1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore NoAlias and NonNull because they don't affect the
59   // call sequence.
60   AttributeList CallerAttrs = F.getAttributes();
61   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
62           .removeAttribute(Attribute::NoAlias)
63           .removeAttribute(Attribute::NonNull)
64           .hasAttributes())
65     return false;
66 
67   // It's not safe to eliminate the sign / zero extension of the return value.
68   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
69       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
70     return false;
71 
72   // Check if the only use is a function return node.
73   return isUsedByReturnOnly(Node, Chain);
74 }
75 
76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
77     const uint32_t *CallerPreservedMask,
78     const SmallVectorImpl<CCValAssign> &ArgLocs,
79     const SmallVectorImpl<SDValue> &OutVals) const {
80   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
81     const CCValAssign &ArgLoc = ArgLocs[I];
82     if (!ArgLoc.isRegLoc())
83       continue;
84     unsigned Reg = ArgLoc.getLocReg();
85     // Only look at callee saved registers.
86     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
87       continue;
88     // Check that we pass the value used for the caller.
89     // (We look for a CopyFromReg reading a virtual register that is used
90     //  for the function live-in value of register Reg)
91     SDValue Value = OutVals[I];
92     if (Value->getOpcode() != ISD::CopyFromReg)
93       return false;
94     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
95     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
96       return false;
97   }
98   return true;
99 }
100 
101 /// Set CallLoweringInfo attribute flags based on a call instruction
102 /// and called function attributes.
103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
104                                                      unsigned ArgIdx) {
105   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
106   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
107   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
108   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
109   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
110   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
111   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
112   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
113   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
114   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
115   Alignment  = CS->getParamAlignment(ArgIdx);
116 }
117 
118 /// Generate a libcall taking the given operands as arguments and returning a
119 /// result of type RetVT.
120 std::pair<SDValue, SDValue>
121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
122                             ArrayRef<SDValue> Ops, bool isSigned,
123                             const SDLoc &dl, bool doesNotReturn,
124                             bool isReturnValueUsed) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setSExtResult(signExtend)
151       .setZExtResult(!signExtend);
152   return LowerCallTo(CLI);
153 }
154 
155 /// Soften the operands of a comparison. This code is shared among BR_CC,
156 /// SELECT_CC, and SETCC handlers.
157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
158                                          SDValue &NewLHS, SDValue &NewRHS,
159                                          ISD::CondCode &CCCode,
160                                          const SDLoc &dl) const {
161   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
162          && "Unsupported setcc type!");
163 
164   // Expand into one or more soft-fp libcall(s).
165   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
166   bool ShouldInvertCC = false;
167   switch (CCCode) {
168   case ISD::SETEQ:
169   case ISD::SETOEQ:
170     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
171           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
172           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
173     break;
174   case ISD::SETNE:
175   case ISD::SETUNE:
176     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
177           (VT == MVT::f64) ? RTLIB::UNE_F64 :
178           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
179     break;
180   case ISD::SETGE:
181   case ISD::SETOGE:
182     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183           (VT == MVT::f64) ? RTLIB::OGE_F64 :
184           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
185     break;
186   case ISD::SETLT:
187   case ISD::SETOLT:
188     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
189           (VT == MVT::f64) ? RTLIB::OLT_F64 :
190           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
191     break;
192   case ISD::SETLE:
193   case ISD::SETOLE:
194     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
195           (VT == MVT::f64) ? RTLIB::OLE_F64 :
196           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
197     break;
198   case ISD::SETGT:
199   case ISD::SETOGT:
200     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
201           (VT == MVT::f64) ? RTLIB::OGT_F64 :
202           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
203     break;
204   case ISD::SETUO:
205     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
206           (VT == MVT::f64) ? RTLIB::UO_F64 :
207           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
208     break;
209   case ISD::SETO:
210     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
211           (VT == MVT::f64) ? RTLIB::O_F64 :
212           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
213     break;
214   case ISD::SETONE:
215     // SETONE = SETOLT | SETOGT
216     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
217           (VT == MVT::f64) ? RTLIB::OLT_F64 :
218           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
220           (VT == MVT::f64) ? RTLIB::OGT_F64 :
221           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
222     break;
223   case ISD::SETUEQ:
224     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
225           (VT == MVT::f64) ? RTLIB::UO_F64 :
226           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
227     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
228           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
229           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
230     break;
231   default:
232     // Invert CC for unordered comparisons
233     ShouldInvertCC = true;
234     switch (CCCode) {
235     case ISD::SETULT:
236       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
237             (VT == MVT::f64) ? RTLIB::OGE_F64 :
238             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
239       break;
240     case ISD::SETULE:
241       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
242             (VT == MVT::f64) ? RTLIB::OGT_F64 :
243             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
244       break;
245     case ISD::SETUGT:
246       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
247             (VT == MVT::f64) ? RTLIB::OLE_F64 :
248             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
249       break;
250     case ISD::SETUGE:
251       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
252             (VT == MVT::f64) ? RTLIB::OLT_F64 :
253             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
254       break;
255     default: llvm_unreachable("Do not know how to soften this setcc!");
256     }
257   }
258 
259   // Use the target specific return value for comparions lib calls.
260   EVT RetVT = getCmpLibcallReturnType();
261   SDValue Ops[2] = {NewLHS, NewRHS};
262   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
263                        dl).first;
264   NewRHS = DAG.getConstant(0, dl, RetVT);
265 
266   CCCode = getCmpLibcallCC(LC1);
267   if (ShouldInvertCC)
268     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
269 
270   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
271     SDValue Tmp = DAG.getNode(
272         ISD::SETCC, dl,
273         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
274         NewLHS, NewRHS, DAG.getCondCode(CCCode));
275     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
276                          dl).first;
277     NewLHS = DAG.getNode(
278         ISD::SETCC, dl,
279         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
280         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
281     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
282     NewRHS = SDValue();
283   }
284 }
285 
286 /// Return the entry encoding for a jump table in the current function. The
287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
288 unsigned TargetLowering::getJumpTableEncoding() const {
289   // In non-pic modes, just use the address of a block.
290   if (!isPositionIndependent())
291     return MachineJumpTableInfo::EK_BlockAddress;
292 
293   // In PIC mode, if the target supports a GPRel32 directive, use it.
294   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
295     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
296 
297   // Otherwise, use a label difference.
298   return MachineJumpTableInfo::EK_LabelDifference32;
299 }
300 
301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
302                                                  SelectionDAG &DAG) const {
303   // If our PIC model is GP relative, use the global offset table as the base.
304   unsigned JTEncoding = getJumpTableEncoding();
305 
306   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
307       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
308     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
309 
310   return Table;
311 }
312 
313 /// This returns the relocation base for the given PIC jumptable, the same as
314 /// getPICJumpTableRelocBase, but as an MCExpr.
315 const MCExpr *
316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
317                                              unsigned JTI,MCContext &Ctx) const{
318   // The normal PIC reloc base is the label at the start of the jump table.
319   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
320 }
321 
322 bool
323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
324   const TargetMachine &TM = getTargetMachine();
325   const GlobalValue *GV = GA->getGlobal();
326 
327   // If the address is not even local to this DSO we will have to load it from
328   // a got and then add the offset.
329   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
330     return false;
331 
332   // If the code is position independent we will have to add a base register.
333   if (isPositionIndependent())
334     return false;
335 
336   // Otherwise we can do it.
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Optimization Methods
342 //===----------------------------------------------------------------------===//
343 
344 /// If the specified instruction has a constant integer operand and there are
345 /// bits set in that constant that are not demanded, then clear those bits and
346 /// return true.
347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
348                                             TargetLoweringOpt &TLO) const {
349   SelectionDAG &DAG = TLO.DAG;
350   SDLoc DL(Op);
351   unsigned Opcode = Op.getOpcode();
352 
353   if (!Op.hasOneUse())
354     return false;
355 
356   // Do target-specific constant optimization.
357   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
358     return TLO.New.getNode();
359 
360   // FIXME: ISD::SELECT, ISD::SELECT_CC
361   switch (Opcode) {
362   default:
363     break;
364   case ISD::XOR:
365   case ISD::AND:
366   case ISD::OR: {
367     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
368     if (!Op1C)
369       return false;
370 
371     // If this is a 'not' op, don't touch it because that's a canonical form.
372     const APInt &C = Op1C->getAPIntValue();
373     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
374       return false;
375 
376     if (!C.isSubsetOf(Demanded)) {
377       EVT VT = Op.getValueType();
378       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
379       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
380       return TLO.CombineTo(Op, NewOp);
381     }
382 
383     break;
384   }
385   }
386 
387   return false;
388 }
389 
390 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
391 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
392 /// generalized for targets with other types of implicit widening casts.
393 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
394                                       const APInt &Demanded,
395                                       TargetLoweringOpt &TLO) const {
396   assert(Op.getNumOperands() == 2 &&
397          "ShrinkDemandedOp only supports binary operators!");
398   assert(Op.getNode()->getNumValues() == 1 &&
399          "ShrinkDemandedOp only supports nodes with one result!");
400 
401   SelectionDAG &DAG = TLO.DAG;
402   SDLoc dl(Op);
403 
404   // Early return, as this function cannot handle vector types.
405   if (Op.getValueType().isVector())
406     return false;
407 
408   // Don't do this if the node has another user, which may require the
409   // full value.
410   if (!Op.getNode()->hasOneUse())
411     return false;
412 
413   // Search for the smallest integer type with free casts to and from
414   // Op's type. For expedience, just check power-of-2 integer types.
415   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
416   unsigned DemandedSize = Demanded.getActiveBits();
417   unsigned SmallVTBits = DemandedSize;
418   if (!isPowerOf2_32(SmallVTBits))
419     SmallVTBits = NextPowerOf2(SmallVTBits);
420   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
421     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
422     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
423         TLI.isZExtFree(SmallVT, Op.getValueType())) {
424       // We found a type with free casts.
425       SDValue X = DAG.getNode(
426           Op.getOpcode(), dl, SmallVT,
427           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
428           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
429       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
430       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
431       return TLO.CombineTo(Op, Z);
432     }
433   }
434   return false;
435 }
436 
437 bool
438 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
439                                      const APInt &DemandedBits,
440                                      DAGCombinerInfo &DCI,
441                                      TargetLoweringOpt &TLO) const {
442   SDValue Op = User->getOperand(OpIdx);
443   KnownBits Known;
444 
445   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
446     return false;
447 
448 
449   // Old will not always be the same as Op.  For example:
450   //
451   // Demanded = 0xffffff
452   // Op = i64 truncate (i32 and x, 0xffffff)
453   // In this case simplify demand bits will want to replace the 'and' node
454   // with the value 'x', which will give us:
455   // Old = i32 and x, 0xffffff
456   // New = x
457   if (TLO.Old.hasOneUse()) {
458     // For the one use case, we just commit the change.
459     DCI.CommitTargetLoweringOpt(TLO);
460     return true;
461   }
462 
463   // If Old has more than one use then it must be Op, because the
464   // AssumeSingleUse flag is not propogated to recursive calls of
465   // SimplifyDemanded bits, so the only node with multiple use that
466   // it will attempt to combine will be Op.
467   assert(TLO.Old == Op);
468 
469   SmallVector <SDValue, 4> NewOps;
470   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
471     if (i == OpIdx) {
472       NewOps.push_back(TLO.New);
473       continue;
474     }
475     NewOps.push_back(User->getOperand(i));
476   }
477   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
478   // Op has less users now, so we may be able to perform additional combines
479   // with it.
480   DCI.AddToWorklist(Op.getNode());
481   // User's operands have been updated, so we may be able to do new combines
482   // with it.
483   DCI.AddToWorklist(User);
484   return true;
485 }
486 
487 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
488                                           DAGCombinerInfo &DCI) const {
489   SelectionDAG &DAG = DCI.DAG;
490   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
491                         !DCI.isBeforeLegalizeOps());
492   KnownBits Known;
493 
494   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
495   if (Simplified) {
496     DCI.AddToWorklist(Op.getNode());
497     DCI.CommitTargetLoweringOpt(TLO);
498   }
499   return Simplified;
500 }
501 
502 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
503                                           KnownBits &Known,
504                                           TargetLoweringOpt &TLO,
505                                           unsigned Depth,
506                                           bool AssumeSingleUse) const {
507   EVT VT = Op.getValueType();
508   APInt DemandedElts = VT.isVector()
509                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
510                            : APInt(1, 1);
511   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
512                               AssumeSingleUse);
513 }
514 
515 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
516 /// result of Op are ever used downstream. If we can use this information to
517 /// simplify Op, create a new simplified DAG node and return true, returning the
518 /// original and new nodes in Old and New. Otherwise, analyze the expression and
519 /// return a mask of Known bits for the expression (used to simplify the
520 /// caller).  The Known bits may only be accurate for those bits in the
521 /// OriginalDemandedBits and OriginalDemandedElts.
522 bool TargetLowering::SimplifyDemandedBits(
523     SDValue Op, const APInt &OriginalDemandedBits,
524     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
525     unsigned Depth, bool AssumeSingleUse) const {
526   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
527   assert(Op.getScalarValueSizeInBits() == BitWidth &&
528          "Mask size mismatches value type size!");
529 
530   unsigned NumElts = OriginalDemandedElts.getBitWidth();
531   assert((!Op.getValueType().isVector() ||
532           NumElts == Op.getValueType().getVectorNumElements()) &&
533          "Unexpected vector size");
534 
535   APInt DemandedBits = OriginalDemandedBits;
536   APInt DemandedElts = OriginalDemandedElts;
537   SDLoc dl(Op);
538   auto &DL = TLO.DAG.getDataLayout();
539 
540   // Don't know anything.
541   Known = KnownBits(BitWidth);
542 
543   if (Op.getOpcode() == ISD::Constant) {
544     // We know all of the bits for a constant!
545     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
546     Known.Zero = ~Known.One;
547     return false;
548   }
549 
550   // Other users may use these bits.
551   EVT VT = Op.getValueType();
552   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
553     if (Depth != 0) {
554       // If not at the root, Just compute the Known bits to
555       // simplify things downstream.
556       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
557       return false;
558     }
559     // If this is the root being simplified, allow it to have multiple uses,
560     // just set the DemandedBits/Elts to all bits.
561     DemandedBits = APInt::getAllOnesValue(BitWidth);
562     DemandedElts = APInt::getAllOnesValue(NumElts);
563   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
564     // Not demanding any bits/elts from Op.
565     if (!Op.isUndef())
566       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
567     return false;
568   } else if (Depth == 6) { // Limit search depth.
569     return false;
570   }
571 
572   KnownBits Known2, KnownOut;
573   switch (Op.getOpcode()) {
574   case ISD::BUILD_VECTOR:
575     // Collect the known bits that are shared by every constant vector element.
576     Known.Zero.setAllBits(); Known.One.setAllBits();
577     for (SDValue SrcOp : Op->ops()) {
578       if (!isa<ConstantSDNode>(SrcOp)) {
579         // We can only handle all constant values - bail out with no known bits.
580         Known = KnownBits(BitWidth);
581         return false;
582       }
583       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
584       Known2.Zero = ~Known2.One;
585 
586       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
587       if (Known2.One.getBitWidth() != BitWidth) {
588         assert(Known2.getBitWidth() > BitWidth &&
589                "Expected BUILD_VECTOR implicit truncation");
590         Known2 = Known2.trunc(BitWidth);
591       }
592 
593       // Known bits are the values that are shared by every element.
594       // TODO: support per-element known bits.
595       Known.One &= Known2.One;
596       Known.Zero &= Known2.Zero;
597     }
598     return false; // Don't fall through, will infinitely loop.
599   case ISD::CONCAT_VECTORS: {
600     Known.Zero.setAllBits();
601     Known.One.setAllBits();
602     EVT SubVT = Op.getOperand(0).getValueType();
603     unsigned NumSubVecs = Op.getNumOperands();
604     unsigned NumSubElts = SubVT.getVectorNumElements();
605     for (unsigned i = 0; i != NumSubVecs; ++i) {
606       APInt DemandedSubElts =
607           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
608       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
609                                Known2, TLO, Depth + 1))
610         return true;
611       // Known bits are shared by every demanded subvector element.
612       if (!!DemandedSubElts) {
613         Known.One &= Known2.One;
614         Known.Zero &= Known2.Zero;
615       }
616     }
617     break;
618   }
619   case ISD::VECTOR_SHUFFLE: {
620     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
621 
622     // Collect demanded elements from shuffle operands..
623     APInt DemandedLHS(NumElts, 0);
624     APInt DemandedRHS(NumElts, 0);
625     for (unsigned i = 0; i != NumElts; ++i) {
626       if (!DemandedElts[i])
627         continue;
628       int M = ShuffleMask[i];
629       if (M < 0) {
630         // For UNDEF elements, we don't know anything about the common state of
631         // the shuffle result.
632         DemandedLHS.clearAllBits();
633         DemandedRHS.clearAllBits();
634         break;
635       }
636       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
637       if (M < (int)NumElts)
638         DemandedLHS.setBit(M);
639       else
640         DemandedRHS.setBit(M - NumElts);
641     }
642 
643     if (!!DemandedLHS || !!DemandedRHS) {
644       Known.Zero.setAllBits();
645       Known.One.setAllBits();
646       if (!!DemandedLHS) {
647         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
648                                  Known2, TLO, Depth + 1))
649           return true;
650         Known.One &= Known2.One;
651         Known.Zero &= Known2.Zero;
652       }
653       if (!!DemandedRHS) {
654         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
655                                  Known2, TLO, Depth + 1))
656           return true;
657         Known.One &= Known2.One;
658         Known.Zero &= Known2.Zero;
659       }
660     }
661     break;
662   }
663   case ISD::AND: {
664     SDValue Op0 = Op.getOperand(0);
665     SDValue Op1 = Op.getOperand(1);
666 
667     // If the RHS is a constant, check to see if the LHS would be zero without
668     // using the bits from the RHS.  Below, we use knowledge about the RHS to
669     // simplify the LHS, here we're using information from the LHS to simplify
670     // the RHS.
671     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
672       // Do not increment Depth here; that can cause an infinite loop.
673       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
674       // If the LHS already has zeros where RHSC does, this 'and' is dead.
675       if ((LHSKnown.Zero & DemandedBits) ==
676           (~RHSC->getAPIntValue() & DemandedBits))
677         return TLO.CombineTo(Op, Op0);
678 
679       // If any of the set bits in the RHS are known zero on the LHS, shrink
680       // the constant.
681       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
682         return true;
683 
684       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
685       // constant, but if this 'and' is only clearing bits that were just set by
686       // the xor, then this 'and' can be eliminated by shrinking the mask of
687       // the xor. For example, for a 32-bit X:
688       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
689       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
690           LHSKnown.One == ~RHSC->getAPIntValue()) {
691         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
692         return TLO.CombineTo(Op, Xor);
693       }
694     }
695 
696     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
697       return true;
698     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
699     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
700                              Depth + 1))
701       return true;
702     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
703 
704     // If all of the demanded bits are known one on one side, return the other.
705     // These bits cannot contribute to the result of the 'and'.
706     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
707       return TLO.CombineTo(Op, Op0);
708     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
709       return TLO.CombineTo(Op, Op1);
710     // If all of the demanded bits in the inputs are known zeros, return zero.
711     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
712       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
713     // If the RHS is a constant, see if we can simplify it.
714     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
715       return true;
716     // If the operation can be done in a smaller type, do so.
717     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
718       return true;
719 
720     // Output known-1 bits are only known if set in both the LHS & RHS.
721     Known.One &= Known2.One;
722     // Output known-0 are known to be clear if zero in either the LHS | RHS.
723     Known.Zero |= Known2.Zero;
724     break;
725   }
726   case ISD::OR: {
727     SDValue Op0 = Op.getOperand(0);
728     SDValue Op1 = Op.getOperand(1);
729 
730     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
731       return true;
732     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
733     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
734                              Depth + 1))
735       return true;
736     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
737 
738     // If all of the demanded bits are known zero on one side, return the other.
739     // These bits cannot contribute to the result of the 'or'.
740     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
741       return TLO.CombineTo(Op, Op0);
742     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
743       return TLO.CombineTo(Op, Op1);
744     // If the RHS is a constant, see if we can simplify it.
745     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
746       return true;
747     // If the operation can be done in a smaller type, do so.
748     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
749       return true;
750 
751     // Output known-0 bits are only known if clear in both the LHS & RHS.
752     Known.Zero &= Known2.Zero;
753     // Output known-1 are known to be set if set in either the LHS | RHS.
754     Known.One |= Known2.One;
755     break;
756   }
757   case ISD::XOR: {
758     SDValue Op0 = Op.getOperand(0);
759     SDValue Op1 = Op.getOperand(1);
760 
761     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
762       return true;
763     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
764     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
765       return true;
766     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
767 
768     // If all of the demanded bits are known zero on one side, return the other.
769     // These bits cannot contribute to the result of the 'xor'.
770     if (DemandedBits.isSubsetOf(Known.Zero))
771       return TLO.CombineTo(Op, Op0);
772     if (DemandedBits.isSubsetOf(Known2.Zero))
773       return TLO.CombineTo(Op, Op1);
774     // If the operation can be done in a smaller type, do so.
775     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
776       return true;
777 
778     // If all of the unknown bits are known to be zero on one side or the other
779     // (but not both) turn this into an *inclusive* or.
780     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
781     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
782       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
783 
784     // Output known-0 bits are known if clear or set in both the LHS & RHS.
785     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
786     // Output known-1 are known to be set if set in only one of the LHS, RHS.
787     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
788 
789     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
790       // If one side is a constant, and all of the known set bits on the other
791       // side are also set in the constant, turn this into an AND, as we know
792       // the bits will be cleared.
793       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
794       // NB: it is okay if more bits are known than are requested
795       if (C->getAPIntValue() == Known2.One) {
796         SDValue ANDC =
797             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
798         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
799       }
800 
801       // If the RHS is a constant, see if we can change it. Don't alter a -1
802       // constant because that's a 'not' op, and that is better for combining
803       // and codegen.
804       if (!C->isAllOnesValue()) {
805         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
806           // We're flipping all demanded bits. Flip the undemanded bits too.
807           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
808           return TLO.CombineTo(Op, New);
809         }
810         // If we can't turn this into a 'not', try to shrink the constant.
811         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
812           return true;
813       }
814     }
815 
816     Known = std::move(KnownOut);
817     break;
818   }
819   case ISD::SELECT:
820     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
821                              Depth + 1))
822       return true;
823     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
824                              Depth + 1))
825       return true;
826     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
827     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
828 
829     // If the operands are constants, see if we can simplify them.
830     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
831       return true;
832 
833     // Only known if known in both the LHS and RHS.
834     Known.One &= Known2.One;
835     Known.Zero &= Known2.Zero;
836     break;
837   case ISD::SELECT_CC:
838     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
839                              Depth + 1))
840       return true;
841     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
842                              Depth + 1))
843       return true;
844     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
845     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
846 
847     // If the operands are constants, see if we can simplify them.
848     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
849       return true;
850 
851     // Only known if known in both the LHS and RHS.
852     Known.One &= Known2.One;
853     Known.Zero &= Known2.Zero;
854     break;
855   case ISD::SETCC: {
856     SDValue Op0 = Op.getOperand(0);
857     SDValue Op1 = Op.getOperand(1);
858     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
859     // If (1) we only need the sign-bit, (2) the setcc operands are the same
860     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
861     // -1, we may be able to bypass the setcc.
862     if (DemandedBits.isSignMask() &&
863         Op0.getScalarValueSizeInBits() == BitWidth &&
864         getBooleanContents(VT) ==
865             BooleanContent::ZeroOrNegativeOneBooleanContent) {
866       // If we're testing X < 0, then this compare isn't needed - just use X!
867       // FIXME: We're limiting to integer types here, but this should also work
868       // if we don't care about FP signed-zero. The use of SETLT with FP means
869       // that we don't care about NaNs.
870       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
871           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
872         return TLO.CombineTo(Op, Op0);
873 
874       // TODO: Should we check for other forms of sign-bit comparisons?
875       // Examples: X <= -1, X >= 0
876     }
877     if (getBooleanContents(Op0.getValueType()) ==
878             TargetLowering::ZeroOrOneBooleanContent &&
879         BitWidth > 1)
880       Known.Zero.setBitsFrom(1);
881     break;
882   }
883   case ISD::SHL: {
884     SDValue Op0 = Op.getOperand(0);
885     SDValue Op1 = Op.getOperand(1);
886 
887     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
888       // If the shift count is an invalid immediate, don't do anything.
889       if (SA->getAPIntValue().uge(BitWidth))
890         break;
891 
892       unsigned ShAmt = SA->getZExtValue();
893 
894       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
895       // single shift.  We can do this if the bottom bits (which are shifted
896       // out) are never demanded.
897       if (Op0.getOpcode() == ISD::SRL) {
898         if (ShAmt &&
899             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
900           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
901             if (SA2->getAPIntValue().ult(BitWidth)) {
902               unsigned C1 = SA2->getZExtValue();
903               unsigned Opc = ISD::SHL;
904               int Diff = ShAmt - C1;
905               if (Diff < 0) {
906                 Diff = -Diff;
907                 Opc = ISD::SRL;
908               }
909 
910               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
911               return TLO.CombineTo(
912                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
913             }
914           }
915         }
916       }
917 
918       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
919                                Depth + 1))
920         return true;
921 
922       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
923       // are not demanded. This will likely allow the anyext to be folded away.
924       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
925         SDValue InnerOp = Op0.getOperand(0);
926         EVT InnerVT = InnerOp.getValueType();
927         unsigned InnerBits = InnerVT.getScalarSizeInBits();
928         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
929             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
930           EVT ShTy = getShiftAmountTy(InnerVT, DL);
931           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
932             ShTy = InnerVT;
933           SDValue NarrowShl =
934               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
935                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
936           return TLO.CombineTo(
937               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
938         }
939         // Repeat the SHL optimization above in cases where an extension
940         // intervenes: (shl (anyext (shr x, c1)), c2) to
941         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
942         // aren't demanded (as above) and that the shifted upper c1 bits of
943         // x aren't demanded.
944         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
945             InnerOp.hasOneUse()) {
946           if (ConstantSDNode *SA2 =
947                   isConstOrConstSplat(InnerOp.getOperand(1))) {
948             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
949             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
950                 DemandedBits.getActiveBits() <=
951                     (InnerBits - InnerShAmt + ShAmt) &&
952                 DemandedBits.countTrailingZeros() >= ShAmt) {
953               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
954                                                   Op1.getValueType());
955               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
956                                                InnerOp.getOperand(0));
957               return TLO.CombineTo(
958                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
959             }
960           }
961         }
962       }
963 
964       Known.Zero <<= ShAmt;
965       Known.One <<= ShAmt;
966       // low bits known zero.
967       Known.Zero.setLowBits(ShAmt);
968     }
969     break;
970   }
971   case ISD::SRL: {
972     SDValue Op0 = Op.getOperand(0);
973     SDValue Op1 = Op.getOperand(1);
974 
975     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
976       // If the shift count is an invalid immediate, don't do anything.
977       if (SA->getAPIntValue().uge(BitWidth))
978         break;
979 
980       unsigned ShAmt = SA->getZExtValue();
981       APInt InDemandedMask = (DemandedBits << ShAmt);
982 
983       // If the shift is exact, then it does demand the low bits (and knows that
984       // they are zero).
985       if (Op->getFlags().hasExact())
986         InDemandedMask.setLowBits(ShAmt);
987 
988       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
989       // single shift.  We can do this if the top bits (which are shifted out)
990       // are never demanded.
991       if (Op0.getOpcode() == ISD::SHL) {
992         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
993           if (ShAmt &&
994               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
995             if (SA2->getAPIntValue().ult(BitWidth)) {
996               unsigned C1 = SA2->getZExtValue();
997               unsigned Opc = ISD::SRL;
998               int Diff = ShAmt - C1;
999               if (Diff < 0) {
1000                 Diff = -Diff;
1001                 Opc = ISD::SHL;
1002               }
1003 
1004               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1005               return TLO.CombineTo(
1006                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1007             }
1008           }
1009         }
1010       }
1011 
1012       // Compute the new bits that are at the top now.
1013       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1014         return true;
1015       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1016       Known.Zero.lshrInPlace(ShAmt);
1017       Known.One.lshrInPlace(ShAmt);
1018 
1019       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1020     }
1021     break;
1022   }
1023   case ISD::SRA: {
1024     SDValue Op0 = Op.getOperand(0);
1025     SDValue Op1 = Op.getOperand(1);
1026 
1027     // If this is an arithmetic shift right and only the low-bit is set, we can
1028     // always convert this into a logical shr, even if the shift amount is
1029     // variable.  The low bit of the shift cannot be an input sign bit unless
1030     // the shift amount is >= the size of the datatype, which is undefined.
1031     if (DemandedBits.isOneValue())
1032       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1033 
1034     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
1035       // If the shift count is an invalid immediate, don't do anything.
1036       if (SA->getAPIntValue().uge(BitWidth))
1037         break;
1038 
1039       unsigned ShAmt = SA->getZExtValue();
1040       APInt InDemandedMask = (DemandedBits << ShAmt);
1041 
1042       // If the shift is exact, then it does demand the low bits (and knows that
1043       // they are zero).
1044       if (Op->getFlags().hasExact())
1045         InDemandedMask.setLowBits(ShAmt);
1046 
1047       // If any of the demanded bits are produced by the sign extension, we also
1048       // demand the input sign bit.
1049       if (DemandedBits.countLeadingZeros() < ShAmt)
1050         InDemandedMask.setSignBit();
1051 
1052       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
1053         return true;
1054       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1055       Known.Zero.lshrInPlace(ShAmt);
1056       Known.One.lshrInPlace(ShAmt);
1057 
1058       // If the input sign bit is known to be zero, or if none of the top bits
1059       // are demanded, turn this into an unsigned shift right.
1060       if (Known.Zero[BitWidth - ShAmt - 1] ||
1061           DemandedBits.countLeadingZeros() >= ShAmt) {
1062         SDNodeFlags Flags;
1063         Flags.setExact(Op->getFlags().hasExact());
1064         return TLO.CombineTo(
1065             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1066       }
1067 
1068       int Log2 = DemandedBits.exactLogBase2();
1069       if (Log2 >= 0) {
1070         // The bit must come from the sign.
1071         SDValue NewSA =
1072             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1073         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1074       }
1075 
1076       if (Known.One[BitWidth - ShAmt - 1])
1077         // New bits are known one.
1078         Known.One.setHighBits(ShAmt);
1079     }
1080     break;
1081   }
1082   case ISD::SIGN_EXTEND_INREG: {
1083     SDValue Op0 = Op.getOperand(0);
1084     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1085     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1086 
1087     // If we only care about the highest bit, don't bother shifting right.
1088     if (DemandedBits.isSignMask()) {
1089       bool AlreadySignExtended =
1090           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1091       // However if the input is already sign extended we expect the sign
1092       // extension to be dropped altogether later and do not simplify.
1093       if (!AlreadySignExtended) {
1094         // Compute the correct shift amount type, which must be getShiftAmountTy
1095         // for scalar types after legalization.
1096         EVT ShiftAmtTy = VT;
1097         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1098           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1099 
1100         SDValue ShiftAmt =
1101             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1102         return TLO.CombineTo(Op,
1103                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1104       }
1105     }
1106 
1107     // If none of the extended bits are demanded, eliminate the sextinreg.
1108     if (DemandedBits.getActiveBits() <= ExVTBits)
1109       return TLO.CombineTo(Op, Op0);
1110 
1111     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1112 
1113     // Since the sign extended bits are demanded, we know that the sign
1114     // bit is demanded.
1115     InputDemandedBits.setBit(ExVTBits - 1);
1116 
1117     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1118       return true;
1119     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1120 
1121     // If the sign bit of the input is known set or clear, then we know the
1122     // top bits of the result.
1123 
1124     // If the input sign bit is known zero, convert this into a zero extension.
1125     if (Known.Zero[ExVTBits - 1])
1126       return TLO.CombineTo(
1127           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1128 
1129     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1130     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1131       Known.One.setBitsFrom(ExVTBits);
1132       Known.Zero &= Mask;
1133     } else { // Input sign bit unknown
1134       Known.Zero &= Mask;
1135       Known.One &= Mask;
1136     }
1137     break;
1138   }
1139   case ISD::BUILD_PAIR: {
1140     EVT HalfVT = Op.getOperand(0).getValueType();
1141     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1142 
1143     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1144     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1145 
1146     KnownBits KnownLo, KnownHi;
1147 
1148     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1149       return true;
1150 
1151     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1152       return true;
1153 
1154     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1155                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1156 
1157     Known.One = KnownLo.One.zext(BitWidth) |
1158                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1159     break;
1160   }
1161   case ISD::ZERO_EXTEND: {
1162     SDValue Src = Op.getOperand(0);
1163     unsigned InBits = Src.getScalarValueSizeInBits();
1164 
1165     // If none of the top bits are demanded, convert this into an any_extend.
1166     if (DemandedBits.getActiveBits() <= InBits)
1167       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1168 
1169     APInt InDemandedBits = DemandedBits.trunc(InBits);
1170     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1171       return true;
1172     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1173     Known = Known.zext(BitWidth);
1174     Known.Zero.setBitsFrom(InBits);
1175     break;
1176   }
1177   case ISD::SIGN_EXTEND: {
1178     SDValue Src = Op.getOperand(0);
1179     unsigned InBits = Src.getScalarValueSizeInBits();
1180 
1181     // If none of the top bits are demanded, convert this into an any_extend.
1182     if (DemandedBits.getActiveBits() <= InBits)
1183       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1184 
1185     // Since some of the sign extended bits are demanded, we know that the sign
1186     // bit is demanded.
1187     APInt InDemandedBits = DemandedBits.trunc(InBits);
1188     InDemandedBits.setBit(InBits - 1);
1189 
1190     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1191       return true;
1192     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1193     // If the sign bit is known one, the top bits match.
1194     Known = Known.sext(BitWidth);
1195 
1196     // If the sign bit is known zero, convert this to a zero extend.
1197     if (Known.isNonNegative())
1198       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1199     break;
1200   }
1201   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1202     // TODO - merge this with SIGN_EXTEND above?
1203     SDValue Src = Op.getOperand(0);
1204     unsigned InBits = Src.getScalarValueSizeInBits();
1205 
1206     APInt InDemandedBits = DemandedBits.trunc(InBits);
1207 
1208     // If some of the sign extended bits are demanded, we know that the sign
1209     // bit is demanded.
1210     if (InBits < DemandedBits.getActiveBits())
1211       InDemandedBits.setBit(InBits - 1);
1212 
1213     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1214       return true;
1215     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1216     // If the sign bit is known one, the top bits match.
1217     Known = Known.sext(BitWidth);
1218     break;
1219   }
1220   case ISD::ANY_EXTEND: {
1221     SDValue Src = Op.getOperand(0);
1222     unsigned InBits = Src.getScalarValueSizeInBits();
1223     APInt InDemandedBits = DemandedBits.trunc(InBits);
1224     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1225       return true;
1226     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1227     Known = Known.zext(BitWidth);
1228     break;
1229   }
1230   case ISD::TRUNCATE: {
1231     SDValue Src = Op.getOperand(0);
1232 
1233     // Simplify the input, using demanded bit information, and compute the known
1234     // zero/one bits live out.
1235     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1236     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1237     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1238       return true;
1239     Known = Known.trunc(BitWidth);
1240 
1241     // If the input is only used by this truncate, see if we can shrink it based
1242     // on the known demanded bits.
1243     if (Src.getNode()->hasOneUse()) {
1244       switch (Src.getOpcode()) {
1245       default:
1246         break;
1247       case ISD::SRL:
1248         // Shrink SRL by a constant if none of the high bits shifted in are
1249         // demanded.
1250         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1251           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1252           // undesirable.
1253           break;
1254         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1255         if (!ShAmt)
1256           break;
1257         SDValue Shift = Src.getOperand(1);
1258         if (TLO.LegalTypes()) {
1259           uint64_t ShVal = ShAmt->getZExtValue();
1260           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1261         }
1262 
1263         if (ShAmt->getZExtValue() < BitWidth) {
1264           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1265                                                  OperandBitWidth - BitWidth);
1266           HighBits.lshrInPlace(ShAmt->getZExtValue());
1267           HighBits = HighBits.trunc(BitWidth);
1268 
1269           if (!(HighBits & DemandedBits)) {
1270             // None of the shifted in bits are needed.  Add a truncate of the
1271             // shift input, then shift it.
1272             SDValue NewTrunc =
1273                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1274             return TLO.CombineTo(
1275                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1276           }
1277         }
1278         break;
1279       }
1280     }
1281 
1282     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1283     break;
1284   }
1285   case ISD::AssertZext: {
1286     // AssertZext demands all of the high bits, plus any of the low bits
1287     // demanded by its users.
1288     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1289     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1290     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1291                              Known, TLO, Depth+1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294 
1295     Known.Zero |= ~InMask;
1296     break;
1297   }
1298   case ISD::EXTRACT_VECTOR_ELT: {
1299     SDValue Src = Op.getOperand(0);
1300     SDValue Idx = Op.getOperand(1);
1301     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1302     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1303 
1304     // Demand the bits from every vector element without a constant index.
1305     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1306     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1307       if (CIdx->getAPIntValue().ult(NumSrcElts))
1308         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1309 
1310     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1311     // anything about the extended bits.
1312     APInt DemandedSrcBits = DemandedBits;
1313     if (BitWidth > EltBitWidth)
1314       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1315 
1316     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1317                              Depth + 1))
1318       return true;
1319 
1320     Known = Known2;
1321     if (BitWidth > EltBitWidth)
1322       Known = Known.zext(BitWidth);
1323     break;
1324   }
1325   case ISD::BITCAST: {
1326     SDValue Src = Op.getOperand(0);
1327     EVT SrcVT = Src.getValueType();
1328     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1329 
1330     // If this is an FP->Int bitcast and if the sign bit is the only
1331     // thing demanded, turn this into a FGETSIGN.
1332     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1333         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1334         SrcVT.isFloatingPoint()) {
1335       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1336       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1337       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1338           SrcVT != MVT::f128) {
1339         // Cannot eliminate/lower SHL for f128 yet.
1340         EVT Ty = OpVTLegal ? VT : MVT::i32;
1341         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1342         // place.  We expect the SHL to be eliminated by other optimizations.
1343         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1344         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1345         if (!OpVTLegal && OpVTSizeInBits > 32)
1346           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1347         unsigned ShVal = Op.getValueSizeInBits() - 1;
1348         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1349         return TLO.CombineTo(Op,
1350                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1351       }
1352     }
1353     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1354     // demanding the element if any bits from it are demanded.
1355     // TODO - bigendian once we have test coverage.
1356     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1357     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1358         (BitWidth % NumSrcEltBits) == 0 &&
1359         TLO.DAG.getDataLayout().isLittleEndian()) {
1360       unsigned Scale = BitWidth / NumSrcEltBits;
1361       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1362         DemandedSubElts = APInt::getNullValue(Scale);
1363         for (unsigned i = 0; i != Scale; ++i) {
1364           unsigned Offset = i * NumSrcEltBits;
1365           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1366           if (!Sub.isNullValue())
1367             DemandedSubElts.setBit(i);
1368         }
1369         return true;
1370       };
1371 
1372       APInt DemandedSubElts;
1373       if (GetDemandedSubMask(DemandedSubElts)) {
1374         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1375         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1376 
1377         APInt KnownUndef, KnownZero;
1378         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1379                                        TLO, Depth + 1))
1380           return true;
1381       }
1382     }
1383     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1384     // recursive call where Known may be useful to the caller.
1385     if (Depth > 0) {
1386       Known = TLO.DAG.computeKnownBits(Op, Depth);
1387       return false;
1388     }
1389     break;
1390   }
1391   case ISD::ADD:
1392   case ISD::MUL:
1393   case ISD::SUB: {
1394     // Add, Sub, and Mul don't demand any bits in positions beyond that
1395     // of the highest bit demanded of them.
1396     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1397     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1398     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1399     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1400         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1401         // See if the operation should be performed at a smaller bit width.
1402         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1403       SDNodeFlags Flags = Op.getNode()->getFlags();
1404       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1405         // Disable the nsw and nuw flags. We can no longer guarantee that we
1406         // won't wrap after simplification.
1407         Flags.setNoSignedWrap(false);
1408         Flags.setNoUnsignedWrap(false);
1409         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1410                                         Flags);
1411         return TLO.CombineTo(Op, NewOp);
1412       }
1413       return true;
1414     }
1415 
1416     // If we have a constant operand, we may be able to turn it into -1 if we
1417     // do not demand the high bits. This can make the constant smaller to
1418     // encode, allow more general folding, or match specialized instruction
1419     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1420     // is probably not useful (and could be detrimental).
1421     ConstantSDNode *C = isConstOrConstSplat(Op1);
1422     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1423     if (C && !C->isAllOnesValue() && !C->isOne() &&
1424         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1425       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1426       // We can't guarantee that the new math op doesn't wrap, so explicitly
1427       // clear those flags to prevent folding with a potential existing node
1428       // that has those flags set.
1429       SDNodeFlags Flags;
1430       Flags.setNoSignedWrap(false);
1431       Flags.setNoUnsignedWrap(false);
1432       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1433       return TLO.CombineTo(Op, NewOp);
1434     }
1435 
1436     LLVM_FALLTHROUGH;
1437   }
1438   default:
1439     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1440       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1441                                             Known, TLO, Depth))
1442         return true;
1443       break;
1444     }
1445 
1446     // Just use computeKnownBits to compute output bits.
1447     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1448     break;
1449   }
1450 
1451   // If we know the value of all of the demanded bits, return this as a
1452   // constant.
1453   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1454     // Avoid folding to a constant if any OpaqueConstant is involved.
1455     const SDNode *N = Op.getNode();
1456     for (SDNodeIterator I = SDNodeIterator::begin(N),
1457                         E = SDNodeIterator::end(N);
1458          I != E; ++I) {
1459       SDNode *Op = *I;
1460       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1461         if (C->isOpaque())
1462           return false;
1463     }
1464     // TODO: Handle float bits as well.
1465     if (VT.isInteger())
1466       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1467   }
1468 
1469   return false;
1470 }
1471 
1472 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1473                                                 const APInt &DemandedElts,
1474                                                 APInt &KnownUndef,
1475                                                 APInt &KnownZero,
1476                                                 DAGCombinerInfo &DCI) const {
1477   SelectionDAG &DAG = DCI.DAG;
1478   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1479                         !DCI.isBeforeLegalizeOps());
1480 
1481   bool Simplified =
1482       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1483   if (Simplified) {
1484     DCI.AddToWorklist(Op.getNode());
1485     DCI.CommitTargetLoweringOpt(TLO);
1486   }
1487   return Simplified;
1488 }
1489 
1490 bool TargetLowering::SimplifyDemandedVectorElts(
1491     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1492     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1493     bool AssumeSingleUse) const {
1494   EVT VT = Op.getValueType();
1495   APInt DemandedElts = DemandedEltMask;
1496   unsigned NumElts = DemandedElts.getBitWidth();
1497   assert(VT.isVector() && "Expected vector op");
1498   assert(VT.getVectorNumElements() == NumElts &&
1499          "Mask size mismatches value type element count!");
1500 
1501   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1502 
1503   // Undef operand.
1504   if (Op.isUndef()) {
1505     KnownUndef.setAllBits();
1506     return false;
1507   }
1508 
1509   // If Op has other users, assume that all elements are needed.
1510   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1511     DemandedElts.setAllBits();
1512 
1513   // Not demanding any elements from Op.
1514   if (DemandedElts == 0) {
1515     KnownUndef.setAllBits();
1516     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1517   }
1518 
1519   // Limit search depth.
1520   if (Depth >= 6)
1521     return false;
1522 
1523   SDLoc DL(Op);
1524   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1525 
1526   switch (Op.getOpcode()) {
1527   case ISD::SCALAR_TO_VECTOR: {
1528     if (!DemandedElts[0]) {
1529       KnownUndef.setAllBits();
1530       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1531     }
1532     KnownUndef.setHighBits(NumElts - 1);
1533     break;
1534   }
1535   case ISD::BITCAST: {
1536     SDValue Src = Op.getOperand(0);
1537     EVT SrcVT = Src.getValueType();
1538 
1539     // We only handle vectors here.
1540     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1541     if (!SrcVT.isVector())
1542       break;
1543 
1544     // Fast handling of 'identity' bitcasts.
1545     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1546     if (NumSrcElts == NumElts)
1547       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1548                                         KnownZero, TLO, Depth + 1);
1549 
1550     APInt SrcZero, SrcUndef;
1551     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1552 
1553     // Bitcast from 'large element' src vector to 'small element' vector, we
1554     // must demand a source element if any DemandedElt maps to it.
1555     if ((NumElts % NumSrcElts) == 0) {
1556       unsigned Scale = NumElts / NumSrcElts;
1557       for (unsigned i = 0; i != NumElts; ++i)
1558         if (DemandedElts[i])
1559           SrcDemandedElts.setBit(i / Scale);
1560 
1561       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1562                                      TLO, Depth + 1))
1563         return true;
1564 
1565       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1566       // of the large element.
1567       // TODO - bigendian once we have test coverage.
1568       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1569         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1570         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1571         for (unsigned i = 0; i != NumElts; ++i)
1572           if (DemandedElts[i]) {
1573             unsigned Ofs = (i % Scale) * EltSizeInBits;
1574             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1575           }
1576 
1577         KnownBits Known;
1578         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1579           return true;
1580       }
1581 
1582       // If the src element is zero/undef then all the output elements will be -
1583       // only demanded elements are guaranteed to be correct.
1584       for (unsigned i = 0; i != NumSrcElts; ++i) {
1585         if (SrcDemandedElts[i]) {
1586           if (SrcZero[i])
1587             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1588           if (SrcUndef[i])
1589             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1590         }
1591       }
1592     }
1593 
1594     // Bitcast from 'small element' src vector to 'large element' vector, we
1595     // demand all smaller source elements covered by the larger demanded element
1596     // of this vector.
1597     if ((NumSrcElts % NumElts) == 0) {
1598       unsigned Scale = NumSrcElts / NumElts;
1599       for (unsigned i = 0; i != NumElts; ++i)
1600         if (DemandedElts[i])
1601           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1602 
1603       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1604                                      TLO, Depth + 1))
1605         return true;
1606 
1607       // If all the src elements covering an output element are zero/undef, then
1608       // the output element will be as well, assuming it was demanded.
1609       for (unsigned i = 0; i != NumElts; ++i) {
1610         if (DemandedElts[i]) {
1611           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1612             KnownZero.setBit(i);
1613           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1614             KnownUndef.setBit(i);
1615         }
1616       }
1617     }
1618     break;
1619   }
1620   case ISD::BUILD_VECTOR: {
1621     // Check all elements and simplify any unused elements with UNDEF.
1622     if (!DemandedElts.isAllOnesValue()) {
1623       // Don't simplify BROADCASTS.
1624       if (llvm::any_of(Op->op_values(),
1625                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1626         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1627         bool Updated = false;
1628         for (unsigned i = 0; i != NumElts; ++i) {
1629           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1630             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1631             KnownUndef.setBit(i);
1632             Updated = true;
1633           }
1634         }
1635         if (Updated)
1636           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1637       }
1638     }
1639     for (unsigned i = 0; i != NumElts; ++i) {
1640       SDValue SrcOp = Op.getOperand(i);
1641       if (SrcOp.isUndef()) {
1642         KnownUndef.setBit(i);
1643       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1644                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1645         KnownZero.setBit(i);
1646       }
1647     }
1648     break;
1649   }
1650   case ISD::CONCAT_VECTORS: {
1651     EVT SubVT = Op.getOperand(0).getValueType();
1652     unsigned NumSubVecs = Op.getNumOperands();
1653     unsigned NumSubElts = SubVT.getVectorNumElements();
1654     for (unsigned i = 0; i != NumSubVecs; ++i) {
1655       SDValue SubOp = Op.getOperand(i);
1656       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1657       APInt SubUndef, SubZero;
1658       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1659                                      Depth + 1))
1660         return true;
1661       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1662       KnownZero.insertBits(SubZero, i * NumSubElts);
1663     }
1664     break;
1665   }
1666   case ISD::INSERT_SUBVECTOR: {
1667     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1668       break;
1669     SDValue Base = Op.getOperand(0);
1670     SDValue Sub = Op.getOperand(1);
1671     EVT SubVT = Sub.getValueType();
1672     unsigned NumSubElts = SubVT.getVectorNumElements();
1673     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1674     if (Idx.ugt(NumElts - NumSubElts))
1675       break;
1676     unsigned SubIdx = Idx.getZExtValue();
1677     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1678     APInt SubUndef, SubZero;
1679     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1680                                    Depth + 1))
1681       return true;
1682     APInt BaseElts = DemandedElts;
1683     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1684     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1685                                    Depth + 1))
1686       return true;
1687     KnownUndef.insertBits(SubUndef, SubIdx);
1688     KnownZero.insertBits(SubZero, SubIdx);
1689     break;
1690   }
1691   case ISD::EXTRACT_SUBVECTOR: {
1692     SDValue Src = Op.getOperand(0);
1693     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1694     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1695     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1696       // Offset the demanded elts by the subvector index.
1697       uint64_t Idx = SubIdx->getZExtValue();
1698       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1699       APInt SrcUndef, SrcZero;
1700       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1701                                      Depth + 1))
1702         return true;
1703       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1704       KnownZero = SrcZero.extractBits(NumElts, Idx);
1705     }
1706     break;
1707   }
1708   case ISD::INSERT_VECTOR_ELT: {
1709     SDValue Vec = Op.getOperand(0);
1710     SDValue Scl = Op.getOperand(1);
1711     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1712 
1713     // For a legal, constant insertion index, if we don't need this insertion
1714     // then strip it, else remove it from the demanded elts.
1715     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1716       unsigned Idx = CIdx->getZExtValue();
1717       if (!DemandedElts[Idx])
1718         return TLO.CombineTo(Op, Vec);
1719 
1720       APInt DemandedVecElts(DemandedElts);
1721       DemandedVecElts.clearBit(Idx);
1722       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1723                                      KnownZero, TLO, Depth + 1))
1724         return true;
1725 
1726       KnownUndef.clearBit(Idx);
1727       if (Scl.isUndef())
1728         KnownUndef.setBit(Idx);
1729 
1730       KnownZero.clearBit(Idx);
1731       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1732         KnownZero.setBit(Idx);
1733       break;
1734     }
1735 
1736     APInt VecUndef, VecZero;
1737     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1738                                    Depth + 1))
1739       return true;
1740     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1741     break;
1742   }
1743   case ISD::VSELECT: {
1744     // Try to transform the select condition based on the current demanded
1745     // elements.
1746     // TODO: If a condition element is undef, we can choose from one arm of the
1747     //       select (and if one arm is undef, then we can propagate that to the
1748     //       result).
1749     // TODO - add support for constant vselect masks (see IR version of this).
1750     APInt UnusedUndef, UnusedZero;
1751     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1752                                    UnusedZero, TLO, Depth + 1))
1753       return true;
1754 
1755     // See if we can simplify either vselect operand.
1756     APInt DemandedLHS(DemandedElts);
1757     APInt DemandedRHS(DemandedElts);
1758     APInt UndefLHS, ZeroLHS;
1759     APInt UndefRHS, ZeroRHS;
1760     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1761                                    ZeroLHS, TLO, Depth + 1))
1762       return true;
1763     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1764                                    ZeroRHS, TLO, Depth + 1))
1765       return true;
1766 
1767     KnownUndef = UndefLHS & UndefRHS;
1768     KnownZero = ZeroLHS & ZeroRHS;
1769     break;
1770   }
1771   case ISD::VECTOR_SHUFFLE: {
1772     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1773 
1774     // Collect demanded elements from shuffle operands..
1775     APInt DemandedLHS(NumElts, 0);
1776     APInt DemandedRHS(NumElts, 0);
1777     for (unsigned i = 0; i != NumElts; ++i) {
1778       int M = ShuffleMask[i];
1779       if (M < 0 || !DemandedElts[i])
1780         continue;
1781       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1782       if (M < (int)NumElts)
1783         DemandedLHS.setBit(M);
1784       else
1785         DemandedRHS.setBit(M - NumElts);
1786     }
1787 
1788     // See if we can simplify either shuffle operand.
1789     APInt UndefLHS, ZeroLHS;
1790     APInt UndefRHS, ZeroRHS;
1791     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1792                                    ZeroLHS, TLO, Depth + 1))
1793       return true;
1794     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1795                                    ZeroRHS, TLO, Depth + 1))
1796       return true;
1797 
1798     // Simplify mask using undef elements from LHS/RHS.
1799     bool Updated = false;
1800     bool IdentityLHS = true, IdentityRHS = true;
1801     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1802     for (unsigned i = 0; i != NumElts; ++i) {
1803       int &M = NewMask[i];
1804       if (M < 0)
1805         continue;
1806       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1807           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1808         Updated = true;
1809         M = -1;
1810       }
1811       IdentityLHS &= (M < 0) || (M == (int)i);
1812       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1813     }
1814 
1815     // Update legal shuffle masks based on demanded elements if it won't reduce
1816     // to Identity which can cause premature removal of the shuffle mask.
1817     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1818         isShuffleMaskLegal(NewMask, VT))
1819       return TLO.CombineTo(Op,
1820                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1821                                                     Op.getOperand(1), NewMask));
1822 
1823     // Propagate undef/zero elements from LHS/RHS.
1824     for (unsigned i = 0; i != NumElts; ++i) {
1825       int M = ShuffleMask[i];
1826       if (M < 0) {
1827         KnownUndef.setBit(i);
1828       } else if (M < (int)NumElts) {
1829         if (UndefLHS[M])
1830           KnownUndef.setBit(i);
1831         if (ZeroLHS[M])
1832           KnownZero.setBit(i);
1833       } else {
1834         if (UndefRHS[M - NumElts])
1835           KnownUndef.setBit(i);
1836         if (ZeroRHS[M - NumElts])
1837           KnownZero.setBit(i);
1838       }
1839     }
1840     break;
1841   }
1842   case ISD::SIGN_EXTEND_VECTOR_INREG:
1843   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1844     APInt SrcUndef, SrcZero;
1845     SDValue Src = Op.getOperand(0);
1846     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1847     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1848     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1849                                    SrcZero, TLO, Depth + 1))
1850       return true;
1851     KnownZero = SrcZero.zextOrTrunc(NumElts);
1852     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1853 
1854     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
1855       // zext(undef) upper bits are guaranteed to be zero.
1856       if (DemandedElts.isSubsetOf(KnownUndef))
1857         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1858       KnownUndef.clearAllBits();
1859     }
1860     break;
1861   }
1862   case ISD::OR:
1863   case ISD::XOR:
1864   case ISD::ADD:
1865   case ISD::SUB:
1866   case ISD::FADD:
1867   case ISD::FSUB:
1868   case ISD::FMUL:
1869   case ISD::FDIV:
1870   case ISD::FREM: {
1871     APInt SrcUndef, SrcZero;
1872     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1873                                    SrcZero, TLO, Depth + 1))
1874       return true;
1875     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1876                                    KnownZero, TLO, Depth + 1))
1877       return true;
1878     KnownZero &= SrcZero;
1879     KnownUndef &= SrcUndef;
1880     break;
1881   }
1882   case ISD::AND: {
1883     APInt SrcUndef, SrcZero;
1884     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1885                                    SrcZero, TLO, Depth + 1))
1886       return true;
1887     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1888                                    KnownZero, TLO, Depth + 1))
1889       return true;
1890 
1891     // If either side has a zero element, then the result element is zero, even
1892     // if the other is an UNDEF.
1893     KnownZero |= SrcZero;
1894     KnownUndef &= SrcUndef;
1895     KnownUndef &= ~KnownZero;
1896     break;
1897   }
1898   case ISD::TRUNCATE:
1899   case ISD::SIGN_EXTEND:
1900   case ISD::ZERO_EXTEND:
1901     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1902                                    KnownZero, TLO, Depth + 1))
1903       return true;
1904 
1905     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
1906       // zext(undef) upper bits are guaranteed to be zero.
1907       if (DemandedElts.isSubsetOf(KnownUndef))
1908         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1909       KnownUndef.clearAllBits();
1910     }
1911     break;
1912   default: {
1913     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1914       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1915                                                   KnownZero, TLO, Depth))
1916         return true;
1917     } else {
1918       KnownBits Known;
1919       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
1920       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
1921                                Depth, AssumeSingleUse))
1922         return true;
1923     }
1924     break;
1925   }
1926   }
1927   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1928 
1929   // Constant fold all undef cases.
1930   // TODO: Handle zero cases as well.
1931   if (DemandedElts.isSubsetOf(KnownUndef))
1932     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1933 
1934   return false;
1935 }
1936 
1937 /// Determine which of the bits specified in Mask are known to be either zero or
1938 /// one and return them in the Known.
1939 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1940                                                    KnownBits &Known,
1941                                                    const APInt &DemandedElts,
1942                                                    const SelectionDAG &DAG,
1943                                                    unsigned Depth) const {
1944   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1945           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1946           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1947           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1948          "Should use MaskedValueIsZero if you don't know whether Op"
1949          " is a target node!");
1950   Known.resetAll();
1951 }
1952 
1953 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1954                                                    KnownBits &Known,
1955                                                    const APInt &DemandedElts,
1956                                                    const SelectionDAG &DAG,
1957                                                    unsigned Depth) const {
1958   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1959 
1960   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1961     // The low bits are known zero if the pointer is aligned.
1962     Known.Zero.setLowBits(Log2_32(Align));
1963   }
1964 }
1965 
1966 /// This method can be implemented by targets that want to expose additional
1967 /// information about sign bits to the DAG Combiner.
1968 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1969                                                          const APInt &,
1970                                                          const SelectionDAG &,
1971                                                          unsigned Depth) const {
1972   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1973           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1974           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1975           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1976          "Should use ComputeNumSignBits if you don't know whether Op"
1977          " is a target node!");
1978   return 1;
1979 }
1980 
1981 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1982     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1983     TargetLoweringOpt &TLO, unsigned Depth) const {
1984   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1985           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1986           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1987           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1988          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1989          " is a target node!");
1990   return false;
1991 }
1992 
1993 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1994     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1995     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
1996   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1997           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1998           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1999           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2000          "Should use SimplifyDemandedBits if you don't know whether Op"
2001          " is a target node!");
2002   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2003   return false;
2004 }
2005 
2006 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2007                                                   const SelectionDAG &DAG,
2008                                                   bool SNaN,
2009                                                   unsigned Depth) const {
2010   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2011           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2012           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2013           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2014          "Should use isKnownNeverNaN if you don't know whether Op"
2015          " is a target node!");
2016   return false;
2017 }
2018 
2019 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2020 // work with truncating build vectors and vectors with elements of less than
2021 // 8 bits.
2022 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2023   if (!N)
2024     return false;
2025 
2026   APInt CVal;
2027   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2028     CVal = CN->getAPIntValue();
2029   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2030     auto *CN = BV->getConstantSplatNode();
2031     if (!CN)
2032       return false;
2033 
2034     // If this is a truncating build vector, truncate the splat value.
2035     // Otherwise, we may fail to match the expected values below.
2036     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2037     CVal = CN->getAPIntValue();
2038     if (BVEltWidth < CVal.getBitWidth())
2039       CVal = CVal.trunc(BVEltWidth);
2040   } else {
2041     return false;
2042   }
2043 
2044   switch (getBooleanContents(N->getValueType(0))) {
2045   case UndefinedBooleanContent:
2046     return CVal[0];
2047   case ZeroOrOneBooleanContent:
2048     return CVal.isOneValue();
2049   case ZeroOrNegativeOneBooleanContent:
2050     return CVal.isAllOnesValue();
2051   }
2052 
2053   llvm_unreachable("Invalid boolean contents");
2054 }
2055 
2056 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2057   if (!N)
2058     return false;
2059 
2060   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2061   if (!CN) {
2062     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2063     if (!BV)
2064       return false;
2065 
2066     // Only interested in constant splats, we don't care about undef
2067     // elements in identifying boolean constants and getConstantSplatNode
2068     // returns NULL if all ops are undef;
2069     CN = BV->getConstantSplatNode();
2070     if (!CN)
2071       return false;
2072   }
2073 
2074   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2075     return !CN->getAPIntValue()[0];
2076 
2077   return CN->isNullValue();
2078 }
2079 
2080 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2081                                        bool SExt) const {
2082   if (VT == MVT::i1)
2083     return N->isOne();
2084 
2085   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2086   switch (Cnt) {
2087   case TargetLowering::ZeroOrOneBooleanContent:
2088     // An extended value of 1 is always true, unless its original type is i1,
2089     // in which case it will be sign extended to -1.
2090     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2091   case TargetLowering::UndefinedBooleanContent:
2092   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2093     return N->isAllOnesValue() && SExt;
2094   }
2095   llvm_unreachable("Unexpected enumeration.");
2096 }
2097 
2098 /// This helper function of SimplifySetCC tries to optimize the comparison when
2099 /// either operand of the SetCC node is a bitwise-and instruction.
2100 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2101                                              ISD::CondCode Cond,
2102                                              DAGCombinerInfo &DCI,
2103                                              const SDLoc &DL) const {
2104   // Match these patterns in any of their permutations:
2105   // (X & Y) == Y
2106   // (X & Y) != Y
2107   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2108     std::swap(N0, N1);
2109 
2110   EVT OpVT = N0.getValueType();
2111   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2112       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2113     return SDValue();
2114 
2115   SDValue X, Y;
2116   if (N0.getOperand(0) == N1) {
2117     X = N0.getOperand(1);
2118     Y = N0.getOperand(0);
2119   } else if (N0.getOperand(1) == N1) {
2120     X = N0.getOperand(0);
2121     Y = N0.getOperand(1);
2122   } else {
2123     return SDValue();
2124   }
2125 
2126   SelectionDAG &DAG = DCI.DAG;
2127   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2128   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2129     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2130     // Note that where Y is variable and is known to have at most one bit set
2131     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2132     // equivalent when Y == 0.
2133     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2134     if (DCI.isBeforeLegalizeOps() ||
2135         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2136       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2137   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2138     // If the target supports an 'and-not' or 'and-complement' logic operation,
2139     // try to use that to make a comparison operation more efficient.
2140     // But don't do this transform if the mask is a single bit because there are
2141     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2142     // 'rlwinm' on PPC).
2143 
2144     // Bail out if the compare operand that we want to turn into a zero is
2145     // already a zero (otherwise, infinite loop).
2146     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2147     if (YConst && YConst->isNullValue())
2148       return SDValue();
2149 
2150     // Transform this into: ~X & Y == 0.
2151     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2152     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2153     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2154   }
2155 
2156   return SDValue();
2157 }
2158 
2159 /// There are multiple IR patterns that could be checking whether certain
2160 /// truncation of a signed number would be lossy or not. The pattern which is
2161 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2162 /// We are looking for the following pattern: (KeptBits is a constant)
2163 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2164 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2165 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2166 /// We will unfold it into the natural trunc+sext pattern:
2167 ///   ((%x << C) a>> C) dstcond %x
2168 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2169 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2170     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2171     const SDLoc &DL) const {
2172   // We must be comparing with a constant.
2173   ConstantSDNode *C1;
2174   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2175     return SDValue();
2176 
2177   // N0 should be:  add %x, (1 << (KeptBits-1))
2178   if (N0->getOpcode() != ISD::ADD)
2179     return SDValue();
2180 
2181   // And we must be 'add'ing a constant.
2182   ConstantSDNode *C01;
2183   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2184     return SDValue();
2185 
2186   SDValue X = N0->getOperand(0);
2187   EVT XVT = X.getValueType();
2188 
2189   // Validate constants ...
2190 
2191   APInt I1 = C1->getAPIntValue();
2192 
2193   ISD::CondCode NewCond;
2194   if (Cond == ISD::CondCode::SETULT) {
2195     NewCond = ISD::CondCode::SETEQ;
2196   } else if (Cond == ISD::CondCode::SETULE) {
2197     NewCond = ISD::CondCode::SETEQ;
2198     // But need to 'canonicalize' the constant.
2199     I1 += 1;
2200   } else if (Cond == ISD::CondCode::SETUGT) {
2201     NewCond = ISD::CondCode::SETNE;
2202     // But need to 'canonicalize' the constant.
2203     I1 += 1;
2204   } else if (Cond == ISD::CondCode::SETUGE) {
2205     NewCond = ISD::CondCode::SETNE;
2206   } else
2207     return SDValue();
2208 
2209   APInt I01 = C01->getAPIntValue();
2210 
2211   auto checkConstants = [&I1, &I01]() -> bool {
2212     // Both of them must be power-of-two, and the constant from setcc is bigger.
2213     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2214   };
2215 
2216   if (checkConstants()) {
2217     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2218   } else {
2219     // What if we invert constants? (and the target predicate)
2220     I1.negate();
2221     I01.negate();
2222     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2223     if (!checkConstants())
2224       return SDValue();
2225     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2226   }
2227 
2228   // They are power-of-two, so which bit is set?
2229   const unsigned KeptBits = I1.logBase2();
2230   const unsigned KeptBitsMinusOne = I01.logBase2();
2231 
2232   // Magic!
2233   if (KeptBits != (KeptBitsMinusOne + 1))
2234     return SDValue();
2235   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2236 
2237   // We don't want to do this in every single case.
2238   SelectionDAG &DAG = DCI.DAG;
2239   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2240           XVT, KeptBits))
2241     return SDValue();
2242 
2243   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2244   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2245 
2246   // Unfold into:  ((%x << C) a>> C) cond %x
2247   // Where 'cond' will be either 'eq' or 'ne'.
2248   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2249   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2250   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2251   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2252 
2253   return T2;
2254 }
2255 
2256 /// Try to simplify a setcc built with the specified operands and cc. If it is
2257 /// unable to simplify it, return a null SDValue.
2258 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2259                                       ISD::CondCode Cond, bool foldBooleans,
2260                                       DAGCombinerInfo &DCI,
2261                                       const SDLoc &dl) const {
2262   SelectionDAG &DAG = DCI.DAG;
2263   EVT OpVT = N0.getValueType();
2264 
2265   // These setcc operations always fold.
2266   switch (Cond) {
2267   default: break;
2268   case ISD::SETFALSE:
2269   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2270   case ISD::SETTRUE:
2271   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2272   }
2273 
2274   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2275   // TODO: Handle non-splat vector constants. All undef causes trouble.
2276   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2277   if (isConstOrConstSplat(N0) &&
2278       (DCI.isBeforeLegalizeOps() ||
2279        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2280     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2281 
2282   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2283     const APInt &C1 = N1C->getAPIntValue();
2284 
2285     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2286     // equality comparison, then we're just comparing whether X itself is
2287     // zero.
2288     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2289         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2290         N0.getOperand(1).getOpcode() == ISD::Constant) {
2291       const APInt &ShAmt
2292         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2293       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2294           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2295         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2296           // (srl (ctlz x), 5) == 0  -> X != 0
2297           // (srl (ctlz x), 5) != 1  -> X != 0
2298           Cond = ISD::SETNE;
2299         } else {
2300           // (srl (ctlz x), 5) != 0  -> X == 0
2301           // (srl (ctlz x), 5) == 1  -> X == 0
2302           Cond = ISD::SETEQ;
2303         }
2304         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2305         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2306                             Zero, Cond);
2307       }
2308     }
2309 
2310     SDValue CTPOP = N0;
2311     // Look through truncs that don't change the value of a ctpop.
2312     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2313       CTPOP = N0.getOperand(0);
2314 
2315     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2316         (N0 == CTPOP ||
2317          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2318       EVT CTVT = CTPOP.getValueType();
2319       SDValue CTOp = CTPOP.getOperand(0);
2320 
2321       // (ctpop x) u< 2 -> (x & x-1) == 0
2322       // (ctpop x) u> 1 -> (x & x-1) != 0
2323       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2324         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2325                                   DAG.getConstant(1, dl, CTVT));
2326         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2327         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2328         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2329       }
2330 
2331       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2332     }
2333 
2334     // (zext x) == C --> x == (trunc C)
2335     // (sext x) == C --> x == (trunc C)
2336     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2337         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2338       unsigned MinBits = N0.getValueSizeInBits();
2339       SDValue PreExt;
2340       bool Signed = false;
2341       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2342         // ZExt
2343         MinBits = N0->getOperand(0).getValueSizeInBits();
2344         PreExt = N0->getOperand(0);
2345       } else if (N0->getOpcode() == ISD::AND) {
2346         // DAGCombine turns costly ZExts into ANDs
2347         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2348           if ((C->getAPIntValue()+1).isPowerOf2()) {
2349             MinBits = C->getAPIntValue().countTrailingOnes();
2350             PreExt = N0->getOperand(0);
2351           }
2352       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2353         // SExt
2354         MinBits = N0->getOperand(0).getValueSizeInBits();
2355         PreExt = N0->getOperand(0);
2356         Signed = true;
2357       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2358         // ZEXTLOAD / SEXTLOAD
2359         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2360           MinBits = LN0->getMemoryVT().getSizeInBits();
2361           PreExt = N0;
2362         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2363           Signed = true;
2364           MinBits = LN0->getMemoryVT().getSizeInBits();
2365           PreExt = N0;
2366         }
2367       }
2368 
2369       // Figure out how many bits we need to preserve this constant.
2370       unsigned ReqdBits = Signed ?
2371         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2372         C1.getActiveBits();
2373 
2374       // Make sure we're not losing bits from the constant.
2375       if (MinBits > 0 &&
2376           MinBits < C1.getBitWidth() &&
2377           MinBits >= ReqdBits) {
2378         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2379         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2380           // Will get folded away.
2381           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2382           if (MinBits == 1 && C1 == 1)
2383             // Invert the condition.
2384             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2385                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2386           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2387           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2388         }
2389 
2390         // If truncating the setcc operands is not desirable, we can still
2391         // simplify the expression in some cases:
2392         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2393         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2394         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2395         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2396         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2397         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2398         SDValue TopSetCC = N0->getOperand(0);
2399         unsigned N0Opc = N0->getOpcode();
2400         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2401         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2402             TopSetCC.getOpcode() == ISD::SETCC &&
2403             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2404             (isConstFalseVal(N1C) ||
2405              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2406 
2407           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2408                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2409 
2410           if (!Inverse)
2411             return TopSetCC;
2412 
2413           ISD::CondCode InvCond = ISD::getSetCCInverse(
2414               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2415               TopSetCC.getOperand(0).getValueType().isInteger());
2416           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2417                                       TopSetCC.getOperand(1),
2418                                       InvCond);
2419         }
2420       }
2421     }
2422 
2423     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2424     // equality or unsigned, and all 1 bits of the const are in the same
2425     // partial word, see if we can shorten the load.
2426     if (DCI.isBeforeLegalize() &&
2427         !ISD::isSignedIntSetCC(Cond) &&
2428         N0.getOpcode() == ISD::AND && C1 == 0 &&
2429         N0.getNode()->hasOneUse() &&
2430         isa<LoadSDNode>(N0.getOperand(0)) &&
2431         N0.getOperand(0).getNode()->hasOneUse() &&
2432         isa<ConstantSDNode>(N0.getOperand(1))) {
2433       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2434       APInt bestMask;
2435       unsigned bestWidth = 0, bestOffset = 0;
2436       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2437         unsigned origWidth = N0.getValueSizeInBits();
2438         unsigned maskWidth = origWidth;
2439         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2440         // 8 bits, but have to be careful...
2441         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2442           origWidth = Lod->getMemoryVT().getSizeInBits();
2443         const APInt &Mask =
2444           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2445         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2446           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2447           for (unsigned offset=0; offset<origWidth/width; offset++) {
2448             if (Mask.isSubsetOf(newMask)) {
2449               if (DAG.getDataLayout().isLittleEndian())
2450                 bestOffset = (uint64_t)offset * (width/8);
2451               else
2452                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2453               bestMask = Mask.lshr(offset * (width/8) * 8);
2454               bestWidth = width;
2455               break;
2456             }
2457             newMask <<= width;
2458           }
2459         }
2460       }
2461       if (bestWidth) {
2462         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2463         if (newVT.isRound() &&
2464             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2465           EVT PtrType = Lod->getOperand(1).getValueType();
2466           SDValue Ptr = Lod->getBasePtr();
2467           if (bestOffset != 0)
2468             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2469                               DAG.getConstant(bestOffset, dl, PtrType));
2470           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2471           SDValue NewLoad = DAG.getLoad(
2472               newVT, dl, Lod->getChain(), Ptr,
2473               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2474           return DAG.getSetCC(dl, VT,
2475                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2476                                       DAG.getConstant(bestMask.trunc(bestWidth),
2477                                                       dl, newVT)),
2478                               DAG.getConstant(0LL, dl, newVT), Cond);
2479         }
2480       }
2481     }
2482 
2483     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2484     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2485       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2486 
2487       // If the comparison constant has bits in the upper part, the
2488       // zero-extended value could never match.
2489       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2490                                               C1.getBitWidth() - InSize))) {
2491         switch (Cond) {
2492         case ISD::SETUGT:
2493         case ISD::SETUGE:
2494         case ISD::SETEQ:
2495           return DAG.getConstant(0, dl, VT);
2496         case ISD::SETULT:
2497         case ISD::SETULE:
2498         case ISD::SETNE:
2499           return DAG.getConstant(1, dl, VT);
2500         case ISD::SETGT:
2501         case ISD::SETGE:
2502           // True if the sign bit of C1 is set.
2503           return DAG.getConstant(C1.isNegative(), dl, VT);
2504         case ISD::SETLT:
2505         case ISD::SETLE:
2506           // True if the sign bit of C1 isn't set.
2507           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2508         default:
2509           break;
2510         }
2511       }
2512 
2513       // Otherwise, we can perform the comparison with the low bits.
2514       switch (Cond) {
2515       case ISD::SETEQ:
2516       case ISD::SETNE:
2517       case ISD::SETUGT:
2518       case ISD::SETUGE:
2519       case ISD::SETULT:
2520       case ISD::SETULE: {
2521         EVT newVT = N0.getOperand(0).getValueType();
2522         if (DCI.isBeforeLegalizeOps() ||
2523             (isOperationLegal(ISD::SETCC, newVT) &&
2524              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2525           EVT NewSetCCVT =
2526               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2527           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2528 
2529           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2530                                           NewConst, Cond);
2531           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2532         }
2533         break;
2534       }
2535       default:
2536         break;   // todo, be more careful with signed comparisons
2537       }
2538     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2539                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2540       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2541       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2542       EVT ExtDstTy = N0.getValueType();
2543       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2544 
2545       // If the constant doesn't fit into the number of bits for the source of
2546       // the sign extension, it is impossible for both sides to be equal.
2547       if (C1.getMinSignedBits() > ExtSrcTyBits)
2548         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2549 
2550       SDValue ZextOp;
2551       EVT Op0Ty = N0.getOperand(0).getValueType();
2552       if (Op0Ty == ExtSrcTy) {
2553         ZextOp = N0.getOperand(0);
2554       } else {
2555         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2556         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2557                               DAG.getConstant(Imm, dl, Op0Ty));
2558       }
2559       if (!DCI.isCalledByLegalizer())
2560         DCI.AddToWorklist(ZextOp.getNode());
2561       // Otherwise, make this a use of a zext.
2562       return DAG.getSetCC(dl, VT, ZextOp,
2563                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2564                                                               ExtDstTyBits,
2565                                                               ExtSrcTyBits),
2566                                           dl, ExtDstTy),
2567                           Cond);
2568     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2569                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2570       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2571       if (N0.getOpcode() == ISD::SETCC &&
2572           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2573         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2574         if (TrueWhenTrue)
2575           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2576         // Invert the condition.
2577         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2578         CC = ISD::getSetCCInverse(CC,
2579                                   N0.getOperand(0).getValueType().isInteger());
2580         if (DCI.isBeforeLegalizeOps() ||
2581             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2582           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2583       }
2584 
2585       if ((N0.getOpcode() == ISD::XOR ||
2586            (N0.getOpcode() == ISD::AND &&
2587             N0.getOperand(0).getOpcode() == ISD::XOR &&
2588             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2589           isa<ConstantSDNode>(N0.getOperand(1)) &&
2590           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2591         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2592         // can only do this if the top bits are known zero.
2593         unsigned BitWidth = N0.getValueSizeInBits();
2594         if (DAG.MaskedValueIsZero(N0,
2595                                   APInt::getHighBitsSet(BitWidth,
2596                                                         BitWidth-1))) {
2597           // Okay, get the un-inverted input value.
2598           SDValue Val;
2599           if (N0.getOpcode() == ISD::XOR) {
2600             Val = N0.getOperand(0);
2601           } else {
2602             assert(N0.getOpcode() == ISD::AND &&
2603                     N0.getOperand(0).getOpcode() == ISD::XOR);
2604             // ((X^1)&1)^1 -> X & 1
2605             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2606                               N0.getOperand(0).getOperand(0),
2607                               N0.getOperand(1));
2608           }
2609 
2610           return DAG.getSetCC(dl, VT, Val, N1,
2611                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2612         }
2613       } else if (N1C->isOne() &&
2614                  (VT == MVT::i1 ||
2615                   getBooleanContents(N0->getValueType(0)) ==
2616                       ZeroOrOneBooleanContent)) {
2617         SDValue Op0 = N0;
2618         if (Op0.getOpcode() == ISD::TRUNCATE)
2619           Op0 = Op0.getOperand(0);
2620 
2621         if ((Op0.getOpcode() == ISD::XOR) &&
2622             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2623             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2624           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2625           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2626           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2627                               Cond);
2628         }
2629         if (Op0.getOpcode() == ISD::AND &&
2630             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2631             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2632           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2633           if (Op0.getValueType().bitsGT(VT))
2634             Op0 = DAG.getNode(ISD::AND, dl, VT,
2635                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2636                           DAG.getConstant(1, dl, VT));
2637           else if (Op0.getValueType().bitsLT(VT))
2638             Op0 = DAG.getNode(ISD::AND, dl, VT,
2639                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2640                         DAG.getConstant(1, dl, VT));
2641 
2642           return DAG.getSetCC(dl, VT, Op0,
2643                               DAG.getConstant(0, dl, Op0.getValueType()),
2644                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2645         }
2646         if (Op0.getOpcode() == ISD::AssertZext &&
2647             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2648           return DAG.getSetCC(dl, VT, Op0,
2649                               DAG.getConstant(0, dl, Op0.getValueType()),
2650                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2651       }
2652     }
2653 
2654     if (SDValue V =
2655             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2656       return V;
2657   }
2658 
2659   // These simplifications apply to splat vectors as well.
2660   // TODO: Handle more splat vector cases.
2661   if (auto *N1C = isConstOrConstSplat(N1)) {
2662     const APInt &C1 = N1C->getAPIntValue();
2663 
2664     APInt MinVal, MaxVal;
2665     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2666     if (ISD::isSignedIntSetCC(Cond)) {
2667       MinVal = APInt::getSignedMinValue(OperandBitSize);
2668       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2669     } else {
2670       MinVal = APInt::getMinValue(OperandBitSize);
2671       MaxVal = APInt::getMaxValue(OperandBitSize);
2672     }
2673 
2674     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2675     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2676       // X >= MIN --> true
2677       if (C1 == MinVal)
2678         return DAG.getBoolConstant(true, dl, VT, OpVT);
2679 
2680       if (!VT.isVector()) { // TODO: Support this for vectors.
2681         // X >= C0 --> X > (C0 - 1)
2682         APInt C = C1 - 1;
2683         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2684         if ((DCI.isBeforeLegalizeOps() ||
2685              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2686             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2687                                   isLegalICmpImmediate(C.getSExtValue())))) {
2688           return DAG.getSetCC(dl, VT, N0,
2689                               DAG.getConstant(C, dl, N1.getValueType()),
2690                               NewCC);
2691         }
2692       }
2693     }
2694 
2695     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2696       // X <= MAX --> true
2697       if (C1 == MaxVal)
2698         return DAG.getBoolConstant(true, dl, VT, OpVT);
2699 
2700       // X <= C0 --> X < (C0 + 1)
2701       if (!VT.isVector()) { // TODO: Support this for vectors.
2702         APInt C = C1 + 1;
2703         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2704         if ((DCI.isBeforeLegalizeOps() ||
2705              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2706             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2707                                   isLegalICmpImmediate(C.getSExtValue())))) {
2708           return DAG.getSetCC(dl, VT, N0,
2709                               DAG.getConstant(C, dl, N1.getValueType()),
2710                               NewCC);
2711         }
2712       }
2713     }
2714 
2715     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2716       if (C1 == MinVal)
2717         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2718 
2719       // TODO: Support this for vectors after legalize ops.
2720       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2721         // Canonicalize setlt X, Max --> setne X, Max
2722         if (C1 == MaxVal)
2723           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2724 
2725         // If we have setult X, 1, turn it into seteq X, 0
2726         if (C1 == MinVal+1)
2727           return DAG.getSetCC(dl, VT, N0,
2728                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2729                               ISD::SETEQ);
2730       }
2731     }
2732 
2733     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2734       if (C1 == MaxVal)
2735         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2736 
2737       // TODO: Support this for vectors after legalize ops.
2738       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2739         // Canonicalize setgt X, Min --> setne X, Min
2740         if (C1 == MinVal)
2741           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2742 
2743         // If we have setugt X, Max-1, turn it into seteq X, Max
2744         if (C1 == MaxVal-1)
2745           return DAG.getSetCC(dl, VT, N0,
2746                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2747                               ISD::SETEQ);
2748       }
2749     }
2750 
2751     // If we have "setcc X, C0", check to see if we can shrink the immediate
2752     // by changing cc.
2753     // TODO: Support this for vectors after legalize ops.
2754     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2755       // SETUGT X, SINTMAX  -> SETLT X, 0
2756       if (Cond == ISD::SETUGT &&
2757           C1 == APInt::getSignedMaxValue(OperandBitSize))
2758         return DAG.getSetCC(dl, VT, N0,
2759                             DAG.getConstant(0, dl, N1.getValueType()),
2760                             ISD::SETLT);
2761 
2762       // SETULT X, SINTMIN  -> SETGT X, -1
2763       if (Cond == ISD::SETULT &&
2764           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2765         SDValue ConstMinusOne =
2766             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2767                             N1.getValueType());
2768         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2769       }
2770     }
2771   }
2772 
2773   // Back to non-vector simplifications.
2774   // TODO: Can we do these for vector splats?
2775   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2776     const APInt &C1 = N1C->getAPIntValue();
2777 
2778     // Fold bit comparisons when we can.
2779     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2780         (VT == N0.getValueType() ||
2781          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2782         N0.getOpcode() == ISD::AND) {
2783       auto &DL = DAG.getDataLayout();
2784       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2785         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2786                                        !DCI.isBeforeLegalize());
2787         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2788           // Perform the xform if the AND RHS is a single bit.
2789           if (AndRHS->getAPIntValue().isPowerOf2()) {
2790             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2791                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2792                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2793                                    ShiftTy)));
2794           }
2795         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2796           // (X & 8) == 8  -->  (X & 8) >> 3
2797           // Perform the xform if C1 is a single bit.
2798           if (C1.isPowerOf2()) {
2799             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2800                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2801                                       DAG.getConstant(C1.logBase2(), dl,
2802                                                       ShiftTy)));
2803           }
2804         }
2805       }
2806     }
2807 
2808     if (C1.getMinSignedBits() <= 64 &&
2809         !isLegalICmpImmediate(C1.getSExtValue())) {
2810       // (X & -256) == 256 -> (X >> 8) == 1
2811       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2812           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2813         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2814           const APInt &AndRHSC = AndRHS->getAPIntValue();
2815           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2816             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2817             auto &DL = DAG.getDataLayout();
2818             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2819                                            !DCI.isBeforeLegalize());
2820             EVT CmpTy = N0.getValueType();
2821             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2822                                         DAG.getConstant(ShiftBits, dl,
2823                                                         ShiftTy));
2824             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2825             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2826           }
2827         }
2828       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2829                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2830         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2831         // X <  0x100000000 -> (X >> 32) <  1
2832         // X >= 0x100000000 -> (X >> 32) >= 1
2833         // X <= 0x0ffffffff -> (X >> 32) <  1
2834         // X >  0x0ffffffff -> (X >> 32) >= 1
2835         unsigned ShiftBits;
2836         APInt NewC = C1;
2837         ISD::CondCode NewCond = Cond;
2838         if (AdjOne) {
2839           ShiftBits = C1.countTrailingOnes();
2840           NewC = NewC + 1;
2841           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2842         } else {
2843           ShiftBits = C1.countTrailingZeros();
2844         }
2845         NewC.lshrInPlace(ShiftBits);
2846         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2847           isLegalICmpImmediate(NewC.getSExtValue())) {
2848           auto &DL = DAG.getDataLayout();
2849           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2850                                          !DCI.isBeforeLegalize());
2851           EVT CmpTy = N0.getValueType();
2852           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2853                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2854           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2855           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2856         }
2857       }
2858     }
2859   }
2860 
2861   if (isa<ConstantFPSDNode>(N0.getNode())) {
2862     // Constant fold or commute setcc.
2863     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2864     if (O.getNode()) return O;
2865   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2866     // If the RHS of an FP comparison is a constant, simplify it away in
2867     // some cases.
2868     if (CFP->getValueAPF().isNaN()) {
2869       // If an operand is known to be a nan, we can fold it.
2870       switch (ISD::getUnorderedFlavor(Cond)) {
2871       default: llvm_unreachable("Unknown flavor!");
2872       case 0:  // Known false.
2873         return DAG.getBoolConstant(false, dl, VT, OpVT);
2874       case 1:  // Known true.
2875         return DAG.getBoolConstant(true, dl, VT, OpVT);
2876       case 2:  // Undefined.
2877         return DAG.getUNDEF(VT);
2878       }
2879     }
2880 
2881     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2882     // constant if knowing that the operand is non-nan is enough.  We prefer to
2883     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2884     // materialize 0.0.
2885     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2886       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2887 
2888     // setcc (fneg x), C -> setcc swap(pred) x, -C
2889     if (N0.getOpcode() == ISD::FNEG) {
2890       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2891       if (DCI.isBeforeLegalizeOps() ||
2892           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2893         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2894         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2895       }
2896     }
2897 
2898     // If the condition is not legal, see if we can find an equivalent one
2899     // which is legal.
2900     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2901       // If the comparison was an awkward floating-point == or != and one of
2902       // the comparison operands is infinity or negative infinity, convert the
2903       // condition to a less-awkward <= or >=.
2904       if (CFP->getValueAPF().isInfinity()) {
2905         if (CFP->getValueAPF().isNegative()) {
2906           if (Cond == ISD::SETOEQ &&
2907               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2908             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2909           if (Cond == ISD::SETUEQ &&
2910               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2911             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2912           if (Cond == ISD::SETUNE &&
2913               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2914             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2915           if (Cond == ISD::SETONE &&
2916               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2917             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2918         } else {
2919           if (Cond == ISD::SETOEQ &&
2920               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2921             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2922           if (Cond == ISD::SETUEQ &&
2923               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2924             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2925           if (Cond == ISD::SETUNE &&
2926               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2927             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2928           if (Cond == ISD::SETONE &&
2929               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2930             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2931         }
2932       }
2933     }
2934   }
2935 
2936   if (N0 == N1) {
2937     // The sext(setcc()) => setcc() optimization relies on the appropriate
2938     // constant being emitted.
2939 
2940     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2941 
2942     // We can always fold X == X for integer setcc's.
2943     if (N0.getValueType().isInteger())
2944       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2945 
2946     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2947     if (UOF == 2)   // FP operators that are undefined on NaNs.
2948       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2949     if (UOF == unsigned(EqTrue))
2950       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2951     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2952     // if it is not already.
2953     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2954     if (NewCond != Cond &&
2955         (DCI.isBeforeLegalizeOps() ||
2956          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2957       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2958   }
2959 
2960   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2961       N0.getValueType().isInteger()) {
2962     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2963         N0.getOpcode() == ISD::XOR) {
2964       // Simplify (X+Y) == (X+Z) -->  Y == Z
2965       if (N0.getOpcode() == N1.getOpcode()) {
2966         if (N0.getOperand(0) == N1.getOperand(0))
2967           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2968         if (N0.getOperand(1) == N1.getOperand(1))
2969           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2970         if (isCommutativeBinOp(N0.getOpcode())) {
2971           // If X op Y == Y op X, try other combinations.
2972           if (N0.getOperand(0) == N1.getOperand(1))
2973             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2974                                 Cond);
2975           if (N0.getOperand(1) == N1.getOperand(0))
2976             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2977                                 Cond);
2978         }
2979       }
2980 
2981       // If RHS is a legal immediate value for a compare instruction, we need
2982       // to be careful about increasing register pressure needlessly.
2983       bool LegalRHSImm = false;
2984 
2985       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2986         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2987           // Turn (X+C1) == C2 --> X == C2-C1
2988           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2989             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2990                                 DAG.getConstant(RHSC->getAPIntValue()-
2991                                                 LHSR->getAPIntValue(),
2992                                 dl, N0.getValueType()), Cond);
2993           }
2994 
2995           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2996           if (N0.getOpcode() == ISD::XOR)
2997             // If we know that all of the inverted bits are zero, don't bother
2998             // performing the inversion.
2999             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3000               return
3001                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3002                              DAG.getConstant(LHSR->getAPIntValue() ^
3003                                                RHSC->getAPIntValue(),
3004                                              dl, N0.getValueType()),
3005                              Cond);
3006         }
3007 
3008         // Turn (C1-X) == C2 --> X == C1-C2
3009         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3010           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3011             return
3012               DAG.getSetCC(dl, VT, N0.getOperand(1),
3013                            DAG.getConstant(SUBC->getAPIntValue() -
3014                                              RHSC->getAPIntValue(),
3015                                            dl, N0.getValueType()),
3016                            Cond);
3017           }
3018         }
3019 
3020         // Could RHSC fold directly into a compare?
3021         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3022           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3023       }
3024 
3025       // Simplify (X+Z) == X -->  Z == 0
3026       // Don't do this if X is an immediate that can fold into a cmp
3027       // instruction and X+Z has other uses. It could be an induction variable
3028       // chain, and the transform would increase register pressure.
3029       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
3030         if (N0.getOperand(0) == N1)
3031           return DAG.getSetCC(dl, VT, N0.getOperand(1),
3032                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
3033         if (N0.getOperand(1) == N1) {
3034           if (isCommutativeBinOp(N0.getOpcode()))
3035             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3036                                 DAG.getConstant(0, dl, N0.getValueType()),
3037                                 Cond);
3038           if (N0.getNode()->hasOneUse()) {
3039             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3040             auto &DL = DAG.getDataLayout();
3041             // (Z-X) == X  --> Z == X<<1
3042             SDValue SH = DAG.getNode(
3043                 ISD::SHL, dl, N1.getValueType(), N1,
3044                 DAG.getConstant(1, dl,
3045                                 getShiftAmountTy(N1.getValueType(), DL,
3046                                                  !DCI.isBeforeLegalize())));
3047             if (!DCI.isCalledByLegalizer())
3048               DCI.AddToWorklist(SH.getNode());
3049             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
3050           }
3051         }
3052       }
3053     }
3054 
3055     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3056         N1.getOpcode() == ISD::XOR) {
3057       // Simplify  X == (X+Z) -->  Z == 0
3058       if (N1.getOperand(0) == N0)
3059         return DAG.getSetCC(dl, VT, N1.getOperand(1),
3060                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
3061       if (N1.getOperand(1) == N0) {
3062         if (isCommutativeBinOp(N1.getOpcode()))
3063           return DAG.getSetCC(dl, VT, N1.getOperand(0),
3064                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
3065         if (N1.getNode()->hasOneUse()) {
3066           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3067           auto &DL = DAG.getDataLayout();
3068           // X == (Z-X)  --> X<<1 == Z
3069           SDValue SH = DAG.getNode(
3070               ISD::SHL, dl, N1.getValueType(), N0,
3071               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
3072                                                       !DCI.isBeforeLegalize())));
3073           if (!DCI.isCalledByLegalizer())
3074             DCI.AddToWorklist(SH.getNode());
3075           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
3076         }
3077       }
3078     }
3079 
3080     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
3081       return V;
3082   }
3083 
3084   // Fold away ALL boolean setcc's.
3085   SDValue Temp;
3086   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3087     EVT OpVT = N0.getValueType();
3088     switch (Cond) {
3089     default: llvm_unreachable("Unknown integer setcc!");
3090     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3091       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3092       N0 = DAG.getNOT(dl, Temp, OpVT);
3093       if (!DCI.isCalledByLegalizer())
3094         DCI.AddToWorklist(Temp.getNode());
3095       break;
3096     case ISD::SETNE:  // X != Y   -->  (X^Y)
3097       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3098       break;
3099     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3100     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3101       Temp = DAG.getNOT(dl, N0, OpVT);
3102       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3103       if (!DCI.isCalledByLegalizer())
3104         DCI.AddToWorklist(Temp.getNode());
3105       break;
3106     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3107     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3108       Temp = DAG.getNOT(dl, N1, OpVT);
3109       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3110       if (!DCI.isCalledByLegalizer())
3111         DCI.AddToWorklist(Temp.getNode());
3112       break;
3113     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3114     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3115       Temp = DAG.getNOT(dl, N0, OpVT);
3116       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3117       if (!DCI.isCalledByLegalizer())
3118         DCI.AddToWorklist(Temp.getNode());
3119       break;
3120     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3121     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3122       Temp = DAG.getNOT(dl, N1, OpVT);
3123       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3124       break;
3125     }
3126     if (VT.getScalarType() != MVT::i1) {
3127       if (!DCI.isCalledByLegalizer())
3128         DCI.AddToWorklist(N0.getNode());
3129       // FIXME: If running after legalize, we probably can't do this.
3130       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3131       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3132     }
3133     return N0;
3134   }
3135 
3136   // Could not fold it.
3137   return SDValue();
3138 }
3139 
3140 /// Returns true (and the GlobalValue and the offset) if the node is a
3141 /// GlobalAddress + offset.
3142 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3143                                     int64_t &Offset) const {
3144 
3145   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3146 
3147   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3148     GA = GASD->getGlobal();
3149     Offset += GASD->getOffset();
3150     return true;
3151   }
3152 
3153   if (N->getOpcode() == ISD::ADD) {
3154     SDValue N1 = N->getOperand(0);
3155     SDValue N2 = N->getOperand(1);
3156     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3157       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3158         Offset += V->getSExtValue();
3159         return true;
3160       }
3161     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3162       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3163         Offset += V->getSExtValue();
3164         return true;
3165       }
3166     }
3167   }
3168 
3169   return false;
3170 }
3171 
3172 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3173                                           DAGCombinerInfo &DCI) const {
3174   // Default implementation: no optimization.
3175   return SDValue();
3176 }
3177 
3178 //===----------------------------------------------------------------------===//
3179 //  Inline Assembler Implementation Methods
3180 //===----------------------------------------------------------------------===//
3181 
3182 TargetLowering::ConstraintType
3183 TargetLowering::getConstraintType(StringRef Constraint) const {
3184   unsigned S = Constraint.size();
3185 
3186   if (S == 1) {
3187     switch (Constraint[0]) {
3188     default: break;
3189     case 'r': return C_RegisterClass;
3190     case 'm':    // memory
3191     case 'o':    // offsetable
3192     case 'V':    // not offsetable
3193       return C_Memory;
3194     case 'i':    // Simple Integer or Relocatable Constant
3195     case 'n':    // Simple Integer
3196     case 'E':    // Floating Point Constant
3197     case 'F':    // Floating Point Constant
3198     case 's':    // Relocatable Constant
3199     case 'p':    // Address.
3200     case 'X':    // Allow ANY value.
3201     case 'I':    // Target registers.
3202     case 'J':
3203     case 'K':
3204     case 'L':
3205     case 'M':
3206     case 'N':
3207     case 'O':
3208     case 'P':
3209     case '<':
3210     case '>':
3211       return C_Other;
3212     }
3213   }
3214 
3215   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3216     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3217       return C_Memory;
3218     return C_Register;
3219   }
3220   return C_Unknown;
3221 }
3222 
3223 /// Try to replace an X constraint, which matches anything, with another that
3224 /// has more specific requirements based on the type of the corresponding
3225 /// operand.
3226 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3227   if (ConstraintVT.isInteger())
3228     return "r";
3229   if (ConstraintVT.isFloatingPoint())
3230     return "f";      // works for many targets
3231   return nullptr;
3232 }
3233 
3234 /// Lower the specified operand into the Ops vector.
3235 /// If it is invalid, don't add anything to Ops.
3236 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3237                                                   std::string &Constraint,
3238                                                   std::vector<SDValue> &Ops,
3239                                                   SelectionDAG &DAG) const {
3240 
3241   if (Constraint.length() > 1) return;
3242 
3243   char ConstraintLetter = Constraint[0];
3244   switch (ConstraintLetter) {
3245   default: break;
3246   case 'X':     // Allows any operand; labels (basic block) use this.
3247     if (Op.getOpcode() == ISD::BasicBlock) {
3248       Ops.push_back(Op);
3249       return;
3250     }
3251     LLVM_FALLTHROUGH;
3252   case 'i':    // Simple Integer or Relocatable Constant
3253   case 'n':    // Simple Integer
3254   case 's': {  // Relocatable Constant
3255     // These operands are interested in values of the form (GV+C), where C may
3256     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3257     // is possible and fine if either GV or C are missing.
3258     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3259     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3260 
3261     // If we have "(add GV, C)", pull out GV/C
3262     if (Op.getOpcode() == ISD::ADD) {
3263       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3264       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3265       if (!C || !GA) {
3266         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3267         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3268       }
3269       if (!C || !GA) {
3270         C = nullptr;
3271         GA = nullptr;
3272       }
3273     }
3274 
3275     // If we find a valid operand, map to the TargetXXX version so that the
3276     // value itself doesn't get selected.
3277     if (GA) {   // Either &GV   or   &GV+C
3278       if (ConstraintLetter != 'n') {
3279         int64_t Offs = GA->getOffset();
3280         if (C) Offs += C->getZExtValue();
3281         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3282                                                  C ? SDLoc(C) : SDLoc(),
3283                                                  Op.getValueType(), Offs));
3284       }
3285       return;
3286     }
3287     if (C) {   // just C, no GV.
3288       // Simple constants are not allowed for 's'.
3289       if (ConstraintLetter != 's') {
3290         // gcc prints these as sign extended.  Sign extend value to 64 bits
3291         // now; without this it would get ZExt'd later in
3292         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3293         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3294                                             SDLoc(C), MVT::i64));
3295       }
3296       return;
3297     }
3298     break;
3299   }
3300   }
3301 }
3302 
3303 std::pair<unsigned, const TargetRegisterClass *>
3304 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3305                                              StringRef Constraint,
3306                                              MVT VT) const {
3307   if (Constraint.empty() || Constraint[0] != '{')
3308     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3309   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3310 
3311   // Remove the braces from around the name.
3312   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3313 
3314   std::pair<unsigned, const TargetRegisterClass*> R =
3315     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3316 
3317   // Figure out which register class contains this reg.
3318   for (const TargetRegisterClass *RC : RI->regclasses()) {
3319     // If none of the value types for this register class are valid, we
3320     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3321     if (!isLegalRC(*RI, *RC))
3322       continue;
3323 
3324     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3325          I != E; ++I) {
3326       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3327         std::pair<unsigned, const TargetRegisterClass*> S =
3328           std::make_pair(*I, RC);
3329 
3330         // If this register class has the requested value type, return it,
3331         // otherwise keep searching and return the first class found
3332         // if no other is found which explicitly has the requested type.
3333         if (RI->isTypeLegalForClass(*RC, VT))
3334           return S;
3335         if (!R.second)
3336           R = S;
3337       }
3338     }
3339   }
3340 
3341   return R;
3342 }
3343 
3344 //===----------------------------------------------------------------------===//
3345 // Constraint Selection.
3346 
3347 /// Return true of this is an input operand that is a matching constraint like
3348 /// "4".
3349 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3350   assert(!ConstraintCode.empty() && "No known constraint!");
3351   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3352 }
3353 
3354 /// If this is an input matching constraint, this method returns the output
3355 /// operand it matches.
3356 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3357   assert(!ConstraintCode.empty() && "No known constraint!");
3358   return atoi(ConstraintCode.c_str());
3359 }
3360 
3361 /// Split up the constraint string from the inline assembly value into the
3362 /// specific constraints and their prefixes, and also tie in the associated
3363 /// operand values.
3364 /// If this returns an empty vector, and if the constraint string itself
3365 /// isn't empty, there was an error parsing.
3366 TargetLowering::AsmOperandInfoVector
3367 TargetLowering::ParseConstraints(const DataLayout &DL,
3368                                  const TargetRegisterInfo *TRI,
3369                                  ImmutableCallSite CS) const {
3370   /// Information about all of the constraints.
3371   AsmOperandInfoVector ConstraintOperands;
3372   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3373   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3374 
3375   // Do a prepass over the constraints, canonicalizing them, and building up the
3376   // ConstraintOperands list.
3377   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3378   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3379 
3380   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3381     ConstraintOperands.emplace_back(std::move(CI));
3382     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3383 
3384     // Update multiple alternative constraint count.
3385     if (OpInfo.multipleAlternatives.size() > maCount)
3386       maCount = OpInfo.multipleAlternatives.size();
3387 
3388     OpInfo.ConstraintVT = MVT::Other;
3389 
3390     // Compute the value type for each operand.
3391     switch (OpInfo.Type) {
3392     case InlineAsm::isOutput:
3393       // Indirect outputs just consume an argument.
3394       if (OpInfo.isIndirect) {
3395         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3396         break;
3397       }
3398 
3399       // The return value of the call is this value.  As such, there is no
3400       // corresponding argument.
3401       assert(!CS.getType()->isVoidTy() &&
3402              "Bad inline asm!");
3403       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3404         OpInfo.ConstraintVT =
3405             getSimpleValueType(DL, STy->getElementType(ResNo));
3406       } else {
3407         assert(ResNo == 0 && "Asm only has one result!");
3408         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3409       }
3410       ++ResNo;
3411       break;
3412     case InlineAsm::isInput:
3413       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3414       break;
3415     case InlineAsm::isClobber:
3416       // Nothing to do.
3417       break;
3418     }
3419 
3420     if (OpInfo.CallOperandVal) {
3421       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3422       if (OpInfo.isIndirect) {
3423         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3424         if (!PtrTy)
3425           report_fatal_error("Indirect operand for inline asm not a pointer!");
3426         OpTy = PtrTy->getElementType();
3427       }
3428 
3429       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3430       if (StructType *STy = dyn_cast<StructType>(OpTy))
3431         if (STy->getNumElements() == 1)
3432           OpTy = STy->getElementType(0);
3433 
3434       // If OpTy is not a single value, it may be a struct/union that we
3435       // can tile with integers.
3436       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3437         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3438         switch (BitSize) {
3439         default: break;
3440         case 1:
3441         case 8:
3442         case 16:
3443         case 32:
3444         case 64:
3445         case 128:
3446           OpInfo.ConstraintVT =
3447             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3448           break;
3449         }
3450       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3451         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3452         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3453       } else {
3454         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3455       }
3456     }
3457   }
3458 
3459   // If we have multiple alternative constraints, select the best alternative.
3460   if (!ConstraintOperands.empty()) {
3461     if (maCount) {
3462       unsigned bestMAIndex = 0;
3463       int bestWeight = -1;
3464       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3465       int weight = -1;
3466       unsigned maIndex;
3467       // Compute the sums of the weights for each alternative, keeping track
3468       // of the best (highest weight) one so far.
3469       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3470         int weightSum = 0;
3471         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3472             cIndex != eIndex; ++cIndex) {
3473           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3474           if (OpInfo.Type == InlineAsm::isClobber)
3475             continue;
3476 
3477           // If this is an output operand with a matching input operand,
3478           // look up the matching input. If their types mismatch, e.g. one
3479           // is an integer, the other is floating point, or their sizes are
3480           // different, flag it as an maCantMatch.
3481           if (OpInfo.hasMatchingInput()) {
3482             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3483             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3484               if ((OpInfo.ConstraintVT.isInteger() !=
3485                    Input.ConstraintVT.isInteger()) ||
3486                   (OpInfo.ConstraintVT.getSizeInBits() !=
3487                    Input.ConstraintVT.getSizeInBits())) {
3488                 weightSum = -1;  // Can't match.
3489                 break;
3490               }
3491             }
3492           }
3493           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3494           if (weight == -1) {
3495             weightSum = -1;
3496             break;
3497           }
3498           weightSum += weight;
3499         }
3500         // Update best.
3501         if (weightSum > bestWeight) {
3502           bestWeight = weightSum;
3503           bestMAIndex = maIndex;
3504         }
3505       }
3506 
3507       // Now select chosen alternative in each constraint.
3508       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3509           cIndex != eIndex; ++cIndex) {
3510         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3511         if (cInfo.Type == InlineAsm::isClobber)
3512           continue;
3513         cInfo.selectAlternative(bestMAIndex);
3514       }
3515     }
3516   }
3517 
3518   // Check and hook up tied operands, choose constraint code to use.
3519   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3520       cIndex != eIndex; ++cIndex) {
3521     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3522 
3523     // If this is an output operand with a matching input operand, look up the
3524     // matching input. If their types mismatch, e.g. one is an integer, the
3525     // other is floating point, or their sizes are different, flag it as an
3526     // error.
3527     if (OpInfo.hasMatchingInput()) {
3528       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3529 
3530       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3531         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3532             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3533                                          OpInfo.ConstraintVT);
3534         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3535             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3536                                          Input.ConstraintVT);
3537         if ((OpInfo.ConstraintVT.isInteger() !=
3538              Input.ConstraintVT.isInteger()) ||
3539             (MatchRC.second != InputRC.second)) {
3540           report_fatal_error("Unsupported asm: input constraint"
3541                              " with a matching output constraint of"
3542                              " incompatible type!");
3543         }
3544       }
3545     }
3546   }
3547 
3548   return ConstraintOperands;
3549 }
3550 
3551 /// Return an integer indicating how general CT is.
3552 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3553   switch (CT) {
3554   case TargetLowering::C_Other:
3555   case TargetLowering::C_Unknown:
3556     return 0;
3557   case TargetLowering::C_Register:
3558     return 1;
3559   case TargetLowering::C_RegisterClass:
3560     return 2;
3561   case TargetLowering::C_Memory:
3562     return 3;
3563   }
3564   llvm_unreachable("Invalid constraint type");
3565 }
3566 
3567 /// Examine constraint type and operand type and determine a weight value.
3568 /// This object must already have been set up with the operand type
3569 /// and the current alternative constraint selected.
3570 TargetLowering::ConstraintWeight
3571   TargetLowering::getMultipleConstraintMatchWeight(
3572     AsmOperandInfo &info, int maIndex) const {
3573   InlineAsm::ConstraintCodeVector *rCodes;
3574   if (maIndex >= (int)info.multipleAlternatives.size())
3575     rCodes = &info.Codes;
3576   else
3577     rCodes = &info.multipleAlternatives[maIndex].Codes;
3578   ConstraintWeight BestWeight = CW_Invalid;
3579 
3580   // Loop over the options, keeping track of the most general one.
3581   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3582     ConstraintWeight weight =
3583       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3584     if (weight > BestWeight)
3585       BestWeight = weight;
3586   }
3587 
3588   return BestWeight;
3589 }
3590 
3591 /// Examine constraint type and operand type and determine a weight value.
3592 /// This object must already have been set up with the operand type
3593 /// and the current alternative constraint selected.
3594 TargetLowering::ConstraintWeight
3595   TargetLowering::getSingleConstraintMatchWeight(
3596     AsmOperandInfo &info, const char *constraint) const {
3597   ConstraintWeight weight = CW_Invalid;
3598   Value *CallOperandVal = info.CallOperandVal;
3599     // If we don't have a value, we can't do a match,
3600     // but allow it at the lowest weight.
3601   if (!CallOperandVal)
3602     return CW_Default;
3603   // Look at the constraint type.
3604   switch (*constraint) {
3605     case 'i': // immediate integer.
3606     case 'n': // immediate integer with a known value.
3607       if (isa<ConstantInt>(CallOperandVal))
3608         weight = CW_Constant;
3609       break;
3610     case 's': // non-explicit intregal immediate.
3611       if (isa<GlobalValue>(CallOperandVal))
3612         weight = CW_Constant;
3613       break;
3614     case 'E': // immediate float if host format.
3615     case 'F': // immediate float.
3616       if (isa<ConstantFP>(CallOperandVal))
3617         weight = CW_Constant;
3618       break;
3619     case '<': // memory operand with autodecrement.
3620     case '>': // memory operand with autoincrement.
3621     case 'm': // memory operand.
3622     case 'o': // offsettable memory operand
3623     case 'V': // non-offsettable memory operand
3624       weight = CW_Memory;
3625       break;
3626     case 'r': // general register.
3627     case 'g': // general register, memory operand or immediate integer.
3628               // note: Clang converts "g" to "imr".
3629       if (CallOperandVal->getType()->isIntegerTy())
3630         weight = CW_Register;
3631       break;
3632     case 'X': // any operand.
3633     default:
3634       weight = CW_Default;
3635       break;
3636   }
3637   return weight;
3638 }
3639 
3640 /// If there are multiple different constraints that we could pick for this
3641 /// operand (e.g. "imr") try to pick the 'best' one.
3642 /// This is somewhat tricky: constraints fall into four classes:
3643 ///    Other         -> immediates and magic values
3644 ///    Register      -> one specific register
3645 ///    RegisterClass -> a group of regs
3646 ///    Memory        -> memory
3647 /// Ideally, we would pick the most specific constraint possible: if we have
3648 /// something that fits into a register, we would pick it.  The problem here
3649 /// is that if we have something that could either be in a register or in
3650 /// memory that use of the register could cause selection of *other*
3651 /// operands to fail: they might only succeed if we pick memory.  Because of
3652 /// this the heuristic we use is:
3653 ///
3654 ///  1) If there is an 'other' constraint, and if the operand is valid for
3655 ///     that constraint, use it.  This makes us take advantage of 'i'
3656 ///     constraints when available.
3657 ///  2) Otherwise, pick the most general constraint present.  This prefers
3658 ///     'm' over 'r', for example.
3659 ///
3660 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3661                              const TargetLowering &TLI,
3662                              SDValue Op, SelectionDAG *DAG) {
3663   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3664   unsigned BestIdx = 0;
3665   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3666   int BestGenerality = -1;
3667 
3668   // Loop over the options, keeping track of the most general one.
3669   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3670     TargetLowering::ConstraintType CType =
3671       TLI.getConstraintType(OpInfo.Codes[i]);
3672 
3673     // If this is an 'other' constraint, see if the operand is valid for it.
3674     // For example, on X86 we might have an 'rI' constraint.  If the operand
3675     // is an integer in the range [0..31] we want to use I (saving a load
3676     // of a register), otherwise we must use 'r'.
3677     if (CType == TargetLowering::C_Other && Op.getNode()) {
3678       assert(OpInfo.Codes[i].size() == 1 &&
3679              "Unhandled multi-letter 'other' constraint");
3680       std::vector<SDValue> ResultOps;
3681       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3682                                        ResultOps, *DAG);
3683       if (!ResultOps.empty()) {
3684         BestType = CType;
3685         BestIdx = i;
3686         break;
3687       }
3688     }
3689 
3690     // Things with matching constraints can only be registers, per gcc
3691     // documentation.  This mainly affects "g" constraints.
3692     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3693       continue;
3694 
3695     // This constraint letter is more general than the previous one, use it.
3696     int Generality = getConstraintGenerality(CType);
3697     if (Generality > BestGenerality) {
3698       BestType = CType;
3699       BestIdx = i;
3700       BestGenerality = Generality;
3701     }
3702   }
3703 
3704   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3705   OpInfo.ConstraintType = BestType;
3706 }
3707 
3708 /// Determines the constraint code and constraint type to use for the specific
3709 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3710 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3711                                             SDValue Op,
3712                                             SelectionDAG *DAG) const {
3713   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3714 
3715   // Single-letter constraints ('r') are very common.
3716   if (OpInfo.Codes.size() == 1) {
3717     OpInfo.ConstraintCode = OpInfo.Codes[0];
3718     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3719   } else {
3720     ChooseConstraint(OpInfo, *this, Op, DAG);
3721   }
3722 
3723   // 'X' matches anything.
3724   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3725     // Labels and constants are handled elsewhere ('X' is the only thing
3726     // that matches labels).  For Functions, the type here is the type of
3727     // the result, which is not what we want to look at; leave them alone.
3728     Value *v = OpInfo.CallOperandVal;
3729     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3730       OpInfo.CallOperandVal = v;
3731       return;
3732     }
3733 
3734     // Otherwise, try to resolve it to something we know about by looking at
3735     // the actual operand type.
3736     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3737       OpInfo.ConstraintCode = Repl;
3738       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3739     }
3740   }
3741 }
3742 
3743 /// Given an exact SDIV by a constant, create a multiplication
3744 /// with the multiplicative inverse of the constant.
3745 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3746                               const SDLoc &dl, SelectionDAG &DAG,
3747                               SmallVectorImpl<SDNode *> &Created) {
3748   SDValue Op0 = N->getOperand(0);
3749   SDValue Op1 = N->getOperand(1);
3750   EVT VT = N->getValueType(0);
3751   EVT SVT = VT.getScalarType();
3752   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3753   EVT ShSVT = ShVT.getScalarType();
3754 
3755   bool UseSRA = false;
3756   SmallVector<SDValue, 16> Shifts, Factors;
3757 
3758   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3759     if (C->isNullValue())
3760       return false;
3761     APInt Divisor = C->getAPIntValue();
3762     unsigned Shift = Divisor.countTrailingZeros();
3763     if (Shift) {
3764       Divisor.ashrInPlace(Shift);
3765       UseSRA = true;
3766     }
3767     // Calculate the multiplicative inverse, using Newton's method.
3768     APInt t;
3769     APInt Factor = Divisor;
3770     while ((t = Divisor * Factor) != 1)
3771       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3772     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3773     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3774     return true;
3775   };
3776 
3777   // Collect all magic values from the build vector.
3778   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3779     return SDValue();
3780 
3781   SDValue Shift, Factor;
3782   if (VT.isVector()) {
3783     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3784     Factor = DAG.getBuildVector(VT, dl, Factors);
3785   } else {
3786     Shift = Shifts[0];
3787     Factor = Factors[0];
3788   }
3789 
3790   SDValue Res = Op0;
3791 
3792   // Shift the value upfront if it is even, so the LSB is one.
3793   if (UseSRA) {
3794     // TODO: For UDIV use SRL instead of SRA.
3795     SDNodeFlags Flags;
3796     Flags.setExact(true);
3797     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3798     Created.push_back(Res.getNode());
3799   }
3800 
3801   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3802 }
3803 
3804 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3805                                      SelectionDAG &DAG,
3806                                      SmallVectorImpl<SDNode *> &Created) const {
3807   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3810     return SDValue(N,0); // Lower SDIV as SDIV
3811   return SDValue();
3812 }
3813 
3814 /// Given an ISD::SDIV node expressing a divide by constant,
3815 /// return a DAG expression to select that will generate the same value by
3816 /// multiplying by a magic number.
3817 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3818 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3819                                   bool IsAfterLegalization,
3820                                   SmallVectorImpl<SDNode *> &Created) const {
3821   SDLoc dl(N);
3822   EVT VT = N->getValueType(0);
3823   EVT SVT = VT.getScalarType();
3824   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3825   EVT ShSVT = ShVT.getScalarType();
3826   unsigned EltBits = VT.getScalarSizeInBits();
3827 
3828   // Check to see if we can do this.
3829   // FIXME: We should be more aggressive here.
3830   if (!isTypeLegal(VT))
3831     return SDValue();
3832 
3833   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3834   if (N->getFlags().hasExact())
3835     return BuildExactSDIV(*this, N, dl, DAG, Created);
3836 
3837   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3838 
3839   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3840     if (C->isNullValue())
3841       return false;
3842 
3843     const APInt &Divisor = C->getAPIntValue();
3844     APInt::ms magics = Divisor.magic();
3845     int NumeratorFactor = 0;
3846     int ShiftMask = -1;
3847 
3848     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3849       // If d is +1/-1, we just multiply the numerator by +1/-1.
3850       NumeratorFactor = Divisor.getSExtValue();
3851       magics.m = 0;
3852       magics.s = 0;
3853       ShiftMask = 0;
3854     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3855       // If d > 0 and m < 0, add the numerator.
3856       NumeratorFactor = 1;
3857     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3858       // If d < 0 and m > 0, subtract the numerator.
3859       NumeratorFactor = -1;
3860     }
3861 
3862     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3863     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3864     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3865     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3866     return true;
3867   };
3868 
3869   SDValue N0 = N->getOperand(0);
3870   SDValue N1 = N->getOperand(1);
3871 
3872   // Collect the shifts / magic values from each element.
3873   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3874     return SDValue();
3875 
3876   SDValue MagicFactor, Factor, Shift, ShiftMask;
3877   if (VT.isVector()) {
3878     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3879     Factor = DAG.getBuildVector(VT, dl, Factors);
3880     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3881     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3882   } else {
3883     MagicFactor = MagicFactors[0];
3884     Factor = Factors[0];
3885     Shift = Shifts[0];
3886     ShiftMask = ShiftMasks[0];
3887   }
3888 
3889   // Multiply the numerator (operand 0) by the magic value.
3890   // FIXME: We should support doing a MUL in a wider type.
3891   SDValue Q;
3892   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3893                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3894     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3895   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3896                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3897     SDValue LoHi =
3898         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3899     Q = SDValue(LoHi.getNode(), 1);
3900   } else
3901     return SDValue(); // No mulhs or equivalent.
3902   Created.push_back(Q.getNode());
3903 
3904   // (Optionally) Add/subtract the numerator using Factor.
3905   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3906   Created.push_back(Factor.getNode());
3907   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3908   Created.push_back(Q.getNode());
3909 
3910   // Shift right algebraic by shift value.
3911   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3912   Created.push_back(Q.getNode());
3913 
3914   // Extract the sign bit, mask it and add it to the quotient.
3915   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3916   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3917   Created.push_back(T.getNode());
3918   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3919   Created.push_back(T.getNode());
3920   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3921 }
3922 
3923 /// Given an ISD::UDIV node expressing a divide by constant,
3924 /// return a DAG expression to select that will generate the same value by
3925 /// multiplying by a magic number.
3926 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3927 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3928                                   bool IsAfterLegalization,
3929                                   SmallVectorImpl<SDNode *> &Created) const {
3930   SDLoc dl(N);
3931   EVT VT = N->getValueType(0);
3932   EVT SVT = VT.getScalarType();
3933   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3934   EVT ShSVT = ShVT.getScalarType();
3935   unsigned EltBits = VT.getScalarSizeInBits();
3936 
3937   // Check to see if we can do this.
3938   // FIXME: We should be more aggressive here.
3939   if (!isTypeLegal(VT))
3940     return SDValue();
3941 
3942   bool UseNPQ = false;
3943   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3944 
3945   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3946     if (C->isNullValue())
3947       return false;
3948     // FIXME: We should use a narrower constant when the upper
3949     // bits are known to be zero.
3950     APInt Divisor = C->getAPIntValue();
3951     APInt::mu magics = Divisor.magicu();
3952     unsigned PreShift = 0, PostShift = 0;
3953 
3954     // If the divisor is even, we can avoid using the expensive fixup by
3955     // shifting the divided value upfront.
3956     if (magics.a != 0 && !Divisor[0]) {
3957       PreShift = Divisor.countTrailingZeros();
3958       // Get magic number for the shifted divisor.
3959       magics = Divisor.lshr(PreShift).magicu(PreShift);
3960       assert(magics.a == 0 && "Should use cheap fixup now");
3961     }
3962 
3963     APInt Magic = magics.m;
3964 
3965     unsigned SelNPQ;
3966     if (magics.a == 0 || Divisor.isOneValue()) {
3967       assert(magics.s < Divisor.getBitWidth() &&
3968              "We shouldn't generate an undefined shift!");
3969       PostShift = magics.s;
3970       SelNPQ = false;
3971     } else {
3972       PostShift = magics.s - 1;
3973       SelNPQ = true;
3974     }
3975 
3976     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3977     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3978     NPQFactors.push_back(
3979         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3980                                : APInt::getNullValue(EltBits),
3981                         dl, SVT));
3982     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3983     UseNPQ |= SelNPQ;
3984     return true;
3985   };
3986 
3987   SDValue N0 = N->getOperand(0);
3988   SDValue N1 = N->getOperand(1);
3989 
3990   // Collect the shifts/magic values from each element.
3991   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3992     return SDValue();
3993 
3994   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3995   if (VT.isVector()) {
3996     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3997     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3998     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3999     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4000   } else {
4001     PreShift = PreShifts[0];
4002     MagicFactor = MagicFactors[0];
4003     PostShift = PostShifts[0];
4004   }
4005 
4006   SDValue Q = N0;
4007   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4008   Created.push_back(Q.getNode());
4009 
4010   // FIXME: We should support doing a MUL in a wider type.
4011   auto GetMULHU = [&](SDValue X, SDValue Y) {
4012     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4013                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4014       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4015     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4016                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4017       SDValue LoHi =
4018           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4019       return SDValue(LoHi.getNode(), 1);
4020     }
4021     return SDValue(); // No mulhu or equivalent
4022   };
4023 
4024   // Multiply the numerator (operand 0) by the magic value.
4025   Q = GetMULHU(Q, MagicFactor);
4026   if (!Q)
4027     return SDValue();
4028 
4029   Created.push_back(Q.getNode());
4030 
4031   if (UseNPQ) {
4032     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4033     Created.push_back(NPQ.getNode());
4034 
4035     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4036     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4037     if (VT.isVector())
4038       NPQ = GetMULHU(NPQ, NPQFactor);
4039     else
4040       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4041 
4042     Created.push_back(NPQ.getNode());
4043 
4044     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4045     Created.push_back(Q.getNode());
4046   }
4047 
4048   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4049   Created.push_back(Q.getNode());
4050 
4051   SDValue One = DAG.getConstant(1, dl, VT);
4052   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4053   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4054 }
4055 
4056 bool TargetLowering::
4057 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4058   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4059     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4060                                 "be a constant integer");
4061     return true;
4062   }
4063 
4064   return false;
4065 }
4066 
4067 //===----------------------------------------------------------------------===//
4068 // Legalization Utilities
4069 //===----------------------------------------------------------------------===//
4070 
4071 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4072                                     SDValue LHS, SDValue RHS,
4073                                     SmallVectorImpl<SDValue> &Result,
4074                                     EVT HiLoVT, SelectionDAG &DAG,
4075                                     MulExpansionKind Kind, SDValue LL,
4076                                     SDValue LH, SDValue RL, SDValue RH) const {
4077   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4078          Opcode == ISD::SMUL_LOHI);
4079 
4080   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4081                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4082   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4083                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4084   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4085                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4086   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4087                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4088 
4089   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4090     return false;
4091 
4092   unsigned OuterBitSize = VT.getScalarSizeInBits();
4093   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4094   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4095   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4096 
4097   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4098   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4099          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4100 
4101   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4102   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4103                           bool Signed) -> bool {
4104     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4105       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4106       Hi = SDValue(Lo.getNode(), 1);
4107       return true;
4108     }
4109     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4110       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4111       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4112       return true;
4113     }
4114     return false;
4115   };
4116 
4117   SDValue Lo, Hi;
4118 
4119   if (!LL.getNode() && !RL.getNode() &&
4120       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4121     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4122     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4123   }
4124 
4125   if (!LL.getNode())
4126     return false;
4127 
4128   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4129   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4130       DAG.MaskedValueIsZero(RHS, HighMask)) {
4131     // The inputs are both zero-extended.
4132     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4133       Result.push_back(Lo);
4134       Result.push_back(Hi);
4135       if (Opcode != ISD::MUL) {
4136         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4137         Result.push_back(Zero);
4138         Result.push_back(Zero);
4139       }
4140       return true;
4141     }
4142   }
4143 
4144   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4145       RHSSB > InnerBitSize) {
4146     // The input values are both sign-extended.
4147     // TODO non-MUL case?
4148     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4149       Result.push_back(Lo);
4150       Result.push_back(Hi);
4151       return true;
4152     }
4153   }
4154 
4155   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4156   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4157   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4158     // FIXME getShiftAmountTy does not always return a sensible result when VT
4159     // is an illegal type, and so the type may be too small to fit the shift
4160     // amount. Override it with i32. The shift will have to be legalized.
4161     ShiftAmountTy = MVT::i32;
4162   }
4163   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4164 
4165   if (!LH.getNode() && !RH.getNode() &&
4166       isOperationLegalOrCustom(ISD::SRL, VT) &&
4167       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4168     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4169     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4170     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4171     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4172   }
4173 
4174   if (!LH.getNode())
4175     return false;
4176 
4177   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4178     return false;
4179 
4180   Result.push_back(Lo);
4181 
4182   if (Opcode == ISD::MUL) {
4183     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4184     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4185     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4186     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4187     Result.push_back(Hi);
4188     return true;
4189   }
4190 
4191   // Compute the full width result.
4192   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4193     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4194     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4195     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4196     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4197   };
4198 
4199   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4200   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4201     return false;
4202 
4203   // This is effectively the add part of a multiply-add of half-sized operands,
4204   // so it cannot overflow.
4205   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4206 
4207   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4208     return false;
4209 
4210   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4211   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4212 
4213   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4214                   isOperationLegalOrCustom(ISD::ADDE, VT));
4215   if (UseGlue)
4216     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4217                        Merge(Lo, Hi));
4218   else
4219     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4220                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4221 
4222   SDValue Carry = Next.getValue(1);
4223   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4224   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4225 
4226   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4227     return false;
4228 
4229   if (UseGlue)
4230     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4231                      Carry);
4232   else
4233     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4234                      Zero, Carry);
4235 
4236   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4237 
4238   if (Opcode == ISD::SMUL_LOHI) {
4239     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4240                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4241     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4242 
4243     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4244                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4245     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4246   }
4247 
4248   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4249   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4250   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4251   return true;
4252 }
4253 
4254 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4255                                SelectionDAG &DAG, MulExpansionKind Kind,
4256                                SDValue LL, SDValue LH, SDValue RL,
4257                                SDValue RH) const {
4258   SmallVector<SDValue, 2> Result;
4259   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4260                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4261                            DAG, Kind, LL, LH, RL, RH);
4262   if (Ok) {
4263     assert(Result.size() == 2);
4264     Lo = Result[0];
4265     Hi = Result[1];
4266   }
4267   return Ok;
4268 }
4269 
4270 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4271                                        SelectionDAG &DAG) const {
4272   EVT VT = Node->getValueType(0);
4273 
4274   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4275                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4276                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4277                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4278     return false;
4279 
4280   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4281   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4282   SDValue X = Node->getOperand(0);
4283   SDValue Y = Node->getOperand(1);
4284   SDValue Z = Node->getOperand(2);
4285 
4286   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4287   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4288   SDLoc DL(SDValue(Node, 0));
4289 
4290   EVT ShVT = Z.getValueType();
4291   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4292   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4293 
4294   SDValue ShAmt;
4295   if (isPowerOf2_32(EltSizeInBits)) {
4296     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4297     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4298   } else {
4299     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4300   }
4301 
4302   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4303   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4304   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4305   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4306 
4307   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4308   // and that is undefined. We must compare and select to avoid UB.
4309   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4310 
4311   // For fshl, 0-shift returns the 1st arg (X).
4312   // For fshr, 0-shift returns the 2nd arg (Y).
4313   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4314   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4315   return true;
4316 }
4317 
4318 // TODO: Merge with expandFunnelShift.
4319 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4320                                SelectionDAG &DAG) const {
4321   EVT VT = Node->getValueType(0);
4322   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4323   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4324   SDValue Op0 = Node->getOperand(0);
4325   SDValue Op1 = Node->getOperand(1);
4326   SDLoc DL(SDValue(Node, 0));
4327 
4328   EVT ShVT = Op1.getValueType();
4329   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4330 
4331   // If a rotate in the other direction is legal, use it.
4332   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4333   if (isOperationLegal(RevRot, VT)) {
4334     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4335     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4336     return true;
4337   }
4338 
4339   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4340                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4341                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4342                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4343                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4344     return false;
4345 
4346   // Otherwise,
4347   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4348   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4349   //
4350   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4351          "Expecting the type bitwidth to be a power of 2");
4352   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4353   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4354   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4355   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4356   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4357   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4358   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4359                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4360   return true;
4361 }
4362 
4363 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4364                                SelectionDAG &DAG) const {
4365   SDValue Src = Node->getOperand(0);
4366   EVT SrcVT = Src.getValueType();
4367   EVT DstVT = Node->getValueType(0);
4368   SDLoc dl(SDValue(Node, 0));
4369 
4370   // FIXME: Only f32 to i64 conversions are supported.
4371   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4372     return false;
4373 
4374   // Expand f32 -> i64 conversion
4375   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4376   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
4377   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4378   EVT IntVT = SrcVT.changeTypeToInteger();
4379   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4380 
4381   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4382   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4383   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4384   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4385   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4386   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4387 
4388   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4389 
4390   SDValue ExponentBits = DAG.getNode(
4391       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4392       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4393   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4394 
4395   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4396                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4397                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4398   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4399 
4400   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4401                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4402                           DAG.getConstant(0x00800000, dl, IntVT));
4403 
4404   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4405 
4406   R = DAG.getSelectCC(
4407       dl, Exponent, ExponentLoBit,
4408       DAG.getNode(ISD::SHL, dl, DstVT, R,
4409                   DAG.getZExtOrTrunc(
4410                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4411                       dl, IntShVT)),
4412       DAG.getNode(ISD::SRL, dl, DstVT, R,
4413                   DAG.getZExtOrTrunc(
4414                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4415                       dl, IntShVT)),
4416       ISD::SETGT);
4417 
4418   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4419                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4420 
4421   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4422                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4423   return true;
4424 }
4425 
4426 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4427                                       SelectionDAG &DAG) const {
4428   SDLoc dl(SDValue(Node, 0));
4429   SDValue Src = Node->getOperand(0);
4430 
4431   EVT SrcVT = Src.getValueType();
4432   EVT DstVT = Node->getValueType(0);
4433   EVT SetCCVT =
4434       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4435 
4436   // Only expand vector types if we have the appropriate vector bit operations.
4437   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4438                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4439     return false;
4440 
4441   // If the maximum float value is smaller then the signed integer range,
4442   // the destination signmask can't be represented by the float, so we can
4443   // just use FP_TO_SINT directly.
4444   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4445   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4446   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4447   if (APFloat::opOverflow &
4448       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4449     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4450     return true;
4451   }
4452 
4453   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4454   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4455 
4456   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4457   if (Strict) {
4458     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4459     // signmask then offset (the result of which should be fully representable).
4460     // Sel = Src < 0x8000000000000000
4461     // Val = select Sel, Src, Src - 0x8000000000000000
4462     // Ofs = select Sel, 0, 0x8000000000000000
4463     // Result = fp_to_sint(Val) ^ Ofs
4464 
4465     // TODO: Should any fast-math-flags be set for the FSUB?
4466     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4467                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4468     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4469                                 DAG.getConstant(SignMask, dl, DstVT));
4470     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4471                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4472   } else {
4473     // Expand based on maximum range of FP_TO_SINT:
4474     // True = fp_to_sint(Src)
4475     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4476     // Result = select (Src < 0x8000000000000000), True, False
4477 
4478     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4479     // TODO: Should any fast-math-flags be set for the FSUB?
4480     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4481                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4482     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4483                         DAG.getConstant(SignMask, dl, DstVT));
4484     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4485   }
4486   return true;
4487 }
4488 
4489 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4490                                       SelectionDAG &DAG) const {
4491   SDValue Src = Node->getOperand(0);
4492   EVT SrcVT = Src.getValueType();
4493   EVT DstVT = Node->getValueType(0);
4494 
4495   if (SrcVT.getScalarType() != MVT::i64)
4496     return false;
4497 
4498   SDLoc dl(SDValue(Node, 0));
4499   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4500 
4501   if (DstVT.getScalarType() == MVT::f32) {
4502     // Only expand vector types if we have the appropriate vector bit
4503     // operations.
4504     if (SrcVT.isVector() &&
4505         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4506          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4507          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4508          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4509          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4510       return false;
4511 
4512     // For unsigned conversions, convert them to signed conversions using the
4513     // algorithm from the x86_64 __floatundidf in compiler_rt.
4514     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4515 
4516     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4517     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4518     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4519     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4520     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4521 
4522     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4523     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4524 
4525     // TODO: This really should be implemented using a branch rather than a
4526     // select.  We happen to get lucky and machinesink does the right
4527     // thing most of the time.  This would be a good candidate for a
4528     // pseudo-op, or, even better, for whole-function isel.
4529     EVT SetCCVT =
4530         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4531 
4532     SDValue SignBitTest = DAG.getSetCC(
4533         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4534     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4535     return true;
4536   }
4537 
4538   if (DstVT.getScalarType() == MVT::f64) {
4539     // Only expand vector types if we have the appropriate vector bit
4540     // operations.
4541     if (SrcVT.isVector() &&
4542         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4543          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4544          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4545          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4546          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4547       return false;
4548 
4549     // Implementation of unsigned i64 to f64 following the algorithm in
4550     // __floatundidf in compiler_rt. This implementation has the advantage
4551     // of performing rounding correctly, both in the default rounding mode
4552     // and in all alternate rounding modes.
4553     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4554     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4555         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4556     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4557     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4558     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4559 
4560     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4561     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4562     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4563     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4564     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4565     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4566     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4567     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4568     return true;
4569   }
4570 
4571   return false;
4572 }
4573 
4574 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4575                                               SelectionDAG &DAG) const {
4576   SDLoc dl(Node);
4577   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4578     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4579   EVT VT = Node->getValueType(0);
4580   if (isOperationLegalOrCustom(NewOp, VT)) {
4581     SDValue Quiet0 = Node->getOperand(0);
4582     SDValue Quiet1 = Node->getOperand(1);
4583 
4584     if (!Node->getFlags().hasNoNaNs()) {
4585       // Insert canonicalizes if it's possible we need to quiet to get correct
4586       // sNaN behavior.
4587       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4588         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4589                              Node->getFlags());
4590       }
4591       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4592         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4593                              Node->getFlags());
4594       }
4595     }
4596 
4597     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4598   }
4599 
4600   return SDValue();
4601 }
4602 
4603 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4604                                  SelectionDAG &DAG) const {
4605   SDLoc dl(Node);
4606   EVT VT = Node->getValueType(0);
4607   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4608   SDValue Op = Node->getOperand(0);
4609   unsigned Len = VT.getScalarSizeInBits();
4610   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4611 
4612   // TODO: Add support for irregular type lengths.
4613   if (!(Len <= 128 && Len % 8 == 0))
4614     return false;
4615 
4616   // Only expand vector types if we have the appropriate vector bit operations.
4617   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4618                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4619                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4620                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4621                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4622     return false;
4623 
4624   // This is the "best" algorithm from
4625   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4626   SDValue Mask55 =
4627       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4628   SDValue Mask33 =
4629       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4630   SDValue Mask0F =
4631       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4632   SDValue Mask01 =
4633       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4634 
4635   // v = v - ((v >> 1) & 0x55555555...)
4636   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4637                    DAG.getNode(ISD::AND, dl, VT,
4638                                DAG.getNode(ISD::SRL, dl, VT, Op,
4639                                            DAG.getConstant(1, dl, ShVT)),
4640                                Mask55));
4641   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4642   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4643                    DAG.getNode(ISD::AND, dl, VT,
4644                                DAG.getNode(ISD::SRL, dl, VT, Op,
4645                                            DAG.getConstant(2, dl, ShVT)),
4646                                Mask33));
4647   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4648   Op = DAG.getNode(ISD::AND, dl, VT,
4649                    DAG.getNode(ISD::ADD, dl, VT, Op,
4650                                DAG.getNode(ISD::SRL, dl, VT, Op,
4651                                            DAG.getConstant(4, dl, ShVT))),
4652                    Mask0F);
4653   // v = (v * 0x01010101...) >> (Len - 8)
4654   if (Len > 8)
4655     Op =
4656         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4657                     DAG.getConstant(Len - 8, dl, ShVT));
4658 
4659   Result = Op;
4660   return true;
4661 }
4662 
4663 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4664                                 SelectionDAG &DAG) const {
4665   SDLoc dl(Node);
4666   EVT VT = Node->getValueType(0);
4667   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4668   SDValue Op = Node->getOperand(0);
4669   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4670 
4671   // If the non-ZERO_UNDEF version is supported we can use that instead.
4672   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4673       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4674     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4675     return true;
4676   }
4677 
4678   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4679   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4680     EVT SetCCVT =
4681         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4682     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4683     SDValue Zero = DAG.getConstant(0, dl, VT);
4684     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4685     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4686                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4687     return true;
4688   }
4689 
4690   // Only expand vector types if we have the appropriate vector bit operations.
4691   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4692                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4693                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4694                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4695     return false;
4696 
4697   // for now, we do this:
4698   // x = x | (x >> 1);
4699   // x = x | (x >> 2);
4700   // ...
4701   // x = x | (x >>16);
4702   // x = x | (x >>32); // for 64-bit input
4703   // return popcount(~x);
4704   //
4705   // Ref: "Hacker's Delight" by Henry Warren
4706   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4707     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4708     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4709                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4710   }
4711   Op = DAG.getNOT(dl, Op, VT);
4712   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4713   return true;
4714 }
4715 
4716 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4717                                 SelectionDAG &DAG) const {
4718   SDLoc dl(Node);
4719   EVT VT = Node->getValueType(0);
4720   SDValue Op = Node->getOperand(0);
4721   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4722 
4723   // If the non-ZERO_UNDEF version is supported we can use that instead.
4724   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4725       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4726     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4727     return true;
4728   }
4729 
4730   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4731   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4732     EVT SetCCVT =
4733         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4734     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4735     SDValue Zero = DAG.getConstant(0, dl, VT);
4736     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4737     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4738                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4739     return true;
4740   }
4741 
4742   // Only expand vector types if we have the appropriate vector bit operations.
4743   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4744                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4745                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4746                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4747                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4748                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4749     return false;
4750 
4751   // for now, we use: { return popcount(~x & (x - 1)); }
4752   // unless the target has ctlz but not ctpop, in which case we use:
4753   // { return 32 - nlz(~x & (x-1)); }
4754   // Ref: "Hacker's Delight" by Henry Warren
4755   SDValue Tmp = DAG.getNode(
4756       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4757       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4758 
4759   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4760   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4761     Result =
4762         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4763                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4764     return true;
4765   }
4766 
4767   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4768   return true;
4769 }
4770 
4771 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4772                                             SelectionDAG &DAG) const {
4773   SDLoc SL(LD);
4774   SDValue Chain = LD->getChain();
4775   SDValue BasePTR = LD->getBasePtr();
4776   EVT SrcVT = LD->getMemoryVT();
4777   ISD::LoadExtType ExtType = LD->getExtensionType();
4778 
4779   unsigned NumElem = SrcVT.getVectorNumElements();
4780 
4781   EVT SrcEltVT = SrcVT.getScalarType();
4782   EVT DstEltVT = LD->getValueType(0).getScalarType();
4783 
4784   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4785   assert(SrcEltVT.isByteSized());
4786 
4787   SmallVector<SDValue, 8> Vals;
4788   SmallVector<SDValue, 8> LoadChains;
4789 
4790   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4791     SDValue ScalarLoad =
4792         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4793                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4794                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4795                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4796 
4797     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4798 
4799     Vals.push_back(ScalarLoad.getValue(0));
4800     LoadChains.push_back(ScalarLoad.getValue(1));
4801   }
4802 
4803   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4804   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4805 
4806   return DAG.getMergeValues({ Value, NewChain }, SL);
4807 }
4808 
4809 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4810                                              SelectionDAG &DAG) const {
4811   SDLoc SL(ST);
4812 
4813   SDValue Chain = ST->getChain();
4814   SDValue BasePtr = ST->getBasePtr();
4815   SDValue Value = ST->getValue();
4816   EVT StVT = ST->getMemoryVT();
4817 
4818   // The type of the data we want to save
4819   EVT RegVT = Value.getValueType();
4820   EVT RegSclVT = RegVT.getScalarType();
4821 
4822   // The type of data as saved in memory.
4823   EVT MemSclVT = StVT.getScalarType();
4824 
4825   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4826   unsigned NumElem = StVT.getVectorNumElements();
4827 
4828   // A vector must always be stored in memory as-is, i.e. without any padding
4829   // between the elements, since various code depend on it, e.g. in the
4830   // handling of a bitcast of a vector type to int, which may be done with a
4831   // vector store followed by an integer load. A vector that does not have
4832   // elements that are byte-sized must therefore be stored as an integer
4833   // built out of the extracted vector elements.
4834   if (!MemSclVT.isByteSized()) {
4835     unsigned NumBits = StVT.getSizeInBits();
4836     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4837 
4838     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4839 
4840     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4841       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4842                                 DAG.getConstant(Idx, SL, IdxVT));
4843       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4844       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4845       unsigned ShiftIntoIdx =
4846           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4847       SDValue ShiftAmount =
4848           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4849       SDValue ShiftedElt =
4850           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4851       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4852     }
4853 
4854     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4855                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4856                         ST->getAAInfo());
4857   }
4858 
4859   // Store Stride in bytes
4860   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4861   assert (Stride && "Zero stride!");
4862   // Extract each of the elements from the original vector and save them into
4863   // memory individually.
4864   SmallVector<SDValue, 8> Stores;
4865   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4866     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4867                               DAG.getConstant(Idx, SL, IdxVT));
4868 
4869     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4870 
4871     // This scalar TruncStore may be illegal, but we legalize it later.
4872     SDValue Store = DAG.getTruncStore(
4873         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4874         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4875         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4876 
4877     Stores.push_back(Store);
4878   }
4879 
4880   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4881 }
4882 
4883 std::pair<SDValue, SDValue>
4884 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4885   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4886          "unaligned indexed loads not implemented!");
4887   SDValue Chain = LD->getChain();
4888   SDValue Ptr = LD->getBasePtr();
4889   EVT VT = LD->getValueType(0);
4890   EVT LoadedVT = LD->getMemoryVT();
4891   SDLoc dl(LD);
4892   auto &MF = DAG.getMachineFunction();
4893 
4894   if (VT.isFloatingPoint() || VT.isVector()) {
4895     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4896     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4897       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4898           LoadedVT.isVector()) {
4899         // Scalarize the load and let the individual components be handled.
4900         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4901         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4902           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4903         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4904       }
4905 
4906       // Expand to a (misaligned) integer load of the same size,
4907       // then bitconvert to floating point or vector.
4908       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4909                                     LD->getMemOperand());
4910       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4911       if (LoadedVT != VT)
4912         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4913                              ISD::ANY_EXTEND, dl, VT, Result);
4914 
4915       return std::make_pair(Result, newLoad.getValue(1));
4916     }
4917 
4918     // Copy the value to a (aligned) stack slot using (unaligned) integer
4919     // loads and stores, then do a (aligned) load from the stack slot.
4920     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4921     unsigned LoadedBytes = LoadedVT.getStoreSize();
4922     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4923     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4924 
4925     // Make sure the stack slot is also aligned for the register type.
4926     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4927     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4928     SmallVector<SDValue, 8> Stores;
4929     SDValue StackPtr = StackBase;
4930     unsigned Offset = 0;
4931 
4932     EVT PtrVT = Ptr.getValueType();
4933     EVT StackPtrVT = StackPtr.getValueType();
4934 
4935     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4936     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4937 
4938     // Do all but one copies using the full register width.
4939     for (unsigned i = 1; i < NumRegs; i++) {
4940       // Load one integer register's worth from the original location.
4941       SDValue Load = DAG.getLoad(
4942           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4943           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4944           LD->getAAInfo());
4945       // Follow the load with a store to the stack slot.  Remember the store.
4946       Stores.push_back(DAG.getStore(
4947           Load.getValue(1), dl, Load, StackPtr,
4948           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4949       // Increment the pointers.
4950       Offset += RegBytes;
4951 
4952       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4953       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4954     }
4955 
4956     // The last copy may be partial.  Do an extending load.
4957     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4958                                   8 * (LoadedBytes - Offset));
4959     SDValue Load =
4960         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4961                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4962                        MinAlign(LD->getAlignment(), Offset),
4963                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4964     // Follow the load with a store to the stack slot.  Remember the store.
4965     // On big-endian machines this requires a truncating store to ensure
4966     // that the bits end up in the right place.
4967     Stores.push_back(DAG.getTruncStore(
4968         Load.getValue(1), dl, Load, StackPtr,
4969         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4970 
4971     // The order of the stores doesn't matter - say it with a TokenFactor.
4972     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4973 
4974     // Finally, perform the original load only redirected to the stack slot.
4975     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4976                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4977                           LoadedVT);
4978 
4979     // Callers expect a MERGE_VALUES node.
4980     return std::make_pair(Load, TF);
4981   }
4982 
4983   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4984          "Unaligned load of unsupported type.");
4985 
4986   // Compute the new VT that is half the size of the old one.  This is an
4987   // integer MVT.
4988   unsigned NumBits = LoadedVT.getSizeInBits();
4989   EVT NewLoadedVT;
4990   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4991   NumBits >>= 1;
4992 
4993   unsigned Alignment = LD->getAlignment();
4994   unsigned IncrementSize = NumBits / 8;
4995   ISD::LoadExtType HiExtType = LD->getExtensionType();
4996 
4997   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4998   if (HiExtType == ISD::NON_EXTLOAD)
4999     HiExtType = ISD::ZEXTLOAD;
5000 
5001   // Load the value in two parts
5002   SDValue Lo, Hi;
5003   if (DAG.getDataLayout().isLittleEndian()) {
5004     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5005                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5006                         LD->getAAInfo());
5007 
5008     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5009     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5010                         LD->getPointerInfo().getWithOffset(IncrementSize),
5011                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5012                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5013   } else {
5014     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5015                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5016                         LD->getAAInfo());
5017 
5018     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5019     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5020                         LD->getPointerInfo().getWithOffset(IncrementSize),
5021                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5022                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5023   }
5024 
5025   // aggregate the two parts
5026   SDValue ShiftAmount =
5027       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5028                                                     DAG.getDataLayout()));
5029   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5030   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5031 
5032   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5033                              Hi.getValue(1));
5034 
5035   return std::make_pair(Result, TF);
5036 }
5037 
5038 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5039                                              SelectionDAG &DAG) const {
5040   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5041          "unaligned indexed stores not implemented!");
5042   SDValue Chain = ST->getChain();
5043   SDValue Ptr = ST->getBasePtr();
5044   SDValue Val = ST->getValue();
5045   EVT VT = Val.getValueType();
5046   int Alignment = ST->getAlignment();
5047   auto &MF = DAG.getMachineFunction();
5048   EVT MemVT = ST->getMemoryVT();
5049 
5050   SDLoc dl(ST);
5051   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5052     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5053     if (isTypeLegal(intVT)) {
5054       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5055           MemVT.isVector()) {
5056         // Scalarize the store and let the individual components be handled.
5057         SDValue Result = scalarizeVectorStore(ST, DAG);
5058 
5059         return Result;
5060       }
5061       // Expand to a bitconvert of the value to the integer type of the
5062       // same size, then a (misaligned) int store.
5063       // FIXME: Does not handle truncating floating point stores!
5064       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5065       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5066                             Alignment, ST->getMemOperand()->getFlags());
5067       return Result;
5068     }
5069     // Do a (aligned) store to a stack slot, then copy from the stack slot
5070     // to the final destination using (unaligned) integer loads and stores.
5071     EVT StoredVT = ST->getMemoryVT();
5072     MVT RegVT =
5073       getRegisterType(*DAG.getContext(),
5074                       EVT::getIntegerVT(*DAG.getContext(),
5075                                         StoredVT.getSizeInBits()));
5076     EVT PtrVT = Ptr.getValueType();
5077     unsigned StoredBytes = StoredVT.getStoreSize();
5078     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5079     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5080 
5081     // Make sure the stack slot is also aligned for the register type.
5082     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5083     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5084 
5085     // Perform the original store, only redirected to the stack slot.
5086     SDValue Store = DAG.getTruncStore(
5087         Chain, dl, Val, StackPtr,
5088         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5089 
5090     EVT StackPtrVT = StackPtr.getValueType();
5091 
5092     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5093     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5094     SmallVector<SDValue, 8> Stores;
5095     unsigned Offset = 0;
5096 
5097     // Do all but one copies using the full register width.
5098     for (unsigned i = 1; i < NumRegs; i++) {
5099       // Load one integer register's worth from the stack slot.
5100       SDValue Load = DAG.getLoad(
5101           RegVT, dl, Store, StackPtr,
5102           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5103       // Store it to the final location.  Remember the store.
5104       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5105                                     ST->getPointerInfo().getWithOffset(Offset),
5106                                     MinAlign(ST->getAlignment(), Offset),
5107                                     ST->getMemOperand()->getFlags()));
5108       // Increment the pointers.
5109       Offset += RegBytes;
5110       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5111       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5112     }
5113 
5114     // The last store may be partial.  Do a truncating store.  On big-endian
5115     // machines this requires an extending load from the stack slot to ensure
5116     // that the bits are in the right place.
5117     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5118                                   8 * (StoredBytes - Offset));
5119 
5120     // Load from the stack slot.
5121     SDValue Load = DAG.getExtLoad(
5122         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5123         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5124 
5125     Stores.push_back(
5126         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5127                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5128                           MinAlign(ST->getAlignment(), Offset),
5129                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5130     // The order of the stores doesn't matter - say it with a TokenFactor.
5131     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5132     return Result;
5133   }
5134 
5135   assert(ST->getMemoryVT().isInteger() &&
5136          !ST->getMemoryVT().isVector() &&
5137          "Unaligned store of unknown type.");
5138   // Get the half-size VT
5139   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5140   int NumBits = NewStoredVT.getSizeInBits();
5141   int IncrementSize = NumBits / 8;
5142 
5143   // Divide the stored value in two parts.
5144   SDValue ShiftAmount =
5145       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5146                                                     DAG.getDataLayout()));
5147   SDValue Lo = Val;
5148   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5149 
5150   // Store the two parts
5151   SDValue Store1, Store2;
5152   Store1 = DAG.getTruncStore(Chain, dl,
5153                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5154                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5155                              ST->getMemOperand()->getFlags());
5156 
5157   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5158   Alignment = MinAlign(Alignment, IncrementSize);
5159   Store2 = DAG.getTruncStore(
5160       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5161       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5162       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5163 
5164   SDValue Result =
5165     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5166   return Result;
5167 }
5168 
5169 SDValue
5170 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5171                                        const SDLoc &DL, EVT DataVT,
5172                                        SelectionDAG &DAG,
5173                                        bool IsCompressedMemory) const {
5174   SDValue Increment;
5175   EVT AddrVT = Addr.getValueType();
5176   EVT MaskVT = Mask.getValueType();
5177   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5178          "Incompatible types of Data and Mask");
5179   if (IsCompressedMemory) {
5180     // Incrementing the pointer according to number of '1's in the mask.
5181     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5182     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5183     if (MaskIntVT.getSizeInBits() < 32) {
5184       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5185       MaskIntVT = MVT::i32;
5186     }
5187 
5188     // Count '1's with POPCNT.
5189     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5190     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5191     // Scale is an element size in bytes.
5192     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5193                                     AddrVT);
5194     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5195   } else
5196     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5197 
5198   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5199 }
5200 
5201 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5202                                        SDValue Idx,
5203                                        EVT VecVT,
5204                                        const SDLoc &dl) {
5205   if (isa<ConstantSDNode>(Idx))
5206     return Idx;
5207 
5208   EVT IdxVT = Idx.getValueType();
5209   unsigned NElts = VecVT.getVectorNumElements();
5210   if (isPowerOf2_32(NElts)) {
5211     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5212                                      Log2_32(NElts));
5213     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5214                        DAG.getConstant(Imm, dl, IdxVT));
5215   }
5216 
5217   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5218                      DAG.getConstant(NElts - 1, dl, IdxVT));
5219 }
5220 
5221 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5222                                                 SDValue VecPtr, EVT VecVT,
5223                                                 SDValue Index) const {
5224   SDLoc dl(Index);
5225   // Make sure the index type is big enough to compute in.
5226   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5227 
5228   EVT EltVT = VecVT.getVectorElementType();
5229 
5230   // Calculate the element offset and add it to the pointer.
5231   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5232   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5233          "Converting bits to bytes lost precision");
5234 
5235   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5236 
5237   EVT IdxVT = Index.getValueType();
5238 
5239   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5240                       DAG.getConstant(EltSize, dl, IdxVT));
5241   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5242 }
5243 
5244 //===----------------------------------------------------------------------===//
5245 // Implementation of Emulated TLS Model
5246 //===----------------------------------------------------------------------===//
5247 
5248 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5249                                                 SelectionDAG &DAG) const {
5250   // Access to address of TLS varialbe xyz is lowered to a function call:
5251   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5252   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5253   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5254   SDLoc dl(GA);
5255 
5256   ArgListTy Args;
5257   ArgListEntry Entry;
5258   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5259   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5260   StringRef EmuTlsVarName(NameString);
5261   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5262   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5263   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5264   Entry.Ty = VoidPtrType;
5265   Args.push_back(Entry);
5266 
5267   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5268 
5269   TargetLowering::CallLoweringInfo CLI(DAG);
5270   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5271   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5272   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5273 
5274   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5275   // At last for X86 targets, maybe good for other targets too?
5276   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5277   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5278   MFI.setHasCalls(true);
5279 
5280   assert((GA->getOffset() == 0) &&
5281          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5282   return CallResult.first;
5283 }
5284 
5285 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5286                                                 SelectionDAG &DAG) const {
5287   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5288   if (!isCtlzFast())
5289     return SDValue();
5290   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5291   SDLoc dl(Op);
5292   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5293     if (C->isNullValue() && CC == ISD::SETEQ) {
5294       EVT VT = Op.getOperand(0).getValueType();
5295       SDValue Zext = Op.getOperand(0);
5296       if (VT.bitsLT(MVT::i32)) {
5297         VT = MVT::i32;
5298         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5299       }
5300       unsigned Log2b = Log2_32(VT.getSizeInBits());
5301       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5302       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5303                                 DAG.getConstant(Log2b, dl, MVT::i32));
5304       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5305     }
5306   }
5307   return SDValue();
5308 }
5309 
5310 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction(
5311     SDNode *Node, SelectionDAG &DAG) const {
5312   unsigned Opcode = Node->getOpcode();
5313   unsigned OverflowOp;
5314   switch (Opcode) {
5315   case ISD::SADDSAT:
5316     OverflowOp = ISD::SADDO;
5317     break;
5318   case ISD::UADDSAT:
5319     OverflowOp = ISD::UADDO;
5320     break;
5321   case ISD::SSUBSAT:
5322     OverflowOp = ISD::SSUBO;
5323     break;
5324   case ISD::USUBSAT:
5325     OverflowOp = ISD::USUBO;
5326     break;
5327   default:
5328     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5329                      "addition or subtraction node.");
5330   }
5331   assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands.");
5332 
5333   SDLoc dl(Node);
5334   SDValue LHS = Node->getOperand(0);
5335   SDValue RHS = Node->getOperand(1);
5336   assert(LHS.getValueType().isScalarInteger() &&
5337          "Expected operands to be integers. Vector of int arguments should "
5338          "already be unrolled.");
5339   assert(RHS.getValueType().isScalarInteger() &&
5340          "Expected operands to be integers. Vector of int arguments should "
5341          "already be unrolled.");
5342   assert(LHS.getValueType() == RHS.getValueType() &&
5343          "Expected both operands to be the same type");
5344 
5345   unsigned BitWidth = LHS.getValueSizeInBits();
5346   EVT ResultType = LHS.getValueType();
5347   EVT BoolVT =
5348       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5349   SDValue Result =
5350       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5351   SDValue SumDiff = Result.getValue(0);
5352   SDValue Overflow = Result.getValue(1);
5353   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5354 
5355   if (Opcode == ISD::UADDSAT) {
5356     // Just need to check overflow for SatMax.
5357     APInt MaxVal = APInt::getMaxValue(BitWidth);
5358     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5359     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5360   } else if (Opcode == ISD::USUBSAT) {
5361     // Just need to check overflow for SatMin.
5362     APInt MinVal = APInt::getMinValue(BitWidth);
5363     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5364     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5365   } else {
5366     // SatMax -> Overflow && SumDiff < 0
5367     // SatMin -> Overflow && SumDiff >= 0
5368     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5369     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5370     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5371     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5372     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5373     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5374     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5375   }
5376 }
5377 
5378 SDValue
5379 TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node,
5380                                                     SelectionDAG &DAG) const {
5381   assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
5382   assert(Node->getNumOperands() == 3 &&
5383          "Expected signed fixed point multiplication to have 3 operands.");
5384 
5385   SDLoc dl(Node);
5386   SDValue LHS = Node->getOperand(0);
5387   SDValue RHS = Node->getOperand(1);
5388   assert(LHS.getValueType().isScalarInteger() &&
5389          "Expected operands to be integers. Vector of int arguments should "
5390          "already be unrolled.");
5391   assert(RHS.getValueType().isScalarInteger() &&
5392          "Expected operands to be integers. Vector of int arguments should "
5393          "already be unrolled.");
5394   assert(LHS.getValueType() == RHS.getValueType() &&
5395          "Expected both operands to be the same type");
5396 
5397   unsigned Scale = Node->getConstantOperandVal(2);
5398   EVT VT = LHS.getValueType();
5399   assert(Scale < VT.getScalarSizeInBits() &&
5400          "Expected scale to be less than the number of bits.");
5401 
5402   if (!Scale)
5403     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5404 
5405   // Get the upper and lower bits of the result.
5406   SDValue Lo, Hi;
5407   if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5408     SDValue Result =
5409         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
5410     Lo = Result.getValue(0);
5411     Hi = Result.getValue(1);
5412   } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
5413     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5414     Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
5415   } else {
5416     report_fatal_error("Unable to expand signed fixed point multiplication.");
5417   }
5418 
5419   // The result will need to be shifted right by the scale since both operands
5420   // are scaled. The result is given to us in 2 halves, so we only want part of
5421   // both in the result.
5422   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5423   Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
5424   Hi = DAG.getNode(
5425       ISD::SHL, dl, VT, Hi,
5426       DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
5427   return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5428 }
5429