTlsVarName(NameString);
7947   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7948   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7949   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7950   Entry.Ty = VoidPtrType;
7951   Args.push_back(Entry);
7952 
7953   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7954 
7955   TargetLowering::CallLoweringInfo CLI(DAG);
7956   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7957   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7958   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7959 
7960   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7961   // At last for X86 targets, maybe good for other targets too?
7962   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7963   MFI.setAdjustsStack(true); // Is this only for X86 target?
7964   MFI.setHasCalls(true);
7965 
7966   assert((GA->getOffset() == 0) &&
7967          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7968   return CallResult.first;
7969 }
7970 
7971 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7972                                                 SelectionDAG &DAG) const {
7973   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7974   if (!isCtlzFast())
7975     return SDValue();
7976   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7977   SDLoc dl(Op);
7978   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7979     if (C->isZero() && CC == ISD::SETEQ) {
7980       EVT VT = Op.getOperand(0).getValueType();
7981       SDValue Zext = Op.getOperand(0);
7982       if (VT.bitsLT(MVT::i32)) {
7983         VT = MVT::i32;
7984         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7985       }
7986       unsigned Log2b = Log2_32(VT.getSizeInBits());
7987       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7988       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7989                                 DAG.getConstant(Log2b, dl, MVT::i32));
7990       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7991     }
7992   }
7993   return SDValue();
7994 }
7995 
7996 // Convert redundant addressing modes (e.g. scaling is redundant
7997 // when accessing bytes).
7998 ISD::MemIndexType
7999 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8000                                       SDValue Offsets) const {
8001   bool IsScaledIndex =
8002       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8003   bool IsSignedIndex =
8004       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8005 
8006   // Scaling is unimportant for bytes, canonicalize to unscaled.
8007   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8008     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8009 
8010   return IndexType;
8011 }
8012 
8013 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8014   SDValue Op0 = Node->getOperand(0);
8015   SDValue Op1 = Node->getOperand(1);
8016   EVT VT = Op0.getValueType();
8017   unsigned Opcode = Node->getOpcode();
8018   SDLoc DL(Node);
8019 
8020   // umin(x,y) -> sub(x,usubsat(x,y))
8021   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8022       isOperationLegal(ISD::USUBSAT, VT)) {
8023     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8024                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8025   }
8026 
8027   // umax(x,y) -> add(x,usubsat(y,x))
8028   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8029       isOperationLegal(ISD::USUBSAT, VT)) {
8030     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8031                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8032   }
8033 
8034   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8035   ISD::CondCode CC;
8036   switch (Opcode) {
8037   default: llvm_unreachable("How did we get here?");
8038   case ISD::SMAX: CC = ISD::SETGT; break;
8039   case ISD::SMIN: CC = ISD::SETLT; break;
8040   case ISD::UMAX: CC = ISD::SETUGT; break;
8041   case ISD::UMIN: CC = ISD::SETULT; break;
8042   }
8043 
8044   // FIXME: Should really try to split the vector in case it's legal on a
8045   // subvector.
8046   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8047     return DAG.UnrollVectorOp(Node);
8048 
8049   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8050   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8051   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8052 }
8053 
8054 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8055   unsigned Opcode = Node->getOpcode();
8056   SDValue LHS = Node->getOperand(0);
8057   SDValue RHS = Node->getOperand(1);
8058   EVT VT = LHS.getValueType();
8059   SDLoc dl(Node);
8060 
8061   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8062   assert(VT.isInteger() && "Expected operands to be integers");
8063 
8064   // usub.sat(a, b) -> umax(a, b) - b
8065   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8066     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8067     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8068   }
8069 
8070   // uadd.sat(a, b) -> umin(a, ~b) + b
8071   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8072     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8073     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8074     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8075   }
8076 
8077   unsigned OverflowOp;
8078   switch (Opcode) {
8079   case ISD::SADDSAT:
8080     OverflowOp = ISD::SADDO;
8081     break;
8082   case ISD::UADDSAT:
8083     OverflowOp = ISD::UADDO;
8084     break;
8085   case ISD::SSUBSAT:
8086     OverflowOp = ISD::SSUBO;
8087     break;
8088   case ISD::USUBSAT:
8089     OverflowOp = ISD::USUBO;
8090     break;
8091   default:
8092     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8093                      "addition or subtraction node.");
8094   }
8095 
8096   // FIXME: Should really try to split the vector in case it's legal on a
8097   // subvector.
8098   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8099     return DAG.UnrollVectorOp(Node);
8100 
8101   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8102   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8103   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8104   SDValue SumDiff = Result.getValue(0);
8105   SDValue Overflow = Result.getValue(1);
8106   SDValue Zero = DAG.getConstant(0, dl, VT);
8107   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8108 
8109   if (Opcode == ISD::UADDSAT) {
8110     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8111       // (LHS + RHS) | OverflowMask
8112       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8113       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8114     }
8115     // Overflow ? 0xffff.... : (LHS + RHS)
8116     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8117   }
8118 
8119   if (Opcode == ISD::USUBSAT) {
8120     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8121       // (LHS - RHS) & ~OverflowMask
8122       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8123       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8124       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8125     }
8126     // Overflow ? 0 : (LHS - RHS)
8127     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8128   }
8129 
8130   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8131   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8132   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8133   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8134                               DAG.getConstant(BitWidth - 1, dl, VT));
8135   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8136   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8137 }
8138 
8139 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8140   unsigned Opcode = Node->getOpcode();
8141   bool IsSigned = Opcode == ISD::SSHLSAT;
8142   SDValue LHS = Node->getOperand(0);
8143   SDValue RHS = Node->getOperand(1);
8144   EVT VT = LHS.getValueType();
8145   SDLoc dl(Node);
8146 
8147   assert((Node->getOpcode() == ISD::SSHLSAT ||
8148           Node->getOpcode() == ISD::USHLSAT) &&
8149           "Expected a SHLSAT opcode");
8150   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8151   assert(VT.isInteger() && "Expected operands to be integers");
8152 
8153   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8154 
8155   unsigned BW = VT.getScalarSizeInBits();
8156   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8157   SDValue Orig =
8158       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8159 
8160   SDValue SatVal;
8161   if (IsSigned) {
8162     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8163     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8164     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8165                              SatMin, SatMax, ISD::SETLT);
8166   } else {
8167     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8168   }
8169   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8170 
8171   return Result;
8172 }
8173 
8174 SDValue
8175 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8176   assert((Node->getOpcode() == ISD::SMULFIX ||
8177           Node->getOpcode() == ISD::UMULFIX ||
8178           Node->getOpcode() == ISD::SMULFIXSAT ||
8179           Node->getOpcode() == ISD::UMULFIXSAT) &&
8180          "Expected a fixed point multiplication opcode");
8181 
8182   SDLoc dl(Node);
8183   SDValue LHS = Node->getOperand(0);
8184   SDValue RHS = Node->getOperand(1);
8185   EVT VT = LHS.getValueType();
8186   unsigned Scale = Node->getConstantOperandVal(2);
8187   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8188                      Node->getOpcode() == ISD::UMULFIXSAT);
8189   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8190                  Node->getOpcode() == ISD::SMULFIXSAT);
8191   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8192   unsigned VTSize = VT.getScalarSizeInBits();
8193 
8194   if (!Scale) {
8195     // [us]mul.fix(a, b, 0) -> mul(a, b)
8196     if (!Saturating) {
8197       if (isOperationLegalOrCustom(ISD::MUL, VT))
8198         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8199     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8200       SDValue Result =
8201           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8202       SDValue Product = Result.getValue(0);
8203       SDValue Overflow = Result.getValue(1);
8204       SDValue Zero = DAG.getConstant(0, dl, VT);
8205 
8206       APInt MinVal = APInt::getSignedMinValue(VTSize);
8207       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8208       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8209       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8210       // Xor the inputs, if resulting sign bit is 0 the product will be
8211       // positive, else negative.
8212       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8213       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8214       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8215       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8216     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8217       SDValue Result =
8218           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8219       SDValue Product = Result.getValue(0);
8220       SDValue Overflow = Result.getValue(1);
8221 
8222       APInt MaxVal = APInt::getMaxValue(VTSize);
8223       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8224       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8225     }
8226   }
8227 
8228   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8229          "Expected scale to be less than the number of bits if signed or at "
8230          "most the number of bits if unsigned.");
8231   assert(LHS.getValueType() == RHS.getValueType() &&
8232          "Expected both operands to be the same type");
8233 
8234   // Get the upper and lower bits of the result.
8235   SDValue Lo, Hi;
8236   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8237   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8238   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8239     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8240     Lo = Result.getValue(0);
8241     Hi = Result.getValue(1);
8242   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8243     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8244     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8245   } else if (VT.isVector()) {
8246     return SDValue();
8247   } else {
8248     report_fatal_error("Unable to expand fixed point multiplication.");
8249   }
8250 
8251   if (Scale == VTSize)
8252     // Result is just the top half since we'd be shifting by the width of the
8253     // operand. Overflow impossible so this works for both UMULFIX and
8254     // UMULFIXSAT.
8255     return Hi;
8256 
8257   // The result will need to be shifted right by the scale since both operands
8258   // are scaled. The result is given to us in 2 halves, so we only want part of
8259   // both in the result.
8260   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8261   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8262                                DAG.getConstant(Scale, dl, ShiftTy));
8263   if (!Saturating)
8264     return Result;
8265 
8266   if (!Signed) {
8267     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8268     // widened multiplication) aren't all zeroes.
8269 
8270     // Saturate to max if ((Hi >> Scale) != 0),
8271     // which is the same as if (Hi > ((1 << Scale) - 1))
8272     APInt MaxVal = APInt::getMaxValue(VTSize);
8273     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8274                                       dl, VT);
8275     Result = DAG.getSelectCC(dl, Hi, LowMask,
8276                              DAG.getConstant(MaxVal, dl, VT), Result,
8277                              ISD::SETUGT);
8278 
8279     return Result;
8280   }
8281 
8282   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8283   // widened multiplication) aren't all ones or all zeroes.
8284 
8285   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8286   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8287 
8288   if (Scale == 0) {
8289     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8290                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8291     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8292     // Saturated to SatMin if wide product is negative, and SatMax if wide
8293     // product is positive ...
8294     SDValue Zero = DAG.getConstant(0, dl, VT);
8295     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8296                                                ISD::SETLT);
8297     // ... but only if we overflowed.
8298     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8299   }
8300 
8301   //  We handled Scale==0 above so all the bits to examine is in Hi.
8302 
8303   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8304   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8305   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8306                                     dl, VT);
8307   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8308   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8309   // which is the same as if (HI < (-1 << (Scale - 1))
8310   SDValue HighMask =
8311       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8312                       dl, VT);
8313   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8314   return Result;
8315 }
8316 
8317 SDValue
8318 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8319                                     SDValue LHS, SDValue RHS,
8320                                     unsigned Scale, SelectionDAG &DAG) const {
8321   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8322           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8323          "Expected a fixed point division opcode");
8324 
8325   EVT VT = LHS.getValueType();
8326   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8327   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8328   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8329 
8330   // If there is enough room in the type to upscale the LHS or downscale the
8331   // RHS before the division, we can perform it in this type without having to
8332   // resize. For signed operations, the LHS headroom is the number of
8333   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8334   // The headroom for the RHS is the number of trailing zeroes.
8335   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8336                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8337   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8338 
8339   // For signed saturating operations, we need to be able to detect true integer
8340   // division overflow; that is, when you have MIN / -EPS. However, this
8341   // is undefined behavior and if we emit divisions that could take such
8342   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8343   // example).
8344   // Avoid this by requiring an extra bit so that we never get this case.
8345   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8346   // signed saturating division, we need to emit a whopping 32-bit division.
8347   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8348     return SDValue();
8349 
8350   unsigned LHSShift = std::min(LHSLead, Scale);
8351   unsigned RHSShift = Scale - LHSShift;
8352 
8353   // At this point, we know that if we shift the LHS up by LHSShift and the
8354   // RHS down by RHSShift, we can emit a regular division with a final scaling
8355   // factor of Scale.
8356 
8357   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8358   if (LHSShift)
8359     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8360                       DAG.getConstant(LHSShift, dl, ShiftTy));
8361   if (RHSShift)
8362     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8363                       DAG.getConstant(RHSShift, dl, ShiftTy));
8364 
8365   SDValue Quot;
8366   if (Signed) {
8367     // For signed operations, if the resulting quotient is negative and the
8368     // remainder is nonzero, subtract 1 from the quotient to round towards
8369     // negative infinity.
8370     SDValue Rem;
8371     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8372     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8373     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8374     if (isTypeLegal(VT) &&
8375         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8376       Quot = DAG.getNode(ISD::SDIVREM, dl,
8377                          DAG.getVTList(VT, VT),
8378                          LHS, RHS);
8379       Rem = Quot.getValue(1);
8380       Quot = Quot.getValue(0);
8381     } else {
8382       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8383                          LHS, RHS);
8384       Rem = DAG.getNode(ISD::SREM, dl, VT,
8385                         LHS, RHS);
8386     }
8387     SDValue Zero = DAG.getConstant(0, dl, VT);
8388     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8389     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8390     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8391     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8392     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8393                                DAG.getConstant(1, dl, VT));
8394     Quot = DAG.getSelect(dl, VT,
8395                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8396                          Sub1, Quot);
8397   } else
8398     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8399                        LHS, RHS);
8400 
8401   return Quot;
8402 }
8403 
8404 void TargetLowering::expandUADDSUBO(
8405     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8406   SDLoc dl(Node);
8407   SDValue LHS = Node->getOperand(0);
8408   SDValue RHS = Node->getOperand(1);
8409   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8410 
8411   // If ADD/SUBCARRY is legal, use that instead.
8412   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8413   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8414     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8415     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8416                                     { LHS, RHS, CarryIn });
8417     Result = SDValue(NodeCarry.getNode(), 0);
8418     Overflow = SDValue(NodeCarry.getNode(), 1);
8419     return;
8420   }
8421 
8422   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8423                             LHS.getValueType(), LHS, RHS);
8424 
8425   EVT ResultType = Node->getValueType(1);
8426   EVT SetCCType = getSetCCResultType(
8427       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8428   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8429   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8430   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8431 }
8432 
8433 void TargetLowering::expandSADDSUBO(
8434     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8435   SDLoc dl(Node);
8436   SDValue LHS = Node->getOperand(0);
8437   SDValue RHS = Node->getOperand(1);
8438   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8439 
8440   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8441                             LHS.getValueType(), LHS, RHS);
8442 
8443   EVT ResultType = Node->getValueType(1);
8444   EVT OType = getSetCCResultType(
8445       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8446 
8447   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8448   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8449   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8450     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8451     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8452     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8453     return;
8454   }
8455 
8456   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8457 
8458   // For an addition, the result should be less than one of the operands (LHS)
8459   // if and only if the other operand (RHS) is negative, otherwise there will
8460   // be overflow.
8461   // For a subtraction, the result should be less than one of the operands
8462   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8463   // otherwise there will be overflow.
8464   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8465   SDValue ConditionRHS =
8466       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8467 
8468   Overflow = DAG.getBoolExtOrTrunc(
8469       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8470       ResultType, ResultType);
8471 }
8472 
8473 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8474                                 SDValue &Overflow, SelectionDAG &DAG) const {
8475   SDLoc dl(Node);
8476   EVT VT = Node->getValueType(0);
8477   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8478   SDValue LHS = Node->getOperand(0);
8479   SDValue RHS = Node->getOperand(1);
8480   bool isSigned = Node->getOpcode() == ISD::SMULO;
8481 
8482   // For power-of-two multiplications we can use a simpler shift expansion.
8483   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8484     const APInt &C = RHSC->getAPIntValue();
8485     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8486     if (C.isPowerOf2()) {
8487       // smulo(x, signed_min) is same as umulo(x, signed_min).
8488       bool UseArithShift = isSigned && !C.isMinSignedValue();
8489       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8490       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8491       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8492       Overflow = DAG.getSetCC(dl, SetCCVT,
8493           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8494                       dl, VT, Result, ShiftAmt),
8495           LHS, ISD::SETNE);
8496       return true;
8497     }
8498   }
8499 
8500   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8501   if (VT.isVector())
8502     WideVT =
8503         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8504 
8505   SDValue BottomHalf;
8506   SDValue TopHalf;
8507   static const unsigned Ops[2][3] =
8508       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8509         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8510   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8511     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8512     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8513   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8514     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8515                              RHS);
8516     TopHalf = BottomHalf.getValue(1);
8517   } else if (isTypeLegal(WideVT)) {
8518     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8519     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8520     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8521     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8522     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8523         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8524     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8525                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8526   } else {
8527     if (VT.isVector())
8528       return false;
8529 
8530     // We can fall back to a libcall with an illegal type for the MUL if we
8531     // have a libcall big enough.
8532     // Also, we can fall back to a division in some cases, but that's a big
8533     // performance hit in the general case.
8534     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8535     if (WideVT == MVT::i16)
8536       LC = RTLIB::MUL_I16;
8537     else if (WideVT == MVT::i32)
8538       LC = RTLIB::MUL_I32;
8539     else if (WideVT == MVT::i64)
8540       LC = RTLIB::MUL_I64;
8541     else if (WideVT == MVT::i128)
8542       LC = RTLIB::MUL_I128;
8543     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8544 
8545     SDValue HiLHS;
8546     SDValue HiRHS;
8547     if (isSigned) {
8548       // The high part is obtained by SRA'ing all but one of the bits of low
8549       // part.
8550       unsigned LoSize = VT.getFixedSizeInBits();
8551       HiLHS =
8552           DAG.getNode(ISD::SRA, dl, VT, LHS,
8553                       DAG.getConstant(LoSize - 1, dl,
8554                                       getPointerTy(DAG.getDataLayout())));
8555       HiRHS =
8556           DAG.getNode(ISD::SRA, dl, VT, RHS,
8557                       DAG.getConstant(LoSize - 1, dl,
8558                                       getPointerTy(DAG.getDataLayout())));
8559     } else {
8560         HiLHS = DAG.getConstant(0, dl, VT);
8561         HiRHS = DAG.getConstant(0, dl, VT);
8562     }
8563 
8564     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8565     // pre-lowered to the correct types. This all depends upon WideVT not
8566     // being a legal type for the architecture and thus has to be split to
8567     // two arguments.
8568     SDValue Ret;
8569     TargetLowering::MakeLibCallOptions CallOptions;
8570     CallOptions.setSExt(isSigned);
8571     CallOptions.setIsPostTypeLegalization(true);
8572     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8573       // Halves of WideVT are packed into registers in different order
8574       // depending on platform endianness. This is usually handled by
8575       // the C calling convention, but we can't defer to it in
8576       // the legalizer.
8577       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8578       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8579     } else {
8580       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8581       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8582     }
8583     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8584            "Ret value is a collection of constituent nodes holding result.");
8585     if (DAG.getDataLayout().isLittleEndian()) {
8586       // Same as above.
8587       BottomHalf = Ret.getOperand(0);
8588       TopHalf = Ret.getOperand(1);
8589     } else {
8590       BottomHalf = Ret.getOperand(1);
8591       TopHalf = Ret.getOperand(0);
8592     }
8593   }
8594 
8595   Result = BottomHalf;
8596   if (isSigned) {
8597     SDValue ShiftAmt = DAG.getConstant(
8598         VT.getScalarSizeInBits() - 1, dl,
8599         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8600     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8601     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8602   } else {
8603     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8604                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8605   }
8606 
8607   // Truncate the result if SetCC returns a larger type than needed.
8608   EVT RType = Node->getValueType(1);
8609   if (RType.bitsLT(Overflow.getValueType()))
8610     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8611 
8612   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8613          "Unexpected result type for S/UMULO legalization");
8614   return true;
8615 }
8616 
8617 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8618   SDLoc dl(Node);
8619   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8620   SDValue Op = Node->getOperand(0);
8621   EVT VT = Op.getValueType();
8622 
8623   if (VT.isScalableVector())
8624     report_fatal_error(
8625         "Expanding reductions for scalable vectors is undefined.");
8626 
8627   // Try to use a shuffle reduction for power of two vectors.
8628   if (VT.isPow2VectorType()) {
8629     while (VT.getVectorNumElements() > 1) {
8630       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8631       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8632         break;
8633 
8634       SDValue Lo, Hi;
8635       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8636       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8637       VT = HalfVT;
8638     }
8639   }
8640 
8641   EVT EltVT = VT.getVectorElementType();
8642   unsigned NumElts = VT.getVectorNumElements();
8643 
8644   SmallVector<SDValue, 8> Ops;
8645   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8646 
8647   SDValue Res = Ops[0];
8648   for (unsigned i = 1; i < NumElts; i++)
8649     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8650 
8651   // Result type may be wider than element type.
8652   if (EltVT != Node->getValueType(0))
8653     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8654   return Res;
8655 }
8656 
8657 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8658   SDLoc dl(Node);
8659   SDValue AccOp = Node->getOperand(0);
8660   SDValue VecOp = Node->getOperand(1);
8661   SDNodeFlags Flags = Node->getFlags();
8662 
8663   EVT VT = VecOp.getValueType();
8664   EVT EltVT = VT.getVectorElementType();
8665 
8666   if (VT.isScalableVector())
8667     report_fatal_error(
8668         "Expanding reductions for scalable vectors is undefined.");
8669 
8670   unsigned NumElts = VT.getVectorNumElements();
8671 
8672   SmallVector<SDValue, 8> Ops;
8673   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8674 
8675   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8676 
8677   SDValue Res = AccOp;
8678   for (unsigned i = 0; i < NumElts; i++)
8679     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8680 
8681   return Res;
8682 }
8683 
8684 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8685                                SelectionDAG &DAG) const {
8686   EVT VT = Node->getValueType(0);
8687   SDLoc dl(Node);
8688   bool isSigned = Node->getOpcode() == ISD::SREM;
8689   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8690   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8691   SDValue Dividend = Node->getOperand(0);
8692   SDValue Divisor = Node->getOperand(1);
8693   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8694     SDVTList VTs = DAG.getVTList(VT, VT);
8695     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8696     return true;
8697   }
8698   if (isOperationLegalOrCustom(DivOpc, VT)) {
8699     // X % Y -> X-X/Y*Y
8700     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8701     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8702     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8703     return true;
8704   }
8705   return false;
8706 }
8707 
8708 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8709                                             SelectionDAG &DAG) const {
8710   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8711   SDLoc dl(SDValue(Node, 0));
8712   SDValue Src = Node->getOperand(0);
8713 
8714   // DstVT is the result type, while SatVT is the size to which we saturate
8715   EVT SrcVT = Src.getValueType();
8716   EVT DstVT = Node->getValueType(0);
8717 
8718   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8719   unsigned SatWidth = SatVT.getScalarSizeInBits();
8720   unsigned DstWidth = DstVT.getScalarSizeInBits();
8721   assert(SatWidth <= DstWidth &&
8722          "Expected saturation width smaller than result width");
8723 
8724   // Determine minimum and maximum integer values and their corresponding
8725   // floating-point values.
8726   APInt MinInt, MaxInt;
8727   if (IsSigned) {
8728     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8729     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8730   } else {
8731     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8732     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8733   }
8734 
8735   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8736   // libcall emission cannot handle this. Large result types will fail.
8737   if (SrcVT == MVT::f16) {
8738     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8739     SrcVT = Src.getValueType();
8740   }
8741 
8742   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8743   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8744 
8745   APFloat::opStatus MinStatus =
8746       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8747   APFloat::opStatus MaxStatus =
8748       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8749   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8750                              !(MaxStatus & APFloat::opStatus::opInexact);
8751 
8752   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8753   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8754 
8755   // If the integer bounds are exactly representable as floats and min/max are
8756   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8757   // of comparisons and selects.
8758   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8759                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8760   if (AreExactFloatBounds && MinMaxLegal) {
8761     SDValue Clamped = Src;
8762 
8763     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8764     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8765     // Clamp by MaxFloat from above. NaN cannot occur.
8766     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8767     // Convert clamped value to integer.
8768     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8769                                   dl, DstVT, Clamped);
8770 
8771     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8772     // which will cast to zero.
8773     if (!IsSigned)
8774       return FpToInt;
8775 
8776     // Otherwise, select 0 if Src is NaN.
8777     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8778     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8779                            ISD::CondCode::SETUO);
8780   }
8781 
8782   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8783   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8784 
8785   // Result of direct conversion. The assumption here is that the operation is
8786   // non-trapping and it's fine to apply it to an out-of-range value if we
8787   // select it away later.
8788   SDValue FpToInt =
8789       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8790 
8791   SDValue Select = FpToInt;
8792 
8793   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8794   // MinInt if Src is NaN.
8795   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8796                            ISD::CondCode::SETULT);
8797   // If Src OGT MaxFloat, select MaxInt.
8798   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8799                            ISD::CondCode::SETOGT);
8800 
8801   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8802   // is already zero.
8803   if (!IsSigned)
8804     return Select;
8805 
8806   // Otherwise, select 0 if Src is NaN.
8807   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8808   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8809 }
8810 
8811 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8812                                            SelectionDAG &DAG) const {
8813   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8814   assert(Node->getValueType(0).isScalableVector() &&
8815          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8816 
8817   EVT VT = Node->getValueType(0);
8818   SDValue V1 = Node->getOperand(0);
8819   SDValue V2 = Node->getOperand(1);
8820   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8821   SDLoc DL(Node);
8822 
8823   // Expand through memory thusly:
8824   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8825   //  Store V1, Ptr
8826   //  Store V2, Ptr + sizeof(V1)
8827   //  If (Imm < 0)
8828   //    TrailingElts = -Imm
8829   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8830   //  else
8831   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8832   //  Res = Load Ptr
8833 
8834   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8835 
8836   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8837                                VT.getVectorElementCount() * 2);
8838   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8839   EVT PtrVT = StackPtr.getValueType();
8840   auto &MF = DAG.getMachineFunction();
8841   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8842   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8843 
8844   // Store the lo part of CONCAT_VECTORS(V1, V2)
8845   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8846   // Store the hi part of CONCAT_VECTORS(V1, V2)
8847   SDValue OffsetToV2 = DAG.getVScale(
8848       DL, PtrVT,
8849       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8850   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8851   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8852 
8853   if (Imm >= 0) {
8854     // Load back the required element. getVectorElementPointer takes care of
8855     // clamping the index if it's out-of-bounds.
8856     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8857     // Load the spliced result
8858     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8859                        MachinePointerInfo::getUnknownStack(MF));
8860   }
8861 
8862   uint64_t TrailingElts = -Imm;
8863 
8864   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8865   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8866   SDValue TrailingBytes =
8867       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8868 
8869   if (TrailingElts > VT.getVectorMinNumElements()) {
8870     SDValue VLBytes = DAG.getVScale(
8871         DL, PtrVT,
8872         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8873     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8874   }
8875 
8876   // Calculate the start address of the spliced result.
8877   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8878 
8879   // Load the spliced result
8880   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8881                      MachinePointerInfo::getUnknownStack(MF));
8882 }
8883 
8884 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8885                                            SDValue &LHS, SDValue &RHS,
8886                                            SDValue &CC, bool &NeedInvert,
8887                                            const SDLoc &dl, SDValue &Chain,
8888                                            bool IsSignaling) const {
8889   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8890   MVT OpVT = LHS.getSimpleValueType();
8891   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8892   NeedInvert = false;
8893   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8894   default:
8895     llvm_unreachable("Unknown condition code action!");
8896   case TargetLowering::Legal:
8897     // Nothing to do.
8898     break;
8899   case TargetLowering::Expand: {
8900     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8901     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8902       std::swap(LHS, RHS);
8903       CC = DAG.getCondCode(InvCC);
8904       return true;
8905     }
8906     // Swapping operands didn't work. Try inverting the condition.
8907     bool NeedSwap = false;
8908     InvCC = getSetCCInverse(CCCode, OpVT);
8909     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8910       // If inverting the condition is not enough, try swapping operands
8911       // on top of it.
8912       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8913       NeedSwap = true;
8914     }
8915     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8916       CC = DAG.getCondCode(InvCC);
8917       NeedInvert = true;
8918       if (NeedSwap)
8919         std::swap(LHS, RHS);
8920       return true;
8921     }
8922 
8923     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8924     unsigned Opc = 0;
8925     switch (CCCode) {
8926     default:
8927       llvm_unreachable("Don't know how to expand this condition!");
8928     case ISD::SETUO:
8929       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8930         CC1 = ISD::SETUNE;
8931         CC2 = ISD::SETUNE;
8932         Opc = ISD::OR;
8933         break;
8934       }
8935       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8936              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8937       NeedInvert = true;
8938       LLVM_FALLTHROUGH;
8939     case ISD::SETO:
8940       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8941              "If SETO is expanded, SETOEQ must be legal!");
8942       CC1 = ISD::SETOEQ;
8943       CC2 = ISD::SETOEQ;
8944       Opc = ISD::AND;
8945       break;
8946     case ISD::SETONE:
8947     case ISD::SETUEQ:
8948       // If the SETUO or SETO CC isn't legal, we might be able to use
8949       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8950       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8951       // the operands.
8952       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8953       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8954           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8955            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8956         CC1 = ISD::SETOGT;
8957         CC2 = ISD::SETOLT;
8958         Opc = ISD::OR;
8959         NeedInvert = ((unsigned)CCCode & 0x8U);
8960         break;
8961       }
8962       LLVM_FALLTHROUGH;
8963     case ISD::SETOEQ:
8964     case ISD::SETOGT:
8965     case ISD::SETOGE:
8966     case ISD::SETOLT:
8967     case ISD::SETOLE:
8968     case ISD::SETUNE:
8969     case ISD::SETUGT:
8970     case ISD::SETUGE:
8971     case ISD::SETULT:
8972     case ISD::SETULE:
8973       // If we are floating point, assign and break, otherwise fall through.
8974       if (!OpVT.isInteger()) {
8975         // We can use the 4th bit to tell if we are the unordered
8976         // or ordered version of the opcode.
8977         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8978         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8979         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8980         break;
8981       }
8982       // Fallthrough if we are unsigned integer.
8983       LLVM_FALLTHROUGH;
8984     case ISD::SETLE:
8985     case ISD::SETGT:
8986     case ISD::SETGE:
8987     case ISD::SETLT:
8988     case ISD::SETNE:
8989     case ISD::SETEQ:
8990       // If all combinations of inverting the condition and swapping operands
8991       // didn't work then we have no means to expand the condition.
8992       llvm_unreachable("Don't know how to expand this condition!");
8993     }
8994 
8995     SDValue SetCC1, SetCC2;
8996     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8997       // If we aren't the ordered or unorder operation,
8998       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8999       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9000       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9001     } else {
9002       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9003       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9004       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9005     }
9006     if (Chain)
9007       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9008                           SetCC2.getValue(1));
9009     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9010     RHS = SDValue();
9011     CC = SDValue();
9012     return true;
9013   }
9014   }
9015   return false;
9016 }
9017