1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
198              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
199         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
200     assert(VT.isInteger());
201 
202     // Find the largest legal integer type.
203     MVT LVT = MVT::i64;
204     while (!isTypeLegal(LVT))
205       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
206     assert(LVT.isInteger());
207 
208     // If the type we've chosen is larger than the largest legal integer type
209     // then use that instead.
210     if (VT.bitsGT(LVT))
211       VT = LVT;
212   }
213 
214   unsigned NumMemOps = 0;
215   uint64_t Size = Op.size();
216   while (Size) {
217     unsigned VTSize = VT.getSizeInBits() / 8;
218     while (VTSize > Size) {
219       // For now, only use non-vector load / store's for the left-over pieces.
220       EVT NewVT = VT;
221       unsigned NewVTSize;
222 
223       bool Found = false;
224       if (VT.isVector() || VT.isFloatingPoint()) {
225         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
226         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
227             isSafeMemOpType(NewVT.getSimpleVT()))
228           Found = true;
229         else if (NewVT == MVT::i64 &&
230                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
231                  isSafeMemOpType(MVT::f64)) {
232           // i64 is usually not legal on 32-bit targets, but f64 may be.
233           NewVT = MVT::f64;
234           Found = true;
235         }
236       }
237 
238       if (!Found) {
239         do {
240           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
241           if (NewVT == MVT::i8)
242             break;
243         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
244       }
245       NewVTSize = NewVT.getSizeInBits() / 8;
246 
247       // If the new VT cannot cover all of the remaining bits, then consider
248       // issuing a (or a pair of) unaligned and overlapping load / store.
249       bool Fast;
250       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
251           allowsMisalignedMemoryAccesses(
252               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
253               MachineMemOperand::MONone, &Fast) &&
254           Fast)
255         VTSize = Size;
256       else {
257         VT = NewVT;
258         VTSize = NewVTSize;
259       }
260     }
261 
262     if (++NumMemOps > Limit)
263       return false;
264 
265     MemOps.push_back(VT);
266     Size -= VTSize;
267   }
268 
269   return true;
270 }
271 
272 /// Soften the operands of a comparison. This code is shared among BR_CC,
273 /// SELECT_CC, and SETCC handlers.
274 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
275                                          SDValue &NewLHS, SDValue &NewRHS,
276                                          ISD::CondCode &CCCode,
277                                          const SDLoc &dl, const SDValue OldLHS,
278                                          const SDValue OldRHS) const {
279   SDValue Chain;
280   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
281                              OldRHS, Chain);
282 }
283 
284 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
285                                          SDValue &NewLHS, SDValue &NewRHS,
286                                          ISD::CondCode &CCCode,
287                                          const SDLoc &dl, const SDValue OldLHS,
288                                          const SDValue OldRHS,
289                                          SDValue &Chain,
290                                          bool IsSignaling) const {
291   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
292   // not supporting it. We can update this code when libgcc provides such
293   // functions.
294 
295   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
296          && "Unsupported setcc type!");
297 
298   // Expand into one or more soft-fp libcall(s).
299   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
300   bool ShouldInvertCC = false;
301   switch (CCCode) {
302   case ISD::SETEQ:
303   case ISD::SETOEQ:
304     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
305           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
306           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
307     break;
308   case ISD::SETNE:
309   case ISD::SETUNE:
310     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
311           (VT == MVT::f64) ? RTLIB::UNE_F64 :
312           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
313     break;
314   case ISD::SETGE:
315   case ISD::SETOGE:
316     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
317           (VT == MVT::f64) ? RTLIB::OGE_F64 :
318           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
319     break;
320   case ISD::SETLT:
321   case ISD::SETOLT:
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     break;
326   case ISD::SETLE:
327   case ISD::SETOLE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
329           (VT == MVT::f64) ? RTLIB::OLE_F64 :
330           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
331     break;
332   case ISD::SETGT:
333   case ISD::SETOGT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
335           (VT == MVT::f64) ? RTLIB::OGT_F64 :
336           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
337     break;
338   case ISD::SETO:
339     ShouldInvertCC = true;
340     LLVM_FALLTHROUGH;
341   case ISD::SETUO:
342     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
343           (VT == MVT::f64) ? RTLIB::UO_F64 :
344           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
345     break;
346   case ISD::SETONE:
347     // SETONE = O && UNE
348     ShouldInvertCC = true;
349     LLVM_FALLTHROUGH;
350   case ISD::SETUEQ:
351     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
352           (VT == MVT::f64) ? RTLIB::UO_F64 :
353           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
354     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
355           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
356           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
357     break;
358   default:
359     // Invert CC for unordered comparisons
360     ShouldInvertCC = true;
361     switch (CCCode) {
362     case ISD::SETULT:
363       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
364             (VT == MVT::f64) ? RTLIB::OGE_F64 :
365             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
366       break;
367     case ISD::SETULE:
368       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
369             (VT == MVT::f64) ? RTLIB::OGT_F64 :
370             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
371       break;
372     case ISD::SETUGT:
373       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
374             (VT == MVT::f64) ? RTLIB::OLE_F64 :
375             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
376       break;
377     case ISD::SETUGE:
378       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
379             (VT == MVT::f64) ? RTLIB::OLT_F64 :
380             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
381       break;
382     default: llvm_unreachable("Do not know how to soften this setcc!");
383     }
384   }
385 
386   // Use the target specific return value for comparions lib calls.
387   EVT RetVT = getCmpLibcallReturnType();
388   SDValue Ops[2] = {NewLHS, NewRHS};
389   TargetLowering::MakeLibCallOptions CallOptions;
390   EVT OpsVT[2] = { OldLHS.getValueType(),
391                    OldRHS.getValueType() };
392   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
393   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
394   NewLHS = Call.first;
395   NewRHS = DAG.getConstant(0, dl, RetVT);
396 
397   CCCode = getCmpLibcallCC(LC1);
398   if (ShouldInvertCC) {
399     assert(RetVT.isInteger());
400     CCCode = getSetCCInverse(CCCode, RetVT);
401   }
402 
403   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
404     // Update Chain.
405     Chain = Call.second;
406   } else {
407     EVT SetCCVT =
408         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
409     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
410     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
411     CCCode = getCmpLibcallCC(LC2);
412     if (ShouldInvertCC)
413       CCCode = getSetCCInverse(CCCode, RetVT);
414     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
415     if (Chain)
416       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
417                           Call2.second);
418     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
419                          Tmp.getValueType(), Tmp, NewLHS);
420     NewRHS = SDValue();
421   }
422 }
423 
424 /// Return the entry encoding for a jump table in the current function. The
425 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
426 unsigned TargetLowering::getJumpTableEncoding() const {
427   // In non-pic modes, just use the address of a block.
428   if (!isPositionIndependent())
429     return MachineJumpTableInfo::EK_BlockAddress;
430 
431   // In PIC mode, if the target supports a GPRel32 directive, use it.
432   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
433     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
434 
435   // Otherwise, use a label difference.
436   return MachineJumpTableInfo::EK_LabelDifference32;
437 }
438 
439 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
440                                                  SelectionDAG &DAG) const {
441   // If our PIC model is GP relative, use the global offset table as the base.
442   unsigned JTEncoding = getJumpTableEncoding();
443 
444   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
445       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
446     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
447 
448   return Table;
449 }
450 
451 /// This returns the relocation base for the given PIC jumptable, the same as
452 /// getPICJumpTableRelocBase, but as an MCExpr.
453 const MCExpr *
454 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
455                                              unsigned JTI,MCContext &Ctx) const{
456   // The normal PIC reloc base is the label at the start of the jump table.
457   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
458 }
459 
460 bool
461 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
462   const TargetMachine &TM = getTargetMachine();
463   const GlobalValue *GV = GA->getGlobal();
464 
465   // If the address is not even local to this DSO we will have to load it from
466   // a got and then add the offset.
467   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
468     return false;
469 
470   // If the code is position independent we will have to add a base register.
471   if (isPositionIndependent())
472     return false;
473 
474   // Otherwise we can do it.
475   return true;
476 }
477 
478 //===----------------------------------------------------------------------===//
479 //  Optimization Methods
480 //===----------------------------------------------------------------------===//
481 
482 /// If the specified instruction has a constant integer operand and there are
483 /// bits set in that constant that are not demanded, then clear those bits and
484 /// return true.
485 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
486                                             const APInt &DemandedBits,
487                                             const APInt &DemandedElts,
488                                             TargetLoweringOpt &TLO) const {
489   SDLoc DL(Op);
490   unsigned Opcode = Op.getOpcode();
491 
492   // Do target-specific constant optimization.
493   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
494     return TLO.New.getNode();
495 
496   // FIXME: ISD::SELECT, ISD::SELECT_CC
497   switch (Opcode) {
498   default:
499     break;
500   case ISD::XOR:
501   case ISD::AND:
502   case ISD::OR: {
503     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
504     if (!Op1C)
505       return false;
506 
507     // If this is a 'not' op, don't touch it because that's a canonical form.
508     const APInt &C = Op1C->getAPIntValue();
509     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
510       return false;
511 
512     if (!C.isSubsetOf(DemandedBits)) {
513       EVT VT = Op.getValueType();
514       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
515       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
516       return TLO.CombineTo(Op, NewOp);
517     }
518 
519     break;
520   }
521   }
522 
523   return false;
524 }
525 
526 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
527                                             const APInt &DemandedBits,
528                                             TargetLoweringOpt &TLO) const {
529   EVT VT = Op.getValueType();
530   APInt DemandedElts = VT.isVector()
531                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
532                            : APInt(1, 1);
533   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
534 }
535 
536 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
537 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
538 /// generalized for targets with other types of implicit widening casts.
539 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
540                                       const APInt &Demanded,
541                                       TargetLoweringOpt &TLO) const {
542   assert(Op.getNumOperands() == 2 &&
543          "ShrinkDemandedOp only supports binary operators!");
544   assert(Op.getNode()->getNumValues() == 1 &&
545          "ShrinkDemandedOp only supports nodes with one result!");
546 
547   SelectionDAG &DAG = TLO.DAG;
548   SDLoc dl(Op);
549 
550   // Early return, as this function cannot handle vector types.
551   if (Op.getValueType().isVector())
552     return false;
553 
554   // Don't do this if the node has another user, which may require the
555   // full value.
556   if (!Op.getNode()->hasOneUse())
557     return false;
558 
559   // Search for the smallest integer type with free casts to and from
560   // Op's type. For expedience, just check power-of-2 integer types.
561   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
562   unsigned DemandedSize = Demanded.getActiveBits();
563   unsigned SmallVTBits = DemandedSize;
564   if (!isPowerOf2_32(SmallVTBits))
565     SmallVTBits = NextPowerOf2(SmallVTBits);
566   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
567     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
568     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
569         TLI.isZExtFree(SmallVT, Op.getValueType())) {
570       // We found a type with free casts.
571       SDValue X = DAG.getNode(
572           Op.getOpcode(), dl, SmallVT,
573           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
574           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
575       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
576       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
577       return TLO.CombineTo(Op, Z);
578     }
579   }
580   return false;
581 }
582 
583 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
584                                           DAGCombinerInfo &DCI) const {
585   SelectionDAG &DAG = DCI.DAG;
586   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
587                         !DCI.isBeforeLegalizeOps());
588   KnownBits Known;
589 
590   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
591   if (Simplified) {
592     DCI.AddToWorklist(Op.getNode());
593     DCI.CommitTargetLoweringOpt(TLO);
594   }
595   return Simplified;
596 }
597 
598 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
599                                           KnownBits &Known,
600                                           TargetLoweringOpt &TLO,
601                                           unsigned Depth,
602                                           bool AssumeSingleUse) const {
603   EVT VT = Op.getValueType();
604 
605   // TODO: We can probably do more work on calculating the known bits and
606   // simplifying the operations for scalable vectors, but for now we just
607   // bail out.
608   if (VT.isScalableVector()) {
609     // Pretend we don't know anything for now.
610     Known = KnownBits(DemandedBits.getBitWidth());
611     return false;
612   }
613 
614   APInt DemandedElts = VT.isVector()
615                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
616                            : APInt(1, 1);
617   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
618                               AssumeSingleUse);
619 }
620 
621 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
622 // TODO: Under what circumstances can we create nodes? Constant folding?
623 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
624     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
625     SelectionDAG &DAG, unsigned Depth) const {
626   // Limit search depth.
627   if (Depth >= SelectionDAG::MaxRecursionDepth)
628     return SDValue();
629 
630   // Ignore UNDEFs.
631   if (Op.isUndef())
632     return SDValue();
633 
634   // Not demanding any bits/elts from Op.
635   if (DemandedBits == 0 || DemandedElts == 0)
636     return DAG.getUNDEF(Op.getValueType());
637 
638   unsigned NumElts = DemandedElts.getBitWidth();
639   unsigned BitWidth = DemandedBits.getBitWidth();
640   KnownBits LHSKnown, RHSKnown;
641   switch (Op.getOpcode()) {
642   case ISD::BITCAST: {
643     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
644     EVT SrcVT = Src.getValueType();
645     EVT DstVT = Op.getValueType();
646     if (SrcVT == DstVT)
647       return Src;
648 
649     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
650     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
651     if (NumSrcEltBits == NumDstEltBits)
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655 
656     // TODO - bigendian once we have test coverage.
657     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
658         DAG.getDataLayout().isLittleEndian()) {
659       unsigned Scale = NumDstEltBits / NumSrcEltBits;
660       unsigned NumSrcElts = SrcVT.getVectorNumElements();
661       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
662       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
663       for (unsigned i = 0; i != Scale; ++i) {
664         unsigned Offset = i * NumSrcEltBits;
665         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
666         if (!Sub.isNullValue()) {
667           DemandedSrcBits |= Sub;
668           for (unsigned j = 0; j != NumElts; ++j)
669             if (DemandedElts[j])
670               DemandedSrcElts.setBit((j * Scale) + i);
671         }
672       }
673 
674       if (SDValue V = SimplifyMultipleUseDemandedBits(
675               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
676         return DAG.getBitcast(DstVT, V);
677     }
678 
679     // TODO - bigendian once we have test coverage.
680     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
681         DAG.getDataLayout().isLittleEndian()) {
682       unsigned Scale = NumSrcEltBits / NumDstEltBits;
683       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
684       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
685       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
686       for (unsigned i = 0; i != NumElts; ++i)
687         if (DemandedElts[i]) {
688           unsigned Offset = (i % Scale) * NumDstEltBits;
689           DemandedSrcBits.insertBits(DemandedBits, Offset);
690           DemandedSrcElts.setBit(i / Scale);
691         }
692 
693       if (SDValue V = SimplifyMultipleUseDemandedBits(
694               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
695         return DAG.getBitcast(DstVT, V);
696     }
697 
698     break;
699   }
700   case ISD::AND: {
701     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
702     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
703 
704     // If all of the demanded bits are known 1 on one side, return the other.
705     // These bits cannot contribute to the result of the 'and' in this
706     // context.
707     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
708       return Op.getOperand(0);
709     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
710       return Op.getOperand(1);
711     break;
712   }
713   case ISD::OR: {
714     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
715     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
716 
717     // If all of the demanded bits are known zero on one side, return the
718     // other.  These bits cannot contribute to the result of the 'or' in this
719     // context.
720     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
721       return Op.getOperand(0);
722     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
723       return Op.getOperand(1);
724     break;
725   }
726   case ISD::XOR: {
727     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
728     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
729 
730     // If all of the demanded bits are known zero on one side, return the
731     // other.
732     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
733       return Op.getOperand(0);
734     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
735       return Op.getOperand(1);
736     break;
737   }
738   case ISD::SHL: {
739     // If we are only demanding sign bits then we can use the shift source
740     // directly.
741     if (const APInt *MaxSA =
742             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
743       SDValue Op0 = Op.getOperand(0);
744       unsigned ShAmt = MaxSA->getZExtValue();
745       unsigned NumSignBits =
746           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
747       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
748       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
749         return Op0;
750     }
751     break;
752   }
753   case ISD::SETCC: {
754     SDValue Op0 = Op.getOperand(0);
755     SDValue Op1 = Op.getOperand(1);
756     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
757     // If (1) we only need the sign-bit, (2) the setcc operands are the same
758     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
759     // -1, we may be able to bypass the setcc.
760     if (DemandedBits.isSignMask() &&
761         Op0.getScalarValueSizeInBits() == BitWidth &&
762         getBooleanContents(Op0.getValueType()) ==
763             BooleanContent::ZeroOrNegativeOneBooleanContent) {
764       // If we're testing X < 0, then this compare isn't needed - just use X!
765       // FIXME: We're limiting to integer types here, but this should also work
766       // if we don't care about FP signed-zero. The use of SETLT with FP means
767       // that we don't care about NaNs.
768       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
769           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
770         return Op0;
771     }
772     break;
773   }
774   case ISD::SIGN_EXTEND_INREG: {
775     // If none of the extended bits are demanded, eliminate the sextinreg.
776     SDValue Op0 = Op.getOperand(0);
777     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
778     unsigned ExBits = ExVT.getScalarSizeInBits();
779     if (DemandedBits.getActiveBits() <= ExBits)
780       return Op0;
781     // If the input is already sign extended, just drop the extension.
782     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
783     if (NumSignBits >= (BitWidth - ExBits + 1))
784       return Op0;
785     break;
786   }
787   case ISD::ANY_EXTEND_VECTOR_INREG:
788   case ISD::SIGN_EXTEND_VECTOR_INREG:
789   case ISD::ZERO_EXTEND_VECTOR_INREG: {
790     // If we only want the lowest element and none of extended bits, then we can
791     // return the bitcasted source vector.
792     SDValue Src = Op.getOperand(0);
793     EVT SrcVT = Src.getValueType();
794     EVT DstVT = Op.getValueType();
795     if (DemandedElts == 1 && DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
796         DAG.getDataLayout().isLittleEndian() &&
797         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
798       return DAG.getBitcast(DstVT, Src);
799     }
800     break;
801   }
802   case ISD::INSERT_VECTOR_ELT: {
803     // If we don't demand the inserted element, return the base vector.
804     SDValue Vec = Op.getOperand(0);
805     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
806     EVT VecVT = Vec.getValueType();
807     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
808         !DemandedElts[CIdx->getZExtValue()])
809       return Vec;
810     break;
811   }
812   case ISD::INSERT_SUBVECTOR: {
813     // If we don't demand the inserted subvector, return the base vector.
814     SDValue Vec = Op.getOperand(0);
815     SDValue Sub = Op.getOperand(1);
816     uint64_t Idx = Op.getConstantOperandVal(2);
817     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
818     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
819       return Vec;
820     break;
821   }
822   case ISD::VECTOR_SHUFFLE: {
823     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
824 
825     // If all the demanded elts are from one operand and are inline,
826     // then we can use the operand directly.
827     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
828     for (unsigned i = 0; i != NumElts; ++i) {
829       int M = ShuffleMask[i];
830       if (M < 0 || !DemandedElts[i])
831         continue;
832       AllUndef = false;
833       IdentityLHS &= (M == (int)i);
834       IdentityRHS &= ((M - NumElts) == i);
835     }
836 
837     if (AllUndef)
838       return DAG.getUNDEF(Op.getValueType());
839     if (IdentityLHS)
840       return Op.getOperand(0);
841     if (IdentityRHS)
842       return Op.getOperand(1);
843     break;
844   }
845   default:
846     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
847       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
848               Op, DemandedBits, DemandedElts, DAG, Depth))
849         return V;
850     break;
851   }
852   return SDValue();
853 }
854 
855 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
856     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
857     unsigned Depth) const {
858   EVT VT = Op.getValueType();
859   APInt DemandedElts = VT.isVector()
860                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
861                            : APInt(1, 1);
862   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
863                                          Depth);
864 }
865 
866 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
867     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
868     unsigned Depth) const {
869   APInt DemandedBits = APInt::getAllOnesValue(Op.getScalarValueSizeInBits());
870   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
871                                          Depth);
872 }
873 
874 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
875 /// result of Op are ever used downstream. If we can use this information to
876 /// simplify Op, create a new simplified DAG node and return true, returning the
877 /// original and new nodes in Old and New. Otherwise, analyze the expression and
878 /// return a mask of Known bits for the expression (used to simplify the
879 /// caller).  The Known bits may only be accurate for those bits in the
880 /// OriginalDemandedBits and OriginalDemandedElts.
881 bool TargetLowering::SimplifyDemandedBits(
882     SDValue Op, const APInt &OriginalDemandedBits,
883     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
884     unsigned Depth, bool AssumeSingleUse) const {
885   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
886   assert(Op.getScalarValueSizeInBits() == BitWidth &&
887          "Mask size mismatches value type size!");
888 
889   // Don't know anything.
890   Known = KnownBits(BitWidth);
891 
892   // TODO: We can probably do more work on calculating the known bits and
893   // simplifying the operations for scalable vectors, but for now we just
894   // bail out.
895   if (Op.getValueType().isScalableVector())
896     return false;
897 
898   unsigned NumElts = OriginalDemandedElts.getBitWidth();
899   assert((!Op.getValueType().isVector() ||
900           NumElts == Op.getValueType().getVectorNumElements()) &&
901          "Unexpected vector size");
902 
903   APInt DemandedBits = OriginalDemandedBits;
904   APInt DemandedElts = OriginalDemandedElts;
905   SDLoc dl(Op);
906   auto &DL = TLO.DAG.getDataLayout();
907 
908   // Undef operand.
909   if (Op.isUndef())
910     return false;
911 
912   if (Op.getOpcode() == ISD::Constant) {
913     // We know all of the bits for a constant!
914     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
915     return false;
916   }
917 
918   if (Op.getOpcode() == ISD::ConstantFP) {
919     // We know all of the bits for a floating point constant!
920     Known = KnownBits::makeConstant(
921         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
922     return false;
923   }
924 
925   // Other users may use these bits.
926   EVT VT = Op.getValueType();
927   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
928     if (Depth != 0) {
929       // If not at the root, Just compute the Known bits to
930       // simplify things downstream.
931       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
932       return false;
933     }
934     // If this is the root being simplified, allow it to have multiple uses,
935     // just set the DemandedBits/Elts to all bits.
936     DemandedBits = APInt::getAllOnesValue(BitWidth);
937     DemandedElts = APInt::getAllOnesValue(NumElts);
938   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
939     // Not demanding any bits/elts from Op.
940     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
941   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
942     // Limit search depth.
943     return false;
944   }
945 
946   KnownBits Known2;
947   switch (Op.getOpcode()) {
948   case ISD::TargetConstant:
949     llvm_unreachable("Can't simplify this node");
950   case ISD::SCALAR_TO_VECTOR: {
951     if (!DemandedElts[0])
952       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
953 
954     KnownBits SrcKnown;
955     SDValue Src = Op.getOperand(0);
956     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
957     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
958     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
959       return true;
960 
961     // Upper elements are undef, so only get the knownbits if we just demand
962     // the bottom element.
963     if (DemandedElts == 1)
964       Known = SrcKnown.anyextOrTrunc(BitWidth);
965     break;
966   }
967   case ISD::BUILD_VECTOR:
968     // Collect the known bits that are shared by every demanded element.
969     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
970     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
971     return false; // Don't fall through, will infinitely loop.
972   case ISD::LOAD: {
973     LoadSDNode *LD = cast<LoadSDNode>(Op);
974     if (getTargetConstantFromLoad(LD)) {
975       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
976       return false; // Don't fall through, will infinitely loop.
977     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
978       // If this is a ZEXTLoad and we are looking at the loaded value.
979       EVT MemVT = LD->getMemoryVT();
980       unsigned MemBits = MemVT.getScalarSizeInBits();
981       Known.Zero.setBitsFrom(MemBits);
982       return false; // Don't fall through, will infinitely loop.
983     }
984     break;
985   }
986   case ISD::INSERT_VECTOR_ELT: {
987     SDValue Vec = Op.getOperand(0);
988     SDValue Scl = Op.getOperand(1);
989     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
990     EVT VecVT = Vec.getValueType();
991 
992     // If index isn't constant, assume we need all vector elements AND the
993     // inserted element.
994     APInt DemandedVecElts(DemandedElts);
995     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
996       unsigned Idx = CIdx->getZExtValue();
997       DemandedVecElts.clearBit(Idx);
998 
999       // Inserted element is not required.
1000       if (!DemandedElts[Idx])
1001         return TLO.CombineTo(Op, Vec);
1002     }
1003 
1004     KnownBits KnownScl;
1005     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1006     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1007     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1008       return true;
1009 
1010     Known = KnownScl.anyextOrTrunc(BitWidth);
1011 
1012     KnownBits KnownVec;
1013     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1014                              Depth + 1))
1015       return true;
1016 
1017     if (!!DemandedVecElts)
1018       Known = KnownBits::commonBits(Known, KnownVec);
1019 
1020     return false;
1021   }
1022   case ISD::INSERT_SUBVECTOR: {
1023     // Demand any elements from the subvector and the remainder from the src its
1024     // inserted into.
1025     SDValue Src = Op.getOperand(0);
1026     SDValue Sub = Op.getOperand(1);
1027     uint64_t Idx = Op.getConstantOperandVal(2);
1028     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1029     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1030     APInt DemandedSrcElts = DemandedElts;
1031     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
1032 
1033     KnownBits KnownSub, KnownSrc;
1034     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1035                              Depth + 1))
1036       return true;
1037     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1038                              Depth + 1))
1039       return true;
1040 
1041     Known.Zero.setAllBits();
1042     Known.One.setAllBits();
1043     if (!!DemandedSubElts)
1044       Known = KnownBits::commonBits(Known, KnownSub);
1045     if (!!DemandedSrcElts)
1046       Known = KnownBits::commonBits(Known, KnownSrc);
1047 
1048     // Attempt to avoid multi-use src if we don't need anything from it.
1049     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
1050         !DemandedSrcElts.isAllOnesValue()) {
1051       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1052           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1053       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1054           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1055       if (NewSub || NewSrc) {
1056         NewSub = NewSub ? NewSub : Sub;
1057         NewSrc = NewSrc ? NewSrc : Src;
1058         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1059                                         Op.getOperand(2));
1060         return TLO.CombineTo(Op, NewOp);
1061       }
1062     }
1063     break;
1064   }
1065   case ISD::EXTRACT_SUBVECTOR: {
1066     // Offset the demanded elts by the subvector index.
1067     SDValue Src = Op.getOperand(0);
1068     if (Src.getValueType().isScalableVector())
1069       break;
1070     uint64_t Idx = Op.getConstantOperandVal(1);
1071     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1072     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1073 
1074     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1075                              Depth + 1))
1076       return true;
1077 
1078     // Attempt to avoid multi-use src if we don't need anything from it.
1079     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1080       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1081           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1082       if (DemandedSrc) {
1083         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1084                                         Op.getOperand(1));
1085         return TLO.CombineTo(Op, NewOp);
1086       }
1087     }
1088     break;
1089   }
1090   case ISD::CONCAT_VECTORS: {
1091     Known.Zero.setAllBits();
1092     Known.One.setAllBits();
1093     EVT SubVT = Op.getOperand(0).getValueType();
1094     unsigned NumSubVecs = Op.getNumOperands();
1095     unsigned NumSubElts = SubVT.getVectorNumElements();
1096     for (unsigned i = 0; i != NumSubVecs; ++i) {
1097       APInt DemandedSubElts =
1098           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1099       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1100                                Known2, TLO, Depth + 1))
1101         return true;
1102       // Known bits are shared by every demanded subvector element.
1103       if (!!DemandedSubElts)
1104         Known = KnownBits::commonBits(Known, Known2);
1105     }
1106     break;
1107   }
1108   case ISD::VECTOR_SHUFFLE: {
1109     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1110 
1111     // Collect demanded elements from shuffle operands..
1112     APInt DemandedLHS(NumElts, 0);
1113     APInt DemandedRHS(NumElts, 0);
1114     for (unsigned i = 0; i != NumElts; ++i) {
1115       if (!DemandedElts[i])
1116         continue;
1117       int M = ShuffleMask[i];
1118       if (M < 0) {
1119         // For UNDEF elements, we don't know anything about the common state of
1120         // the shuffle result.
1121         DemandedLHS.clearAllBits();
1122         DemandedRHS.clearAllBits();
1123         break;
1124       }
1125       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1126       if (M < (int)NumElts)
1127         DemandedLHS.setBit(M);
1128       else
1129         DemandedRHS.setBit(M - NumElts);
1130     }
1131 
1132     if (!!DemandedLHS || !!DemandedRHS) {
1133       SDValue Op0 = Op.getOperand(0);
1134       SDValue Op1 = Op.getOperand(1);
1135 
1136       Known.Zero.setAllBits();
1137       Known.One.setAllBits();
1138       if (!!DemandedLHS) {
1139         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1140                                  Depth + 1))
1141           return true;
1142         Known = KnownBits::commonBits(Known, Known2);
1143       }
1144       if (!!DemandedRHS) {
1145         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1146                                  Depth + 1))
1147           return true;
1148         Known = KnownBits::commonBits(Known, Known2);
1149       }
1150 
1151       // Attempt to avoid multi-use ops if we don't need anything from them.
1152       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1153           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1154       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1155           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1156       if (DemandedOp0 || DemandedOp1) {
1157         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1158         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1159         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1160         return TLO.CombineTo(Op, NewOp);
1161       }
1162     }
1163     break;
1164   }
1165   case ISD::AND: {
1166     SDValue Op0 = Op.getOperand(0);
1167     SDValue Op1 = Op.getOperand(1);
1168 
1169     // If the RHS is a constant, check to see if the LHS would be zero without
1170     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1171     // simplify the LHS, here we're using information from the LHS to simplify
1172     // the RHS.
1173     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1174       // Do not increment Depth here; that can cause an infinite loop.
1175       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1176       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1177       if ((LHSKnown.Zero & DemandedBits) ==
1178           (~RHSC->getAPIntValue() & DemandedBits))
1179         return TLO.CombineTo(Op, Op0);
1180 
1181       // If any of the set bits in the RHS are known zero on the LHS, shrink
1182       // the constant.
1183       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1184                                  DemandedElts, TLO))
1185         return true;
1186 
1187       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1188       // constant, but if this 'and' is only clearing bits that were just set by
1189       // the xor, then this 'and' can be eliminated by shrinking the mask of
1190       // the xor. For example, for a 32-bit X:
1191       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1192       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1193           LHSKnown.One == ~RHSC->getAPIntValue()) {
1194         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1195         return TLO.CombineTo(Op, Xor);
1196       }
1197     }
1198 
1199     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1200                              Depth + 1))
1201       return true;
1202     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1203     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1204                              Known2, TLO, Depth + 1))
1205       return true;
1206     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1207 
1208     // Attempt to avoid multi-use ops if we don't need anything from them.
1209     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1210       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1211           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1212       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1213           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1214       if (DemandedOp0 || DemandedOp1) {
1215         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1216         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1217         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1218         return TLO.CombineTo(Op, NewOp);
1219       }
1220     }
1221 
1222     // If all of the demanded bits are known one on one side, return the other.
1223     // These bits cannot contribute to the result of the 'and'.
1224     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1225       return TLO.CombineTo(Op, Op0);
1226     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1227       return TLO.CombineTo(Op, Op1);
1228     // If all of the demanded bits in the inputs are known zeros, return zero.
1229     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1230       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1231     // If the RHS is a constant, see if we can simplify it.
1232     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1233                                TLO))
1234       return true;
1235     // If the operation can be done in a smaller type, do so.
1236     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1237       return true;
1238 
1239     Known &= Known2;
1240     break;
1241   }
1242   case ISD::OR: {
1243     SDValue Op0 = Op.getOperand(0);
1244     SDValue Op1 = Op.getOperand(1);
1245 
1246     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1247                              Depth + 1))
1248       return true;
1249     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1250     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1251                              Known2, TLO, Depth + 1))
1252       return true;
1253     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1254 
1255     // Attempt to avoid multi-use ops if we don't need anything from them.
1256     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1257       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1258           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1259       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1260           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1261       if (DemandedOp0 || DemandedOp1) {
1262         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1263         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1264         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1265         return TLO.CombineTo(Op, NewOp);
1266       }
1267     }
1268 
1269     // If all of the demanded bits are known zero on one side, return the other.
1270     // These bits cannot contribute to the result of the 'or'.
1271     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1272       return TLO.CombineTo(Op, Op0);
1273     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1274       return TLO.CombineTo(Op, Op1);
1275     // If the RHS is a constant, see if we can simplify it.
1276     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1277       return true;
1278     // If the operation can be done in a smaller type, do so.
1279     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1280       return true;
1281 
1282     Known |= Known2;
1283     break;
1284   }
1285   case ISD::XOR: {
1286     SDValue Op0 = Op.getOperand(0);
1287     SDValue Op1 = Op.getOperand(1);
1288 
1289     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1290                              Depth + 1))
1291       return true;
1292     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1293     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1294                              Depth + 1))
1295       return true;
1296     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1297 
1298     // Attempt to avoid multi-use ops if we don't need anything from them.
1299     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1300       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1301           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1302       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1303           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1304       if (DemandedOp0 || DemandedOp1) {
1305         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1306         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1307         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1308         return TLO.CombineTo(Op, NewOp);
1309       }
1310     }
1311 
1312     // If all of the demanded bits are known zero on one side, return the other.
1313     // These bits cannot contribute to the result of the 'xor'.
1314     if (DemandedBits.isSubsetOf(Known.Zero))
1315       return TLO.CombineTo(Op, Op0);
1316     if (DemandedBits.isSubsetOf(Known2.Zero))
1317       return TLO.CombineTo(Op, Op1);
1318     // If the operation can be done in a smaller type, do so.
1319     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1320       return true;
1321 
1322     // If all of the unknown bits are known to be zero on one side or the other
1323     // turn this into an *inclusive* or.
1324     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1325     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1326       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1327 
1328     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1329     if (C) {
1330       // If one side is a constant, and all of the set bits in the constant are
1331       // also known set on the other side, turn this into an AND, as we know
1332       // the bits will be cleared.
1333       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1334       // NB: it is okay if more bits are known than are requested
1335       if (C->getAPIntValue() == Known2.One) {
1336         SDValue ANDC =
1337             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1338         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1339       }
1340 
1341       // If the RHS is a constant, see if we can change it. Don't alter a -1
1342       // constant because that's a 'not' op, and that is better for combining
1343       // and codegen.
1344       if (!C->isAllOnesValue() &&
1345           DemandedBits.isSubsetOf(C->getAPIntValue())) {
1346         // We're flipping all demanded bits. Flip the undemanded bits too.
1347         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1348         return TLO.CombineTo(Op, New);
1349       }
1350     }
1351 
1352     // If we can't turn this into a 'not', try to shrink the constant.
1353     if (!C || !C->isAllOnesValue())
1354       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1355         return true;
1356 
1357     Known ^= Known2;
1358     break;
1359   }
1360   case ISD::SELECT:
1361     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1362                              Depth + 1))
1363       return true;
1364     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1365                              Depth + 1))
1366       return true;
1367     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1368     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1369 
1370     // If the operands are constants, see if we can simplify them.
1371     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1372       return true;
1373 
1374     // Only known if known in both the LHS and RHS.
1375     Known = KnownBits::commonBits(Known, Known2);
1376     break;
1377   case ISD::SELECT_CC:
1378     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1379                              Depth + 1))
1380       return true;
1381     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1382                              Depth + 1))
1383       return true;
1384     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1385     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1386 
1387     // If the operands are constants, see if we can simplify them.
1388     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1389       return true;
1390 
1391     // Only known if known in both the LHS and RHS.
1392     Known = KnownBits::commonBits(Known, Known2);
1393     break;
1394   case ISD::SETCC: {
1395     SDValue Op0 = Op.getOperand(0);
1396     SDValue Op1 = Op.getOperand(1);
1397     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1398     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1399     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1400     // -1, we may be able to bypass the setcc.
1401     if (DemandedBits.isSignMask() &&
1402         Op0.getScalarValueSizeInBits() == BitWidth &&
1403         getBooleanContents(Op0.getValueType()) ==
1404             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1405       // If we're testing X < 0, then this compare isn't needed - just use X!
1406       // FIXME: We're limiting to integer types here, but this should also work
1407       // if we don't care about FP signed-zero. The use of SETLT with FP means
1408       // that we don't care about NaNs.
1409       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1410           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1411         return TLO.CombineTo(Op, Op0);
1412 
1413       // TODO: Should we check for other forms of sign-bit comparisons?
1414       // Examples: X <= -1, X >= 0
1415     }
1416     if (getBooleanContents(Op0.getValueType()) ==
1417             TargetLowering::ZeroOrOneBooleanContent &&
1418         BitWidth > 1)
1419       Known.Zero.setBitsFrom(1);
1420     break;
1421   }
1422   case ISD::SHL: {
1423     SDValue Op0 = Op.getOperand(0);
1424     SDValue Op1 = Op.getOperand(1);
1425     EVT ShiftVT = Op1.getValueType();
1426 
1427     if (const APInt *SA =
1428             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1429       unsigned ShAmt = SA->getZExtValue();
1430       if (ShAmt == 0)
1431         return TLO.CombineTo(Op, Op0);
1432 
1433       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1434       // single shift.  We can do this if the bottom bits (which are shifted
1435       // out) are never demanded.
1436       // TODO - support non-uniform vector amounts.
1437       if (Op0.getOpcode() == ISD::SRL) {
1438         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1439           if (const APInt *SA2 =
1440                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1441             unsigned C1 = SA2->getZExtValue();
1442             unsigned Opc = ISD::SHL;
1443             int Diff = ShAmt - C1;
1444             if (Diff < 0) {
1445               Diff = -Diff;
1446               Opc = ISD::SRL;
1447             }
1448             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1449             return TLO.CombineTo(
1450                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1451           }
1452         }
1453       }
1454 
1455       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1456       // are not demanded. This will likely allow the anyext to be folded away.
1457       // TODO - support non-uniform vector amounts.
1458       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1459         SDValue InnerOp = Op0.getOperand(0);
1460         EVT InnerVT = InnerOp.getValueType();
1461         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1462         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1463             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1464           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1465           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1466             ShTy = InnerVT;
1467           SDValue NarrowShl =
1468               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1469                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1470           return TLO.CombineTo(
1471               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1472         }
1473 
1474         // Repeat the SHL optimization above in cases where an extension
1475         // intervenes: (shl (anyext (shr x, c1)), c2) to
1476         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1477         // aren't demanded (as above) and that the shifted upper c1 bits of
1478         // x aren't demanded.
1479         // TODO - support non-uniform vector amounts.
1480         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1481             InnerOp.hasOneUse()) {
1482           if (const APInt *SA2 =
1483                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1484             unsigned InnerShAmt = SA2->getZExtValue();
1485             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1486                 DemandedBits.getActiveBits() <=
1487                     (InnerBits - InnerShAmt + ShAmt) &&
1488                 DemandedBits.countTrailingZeros() >= ShAmt) {
1489               SDValue NewSA =
1490                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1491               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1492                                                InnerOp.getOperand(0));
1493               return TLO.CombineTo(
1494                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1495             }
1496           }
1497         }
1498       }
1499 
1500       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1501       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1502                                Depth + 1))
1503         return true;
1504       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1505       Known.Zero <<= ShAmt;
1506       Known.One <<= ShAmt;
1507       // low bits known zero.
1508       Known.Zero.setLowBits(ShAmt);
1509 
1510       // Try shrinking the operation as long as the shift amount will still be
1511       // in range.
1512       if ((ShAmt < DemandedBits.getActiveBits()) &&
1513           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1514         return true;
1515     }
1516 
1517     // If we are only demanding sign bits then we can use the shift source
1518     // directly.
1519     if (const APInt *MaxSA =
1520             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1521       unsigned ShAmt = MaxSA->getZExtValue();
1522       unsigned NumSignBits =
1523           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1524       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1525       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1526         return TLO.CombineTo(Op, Op0);
1527     }
1528     break;
1529   }
1530   case ISD::SRL: {
1531     SDValue Op0 = Op.getOperand(0);
1532     SDValue Op1 = Op.getOperand(1);
1533     EVT ShiftVT = Op1.getValueType();
1534 
1535     if (const APInt *SA =
1536             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1537       unsigned ShAmt = SA->getZExtValue();
1538       if (ShAmt == 0)
1539         return TLO.CombineTo(Op, Op0);
1540 
1541       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1542       // single shift.  We can do this if the top bits (which are shifted out)
1543       // are never demanded.
1544       // TODO - support non-uniform vector amounts.
1545       if (Op0.getOpcode() == ISD::SHL) {
1546         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1547           if (const APInt *SA2 =
1548                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1549             unsigned C1 = SA2->getZExtValue();
1550             unsigned Opc = ISD::SRL;
1551             int Diff = ShAmt - C1;
1552             if (Diff < 0) {
1553               Diff = -Diff;
1554               Opc = ISD::SHL;
1555             }
1556             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1557             return TLO.CombineTo(
1558                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1559           }
1560         }
1561       }
1562 
1563       APInt InDemandedMask = (DemandedBits << ShAmt);
1564 
1565       // If the shift is exact, then it does demand the low bits (and knows that
1566       // they are zero).
1567       if (Op->getFlags().hasExact())
1568         InDemandedMask.setLowBits(ShAmt);
1569 
1570       // Compute the new bits that are at the top now.
1571       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1572                                Depth + 1))
1573         return true;
1574       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1575       Known.Zero.lshrInPlace(ShAmt);
1576       Known.One.lshrInPlace(ShAmt);
1577       // High bits known zero.
1578       Known.Zero.setHighBits(ShAmt);
1579     }
1580     break;
1581   }
1582   case ISD::SRA: {
1583     SDValue Op0 = Op.getOperand(0);
1584     SDValue Op1 = Op.getOperand(1);
1585     EVT ShiftVT = Op1.getValueType();
1586 
1587     // If we only want bits that already match the signbit then we don't need
1588     // to shift.
1589     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1590     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1591         NumHiDemandedBits)
1592       return TLO.CombineTo(Op, Op0);
1593 
1594     // If this is an arithmetic shift right and only the low-bit is set, we can
1595     // always convert this into a logical shr, even if the shift amount is
1596     // variable.  The low bit of the shift cannot be an input sign bit unless
1597     // the shift amount is >= the size of the datatype, which is undefined.
1598     if (DemandedBits.isOneValue())
1599       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1600 
1601     if (const APInt *SA =
1602             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1603       unsigned ShAmt = SA->getZExtValue();
1604       if (ShAmt == 0)
1605         return TLO.CombineTo(Op, Op0);
1606 
1607       APInt InDemandedMask = (DemandedBits << ShAmt);
1608 
1609       // If the shift is exact, then it does demand the low bits (and knows that
1610       // they are zero).
1611       if (Op->getFlags().hasExact())
1612         InDemandedMask.setLowBits(ShAmt);
1613 
1614       // If any of the demanded bits are produced by the sign extension, we also
1615       // demand the input sign bit.
1616       if (DemandedBits.countLeadingZeros() < ShAmt)
1617         InDemandedMask.setSignBit();
1618 
1619       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1620                                Depth + 1))
1621         return true;
1622       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1623       Known.Zero.lshrInPlace(ShAmt);
1624       Known.One.lshrInPlace(ShAmt);
1625 
1626       // If the input sign bit is known to be zero, or if none of the top bits
1627       // are demanded, turn this into an unsigned shift right.
1628       if (Known.Zero[BitWidth - ShAmt - 1] ||
1629           DemandedBits.countLeadingZeros() >= ShAmt) {
1630         SDNodeFlags Flags;
1631         Flags.setExact(Op->getFlags().hasExact());
1632         return TLO.CombineTo(
1633             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1634       }
1635 
1636       int Log2 = DemandedBits.exactLogBase2();
1637       if (Log2 >= 0) {
1638         // The bit must come from the sign.
1639         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1640         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1641       }
1642 
1643       if (Known.One[BitWidth - ShAmt - 1])
1644         // New bits are known one.
1645         Known.One.setHighBits(ShAmt);
1646 
1647       // Attempt to avoid multi-use ops if we don't need anything from them.
1648       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1649         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1650             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1651         if (DemandedOp0) {
1652           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1653           return TLO.CombineTo(Op, NewOp);
1654         }
1655       }
1656     }
1657     break;
1658   }
1659   case ISD::FSHL:
1660   case ISD::FSHR: {
1661     SDValue Op0 = Op.getOperand(0);
1662     SDValue Op1 = Op.getOperand(1);
1663     SDValue Op2 = Op.getOperand(2);
1664     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1665 
1666     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1667       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1668 
1669       // For fshl, 0-shift returns the 1st arg.
1670       // For fshr, 0-shift returns the 2nd arg.
1671       if (Amt == 0) {
1672         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1673                                  Known, TLO, Depth + 1))
1674           return true;
1675         break;
1676       }
1677 
1678       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1679       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1680       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1681       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1682       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1683                                Depth + 1))
1684         return true;
1685       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1686                                Depth + 1))
1687         return true;
1688 
1689       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1690       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1691       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1692       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1693       Known.One |= Known2.One;
1694       Known.Zero |= Known2.Zero;
1695     }
1696 
1697     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1698     if (isPowerOf2_32(BitWidth)) {
1699       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1700       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1701                                Known2, TLO, Depth + 1))
1702         return true;
1703     }
1704     break;
1705   }
1706   case ISD::ROTL:
1707   case ISD::ROTR: {
1708     SDValue Op0 = Op.getOperand(0);
1709     SDValue Op1 = Op.getOperand(1);
1710 
1711     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1712     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1713       return TLO.CombineTo(Op, Op0);
1714 
1715     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1716     if (isPowerOf2_32(BitWidth)) {
1717       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1718       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1719                                Depth + 1))
1720         return true;
1721     }
1722     break;
1723   }
1724   case ISD::UMIN: {
1725     // Check if one arg is always less than (or equal) to the other arg.
1726     SDValue Op0 = Op.getOperand(0);
1727     SDValue Op1 = Op.getOperand(1);
1728     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1729     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1730     Known = KnownBits::umin(Known0, Known1);
1731     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1732       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1733     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1734       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1735     break;
1736   }
1737   case ISD::UMAX: {
1738     // Check if one arg is always greater than (or equal) to the other arg.
1739     SDValue Op0 = Op.getOperand(0);
1740     SDValue Op1 = Op.getOperand(1);
1741     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1742     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1743     Known = KnownBits::umax(Known0, Known1);
1744     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1745       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1746     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1747       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1748     break;
1749   }
1750   case ISD::BITREVERSE: {
1751     SDValue Src = Op.getOperand(0);
1752     APInt DemandedSrcBits = DemandedBits.reverseBits();
1753     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1754                              Depth + 1))
1755       return true;
1756     Known.One = Known2.One.reverseBits();
1757     Known.Zero = Known2.Zero.reverseBits();
1758     break;
1759   }
1760   case ISD::BSWAP: {
1761     SDValue Src = Op.getOperand(0);
1762     APInt DemandedSrcBits = DemandedBits.byteSwap();
1763     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1764                              Depth + 1))
1765       return true;
1766     Known.One = Known2.One.byteSwap();
1767     Known.Zero = Known2.Zero.byteSwap();
1768     break;
1769   }
1770   case ISD::CTPOP: {
1771     // If only 1 bit is demanded, replace with PARITY as long as we're before
1772     // op legalization.
1773     // FIXME: Limit to scalars for now.
1774     if (DemandedBits.isOneValue() && !TLO.LegalOps && !VT.isVector())
1775       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
1776                                                Op.getOperand(0)));
1777 
1778     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1779     break;
1780   }
1781   case ISD::SIGN_EXTEND_INREG: {
1782     SDValue Op0 = Op.getOperand(0);
1783     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1784     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1785 
1786     // If we only care about the highest bit, don't bother shifting right.
1787     if (DemandedBits.isSignMask()) {
1788       unsigned NumSignBits =
1789           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1790       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1791       // However if the input is already sign extended we expect the sign
1792       // extension to be dropped altogether later and do not simplify.
1793       if (!AlreadySignExtended) {
1794         // Compute the correct shift amount type, which must be getShiftAmountTy
1795         // for scalar types after legalization.
1796         EVT ShiftAmtTy = VT;
1797         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1798           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1799 
1800         SDValue ShiftAmt =
1801             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1802         return TLO.CombineTo(Op,
1803                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1804       }
1805     }
1806 
1807     // If none of the extended bits are demanded, eliminate the sextinreg.
1808     if (DemandedBits.getActiveBits() <= ExVTBits)
1809       return TLO.CombineTo(Op, Op0);
1810 
1811     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1812 
1813     // Since the sign extended bits are demanded, we know that the sign
1814     // bit is demanded.
1815     InputDemandedBits.setBit(ExVTBits - 1);
1816 
1817     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1818       return true;
1819     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1820 
1821     // If the sign bit of the input is known set or clear, then we know the
1822     // top bits of the result.
1823 
1824     // If the input sign bit is known zero, convert this into a zero extension.
1825     if (Known.Zero[ExVTBits - 1])
1826       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1827 
1828     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1829     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1830       Known.One.setBitsFrom(ExVTBits);
1831       Known.Zero &= Mask;
1832     } else { // Input sign bit unknown
1833       Known.Zero &= Mask;
1834       Known.One &= Mask;
1835     }
1836     break;
1837   }
1838   case ISD::BUILD_PAIR: {
1839     EVT HalfVT = Op.getOperand(0).getValueType();
1840     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1841 
1842     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1843     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1844 
1845     KnownBits KnownLo, KnownHi;
1846 
1847     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1848       return true;
1849 
1850     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1851       return true;
1852 
1853     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1854                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1855 
1856     Known.One = KnownLo.One.zext(BitWidth) |
1857                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1858     break;
1859   }
1860   case ISD::ZERO_EXTEND:
1861   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1862     SDValue Src = Op.getOperand(0);
1863     EVT SrcVT = Src.getValueType();
1864     unsigned InBits = SrcVT.getScalarSizeInBits();
1865     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1866     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1867 
1868     // If none of the top bits are demanded, convert this into an any_extend.
1869     if (DemandedBits.getActiveBits() <= InBits) {
1870       // If we only need the non-extended bits of the bottom element
1871       // then we can just bitcast to the result.
1872       if (IsVecInReg && DemandedElts == 1 &&
1873           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1874           TLO.DAG.getDataLayout().isLittleEndian())
1875         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1876 
1877       unsigned Opc =
1878           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1879       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1880         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1881     }
1882 
1883     APInt InDemandedBits = DemandedBits.trunc(InBits);
1884     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1885     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1886                              Depth + 1))
1887       return true;
1888     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1889     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1890     Known = Known.zext(BitWidth);
1891 
1892     // Attempt to avoid multi-use ops if we don't need anything from them.
1893     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1894             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1895       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1896     break;
1897   }
1898   case ISD::SIGN_EXTEND:
1899   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1900     SDValue Src = Op.getOperand(0);
1901     EVT SrcVT = Src.getValueType();
1902     unsigned InBits = SrcVT.getScalarSizeInBits();
1903     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1904     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1905 
1906     // If none of the top bits are demanded, convert this into an any_extend.
1907     if (DemandedBits.getActiveBits() <= InBits) {
1908       // If we only need the non-extended bits of the bottom element
1909       // then we can just bitcast to the result.
1910       if (IsVecInReg && DemandedElts == 1 &&
1911           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1912           TLO.DAG.getDataLayout().isLittleEndian())
1913         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1914 
1915       unsigned Opc =
1916           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1917       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1918         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1919     }
1920 
1921     APInt InDemandedBits = DemandedBits.trunc(InBits);
1922     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1923 
1924     // Since some of the sign extended bits are demanded, we know that the sign
1925     // bit is demanded.
1926     InDemandedBits.setBit(InBits - 1);
1927 
1928     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1929                              Depth + 1))
1930       return true;
1931     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1932     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1933 
1934     // If the sign bit is known one, the top bits match.
1935     Known = Known.sext(BitWidth);
1936 
1937     // If the sign bit is known zero, convert this to a zero extend.
1938     if (Known.isNonNegative()) {
1939       unsigned Opc =
1940           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1941       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1942         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1943     }
1944 
1945     // Attempt to avoid multi-use ops if we don't need anything from them.
1946     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1947             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1948       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1949     break;
1950   }
1951   case ISD::ANY_EXTEND:
1952   case ISD::ANY_EXTEND_VECTOR_INREG: {
1953     SDValue Src = Op.getOperand(0);
1954     EVT SrcVT = Src.getValueType();
1955     unsigned InBits = SrcVT.getScalarSizeInBits();
1956     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1957     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1958 
1959     // If we only need the bottom element then we can just bitcast.
1960     // TODO: Handle ANY_EXTEND?
1961     if (IsVecInReg && DemandedElts == 1 &&
1962         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1963         TLO.DAG.getDataLayout().isLittleEndian())
1964       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1965 
1966     APInt InDemandedBits = DemandedBits.trunc(InBits);
1967     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1968     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1969                              Depth + 1))
1970       return true;
1971     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1972     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1973     Known = Known.anyext(BitWidth);
1974 
1975     // Attempt to avoid multi-use ops if we don't need anything from them.
1976     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1977             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1978       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1979     break;
1980   }
1981   case ISD::TRUNCATE: {
1982     SDValue Src = Op.getOperand(0);
1983 
1984     // Simplify the input, using demanded bit information, and compute the known
1985     // zero/one bits live out.
1986     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1987     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1988     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
1989                              Depth + 1))
1990       return true;
1991     Known = Known.trunc(BitWidth);
1992 
1993     // Attempt to avoid multi-use ops if we don't need anything from them.
1994     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1995             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1996       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1997 
1998     // If the input is only used by this truncate, see if we can shrink it based
1999     // on the known demanded bits.
2000     if (Src.getNode()->hasOneUse()) {
2001       switch (Src.getOpcode()) {
2002       default:
2003         break;
2004       case ISD::SRL:
2005         // Shrink SRL by a constant if none of the high bits shifted in are
2006         // demanded.
2007         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2008           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2009           // undesirable.
2010           break;
2011 
2012         const APInt *ShAmtC =
2013             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2014         if (!ShAmtC || ShAmtC->uge(BitWidth))
2015           break;
2016         uint64_t ShVal = ShAmtC->getZExtValue();
2017 
2018         APInt HighBits =
2019             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2020         HighBits.lshrInPlace(ShVal);
2021         HighBits = HighBits.trunc(BitWidth);
2022 
2023         if (!(HighBits & DemandedBits)) {
2024           // None of the shifted in bits are needed.  Add a truncate of the
2025           // shift input, then shift it.
2026           SDValue NewShAmt = TLO.DAG.getConstant(
2027               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2028           SDValue NewTrunc =
2029               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2030           return TLO.CombineTo(
2031               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2032         }
2033         break;
2034       }
2035     }
2036 
2037     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2038     break;
2039   }
2040   case ISD::AssertZext: {
2041     // AssertZext demands all of the high bits, plus any of the low bits
2042     // demanded by its users.
2043     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2044     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2045     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2046                              TLO, Depth + 1))
2047       return true;
2048     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2049 
2050     Known.Zero |= ~InMask;
2051     break;
2052   }
2053   case ISD::EXTRACT_VECTOR_ELT: {
2054     SDValue Src = Op.getOperand(0);
2055     SDValue Idx = Op.getOperand(1);
2056     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2057     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2058 
2059     if (SrcEltCnt.isScalable())
2060       return false;
2061 
2062     // Demand the bits from every vector element without a constant index.
2063     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2064     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
2065     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2066       if (CIdx->getAPIntValue().ult(NumSrcElts))
2067         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2068 
2069     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2070     // anything about the extended bits.
2071     APInt DemandedSrcBits = DemandedBits;
2072     if (BitWidth > EltBitWidth)
2073       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2074 
2075     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2076                              Depth + 1))
2077       return true;
2078 
2079     // Attempt to avoid multi-use ops if we don't need anything from them.
2080     if (!DemandedSrcBits.isAllOnesValue() ||
2081         !DemandedSrcElts.isAllOnesValue()) {
2082       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2083               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2084         SDValue NewOp =
2085             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2086         return TLO.CombineTo(Op, NewOp);
2087       }
2088     }
2089 
2090     Known = Known2;
2091     if (BitWidth > EltBitWidth)
2092       Known = Known.anyext(BitWidth);
2093     break;
2094   }
2095   case ISD::BITCAST: {
2096     SDValue Src = Op.getOperand(0);
2097     EVT SrcVT = Src.getValueType();
2098     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2099 
2100     // If this is an FP->Int bitcast and if the sign bit is the only
2101     // thing demanded, turn this into a FGETSIGN.
2102     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2103         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2104         SrcVT.isFloatingPoint()) {
2105       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2106       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2107       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2108           SrcVT != MVT::f128) {
2109         // Cannot eliminate/lower SHL for f128 yet.
2110         EVT Ty = OpVTLegal ? VT : MVT::i32;
2111         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2112         // place.  We expect the SHL to be eliminated by other optimizations.
2113         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2114         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2115         if (!OpVTLegal && OpVTSizeInBits > 32)
2116           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2117         unsigned ShVal = Op.getValueSizeInBits() - 1;
2118         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2119         return TLO.CombineTo(Op,
2120                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2121       }
2122     }
2123 
2124     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2125     // Demand the elt/bit if any of the original elts/bits are demanded.
2126     // TODO - bigendian once we have test coverage.
2127     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
2128         TLO.DAG.getDataLayout().isLittleEndian()) {
2129       unsigned Scale = BitWidth / NumSrcEltBits;
2130       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2131       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2132       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2133       for (unsigned i = 0; i != Scale; ++i) {
2134         unsigned Offset = i * NumSrcEltBits;
2135         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2136         if (!Sub.isNullValue()) {
2137           DemandedSrcBits |= Sub;
2138           for (unsigned j = 0; j != NumElts; ++j)
2139             if (DemandedElts[j])
2140               DemandedSrcElts.setBit((j * Scale) + i);
2141         }
2142       }
2143 
2144       APInt KnownSrcUndef, KnownSrcZero;
2145       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2146                                      KnownSrcZero, TLO, Depth + 1))
2147         return true;
2148 
2149       KnownBits KnownSrcBits;
2150       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2151                                KnownSrcBits, TLO, Depth + 1))
2152         return true;
2153     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2154                TLO.DAG.getDataLayout().isLittleEndian()) {
2155       unsigned Scale = NumSrcEltBits / BitWidth;
2156       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2157       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2158       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2159       for (unsigned i = 0; i != NumElts; ++i)
2160         if (DemandedElts[i]) {
2161           unsigned Offset = (i % Scale) * BitWidth;
2162           DemandedSrcBits.insertBits(DemandedBits, Offset);
2163           DemandedSrcElts.setBit(i / Scale);
2164         }
2165 
2166       if (SrcVT.isVector()) {
2167         APInt KnownSrcUndef, KnownSrcZero;
2168         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2169                                        KnownSrcZero, TLO, Depth + 1))
2170           return true;
2171       }
2172 
2173       KnownBits KnownSrcBits;
2174       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2175                                KnownSrcBits, TLO, Depth + 1))
2176         return true;
2177     }
2178 
2179     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2180     // recursive call where Known may be useful to the caller.
2181     if (Depth > 0) {
2182       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2183       return false;
2184     }
2185     break;
2186   }
2187   case ISD::ADD:
2188   case ISD::MUL:
2189   case ISD::SUB: {
2190     // Add, Sub, and Mul don't demand any bits in positions beyond that
2191     // of the highest bit demanded of them.
2192     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2193     SDNodeFlags Flags = Op.getNode()->getFlags();
2194     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2195     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2196     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2197                              Depth + 1) ||
2198         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2199                              Depth + 1) ||
2200         // See if the operation should be performed at a smaller bit width.
2201         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2202       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2203         // Disable the nsw and nuw flags. We can no longer guarantee that we
2204         // won't wrap after simplification.
2205         Flags.setNoSignedWrap(false);
2206         Flags.setNoUnsignedWrap(false);
2207         SDValue NewOp =
2208             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2209         return TLO.CombineTo(Op, NewOp);
2210       }
2211       return true;
2212     }
2213 
2214     // Attempt to avoid multi-use ops if we don't need anything from them.
2215     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2216       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2217           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2218       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2219           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2220       if (DemandedOp0 || DemandedOp1) {
2221         Flags.setNoSignedWrap(false);
2222         Flags.setNoUnsignedWrap(false);
2223         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2224         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2225         SDValue NewOp =
2226             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2227         return TLO.CombineTo(Op, NewOp);
2228       }
2229     }
2230 
2231     // If we have a constant operand, we may be able to turn it into -1 if we
2232     // do not demand the high bits. This can make the constant smaller to
2233     // encode, allow more general folding, or match specialized instruction
2234     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2235     // is probably not useful (and could be detrimental).
2236     ConstantSDNode *C = isConstOrConstSplat(Op1);
2237     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2238     if (C && !C->isAllOnesValue() && !C->isOne() &&
2239         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2240       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2241       // Disable the nsw and nuw flags. We can no longer guarantee that we
2242       // won't wrap after simplification.
2243       Flags.setNoSignedWrap(false);
2244       Flags.setNoUnsignedWrap(false);
2245       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2246       return TLO.CombineTo(Op, NewOp);
2247     }
2248 
2249     LLVM_FALLTHROUGH;
2250   }
2251   default:
2252     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2253       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2254                                             Known, TLO, Depth))
2255         return true;
2256       break;
2257     }
2258 
2259     // Just use computeKnownBits to compute output bits.
2260     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2261     break;
2262   }
2263 
2264   // If we know the value of all of the demanded bits, return this as a
2265   // constant.
2266   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2267     // Avoid folding to a constant if any OpaqueConstant is involved.
2268     const SDNode *N = Op.getNode();
2269     for (SDNode *Op :
2270          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2271       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2272         if (C->isOpaque())
2273           return false;
2274     }
2275     if (VT.isInteger())
2276       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2277     if (VT.isFloatingPoint())
2278       return TLO.CombineTo(
2279           Op,
2280           TLO.DAG.getConstantFP(
2281               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2282   }
2283 
2284   return false;
2285 }
2286 
2287 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2288                                                 const APInt &DemandedElts,
2289                                                 APInt &KnownUndef,
2290                                                 APInt &KnownZero,
2291                                                 DAGCombinerInfo &DCI) const {
2292   SelectionDAG &DAG = DCI.DAG;
2293   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2294                         !DCI.isBeforeLegalizeOps());
2295 
2296   bool Simplified =
2297       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2298   if (Simplified) {
2299     DCI.AddToWorklist(Op.getNode());
2300     DCI.CommitTargetLoweringOpt(TLO);
2301   }
2302 
2303   return Simplified;
2304 }
2305 
2306 /// Given a vector binary operation and known undefined elements for each input
2307 /// operand, compute whether each element of the output is undefined.
2308 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2309                                          const APInt &UndefOp0,
2310                                          const APInt &UndefOp1) {
2311   EVT VT = BO.getValueType();
2312   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2313          "Vector binop only");
2314 
2315   EVT EltVT = VT.getVectorElementType();
2316   unsigned NumElts = VT.getVectorNumElements();
2317   assert(UndefOp0.getBitWidth() == NumElts &&
2318          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2319 
2320   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2321                                    const APInt &UndefVals) {
2322     if (UndefVals[Index])
2323       return DAG.getUNDEF(EltVT);
2324 
2325     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2326       // Try hard to make sure that the getNode() call is not creating temporary
2327       // nodes. Ignore opaque integers because they do not constant fold.
2328       SDValue Elt = BV->getOperand(Index);
2329       auto *C = dyn_cast<ConstantSDNode>(Elt);
2330       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2331         return Elt;
2332     }
2333 
2334     return SDValue();
2335   };
2336 
2337   APInt KnownUndef = APInt::getNullValue(NumElts);
2338   for (unsigned i = 0; i != NumElts; ++i) {
2339     // If both inputs for this element are either constant or undef and match
2340     // the element type, compute the constant/undef result for this element of
2341     // the vector.
2342     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2343     // not handle FP constants. The code within getNode() should be refactored
2344     // to avoid the danger of creating a bogus temporary node here.
2345     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2346     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2347     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2348       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2349         KnownUndef.setBit(i);
2350   }
2351   return KnownUndef;
2352 }
2353 
2354 bool TargetLowering::SimplifyDemandedVectorElts(
2355     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2356     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2357     bool AssumeSingleUse) const {
2358   EVT VT = Op.getValueType();
2359   unsigned Opcode = Op.getOpcode();
2360   APInt DemandedElts = OriginalDemandedElts;
2361   unsigned NumElts = DemandedElts.getBitWidth();
2362   assert(VT.isVector() && "Expected vector op");
2363 
2364   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2365 
2366   // TODO: For now we assume we know nothing about scalable vectors.
2367   if (VT.isScalableVector())
2368     return false;
2369 
2370   assert(VT.getVectorNumElements() == NumElts &&
2371          "Mask size mismatches value type element count!");
2372 
2373   // Undef operand.
2374   if (Op.isUndef()) {
2375     KnownUndef.setAllBits();
2376     return false;
2377   }
2378 
2379   // If Op has other users, assume that all elements are needed.
2380   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2381     DemandedElts.setAllBits();
2382 
2383   // Not demanding any elements from Op.
2384   if (DemandedElts == 0) {
2385     KnownUndef.setAllBits();
2386     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2387   }
2388 
2389   // Limit search depth.
2390   if (Depth >= SelectionDAG::MaxRecursionDepth)
2391     return false;
2392 
2393   SDLoc DL(Op);
2394   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2395 
2396   // Helper for demanding the specified elements and all the bits of both binary
2397   // operands.
2398   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2399     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2400                                                            TLO.DAG, Depth + 1);
2401     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2402                                                            TLO.DAG, Depth + 1);
2403     if (NewOp0 || NewOp1) {
2404       SDValue NewOp = TLO.DAG.getNode(
2405           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2406       return TLO.CombineTo(Op, NewOp);
2407     }
2408     return false;
2409   };
2410 
2411   switch (Opcode) {
2412   case ISD::SCALAR_TO_VECTOR: {
2413     if (!DemandedElts[0]) {
2414       KnownUndef.setAllBits();
2415       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2416     }
2417     KnownUndef.setHighBits(NumElts - 1);
2418     break;
2419   }
2420   case ISD::BITCAST: {
2421     SDValue Src = Op.getOperand(0);
2422     EVT SrcVT = Src.getValueType();
2423 
2424     // We only handle vectors here.
2425     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2426     if (!SrcVT.isVector())
2427       break;
2428 
2429     // Fast handling of 'identity' bitcasts.
2430     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2431     if (NumSrcElts == NumElts)
2432       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2433                                         KnownZero, TLO, Depth + 1);
2434 
2435     APInt SrcZero, SrcUndef;
2436     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2437 
2438     // Bitcast from 'large element' src vector to 'small element' vector, we
2439     // must demand a source element if any DemandedElt maps to it.
2440     if ((NumElts % NumSrcElts) == 0) {
2441       unsigned Scale = NumElts / NumSrcElts;
2442       for (unsigned i = 0; i != NumElts; ++i)
2443         if (DemandedElts[i])
2444           SrcDemandedElts.setBit(i / Scale);
2445 
2446       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2447                                      TLO, Depth + 1))
2448         return true;
2449 
2450       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2451       // of the large element.
2452       // TODO - bigendian once we have test coverage.
2453       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2454         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2455         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2456         for (unsigned i = 0; i != NumElts; ++i)
2457           if (DemandedElts[i]) {
2458             unsigned Ofs = (i % Scale) * EltSizeInBits;
2459             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2460           }
2461 
2462         KnownBits Known;
2463         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2464                                  TLO, Depth + 1))
2465           return true;
2466       }
2467 
2468       // If the src element is zero/undef then all the output elements will be -
2469       // only demanded elements are guaranteed to be correct.
2470       for (unsigned i = 0; i != NumSrcElts; ++i) {
2471         if (SrcDemandedElts[i]) {
2472           if (SrcZero[i])
2473             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2474           if (SrcUndef[i])
2475             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2476         }
2477       }
2478     }
2479 
2480     // Bitcast from 'small element' src vector to 'large element' vector, we
2481     // demand all smaller source elements covered by the larger demanded element
2482     // of this vector.
2483     if ((NumSrcElts % NumElts) == 0) {
2484       unsigned Scale = NumSrcElts / NumElts;
2485       for (unsigned i = 0; i != NumElts; ++i)
2486         if (DemandedElts[i])
2487           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2488 
2489       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2490                                      TLO, Depth + 1))
2491         return true;
2492 
2493       // If all the src elements covering an output element are zero/undef, then
2494       // the output element will be as well, assuming it was demanded.
2495       for (unsigned i = 0; i != NumElts; ++i) {
2496         if (DemandedElts[i]) {
2497           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2498             KnownZero.setBit(i);
2499           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2500             KnownUndef.setBit(i);
2501         }
2502       }
2503     }
2504     break;
2505   }
2506   case ISD::BUILD_VECTOR: {
2507     // Check all elements and simplify any unused elements with UNDEF.
2508     if (!DemandedElts.isAllOnesValue()) {
2509       // Don't simplify BROADCASTS.
2510       if (llvm::any_of(Op->op_values(),
2511                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2512         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2513         bool Updated = false;
2514         for (unsigned i = 0; i != NumElts; ++i) {
2515           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2516             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2517             KnownUndef.setBit(i);
2518             Updated = true;
2519           }
2520         }
2521         if (Updated)
2522           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2523       }
2524     }
2525     for (unsigned i = 0; i != NumElts; ++i) {
2526       SDValue SrcOp = Op.getOperand(i);
2527       if (SrcOp.isUndef()) {
2528         KnownUndef.setBit(i);
2529       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2530                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2531         KnownZero.setBit(i);
2532       }
2533     }
2534     break;
2535   }
2536   case ISD::CONCAT_VECTORS: {
2537     EVT SubVT = Op.getOperand(0).getValueType();
2538     unsigned NumSubVecs = Op.getNumOperands();
2539     unsigned NumSubElts = SubVT.getVectorNumElements();
2540     for (unsigned i = 0; i != NumSubVecs; ++i) {
2541       SDValue SubOp = Op.getOperand(i);
2542       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2543       APInt SubUndef, SubZero;
2544       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2545                                      Depth + 1))
2546         return true;
2547       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2548       KnownZero.insertBits(SubZero, i * NumSubElts);
2549     }
2550     break;
2551   }
2552   case ISD::INSERT_SUBVECTOR: {
2553     // Demand any elements from the subvector and the remainder from the src its
2554     // inserted into.
2555     SDValue Src = Op.getOperand(0);
2556     SDValue Sub = Op.getOperand(1);
2557     uint64_t Idx = Op.getConstantOperandVal(2);
2558     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2559     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2560     APInt DemandedSrcElts = DemandedElts;
2561     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2562 
2563     APInt SubUndef, SubZero;
2564     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2565                                    Depth + 1))
2566       return true;
2567 
2568     // If none of the src operand elements are demanded, replace it with undef.
2569     if (!DemandedSrcElts && !Src.isUndef())
2570       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2571                                                TLO.DAG.getUNDEF(VT), Sub,
2572                                                Op.getOperand(2)));
2573 
2574     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2575                                    TLO, Depth + 1))
2576       return true;
2577     KnownUndef.insertBits(SubUndef, Idx);
2578     KnownZero.insertBits(SubZero, Idx);
2579 
2580     // Attempt to avoid multi-use ops if we don't need anything from them.
2581     if (!DemandedSrcElts.isAllOnesValue() ||
2582         !DemandedSubElts.isAllOnesValue()) {
2583       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2584           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2585       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2586           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2587       if (NewSrc || NewSub) {
2588         NewSrc = NewSrc ? NewSrc : Src;
2589         NewSub = NewSub ? NewSub : Sub;
2590         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2591                                         NewSub, Op.getOperand(2));
2592         return TLO.CombineTo(Op, NewOp);
2593       }
2594     }
2595     break;
2596   }
2597   case ISD::EXTRACT_SUBVECTOR: {
2598     // Offset the demanded elts by the subvector index.
2599     SDValue Src = Op.getOperand(0);
2600     if (Src.getValueType().isScalableVector())
2601       break;
2602     uint64_t Idx = Op.getConstantOperandVal(1);
2603     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2604     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2605 
2606     APInt SrcUndef, SrcZero;
2607     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2608                                    Depth + 1))
2609       return true;
2610     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2611     KnownZero = SrcZero.extractBits(NumElts, Idx);
2612 
2613     // Attempt to avoid multi-use ops if we don't need anything from them.
2614     if (!DemandedElts.isAllOnesValue()) {
2615       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2616           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2617       if (NewSrc) {
2618         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2619                                         Op.getOperand(1));
2620         return TLO.CombineTo(Op, NewOp);
2621       }
2622     }
2623     break;
2624   }
2625   case ISD::INSERT_VECTOR_ELT: {
2626     SDValue Vec = Op.getOperand(0);
2627     SDValue Scl = Op.getOperand(1);
2628     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2629 
2630     // For a legal, constant insertion index, if we don't need this insertion
2631     // then strip it, else remove it from the demanded elts.
2632     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2633       unsigned Idx = CIdx->getZExtValue();
2634       if (!DemandedElts[Idx])
2635         return TLO.CombineTo(Op, Vec);
2636 
2637       APInt DemandedVecElts(DemandedElts);
2638       DemandedVecElts.clearBit(Idx);
2639       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2640                                      KnownZero, TLO, Depth + 1))
2641         return true;
2642 
2643       KnownUndef.setBitVal(Idx, Scl.isUndef());
2644 
2645       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2646       break;
2647     }
2648 
2649     APInt VecUndef, VecZero;
2650     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2651                                    Depth + 1))
2652       return true;
2653     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2654     break;
2655   }
2656   case ISD::VSELECT: {
2657     // Try to transform the select condition based on the current demanded
2658     // elements.
2659     // TODO: If a condition element is undef, we can choose from one arm of the
2660     //       select (and if one arm is undef, then we can propagate that to the
2661     //       result).
2662     // TODO - add support for constant vselect masks (see IR version of this).
2663     APInt UnusedUndef, UnusedZero;
2664     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2665                                    UnusedZero, TLO, Depth + 1))
2666       return true;
2667 
2668     // See if we can simplify either vselect operand.
2669     APInt DemandedLHS(DemandedElts);
2670     APInt DemandedRHS(DemandedElts);
2671     APInt UndefLHS, ZeroLHS;
2672     APInt UndefRHS, ZeroRHS;
2673     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2674                                    ZeroLHS, TLO, Depth + 1))
2675       return true;
2676     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2677                                    ZeroRHS, TLO, Depth + 1))
2678       return true;
2679 
2680     KnownUndef = UndefLHS & UndefRHS;
2681     KnownZero = ZeroLHS & ZeroRHS;
2682     break;
2683   }
2684   case ISD::VECTOR_SHUFFLE: {
2685     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2686 
2687     // Collect demanded elements from shuffle operands..
2688     APInt DemandedLHS(NumElts, 0);
2689     APInt DemandedRHS(NumElts, 0);
2690     for (unsigned i = 0; i != NumElts; ++i) {
2691       int M = ShuffleMask[i];
2692       if (M < 0 || !DemandedElts[i])
2693         continue;
2694       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2695       if (M < (int)NumElts)
2696         DemandedLHS.setBit(M);
2697       else
2698         DemandedRHS.setBit(M - NumElts);
2699     }
2700 
2701     // See if we can simplify either shuffle operand.
2702     APInt UndefLHS, ZeroLHS;
2703     APInt UndefRHS, ZeroRHS;
2704     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2705                                    ZeroLHS, TLO, Depth + 1))
2706       return true;
2707     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2708                                    ZeroRHS, TLO, Depth + 1))
2709       return true;
2710 
2711     // Simplify mask using undef elements from LHS/RHS.
2712     bool Updated = false;
2713     bool IdentityLHS = true, IdentityRHS = true;
2714     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2715     for (unsigned i = 0; i != NumElts; ++i) {
2716       int &M = NewMask[i];
2717       if (M < 0)
2718         continue;
2719       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2720           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2721         Updated = true;
2722         M = -1;
2723       }
2724       IdentityLHS &= (M < 0) || (M == (int)i);
2725       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2726     }
2727 
2728     // Update legal shuffle masks based on demanded elements if it won't reduce
2729     // to Identity which can cause premature removal of the shuffle mask.
2730     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2731       SDValue LegalShuffle =
2732           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2733                                   NewMask, TLO.DAG);
2734       if (LegalShuffle)
2735         return TLO.CombineTo(Op, LegalShuffle);
2736     }
2737 
2738     // Propagate undef/zero elements from LHS/RHS.
2739     for (unsigned i = 0; i != NumElts; ++i) {
2740       int M = ShuffleMask[i];
2741       if (M < 0) {
2742         KnownUndef.setBit(i);
2743       } else if (M < (int)NumElts) {
2744         if (UndefLHS[M])
2745           KnownUndef.setBit(i);
2746         if (ZeroLHS[M])
2747           KnownZero.setBit(i);
2748       } else {
2749         if (UndefRHS[M - NumElts])
2750           KnownUndef.setBit(i);
2751         if (ZeroRHS[M - NumElts])
2752           KnownZero.setBit(i);
2753       }
2754     }
2755     break;
2756   }
2757   case ISD::ANY_EXTEND_VECTOR_INREG:
2758   case ISD::SIGN_EXTEND_VECTOR_INREG:
2759   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2760     APInt SrcUndef, SrcZero;
2761     SDValue Src = Op.getOperand(0);
2762     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2763     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2764     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2765                                    Depth + 1))
2766       return true;
2767     KnownZero = SrcZero.zextOrTrunc(NumElts);
2768     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2769 
2770     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2771         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2772         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2773       // aext - if we just need the bottom element then we can bitcast.
2774       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2775     }
2776 
2777     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2778       // zext(undef) upper bits are guaranteed to be zero.
2779       if (DemandedElts.isSubsetOf(KnownUndef))
2780         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2781       KnownUndef.clearAllBits();
2782     }
2783     break;
2784   }
2785 
2786   // TODO: There are more binop opcodes that could be handled here - MIN,
2787   // MAX, saturated math, etc.
2788   case ISD::OR:
2789   case ISD::XOR:
2790   case ISD::ADD:
2791   case ISD::SUB:
2792   case ISD::FADD:
2793   case ISD::FSUB:
2794   case ISD::FMUL:
2795   case ISD::FDIV:
2796   case ISD::FREM: {
2797     SDValue Op0 = Op.getOperand(0);
2798     SDValue Op1 = Op.getOperand(1);
2799 
2800     APInt UndefRHS, ZeroRHS;
2801     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2802                                    Depth + 1))
2803       return true;
2804     APInt UndefLHS, ZeroLHS;
2805     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2806                                    Depth + 1))
2807       return true;
2808 
2809     KnownZero = ZeroLHS & ZeroRHS;
2810     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2811 
2812     // Attempt to avoid multi-use ops if we don't need anything from them.
2813     // TODO - use KnownUndef to relax the demandedelts?
2814     if (!DemandedElts.isAllOnesValue())
2815       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2816         return true;
2817     break;
2818   }
2819   case ISD::SHL:
2820   case ISD::SRL:
2821   case ISD::SRA:
2822   case ISD::ROTL:
2823   case ISD::ROTR: {
2824     SDValue Op0 = Op.getOperand(0);
2825     SDValue Op1 = Op.getOperand(1);
2826 
2827     APInt UndefRHS, ZeroRHS;
2828     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
2829                                    Depth + 1))
2830       return true;
2831     APInt UndefLHS, ZeroLHS;
2832     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
2833                                    Depth + 1))
2834       return true;
2835 
2836     KnownZero = ZeroLHS;
2837     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2838 
2839     // Attempt to avoid multi-use ops if we don't need anything from them.
2840     // TODO - use KnownUndef to relax the demandedelts?
2841     if (!DemandedElts.isAllOnesValue())
2842       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2843         return true;
2844     break;
2845   }
2846   case ISD::MUL:
2847   case ISD::AND: {
2848     SDValue Op0 = Op.getOperand(0);
2849     SDValue Op1 = Op.getOperand(1);
2850 
2851     APInt SrcUndef, SrcZero;
2852     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
2853                                    Depth + 1))
2854       return true;
2855     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
2856                                    TLO, Depth + 1))
2857       return true;
2858 
2859     // If either side has a zero element, then the result element is zero, even
2860     // if the other is an UNDEF.
2861     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2862     // and then handle 'and' nodes with the rest of the binop opcodes.
2863     KnownZero |= SrcZero;
2864     KnownUndef &= SrcUndef;
2865     KnownUndef &= ~KnownZero;
2866 
2867     // Attempt to avoid multi-use ops if we don't need anything from them.
2868     // TODO - use KnownUndef to relax the demandedelts?
2869     if (!DemandedElts.isAllOnesValue())
2870       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
2871         return true;
2872     break;
2873   }
2874   case ISD::TRUNCATE:
2875   case ISD::SIGN_EXTEND:
2876   case ISD::ZERO_EXTEND:
2877     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2878                                    KnownZero, TLO, Depth + 1))
2879       return true;
2880 
2881     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2882       // zext(undef) upper bits are guaranteed to be zero.
2883       if (DemandedElts.isSubsetOf(KnownUndef))
2884         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2885       KnownUndef.clearAllBits();
2886     }
2887     break;
2888   default: {
2889     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2890       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2891                                                   KnownZero, TLO, Depth))
2892         return true;
2893     } else {
2894       KnownBits Known;
2895       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2896       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2897                                TLO, Depth, AssumeSingleUse))
2898         return true;
2899     }
2900     break;
2901   }
2902   }
2903   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2904 
2905   // Constant fold all undef cases.
2906   // TODO: Handle zero cases as well.
2907   if (DemandedElts.isSubsetOf(KnownUndef))
2908     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2909 
2910   return false;
2911 }
2912 
2913 /// Determine which of the bits specified in Mask are known to be either zero or
2914 /// one and return them in the Known.
2915 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2916                                                    KnownBits &Known,
2917                                                    const APInt &DemandedElts,
2918                                                    const SelectionDAG &DAG,
2919                                                    unsigned Depth) const {
2920   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2921           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2922           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2923           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2924          "Should use MaskedValueIsZero if you don't know whether Op"
2925          " is a target node!");
2926   Known.resetAll();
2927 }
2928 
2929 void TargetLowering::computeKnownBitsForTargetInstr(
2930     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2931     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2932     unsigned Depth) const {
2933   Known.resetAll();
2934 }
2935 
2936 void TargetLowering::computeKnownBitsForFrameIndex(
2937   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
2938   // The low bits are known zero if the pointer is aligned.
2939   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
2940 }
2941 
2942 Align TargetLowering::computeKnownAlignForTargetInstr(
2943   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
2944   unsigned Depth) const {
2945   return Align(1);
2946 }
2947 
2948 /// This method can be implemented by targets that want to expose additional
2949 /// information about sign bits to the DAG Combiner.
2950 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2951                                                          const APInt &,
2952                                                          const SelectionDAG &,
2953                                                          unsigned Depth) const {
2954   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2955           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2956           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2957           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2958          "Should use ComputeNumSignBits if you don't know whether Op"
2959          " is a target node!");
2960   return 1;
2961 }
2962 
2963 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2964   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2965   const MachineRegisterInfo &MRI, unsigned Depth) const {
2966   return 1;
2967 }
2968 
2969 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2970     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2971     TargetLoweringOpt &TLO, unsigned Depth) const {
2972   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2973           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2974           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2975           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2976          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2977          " is a target node!");
2978   return false;
2979 }
2980 
2981 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2982     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2983     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2984   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2985           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2986           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2987           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2988          "Should use SimplifyDemandedBits if you don't know whether Op"
2989          " is a target node!");
2990   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2991   return false;
2992 }
2993 
2994 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2995     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2996     SelectionDAG &DAG, unsigned Depth) const {
2997   assert(
2998       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2999        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3000        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3001        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3002       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3003       " is a target node!");
3004   return SDValue();
3005 }
3006 
3007 SDValue
3008 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3009                                         SDValue N1, MutableArrayRef<int> Mask,
3010                                         SelectionDAG &DAG) const {
3011   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3012   if (!LegalMask) {
3013     std::swap(N0, N1);
3014     ShuffleVectorSDNode::commuteMask(Mask);
3015     LegalMask = isShuffleMaskLegal(Mask, VT);
3016   }
3017 
3018   if (!LegalMask)
3019     return SDValue();
3020 
3021   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3022 }
3023 
3024 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3025   return nullptr;
3026 }
3027 
3028 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3029                                                   const SelectionDAG &DAG,
3030                                                   bool SNaN,
3031                                                   unsigned Depth) const {
3032   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3033           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3034           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3035           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3036          "Should use isKnownNeverNaN if you don't know whether Op"
3037          " is a target node!");
3038   return false;
3039 }
3040 
3041 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3042 // work with truncating build vectors and vectors with elements of less than
3043 // 8 bits.
3044 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
3045   if (!N)
3046     return false;
3047 
3048   APInt CVal;
3049   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
3050     CVal = CN->getAPIntValue();
3051   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
3052     auto *CN = BV->getConstantSplatNode();
3053     if (!CN)
3054       return false;
3055 
3056     // If this is a truncating build vector, truncate the splat value.
3057     // Otherwise, we may fail to match the expected values below.
3058     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
3059     CVal = CN->getAPIntValue();
3060     if (BVEltWidth < CVal.getBitWidth())
3061       CVal = CVal.trunc(BVEltWidth);
3062   } else {
3063     return false;
3064   }
3065 
3066   switch (getBooleanContents(N->getValueType(0))) {
3067   case UndefinedBooleanContent:
3068     return CVal[0];
3069   case ZeroOrOneBooleanContent:
3070     return CVal.isOneValue();
3071   case ZeroOrNegativeOneBooleanContent:
3072     return CVal.isAllOnesValue();
3073   }
3074 
3075   llvm_unreachable("Invalid boolean contents");
3076 }
3077 
3078 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
3079   if (!N)
3080     return false;
3081 
3082   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3083   if (!CN) {
3084     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3085     if (!BV)
3086       return false;
3087 
3088     // Only interested in constant splats, we don't care about undef
3089     // elements in identifying boolean constants and getConstantSplatNode
3090     // returns NULL if all ops are undef;
3091     CN = BV->getConstantSplatNode();
3092     if (!CN)
3093       return false;
3094   }
3095 
3096   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3097     return !CN->getAPIntValue()[0];
3098 
3099   return CN->isNullValue();
3100 }
3101 
3102 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3103                                        bool SExt) const {
3104   if (VT == MVT::i1)
3105     return N->isOne();
3106 
3107   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3108   switch (Cnt) {
3109   case TargetLowering::ZeroOrOneBooleanContent:
3110     // An extended value of 1 is always true, unless its original type is i1,
3111     // in which case it will be sign extended to -1.
3112     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3113   case TargetLowering::UndefinedBooleanContent:
3114   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3115     return N->isAllOnesValue() && SExt;
3116   }
3117   llvm_unreachable("Unexpected enumeration.");
3118 }
3119 
3120 /// This helper function of SimplifySetCC tries to optimize the comparison when
3121 /// either operand of the SetCC node is a bitwise-and instruction.
3122 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3123                                          ISD::CondCode Cond, const SDLoc &DL,
3124                                          DAGCombinerInfo &DCI) const {
3125   // Match these patterns in any of their permutations:
3126   // (X & Y) == Y
3127   // (X & Y) != Y
3128   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3129     std::swap(N0, N1);
3130 
3131   EVT OpVT = N0.getValueType();
3132   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3133       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3134     return SDValue();
3135 
3136   SDValue X, Y;
3137   if (N0.getOperand(0) == N1) {
3138     X = N0.getOperand(1);
3139     Y = N0.getOperand(0);
3140   } else if (N0.getOperand(1) == N1) {
3141     X = N0.getOperand(0);
3142     Y = N0.getOperand(1);
3143   } else {
3144     return SDValue();
3145   }
3146 
3147   SelectionDAG &DAG = DCI.DAG;
3148   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3149   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3150     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3151     // Note that where Y is variable and is known to have at most one bit set
3152     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3153     // equivalent when Y == 0.
3154     assert(OpVT.isInteger());
3155     Cond = ISD::getSetCCInverse(Cond, OpVT);
3156     if (DCI.isBeforeLegalizeOps() ||
3157         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3158       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3159   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3160     // If the target supports an 'and-not' or 'and-complement' logic operation,
3161     // try to use that to make a comparison operation more efficient.
3162     // But don't do this transform if the mask is a single bit because there are
3163     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3164     // 'rlwinm' on PPC).
3165 
3166     // Bail out if the compare operand that we want to turn into a zero is
3167     // already a zero (otherwise, infinite loop).
3168     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3169     if (YConst && YConst->isNullValue())
3170       return SDValue();
3171 
3172     // Transform this into: ~X & Y == 0.
3173     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3174     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3175     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3176   }
3177 
3178   return SDValue();
3179 }
3180 
3181 /// There are multiple IR patterns that could be checking whether certain
3182 /// truncation of a signed number would be lossy or not. The pattern which is
3183 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3184 /// We are looking for the following pattern: (KeptBits is a constant)
3185 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3186 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3187 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3188 /// We will unfold it into the natural trunc+sext pattern:
3189 ///   ((%x << C) a>> C) dstcond %x
3190 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3191 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3192     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3193     const SDLoc &DL) const {
3194   // We must be comparing with a constant.
3195   ConstantSDNode *C1;
3196   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3197     return SDValue();
3198 
3199   // N0 should be:  add %x, (1 << (KeptBits-1))
3200   if (N0->getOpcode() != ISD::ADD)
3201     return SDValue();
3202 
3203   // And we must be 'add'ing a constant.
3204   ConstantSDNode *C01;
3205   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3206     return SDValue();
3207 
3208   SDValue X = N0->getOperand(0);
3209   EVT XVT = X.getValueType();
3210 
3211   // Validate constants ...
3212 
3213   APInt I1 = C1->getAPIntValue();
3214 
3215   ISD::CondCode NewCond;
3216   if (Cond == ISD::CondCode::SETULT) {
3217     NewCond = ISD::CondCode::SETEQ;
3218   } else if (Cond == ISD::CondCode::SETULE) {
3219     NewCond = ISD::CondCode::SETEQ;
3220     // But need to 'canonicalize' the constant.
3221     I1 += 1;
3222   } else if (Cond == ISD::CondCode::SETUGT) {
3223     NewCond = ISD::CondCode::SETNE;
3224     // But need to 'canonicalize' the constant.
3225     I1 += 1;
3226   } else if (Cond == ISD::CondCode::SETUGE) {
3227     NewCond = ISD::CondCode::SETNE;
3228   } else
3229     return SDValue();
3230 
3231   APInt I01 = C01->getAPIntValue();
3232 
3233   auto checkConstants = [&I1, &I01]() -> bool {
3234     // Both of them must be power-of-two, and the constant from setcc is bigger.
3235     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3236   };
3237 
3238   if (checkConstants()) {
3239     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3240   } else {
3241     // What if we invert constants? (and the target predicate)
3242     I1.negate();
3243     I01.negate();
3244     assert(XVT.isInteger());
3245     NewCond = getSetCCInverse(NewCond, XVT);
3246     if (!checkConstants())
3247       return SDValue();
3248     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3249   }
3250 
3251   // They are power-of-two, so which bit is set?
3252   const unsigned KeptBits = I1.logBase2();
3253   const unsigned KeptBitsMinusOne = I01.logBase2();
3254 
3255   // Magic!
3256   if (KeptBits != (KeptBitsMinusOne + 1))
3257     return SDValue();
3258   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3259 
3260   // We don't want to do this in every single case.
3261   SelectionDAG &DAG = DCI.DAG;
3262   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3263           XVT, KeptBits))
3264     return SDValue();
3265 
3266   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3267   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3268 
3269   // Unfold into:  ((%x << C) a>> C) cond %x
3270   // Where 'cond' will be either 'eq' or 'ne'.
3271   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3272   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3273   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3274   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3275 
3276   return T2;
3277 }
3278 
3279 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3280 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3281     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3282     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3283   assert(isConstOrConstSplat(N1C) &&
3284          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3285          "Should be a comparison with 0.");
3286   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3287          "Valid only for [in]equality comparisons.");
3288 
3289   unsigned NewShiftOpcode;
3290   SDValue X, C, Y;
3291 
3292   SelectionDAG &DAG = DCI.DAG;
3293   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3294 
3295   // Look for '(C l>>/<< Y)'.
3296   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3297     // The shift should be one-use.
3298     if (!V.hasOneUse())
3299       return false;
3300     unsigned OldShiftOpcode = V.getOpcode();
3301     switch (OldShiftOpcode) {
3302     case ISD::SHL:
3303       NewShiftOpcode = ISD::SRL;
3304       break;
3305     case ISD::SRL:
3306       NewShiftOpcode = ISD::SHL;
3307       break;
3308     default:
3309       return false; // must be a logical shift.
3310     }
3311     // We should be shifting a constant.
3312     // FIXME: best to use isConstantOrConstantVector().
3313     C = V.getOperand(0);
3314     ConstantSDNode *CC =
3315         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3316     if (!CC)
3317       return false;
3318     Y = V.getOperand(1);
3319 
3320     ConstantSDNode *XC =
3321         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3322     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3323         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3324   };
3325 
3326   // LHS of comparison should be an one-use 'and'.
3327   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3328     return SDValue();
3329 
3330   X = N0.getOperand(0);
3331   SDValue Mask = N0.getOperand(1);
3332 
3333   // 'and' is commutative!
3334   if (!Match(Mask)) {
3335     std::swap(X, Mask);
3336     if (!Match(Mask))
3337       return SDValue();
3338   }
3339 
3340   EVT VT = X.getValueType();
3341 
3342   // Produce:
3343   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3344   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3345   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3346   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3347   return T2;
3348 }
3349 
3350 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3351 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3352 /// handle the commuted versions of these patterns.
3353 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3354                                            ISD::CondCode Cond, const SDLoc &DL,
3355                                            DAGCombinerInfo &DCI) const {
3356   unsigned BOpcode = N0.getOpcode();
3357   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3358          "Unexpected binop");
3359   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3360 
3361   // (X + Y) == X --> Y == 0
3362   // (X - Y) == X --> Y == 0
3363   // (X ^ Y) == X --> Y == 0
3364   SelectionDAG &DAG = DCI.DAG;
3365   EVT OpVT = N0.getValueType();
3366   SDValue X = N0.getOperand(0);
3367   SDValue Y = N0.getOperand(1);
3368   if (X == N1)
3369     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3370 
3371   if (Y != N1)
3372     return SDValue();
3373 
3374   // (X + Y) == Y --> X == 0
3375   // (X ^ Y) == Y --> X == 0
3376   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3377     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3378 
3379   // The shift would not be valid if the operands are boolean (i1).
3380   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3381     return SDValue();
3382 
3383   // (X - Y) == Y --> X == Y << 1
3384   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3385                                  !DCI.isBeforeLegalize());
3386   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3387   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3388   if (!DCI.isCalledByLegalizer())
3389     DCI.AddToWorklist(YShl1.getNode());
3390   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3391 }
3392 
3393 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3394                                       SDValue N0, const APInt &C1,
3395                                       ISD::CondCode Cond, const SDLoc &dl,
3396                                       SelectionDAG &DAG) {
3397   // Look through truncs that don't change the value of a ctpop.
3398   // FIXME: Add vector support? Need to be careful with setcc result type below.
3399   SDValue CTPOP = N0;
3400   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3401       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3402     CTPOP = N0.getOperand(0);
3403 
3404   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3405     return SDValue();
3406 
3407   EVT CTVT = CTPOP.getValueType();
3408   SDValue CTOp = CTPOP.getOperand(0);
3409 
3410   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3411   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3412   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3413     return SDValue();
3414 
3415   // (ctpop x) u< 2 -> (x & x-1) == 0
3416   // (ctpop x) u> 1 -> (x & x-1) != 0
3417   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3418     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3419     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3420       return SDValue();
3421     if (C1 == 0 && (Cond == ISD::SETULT))
3422       return SDValue(); // This is handled elsewhere.
3423 
3424     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3425 
3426     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3427     SDValue Result = CTOp;
3428     for (unsigned i = 0; i < Passes; i++) {
3429       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3430       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3431     }
3432     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3433     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3434   }
3435 
3436   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3437   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3438     // For scalars, keep CTPOP if it is legal or custom.
3439     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3440       return SDValue();
3441     // This is based on X86's custom lowering for CTPOP which produces more
3442     // instructions than the expansion here.
3443 
3444     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3445     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3446     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3447     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3448     assert(CTVT.isInteger());
3449     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3450     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3451     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3452     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3453     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3454     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3455     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3456   }
3457 
3458   return SDValue();
3459 }
3460 
3461 /// Try to simplify a setcc built with the specified operands and cc. If it is
3462 /// unable to simplify it, return a null SDValue.
3463 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3464                                       ISD::CondCode Cond, bool foldBooleans,
3465                                       DAGCombinerInfo &DCI,
3466                                       const SDLoc &dl) const {
3467   SelectionDAG &DAG = DCI.DAG;
3468   const DataLayout &Layout = DAG.getDataLayout();
3469   EVT OpVT = N0.getValueType();
3470 
3471   // Constant fold or commute setcc.
3472   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3473     return Fold;
3474 
3475   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3476   // TODO: Handle non-splat vector constants. All undef causes trouble.
3477   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3478   // infinite loop here when we encounter one.
3479   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3480   if (isConstOrConstSplat(N0) &&
3481       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3482       (DCI.isBeforeLegalizeOps() ||
3483        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3484     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3485 
3486   // If we have a subtract with the same 2 non-constant operands as this setcc
3487   // -- but in reverse order -- then try to commute the operands of this setcc
3488   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3489   // instruction on some targets.
3490   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3491       (DCI.isBeforeLegalizeOps() ||
3492        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3493       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3494       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3495     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3496 
3497   if (auto *N1C = isConstOrConstSplat(N1)) {
3498     const APInt &C1 = N1C->getAPIntValue();
3499 
3500     // Optimize some CTPOP cases.
3501     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3502       return V;
3503 
3504     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3505     // equality comparison, then we're just comparing whether X itself is
3506     // zero.
3507     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3508         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3509         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3510       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3511         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3512             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3513           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3514             // (srl (ctlz x), 5) == 0  -> X != 0
3515             // (srl (ctlz x), 5) != 1  -> X != 0
3516             Cond = ISD::SETNE;
3517           } else {
3518             // (srl (ctlz x), 5) != 0  -> X == 0
3519             // (srl (ctlz x), 5) == 1  -> X == 0
3520             Cond = ISD::SETEQ;
3521           }
3522           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3523           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3524                               Cond);
3525         }
3526       }
3527     }
3528   }
3529 
3530   // FIXME: Support vectors.
3531   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3532     const APInt &C1 = N1C->getAPIntValue();
3533 
3534     // (zext x) == C --> x == (trunc C)
3535     // (sext x) == C --> x == (trunc C)
3536     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3537         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3538       unsigned MinBits = N0.getValueSizeInBits();
3539       SDValue PreExt;
3540       bool Signed = false;
3541       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3542         // ZExt
3543         MinBits = N0->getOperand(0).getValueSizeInBits();
3544         PreExt = N0->getOperand(0);
3545       } else if (N0->getOpcode() == ISD::AND) {
3546         // DAGCombine turns costly ZExts into ANDs
3547         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3548           if ((C->getAPIntValue()+1).isPowerOf2()) {
3549             MinBits = C->getAPIntValue().countTrailingOnes();
3550             PreExt = N0->getOperand(0);
3551           }
3552       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3553         // SExt
3554         MinBits = N0->getOperand(0).getValueSizeInBits();
3555         PreExt = N0->getOperand(0);
3556         Signed = true;
3557       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3558         // ZEXTLOAD / SEXTLOAD
3559         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3560           MinBits = LN0->getMemoryVT().getSizeInBits();
3561           PreExt = N0;
3562         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3563           Signed = true;
3564           MinBits = LN0->getMemoryVT().getSizeInBits();
3565           PreExt = N0;
3566         }
3567       }
3568 
3569       // Figure out how many bits we need to preserve this constant.
3570       unsigned ReqdBits = Signed ?
3571         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3572         C1.getActiveBits();
3573 
3574       // Make sure we're not losing bits from the constant.
3575       if (MinBits > 0 &&
3576           MinBits < C1.getBitWidth() &&
3577           MinBits >= ReqdBits) {
3578         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3579         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3580           // Will get folded away.
3581           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3582           if (MinBits == 1 && C1 == 1)
3583             // Invert the condition.
3584             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3585                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3586           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3587           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3588         }
3589 
3590         // If truncating the setcc operands is not desirable, we can still
3591         // simplify the expression in some cases:
3592         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3593         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3594         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3595         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3596         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3597         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3598         SDValue TopSetCC = N0->getOperand(0);
3599         unsigned N0Opc = N0->getOpcode();
3600         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3601         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3602             TopSetCC.getOpcode() == ISD::SETCC &&
3603             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3604             (isConstFalseVal(N1C) ||
3605              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3606 
3607           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3608                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3609 
3610           if (!Inverse)
3611             return TopSetCC;
3612 
3613           ISD::CondCode InvCond = ISD::getSetCCInverse(
3614               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3615               TopSetCC.getOperand(0).getValueType());
3616           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3617                                       TopSetCC.getOperand(1),
3618                                       InvCond);
3619         }
3620       }
3621     }
3622 
3623     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3624     // equality or unsigned, and all 1 bits of the const are in the same
3625     // partial word, see if we can shorten the load.
3626     if (DCI.isBeforeLegalize() &&
3627         !ISD::isSignedIntSetCC(Cond) &&
3628         N0.getOpcode() == ISD::AND && C1 == 0 &&
3629         N0.getNode()->hasOneUse() &&
3630         isa<LoadSDNode>(N0.getOperand(0)) &&
3631         N0.getOperand(0).getNode()->hasOneUse() &&
3632         isa<ConstantSDNode>(N0.getOperand(1))) {
3633       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3634       APInt bestMask;
3635       unsigned bestWidth = 0, bestOffset = 0;
3636       if (Lod->isSimple() && Lod->isUnindexed()) {
3637         unsigned origWidth = N0.getValueSizeInBits();
3638         unsigned maskWidth = origWidth;
3639         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3640         // 8 bits, but have to be careful...
3641         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3642           origWidth = Lod->getMemoryVT().getSizeInBits();
3643         const APInt &Mask = N0.getConstantOperandAPInt(1);
3644         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3645           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3646           for (unsigned offset=0; offset<origWidth/width; offset++) {
3647             if (Mask.isSubsetOf(newMask)) {
3648               if (Layout.isLittleEndian())
3649                 bestOffset = (uint64_t)offset * (width/8);
3650               else
3651                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3652               bestMask = Mask.lshr(offset * (width/8) * 8);
3653               bestWidth = width;
3654               break;
3655             }
3656             newMask <<= width;
3657           }
3658         }
3659       }
3660       if (bestWidth) {
3661         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3662         if (newVT.isRound() &&
3663             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3664           SDValue Ptr = Lod->getBasePtr();
3665           if (bestOffset != 0)
3666             Ptr =
3667                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3668           SDValue NewLoad =
3669               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3670                           Lod->getPointerInfo().getWithOffset(bestOffset),
3671                           Lod->getOriginalAlign());
3672           return DAG.getSetCC(dl, VT,
3673                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3674                                       DAG.getConstant(bestMask.trunc(bestWidth),
3675                                                       dl, newVT)),
3676                               DAG.getConstant(0LL, dl, newVT), Cond);
3677         }
3678       }
3679     }
3680 
3681     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3682     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3683       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3684 
3685       // If the comparison constant has bits in the upper part, the
3686       // zero-extended value could never match.
3687       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3688                                               C1.getBitWidth() - InSize))) {
3689         switch (Cond) {
3690         case ISD::SETUGT:
3691         case ISD::SETUGE:
3692         case ISD::SETEQ:
3693           return DAG.getConstant(0, dl, VT);
3694         case ISD::SETULT:
3695         case ISD::SETULE:
3696         case ISD::SETNE:
3697           return DAG.getConstant(1, dl, VT);
3698         case ISD::SETGT:
3699         case ISD::SETGE:
3700           // True if the sign bit of C1 is set.
3701           return DAG.getConstant(C1.isNegative(), dl, VT);
3702         case ISD::SETLT:
3703         case ISD::SETLE:
3704           // True if the sign bit of C1 isn't set.
3705           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3706         default:
3707           break;
3708         }
3709       }
3710 
3711       // Otherwise, we can perform the comparison with the low bits.
3712       switch (Cond) {
3713       case ISD::SETEQ:
3714       case ISD::SETNE:
3715       case ISD::SETUGT:
3716       case ISD::SETUGE:
3717       case ISD::SETULT:
3718       case ISD::SETULE: {
3719         EVT newVT = N0.getOperand(0).getValueType();
3720         if (DCI.isBeforeLegalizeOps() ||
3721             (isOperationLegal(ISD::SETCC, newVT) &&
3722              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3723           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3724           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3725 
3726           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3727                                           NewConst, Cond);
3728           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3729         }
3730         break;
3731       }
3732       default:
3733         break; // todo, be more careful with signed comparisons
3734       }
3735     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3736                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3737                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
3738                                       OpVT)) {
3739       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3740       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3741       EVT ExtDstTy = N0.getValueType();
3742       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3743 
3744       // If the constant doesn't fit into the number of bits for the source of
3745       // the sign extension, it is impossible for both sides to be equal.
3746       if (C1.getMinSignedBits() > ExtSrcTyBits)
3747         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
3748 
3749       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
3750              ExtDstTy != ExtSrcTy && "Unexpected types!");
3751       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3752       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
3753                                    DAG.getConstant(Imm, dl, ExtDstTy));
3754       if (!DCI.isCalledByLegalizer())
3755         DCI.AddToWorklist(ZextOp.getNode());
3756       // Otherwise, make this a use of a zext.
3757       return DAG.getSetCC(dl, VT, ZextOp,
3758                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
3759     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3760                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3761       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3762       if (N0.getOpcode() == ISD::SETCC &&
3763           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3764           (N0.getValueType() == MVT::i1 ||
3765            getBooleanContents(N0.getOperand(0).getValueType()) ==
3766                        ZeroOrOneBooleanContent)) {
3767         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3768         if (TrueWhenTrue)
3769           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3770         // Invert the condition.
3771         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3772         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3773         if (DCI.isBeforeLegalizeOps() ||
3774             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3775           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3776       }
3777 
3778       if ((N0.getOpcode() == ISD::XOR ||
3779            (N0.getOpcode() == ISD::AND &&
3780             N0.getOperand(0).getOpcode() == ISD::XOR &&
3781             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3782           isOneConstant(N0.getOperand(1))) {
3783         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3784         // can only do this if the top bits are known zero.
3785         unsigned BitWidth = N0.getValueSizeInBits();
3786         if (DAG.MaskedValueIsZero(N0,
3787                                   APInt::getHighBitsSet(BitWidth,
3788                                                         BitWidth-1))) {
3789           // Okay, get the un-inverted input value.
3790           SDValue Val;
3791           if (N0.getOpcode() == ISD::XOR) {
3792             Val = N0.getOperand(0);
3793           } else {
3794             assert(N0.getOpcode() == ISD::AND &&
3795                     N0.getOperand(0).getOpcode() == ISD::XOR);
3796             // ((X^1)&1)^1 -> X & 1
3797             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3798                               N0.getOperand(0).getOperand(0),
3799                               N0.getOperand(1));
3800           }
3801 
3802           return DAG.getSetCC(dl, VT, Val, N1,
3803                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3804         }
3805       } else if (N1C->isOne()) {
3806         SDValue Op0 = N0;
3807         if (Op0.getOpcode() == ISD::TRUNCATE)
3808           Op0 = Op0.getOperand(0);
3809 
3810         if ((Op0.getOpcode() == ISD::XOR) &&
3811             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3812             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3813           SDValue XorLHS = Op0.getOperand(0);
3814           SDValue XorRHS = Op0.getOperand(1);
3815           // Ensure that the input setccs return an i1 type or 0/1 value.
3816           if (Op0.getValueType() == MVT::i1 ||
3817               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3818                       ZeroOrOneBooleanContent &&
3819                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3820                         ZeroOrOneBooleanContent)) {
3821             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3822             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3823             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3824           }
3825         }
3826         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
3827           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3828           if (Op0.getValueType().bitsGT(VT))
3829             Op0 = DAG.getNode(ISD::AND, dl, VT,
3830                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3831                           DAG.getConstant(1, dl, VT));
3832           else if (Op0.getValueType().bitsLT(VT))
3833             Op0 = DAG.getNode(ISD::AND, dl, VT,
3834                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3835                         DAG.getConstant(1, dl, VT));
3836 
3837           return DAG.getSetCC(dl, VT, Op0,
3838                               DAG.getConstant(0, dl, Op0.getValueType()),
3839                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3840         }
3841         if (Op0.getOpcode() == ISD::AssertZext &&
3842             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3843           return DAG.getSetCC(dl, VT, Op0,
3844                               DAG.getConstant(0, dl, Op0.getValueType()),
3845                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3846       }
3847     }
3848 
3849     // Given:
3850     //   icmp eq/ne (urem %x, %y), 0
3851     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3852     //   icmp eq/ne %x, 0
3853     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3854         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3855       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3856       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3857       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3858         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3859     }
3860 
3861     if (SDValue V =
3862             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3863       return V;
3864   }
3865 
3866   // These simplifications apply to splat vectors as well.
3867   // TODO: Handle more splat vector cases.
3868   if (auto *N1C = isConstOrConstSplat(N1)) {
3869     const APInt &C1 = N1C->getAPIntValue();
3870 
3871     APInt MinVal, MaxVal;
3872     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3873     if (ISD::isSignedIntSetCC(Cond)) {
3874       MinVal = APInt::getSignedMinValue(OperandBitSize);
3875       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3876     } else {
3877       MinVal = APInt::getMinValue(OperandBitSize);
3878       MaxVal = APInt::getMaxValue(OperandBitSize);
3879     }
3880 
3881     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3882     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3883       // X >= MIN --> true
3884       if (C1 == MinVal)
3885         return DAG.getBoolConstant(true, dl, VT, OpVT);
3886 
3887       if (!VT.isVector()) { // TODO: Support this for vectors.
3888         // X >= C0 --> X > (C0 - 1)
3889         APInt C = C1 - 1;
3890         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3891         if ((DCI.isBeforeLegalizeOps() ||
3892              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3893             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3894                                   isLegalICmpImmediate(C.getSExtValue())))) {
3895           return DAG.getSetCC(dl, VT, N0,
3896                               DAG.getConstant(C, dl, N1.getValueType()),
3897                               NewCC);
3898         }
3899       }
3900     }
3901 
3902     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3903       // X <= MAX --> true
3904       if (C1 == MaxVal)
3905         return DAG.getBoolConstant(true, dl, VT, OpVT);
3906 
3907       // X <= C0 --> X < (C0 + 1)
3908       if (!VT.isVector()) { // TODO: Support this for vectors.
3909         APInt C = C1 + 1;
3910         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3911         if ((DCI.isBeforeLegalizeOps() ||
3912              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3913             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3914                                   isLegalICmpImmediate(C.getSExtValue())))) {
3915           return DAG.getSetCC(dl, VT, N0,
3916                               DAG.getConstant(C, dl, N1.getValueType()),
3917                               NewCC);
3918         }
3919       }
3920     }
3921 
3922     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3923       if (C1 == MinVal)
3924         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3925 
3926       // TODO: Support this for vectors after legalize ops.
3927       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3928         // Canonicalize setlt X, Max --> setne X, Max
3929         if (C1 == MaxVal)
3930           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3931 
3932         // If we have setult X, 1, turn it into seteq X, 0
3933         if (C1 == MinVal+1)
3934           return DAG.getSetCC(dl, VT, N0,
3935                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3936                               ISD::SETEQ);
3937       }
3938     }
3939 
3940     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3941       if (C1 == MaxVal)
3942         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3943 
3944       // TODO: Support this for vectors after legalize ops.
3945       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3946         // Canonicalize setgt X, Min --> setne X, Min
3947         if (C1 == MinVal)
3948           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3949 
3950         // If we have setugt X, Max-1, turn it into seteq X, Max
3951         if (C1 == MaxVal-1)
3952           return DAG.getSetCC(dl, VT, N0,
3953                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3954                               ISD::SETEQ);
3955       }
3956     }
3957 
3958     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3959       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3960       if (C1.isNullValue())
3961         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3962                 VT, N0, N1, Cond, DCI, dl))
3963           return CC;
3964 
3965       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
3966       // For example, when high 32-bits of i64 X are known clear:
3967       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
3968       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
3969       bool CmpZero = N1C->getAPIntValue().isNullValue();
3970       bool CmpNegOne = N1C->getAPIntValue().isAllOnesValue();
3971       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
3972         // Match or(lo,shl(hi,bw/2)) pattern.
3973         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
3974           unsigned EltBits = V.getScalarValueSizeInBits();
3975           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
3976             return false;
3977           SDValue LHS = V.getOperand(0);
3978           SDValue RHS = V.getOperand(1);
3979           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
3980           // Unshifted element must have zero upperbits.
3981           if (RHS.getOpcode() == ISD::SHL &&
3982               isa<ConstantSDNode>(RHS.getOperand(1)) &&
3983               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3984               DAG.MaskedValueIsZero(LHS, HiBits)) {
3985             Lo = LHS;
3986             Hi = RHS.getOperand(0);
3987             return true;
3988           }
3989           if (LHS.getOpcode() == ISD::SHL &&
3990               isa<ConstantSDNode>(LHS.getOperand(1)) &&
3991               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
3992               DAG.MaskedValueIsZero(RHS, HiBits)) {
3993             Lo = RHS;
3994             Hi = LHS.getOperand(0);
3995             return true;
3996           }
3997           return false;
3998         };
3999 
4000         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4001           unsigned EltBits = N0.getScalarValueSizeInBits();
4002           unsigned HalfBits = EltBits / 2;
4003           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4004           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4005           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4006           SDValue NewN0 =
4007               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4008           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4009           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4010         };
4011 
4012         SDValue Lo, Hi;
4013         if (IsConcat(N0, Lo, Hi))
4014           return MergeConcat(Lo, Hi);
4015 
4016         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4017           SDValue Lo0, Lo1, Hi0, Hi1;
4018           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4019               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4020             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4021                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4022           }
4023         }
4024       }
4025     }
4026 
4027     // If we have "setcc X, C0", check to see if we can shrink the immediate
4028     // by changing cc.
4029     // TODO: Support this for vectors after legalize ops.
4030     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4031       // SETUGT X, SINTMAX  -> SETLT X, 0
4032       // SETUGE X, SINTMIN -> SETLT X, 0
4033       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4034           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4035         return DAG.getSetCC(dl, VT, N0,
4036                             DAG.getConstant(0, dl, N1.getValueType()),
4037                             ISD::SETLT);
4038 
4039       // SETULT X, SINTMIN  -> SETGT X, -1
4040       // SETULE X, SINTMAX  -> SETGT X, -1
4041       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4042           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4043         return DAG.getSetCC(dl, VT, N0,
4044                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4045                             ISD::SETGT);
4046     }
4047   }
4048 
4049   // Back to non-vector simplifications.
4050   // TODO: Can we do these for vector splats?
4051   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4052     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4053     const APInt &C1 = N1C->getAPIntValue();
4054     EVT ShValTy = N0.getValueType();
4055 
4056     // Fold bit comparisons when we can. This will result in an
4057     // incorrect value when boolean false is negative one, unless
4058     // the bitsize is 1 in which case the false value is the same
4059     // in practice regardless of the representation.
4060     if ((VT.getSizeInBits() == 1 ||
4061          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4062         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4063         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4064         N0.getOpcode() == ISD::AND) {
4065       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4066         EVT ShiftTy =
4067             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4068         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4069           // Perform the xform if the AND RHS is a single bit.
4070           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4071           if (AndRHS->getAPIntValue().isPowerOf2() &&
4072               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4073             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4074                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4075                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4076           }
4077         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4078           // (X & 8) == 8  -->  (X & 8) >> 3
4079           // Perform the xform if C1 is a single bit.
4080           unsigned ShCt = C1.logBase2();
4081           if (C1.isPowerOf2() &&
4082               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4083             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4084                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4085                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4086           }
4087         }
4088       }
4089     }
4090 
4091     if (C1.getMinSignedBits() <= 64 &&
4092         !isLegalICmpImmediate(C1.getSExtValue())) {
4093       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4094       // (X & -256) == 256 -> (X >> 8) == 1
4095       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4096           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4097         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4098           const APInt &AndRHSC = AndRHS->getAPIntValue();
4099           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
4100             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4101             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4102               SDValue Shift =
4103                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4104                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4105               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4106               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4107             }
4108           }
4109         }
4110       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4111                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4112         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4113         // X <  0x100000000 -> (X >> 32) <  1
4114         // X >= 0x100000000 -> (X >> 32) >= 1
4115         // X <= 0x0ffffffff -> (X >> 32) <  1
4116         // X >  0x0ffffffff -> (X >> 32) >= 1
4117         unsigned ShiftBits;
4118         APInt NewC = C1;
4119         ISD::CondCode NewCond = Cond;
4120         if (AdjOne) {
4121           ShiftBits = C1.countTrailingOnes();
4122           NewC = NewC + 1;
4123           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4124         } else {
4125           ShiftBits = C1.countTrailingZeros();
4126         }
4127         NewC.lshrInPlace(ShiftBits);
4128         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4129             isLegalICmpImmediate(NewC.getSExtValue()) &&
4130             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4131           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4132                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4133           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4134           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4135         }
4136       }
4137     }
4138   }
4139 
4140   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4141     auto *CFP = cast<ConstantFPSDNode>(N1);
4142     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4143 
4144     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4145     // constant if knowing that the operand is non-nan is enough.  We prefer to
4146     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4147     // materialize 0.0.
4148     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4149       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4150 
4151     // setcc (fneg x), C -> setcc swap(pred) x, -C
4152     if (N0.getOpcode() == ISD::FNEG) {
4153       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4154       if (DCI.isBeforeLegalizeOps() ||
4155           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4156         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4157         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4158       }
4159     }
4160 
4161     // If the condition is not legal, see if we can find an equivalent one
4162     // which is legal.
4163     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4164       // If the comparison was an awkward floating-point == or != and one of
4165       // the comparison operands is infinity or negative infinity, convert the
4166       // condition to a less-awkward <= or >=.
4167       if (CFP->getValueAPF().isInfinity()) {
4168         bool IsNegInf = CFP->getValueAPF().isNegative();
4169         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4170         switch (Cond) {
4171         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4172         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4173         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4174         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4175         default: break;
4176         }
4177         if (NewCond != ISD::SETCC_INVALID &&
4178             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4179           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4180       }
4181     }
4182   }
4183 
4184   if (N0 == N1) {
4185     // The sext(setcc()) => setcc() optimization relies on the appropriate
4186     // constant being emitted.
4187     assert(!N0.getValueType().isInteger() &&
4188            "Integer types should be handled by FoldSetCC");
4189 
4190     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4191     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4192     if (UOF == 2) // FP operators that are undefined on NaNs.
4193       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4194     if (UOF == unsigned(EqTrue))
4195       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4196     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4197     // if it is not already.
4198     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4199     if (NewCond != Cond &&
4200         (DCI.isBeforeLegalizeOps() ||
4201                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4202       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4203   }
4204 
4205   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4206       N0.getValueType().isInteger()) {
4207     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4208         N0.getOpcode() == ISD::XOR) {
4209       // Simplify (X+Y) == (X+Z) -->  Y == Z
4210       if (N0.getOpcode() == N1.getOpcode()) {
4211         if (N0.getOperand(0) == N1.getOperand(0))
4212           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4213         if (N0.getOperand(1) == N1.getOperand(1))
4214           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4215         if (isCommutativeBinOp(N0.getOpcode())) {
4216           // If X op Y == Y op X, try other combinations.
4217           if (N0.getOperand(0) == N1.getOperand(1))
4218             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4219                                 Cond);
4220           if (N0.getOperand(1) == N1.getOperand(0))
4221             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4222                                 Cond);
4223         }
4224       }
4225 
4226       // If RHS is a legal immediate value for a compare instruction, we need
4227       // to be careful about increasing register pressure needlessly.
4228       bool LegalRHSImm = false;
4229 
4230       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4231         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4232           // Turn (X+C1) == C2 --> X == C2-C1
4233           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4234             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4235                                 DAG.getConstant(RHSC->getAPIntValue()-
4236                                                 LHSR->getAPIntValue(),
4237                                 dl, N0.getValueType()), Cond);
4238           }
4239 
4240           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4241           if (N0.getOpcode() == ISD::XOR)
4242             // If we know that all of the inverted bits are zero, don't bother
4243             // performing the inversion.
4244             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4245               return
4246                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4247                              DAG.getConstant(LHSR->getAPIntValue() ^
4248                                                RHSC->getAPIntValue(),
4249                                              dl, N0.getValueType()),
4250                              Cond);
4251         }
4252 
4253         // Turn (C1-X) == C2 --> X == C1-C2
4254         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4255           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4256             return
4257               DAG.getSetCC(dl, VT, N0.getOperand(1),
4258                            DAG.getConstant(SUBC->getAPIntValue() -
4259                                              RHSC->getAPIntValue(),
4260                                            dl, N0.getValueType()),
4261                            Cond);
4262           }
4263         }
4264 
4265         // Could RHSC fold directly into a compare?
4266         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4267           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4268       }
4269 
4270       // (X+Y) == X --> Y == 0 and similar folds.
4271       // Don't do this if X is an immediate that can fold into a cmp
4272       // instruction and X+Y has other uses. It could be an induction variable
4273       // chain, and the transform would increase register pressure.
4274       if (!LegalRHSImm || N0.hasOneUse())
4275         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4276           return V;
4277     }
4278 
4279     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4280         N1.getOpcode() == ISD::XOR)
4281       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4282         return V;
4283 
4284     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4285       return V;
4286   }
4287 
4288   // Fold remainder of division by a constant.
4289   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4290       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4291     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4292 
4293     // When division is cheap or optimizing for minimum size,
4294     // fall through to DIVREM creation by skipping this fold.
4295     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4296       if (N0.getOpcode() == ISD::UREM) {
4297         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4298           return Folded;
4299       } else if (N0.getOpcode() == ISD::SREM) {
4300         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4301           return Folded;
4302       }
4303     }
4304   }
4305 
4306   // Fold away ALL boolean setcc's.
4307   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4308     SDValue Temp;
4309     switch (Cond) {
4310     default: llvm_unreachable("Unknown integer setcc!");
4311     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4312       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4313       N0 = DAG.getNOT(dl, Temp, OpVT);
4314       if (!DCI.isCalledByLegalizer())
4315         DCI.AddToWorklist(Temp.getNode());
4316       break;
4317     case ISD::SETNE:  // X != Y   -->  (X^Y)
4318       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4319       break;
4320     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4321     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4322       Temp = DAG.getNOT(dl, N0, OpVT);
4323       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4324       if (!DCI.isCalledByLegalizer())
4325         DCI.AddToWorklist(Temp.getNode());
4326       break;
4327     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4328     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4329       Temp = DAG.getNOT(dl, N1, OpVT);
4330       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4331       if (!DCI.isCalledByLegalizer())
4332         DCI.AddToWorklist(Temp.getNode());
4333       break;
4334     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4335     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4336       Temp = DAG.getNOT(dl, N0, OpVT);
4337       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4338       if (!DCI.isCalledByLegalizer())
4339         DCI.AddToWorklist(Temp.getNode());
4340       break;
4341     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4342     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4343       Temp = DAG.getNOT(dl, N1, OpVT);
4344       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4345       break;
4346     }
4347     if (VT.getScalarType() != MVT::i1) {
4348       if (!DCI.isCalledByLegalizer())
4349         DCI.AddToWorklist(N0.getNode());
4350       // FIXME: If running after legalize, we probably can't do this.
4351       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4352       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4353     }
4354     return N0;
4355   }
4356 
4357   // Could not fold it.
4358   return SDValue();
4359 }
4360 
4361 /// Returns true (and the GlobalValue and the offset) if the node is a
4362 /// GlobalAddress + offset.
4363 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4364                                     int64_t &Offset) const {
4365 
4366   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4367 
4368   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4369     GA = GASD->getGlobal();
4370     Offset += GASD->getOffset();
4371     return true;
4372   }
4373 
4374   if (N->getOpcode() == ISD::ADD) {
4375     SDValue N1 = N->getOperand(0);
4376     SDValue N2 = N->getOperand(1);
4377     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4378       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4379         Offset += V->getSExtValue();
4380         return true;
4381       }
4382     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4383       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4384         Offset += V->getSExtValue();
4385         return true;
4386       }
4387     }
4388   }
4389 
4390   return false;
4391 }
4392 
4393 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4394                                           DAGCombinerInfo &DCI) const {
4395   // Default implementation: no optimization.
4396   return SDValue();
4397 }
4398 
4399 //===----------------------------------------------------------------------===//
4400 //  Inline Assembler Implementation Methods
4401 //===----------------------------------------------------------------------===//
4402 
4403 TargetLowering::ConstraintType
4404 TargetLowering::getConstraintType(StringRef Constraint) const {
4405   unsigned S = Constraint.size();
4406 
4407   if (S == 1) {
4408     switch (Constraint[0]) {
4409     default: break;
4410     case 'r':
4411       return C_RegisterClass;
4412     case 'm': // memory
4413     case 'o': // offsetable
4414     case 'V': // not offsetable
4415       return C_Memory;
4416     case 'n': // Simple Integer
4417     case 'E': // Floating Point Constant
4418     case 'F': // Floating Point Constant
4419       return C_Immediate;
4420     case 'i': // Simple Integer or Relocatable Constant
4421     case 's': // Relocatable Constant
4422     case 'p': // Address.
4423     case 'X': // Allow ANY value.
4424     case 'I': // Target registers.
4425     case 'J':
4426     case 'K':
4427     case 'L':
4428     case 'M':
4429     case 'N':
4430     case 'O':
4431     case 'P':
4432     case '<':
4433     case '>':
4434       return C_Other;
4435     }
4436   }
4437 
4438   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4439     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4440       return C_Memory;
4441     return C_Register;
4442   }
4443   return C_Unknown;
4444 }
4445 
4446 /// Try to replace an X constraint, which matches anything, with another that
4447 /// has more specific requirements based on the type of the corresponding
4448 /// operand.
4449 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4450   if (ConstraintVT.isInteger())
4451     return "r";
4452   if (ConstraintVT.isFloatingPoint())
4453     return "f"; // works for many targets
4454   return nullptr;
4455 }
4456 
4457 SDValue TargetLowering::LowerAsmOutputForConstraint(
4458     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4459     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4460   return SDValue();
4461 }
4462 
4463 /// Lower the specified operand into the Ops vector.
4464 /// If it is invalid, don't add anything to Ops.
4465 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4466                                                   std::string &Constraint,
4467                                                   std::vector<SDValue> &Ops,
4468                                                   SelectionDAG &DAG) const {
4469 
4470   if (Constraint.length() > 1) return;
4471 
4472   char ConstraintLetter = Constraint[0];
4473   switch (ConstraintLetter) {
4474   default: break;
4475   case 'X':     // Allows any operand; labels (basic block) use this.
4476     if (Op.getOpcode() == ISD::BasicBlock ||
4477         Op.getOpcode() == ISD::TargetBlockAddress) {
4478       Ops.push_back(Op);
4479       return;
4480     }
4481     LLVM_FALLTHROUGH;
4482   case 'i':    // Simple Integer or Relocatable Constant
4483   case 'n':    // Simple Integer
4484   case 's': {  // Relocatable Constant
4485 
4486     GlobalAddressSDNode *GA;
4487     ConstantSDNode *C;
4488     BlockAddressSDNode *BA;
4489     uint64_t Offset = 0;
4490 
4491     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4492     // etc., since getelementpointer is variadic. We can't use
4493     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4494     // while in this case the GA may be furthest from the root node which is
4495     // likely an ISD::ADD.
4496     while (1) {
4497       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4498         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4499                                                  GA->getValueType(0),
4500                                                  Offset + GA->getOffset()));
4501         return;
4502       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4503                  ConstraintLetter != 's') {
4504         // gcc prints these as sign extended.  Sign extend value to 64 bits
4505         // now; without this it would get ZExt'd later in
4506         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4507         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4508         BooleanContent BCont = getBooleanContents(MVT::i64);
4509         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4510                                       : ISD::SIGN_EXTEND;
4511         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4512                                                     : C->getSExtValue();
4513         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4514                                             SDLoc(C), MVT::i64));
4515         return;
4516       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4517                  ConstraintLetter != 'n') {
4518         Ops.push_back(DAG.getTargetBlockAddress(
4519             BA->getBlockAddress(), BA->getValueType(0),
4520             Offset + BA->getOffset(), BA->getTargetFlags()));
4521         return;
4522       } else {
4523         const unsigned OpCode = Op.getOpcode();
4524         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4525           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4526             Op = Op.getOperand(1);
4527           // Subtraction is not commutative.
4528           else if (OpCode == ISD::ADD &&
4529                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4530             Op = Op.getOperand(0);
4531           else
4532             return;
4533           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4534           continue;
4535         }
4536       }
4537       return;
4538     }
4539     break;
4540   }
4541   }
4542 }
4543 
4544 std::pair<unsigned, const TargetRegisterClass *>
4545 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4546                                              StringRef Constraint,
4547                                              MVT VT) const {
4548   if (Constraint.empty() || Constraint[0] != '{')
4549     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4550   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4551 
4552   // Remove the braces from around the name.
4553   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4554 
4555   std::pair<unsigned, const TargetRegisterClass *> R =
4556       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4557 
4558   // Figure out which register class contains this reg.
4559   for (const TargetRegisterClass *RC : RI->regclasses()) {
4560     // If none of the value types for this register class are valid, we
4561     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4562     if (!isLegalRC(*RI, *RC))
4563       continue;
4564 
4565     for (const MCPhysReg &PR : *RC) {
4566       if (RegName.equals_lower(RI->getRegAsmName(PR))) {
4567         std::pair<unsigned, const TargetRegisterClass *> S =
4568             std::make_pair(PR, RC);
4569 
4570         // If this register class has the requested value type, return it,
4571         // otherwise keep searching and return the first class found
4572         // if no other is found which explicitly has the requested type.
4573         if (RI->isTypeLegalForClass(*RC, VT))
4574           return S;
4575         if (!R.second)
4576           R = S;
4577       }
4578     }
4579   }
4580 
4581   return R;
4582 }
4583 
4584 //===----------------------------------------------------------------------===//
4585 // Constraint Selection.
4586 
4587 /// Return true of this is an input operand that is a matching constraint like
4588 /// "4".
4589 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4590   assert(!ConstraintCode.empty() && "No known constraint!");
4591   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4592 }
4593 
4594 /// If this is an input matching constraint, this method returns the output
4595 /// operand it matches.
4596 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4597   assert(!ConstraintCode.empty() && "No known constraint!");
4598   return atoi(ConstraintCode.c_str());
4599 }
4600 
4601 /// Split up the constraint string from the inline assembly value into the
4602 /// specific constraints and their prefixes, and also tie in the associated
4603 /// operand values.
4604 /// If this returns an empty vector, and if the constraint string itself
4605 /// isn't empty, there was an error parsing.
4606 TargetLowering::AsmOperandInfoVector
4607 TargetLowering::ParseConstraints(const DataLayout &DL,
4608                                  const TargetRegisterInfo *TRI,
4609                                  const CallBase &Call) const {
4610   /// Information about all of the constraints.
4611   AsmOperandInfoVector ConstraintOperands;
4612   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4613   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4614 
4615   // Do a prepass over the constraints, canonicalizing them, and building up the
4616   // ConstraintOperands list.
4617   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4618   unsigned ResNo = 0; // ResNo - The result number of the next output.
4619 
4620   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4621     ConstraintOperands.emplace_back(std::move(CI));
4622     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4623 
4624     // Update multiple alternative constraint count.
4625     if (OpInfo.multipleAlternatives.size() > maCount)
4626       maCount = OpInfo.multipleAlternatives.size();
4627 
4628     OpInfo.ConstraintVT = MVT::Other;
4629 
4630     // Compute the value type for each operand.
4631     switch (OpInfo.Type) {
4632     case InlineAsm::isOutput:
4633       // Indirect outputs just consume an argument.
4634       if (OpInfo.isIndirect) {
4635         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4636         break;
4637       }
4638 
4639       // The return value of the call is this value.  As such, there is no
4640       // corresponding argument.
4641       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4642       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4643         OpInfo.ConstraintVT =
4644             getSimpleValueType(DL, STy->getElementType(ResNo));
4645       } else {
4646         assert(ResNo == 0 && "Asm only has one result!");
4647         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4648       }
4649       ++ResNo;
4650       break;
4651     case InlineAsm::isInput:
4652       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4653       break;
4654     case InlineAsm::isClobber:
4655       // Nothing to do.
4656       break;
4657     }
4658 
4659     if (OpInfo.CallOperandVal) {
4660       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4661       if (OpInfo.isIndirect) {
4662         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4663         if (!PtrTy)
4664           report_fatal_error("Indirect operand for inline asm not a pointer!");
4665         OpTy = PtrTy->getElementType();
4666       }
4667 
4668       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4669       if (StructType *STy = dyn_cast<StructType>(OpTy))
4670         if (STy->getNumElements() == 1)
4671           OpTy = STy->getElementType(0);
4672 
4673       // If OpTy is not a single value, it may be a struct/union that we
4674       // can tile with integers.
4675       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4676         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4677         switch (BitSize) {
4678         default: break;
4679         case 1:
4680         case 8:
4681         case 16:
4682         case 32:
4683         case 64:
4684         case 128:
4685           OpInfo.ConstraintVT =
4686               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4687           break;
4688         }
4689       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4690         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4691         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4692       } else {
4693         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4694       }
4695     }
4696   }
4697 
4698   // If we have multiple alternative constraints, select the best alternative.
4699   if (!ConstraintOperands.empty()) {
4700     if (maCount) {
4701       unsigned bestMAIndex = 0;
4702       int bestWeight = -1;
4703       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4704       int weight = -1;
4705       unsigned maIndex;
4706       // Compute the sums of the weights for each alternative, keeping track
4707       // of the best (highest weight) one so far.
4708       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4709         int weightSum = 0;
4710         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4711              cIndex != eIndex; ++cIndex) {
4712           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4713           if (OpInfo.Type == InlineAsm::isClobber)
4714             continue;
4715 
4716           // If this is an output operand with a matching input operand,
4717           // look up the matching input. If their types mismatch, e.g. one
4718           // is an integer, the other is floating point, or their sizes are
4719           // different, flag it as an maCantMatch.
4720           if (OpInfo.hasMatchingInput()) {
4721             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4722             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4723               if ((OpInfo.ConstraintVT.isInteger() !=
4724                    Input.ConstraintVT.isInteger()) ||
4725                   (OpInfo.ConstraintVT.getSizeInBits() !=
4726                    Input.ConstraintVT.getSizeInBits())) {
4727                 weightSum = -1; // Can't match.
4728                 break;
4729               }
4730             }
4731           }
4732           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4733           if (weight == -1) {
4734             weightSum = -1;
4735             break;
4736           }
4737           weightSum += weight;
4738         }
4739         // Update best.
4740         if (weightSum > bestWeight) {
4741           bestWeight = weightSum;
4742           bestMAIndex = maIndex;
4743         }
4744       }
4745 
4746       // Now select chosen alternative in each constraint.
4747       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4748            cIndex != eIndex; ++cIndex) {
4749         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4750         if (cInfo.Type == InlineAsm::isClobber)
4751           continue;
4752         cInfo.selectAlternative(bestMAIndex);
4753       }
4754     }
4755   }
4756 
4757   // Check and hook up tied operands, choose constraint code to use.
4758   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4759        cIndex != eIndex; ++cIndex) {
4760     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4761 
4762     // If this is an output operand with a matching input operand, look up the
4763     // matching input. If their types mismatch, e.g. one is an integer, the
4764     // other is floating point, or their sizes are different, flag it as an
4765     // error.
4766     if (OpInfo.hasMatchingInput()) {
4767       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4768 
4769       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4770         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4771             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4772                                          OpInfo.ConstraintVT);
4773         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4774             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4775                                          Input.ConstraintVT);
4776         if ((OpInfo.ConstraintVT.isInteger() !=
4777              Input.ConstraintVT.isInteger()) ||
4778             (MatchRC.second != InputRC.second)) {
4779           report_fatal_error("Unsupported asm: input constraint"
4780                              " with a matching output constraint of"
4781                              " incompatible type!");
4782         }
4783       }
4784     }
4785   }
4786 
4787   return ConstraintOperands;
4788 }
4789 
4790 /// Return an integer indicating how general CT is.
4791 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4792   switch (CT) {
4793   case TargetLowering::C_Immediate:
4794   case TargetLowering::C_Other:
4795   case TargetLowering::C_Unknown:
4796     return 0;
4797   case TargetLowering::C_Register:
4798     return 1;
4799   case TargetLowering::C_RegisterClass:
4800     return 2;
4801   case TargetLowering::C_Memory:
4802     return 3;
4803   }
4804   llvm_unreachable("Invalid constraint type");
4805 }
4806 
4807 /// Examine constraint type and operand type and determine a weight value.
4808 /// This object must already have been set up with the operand type
4809 /// and the current alternative constraint selected.
4810 TargetLowering::ConstraintWeight
4811   TargetLowering::getMultipleConstraintMatchWeight(
4812     AsmOperandInfo &info, int maIndex) const {
4813   InlineAsm::ConstraintCodeVector *rCodes;
4814   if (maIndex >= (int)info.multipleAlternatives.size())
4815     rCodes = &info.Codes;
4816   else
4817     rCodes = &info.multipleAlternatives[maIndex].Codes;
4818   ConstraintWeight BestWeight = CW_Invalid;
4819 
4820   // Loop over the options, keeping track of the most general one.
4821   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4822     ConstraintWeight weight =
4823       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4824     if (weight > BestWeight)
4825       BestWeight = weight;
4826   }
4827 
4828   return BestWeight;
4829 }
4830 
4831 /// Examine constraint type and operand type and determine a weight value.
4832 /// This object must already have been set up with the operand type
4833 /// and the current alternative constraint selected.
4834 TargetLowering::ConstraintWeight
4835   TargetLowering::getSingleConstraintMatchWeight(
4836     AsmOperandInfo &info, const char *constraint) const {
4837   ConstraintWeight weight = CW_Invalid;
4838   Value *CallOperandVal = info.CallOperandVal;
4839     // If we don't have a value, we can't do a match,
4840     // but allow it at the lowest weight.
4841   if (!CallOperandVal)
4842     return CW_Default;
4843   // Look at the constraint type.
4844   switch (*constraint) {
4845     case 'i': // immediate integer.
4846     case 'n': // immediate integer with a known value.
4847       if (isa<ConstantInt>(CallOperandVal))
4848         weight = CW_Constant;
4849       break;
4850     case 's': // non-explicit intregal immediate.
4851       if (isa<GlobalValue>(CallOperandVal))
4852         weight = CW_Constant;
4853       break;
4854     case 'E': // immediate float if host format.
4855     case 'F': // immediate float.
4856       if (isa<ConstantFP>(CallOperandVal))
4857         weight = CW_Constant;
4858       break;
4859     case '<': // memory operand with autodecrement.
4860     case '>': // memory operand with autoincrement.
4861     case 'm': // memory operand.
4862     case 'o': // offsettable memory operand
4863     case 'V': // non-offsettable memory operand
4864       weight = CW_Memory;
4865       break;
4866     case 'r': // general register.
4867     case 'g': // general register, memory operand or immediate integer.
4868               // note: Clang converts "g" to "imr".
4869       if (CallOperandVal->getType()->isIntegerTy())
4870         weight = CW_Register;
4871       break;
4872     case 'X': // any operand.
4873   default:
4874     weight = CW_Default;
4875     break;
4876   }
4877   return weight;
4878 }
4879 
4880 /// If there are multiple different constraints that we could pick for this
4881 /// operand (e.g. "imr") try to pick the 'best' one.
4882 /// This is somewhat tricky: constraints fall into four classes:
4883 ///    Other         -> immediates and magic values
4884 ///    Register      -> one specific register
4885 ///    RegisterClass -> a group of regs
4886 ///    Memory        -> memory
4887 /// Ideally, we would pick the most specific constraint possible: if we have
4888 /// something that fits into a register, we would pick it.  The problem here
4889 /// is that if we have something that could either be in a register or in
4890 /// memory that use of the register could cause selection of *other*
4891 /// operands to fail: they might only succeed if we pick memory.  Because of
4892 /// this the heuristic we use is:
4893 ///
4894 ///  1) If there is an 'other' constraint, and if the operand is valid for
4895 ///     that constraint, use it.  This makes us take advantage of 'i'
4896 ///     constraints when available.
4897 ///  2) Otherwise, pick the most general constraint present.  This prefers
4898 ///     'm' over 'r', for example.
4899 ///
4900 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4901                              const TargetLowering &TLI,
4902                              SDValue Op, SelectionDAG *DAG) {
4903   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4904   unsigned BestIdx = 0;
4905   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4906   int BestGenerality = -1;
4907 
4908   // Loop over the options, keeping track of the most general one.
4909   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4910     TargetLowering::ConstraintType CType =
4911       TLI.getConstraintType(OpInfo.Codes[i]);
4912 
4913     // Indirect 'other' or 'immediate' constraints are not allowed.
4914     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4915                                CType == TargetLowering::C_Register ||
4916                                CType == TargetLowering::C_RegisterClass))
4917       continue;
4918 
4919     // If this is an 'other' or 'immediate' constraint, see if the operand is
4920     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4921     // the operand is an integer in the range [0..31] we want to use I (saving a
4922     // load of a register), otherwise we must use 'r'.
4923     if ((CType == TargetLowering::C_Other ||
4924          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4925       assert(OpInfo.Codes[i].size() == 1 &&
4926              "Unhandled multi-letter 'other' constraint");
4927       std::vector<SDValue> ResultOps;
4928       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4929                                        ResultOps, *DAG);
4930       if (!ResultOps.empty()) {
4931         BestType = CType;
4932         BestIdx = i;
4933         break;
4934       }
4935     }
4936 
4937     // Things with matching constraints can only be registers, per gcc
4938     // documentation.  This mainly affects "g" constraints.
4939     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4940       continue;
4941 
4942     // This constraint letter is more general than the previous one, use it.
4943     int Generality = getConstraintGenerality(CType);
4944     if (Generality > BestGenerality) {
4945       BestType = CType;
4946       BestIdx = i;
4947       BestGenerality = Generality;
4948     }
4949   }
4950 
4951   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4952   OpInfo.ConstraintType = BestType;
4953 }
4954 
4955 /// Determines the constraint code and constraint type to use for the specific
4956 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4957 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4958                                             SDValue Op,
4959                                             SelectionDAG *DAG) const {
4960   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4961 
4962   // Single-letter constraints ('r') are very common.
4963   if (OpInfo.Codes.size() == 1) {
4964     OpInfo.ConstraintCode = OpInfo.Codes[0];
4965     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4966   } else {
4967     ChooseConstraint(OpInfo, *this, Op, DAG);
4968   }
4969 
4970   // 'X' matches anything.
4971   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4972     // Labels and constants are handled elsewhere ('X' is the only thing
4973     // that matches labels).  For Functions, the type here is the type of
4974     // the result, which is not what we want to look at; leave them alone.
4975     Value *v = OpInfo.CallOperandVal;
4976     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4977       OpInfo.CallOperandVal = v;
4978       return;
4979     }
4980 
4981     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4982       return;
4983 
4984     // Otherwise, try to resolve it to something we know about by looking at
4985     // the actual operand type.
4986     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4987       OpInfo.ConstraintCode = Repl;
4988       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4989     }
4990   }
4991 }
4992 
4993 /// Given an exact SDIV by a constant, create a multiplication
4994 /// with the multiplicative inverse of the constant.
4995 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4996                               const SDLoc &dl, SelectionDAG &DAG,
4997                               SmallVectorImpl<SDNode *> &Created) {
4998   SDValue Op0 = N->getOperand(0);
4999   SDValue Op1 = N->getOperand(1);
5000   EVT VT = N->getValueType(0);
5001   EVT SVT = VT.getScalarType();
5002   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5003   EVT ShSVT = ShVT.getScalarType();
5004 
5005   bool UseSRA = false;
5006   SmallVector<SDValue, 16> Shifts, Factors;
5007 
5008   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5009     if (C->isNullValue())
5010       return false;
5011     APInt Divisor = C->getAPIntValue();
5012     unsigned Shift = Divisor.countTrailingZeros();
5013     if (Shift) {
5014       Divisor.ashrInPlace(Shift);
5015       UseSRA = true;
5016     }
5017     // Calculate the multiplicative inverse, using Newton's method.
5018     APInt t;
5019     APInt Factor = Divisor;
5020     while ((t = Divisor * Factor) != 1)
5021       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5022     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5023     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5024     return true;
5025   };
5026 
5027   // Collect all magic values from the build vector.
5028   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5029     return SDValue();
5030 
5031   SDValue Shift, Factor;
5032   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5033     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5034     Factor = DAG.getBuildVector(VT, dl, Factors);
5035   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5036     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5037            "Expected matchUnaryPredicate to return one element for scalable "
5038            "vectors");
5039     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5040     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5041   } else {
5042     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5043     Shift = Shifts[0];
5044     Factor = Factors[0];
5045   }
5046 
5047   SDValue Res = Op0;
5048 
5049   // Shift the value upfront if it is even, so the LSB is one.
5050   if (UseSRA) {
5051     // TODO: For UDIV use SRL instead of SRA.
5052     SDNodeFlags Flags;
5053     Flags.setExact(true);
5054     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5055     Created.push_back(Res.getNode());
5056   }
5057 
5058   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5059 }
5060 
5061 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5062                               SelectionDAG &DAG,
5063                               SmallVectorImpl<SDNode *> &Created) const {
5064   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5066   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5067     return SDValue(N, 0); // Lower SDIV as SDIV
5068   return SDValue();
5069 }
5070 
5071 /// Given an ISD::SDIV node expressing a divide by constant,
5072 /// return a DAG expression to select that will generate the same value by
5073 /// multiplying by a magic number.
5074 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5075 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5076                                   bool IsAfterLegalization,
5077                                   SmallVectorImpl<SDNode *> &Created) const {
5078   SDLoc dl(N);
5079   EVT VT = N->getValueType(0);
5080   EVT SVT = VT.getScalarType();
5081   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5082   EVT ShSVT = ShVT.getScalarType();
5083   unsigned EltBits = VT.getScalarSizeInBits();
5084   EVT MulVT;
5085 
5086   // Check to see if we can do this.
5087   // FIXME: We should be more aggressive here.
5088   if (!isTypeLegal(VT)) {
5089     // Limit this to simple scalars for now.
5090     if (VT.isVector() || !VT.isSimple())
5091       return SDValue();
5092 
5093     // If this type will be promoted to a large enough type with a legal
5094     // multiply operation, we can go ahead and do this transform.
5095     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5096       return SDValue();
5097 
5098     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5099     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5100         !isOperationLegal(ISD::MUL, MulVT))
5101       return SDValue();
5102   }
5103 
5104   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5105   if (N->getFlags().hasExact())
5106     return BuildExactSDIV(*this, N, dl, DAG, Created);
5107 
5108   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5109 
5110   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5111     if (C->isNullValue())
5112       return false;
5113 
5114     const APInt &Divisor = C->getAPIntValue();
5115     APInt::ms magics = Divisor.magic();
5116     int NumeratorFactor = 0;
5117     int ShiftMask = -1;
5118 
5119     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
5120       // If d is +1/-1, we just multiply the numerator by +1/-1.
5121       NumeratorFactor = Divisor.getSExtValue();
5122       magics.m = 0;
5123       magics.s = 0;
5124       ShiftMask = 0;
5125     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
5126       // If d > 0 and m < 0, add the numerator.
5127       NumeratorFactor = 1;
5128     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
5129       // If d < 0 and m > 0, subtract the numerator.
5130       NumeratorFactor = -1;
5131     }
5132 
5133     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
5134     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5135     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
5136     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5137     return true;
5138   };
5139 
5140   SDValue N0 = N->getOperand(0);
5141   SDValue N1 = N->getOperand(1);
5142 
5143   // Collect the shifts / magic values from each element.
5144   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5145     return SDValue();
5146 
5147   SDValue MagicFactor, Factor, Shift, ShiftMask;
5148   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5149     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5150     Factor = DAG.getBuildVector(VT, dl, Factors);
5151     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5152     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5153   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5154     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5155            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5156            "Expected matchUnaryPredicate to return one element for scalable "
5157            "vectors");
5158     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5159     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5160     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5161     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5162   } else {
5163     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5164     MagicFactor = MagicFactors[0];
5165     Factor = Factors[0];
5166     Shift = Shifts[0];
5167     ShiftMask = ShiftMasks[0];
5168   }
5169 
5170   // Multiply the numerator (operand 0) by the magic value.
5171   // FIXME: We should support doing a MUL in a wider type.
5172   auto GetMULHS = [&](SDValue X, SDValue Y) {
5173     // If the type isn't legal, use a wider mul of the the type calculated
5174     // earlier.
5175     if (!isTypeLegal(VT)) {
5176       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5177       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5178       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5179       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5180                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5181       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5182     }
5183 
5184     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5185       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5186     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5187       SDValue LoHi =
5188           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5189       return SDValue(LoHi.getNode(), 1);
5190     }
5191     return SDValue();
5192   };
5193 
5194   SDValue Q = GetMULHS(N0, MagicFactor);
5195   if (!Q)
5196     return SDValue();
5197 
5198   Created.push_back(Q.getNode());
5199 
5200   // (Optionally) Add/subtract the numerator using Factor.
5201   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5202   Created.push_back(Factor.getNode());
5203   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5204   Created.push_back(Q.getNode());
5205 
5206   // Shift right algebraic by shift value.
5207   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5208   Created.push_back(Q.getNode());
5209 
5210   // Extract the sign bit, mask it and add it to the quotient.
5211   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5212   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5213   Created.push_back(T.getNode());
5214   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5215   Created.push_back(T.getNode());
5216   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5217 }
5218 
5219 /// Given an ISD::UDIV node expressing a divide by constant,
5220 /// return a DAG expression to select that will generate the same value by
5221 /// multiplying by a magic number.
5222 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5223 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5224                                   bool IsAfterLegalization,
5225                                   SmallVectorImpl<SDNode *> &Created) const {
5226   SDLoc dl(N);
5227   EVT VT = N->getValueType(0);
5228   EVT SVT = VT.getScalarType();
5229   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5230   EVT ShSVT = ShVT.getScalarType();
5231   unsigned EltBits = VT.getScalarSizeInBits();
5232   EVT MulVT;
5233 
5234   // Check to see if we can do this.
5235   // FIXME: We should be more aggressive here.
5236   if (!isTypeLegal(VT)) {
5237     // Limit this to simple scalars for now.
5238     if (VT.isVector() || !VT.isSimple())
5239       return SDValue();
5240 
5241     // If this type will be promoted to a large enough type with a legal
5242     // multiply operation, we can go ahead and do this transform.
5243     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5244       return SDValue();
5245 
5246     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5247     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5248         !isOperationLegal(ISD::MUL, MulVT))
5249       return SDValue();
5250   }
5251 
5252   bool UseNPQ = false;
5253   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5254 
5255   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5256     if (C->isNullValue())
5257       return false;
5258     // FIXME: We should use a narrower constant when the upper
5259     // bits are known to be zero.
5260     const APInt& Divisor = C->getAPIntValue();
5261     APInt::mu magics = Divisor.magicu();
5262     unsigned PreShift = 0, PostShift = 0;
5263 
5264     // If the divisor is even, we can avoid using the expensive fixup by
5265     // shifting the divided value upfront.
5266     if (magics.a != 0 && !Divisor[0]) {
5267       PreShift = Divisor.countTrailingZeros();
5268       // Get magic number for the shifted divisor.
5269       magics = Divisor.lshr(PreShift).magicu(PreShift);
5270       assert(magics.a == 0 && "Should use cheap fixup now");
5271     }
5272 
5273     APInt Magic = magics.m;
5274 
5275     unsigned SelNPQ;
5276     if (magics.a == 0 || Divisor.isOneValue()) {
5277       assert(magics.s < Divisor.getBitWidth() &&
5278              "We shouldn't generate an undefined shift!");
5279       PostShift = magics.s;
5280       SelNPQ = false;
5281     } else {
5282       PostShift = magics.s - 1;
5283       SelNPQ = true;
5284     }
5285 
5286     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5287     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5288     NPQFactors.push_back(
5289         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5290                                : APInt::getNullValue(EltBits),
5291                         dl, SVT));
5292     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5293     UseNPQ |= SelNPQ;
5294     return true;
5295   };
5296 
5297   SDValue N0 = N->getOperand(0);
5298   SDValue N1 = N->getOperand(1);
5299 
5300   // Collect the shifts/magic values from each element.
5301   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5302     return SDValue();
5303 
5304   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5305   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5306     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5307     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5308     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5309     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5310   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5311     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5312            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5313            "Expected matchUnaryPredicate to return one for scalable vectors");
5314     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5315     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5316     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5317     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5318   } else {
5319     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5320     PreShift = PreShifts[0];
5321     MagicFactor = MagicFactors[0];
5322     PostShift = PostShifts[0];
5323   }
5324 
5325   SDValue Q = N0;
5326   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5327   Created.push_back(Q.getNode());
5328 
5329   // FIXME: We should support doing a MUL in a wider type.
5330   auto GetMULHU = [&](SDValue X, SDValue Y) {
5331     // If the type isn't legal, use a wider mul of the the type calculated
5332     // earlier.
5333     if (!isTypeLegal(VT)) {
5334       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5335       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5336       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5337       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5338                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5339       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5340     }
5341 
5342     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5343       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5344     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5345       SDValue LoHi =
5346           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5347       return SDValue(LoHi.getNode(), 1);
5348     }
5349     return SDValue(); // No mulhu or equivalent
5350   };
5351 
5352   // Multiply the numerator (operand 0) by the magic value.
5353   Q = GetMULHU(Q, MagicFactor);
5354   if (!Q)
5355     return SDValue();
5356 
5357   Created.push_back(Q.getNode());
5358 
5359   if (UseNPQ) {
5360     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5361     Created.push_back(NPQ.getNode());
5362 
5363     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5364     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5365     if (VT.isVector())
5366       NPQ = GetMULHU(NPQ, NPQFactor);
5367     else
5368       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5369 
5370     Created.push_back(NPQ.getNode());
5371 
5372     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5373     Created.push_back(Q.getNode());
5374   }
5375 
5376   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5377   Created.push_back(Q.getNode());
5378 
5379   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5380 
5381   SDValue One = DAG.getConstant(1, dl, VT);
5382   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5383   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5384 }
5385 
5386 /// If all values in Values that *don't* match the predicate are same 'splat'
5387 /// value, then replace all values with that splat value.
5388 /// Else, if AlternativeReplacement was provided, then replace all values that
5389 /// do match predicate with AlternativeReplacement value.
5390 static void
5391 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5392                           std::function<bool(SDValue)> Predicate,
5393                           SDValue AlternativeReplacement = SDValue()) {
5394   SDValue Replacement;
5395   // Is there a value for which the Predicate does *NOT* match? What is it?
5396   auto SplatValue = llvm::find_if_not(Values, Predicate);
5397   if (SplatValue != Values.end()) {
5398     // Does Values consist only of SplatValue's and values matching Predicate?
5399     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5400           return Value == *SplatValue || Predicate(Value);
5401         })) // Then we shall replace values matching predicate with SplatValue.
5402       Replacement = *SplatValue;
5403   }
5404   if (!Replacement) {
5405     // Oops, we did not find the "baseline" splat value.
5406     if (!AlternativeReplacement)
5407       return; // Nothing to do.
5408     // Let's replace with provided value then.
5409     Replacement = AlternativeReplacement;
5410   }
5411   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5412 }
5413 
5414 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5415 /// where the divisor is constant and the comparison target is zero,
5416 /// return a DAG expression that will generate the same comparison result
5417 /// using only multiplications, additions and shifts/rotations.
5418 /// Ref: "Hacker's Delight" 10-17.
5419 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5420                                         SDValue CompTargetNode,
5421                                         ISD::CondCode Cond,
5422                                         DAGCombinerInfo &DCI,
5423                                         const SDLoc &DL) const {
5424   SmallVector<SDNode *, 5> Built;
5425   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5426                                          DCI, DL, Built)) {
5427     for (SDNode *N : Built)
5428       DCI.AddToWorklist(N);
5429     return Folded;
5430   }
5431 
5432   return SDValue();
5433 }
5434 
5435 SDValue
5436 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5437                                   SDValue CompTargetNode, ISD::CondCode Cond,
5438                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5439                                   SmallVectorImpl<SDNode *> &Created) const {
5440   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5441   // - D must be constant, with D = D0 * 2^K where D0 is odd
5442   // - P is the multiplicative inverse of D0 modulo 2^W
5443   // - Q = floor(((2^W) - 1) / D)
5444   // where W is the width of the common type of N and D.
5445   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5446          "Only applicable for (in)equality comparisons.");
5447 
5448   SelectionDAG &DAG = DCI.DAG;
5449 
5450   EVT VT = REMNode.getValueType();
5451   EVT SVT = VT.getScalarType();
5452   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5453   EVT ShSVT = ShVT.getScalarType();
5454 
5455   // If MUL is unavailable, we cannot proceed in any case.
5456   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5457     return SDValue();
5458 
5459   bool ComparingWithAllZeros = true;
5460   bool AllComparisonsWithNonZerosAreTautological = true;
5461   bool HadTautologicalLanes = false;
5462   bool AllLanesAreTautological = true;
5463   bool HadEvenDivisor = false;
5464   bool AllDivisorsArePowerOfTwo = true;
5465   bool HadTautologicalInvertedLanes = false;
5466   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5467 
5468   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5469     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5470     if (CDiv->isNullValue())
5471       return false;
5472 
5473     const APInt &D = CDiv->getAPIntValue();
5474     const APInt &Cmp = CCmp->getAPIntValue();
5475 
5476     ComparingWithAllZeros &= Cmp.isNullValue();
5477 
5478     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5479     // if C2 is not less than C1, the comparison is always false.
5480     // But we will only be able to produce the comparison that will give the
5481     // opposive tautological answer. So this lane would need to be fixed up.
5482     bool TautologicalInvertedLane = D.ule(Cmp);
5483     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5484 
5485     // If all lanes are tautological (either all divisors are ones, or divisor
5486     // is not greater than the constant we are comparing with),
5487     // we will prefer to avoid the fold.
5488     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5489     HadTautologicalLanes |= TautologicalLane;
5490     AllLanesAreTautological &= TautologicalLane;
5491 
5492     // If we are comparing with non-zero, we need'll need  to subtract said
5493     // comparison value from the LHS. But there is no point in doing that if
5494     // every lane where we are comparing with non-zero is tautological..
5495     if (!Cmp.isNullValue())
5496       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5497 
5498     // Decompose D into D0 * 2^K
5499     unsigned K = D.countTrailingZeros();
5500     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5501     APInt D0 = D.lshr(K);
5502 
5503     // D is even if it has trailing zeros.
5504     HadEvenDivisor |= (K != 0);
5505     // D is a power-of-two if D0 is one.
5506     // If all divisors are power-of-two, we will prefer to avoid the fold.
5507     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5508 
5509     // P = inv(D0, 2^W)
5510     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5511     unsigned W = D.getBitWidth();
5512     APInt P = D0.zext(W + 1)
5513                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5514                   .trunc(W);
5515     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5516     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5517 
5518     // Q = floor((2^W - 1) u/ D)
5519     // R = ((2^W - 1) u% D)
5520     APInt Q, R;
5521     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5522 
5523     // If we are comparing with zero, then that comparison constant is okay,
5524     // else it may need to be one less than that.
5525     if (Cmp.ugt(R))
5526       Q -= 1;
5527 
5528     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5529            "We are expecting that K is always less than all-ones for ShSVT");
5530 
5531     // If the lane is tautological the result can be constant-folded.
5532     if (TautologicalLane) {
5533       // Set P and K amount to a bogus values so we can try to splat them.
5534       P = 0;
5535       K = -1;
5536       // And ensure that comparison constant is tautological,
5537       // it will always compare true/false.
5538       Q = -1;
5539     }
5540 
5541     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5542     KAmts.push_back(
5543         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5544     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5545     return true;
5546   };
5547 
5548   SDValue N = REMNode.getOperand(0);
5549   SDValue D = REMNode.getOperand(1);
5550 
5551   // Collect the values from each element.
5552   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5553     return SDValue();
5554 
5555   // If all lanes are tautological, the result can be constant-folded.
5556   if (AllLanesAreTautological)
5557     return SDValue();
5558 
5559   // If this is a urem by a powers-of-two, avoid the fold since it can be
5560   // best implemented as a bit test.
5561   if (AllDivisorsArePowerOfTwo)
5562     return SDValue();
5563 
5564   SDValue PVal, KVal, QVal;
5565   if (VT.isVector()) {
5566     if (HadTautologicalLanes) {
5567       // Try to turn PAmts into a splat, since we don't care about the values
5568       // that are currently '0'. If we can't, just keep '0'`s.
5569       turnVectorIntoSplatVector(PAmts, isNullConstant);
5570       // Try to turn KAmts into a splat, since we don't care about the values
5571       // that are currently '-1'. If we can't, change them to '0'`s.
5572       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5573                                 DAG.getConstant(0, DL, ShSVT));
5574     }
5575 
5576     PVal = DAG.getBuildVector(VT, DL, PAmts);
5577     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5578     QVal = DAG.getBuildVector(VT, DL, QAmts);
5579   } else {
5580     PVal = PAmts[0];
5581     KVal = KAmts[0];
5582     QVal = QAmts[0];
5583   }
5584 
5585   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5586     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5587       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5588     assert(CompTargetNode.getValueType() == N.getValueType() &&
5589            "Expecting that the types on LHS and RHS of comparisons match.");
5590     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5591   }
5592 
5593   // (mul N, P)
5594   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5595   Created.push_back(Op0.getNode());
5596 
5597   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5598   // divisors as a performance improvement, since rotating by 0 is a no-op.
5599   if (HadEvenDivisor) {
5600     // We need ROTR to do this.
5601     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5602       return SDValue();
5603     SDNodeFlags Flags;
5604     Flags.setExact(true);
5605     // UREM: (rotr (mul N, P), K)
5606     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5607     Created.push_back(Op0.getNode());
5608   }
5609 
5610   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5611   SDValue NewCC =
5612       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5613                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5614   if (!HadTautologicalInvertedLanes)
5615     return NewCC;
5616 
5617   // If any lanes previously compared always-false, the NewCC will give
5618   // always-true result for them, so we need to fixup those lanes.
5619   // Or the other way around for inequality predicate.
5620   assert(VT.isVector() && "Can/should only get here for vectors.");
5621   Created.push_back(NewCC.getNode());
5622 
5623   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5624   // if C2 is not less than C1, the comparison is always false.
5625   // But we have produced the comparison that will give the
5626   // opposive tautological answer. So these lanes would need to be fixed up.
5627   SDValue TautologicalInvertedChannels =
5628       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5629   Created.push_back(TautologicalInvertedChannels.getNode());
5630 
5631   // NOTE: we avoid letting illegal types through even if we're before legalize
5632   // ops – legalization has a hard time producing good code for this.
5633   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5634     // If we have a vector select, let's replace the comparison results in the
5635     // affected lanes with the correct tautological result.
5636     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5637                                               DL, SETCCVT, SETCCVT);
5638     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5639                        Replacement, NewCC);
5640   }
5641 
5642   // Else, we can just invert the comparison result in the appropriate lanes.
5643   //
5644   // NOTE: see the note above VSELECT above.
5645   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5646     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5647                        TautologicalInvertedChannels);
5648 
5649   return SDValue(); // Don't know how to lower.
5650 }
5651 
5652 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5653 /// where the divisor is constant and the comparison target is zero,
5654 /// return a DAG expression that will generate the same comparison result
5655 /// using only multiplications, additions and shifts/rotations.
5656 /// Ref: "Hacker's Delight" 10-17.
5657 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5658                                         SDValue CompTargetNode,
5659                                         ISD::CondCode Cond,
5660                                         DAGCombinerInfo &DCI,
5661                                         const SDLoc &DL) const {
5662   SmallVector<SDNode *, 7> Built;
5663   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5664                                          DCI, DL, Built)) {
5665     assert(Built.size() <= 7 && "Max size prediction failed.");
5666     for (SDNode *N : Built)
5667       DCI.AddToWorklist(N);
5668     return Folded;
5669   }
5670 
5671   return SDValue();
5672 }
5673 
5674 SDValue
5675 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5676                                   SDValue CompTargetNode, ISD::CondCode Cond,
5677                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5678                                   SmallVectorImpl<SDNode *> &Created) const {
5679   // Fold:
5680   //   (seteq/ne (srem N, D), 0)
5681   // To:
5682   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5683   //
5684   // - D must be constant, with D = D0 * 2^K where D0 is odd
5685   // - P is the multiplicative inverse of D0 modulo 2^W
5686   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5687   // - Q = floor((2 * A) / (2^K))
5688   // where W is the width of the common type of N and D.
5689   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5690          "Only applicable for (in)equality comparisons.");
5691 
5692   SelectionDAG &DAG = DCI.DAG;
5693 
5694   EVT VT = REMNode.getValueType();
5695   EVT SVT = VT.getScalarType();
5696   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5697   EVT ShSVT = ShVT.getScalarType();
5698 
5699   // If we are after ops legalization, and MUL is unavailable, we can not
5700   // proceed.
5701   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5702     return SDValue();
5703 
5704   // TODO: Could support comparing with non-zero too.
5705   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5706   if (!CompTarget || !CompTarget->isNullValue())
5707     return SDValue();
5708 
5709   bool HadIntMinDivisor = false;
5710   bool HadOneDivisor = false;
5711   bool AllDivisorsAreOnes = true;
5712   bool HadEvenDivisor = false;
5713   bool NeedToApplyOffset = false;
5714   bool AllDivisorsArePowerOfTwo = true;
5715   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5716 
5717   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5718     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5719     if (C->isNullValue())
5720       return false;
5721 
5722     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5723 
5724     // WARNING: this fold is only valid for positive divisors!
5725     APInt D = C->getAPIntValue();
5726     if (D.isNegative())
5727       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5728 
5729     HadIntMinDivisor |= D.isMinSignedValue();
5730 
5731     // If all divisors are ones, we will prefer to avoid the fold.
5732     HadOneDivisor |= D.isOneValue();
5733     AllDivisorsAreOnes &= D.isOneValue();
5734 
5735     // Decompose D into D0 * 2^K
5736     unsigned K = D.countTrailingZeros();
5737     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5738     APInt D0 = D.lshr(K);
5739 
5740     if (!D.isMinSignedValue()) {
5741       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5742       // we don't care about this lane in this fold, we'll special-handle it.
5743       HadEvenDivisor |= (K != 0);
5744     }
5745 
5746     // D is a power-of-two if D0 is one. This includes INT_MIN.
5747     // If all divisors are power-of-two, we will prefer to avoid the fold.
5748     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5749 
5750     // P = inv(D0, 2^W)
5751     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5752     unsigned W = D.getBitWidth();
5753     APInt P = D0.zext(W + 1)
5754                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5755                   .trunc(W);
5756     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5757     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5758 
5759     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5760     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5761     A.clearLowBits(K);
5762 
5763     if (!D.isMinSignedValue()) {
5764       // If divisor INT_MIN, then we don't care about this lane in this fold,
5765       // we'll special-handle it.
5766       NeedToApplyOffset |= A != 0;
5767     }
5768 
5769     // Q = floor((2 * A) / (2^K))
5770     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5771 
5772     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5773            "We are expecting that A is always less than all-ones for SVT");
5774     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5775            "We are expecting that K is always less than all-ones for ShSVT");
5776 
5777     // If the divisor is 1 the result can be constant-folded. Likewise, we
5778     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5779     if (D.isOneValue()) {
5780       // Set P, A and K to a bogus values so we can try to splat them.
5781       P = 0;
5782       A = -1;
5783       K = -1;
5784 
5785       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5786       Q = -1;
5787     }
5788 
5789     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5790     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5791     KAmts.push_back(
5792         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5793     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5794     return true;
5795   };
5796 
5797   SDValue N = REMNode.getOperand(0);
5798   SDValue D = REMNode.getOperand(1);
5799 
5800   // Collect the values from each element.
5801   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5802     return SDValue();
5803 
5804   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5805   if (AllDivisorsAreOnes)
5806     return SDValue();
5807 
5808   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5809   // since it can be best implemented as a bit test.
5810   if (AllDivisorsArePowerOfTwo)
5811     return SDValue();
5812 
5813   SDValue PVal, AVal, KVal, QVal;
5814   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5815     if (HadOneDivisor) {
5816       // Try to turn PAmts into a splat, since we don't care about the values
5817       // that are currently '0'. If we can't, just keep '0'`s.
5818       turnVectorIntoSplatVector(PAmts, isNullConstant);
5819       // Try to turn AAmts into a splat, since we don't care about the
5820       // values that are currently '-1'. If we can't, change them to '0'`s.
5821       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5822                                 DAG.getConstant(0, DL, SVT));
5823       // Try to turn KAmts into a splat, since we don't care about the values
5824       // that are currently '-1'. If we can't, change them to '0'`s.
5825       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5826                                 DAG.getConstant(0, DL, ShSVT));
5827     }
5828 
5829     PVal = DAG.getBuildVector(VT, DL, PAmts);
5830     AVal = DAG.getBuildVector(VT, DL, AAmts);
5831     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5832     QVal = DAG.getBuildVector(VT, DL, QAmts);
5833   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5834     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
5835            QAmts.size() == 1 &&
5836            "Expected matchUnaryPredicate to return one element for scalable "
5837            "vectors");
5838     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5839     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
5840     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5841     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5842   } else {
5843     assert(isa<ConstantSDNode>(D) && "Expected a constant");
5844     PVal = PAmts[0];
5845     AVal = AAmts[0];
5846     KVal = KAmts[0];
5847     QVal = QAmts[0];
5848   }
5849 
5850   // (mul N, P)
5851   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5852   Created.push_back(Op0.getNode());
5853 
5854   if (NeedToApplyOffset) {
5855     // We need ADD to do this.
5856     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
5857       return SDValue();
5858 
5859     // (add (mul N, P), A)
5860     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5861     Created.push_back(Op0.getNode());
5862   }
5863 
5864   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5865   // divisors as a performance improvement, since rotating by 0 is a no-op.
5866   if (HadEvenDivisor) {
5867     // We need ROTR to do this.
5868     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5869       return SDValue();
5870     SDNodeFlags Flags;
5871     Flags.setExact(true);
5872     // SREM: (rotr (add (mul N, P), A), K)
5873     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5874     Created.push_back(Op0.getNode());
5875   }
5876 
5877   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5878   SDValue Fold =
5879       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5880                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5881 
5882   // If we didn't have lanes with INT_MIN divisor, then we're done.
5883   if (!HadIntMinDivisor)
5884     return Fold;
5885 
5886   // That fold is only valid for positive divisors. Which effectively means,
5887   // it is invalid for INT_MIN divisors. So if we have such a lane,
5888   // we must fix-up results for said lanes.
5889   assert(VT.isVector() && "Can/should only get here for vectors.");
5890 
5891   // NOTE: we avoid letting illegal types through even if we're before legalize
5892   // ops – legalization has a hard time producing good code for the code that
5893   // follows.
5894   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5895       !isOperationLegalOrCustom(ISD::AND, VT) ||
5896       !isOperationLegalOrCustom(Cond, VT) ||
5897       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5898     return SDValue();
5899 
5900   Created.push_back(Fold.getNode());
5901 
5902   SDValue IntMin = DAG.getConstant(
5903       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5904   SDValue IntMax = DAG.getConstant(
5905       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5906   SDValue Zero =
5907       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5908 
5909   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5910   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5911   Created.push_back(DivisorIsIntMin.getNode());
5912 
5913   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5914   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5915   Created.push_back(Masked.getNode());
5916   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5917   Created.push_back(MaskedIsZero.getNode());
5918 
5919   // To produce final result we need to blend 2 vectors: 'SetCC' and
5920   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5921   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5922   // constant-folded, select can get lowered to a shuffle with constant mask.
5923   SDValue Blended =
5924       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5925 
5926   return Blended;
5927 }
5928 
5929 bool TargetLowering::
5930 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5931   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5932     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5933                                 "be a constant integer");
5934     return true;
5935   }
5936 
5937   return false;
5938 }
5939 
5940 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
5941                                          const DenormalMode &Mode) const {
5942   SDLoc DL(Op);
5943   EVT VT = Op.getValueType();
5944   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5945   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
5946   // Testing it with denormal inputs to avoid wrong estimate.
5947   if (Mode.Input == DenormalMode::IEEE) {
5948     // This is specifically a check for the handling of denormal inputs,
5949     // not the result.
5950 
5951     // Test = fabs(X) < SmallestNormal
5952     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
5953     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
5954     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
5955     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
5956     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
5957   }
5958   // Test = X == 0.0
5959   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
5960 }
5961 
5962 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5963                                              bool LegalOps, bool OptForSize,
5964                                              NegatibleCost &Cost,
5965                                              unsigned Depth) const {
5966   // fneg is removable even if it has multiple uses.
5967   if (Op.getOpcode() == ISD::FNEG) {
5968     Cost = NegatibleCost::Cheaper;
5969     return Op.getOperand(0);
5970   }
5971 
5972   // Don't recurse exponentially.
5973   if (Depth > SelectionDAG::MaxRecursionDepth)
5974     return SDValue();
5975 
5976   // Pre-increment recursion depth for use in recursive calls.
5977   ++Depth;
5978   const SDNodeFlags Flags = Op->getFlags();
5979   const TargetOptions &Options = DAG.getTarget().Options;
5980   EVT VT = Op.getValueType();
5981   unsigned Opcode = Op.getOpcode();
5982 
5983   // Don't allow anything with multiple uses unless we know it is free.
5984   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5985     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5986                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5987     if (!IsFreeExtend)
5988       return SDValue();
5989   }
5990 
5991   auto RemoveDeadNode = [&](SDValue N) {
5992     if (N && N.getNode()->use_empty())
5993       DAG.RemoveDeadNode(N.getNode());
5994   };
5995 
5996   SDLoc DL(Op);
5997 
5998   // Because getNegatedExpression can delete nodes we need a handle to keep
5999   // temporary nodes alive in case the recursion manages to create an identical
6000   // node.
6001   std::list<HandleSDNode> Handles;
6002 
6003   switch (Opcode) {
6004   case ISD::ConstantFP: {
6005     // Don't invert constant FP values after legalization unless the target says
6006     // the negated constant is legal.
6007     bool IsOpLegal =
6008         isOperationLegal(ISD::ConstantFP, VT) ||
6009         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6010                      OptForSize);
6011 
6012     if (LegalOps && !IsOpLegal)
6013       break;
6014 
6015     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6016     V.changeSign();
6017     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6018 
6019     // If we already have the use of the negated floating constant, it is free
6020     // to negate it even it has multiple uses.
6021     if (!Op.hasOneUse() && CFP.use_empty())
6022       break;
6023     Cost = NegatibleCost::Neutral;
6024     return CFP;
6025   }
6026   case ISD::BUILD_VECTOR: {
6027     // Only permit BUILD_VECTOR of constants.
6028     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6029           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6030         }))
6031       break;
6032 
6033     bool IsOpLegal =
6034         (isOperationLegal(ISD::ConstantFP, VT) &&
6035          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6036         llvm::all_of(Op->op_values(), [&](SDValue N) {
6037           return N.isUndef() ||
6038                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6039                               OptForSize);
6040         });
6041 
6042     if (LegalOps && !IsOpLegal)
6043       break;
6044 
6045     SmallVector<SDValue, 4> Ops;
6046     for (SDValue C : Op->op_values()) {
6047       if (C.isUndef()) {
6048         Ops.push_back(C);
6049         continue;
6050       }
6051       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6052       V.changeSign();
6053       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6054     }
6055     Cost = NegatibleCost::Neutral;
6056     return DAG.getBuildVector(VT, DL, Ops);
6057   }
6058   case ISD::FADD: {
6059     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6060       break;
6061 
6062     // After operation legalization, it might not be legal to create new FSUBs.
6063     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6064       break;
6065     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6066 
6067     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6068     NegatibleCost CostX = NegatibleCost::Expensive;
6069     SDValue NegX =
6070         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6071     // Prevent this node from being deleted by the next call.
6072     if (NegX)
6073       Handles.emplace_back(NegX);
6074 
6075     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6076     NegatibleCost CostY = NegatibleCost::Expensive;
6077     SDValue NegY =
6078         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6079 
6080     // We're done with the handles.
6081     Handles.clear();
6082 
6083     // Negate the X if its cost is less or equal than Y.
6084     if (NegX && (CostX <= CostY)) {
6085       Cost = CostX;
6086       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6087       if (NegY != N)
6088         RemoveDeadNode(NegY);
6089       return N;
6090     }
6091 
6092     // Negate the Y if it is not expensive.
6093     if (NegY) {
6094       Cost = CostY;
6095       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6096       if (NegX != N)
6097         RemoveDeadNode(NegX);
6098       return N;
6099     }
6100     break;
6101   }
6102   case ISD::FSUB: {
6103     // We can't turn -(A-B) into B-A when we honor signed zeros.
6104     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6105       break;
6106 
6107     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6108     // fold (fneg (fsub 0, Y)) -> Y
6109     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6110       if (C->isZero()) {
6111         Cost = NegatibleCost::Cheaper;
6112         return Y;
6113       }
6114 
6115     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6116     Cost = NegatibleCost::Neutral;
6117     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6118   }
6119   case ISD::FMUL:
6120   case ISD::FDIV: {
6121     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6122 
6123     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6124     NegatibleCost CostX = NegatibleCost::Expensive;
6125     SDValue NegX =
6126         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6127     // Prevent this node from being deleted by the next call.
6128     if (NegX)
6129       Handles.emplace_back(NegX);
6130 
6131     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6132     NegatibleCost CostY = NegatibleCost::Expensive;
6133     SDValue NegY =
6134         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6135 
6136     // We're done with the handles.
6137     Handles.clear();
6138 
6139     // Negate the X if its cost is less or equal than Y.
6140     if (NegX && (CostX <= CostY)) {
6141       Cost = CostX;
6142       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6143       if (NegY != N)
6144         RemoveDeadNode(NegY);
6145       return N;
6146     }
6147 
6148     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6149     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6150       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6151         break;
6152 
6153     // Negate the Y if it is not expensive.
6154     if (NegY) {
6155       Cost = CostY;
6156       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6157       if (NegX != N)
6158         RemoveDeadNode(NegX);
6159       return N;
6160     }
6161     break;
6162   }
6163   case ISD::FMA:
6164   case ISD::FMAD: {
6165     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6166       break;
6167 
6168     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6169     NegatibleCost CostZ = NegatibleCost::Expensive;
6170     SDValue NegZ =
6171         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6172     // Give up if fail to negate the Z.
6173     if (!NegZ)
6174       break;
6175 
6176     // Prevent this node from being deleted by the next two calls.
6177     Handles.emplace_back(NegZ);
6178 
6179     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6180     NegatibleCost CostX = NegatibleCost::Expensive;
6181     SDValue NegX =
6182         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6183     // Prevent this node from being deleted by the next call.
6184     if (NegX)
6185       Handles.emplace_back(NegX);
6186 
6187     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6188     NegatibleCost CostY = NegatibleCost::Expensive;
6189     SDValue NegY =
6190         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6191 
6192     // We're done with the handles.
6193     Handles.clear();
6194 
6195     // Negate the X if its cost is less or equal than Y.
6196     if (NegX && (CostX <= CostY)) {
6197       Cost = std::min(CostX, CostZ);
6198       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6199       if (NegY != N)
6200         RemoveDeadNode(NegY);
6201       return N;
6202     }
6203 
6204     // Negate the Y if it is not expensive.
6205     if (NegY) {
6206       Cost = std::min(CostY, CostZ);
6207       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6208       if (NegX != N)
6209         RemoveDeadNode(NegX);
6210       return N;
6211     }
6212     break;
6213   }
6214 
6215   case ISD::FP_EXTEND:
6216   case ISD::FSIN:
6217     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6218                                             OptForSize, Cost, Depth))
6219       return DAG.getNode(Opcode, DL, VT, NegV);
6220     break;
6221   case ISD::FP_ROUND:
6222     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6223                                             OptForSize, Cost, Depth))
6224       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6225     break;
6226   }
6227 
6228   return SDValue();
6229 }
6230 
6231 //===----------------------------------------------------------------------===//
6232 // Legalization Utilities
6233 //===----------------------------------------------------------------------===//
6234 
6235 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6236                                     SDValue LHS, SDValue RHS,
6237                                     SmallVectorImpl<SDValue> &Result,
6238                                     EVT HiLoVT, SelectionDAG &DAG,
6239                                     MulExpansionKind Kind, SDValue LL,
6240                                     SDValue LH, SDValue RL, SDValue RH) const {
6241   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6242          Opcode == ISD::SMUL_LOHI);
6243 
6244   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6245                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6246   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6247                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6248   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6249                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6250   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6251                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6252 
6253   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6254     return false;
6255 
6256   unsigned OuterBitSize = VT.getScalarSizeInBits();
6257   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6258 
6259   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6260   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6261          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6262 
6263   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6264   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6265                           bool Signed) -> bool {
6266     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6267       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6268       Hi = SDValue(Lo.getNode(), 1);
6269       return true;
6270     }
6271     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6272       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6273       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6274       return true;
6275     }
6276     return false;
6277   };
6278 
6279   SDValue Lo, Hi;
6280 
6281   if (!LL.getNode() && !RL.getNode() &&
6282       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6283     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6284     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6285   }
6286 
6287   if (!LL.getNode())
6288     return false;
6289 
6290   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6291   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6292       DAG.MaskedValueIsZero(RHS, HighMask)) {
6293     // The inputs are both zero-extended.
6294     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6295       Result.push_back(Lo);
6296       Result.push_back(Hi);
6297       if (Opcode != ISD::MUL) {
6298         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6299         Result.push_back(Zero);
6300         Result.push_back(Zero);
6301       }
6302       return true;
6303     }
6304   }
6305 
6306   if (!VT.isVector() && Opcode == ISD::MUL &&
6307       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6308       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6309     // The input values are both sign-extended.
6310     // TODO non-MUL case?
6311     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6312       Result.push_back(Lo);
6313       Result.push_back(Hi);
6314       return true;
6315     }
6316   }
6317 
6318   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6319   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6320   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
6321     // FIXME getShiftAmountTy does not always return a sensible result when VT
6322     // is an illegal type, and so the type may be too small to fit the shift
6323     // amount. Override it with i32. The shift will have to be legalized.
6324     ShiftAmountTy = MVT::i32;
6325   }
6326   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6327 
6328   if (!LH.getNode() && !RH.getNode() &&
6329       isOperationLegalOrCustom(ISD::SRL, VT) &&
6330       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6331     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6332     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6333     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6334     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6335   }
6336 
6337   if (!LH.getNode())
6338     return false;
6339 
6340   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6341     return false;
6342 
6343   Result.push_back(Lo);
6344 
6345   if (Opcode == ISD::MUL) {
6346     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6347     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6348     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6349     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6350     Result.push_back(Hi);
6351     return true;
6352   }
6353 
6354   // Compute the full width result.
6355   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6356     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6357     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6358     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6359     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6360   };
6361 
6362   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6363   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6364     return false;
6365 
6366   // This is effectively the add part of a multiply-add of half-sized operands,
6367   // so it cannot overflow.
6368   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6369 
6370   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6371     return false;
6372 
6373   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6374   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6375 
6376   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6377                   isOperationLegalOrCustom(ISD::ADDE, VT));
6378   if (UseGlue)
6379     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6380                        Merge(Lo, Hi));
6381   else
6382     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6383                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6384 
6385   SDValue Carry = Next.getValue(1);
6386   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6387   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6388 
6389   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6390     return false;
6391 
6392   if (UseGlue)
6393     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6394                      Carry);
6395   else
6396     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6397                      Zero, Carry);
6398 
6399   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6400 
6401   if (Opcode == ISD::SMUL_LOHI) {
6402     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6403                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6404     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6405 
6406     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6407                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6408     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6409   }
6410 
6411   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6412   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6413   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6414   return true;
6415 }
6416 
6417 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6418                                SelectionDAG &DAG, MulExpansionKind Kind,
6419                                SDValue LL, SDValue LH, SDValue RL,
6420                                SDValue RH) const {
6421   SmallVector<SDValue, 2> Result;
6422   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6423                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6424                            DAG, Kind, LL, LH, RL, RH);
6425   if (Ok) {
6426     assert(Result.size() == 2);
6427     Lo = Result[0];
6428     Hi = Result[1];
6429   }
6430   return Ok;
6431 }
6432 
6433 // Check that (every element of) Z is undef or not an exact multiple of BW.
6434 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6435   return ISD::matchUnaryPredicate(
6436       Z,
6437       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6438       true);
6439 }
6440 
6441 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
6442                                        SelectionDAG &DAG) const {
6443   EVT VT = Node->getValueType(0);
6444 
6445   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6446                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6447                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6448                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6449     return false;
6450 
6451   SDValue X = Node->getOperand(0);
6452   SDValue Y = Node->getOperand(1);
6453   SDValue Z = Node->getOperand(2);
6454 
6455   unsigned BW = VT.getScalarSizeInBits();
6456   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6457   SDLoc DL(SDValue(Node, 0));
6458 
6459   EVT ShVT = Z.getValueType();
6460 
6461   // If a funnel shift in the other direction is more supported, use it.
6462   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6463   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6464       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6465     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6466       // fshl X, Y, Z -> fshr X, Y, -Z
6467       // fshr X, Y, Z -> fshl X, Y, -Z
6468       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6469       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6470     } else {
6471       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6472       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6473       SDValue One = DAG.getConstant(1, DL, ShVT);
6474       if (IsFSHL) {
6475         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6476         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6477       } else {
6478         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6479         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6480       }
6481       Z = DAG.getNOT(DL, Z, ShVT);
6482     }
6483     Result = DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6484     return true;
6485   }
6486 
6487   SDValue ShX, ShY;
6488   SDValue ShAmt, InvShAmt;
6489   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6490     // fshl: X << C | Y >> (BW - C)
6491     // fshr: X << (BW - C) | Y >> C
6492     // where C = Z % BW is not zero
6493     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6494     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6495     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6496     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6497     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6498   } else {
6499     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6500     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6501     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6502     if (isPowerOf2_32(BW)) {
6503       // Z % BW -> Z & (BW - 1)
6504       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6505       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6506       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6507     } else {
6508       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6509       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6510       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6511     }
6512 
6513     SDValue One = DAG.getConstant(1, DL, ShVT);
6514     if (IsFSHL) {
6515       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6516       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6517       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6518     } else {
6519       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6520       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6521       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6522     }
6523   }
6524   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6525   return true;
6526 }
6527 
6528 // TODO: Merge with expandFunnelShift.
6529 bool TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6530                                SDValue &Result, SelectionDAG &DAG) const {
6531   EVT VT = Node->getValueType(0);
6532   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6533   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6534   SDValue Op0 = Node->getOperand(0);
6535   SDValue Op1 = Node->getOperand(1);
6536   SDLoc DL(SDValue(Node, 0));
6537 
6538   EVT ShVT = Op1.getValueType();
6539   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6540 
6541   // If a rotate in the other direction is supported, use it.
6542   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6543   if (isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6544     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6545     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6546     return true;
6547   }
6548 
6549   if (!AllowVectorOps && VT.isVector() &&
6550       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6551        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6552        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6553        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6554        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6555     return false;
6556 
6557   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6558   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6559   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6560   SDValue ShVal;
6561   SDValue HsVal;
6562   if (isPowerOf2_32(EltSizeInBits)) {
6563     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6564     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6565     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6566     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6567     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6568     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6569     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6570   } else {
6571     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6572     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6573     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6574     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6575     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6576     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6577     SDValue One = DAG.getConstant(1, DL, ShVT);
6578     HsVal =
6579         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6580   }
6581   Result = DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6582   return true;
6583 }
6584 
6585 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6586                                       SelectionDAG &DAG) const {
6587   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6588   SDValue Src = Node->getOperand(OpNo);
6589   EVT SrcVT = Src.getValueType();
6590   EVT DstVT = Node->getValueType(0);
6591   SDLoc dl(SDValue(Node, 0));
6592 
6593   // FIXME: Only f32 to i64 conversions are supported.
6594   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6595     return false;
6596 
6597   if (Node->isStrictFPOpcode())
6598     // When a NaN is converted to an integer a trap is allowed. We can't
6599     // use this expansion here because it would eliminate that trap. Other
6600     // traps are also allowed and cannot be eliminated. See
6601     // IEEE 754-2008 sec 5.8.
6602     return false;
6603 
6604   // Expand f32 -> i64 conversion
6605   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6606   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6607   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6608   EVT IntVT = SrcVT.changeTypeToInteger();
6609   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6610 
6611   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6612   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6613   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6614   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6615   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6616   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6617 
6618   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6619 
6620   SDValue ExponentBits = DAG.getNode(
6621       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6622       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6623   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6624 
6625   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6626                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6627                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6628   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6629 
6630   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6631                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6632                           DAG.getConstant(0x00800000, dl, IntVT));
6633 
6634   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6635 
6636   R = DAG.getSelectCC(
6637       dl, Exponent, ExponentLoBit,
6638       DAG.getNode(ISD::SHL, dl, DstVT, R,
6639                   DAG.getZExtOrTrunc(
6640                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6641                       dl, IntShVT)),
6642       DAG.getNode(ISD::SRL, dl, DstVT, R,
6643                   DAG.getZExtOrTrunc(
6644                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6645                       dl, IntShVT)),
6646       ISD::SETGT);
6647 
6648   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6649                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6650 
6651   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6652                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6653   return true;
6654 }
6655 
6656 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6657                                       SDValue &Chain,
6658                                       SelectionDAG &DAG) const {
6659   SDLoc dl(SDValue(Node, 0));
6660   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6661   SDValue Src = Node->getOperand(OpNo);
6662 
6663   EVT SrcVT = Src.getValueType();
6664   EVT DstVT = Node->getValueType(0);
6665   EVT SetCCVT =
6666       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6667   EVT DstSetCCVT =
6668       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6669 
6670   // Only expand vector types if we have the appropriate vector bit operations.
6671   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6672                                                    ISD::FP_TO_SINT;
6673   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6674                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6675     return false;
6676 
6677   // If the maximum float value is smaller then the signed integer range,
6678   // the destination signmask can't be represented by the float, so we can
6679   // just use FP_TO_SINT directly.
6680   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6681   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6682   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6683   if (APFloat::opOverflow &
6684       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6685     if (Node->isStrictFPOpcode()) {
6686       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6687                            { Node->getOperand(0), Src });
6688       Chain = Result.getValue(1);
6689     } else
6690       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6691     return true;
6692   }
6693 
6694   // Don't expand it if there isn't cheap fsub instruction.
6695   if (!isOperationLegalOrCustom(
6696           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
6697     return false;
6698 
6699   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6700   SDValue Sel;
6701 
6702   if (Node->isStrictFPOpcode()) {
6703     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6704                        Node->getOperand(0), /*IsSignaling*/ true);
6705     Chain = Sel.getValue(1);
6706   } else {
6707     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6708   }
6709 
6710   bool Strict = Node->isStrictFPOpcode() ||
6711                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6712 
6713   if (Strict) {
6714     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6715     // signmask then offset (the result of which should be fully representable).
6716     // Sel = Src < 0x8000000000000000
6717     // FltOfs = select Sel, 0, 0x8000000000000000
6718     // IntOfs = select Sel, 0, 0x8000000000000000
6719     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6720 
6721     // TODO: Should any fast-math-flags be set for the FSUB?
6722     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6723                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6724     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6725     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6726                                    DAG.getConstant(0, dl, DstVT),
6727                                    DAG.getConstant(SignMask, dl, DstVT));
6728     SDValue SInt;
6729     if (Node->isStrictFPOpcode()) {
6730       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6731                                 { Chain, Src, FltOfs });
6732       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6733                          { Val.getValue(1), Val });
6734       Chain = SInt.getValue(1);
6735     } else {
6736       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6737       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6738     }
6739     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6740   } else {
6741     // Expand based on maximum range of FP_TO_SINT:
6742     // True = fp_to_sint(Src)
6743     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6744     // Result = select (Src < 0x8000000000000000), True, False
6745 
6746     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6747     // TODO: Should any fast-math-flags be set for the FSUB?
6748     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6749                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6750     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6751                         DAG.getConstant(SignMask, dl, DstVT));
6752     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6753     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6754   }
6755   return true;
6756 }
6757 
6758 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6759                                       SDValue &Chain,
6760                                       SelectionDAG &DAG) const {
6761   // This transform is not correct for converting 0 when rounding mode is set
6762   // to round toward negative infinity which will produce -0.0. So disable under
6763   // strictfp.
6764   if (Node->isStrictFPOpcode())
6765     return false;
6766 
6767   SDValue Src = Node->getOperand(0);
6768   EVT SrcVT = Src.getValueType();
6769   EVT DstVT = Node->getValueType(0);
6770 
6771   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6772     return false;
6773 
6774   // Only expand vector types if we have the appropriate vector bit operations.
6775   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6776                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6777                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6778                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6779                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6780     return false;
6781 
6782   SDLoc dl(SDValue(Node, 0));
6783   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6784 
6785   // Implementation of unsigned i64 to f64 following the algorithm in
6786   // __floatundidf in compiler_rt.  This implementation performs rounding
6787   // correctly in all rounding modes with the exception of converting 0
6788   // when rounding toward negative infinity. In that case the fsub will produce
6789   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
6790   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6791   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6792       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6793   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6794   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6795   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6796 
6797   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6798   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6799   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6800   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6801   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6802   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6803   SDValue HiSub =
6804       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6805   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6806   return true;
6807 }
6808 
6809 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6810                                               SelectionDAG &DAG) const {
6811   SDLoc dl(Node);
6812   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6813     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6814   EVT VT = Node->getValueType(0);
6815 
6816   if (VT.isScalableVector())
6817     report_fatal_error(
6818         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
6819 
6820   if (isOperationLegalOrCustom(NewOp, VT)) {
6821     SDValue Quiet0 = Node->getOperand(0);
6822     SDValue Quiet1 = Node->getOperand(1);
6823 
6824     if (!Node->getFlags().hasNoNaNs()) {
6825       // Insert canonicalizes if it's possible we need to quiet to get correct
6826       // sNaN behavior.
6827       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6828         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6829                              Node->getFlags());
6830       }
6831       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6832         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6833                              Node->getFlags());
6834       }
6835     }
6836 
6837     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6838   }
6839 
6840   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6841   // instead if there are no NaNs.
6842   if (Node->getFlags().hasNoNaNs()) {
6843     unsigned IEEE2018Op =
6844         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6845     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6846       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6847                          Node->getOperand(1), Node->getFlags());
6848     }
6849   }
6850 
6851   // If none of the above worked, but there are no NaNs, then expand to
6852   // a compare/select sequence.  This is required for correctness since
6853   // InstCombine might have canonicalized a fcmp+select sequence to a
6854   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6855   // expansion to libcall, we might introduce a link-time dependency
6856   // on libm into a file that originally did not have one.
6857   if (Node->getFlags().hasNoNaNs()) {
6858     ISD::CondCode Pred =
6859         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6860     SDValue Op1 = Node->getOperand(0);
6861     SDValue Op2 = Node->getOperand(1);
6862     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6863     // Copy FMF flags, but always set the no-signed-zeros flag
6864     // as this is implied by the FMINNUM/FMAXNUM semantics.
6865     SDNodeFlags Flags = Node->getFlags();
6866     Flags.setNoSignedZeros(true);
6867     SelCC->setFlags(Flags);
6868     return SelCC;
6869   }
6870 
6871   return SDValue();
6872 }
6873 
6874 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6875                                  SelectionDAG &DAG) const {
6876   SDLoc dl(Node);
6877   EVT VT = Node->getValueType(0);
6878   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6879   SDValue Op = Node->getOperand(0);
6880   unsigned Len = VT.getScalarSizeInBits();
6881   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6882 
6883   // TODO: Add support for irregular type lengths.
6884   if (!(Len <= 128 && Len % 8 == 0))
6885     return false;
6886 
6887   // Only expand vector types if we have the appropriate vector bit operations.
6888   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6889                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6890                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6891                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6892                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6893     return false;
6894 
6895   // This is the "best" algorithm from
6896   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6897   SDValue Mask55 =
6898       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6899   SDValue Mask33 =
6900       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6901   SDValue Mask0F =
6902       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6903   SDValue Mask01 =
6904       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6905 
6906   // v = v - ((v >> 1) & 0x55555555...)
6907   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6908                    DAG.getNode(ISD::AND, dl, VT,
6909                                DAG.getNode(ISD::SRL, dl, VT, Op,
6910                                            DAG.getConstant(1, dl, ShVT)),
6911                                Mask55));
6912   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6913   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6914                    DAG.getNode(ISD::AND, dl, VT,
6915                                DAG.getNode(ISD::SRL, dl, VT, Op,
6916                                            DAG.getConstant(2, dl, ShVT)),
6917                                Mask33));
6918   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6919   Op = DAG.getNode(ISD::AND, dl, VT,
6920                    DAG.getNode(ISD::ADD, dl, VT, Op,
6921                                DAG.getNode(ISD::SRL, dl, VT, Op,
6922                                            DAG.getConstant(4, dl, ShVT))),
6923                    Mask0F);
6924   // v = (v * 0x01010101...) >> (Len - 8)
6925   if (Len > 8)
6926     Op =
6927         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6928                     DAG.getConstant(Len - 8, dl, ShVT));
6929 
6930   Result = Op;
6931   return true;
6932 }
6933 
6934 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6935                                 SelectionDAG &DAG) const {
6936   SDLoc dl(Node);
6937   EVT VT = Node->getValueType(0);
6938   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6939   SDValue Op = Node->getOperand(0);
6940   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6941 
6942   // If the non-ZERO_UNDEF version is supported we can use that instead.
6943   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6944       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6945     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6946     return true;
6947   }
6948 
6949   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6950   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6951     EVT SetCCVT =
6952         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6953     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6954     SDValue Zero = DAG.getConstant(0, dl, VT);
6955     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6956     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6957                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6958     return true;
6959   }
6960 
6961   // Only expand vector types if we have the appropriate vector bit operations.
6962   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6963                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6964                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6965                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6966     return false;
6967 
6968   // for now, we do this:
6969   // x = x | (x >> 1);
6970   // x = x | (x >> 2);
6971   // ...
6972   // x = x | (x >>16);
6973   // x = x | (x >>32); // for 64-bit input
6974   // return popcount(~x);
6975   //
6976   // Ref: "Hacker's Delight" by Henry Warren
6977   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6978     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6979     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6980                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6981   }
6982   Op = DAG.getNOT(dl, Op, VT);
6983   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6984   return true;
6985 }
6986 
6987 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6988                                 SelectionDAG &DAG) const {
6989   SDLoc dl(Node);
6990   EVT VT = Node->getValueType(0);
6991   SDValue Op = Node->getOperand(0);
6992   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6993 
6994   // If the non-ZERO_UNDEF version is supported we can use that instead.
6995   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6996       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6997     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6998     return true;
6999   }
7000 
7001   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7002   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7003     EVT SetCCVT =
7004         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7005     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7006     SDValue Zero = DAG.getConstant(0, dl, VT);
7007     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7008     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
7009                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7010     return true;
7011   }
7012 
7013   // Only expand vector types if we have the appropriate vector bit operations.
7014   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7015                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7016                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
7017                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7018                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7019                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7020     return false;
7021 
7022   // for now, we use: { return popcount(~x & (x - 1)); }
7023   // unless the target has ctlz but not ctpop, in which case we use:
7024   // { return 32 - nlz(~x & (x-1)); }
7025   // Ref: "Hacker's Delight" by Henry Warren
7026   SDValue Tmp = DAG.getNode(
7027       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7028       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7029 
7030   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7031   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7032     Result =
7033         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7034                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7035     return true;
7036   }
7037 
7038   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7039   return true;
7040 }
7041 
7042 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
7043                                SelectionDAG &DAG, bool IsNegative) const {
7044   SDLoc dl(N);
7045   EVT VT = N->getValueType(0);
7046   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7047   SDValue Op = N->getOperand(0);
7048 
7049   // abs(x) -> smax(x,sub(0,x))
7050   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7051       isOperationLegal(ISD::SMAX, VT)) {
7052     SDValue Zero = DAG.getConstant(0, dl, VT);
7053     Result = DAG.getNode(ISD::SMAX, dl, VT, Op,
7054                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7055     return true;
7056   }
7057 
7058   // abs(x) -> umin(x,sub(0,x))
7059   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7060       isOperationLegal(ISD::UMIN, VT)) {
7061     SDValue Zero = DAG.getConstant(0, dl, VT);
7062     Result = DAG.getNode(ISD::UMIN, dl, VT, Op,
7063                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7064     return true;
7065   }
7066 
7067   // 0 - abs(x) -> smin(x, sub(0,x))
7068   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7069       isOperationLegal(ISD::SMIN, VT)) {
7070     SDValue Zero = DAG.getConstant(0, dl, VT);
7071     Result = DAG.getNode(ISD::SMIN, dl, VT, Op,
7072                          DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7073     return true;
7074   }
7075 
7076   // Only expand vector types if we have the appropriate vector operations.
7077   if (VT.isVector() &&
7078       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7079        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7080        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7081        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7082     return false;
7083 
7084   SDValue Shift =
7085       DAG.getNode(ISD::SRA, dl, VT, Op,
7086                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7087   if (!IsNegative) {
7088     SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
7089     Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
7090   } else {
7091     // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7092     SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7093     Result = DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7094   }
7095   return true;
7096 }
7097 
7098 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7099   SDLoc dl(N);
7100   EVT VT = N->getValueType(0);
7101   SDValue Op = N->getOperand(0);
7102 
7103   if (!VT.isSimple())
7104     return SDValue();
7105 
7106   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7107   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7108   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7109   default:
7110     return SDValue();
7111   case MVT::i16:
7112     // Use a rotate by 8. This can be further expanded if necessary.
7113     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7114   case MVT::i32:
7115     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7116     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7117     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7118     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7119     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7120                        DAG.getConstant(0xFF0000, dl, VT));
7121     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7122     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7123     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7124     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7125   case MVT::i64:
7126     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7127     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7128     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7129     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7130     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7131     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7132     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7133     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7134     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7135                        DAG.getConstant(255ULL<<48, dl, VT));
7136     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7137                        DAG.getConstant(255ULL<<40, dl, VT));
7138     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7139                        DAG.getConstant(255ULL<<32, dl, VT));
7140     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7141                        DAG.getConstant(255ULL<<24, dl, VT));
7142     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7143                        DAG.getConstant(255ULL<<16, dl, VT));
7144     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7145                        DAG.getConstant(255ULL<<8 , dl, VT));
7146     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7147     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7148     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7149     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7150     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7151     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7152     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7153   }
7154 }
7155 
7156 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7157   SDLoc dl(N);
7158   EVT VT = N->getValueType(0);
7159   SDValue Op = N->getOperand(0);
7160   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7161   unsigned Sz = VT.getScalarSizeInBits();
7162 
7163   SDValue Tmp, Tmp2, Tmp3;
7164 
7165   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7166   // and finally the i1 pairs.
7167   // TODO: We can easily support i4/i2 legal types if any target ever does.
7168   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7169     // Create the masks - repeating the pattern every byte.
7170     APInt MaskHi4 = APInt::getSplat(Sz, APInt(8, 0xF0));
7171     APInt MaskHi2 = APInt::getSplat(Sz, APInt(8, 0xCC));
7172     APInt MaskHi1 = APInt::getSplat(Sz, APInt(8, 0xAA));
7173     APInt MaskLo4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7174     APInt MaskLo2 = APInt::getSplat(Sz, APInt(8, 0x33));
7175     APInt MaskLo1 = APInt::getSplat(Sz, APInt(8, 0x55));
7176 
7177     // BSWAP if the type is wider than a single byte.
7178     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7179 
7180     // swap i4: ((V & 0xF0) >> 4) | ((V & 0x0F) << 4)
7181     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi4, dl, VT));
7182     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo4, dl, VT));
7183     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(4, dl, SHVT));
7184     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7185     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7186 
7187     // swap i2: ((V & 0xCC) >> 2) | ((V & 0x33) << 2)
7188     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi2, dl, VT));
7189     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo2, dl, VT));
7190     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(2, dl, SHVT));
7191     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7192     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7193 
7194     // swap i1: ((V & 0xAA) >> 1) | ((V & 0x55) << 1)
7195     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskHi1, dl, VT));
7196     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(MaskLo1, dl, VT));
7197     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp2, DAG.getConstant(1, dl, SHVT));
7198     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7199     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7200     return Tmp;
7201   }
7202 
7203   Tmp = DAG.getConstant(0, dl, VT);
7204   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7205     if (I < J)
7206       Tmp2 =
7207           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7208     else
7209       Tmp2 =
7210           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7211 
7212     APInt Shift(Sz, 1);
7213     Shift <<= J;
7214     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7215     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7216   }
7217 
7218   return Tmp;
7219 }
7220 
7221 std::pair<SDValue, SDValue>
7222 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7223                                     SelectionDAG &DAG) const {
7224   SDLoc SL(LD);
7225   SDValue Chain = LD->getChain();
7226   SDValue BasePTR = LD->getBasePtr();
7227   EVT SrcVT = LD->getMemoryVT();
7228   EVT DstVT = LD->getValueType(0);
7229   ISD::LoadExtType ExtType = LD->getExtensionType();
7230 
7231   if (SrcVT.isScalableVector())
7232     report_fatal_error("Cannot scalarize scalable vector loads");
7233 
7234   unsigned NumElem = SrcVT.getVectorNumElements();
7235 
7236   EVT SrcEltVT = SrcVT.getScalarType();
7237   EVT DstEltVT = DstVT.getScalarType();
7238 
7239   // A vector must always be stored in memory as-is, i.e. without any padding
7240   // between the elements, since various code depend on it, e.g. in the
7241   // handling of a bitcast of a vector type to int, which may be done with a
7242   // vector store followed by an integer load. A vector that does not have
7243   // elements that are byte-sized must therefore be stored as an integer
7244   // built out of the extracted vector elements.
7245   if (!SrcEltVT.isByteSized()) {
7246     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7247     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7248 
7249     unsigned NumSrcBits = SrcVT.getSizeInBits();
7250     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7251 
7252     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7253     SDValue SrcEltBitMask = DAG.getConstant(
7254         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7255 
7256     // Load the whole vector and avoid masking off the top bits as it makes
7257     // the codegen worse.
7258     SDValue Load =
7259         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7260                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7261                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7262 
7263     SmallVector<SDValue, 8> Vals;
7264     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7265       unsigned ShiftIntoIdx =
7266           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7267       SDValue ShiftAmount =
7268           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7269                                      LoadVT, SL, /*LegalTypes=*/false);
7270       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7271       SDValue Elt =
7272           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7273       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7274 
7275       if (ExtType != ISD::NON_EXTLOAD) {
7276         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7277         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7278       }
7279 
7280       Vals.push_back(Scalar);
7281     }
7282 
7283     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7284     return std::make_pair(Value, Load.getValue(1));
7285   }
7286 
7287   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7288   assert(SrcEltVT.isByteSized());
7289 
7290   SmallVector<SDValue, 8> Vals;
7291   SmallVector<SDValue, 8> LoadChains;
7292 
7293   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7294     SDValue ScalarLoad =
7295         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7296                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7297                        SrcEltVT, LD->getOriginalAlign(),
7298                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7299 
7300     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7301 
7302     Vals.push_back(ScalarLoad.getValue(0));
7303     LoadChains.push_back(ScalarLoad.getValue(1));
7304   }
7305 
7306   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7307   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7308 
7309   return std::make_pair(Value, NewChain);
7310 }
7311 
7312 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7313                                              SelectionDAG &DAG) const {
7314   SDLoc SL(ST);
7315 
7316   SDValue Chain = ST->getChain();
7317   SDValue BasePtr = ST->getBasePtr();
7318   SDValue Value = ST->getValue();
7319   EVT StVT = ST->getMemoryVT();
7320 
7321   if (StVT.isScalableVector())
7322     report_fatal_error("Cannot scalarize scalable vector stores");
7323 
7324   // The type of the data we want to save
7325   EVT RegVT = Value.getValueType();
7326   EVT RegSclVT = RegVT.getScalarType();
7327 
7328   // The type of data as saved in memory.
7329   EVT MemSclVT = StVT.getScalarType();
7330 
7331   unsigned NumElem = StVT.getVectorNumElements();
7332 
7333   // A vector must always be stored in memory as-is, i.e. without any padding
7334   // between the elements, since various code depend on it, e.g. in the
7335   // handling of a bitcast of a vector type to int, which may be done with a
7336   // vector store followed by an integer load. A vector that does not have
7337   // elements that are byte-sized must therefore be stored as an integer
7338   // built out of the extracted vector elements.
7339   if (!MemSclVT.isByteSized()) {
7340     unsigned NumBits = StVT.getSizeInBits();
7341     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7342 
7343     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7344 
7345     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7346       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7347                                 DAG.getVectorIdxConstant(Idx, SL));
7348       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7349       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7350       unsigned ShiftIntoIdx =
7351           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7352       SDValue ShiftAmount =
7353           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7354       SDValue ShiftedElt =
7355           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7356       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7357     }
7358 
7359     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7360                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7361                         ST->getAAInfo());
7362   }
7363 
7364   // Store Stride in bytes
7365   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7366   assert(Stride && "Zero stride!");
7367   // Extract each of the elements from the original vector and save them into
7368   // memory individually.
7369   SmallVector<SDValue, 8> Stores;
7370   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7371     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7372                               DAG.getVectorIdxConstant(Idx, SL));
7373 
7374     SDValue Ptr =
7375         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7376 
7377     // This scalar TruncStore may be illegal, but we legalize it later.
7378     SDValue Store = DAG.getTruncStore(
7379         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7380         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7381         ST->getAAInfo());
7382 
7383     Stores.push_back(Store);
7384   }
7385 
7386   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7387 }
7388 
7389 std::pair<SDValue, SDValue>
7390 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7391   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7392          "unaligned indexed loads not implemented!");
7393   SDValue Chain = LD->getChain();
7394   SDValue Ptr = LD->getBasePtr();
7395   EVT VT = LD->getValueType(0);
7396   EVT LoadedVT = LD->getMemoryVT();
7397   SDLoc dl(LD);
7398   auto &MF = DAG.getMachineFunction();
7399 
7400   if (VT.isFloatingPoint() || VT.isVector()) {
7401     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7402     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7403       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7404           LoadedVT.isVector()) {
7405         // Scalarize the load and let the individual components be handled.
7406         return scalarizeVectorLoad(LD, DAG);
7407       }
7408 
7409       // Expand to a (misaligned) integer load of the same size,
7410       // then bitconvert to floating point or vector.
7411       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7412                                     LD->getMemOperand());
7413       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7414       if (LoadedVT != VT)
7415         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7416                              ISD::ANY_EXTEND, dl, VT, Result);
7417 
7418       return std::make_pair(Result, newLoad.getValue(1));
7419     }
7420 
7421     // Copy the value to a (aligned) stack slot using (unaligned) integer
7422     // loads and stores, then do a (aligned) load from the stack slot.
7423     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7424     unsigned LoadedBytes = LoadedVT.getStoreSize();
7425     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7426     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7427 
7428     // Make sure the stack slot is also aligned for the register type.
7429     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7430     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7431     SmallVector<SDValue, 8> Stores;
7432     SDValue StackPtr = StackBase;
7433     unsigned Offset = 0;
7434 
7435     EVT PtrVT = Ptr.getValueType();
7436     EVT StackPtrVT = StackPtr.getValueType();
7437 
7438     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7439     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7440 
7441     // Do all but one copies using the full register width.
7442     for (unsigned i = 1; i < NumRegs; i++) {
7443       // Load one integer register's worth from the original location.
7444       SDValue Load = DAG.getLoad(
7445           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7446           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7447           LD->getAAInfo());
7448       // Follow the load with a store to the stack slot.  Remember the store.
7449       Stores.push_back(DAG.getStore(
7450           Load.getValue(1), dl, Load, StackPtr,
7451           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7452       // Increment the pointers.
7453       Offset += RegBytes;
7454 
7455       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7456       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7457     }
7458 
7459     // The last copy may be partial.  Do an extending load.
7460     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7461                                   8 * (LoadedBytes - Offset));
7462     SDValue Load =
7463         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7464                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7465                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7466                        LD->getAAInfo());
7467     // Follow the load with a store to the stack slot.  Remember the store.
7468     // On big-endian machines this requires a truncating store to ensure
7469     // that the bits end up in the right place.
7470     Stores.push_back(DAG.getTruncStore(
7471         Load.getValue(1), dl, Load, StackPtr,
7472         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7473 
7474     // The order of the stores doesn't matter - say it with a TokenFactor.
7475     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7476 
7477     // Finally, perform the original load only redirected to the stack slot.
7478     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7479                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7480                           LoadedVT);
7481 
7482     // Callers expect a MERGE_VALUES node.
7483     return std::make_pair(Load, TF);
7484   }
7485 
7486   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7487          "Unaligned load of unsupported type.");
7488 
7489   // Compute the new VT that is half the size of the old one.  This is an
7490   // integer MVT.
7491   unsigned NumBits = LoadedVT.getSizeInBits();
7492   EVT NewLoadedVT;
7493   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7494   NumBits >>= 1;
7495 
7496   Align Alignment = LD->getOriginalAlign();
7497   unsigned IncrementSize = NumBits / 8;
7498   ISD::LoadExtType HiExtType = LD->getExtensionType();
7499 
7500   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7501   if (HiExtType == ISD::NON_EXTLOAD)
7502     HiExtType = ISD::ZEXTLOAD;
7503 
7504   // Load the value in two parts
7505   SDValue Lo, Hi;
7506   if (DAG.getDataLayout().isLittleEndian()) {
7507     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7508                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7509                         LD->getAAInfo());
7510 
7511     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7512     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7513                         LD->getPointerInfo().getWithOffset(IncrementSize),
7514                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7515                         LD->getAAInfo());
7516   } else {
7517     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7518                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7519                         LD->getAAInfo());
7520 
7521     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7522     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7523                         LD->getPointerInfo().getWithOffset(IncrementSize),
7524                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7525                         LD->getAAInfo());
7526   }
7527 
7528   // aggregate the two parts
7529   SDValue ShiftAmount =
7530       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7531                                                     DAG.getDataLayout()));
7532   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7533   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7534 
7535   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7536                              Hi.getValue(1));
7537 
7538   return std::make_pair(Result, TF);
7539 }
7540 
7541 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7542                                              SelectionDAG &DAG) const {
7543   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7544          "unaligned indexed stores not implemented!");
7545   SDValue Chain = ST->getChain();
7546   SDValue Ptr = ST->getBasePtr();
7547   SDValue Val = ST->getValue();
7548   EVT VT = Val.getValueType();
7549   Align Alignment = ST->getOriginalAlign();
7550   auto &MF = DAG.getMachineFunction();
7551   EVT StoreMemVT = ST->getMemoryVT();
7552 
7553   SDLoc dl(ST);
7554   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7555     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7556     if (isTypeLegal(intVT)) {
7557       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7558           StoreMemVT.isVector()) {
7559         // Scalarize the store and let the individual components be handled.
7560         SDValue Result = scalarizeVectorStore(ST, DAG);
7561         return Result;
7562       }
7563       // Expand to a bitconvert of the value to the integer type of the
7564       // same size, then a (misaligned) int store.
7565       // FIXME: Does not handle truncating floating point stores!
7566       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7567       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7568                             Alignment, ST->getMemOperand()->getFlags());
7569       return Result;
7570     }
7571     // Do a (aligned) store to a stack slot, then copy from the stack slot
7572     // to the final destination using (unaligned) integer loads and stores.
7573     MVT RegVT = getRegisterType(
7574         *DAG.getContext(),
7575         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7576     EVT PtrVT = Ptr.getValueType();
7577     unsigned StoredBytes = StoreMemVT.getStoreSize();
7578     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7579     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7580 
7581     // Make sure the stack slot is also aligned for the register type.
7582     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7583     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7584 
7585     // Perform the original store, only redirected to the stack slot.
7586     SDValue Store = DAG.getTruncStore(
7587         Chain, dl, Val, StackPtr,
7588         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7589 
7590     EVT StackPtrVT = StackPtr.getValueType();
7591 
7592     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7593     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7594     SmallVector<SDValue, 8> Stores;
7595     unsigned Offset = 0;
7596 
7597     // Do all but one copies using the full register width.
7598     for (unsigned i = 1; i < NumRegs; i++) {
7599       // Load one integer register's worth from the stack slot.
7600       SDValue Load = DAG.getLoad(
7601           RegVT, dl, Store, StackPtr,
7602           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7603       // Store it to the final location.  Remember the store.
7604       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7605                                     ST->getPointerInfo().getWithOffset(Offset),
7606                                     ST->getOriginalAlign(),
7607                                     ST->getMemOperand()->getFlags()));
7608       // Increment the pointers.
7609       Offset += RegBytes;
7610       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7611       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7612     }
7613 
7614     // The last store may be partial.  Do a truncating store.  On big-endian
7615     // machines this requires an extending load from the stack slot to ensure
7616     // that the bits are in the right place.
7617     EVT LoadMemVT =
7618         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7619 
7620     // Load from the stack slot.
7621     SDValue Load = DAG.getExtLoad(
7622         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7623         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7624 
7625     Stores.push_back(
7626         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7627                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7628                           ST->getOriginalAlign(),
7629                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7630     // The order of the stores doesn't matter - say it with a TokenFactor.
7631     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7632     return Result;
7633   }
7634 
7635   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7636          "Unaligned store of unknown type.");
7637   // Get the half-size VT
7638   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7639   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7640   unsigned IncrementSize = NumBits / 8;
7641 
7642   // Divide the stored value in two parts.
7643   SDValue ShiftAmount = DAG.getConstant(
7644       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
7645   SDValue Lo = Val;
7646   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
7647 
7648   // Store the two parts
7649   SDValue Store1, Store2;
7650   Store1 = DAG.getTruncStore(Chain, dl,
7651                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
7652                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
7653                              ST->getMemOperand()->getFlags());
7654 
7655   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7656   Store2 = DAG.getTruncStore(
7657       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
7658       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
7659       ST->getMemOperand()->getFlags(), ST->getAAInfo());
7660 
7661   SDValue Result =
7662       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
7663   return Result;
7664 }
7665 
7666 SDValue
7667 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
7668                                        const SDLoc &DL, EVT DataVT,
7669                                        SelectionDAG &DAG,
7670                                        bool IsCompressedMemory) const {
7671   SDValue Increment;
7672   EVT AddrVT = Addr.getValueType();
7673   EVT MaskVT = Mask.getValueType();
7674   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
7675          "Incompatible types of Data and Mask");
7676   if (IsCompressedMemory) {
7677     if (DataVT.isScalableVector())
7678       report_fatal_error(
7679           "Cannot currently handle compressed memory with scalable vectors");
7680     // Incrementing the pointer according to number of '1's in the mask.
7681     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7682     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7683     if (MaskIntVT.getSizeInBits() < 32) {
7684       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7685       MaskIntVT = MVT::i32;
7686     }
7687 
7688     // Count '1's with POPCNT.
7689     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7690     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7691     // Scale is an element size in bytes.
7692     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7693                                     AddrVT);
7694     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7695   } else if (DataVT.isScalableVector()) {
7696     Increment = DAG.getVScale(DL, AddrVT,
7697                               APInt(AddrVT.getFixedSizeInBits(),
7698                                     DataVT.getStoreSize().getKnownMinSize()));
7699   } else
7700     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7701 
7702   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7703 }
7704 
7705 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7706                                        SDValue Idx,
7707                                        EVT VecVT,
7708                                        const SDLoc &dl) {
7709   if (!VecVT.isScalableVector() && isa<ConstantSDNode>(Idx))
7710     return Idx;
7711 
7712   EVT IdxVT = Idx.getValueType();
7713   unsigned NElts = VecVT.getVectorMinNumElements();
7714   if (VecVT.isScalableVector()) {
7715     SDValue VS = DAG.getVScale(dl, IdxVT,
7716                                APInt(IdxVT.getFixedSizeInBits(),
7717                                      NElts));
7718     SDValue Sub = DAG.getNode(ISD::SUB, dl, IdxVT, VS,
7719                               DAG.getConstant(1, dl, IdxVT));
7720 
7721     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
7722   } else {
7723     if (isPowerOf2_32(NElts)) {
7724       APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7725                                        Log2_32(NElts));
7726       return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7727                          DAG.getConstant(Imm, dl, IdxVT));
7728     }
7729   }
7730 
7731   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7732                      DAG.getConstant(NElts - 1, dl, IdxVT));
7733 }
7734 
7735 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7736                                                 SDValue VecPtr, EVT VecVT,
7737                                                 SDValue Index) const {
7738   SDLoc dl(Index);
7739   // Make sure the index type is big enough to compute in.
7740   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7741 
7742   EVT EltVT = VecVT.getVectorElementType();
7743 
7744   // Calculate the element offset and add it to the pointer.
7745   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
7746   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
7747          "Converting bits to bytes lost precision");
7748 
7749   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7750 
7751   EVT IdxVT = Index.getValueType();
7752 
7753   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7754                       DAG.getConstant(EltSize, dl, IdxVT));
7755   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7756 }
7757 
7758 //===----------------------------------------------------------------------===//
7759 // Implementation of Emulated TLS Model
7760 //===----------------------------------------------------------------------===//
7761 
7762 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7763                                                 SelectionDAG &DAG) const {
7764   // Access to address of TLS varialbe xyz is lowered to a function call:
7765   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7766   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7767   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7768   SDLoc dl(GA);
7769 
7770   ArgListTy Args;
7771   ArgListEntry Entry;
7772   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7773   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7774   StringRef EmuTlsVarName(NameString);
7775   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7776   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7777   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7778   Entry.Ty = VoidPtrType;
7779   Args.push_back(Entry);
7780 
7781   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7782 
7783   TargetLowering::CallLoweringInfo CLI(DAG);
7784   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7785   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7786   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7787 
7788   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7789   // At last for X86 targets, maybe good for other targets too?
7790   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7791   MFI.setAdjustsStack(true); // Is this only for X86 target?
7792   MFI.setHasCalls(true);
7793 
7794   assert((GA->getOffset() == 0) &&
7795          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7796   return CallResult.first;
7797 }
7798 
7799 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7800                                                 SelectionDAG &DAG) const {
7801   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7802   if (!isCtlzFast())
7803     return SDValue();
7804   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7805   SDLoc dl(Op);
7806   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7807     if (C->isNullValue() && CC == ISD::SETEQ) {
7808       EVT VT = Op.getOperand(0).getValueType();
7809       SDValue Zext = Op.getOperand(0);
7810       if (VT.bitsLT(MVT::i32)) {
7811         VT = MVT::i32;
7812         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7813       }
7814       unsigned Log2b = Log2_32(VT.getSizeInBits());
7815       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7816       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7817                                 DAG.getConstant(Log2b, dl, MVT::i32));
7818       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7819     }
7820   }
7821   return SDValue();
7822 }
7823 
7824 // Convert redundant addressing modes (e.g. scaling is redundant
7825 // when accessing bytes).
7826 ISD::MemIndexType
7827 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
7828                                       SDValue Offsets) const {
7829   bool IsScaledIndex =
7830       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
7831   bool IsSignedIndex =
7832       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
7833 
7834   // Scaling is unimportant for bytes, canonicalize to unscaled.
7835   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) {
7836     IsScaledIndex = false;
7837     IndexType = IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
7838   }
7839 
7840   return IndexType;
7841 }
7842 
7843 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
7844   SDValue Op0 = Node->getOperand(0);
7845   SDValue Op1 = Node->getOperand(1);
7846   EVT VT = Op0.getValueType();
7847   unsigned Opcode = Node->getOpcode();
7848   SDLoc DL(Node);
7849 
7850   // umin(x,y) -> sub(x,usubsat(x,y))
7851   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
7852       isOperationLegal(ISD::USUBSAT, VT)) {
7853     return DAG.getNode(ISD::SUB, DL, VT, Op0,
7854                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
7855   }
7856 
7857   // umax(x,y) -> add(x,usubsat(y,x))
7858   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
7859       isOperationLegal(ISD::USUBSAT, VT)) {
7860     return DAG.getNode(ISD::ADD, DL, VT, Op0,
7861                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
7862   }
7863 
7864   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
7865   ISD::CondCode CC;
7866   switch (Opcode) {
7867   default: llvm_unreachable("How did we get here?");
7868   case ISD::SMAX: CC = ISD::SETGT; break;
7869   case ISD::SMIN: CC = ISD::SETLT; break;
7870   case ISD::UMAX: CC = ISD::SETUGT; break;
7871   case ISD::UMIN: CC = ISD::SETULT; break;
7872   }
7873 
7874   // FIXME: Should really try to split the vector in case it's legal on a
7875   // subvector.
7876   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7877     return DAG.UnrollVectorOp(Node);
7878 
7879   SDValue Cond = DAG.getSetCC(DL, VT, Op0, Op1, CC);
7880   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
7881 }
7882 
7883 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7884   unsigned Opcode = Node->getOpcode();
7885   SDValue LHS = Node->getOperand(0);
7886   SDValue RHS = Node->getOperand(1);
7887   EVT VT = LHS.getValueType();
7888   SDLoc dl(Node);
7889 
7890   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7891   assert(VT.isInteger() && "Expected operands to be integers");
7892 
7893   // usub.sat(a, b) -> umax(a, b) - b
7894   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
7895     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7896     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7897   }
7898 
7899   // uadd.sat(a, b) -> umin(a, ~b) + b
7900   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
7901     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7902     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7903     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7904   }
7905 
7906   unsigned OverflowOp;
7907   switch (Opcode) {
7908   case ISD::SADDSAT:
7909     OverflowOp = ISD::SADDO;
7910     break;
7911   case ISD::UADDSAT:
7912     OverflowOp = ISD::UADDO;
7913     break;
7914   case ISD::SSUBSAT:
7915     OverflowOp = ISD::SSUBO;
7916     break;
7917   case ISD::USUBSAT:
7918     OverflowOp = ISD::USUBO;
7919     break;
7920   default:
7921     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7922                      "addition or subtraction node.");
7923   }
7924 
7925   // FIXME: Should really try to split the vector in case it's legal on a
7926   // subvector.
7927   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
7928     return DAG.UnrollVectorOp(Node);
7929 
7930   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7931   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7932   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7933   SDValue SumDiff = Result.getValue(0);
7934   SDValue Overflow = Result.getValue(1);
7935   SDValue Zero = DAG.getConstant(0, dl, VT);
7936   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7937 
7938   if (Opcode == ISD::UADDSAT) {
7939     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7940       // (LHS + RHS) | OverflowMask
7941       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7942       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7943     }
7944     // Overflow ? 0xffff.... : (LHS + RHS)
7945     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7946   }
7947 
7948   if (Opcode == ISD::USUBSAT) {
7949     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7950       // (LHS - RHS) & ~OverflowMask
7951       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7952       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7953       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7954     }
7955     // Overflow ? 0 : (LHS - RHS)
7956     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7957   }
7958 
7959   // SatMax -> Overflow && SumDiff < 0
7960   // SatMin -> Overflow && SumDiff >= 0
7961   APInt MinVal = APInt::getSignedMinValue(BitWidth);
7962   APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7963   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7964   SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7965   SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7966   Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7967   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7968 }
7969 
7970 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
7971   unsigned Opcode = Node->getOpcode();
7972   bool IsSigned = Opcode == ISD::SSHLSAT;
7973   SDValue LHS = Node->getOperand(0);
7974   SDValue RHS = Node->getOperand(1);
7975   EVT VT = LHS.getValueType();
7976   SDLoc dl(Node);
7977 
7978   assert((Node->getOpcode() == ISD::SSHLSAT ||
7979           Node->getOpcode() == ISD::USHLSAT) &&
7980           "Expected a SHLSAT opcode");
7981   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7982   assert(VT.isInteger() && "Expected operands to be integers");
7983 
7984   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
7985 
7986   unsigned BW = VT.getScalarSizeInBits();
7987   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
7988   SDValue Orig =
7989       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
7990 
7991   SDValue SatVal;
7992   if (IsSigned) {
7993     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
7994     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
7995     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
7996                              SatMin, SatMax, ISD::SETLT);
7997   } else {
7998     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
7999   }
8000   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8001 
8002   return Result;
8003 }
8004 
8005 SDValue
8006 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8007   assert((Node->getOpcode() == ISD::SMULFIX ||
8008           Node->getOpcode() == ISD::UMULFIX ||
8009           Node->getOpcode() == ISD::SMULFIXSAT ||
8010           Node->getOpcode() == ISD::UMULFIXSAT) &&
8011          "Expected a fixed point multiplication opcode");
8012 
8013   SDLoc dl(Node);
8014   SDValue LHS = Node->getOperand(0);
8015   SDValue RHS = Node->getOperand(1);
8016   EVT VT = LHS.getValueType();
8017   unsigned Scale = Node->getConstantOperandVal(2);
8018   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8019                      Node->getOpcode() == ISD::UMULFIXSAT);
8020   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8021                  Node->getOpcode() == ISD::SMULFIXSAT);
8022   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8023   unsigned VTSize = VT.getScalarSizeInBits();
8024 
8025   if (!Scale) {
8026     // [us]mul.fix(a, b, 0) -> mul(a, b)
8027     if (!Saturating) {
8028       if (isOperationLegalOrCustom(ISD::MUL, VT))
8029         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8030     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8031       SDValue Result =
8032           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8033       SDValue Product = Result.getValue(0);
8034       SDValue Overflow = Result.getValue(1);
8035       SDValue Zero = DAG.getConstant(0, dl, VT);
8036 
8037       APInt MinVal = APInt::getSignedMinValue(VTSize);
8038       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8039       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8040       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8041       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
8042       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
8043       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8044     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8045       SDValue Result =
8046           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8047       SDValue Product = Result.getValue(0);
8048       SDValue Overflow = Result.getValue(1);
8049 
8050       APInt MaxVal = APInt::getMaxValue(VTSize);
8051       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8052       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8053     }
8054   }
8055 
8056   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8057          "Expected scale to be less than the number of bits if signed or at "
8058          "most the number of bits if unsigned.");
8059   assert(LHS.getValueType() == RHS.getValueType() &&
8060          "Expected both operands to be the same type");
8061 
8062   // Get the upper and lower bits of the result.
8063   SDValue Lo, Hi;
8064   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8065   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8066   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8067     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8068     Lo = Result.getValue(0);
8069     Hi = Result.getValue(1);
8070   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8071     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8072     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8073   } else if (VT.isVector()) {
8074     return SDValue();
8075   } else {
8076     report_fatal_error("Unable to expand fixed point multiplication.");
8077   }
8078 
8079   if (Scale == VTSize)
8080     // Result is just the top half since we'd be shifting by the width of the
8081     // operand. Overflow impossible so this works for both UMULFIX and
8082     // UMULFIXSAT.
8083     return Hi;
8084 
8085   // The result will need to be shifted right by the scale since both operands
8086   // are scaled. The result is given to us in 2 halves, so we only want part of
8087   // both in the result.
8088   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8089   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8090                                DAG.getConstant(Scale, dl, ShiftTy));
8091   if (!Saturating)
8092     return Result;
8093 
8094   if (!Signed) {
8095     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8096     // widened multiplication) aren't all zeroes.
8097 
8098     // Saturate to max if ((Hi >> Scale) != 0),
8099     // which is the same as if (Hi > ((1 << Scale) - 1))
8100     APInt MaxVal = APInt::getMaxValue(VTSize);
8101     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8102                                       dl, VT);
8103     Result = DAG.getSelectCC(dl, Hi, LowMask,
8104                              DAG.getConstant(MaxVal, dl, VT), Result,
8105                              ISD::SETUGT);
8106 
8107     return Result;
8108   }
8109 
8110   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8111   // widened multiplication) aren't all ones or all zeroes.
8112 
8113   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8114   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8115 
8116   if (Scale == 0) {
8117     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8118                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8119     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8120     // Saturated to SatMin if wide product is negative, and SatMax if wide
8121     // product is positive ...
8122     SDValue Zero = DAG.getConstant(0, dl, VT);
8123     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8124                                                ISD::SETLT);
8125     // ... but only if we overflowed.
8126     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8127   }
8128 
8129   //  We handled Scale==0 above so all the bits to examine is in Hi.
8130 
8131   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8132   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8133   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8134                                     dl, VT);
8135   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8136   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8137   // which is the same as if (HI < (-1 << (Scale - 1))
8138   SDValue HighMask =
8139       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8140                       dl, VT);
8141   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8142   return Result;
8143 }
8144 
8145 SDValue
8146 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8147                                     SDValue LHS, SDValue RHS,
8148                                     unsigned Scale, SelectionDAG &DAG) const {
8149   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8150           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8151          "Expected a fixed point division opcode");
8152 
8153   EVT VT = LHS.getValueType();
8154   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8155   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8156   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8157 
8158   // If there is enough room in the type to upscale the LHS or downscale the
8159   // RHS before the division, we can perform it in this type without having to
8160   // resize. For signed operations, the LHS headroom is the number of
8161   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8162   // The headroom for the RHS is the number of trailing zeroes.
8163   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8164                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8165   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8166 
8167   // For signed saturating operations, we need to be able to detect true integer
8168   // division overflow; that is, when you have MIN / -EPS. However, this
8169   // is undefined behavior and if we emit divisions that could take such
8170   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8171   // example).
8172   // Avoid this by requiring an extra bit so that we never get this case.
8173   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8174   // signed saturating division, we need to emit a whopping 32-bit division.
8175   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8176     return SDValue();
8177 
8178   unsigned LHSShift = std::min(LHSLead, Scale);
8179   unsigned RHSShift = Scale - LHSShift;
8180 
8181   // At this point, we know that if we shift the LHS up by LHSShift and the
8182   // RHS down by RHSShift, we can emit a regular division with a final scaling
8183   // factor of Scale.
8184 
8185   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8186   if (LHSShift)
8187     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8188                       DAG.getConstant(LHSShift, dl, ShiftTy));
8189   if (RHSShift)
8190     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8191                       DAG.getConstant(RHSShift, dl, ShiftTy));
8192 
8193   SDValue Quot;
8194   if (Signed) {
8195     // For signed operations, if the resulting quotient is negative and the
8196     // remainder is nonzero, subtract 1 from the quotient to round towards
8197     // negative infinity.
8198     SDValue Rem;
8199     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8200     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8201     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8202     if (isTypeLegal(VT) &&
8203         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8204       Quot = DAG.getNode(ISD::SDIVREM, dl,
8205                          DAG.getVTList(VT, VT),
8206                          LHS, RHS);
8207       Rem = Quot.getValue(1);
8208       Quot = Quot.getValue(0);
8209     } else {
8210       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8211                          LHS, RHS);
8212       Rem = DAG.getNode(ISD::SREM, dl, VT,
8213                         LHS, RHS);
8214     }
8215     SDValue Zero = DAG.getConstant(0, dl, VT);
8216     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8217     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8218     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8219     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8220     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8221                                DAG.getConstant(1, dl, VT));
8222     Quot = DAG.getSelect(dl, VT,
8223                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8224                          Sub1, Quot);
8225   } else
8226     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8227                        LHS, RHS);
8228 
8229   return Quot;
8230 }
8231 
8232 void TargetLowering::expandUADDSUBO(
8233     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8234   SDLoc dl(Node);
8235   SDValue LHS = Node->getOperand(0);
8236   SDValue RHS = Node->getOperand(1);
8237   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8238 
8239   // If ADD/SUBCARRY is legal, use that instead.
8240   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8241   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8242     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8243     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8244                                     { LHS, RHS, CarryIn });
8245     Result = SDValue(NodeCarry.getNode(), 0);
8246     Overflow = SDValue(NodeCarry.getNode(), 1);
8247     return;
8248   }
8249 
8250   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8251                             LHS.getValueType(), LHS, RHS);
8252 
8253   EVT ResultType = Node->getValueType(1);
8254   EVT SetCCType = getSetCCResultType(
8255       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8256   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8257   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8258   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8259 }
8260 
8261 void TargetLowering::expandSADDSUBO(
8262     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8263   SDLoc dl(Node);
8264   SDValue LHS = Node->getOperand(0);
8265   SDValue RHS = Node->getOperand(1);
8266   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8267 
8268   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8269                             LHS.getValueType(), LHS, RHS);
8270 
8271   EVT ResultType = Node->getValueType(1);
8272   EVT OType = getSetCCResultType(
8273       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8274 
8275   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8276   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8277   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
8278     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8279     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8280     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8281     return;
8282   }
8283 
8284   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8285 
8286   // For an addition, the result should be less than one of the operands (LHS)
8287   // if and only if the other operand (RHS) is negative, otherwise there will
8288   // be overflow.
8289   // For a subtraction, the result should be less than one of the operands
8290   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8291   // otherwise there will be overflow.
8292   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8293   SDValue ConditionRHS =
8294       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8295 
8296   Overflow = DAG.getBoolExtOrTrunc(
8297       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8298       ResultType, ResultType);
8299 }
8300 
8301 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8302                                 SDValue &Overflow, SelectionDAG &DAG) const {
8303   SDLoc dl(Node);
8304   EVT VT = Node->getValueType(0);
8305   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8306   SDValue LHS = Node->getOperand(0);
8307   SDValue RHS = Node->getOperand(1);
8308   bool isSigned = Node->getOpcode() == ISD::SMULO;
8309 
8310   // For power-of-two multiplications we can use a simpler shift expansion.
8311   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8312     const APInt &C = RHSC->getAPIntValue();
8313     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8314     if (C.isPowerOf2()) {
8315       // smulo(x, signed_min) is same as umulo(x, signed_min).
8316       bool UseArithShift = isSigned && !C.isMinSignedValue();
8317       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8318       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8319       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8320       Overflow = DAG.getSetCC(dl, SetCCVT,
8321           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8322                       dl, VT, Result, ShiftAmt),
8323           LHS, ISD::SETNE);
8324       return true;
8325     }
8326   }
8327 
8328   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8329   if (VT.isVector())
8330     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
8331                               VT.getVectorNumElements());
8332 
8333   SDValue BottomHalf;
8334   SDValue TopHalf;
8335   static const unsigned Ops[2][3] =
8336       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8337         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8338   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8339     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8340     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8341   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8342     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8343                              RHS);
8344     TopHalf = BottomHalf.getValue(1);
8345   } else if (isTypeLegal(WideVT)) {
8346     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8347     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8348     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8349     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8350     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8351         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8352     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8353                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8354   } else {
8355     if (VT.isVector())
8356       return false;
8357 
8358     // We can fall back to a libcall with an illegal type for the MUL if we
8359     // have a libcall big enough.
8360     // Also, we can fall back to a division in some cases, but that's a big
8361     // performance hit in the general case.
8362     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8363     if (WideVT == MVT::i16)
8364       LC = RTLIB::MUL_I16;
8365     else if (WideVT == MVT::i32)
8366       LC = RTLIB::MUL_I32;
8367     else if (WideVT == MVT::i64)
8368       LC = RTLIB::MUL_I64;
8369     else if (WideVT == MVT::i128)
8370       LC = RTLIB::MUL_I128;
8371     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8372 
8373     SDValue HiLHS;
8374     SDValue HiRHS;
8375     if (isSigned) {
8376       // The high part is obtained by SRA'ing all but one of the bits of low
8377       // part.
8378       unsigned LoSize = VT.getFixedSizeInBits();
8379       HiLHS =
8380           DAG.getNode(ISD::SRA, dl, VT, LHS,
8381                       DAG.getConstant(LoSize - 1, dl,
8382                                       getPointerTy(DAG.getDataLayout())));
8383       HiRHS =
8384           DAG.getNode(ISD::SRA, dl, VT, RHS,
8385                       DAG.getConstant(LoSize - 1, dl,
8386                                       getPointerTy(DAG.getDataLayout())));
8387     } else {
8388         HiLHS = DAG.getConstant(0, dl, VT);
8389         HiRHS = DAG.getConstant(0, dl, VT);
8390     }
8391 
8392     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8393     // pre-lowered to the correct types. This all depends upon WideVT not
8394     // being a legal type for the architecture and thus has to be split to
8395     // two arguments.
8396     SDValue Ret;
8397     TargetLowering::MakeLibCallOptions CallOptions;
8398     CallOptions.setSExt(isSigned);
8399     CallOptions.setIsPostTypeLegalization(true);
8400     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8401       // Halves of WideVT are packed into registers in different order
8402       // depending on platform endianness. This is usually handled by
8403       // the C calling convention, but we can't defer to it in
8404       // the legalizer.
8405       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8406       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8407     } else {
8408       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8409       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8410     }
8411     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8412            "Ret value is a collection of constituent nodes holding result.");
8413     if (DAG.getDataLayout().isLittleEndian()) {
8414       // Same as above.
8415       BottomHalf = Ret.getOperand(0);
8416       TopHalf = Ret.getOperand(1);
8417     } else {
8418       BottomHalf = Ret.getOperand(1);
8419       TopHalf = Ret.getOperand(0);
8420     }
8421   }
8422 
8423   Result = BottomHalf;
8424   if (isSigned) {
8425     SDValue ShiftAmt = DAG.getConstant(
8426         VT.getScalarSizeInBits() - 1, dl,
8427         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8428     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8429     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8430   } else {
8431     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8432                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8433   }
8434 
8435   // Truncate the result if SetCC returns a larger type than needed.
8436   EVT RType = Node->getValueType(1);
8437   if (RType.bitsLT(Overflow.getValueType()))
8438     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8439 
8440   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8441          "Unexpected result type for S/UMULO legalization");
8442   return true;
8443 }
8444 
8445 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8446   SDLoc dl(Node);
8447   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8448   SDValue Op = Node->getOperand(0);
8449   EVT VT = Op.getValueType();
8450 
8451   if (VT.isScalableVector())
8452     report_fatal_error(
8453         "Expanding reductions for scalable vectors is undefined.");
8454 
8455   // Try to use a shuffle reduction for power of two vectors.
8456   if (VT.isPow2VectorType()) {
8457     while (VT.getVectorNumElements() > 1) {
8458       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8459       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8460         break;
8461 
8462       SDValue Lo, Hi;
8463       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8464       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8465       VT = HalfVT;
8466     }
8467   }
8468 
8469   EVT EltVT = VT.getVectorElementType();
8470   unsigned NumElts = VT.getVectorNumElements();
8471 
8472   SmallVector<SDValue, 8> Ops;
8473   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8474 
8475   SDValue Res = Ops[0];
8476   for (unsigned i = 1; i < NumElts; i++)
8477     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8478 
8479   // Result type may be wider than element type.
8480   if (EltVT != Node->getValueType(0))
8481     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8482   return Res;
8483 }
8484 
8485 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8486   SDLoc dl(Node);
8487   SDValue AccOp = Node->getOperand(0);
8488   SDValue VecOp = Node->getOperand(1);
8489   SDNodeFlags Flags = Node->getFlags();
8490 
8491   EVT VT = VecOp.getValueType();
8492   EVT EltVT = VT.getVectorElementType();
8493 
8494   if (VT.isScalableVector())
8495     report_fatal_error(
8496         "Expanding reductions for scalable vectors is undefined.");
8497 
8498   unsigned NumElts = VT.getVectorNumElements();
8499 
8500   SmallVector<SDValue, 8> Ops;
8501   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8502 
8503   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8504 
8505   SDValue Res = AccOp;
8506   for (unsigned i = 0; i < NumElts; i++)
8507     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8508 
8509   return Res;
8510 }
8511 
8512 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8513                                SelectionDAG &DAG) const {
8514   EVT VT = Node->getValueType(0);
8515   SDLoc dl(Node);
8516   bool isSigned = Node->getOpcode() == ISD::SREM;
8517   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8518   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8519   SDValue Dividend = Node->getOperand(0);
8520   SDValue Divisor = Node->getOperand(1);
8521   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8522     SDVTList VTs = DAG.getVTList(VT, VT);
8523     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8524     return true;
8525   } else if (isOperationLegalOrCustom(DivOpc, VT)) {
8526     // X % Y -> X-X/Y*Y
8527     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8528     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8529     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8530     return true;
8531   }
8532   return false;
8533 }
8534 
8535 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8536                                             SelectionDAG &DAG) const {
8537   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8538   SDLoc dl(SDValue(Node, 0));
8539   SDValue Src = Node->getOperand(0);
8540 
8541   // DstVT is the result type, while SatVT is the size to which we saturate
8542   EVT SrcVT = Src.getValueType();
8543   EVT DstVT = Node->getValueType(0);
8544 
8545   unsigned SatWidth = Node->getConstantOperandVal(1);
8546   unsigned DstWidth = DstVT.getScalarSizeInBits();
8547   assert(SatWidth <= DstWidth &&
8548          "Expected saturation width smaller than result width");
8549 
8550   // Determine minimum and maximum integer values and their corresponding
8551   // floating-point values.
8552   APInt MinInt, MaxInt;
8553   if (IsSigned) {
8554     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8555     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8556   } else {
8557     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8558     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8559   }
8560 
8561   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8562   // libcall emission cannot handle this. Large result types will fail.
8563   if (SrcVT == MVT::f16) {
8564     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8565     SrcVT = Src.getValueType();
8566   }
8567 
8568   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8569   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8570 
8571   APFloat::opStatus MinStatus =
8572       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8573   APFloat::opStatus MaxStatus =
8574       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8575   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8576                              !(MaxStatus & APFloat::opStatus::opInexact);
8577 
8578   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8579   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8580 
8581   // If the integer bounds are exactly representable as floats and min/max are
8582   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8583   // of comparisons and selects.
8584   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8585                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8586   if (AreExactFloatBounds && MinMaxLegal) {
8587     SDValue Clamped = Src;
8588 
8589     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8590     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8591     // Clamp by MaxFloat from above. NaN cannot occur.
8592     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8593     // Convert clamped value to integer.
8594     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8595                                   dl, DstVT, Clamped);
8596 
8597     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8598     // which will cast to zero.
8599     if (!IsSigned)
8600       return FpToInt;
8601 
8602     // Otherwise, select 0 if Src is NaN.
8603     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8604     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8605                            ISD::CondCode::SETUO);
8606   }
8607 
8608   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8609   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8610 
8611   // Result of direct conversion. The assumption here is that the operation is
8612   // non-trapping and it's fine to apply it to an out-of-range value if we
8613   // select it away later.
8614   SDValue FpToInt =
8615       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8616 
8617   SDValue Select = FpToInt;
8618 
8619   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8620   // MinInt if Src is NaN.
8621   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8622                            ISD::CondCode::SETULT);
8623   // If Src OGT MaxFloat, select MaxInt.
8624   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
8625                            ISD::CondCode::SETOGT);
8626 
8627   // In the unsigned case we are done, because we mapped NaN to MinInt, which
8628   // is already zero.
8629   if (!IsSigned)
8630     return Select;
8631 
8632   // Otherwise, select 0 if Src is NaN.
8633   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8634   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
8635 }
8636 
8637 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
8638                                            SelectionDAG &DAG) const {
8639   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
8640   assert(Node->getValueType(0).isScalableVector() &&
8641          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
8642 
8643   EVT VT = Node->getValueType(0);
8644   SDValue V1 = Node->getOperand(0);
8645   SDValue V2 = Node->getOperand(1);
8646   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
8647   SDLoc DL(Node);
8648 
8649   // Expand through memory thusly:
8650   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
8651   //  Store V1, Ptr
8652   //  Store V2, Ptr + sizeof(V1)
8653   //  If (Imm < 0)
8654   //    TrailingElts = -Imm
8655   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
8656   //  else
8657   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
8658   //  Res = Load Ptr
8659 
8660   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
8661 
8662   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
8663                                VT.getVectorElementCount() * 2);
8664   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
8665   EVT PtrVT = StackPtr.getValueType();
8666   auto &MF = DAG.getMachineFunction();
8667   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8668   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
8669 
8670   // Store the lo part of CONCAT_VECTORS(V1, V2)
8671   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
8672   // Store the hi part of CONCAT_VECTORS(V1, V2)
8673   SDValue OffsetToV2 = DAG.getVScale(
8674       DL, PtrVT,
8675       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8676   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
8677   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
8678 
8679   if (Imm >= 0) {
8680     // Load back the required element. getVectorElementPointer takes care of
8681     // clamping the index if it's out-of-bounds.
8682     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
8683     // Load the spliced result
8684     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
8685                        MachinePointerInfo::getUnknownStack(MF));
8686   }
8687 
8688   uint64_t TrailingElts = -Imm;
8689 
8690   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
8691   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
8692   SDValue TrailingBytes =
8693       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
8694 
8695   if (TrailingElts > VT.getVectorMinNumElements()) {
8696     SDValue VLBytes = DAG.getVScale(
8697         DL, PtrVT,
8698         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
8699     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
8700   }
8701 
8702   // Calculate the start address of the spliced result.
8703   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
8704 
8705   // Load the spliced result
8706   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
8707                      MachinePointerInfo::getUnknownStack(MF));
8708 }
8709 
8710 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
8711                                            SDValue &LHS, SDValue &RHS,
8712                                            SDValue &CC, bool &NeedInvert,
8713                                            const SDLoc &dl, SDValue &Chain,
8714                                            bool IsSignaling) const {
8715   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8716   MVT OpVT = LHS.getSimpleValueType();
8717   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
8718   NeedInvert = false;
8719   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
8720   default:
8721     llvm_unreachable("Unknown condition code action!");
8722   case TargetLowering::Legal:
8723     // Nothing to do.
8724     break;
8725   case TargetLowering::Expand: {
8726     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
8727     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8728       std::swap(LHS, RHS);
8729       CC = DAG.getCondCode(InvCC);
8730       return true;
8731     }
8732     // Swapping operands didn't work. Try inverting the condition.
8733     bool NeedSwap = false;
8734     InvCC = getSetCCInverse(CCCode, OpVT);
8735     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8736       // If inverting the condition is not enough, try swapping operands
8737       // on top of it.
8738       InvCC = ISD::getSetCCSwappedOperands(InvCC);
8739       NeedSwap = true;
8740     }
8741     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
8742       CC = DAG.getCondCode(InvCC);
8743       NeedInvert = true;
8744       if (NeedSwap)
8745         std::swap(LHS, RHS);
8746       return true;
8747     }
8748 
8749     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
8750     unsigned Opc = 0;
8751     switch (CCCode) {
8752     default:
8753       llvm_unreachable("Don't know how to expand this condition!");
8754     case ISD::SETUO:
8755       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
8756         CC1 = ISD::SETUNE;
8757         CC2 = ISD::SETUNE;
8758         Opc = ISD::OR;
8759         break;
8760       }
8761       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8762              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
8763       NeedInvert = true;
8764       LLVM_FALLTHROUGH;
8765     case ISD::SETO:
8766       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
8767              "If SETO is expanded, SETOEQ must be legal!");
8768       CC1 = ISD::SETOEQ;
8769       CC2 = ISD::SETOEQ;
8770       Opc = ISD::AND;
8771       break;
8772     case ISD::SETONE:
8773     case ISD::SETUEQ:
8774       // If the SETUO or SETO CC isn't legal, we might be able to use
8775       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
8776       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
8777       // the operands.
8778       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8779       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
8780           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
8781            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
8782         CC1 = ISD::SETOGT;
8783         CC2 = ISD::SETOLT;
8784         Opc = ISD::OR;
8785         NeedInvert = ((unsigned)CCCode & 0x8U);
8786         break;
8787       }
8788       LLVM_FALLTHROUGH;
8789     case ISD::SETOEQ:
8790     case ISD::SETOGT:
8791     case ISD::SETOGE:
8792     case ISD::SETOLT:
8793     case ISD::SETOLE:
8794     case ISD::SETUNE:
8795     case ISD::SETUGT:
8796     case ISD::SETUGE:
8797     case ISD::SETULT:
8798     case ISD::SETULE:
8799       // If we are floating point, assign and break, otherwise fall through.
8800       if (!OpVT.isInteger()) {
8801         // We can use the 4th bit to tell if we are the unordered
8802         // or ordered version of the opcode.
8803         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
8804         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
8805         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
8806         break;
8807       }
8808       // Fallthrough if we are unsigned integer.
8809       LLVM_FALLTHROUGH;
8810     case ISD::SETLE:
8811     case ISD::SETGT:
8812     case ISD::SETGE:
8813     case ISD::SETLT:
8814     case ISD::SETNE:
8815     case ISD::SETEQ:
8816       // If all combinations of inverting the condition and swapping operands
8817       // didn't work then we have no means to expand the condition.
8818       llvm_unreachable("Don't know how to expand this condition!");
8819     }
8820 
8821     SDValue SetCC1, SetCC2;
8822     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
8823       // If we aren't the ordered or unorder operation,
8824       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
8825       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
8826       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
8827     } else {
8828       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
8829       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
8830       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
8831     }
8832     if (Chain)
8833       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
8834                           SetCC2.getValue(1));
8835     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
8836     RHS = SDValue();
8837     CC = SDValue();
8838     return true;
8839   }
8840   }
8841   return false;
8842 }
8843