1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 ByValType = nullptr; 116 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 117 ByValType = Call->getParamByValType(ArgIdx); 118 } 119 120 /// Generate a libcall taking the given operands as arguments and returning a 121 /// result of type RetVT. 122 std::pair<SDValue, SDValue> 123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 124 ArrayRef<SDValue> Ops, bool isSigned, 125 const SDLoc &dl, bool doesNotReturn, 126 bool isReturnValueUsed, 127 bool isPostTypeLegalization) const { 128 TargetLowering::ArgListTy Args; 129 Args.reserve(Ops.size()); 130 131 TargetLowering::ArgListEntry Entry; 132 for (SDValue Op : Ops) { 133 Entry.Node = Op; 134 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 135 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 136 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 137 Args.push_back(Entry); 138 } 139 140 if (LC == RTLIB::UNKNOWN_LIBCALL) 141 report_fatal_error("Unsupported library call operation!"); 142 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 143 getPointerTy(DAG.getDataLayout())); 144 145 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 146 TargetLowering::CallLoweringInfo CLI(DAG); 147 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 148 CLI.setDebugLoc(dl) 149 .setChain(DAG.getEntryNode()) 150 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 151 .setNoReturn(doesNotReturn) 152 .setDiscardResult(!isReturnValueUsed) 153 .setIsPostTypeLegalization(isPostTypeLegalization) 154 .setSExtResult(signExtend) 155 .setZExtResult(!signExtend); 156 return LowerCallTo(CLI); 157 } 158 159 bool 160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 161 unsigned Limit, uint64_t Size, 162 unsigned DstAlign, unsigned SrcAlign, 163 bool IsMemset, 164 bool ZeroMemset, 165 bool MemcpyStrSrc, 166 bool AllowOverlap, 167 unsigned DstAS, unsigned SrcAS, 168 const AttributeList &FuncAttributes) const { 169 // If 'SrcAlign' is zero, that means the memory operation does not need to 170 // load the value, i.e. memset or memcpy from constant string. Otherwise, 171 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 172 // is the specified alignment of the memory operation. If it is zero, that 173 // means it's possible to change the alignment of the destination. 174 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 175 // not need to be loaded. 176 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 177 return false; 178 179 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 180 IsMemset, ZeroMemset, MemcpyStrSrc, 181 FuncAttributes); 182 183 if (VT == MVT::Other) { 184 // Use the largest integer type whose alignment constraints are satisfied. 185 // We only need to check DstAlign here as SrcAlign is always greater or 186 // equal to DstAlign (or zero). 187 VT = MVT::i64; 188 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 189 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 190 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 191 assert(VT.isInteger()); 192 193 // Find the largest legal integer type. 194 MVT LVT = MVT::i64; 195 while (!isTypeLegal(LVT)) 196 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 197 assert(LVT.isInteger()); 198 199 // If the type we've chosen is larger than the largest legal integer type 200 // then use that instead. 201 if (VT.bitsGT(LVT)) 202 VT = LVT; 203 } 204 205 unsigned NumMemOps = 0; 206 while (Size != 0) { 207 unsigned VTSize = VT.getSizeInBits() / 8; 208 while (VTSize > Size) { 209 // For now, only use non-vector load / store's for the left-over pieces. 210 EVT NewVT = VT; 211 unsigned NewVTSize; 212 213 bool Found = false; 214 if (VT.isVector() || VT.isFloatingPoint()) { 215 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 216 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 217 isSafeMemOpType(NewVT.getSimpleVT())) 218 Found = true; 219 else if (NewVT == MVT::i64 && 220 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 221 isSafeMemOpType(MVT::f64)) { 222 // i64 is usually not legal on 32-bit targets, but f64 may be. 223 NewVT = MVT::f64; 224 Found = true; 225 } 226 } 227 228 if (!Found) { 229 do { 230 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 231 if (NewVT == MVT::i8) 232 break; 233 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 234 } 235 NewVTSize = NewVT.getSizeInBits() / 8; 236 237 // If the new VT cannot cover all of the remaining bits, then consider 238 // issuing a (or a pair of) unaligned and overlapping load / store. 239 bool Fast; 240 if (NumMemOps && AllowOverlap && NewVTSize < Size && 241 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 242 MachineMemOperand::MONone, &Fast) && 243 Fast) 244 VTSize = Size; 245 else { 246 VT = NewVT; 247 VTSize = NewVTSize; 248 } 249 } 250 251 if (++NumMemOps > Limit) 252 return false; 253 254 MemOps.push_back(VT); 255 Size -= VTSize; 256 } 257 258 return true; 259 } 260 261 /// Soften the operands of a comparison. This code is shared among BR_CC, 262 /// SELECT_CC, and SETCC handlers. 263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 264 SDValue &NewLHS, SDValue &NewRHS, 265 ISD::CondCode &CCCode, 266 const SDLoc &dl) const { 267 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 268 && "Unsupported setcc type!"); 269 270 // Expand into one or more soft-fp libcall(s). 271 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 272 bool ShouldInvertCC = false; 273 switch (CCCode) { 274 case ISD::SETEQ: 275 case ISD::SETOEQ: 276 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 277 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 278 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 279 break; 280 case ISD::SETNE: 281 case ISD::SETUNE: 282 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 283 (VT == MVT::f64) ? RTLIB::UNE_F64 : 284 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 285 break; 286 case ISD::SETGE: 287 case ISD::SETOGE: 288 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 289 (VT == MVT::f64) ? RTLIB::OGE_F64 : 290 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 291 break; 292 case ISD::SETLT: 293 case ISD::SETOLT: 294 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 295 (VT == MVT::f64) ? RTLIB::OLT_F64 : 296 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 297 break; 298 case ISD::SETLE: 299 case ISD::SETOLE: 300 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 301 (VT == MVT::f64) ? RTLIB::OLE_F64 : 302 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 303 break; 304 case ISD::SETGT: 305 case ISD::SETOGT: 306 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 307 (VT == MVT::f64) ? RTLIB::OGT_F64 : 308 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 309 break; 310 case ISD::SETUO: 311 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 312 (VT == MVT::f64) ? RTLIB::UO_F64 : 313 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 314 break; 315 case ISD::SETO: 316 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 317 (VT == MVT::f64) ? RTLIB::O_F64 : 318 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 319 break; 320 case ISD::SETONE: 321 // SETONE = SETOLT | SETOGT 322 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 323 (VT == MVT::f64) ? RTLIB::OLT_F64 : 324 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 325 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 326 (VT == MVT::f64) ? RTLIB::OGT_F64 : 327 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 328 break; 329 case ISD::SETUEQ: 330 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 331 (VT == MVT::f64) ? RTLIB::UO_F64 : 332 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 333 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 334 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 335 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 336 break; 337 default: 338 // Invert CC for unordered comparisons 339 ShouldInvertCC = true; 340 switch (CCCode) { 341 case ISD::SETULT: 342 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 343 (VT == MVT::f64) ? RTLIB::OGE_F64 : 344 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 345 break; 346 case ISD::SETULE: 347 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 348 (VT == MVT::f64) ? RTLIB::OGT_F64 : 349 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 350 break; 351 case ISD::SETUGT: 352 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 353 (VT == MVT::f64) ? RTLIB::OLE_F64 : 354 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 355 break; 356 case ISD::SETUGE: 357 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 358 (VT == MVT::f64) ? RTLIB::OLT_F64 : 359 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 360 break; 361 default: llvm_unreachable("Do not know how to soften this setcc!"); 362 } 363 } 364 365 // Use the target specific return value for comparions lib calls. 366 EVT RetVT = getCmpLibcallReturnType(); 367 SDValue Ops[2] = {NewLHS, NewRHS}; 368 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 369 dl).first; 370 NewRHS = DAG.getConstant(0, dl, RetVT); 371 372 CCCode = getCmpLibcallCC(LC1); 373 if (ShouldInvertCC) 374 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 375 376 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 377 SDValue Tmp = DAG.getNode( 378 ISD::SETCC, dl, 379 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 380 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 381 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 382 dl).first; 383 NewLHS = DAG.getNode( 384 ISD::SETCC, dl, 385 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 386 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 387 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 388 NewRHS = SDValue(); 389 } 390 } 391 392 /// Return the entry encoding for a jump table in the current function. The 393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 394 unsigned TargetLowering::getJumpTableEncoding() const { 395 // In non-pic modes, just use the address of a block. 396 if (!isPositionIndependent()) 397 return MachineJumpTableInfo::EK_BlockAddress; 398 399 // In PIC mode, if the target supports a GPRel32 directive, use it. 400 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 401 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 402 403 // Otherwise, use a label difference. 404 return MachineJumpTableInfo::EK_LabelDifference32; 405 } 406 407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 408 SelectionDAG &DAG) const { 409 // If our PIC model is GP relative, use the global offset table as the base. 410 unsigned JTEncoding = getJumpTableEncoding(); 411 412 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 413 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 414 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 415 416 return Table; 417 } 418 419 /// This returns the relocation base for the given PIC jumptable, the same as 420 /// getPICJumpTableRelocBase, but as an MCExpr. 421 const MCExpr * 422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 423 unsigned JTI,MCContext &Ctx) const{ 424 // The normal PIC reloc base is the label at the start of the jump table. 425 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 426 } 427 428 bool 429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 430 const TargetMachine &TM = getTargetMachine(); 431 const GlobalValue *GV = GA->getGlobal(); 432 433 // If the address is not even local to this DSO we will have to load it from 434 // a got and then add the offset. 435 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 436 return false; 437 438 // If the code is position independent we will have to add a base register. 439 if (isPositionIndependent()) 440 return false; 441 442 // Otherwise we can do it. 443 return true; 444 } 445 446 //===----------------------------------------------------------------------===// 447 // Optimization Methods 448 //===----------------------------------------------------------------------===// 449 450 /// If the specified instruction has a constant integer operand and there are 451 /// bits set in that constant that are not demanded, then clear those bits and 452 /// return true. 453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 454 TargetLoweringOpt &TLO) const { 455 SDLoc DL(Op); 456 unsigned Opcode = Op.getOpcode(); 457 458 // Do target-specific constant optimization. 459 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 460 return TLO.New.getNode(); 461 462 // FIXME: ISD::SELECT, ISD::SELECT_CC 463 switch (Opcode) { 464 default: 465 break; 466 case ISD::XOR: 467 case ISD::AND: 468 case ISD::OR: { 469 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 470 if (!Op1C) 471 return false; 472 473 // If this is a 'not' op, don't touch it because that's a canonical form. 474 const APInt &C = Op1C->getAPIntValue(); 475 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 476 return false; 477 478 if (!C.isSubsetOf(Demanded)) { 479 EVT VT = Op.getValueType(); 480 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 481 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 482 return TLO.CombineTo(Op, NewOp); 483 } 484 485 break; 486 } 487 } 488 489 return false; 490 } 491 492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 494 /// generalized for targets with other types of implicit widening casts. 495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 496 const APInt &Demanded, 497 TargetLoweringOpt &TLO) const { 498 assert(Op.getNumOperands() == 2 && 499 "ShrinkDemandedOp only supports binary operators!"); 500 assert(Op.getNode()->getNumValues() == 1 && 501 "ShrinkDemandedOp only supports nodes with one result!"); 502 503 SelectionDAG &DAG = TLO.DAG; 504 SDLoc dl(Op); 505 506 // Early return, as this function cannot handle vector types. 507 if (Op.getValueType().isVector()) 508 return false; 509 510 // Don't do this if the node has another user, which may require the 511 // full value. 512 if (!Op.getNode()->hasOneUse()) 513 return false; 514 515 // Search for the smallest integer type with free casts to and from 516 // Op's type. For expedience, just check power-of-2 integer types. 517 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 518 unsigned DemandedSize = Demanded.getActiveBits(); 519 unsigned SmallVTBits = DemandedSize; 520 if (!isPowerOf2_32(SmallVTBits)) 521 SmallVTBits = NextPowerOf2(SmallVTBits); 522 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 523 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 524 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 525 TLI.isZExtFree(SmallVT, Op.getValueType())) { 526 // We found a type with free casts. 527 SDValue X = DAG.getNode( 528 Op.getOpcode(), dl, SmallVT, 529 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 530 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 531 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 532 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 533 return TLO.CombineTo(Op, Z); 534 } 535 } 536 return false; 537 } 538 539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 540 DAGCombinerInfo &DCI) const { 541 SelectionDAG &DAG = DCI.DAG; 542 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 543 !DCI.isBeforeLegalizeOps()); 544 KnownBits Known; 545 546 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 547 if (Simplified) { 548 DCI.AddToWorklist(Op.getNode()); 549 DCI.CommitTargetLoweringOpt(TLO); 550 } 551 return Simplified; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 KnownBits &Known, 556 TargetLoweringOpt &TLO, 557 unsigned Depth, 558 bool AssumeSingleUse) const { 559 EVT VT = Op.getValueType(); 560 APInt DemandedElts = VT.isVector() 561 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 562 : APInt(1, 1); 563 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 564 AssumeSingleUse); 565 } 566 567 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 568 /// result of Op are ever used downstream. If we can use this information to 569 /// simplify Op, create a new simplified DAG node and return true, returning the 570 /// original and new nodes in Old and New. Otherwise, analyze the expression and 571 /// return a mask of Known bits for the expression (used to simplify the 572 /// caller). The Known bits may only be accurate for those bits in the 573 /// OriginalDemandedBits and OriginalDemandedElts. 574 bool TargetLowering::SimplifyDemandedBits( 575 SDValue Op, const APInt &OriginalDemandedBits, 576 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 577 unsigned Depth, bool AssumeSingleUse) const { 578 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 579 assert(Op.getScalarValueSizeInBits() == BitWidth && 580 "Mask size mismatches value type size!"); 581 582 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 583 assert((!Op.getValueType().isVector() || 584 NumElts == Op.getValueType().getVectorNumElements()) && 585 "Unexpected vector size"); 586 587 APInt DemandedBits = OriginalDemandedBits; 588 APInt DemandedElts = OriginalDemandedElts; 589 SDLoc dl(Op); 590 auto &DL = TLO.DAG.getDataLayout(); 591 592 // Don't know anything. 593 Known = KnownBits(BitWidth); 594 595 // Undef operand. 596 if (Op.isUndef()) 597 return false; 598 599 if (Op.getOpcode() == ISD::Constant) { 600 // We know all of the bits for a constant! 601 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 602 Known.Zero = ~Known.One; 603 return false; 604 } 605 606 // Other users may use these bits. 607 EVT VT = Op.getValueType(); 608 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 609 if (Depth != 0) { 610 // If not at the root, Just compute the Known bits to 611 // simplify things downstream. 612 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 613 return false; 614 } 615 // If this is the root being simplified, allow it to have multiple uses, 616 // just set the DemandedBits/Elts to all bits. 617 DemandedBits = APInt::getAllOnesValue(BitWidth); 618 DemandedElts = APInt::getAllOnesValue(NumElts); 619 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 620 // Not demanding any bits/elts from Op. 621 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 622 } else if (Depth == 6) { // Limit search depth. 623 return false; 624 } 625 626 KnownBits Known2, KnownOut; 627 switch (Op.getOpcode()) { 628 case ISD::SCALAR_TO_VECTOR: { 629 if (!DemandedElts[0]) 630 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 631 632 KnownBits SrcKnown; 633 SDValue Src = Op.getOperand(0); 634 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 635 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 636 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 637 return true; 638 Known = SrcKnown.zextOrTrunc(BitWidth, false); 639 break; 640 } 641 case ISD::BUILD_VECTOR: 642 // Collect the known bits that are shared by every constant vector element. 643 Known.Zero.setAllBits(); Known.One.setAllBits(); 644 for (SDValue SrcOp : Op->ops()) { 645 if (!isa<ConstantSDNode>(SrcOp)) { 646 // We can only handle all constant values - bail out with no known bits. 647 Known = KnownBits(BitWidth); 648 return false; 649 } 650 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 651 Known2.Zero = ~Known2.One; 652 653 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 654 if (Known2.One.getBitWidth() != BitWidth) { 655 assert(Known2.getBitWidth() > BitWidth && 656 "Expected BUILD_VECTOR implicit truncation"); 657 Known2 = Known2.trunc(BitWidth); 658 } 659 660 // Known bits are the values that are shared by every element. 661 // TODO: support per-element known bits. 662 Known.One &= Known2.One; 663 Known.Zero &= Known2.Zero; 664 } 665 return false; // Don't fall through, will infinitely loop. 666 case ISD::LOAD: { 667 LoadSDNode *LD = cast<LoadSDNode>(Op); 668 if (getTargetConstantFromLoad(LD)) { 669 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 670 return false; // Don't fall through, will infinitely loop. 671 } 672 break; 673 } 674 case ISD::INSERT_VECTOR_ELT: { 675 SDValue Vec = Op.getOperand(0); 676 SDValue Scl = Op.getOperand(1); 677 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 678 EVT VecVT = Vec.getValueType(); 679 680 // If index isn't constant, assume we need all vector elements AND the 681 // inserted element. 682 APInt DemandedVecElts(DemandedElts); 683 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 684 unsigned Idx = CIdx->getZExtValue(); 685 DemandedVecElts.clearBit(Idx); 686 687 // Inserted element is not required. 688 if (!DemandedElts[Idx]) 689 return TLO.CombineTo(Op, Vec); 690 } 691 692 KnownBits KnownScl; 693 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 694 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 695 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 696 return true; 697 698 Known = KnownScl.zextOrTrunc(BitWidth, false); 699 700 KnownBits KnownVec; 701 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 702 Depth + 1)) 703 return true; 704 705 if (!!DemandedVecElts) { 706 Known.One &= KnownVec.One; 707 Known.Zero &= KnownVec.Zero; 708 } 709 710 return false; 711 } 712 case ISD::INSERT_SUBVECTOR: { 713 SDValue Base = Op.getOperand(0); 714 SDValue Sub = Op.getOperand(1); 715 EVT SubVT = Sub.getValueType(); 716 unsigned NumSubElts = SubVT.getVectorNumElements(); 717 718 // If index isn't constant, assume we need the original demanded base 719 // elements and ALL the inserted subvector elements. 720 APInt BaseElts = DemandedElts; 721 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 722 if (isa<ConstantSDNode>(Op.getOperand(2))) { 723 const APInt &Idx = Op.getConstantOperandAPInt(2); 724 if (Idx.ule(NumElts - NumSubElts)) { 725 unsigned SubIdx = Idx.getZExtValue(); 726 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 727 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 728 } 729 } 730 731 KnownBits KnownSub, KnownBase; 732 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 733 Depth + 1)) 734 return true; 735 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 736 Depth + 1)) 737 return true; 738 739 Known.Zero.setAllBits(); 740 Known.One.setAllBits(); 741 if (!!SubElts) { 742 Known.One &= KnownSub.One; 743 Known.Zero &= KnownSub.Zero; 744 } 745 if (!!BaseElts) { 746 Known.One &= KnownBase.One; 747 Known.Zero &= KnownBase.Zero; 748 } 749 break; 750 } 751 case ISD::CONCAT_VECTORS: { 752 Known.Zero.setAllBits(); 753 Known.One.setAllBits(); 754 EVT SubVT = Op.getOperand(0).getValueType(); 755 unsigned NumSubVecs = Op.getNumOperands(); 756 unsigned NumSubElts = SubVT.getVectorNumElements(); 757 for (unsigned i = 0; i != NumSubVecs; ++i) { 758 APInt DemandedSubElts = 759 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 760 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 761 Known2, TLO, Depth + 1)) 762 return true; 763 // Known bits are shared by every demanded subvector element. 764 if (!!DemandedSubElts) { 765 Known.One &= Known2.One; 766 Known.Zero &= Known2.Zero; 767 } 768 } 769 break; 770 } 771 case ISD::VECTOR_SHUFFLE: { 772 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 773 774 // Collect demanded elements from shuffle operands.. 775 APInt DemandedLHS(NumElts, 0); 776 APInt DemandedRHS(NumElts, 0); 777 for (unsigned i = 0; i != NumElts; ++i) { 778 if (!DemandedElts[i]) 779 continue; 780 int M = ShuffleMask[i]; 781 if (M < 0) { 782 // For UNDEF elements, we don't know anything about the common state of 783 // the shuffle result. 784 DemandedLHS.clearAllBits(); 785 DemandedRHS.clearAllBits(); 786 break; 787 } 788 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 789 if (M < (int)NumElts) 790 DemandedLHS.setBit(M); 791 else 792 DemandedRHS.setBit(M - NumElts); 793 } 794 795 if (!!DemandedLHS || !!DemandedRHS) { 796 Known.Zero.setAllBits(); 797 Known.One.setAllBits(); 798 if (!!DemandedLHS) { 799 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 800 Known2, TLO, Depth + 1)) 801 return true; 802 Known.One &= Known2.One; 803 Known.Zero &= Known2.Zero; 804 } 805 if (!!DemandedRHS) { 806 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 807 Known2, TLO, Depth + 1)) 808 return true; 809 Known.One &= Known2.One; 810 Known.Zero &= Known2.Zero; 811 } 812 } 813 break; 814 } 815 case ISD::AND: { 816 SDValue Op0 = Op.getOperand(0); 817 SDValue Op1 = Op.getOperand(1); 818 819 // If the RHS is a constant, check to see if the LHS would be zero without 820 // using the bits from the RHS. Below, we use knowledge about the RHS to 821 // simplify the LHS, here we're using information from the LHS to simplify 822 // the RHS. 823 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 824 // Do not increment Depth here; that can cause an infinite loop. 825 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 826 // If the LHS already has zeros where RHSC does, this 'and' is dead. 827 if ((LHSKnown.Zero & DemandedBits) == 828 (~RHSC->getAPIntValue() & DemandedBits)) 829 return TLO.CombineTo(Op, Op0); 830 831 // If any of the set bits in the RHS are known zero on the LHS, shrink 832 // the constant. 833 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 834 return true; 835 836 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 837 // constant, but if this 'and' is only clearing bits that were just set by 838 // the xor, then this 'and' can be eliminated by shrinking the mask of 839 // the xor. For example, for a 32-bit X: 840 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 841 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 842 LHSKnown.One == ~RHSC->getAPIntValue()) { 843 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 844 return TLO.CombineTo(Op, Xor); 845 } 846 } 847 848 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 849 Depth + 1)) 850 return true; 851 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 852 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 853 Known2, TLO, Depth + 1)) 854 return true; 855 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 856 857 // If all of the demanded bits are known one on one side, return the other. 858 // These bits cannot contribute to the result of the 'and'. 859 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 860 return TLO.CombineTo(Op, Op0); 861 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 862 return TLO.CombineTo(Op, Op1); 863 // If all of the demanded bits in the inputs are known zeros, return zero. 864 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 865 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 866 // If the RHS is a constant, see if we can simplify it. 867 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 868 return true; 869 // If the operation can be done in a smaller type, do so. 870 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 871 return true; 872 873 // Output known-1 bits are only known if set in both the LHS & RHS. 874 Known.One &= Known2.One; 875 // Output known-0 are known to be clear if zero in either the LHS | RHS. 876 Known.Zero |= Known2.Zero; 877 break; 878 } 879 case ISD::OR: { 880 SDValue Op0 = Op.getOperand(0); 881 SDValue Op1 = Op.getOperand(1); 882 883 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 884 Depth + 1)) 885 return true; 886 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 887 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 888 Known2, TLO, Depth + 1)) 889 return true; 890 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 891 892 // If all of the demanded bits are known zero on one side, return the other. 893 // These bits cannot contribute to the result of the 'or'. 894 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 895 return TLO.CombineTo(Op, Op0); 896 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 897 return TLO.CombineTo(Op, Op1); 898 // If the RHS is a constant, see if we can simplify it. 899 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 900 return true; 901 // If the operation can be done in a smaller type, do so. 902 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 903 return true; 904 905 // Output known-0 bits are only known if clear in both the LHS & RHS. 906 Known.Zero &= Known2.Zero; 907 // Output known-1 are known to be set if set in either the LHS | RHS. 908 Known.One |= Known2.One; 909 break; 910 } 911 case ISD::XOR: { 912 SDValue Op0 = Op.getOperand(0); 913 SDValue Op1 = Op.getOperand(1); 914 915 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 916 Depth + 1)) 917 return true; 918 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 919 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 920 Depth + 1)) 921 return true; 922 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 923 924 // If all of the demanded bits are known zero on one side, return the other. 925 // These bits cannot contribute to the result of the 'xor'. 926 if (DemandedBits.isSubsetOf(Known.Zero)) 927 return TLO.CombineTo(Op, Op0); 928 if (DemandedBits.isSubsetOf(Known2.Zero)) 929 return TLO.CombineTo(Op, Op1); 930 // If the operation can be done in a smaller type, do so. 931 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 932 return true; 933 934 // If all of the unknown bits are known to be zero on one side or the other 935 // (but not both) turn this into an *inclusive* or. 936 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 937 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 938 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 939 940 // Output known-0 bits are known if clear or set in both the LHS & RHS. 941 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 942 // Output known-1 are known to be set if set in only one of the LHS, RHS. 943 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 944 945 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 946 // If one side is a constant, and all of the known set bits on the other 947 // side are also set in the constant, turn this into an AND, as we know 948 // the bits will be cleared. 949 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 950 // NB: it is okay if more bits are known than are requested 951 if (C->getAPIntValue() == Known2.One) { 952 SDValue ANDC = 953 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 954 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 955 } 956 957 // If the RHS is a constant, see if we can change it. Don't alter a -1 958 // constant because that's a 'not' op, and that is better for combining 959 // and codegen. 960 if (!C->isAllOnesValue()) { 961 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 962 // We're flipping all demanded bits. Flip the undemanded bits too. 963 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 964 return TLO.CombineTo(Op, New); 965 } 966 // If we can't turn this into a 'not', try to shrink the constant. 967 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 968 return true; 969 } 970 } 971 972 Known = std::move(KnownOut); 973 break; 974 } 975 case ISD::SELECT: 976 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 977 Depth + 1)) 978 return true; 979 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 980 Depth + 1)) 981 return true; 982 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 983 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 984 985 // If the operands are constants, see if we can simplify them. 986 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 987 return true; 988 989 // Only known if known in both the LHS and RHS. 990 Known.One &= Known2.One; 991 Known.Zero &= Known2.Zero; 992 break; 993 case ISD::SELECT_CC: 994 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 995 Depth + 1)) 996 return true; 997 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 998 Depth + 1)) 999 return true; 1000 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1001 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1002 1003 // If the operands are constants, see if we can simplify them. 1004 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1005 return true; 1006 1007 // Only known if known in both the LHS and RHS. 1008 Known.One &= Known2.One; 1009 Known.Zero &= Known2.Zero; 1010 break; 1011 case ISD::SETCC: { 1012 SDValue Op0 = Op.getOperand(0); 1013 SDValue Op1 = Op.getOperand(1); 1014 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1015 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1016 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1017 // -1, we may be able to bypass the setcc. 1018 if (DemandedBits.isSignMask() && 1019 Op0.getScalarValueSizeInBits() == BitWidth && 1020 getBooleanContents(VT) == 1021 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1022 // If we're testing X < 0, then this compare isn't needed - just use X! 1023 // FIXME: We're limiting to integer types here, but this should also work 1024 // if we don't care about FP signed-zero. The use of SETLT with FP means 1025 // that we don't care about NaNs. 1026 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1027 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1028 return TLO.CombineTo(Op, Op0); 1029 1030 // TODO: Should we check for other forms of sign-bit comparisons? 1031 // Examples: X <= -1, X >= 0 1032 } 1033 if (getBooleanContents(Op0.getValueType()) == 1034 TargetLowering::ZeroOrOneBooleanContent && 1035 BitWidth > 1) 1036 Known.Zero.setBitsFrom(1); 1037 break; 1038 } 1039 case ISD::SHL: { 1040 SDValue Op0 = Op.getOperand(0); 1041 SDValue Op1 = Op.getOperand(1); 1042 1043 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1044 // If the shift count is an invalid immediate, don't do anything. 1045 if (SA->getAPIntValue().uge(BitWidth)) 1046 break; 1047 1048 unsigned ShAmt = SA->getZExtValue(); 1049 1050 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1051 // single shift. We can do this if the bottom bits (which are shifted 1052 // out) are never demanded. 1053 if (Op0.getOpcode() == ISD::SRL) { 1054 if (ShAmt && 1055 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1056 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1057 if (SA2->getAPIntValue().ult(BitWidth)) { 1058 unsigned C1 = SA2->getZExtValue(); 1059 unsigned Opc = ISD::SHL; 1060 int Diff = ShAmt - C1; 1061 if (Diff < 0) { 1062 Diff = -Diff; 1063 Opc = ISD::SRL; 1064 } 1065 1066 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1067 return TLO.CombineTo( 1068 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1069 } 1070 } 1071 } 1072 } 1073 1074 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1075 Known, TLO, Depth + 1)) 1076 return true; 1077 1078 // Try shrinking the operation as long as the shift amount will still be 1079 // in range. 1080 if ((ShAmt < DemandedBits.getActiveBits()) && 1081 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1082 return true; 1083 1084 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1085 // are not demanded. This will likely allow the anyext to be folded away. 1086 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1087 SDValue InnerOp = Op0.getOperand(0); 1088 EVT InnerVT = InnerOp.getValueType(); 1089 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1090 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1091 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1092 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1093 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1094 ShTy = InnerVT; 1095 SDValue NarrowShl = 1096 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1097 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1098 return TLO.CombineTo( 1099 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1100 } 1101 // Repeat the SHL optimization above in cases where an extension 1102 // intervenes: (shl (anyext (shr x, c1)), c2) to 1103 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1104 // aren't demanded (as above) and that the shifted upper c1 bits of 1105 // x aren't demanded. 1106 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1107 InnerOp.hasOneUse()) { 1108 if (ConstantSDNode *SA2 = 1109 isConstOrConstSplat(InnerOp.getOperand(1))) { 1110 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1111 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1112 DemandedBits.getActiveBits() <= 1113 (InnerBits - InnerShAmt + ShAmt) && 1114 DemandedBits.countTrailingZeros() >= ShAmt) { 1115 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1116 Op1.getValueType()); 1117 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1118 InnerOp.getOperand(0)); 1119 return TLO.CombineTo( 1120 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1121 } 1122 } 1123 } 1124 } 1125 1126 Known.Zero <<= ShAmt; 1127 Known.One <<= ShAmt; 1128 // low bits known zero. 1129 Known.Zero.setLowBits(ShAmt); 1130 } 1131 break; 1132 } 1133 case ISD::SRL: { 1134 SDValue Op0 = Op.getOperand(0); 1135 SDValue Op1 = Op.getOperand(1); 1136 1137 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1138 // If the shift count is an invalid immediate, don't do anything. 1139 if (SA->getAPIntValue().uge(BitWidth)) 1140 break; 1141 1142 EVT ShiftVT = Op1.getValueType(); 1143 unsigned ShAmt = SA->getZExtValue(); 1144 APInt InDemandedMask = (DemandedBits << ShAmt); 1145 1146 // If the shift is exact, then it does demand the low bits (and knows that 1147 // they are zero). 1148 if (Op->getFlags().hasExact()) 1149 InDemandedMask.setLowBits(ShAmt); 1150 1151 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1152 // single shift. We can do this if the top bits (which are shifted out) 1153 // are never demanded. 1154 if (Op0.getOpcode() == ISD::SHL) { 1155 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 1156 if (ShAmt && 1157 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1158 if (SA2->getAPIntValue().ult(BitWidth)) { 1159 unsigned C1 = SA2->getZExtValue(); 1160 unsigned Opc = ISD::SRL; 1161 int Diff = ShAmt - C1; 1162 if (Diff < 0) { 1163 Diff = -Diff; 1164 Opc = ISD::SHL; 1165 } 1166 1167 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1168 return TLO.CombineTo( 1169 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1170 } 1171 } 1172 } 1173 } 1174 1175 // Compute the new bits that are at the top now. 1176 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1177 Depth + 1)) 1178 return true; 1179 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1180 Known.Zero.lshrInPlace(ShAmt); 1181 Known.One.lshrInPlace(ShAmt); 1182 1183 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1184 } 1185 break; 1186 } 1187 case ISD::SRA: { 1188 SDValue Op0 = Op.getOperand(0); 1189 SDValue Op1 = Op.getOperand(1); 1190 1191 // If this is an arithmetic shift right and only the low-bit is set, we can 1192 // always convert this into a logical shr, even if the shift amount is 1193 // variable. The low bit of the shift cannot be an input sign bit unless 1194 // the shift amount is >= the size of the datatype, which is undefined. 1195 if (DemandedBits.isOneValue()) 1196 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1197 1198 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 1199 // If the shift count is an invalid immediate, don't do anything. 1200 if (SA->getAPIntValue().uge(BitWidth)) 1201 break; 1202 1203 unsigned ShAmt = SA->getZExtValue(); 1204 APInt InDemandedMask = (DemandedBits << ShAmt); 1205 1206 // If the shift is exact, then it does demand the low bits (and knows that 1207 // they are zero). 1208 if (Op->getFlags().hasExact()) 1209 InDemandedMask.setLowBits(ShAmt); 1210 1211 // If any of the demanded bits are produced by the sign extension, we also 1212 // demand the input sign bit. 1213 if (DemandedBits.countLeadingZeros() < ShAmt) 1214 InDemandedMask.setSignBit(); 1215 1216 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1217 Depth + 1)) 1218 return true; 1219 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1220 Known.Zero.lshrInPlace(ShAmt); 1221 Known.One.lshrInPlace(ShAmt); 1222 1223 // If the input sign bit is known to be zero, or if none of the top bits 1224 // are demanded, turn this into an unsigned shift right. 1225 if (Known.Zero[BitWidth - ShAmt - 1] || 1226 DemandedBits.countLeadingZeros() >= ShAmt) { 1227 SDNodeFlags Flags; 1228 Flags.setExact(Op->getFlags().hasExact()); 1229 return TLO.CombineTo( 1230 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1231 } 1232 1233 int Log2 = DemandedBits.exactLogBase2(); 1234 if (Log2 >= 0) { 1235 // The bit must come from the sign. 1236 SDValue NewSA = 1237 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1238 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1239 } 1240 1241 if (Known.One[BitWidth - ShAmt - 1]) 1242 // New bits are known one. 1243 Known.One.setHighBits(ShAmt); 1244 } 1245 break; 1246 } 1247 case ISD::FSHL: 1248 case ISD::FSHR: { 1249 SDValue Op0 = Op.getOperand(0); 1250 SDValue Op1 = Op.getOperand(1); 1251 SDValue Op2 = Op.getOperand(2); 1252 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1253 1254 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1255 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1256 1257 // For fshl, 0-shift returns the 1st arg. 1258 // For fshr, 0-shift returns the 2nd arg. 1259 if (Amt == 0) { 1260 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1261 Known, TLO, Depth + 1)) 1262 return true; 1263 break; 1264 } 1265 1266 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1267 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1268 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1269 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1270 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1271 Depth + 1)) 1272 return true; 1273 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1274 Depth + 1)) 1275 return true; 1276 1277 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1278 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1279 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1280 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1281 Known.One |= Known2.One; 1282 Known.Zero |= Known2.Zero; 1283 } 1284 break; 1285 } 1286 case ISD::BITREVERSE: { 1287 SDValue Src = Op.getOperand(0); 1288 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1289 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1290 Depth + 1)) 1291 return true; 1292 Known.One = Known2.One.reverseBits(); 1293 Known.Zero = Known2.Zero.reverseBits(); 1294 break; 1295 } 1296 case ISD::SIGN_EXTEND_INREG: { 1297 SDValue Op0 = Op.getOperand(0); 1298 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1299 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1300 1301 // If we only care about the highest bit, don't bother shifting right. 1302 if (DemandedBits.isSignMask()) { 1303 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1304 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1305 // However if the input is already sign extended we expect the sign 1306 // extension to be dropped altogether later and do not simplify. 1307 if (!AlreadySignExtended) { 1308 // Compute the correct shift amount type, which must be getShiftAmountTy 1309 // for scalar types after legalization. 1310 EVT ShiftAmtTy = VT; 1311 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1312 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1313 1314 SDValue ShiftAmt = 1315 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1316 return TLO.CombineTo(Op, 1317 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1318 } 1319 } 1320 1321 // If none of the extended bits are demanded, eliminate the sextinreg. 1322 if (DemandedBits.getActiveBits() <= ExVTBits) 1323 return TLO.CombineTo(Op, Op0); 1324 1325 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1326 1327 // Since the sign extended bits are demanded, we know that the sign 1328 // bit is demanded. 1329 InputDemandedBits.setBit(ExVTBits - 1); 1330 1331 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1332 return true; 1333 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1334 1335 // If the sign bit of the input is known set or clear, then we know the 1336 // top bits of the result. 1337 1338 // If the input sign bit is known zero, convert this into a zero extension. 1339 if (Known.Zero[ExVTBits - 1]) 1340 return TLO.CombineTo( 1341 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1342 1343 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1344 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1345 Known.One.setBitsFrom(ExVTBits); 1346 Known.Zero &= Mask; 1347 } else { // Input sign bit unknown 1348 Known.Zero &= Mask; 1349 Known.One &= Mask; 1350 } 1351 break; 1352 } 1353 case ISD::BUILD_PAIR: { 1354 EVT HalfVT = Op.getOperand(0).getValueType(); 1355 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1356 1357 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1358 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1359 1360 KnownBits KnownLo, KnownHi; 1361 1362 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1363 return true; 1364 1365 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1366 return true; 1367 1368 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1369 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1370 1371 Known.One = KnownLo.One.zext(BitWidth) | 1372 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1373 break; 1374 } 1375 case ISD::ZERO_EXTEND: 1376 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1377 SDValue Src = Op.getOperand(0); 1378 EVT SrcVT = Src.getValueType(); 1379 unsigned InBits = SrcVT.getScalarSizeInBits(); 1380 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1381 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1382 1383 // If none of the top bits are demanded, convert this into an any_extend. 1384 if (DemandedBits.getActiveBits() <= InBits) 1385 return TLO.CombineTo( 1386 Op, TLO.DAG.getNode(IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG 1387 : ISD::ANY_EXTEND, 1388 dl, VT, Src)); 1389 1390 APInt InDemandedBits = DemandedBits.trunc(InBits); 1391 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1392 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1393 Depth + 1)) 1394 return true; 1395 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1396 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1397 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1398 break; 1399 } 1400 case ISD::SIGN_EXTEND: 1401 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1402 SDValue Src = Op.getOperand(0); 1403 EVT SrcVT = Src.getValueType(); 1404 unsigned InBits = SrcVT.getScalarSizeInBits(); 1405 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1406 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1407 1408 // If none of the top bits are demanded, convert this into an any_extend. 1409 if (DemandedBits.getActiveBits() <= InBits) 1410 return TLO.CombineTo( 1411 Op, TLO.DAG.getNode(IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG 1412 : ISD::ANY_EXTEND, 1413 dl, VT, Src)); 1414 1415 APInt InDemandedBits = DemandedBits.trunc(InBits); 1416 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1417 1418 // Since some of the sign extended bits are demanded, we know that the sign 1419 // bit is demanded. 1420 InDemandedBits.setBit(InBits - 1); 1421 1422 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1423 Depth + 1)) 1424 return true; 1425 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1426 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1427 1428 // If the sign bit is known one, the top bits match. 1429 Known = Known.sext(BitWidth); 1430 1431 // If the sign bit is known zero, convert this to a zero extend. 1432 if (Known.isNonNegative()) 1433 return TLO.CombineTo( 1434 Op, TLO.DAG.getNode(IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG 1435 : ISD::ZERO_EXTEND, 1436 dl, VT, Src)); 1437 break; 1438 } 1439 case ISD::ANY_EXTEND: 1440 case ISD::ANY_EXTEND_VECTOR_INREG: { 1441 SDValue Src = Op.getOperand(0); 1442 EVT SrcVT = Src.getValueType(); 1443 unsigned InBits = SrcVT.getScalarSizeInBits(); 1444 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1445 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1446 1447 // If we only need the bottom element then we can just bitcast. 1448 // TODO: Handle ANY_EXTEND? 1449 if (IsVecInReg && DemandedElts == 1 && 1450 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1451 TLO.DAG.getDataLayout().isLittleEndian()) 1452 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1453 1454 APInt InDemandedBits = DemandedBits.trunc(InBits); 1455 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1456 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1457 Depth + 1)) 1458 return true; 1459 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1460 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1461 Known = Known.zext(BitWidth, false /* => any extend */); 1462 break; 1463 } 1464 case ISD::TRUNCATE: { 1465 SDValue Src = Op.getOperand(0); 1466 1467 // Simplify the input, using demanded bit information, and compute the known 1468 // zero/one bits live out. 1469 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1470 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1471 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1472 return true; 1473 Known = Known.trunc(BitWidth); 1474 1475 // If the input is only used by this truncate, see if we can shrink it based 1476 // on the known demanded bits. 1477 if (Src.getNode()->hasOneUse()) { 1478 switch (Src.getOpcode()) { 1479 default: 1480 break; 1481 case ISD::SRL: 1482 // Shrink SRL by a constant if none of the high bits shifted in are 1483 // demanded. 1484 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1485 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1486 // undesirable. 1487 break; 1488 1489 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1490 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1491 break; 1492 1493 SDValue Shift = Src.getOperand(1); 1494 uint64_t ShVal = ShAmt->getZExtValue(); 1495 1496 if (TLO.LegalTypes()) 1497 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1498 1499 APInt HighBits = 1500 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1501 HighBits.lshrInPlace(ShVal); 1502 HighBits = HighBits.trunc(BitWidth); 1503 1504 if (!(HighBits & DemandedBits)) { 1505 // None of the shifted in bits are needed. Add a truncate of the 1506 // shift input, then shift it. 1507 SDValue NewTrunc = 1508 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1509 return TLO.CombineTo( 1510 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1511 } 1512 break; 1513 } 1514 } 1515 1516 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1517 break; 1518 } 1519 case ISD::AssertZext: { 1520 // AssertZext demands all of the high bits, plus any of the low bits 1521 // demanded by its users. 1522 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1523 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1524 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1525 TLO, Depth + 1)) 1526 return true; 1527 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1528 1529 Known.Zero |= ~InMask; 1530 break; 1531 } 1532 case ISD::EXTRACT_VECTOR_ELT: { 1533 SDValue Src = Op.getOperand(0); 1534 SDValue Idx = Op.getOperand(1); 1535 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1536 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1537 1538 // Demand the bits from every vector element without a constant index. 1539 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1540 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1541 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1542 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1543 1544 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1545 // anything about the extended bits. 1546 APInt DemandedSrcBits = DemandedBits; 1547 if (BitWidth > EltBitWidth) 1548 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1549 1550 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1551 Depth + 1)) 1552 return true; 1553 1554 Known = Known2; 1555 if (BitWidth > EltBitWidth) 1556 Known = Known.zext(BitWidth, false /* => any extend */); 1557 break; 1558 } 1559 case ISD::BITCAST: { 1560 SDValue Src = Op.getOperand(0); 1561 EVT SrcVT = Src.getValueType(); 1562 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1563 1564 // If this is an FP->Int bitcast and if the sign bit is the only 1565 // thing demanded, turn this into a FGETSIGN. 1566 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1567 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1568 SrcVT.isFloatingPoint()) { 1569 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1570 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1571 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1572 SrcVT != MVT::f128) { 1573 // Cannot eliminate/lower SHL for f128 yet. 1574 EVT Ty = OpVTLegal ? VT : MVT::i32; 1575 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1576 // place. We expect the SHL to be eliminated by other optimizations. 1577 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1578 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1579 if (!OpVTLegal && OpVTSizeInBits > 32) 1580 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1581 unsigned ShVal = Op.getValueSizeInBits() - 1; 1582 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1583 return TLO.CombineTo(Op, 1584 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1585 } 1586 } 1587 1588 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1589 // Demand the elt/bit if any of the original elts/bits are demanded. 1590 // TODO - bigendian once we have test coverage. 1591 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1592 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1593 (BitWidth % NumSrcEltBits) == 0 && 1594 TLO.DAG.getDataLayout().isLittleEndian()) { 1595 unsigned Scale = BitWidth / NumSrcEltBits; 1596 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1597 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1598 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1599 for (unsigned i = 0; i != Scale; ++i) { 1600 unsigned Offset = i * NumSrcEltBits; 1601 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1602 if (!Sub.isNullValue()) { 1603 DemandedSrcBits |= Sub; 1604 for (unsigned j = 0; j != NumElts; ++j) 1605 if (DemandedElts[j]) 1606 DemandedSrcElts.setBit((j * Scale) + i); 1607 } 1608 } 1609 1610 APInt KnownSrcUndef, KnownSrcZero; 1611 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1612 KnownSrcZero, TLO, Depth + 1)) 1613 return true; 1614 1615 KnownBits KnownSrcBits; 1616 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1617 KnownSrcBits, TLO, Depth + 1)) 1618 return true; 1619 } else if ((NumSrcEltBits % BitWidth) == 0 && 1620 TLO.DAG.getDataLayout().isLittleEndian()) { 1621 unsigned Scale = NumSrcEltBits / BitWidth; 1622 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1623 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1624 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1625 for (unsigned i = 0; i != NumElts; ++i) 1626 if (DemandedElts[i]) { 1627 unsigned Offset = (i % Scale) * BitWidth; 1628 DemandedSrcBits.insertBits(DemandedBits, Offset); 1629 DemandedSrcElts.setBit(i / Scale); 1630 } 1631 1632 if (SrcVT.isVector()) { 1633 APInt KnownSrcUndef, KnownSrcZero; 1634 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1635 KnownSrcZero, TLO, Depth + 1)) 1636 return true; 1637 } 1638 1639 KnownBits KnownSrcBits; 1640 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1641 KnownSrcBits, TLO, Depth + 1)) 1642 return true; 1643 } 1644 1645 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1646 // recursive call where Known may be useful to the caller. 1647 if (Depth > 0) { 1648 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1649 return false; 1650 } 1651 break; 1652 } 1653 case ISD::ADD: 1654 case ISD::MUL: 1655 case ISD::SUB: { 1656 // Add, Sub, and Mul don't demand any bits in positions beyond that 1657 // of the highest bit demanded of them. 1658 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1659 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1660 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1661 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1662 Depth + 1) || 1663 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1664 Depth + 1) || 1665 // See if the operation should be performed at a smaller bit width. 1666 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1667 SDNodeFlags Flags = Op.getNode()->getFlags(); 1668 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1669 // Disable the nsw and nuw flags. We can no longer guarantee that we 1670 // won't wrap after simplification. 1671 Flags.setNoSignedWrap(false); 1672 Flags.setNoUnsignedWrap(false); 1673 SDValue NewOp = 1674 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1675 return TLO.CombineTo(Op, NewOp); 1676 } 1677 return true; 1678 } 1679 1680 // If we have a constant operand, we may be able to turn it into -1 if we 1681 // do not demand the high bits. This can make the constant smaller to 1682 // encode, allow more general folding, or match specialized instruction 1683 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1684 // is probably not useful (and could be detrimental). 1685 ConstantSDNode *C = isConstOrConstSplat(Op1); 1686 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1687 if (C && !C->isAllOnesValue() && !C->isOne() && 1688 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1689 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1690 // We can't guarantee that the new math op doesn't wrap, so explicitly 1691 // clear those flags to prevent folding with a potential existing node 1692 // that has those flags set. 1693 SDNodeFlags Flags; 1694 Flags.setNoSignedWrap(false); 1695 Flags.setNoUnsignedWrap(false); 1696 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1697 return TLO.CombineTo(Op, NewOp); 1698 } 1699 1700 LLVM_FALLTHROUGH; 1701 } 1702 default: 1703 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1704 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1705 Known, TLO, Depth)) 1706 return true; 1707 break; 1708 } 1709 1710 // Just use computeKnownBits to compute output bits. 1711 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1712 break; 1713 } 1714 1715 // If we know the value of all of the demanded bits, return this as a 1716 // constant. 1717 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1718 // Avoid folding to a constant if any OpaqueConstant is involved. 1719 const SDNode *N = Op.getNode(); 1720 for (SDNodeIterator I = SDNodeIterator::begin(N), 1721 E = SDNodeIterator::end(N); 1722 I != E; ++I) { 1723 SDNode *Op = *I; 1724 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1725 if (C->isOpaque()) 1726 return false; 1727 } 1728 // TODO: Handle float bits as well. 1729 if (VT.isInteger()) 1730 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1731 } 1732 1733 return false; 1734 } 1735 1736 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1737 const APInt &DemandedElts, 1738 APInt &KnownUndef, 1739 APInt &KnownZero, 1740 DAGCombinerInfo &DCI) const { 1741 SelectionDAG &DAG = DCI.DAG; 1742 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1743 !DCI.isBeforeLegalizeOps()); 1744 1745 bool Simplified = 1746 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1747 if (Simplified) { 1748 DCI.AddToWorklist(Op.getNode()); 1749 DCI.CommitTargetLoweringOpt(TLO); 1750 } 1751 1752 return Simplified; 1753 } 1754 1755 /// Given a vector binary operation and known undefined elements for each input 1756 /// operand, compute whether each element of the output is undefined. 1757 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1758 const APInt &UndefOp0, 1759 const APInt &UndefOp1) { 1760 EVT VT = BO.getValueType(); 1761 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 1762 "Vector binop only"); 1763 1764 EVT EltVT = VT.getVectorElementType(); 1765 unsigned NumElts = VT.getVectorNumElements(); 1766 assert(UndefOp0.getBitWidth() == NumElts && 1767 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1768 1769 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1770 const APInt &UndefVals) { 1771 if (UndefVals[Index]) 1772 return DAG.getUNDEF(EltVT); 1773 1774 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1775 // Try hard to make sure that the getNode() call is not creating temporary 1776 // nodes. Ignore opaque integers because they do not constant fold. 1777 SDValue Elt = BV->getOperand(Index); 1778 auto *C = dyn_cast<ConstantSDNode>(Elt); 1779 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1780 return Elt; 1781 } 1782 1783 return SDValue(); 1784 }; 1785 1786 APInt KnownUndef = APInt::getNullValue(NumElts); 1787 for (unsigned i = 0; i != NumElts; ++i) { 1788 // If both inputs for this element are either constant or undef and match 1789 // the element type, compute the constant/undef result for this element of 1790 // the vector. 1791 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1792 // not handle FP constants. The code within getNode() should be refactored 1793 // to avoid the danger of creating a bogus temporary node here. 1794 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1795 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1796 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1797 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1798 KnownUndef.setBit(i); 1799 } 1800 return KnownUndef; 1801 } 1802 1803 bool TargetLowering::SimplifyDemandedVectorElts( 1804 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 1805 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1806 bool AssumeSingleUse) const { 1807 EVT VT = Op.getValueType(); 1808 APInt DemandedElts = OriginalDemandedElts; 1809 unsigned NumElts = DemandedElts.getBitWidth(); 1810 assert(VT.isVector() && "Expected vector op"); 1811 assert(VT.getVectorNumElements() == NumElts && 1812 "Mask size mismatches value type element count!"); 1813 1814 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1815 1816 // Undef operand. 1817 if (Op.isUndef()) { 1818 KnownUndef.setAllBits(); 1819 return false; 1820 } 1821 1822 // If Op has other users, assume that all elements are needed. 1823 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1824 DemandedElts.setAllBits(); 1825 1826 // Not demanding any elements from Op. 1827 if (DemandedElts == 0) { 1828 KnownUndef.setAllBits(); 1829 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1830 } 1831 1832 // Limit search depth. 1833 if (Depth >= 6) 1834 return false; 1835 1836 SDLoc DL(Op); 1837 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1838 1839 switch (Op.getOpcode()) { 1840 case ISD::SCALAR_TO_VECTOR: { 1841 if (!DemandedElts[0]) { 1842 KnownUndef.setAllBits(); 1843 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1844 } 1845 KnownUndef.setHighBits(NumElts - 1); 1846 break; 1847 } 1848 case ISD::BITCAST: { 1849 SDValue Src = Op.getOperand(0); 1850 EVT SrcVT = Src.getValueType(); 1851 1852 // We only handle vectors here. 1853 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1854 if (!SrcVT.isVector()) 1855 break; 1856 1857 // Fast handling of 'identity' bitcasts. 1858 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1859 if (NumSrcElts == NumElts) 1860 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1861 KnownZero, TLO, Depth + 1); 1862 1863 APInt SrcZero, SrcUndef; 1864 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1865 1866 // Bitcast from 'large element' src vector to 'small element' vector, we 1867 // must demand a source element if any DemandedElt maps to it. 1868 if ((NumElts % NumSrcElts) == 0) { 1869 unsigned Scale = NumElts / NumSrcElts; 1870 for (unsigned i = 0; i != NumElts; ++i) 1871 if (DemandedElts[i]) 1872 SrcDemandedElts.setBit(i / Scale); 1873 1874 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1875 TLO, Depth + 1)) 1876 return true; 1877 1878 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1879 // of the large element. 1880 // TODO - bigendian once we have test coverage. 1881 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1882 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1883 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1884 for (unsigned i = 0; i != NumElts; ++i) 1885 if (DemandedElts[i]) { 1886 unsigned Ofs = (i % Scale) * EltSizeInBits; 1887 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1888 } 1889 1890 KnownBits Known; 1891 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1892 return true; 1893 } 1894 1895 // If the src element is zero/undef then all the output elements will be - 1896 // only demanded elements are guaranteed to be correct. 1897 for (unsigned i = 0; i != NumSrcElts; ++i) { 1898 if (SrcDemandedElts[i]) { 1899 if (SrcZero[i]) 1900 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1901 if (SrcUndef[i]) 1902 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1903 } 1904 } 1905 } 1906 1907 // Bitcast from 'small element' src vector to 'large element' vector, we 1908 // demand all smaller source elements covered by the larger demanded element 1909 // of this vector. 1910 if ((NumSrcElts % NumElts) == 0) { 1911 unsigned Scale = NumSrcElts / NumElts; 1912 for (unsigned i = 0; i != NumElts; ++i) 1913 if (DemandedElts[i]) 1914 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1915 1916 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1917 TLO, Depth + 1)) 1918 return true; 1919 1920 // If all the src elements covering an output element are zero/undef, then 1921 // the output element will be as well, assuming it was demanded. 1922 for (unsigned i = 0; i != NumElts; ++i) { 1923 if (DemandedElts[i]) { 1924 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1925 KnownZero.setBit(i); 1926 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1927 KnownUndef.setBit(i); 1928 } 1929 } 1930 } 1931 break; 1932 } 1933 case ISD::BUILD_VECTOR: { 1934 // Check all elements and simplify any unused elements with UNDEF. 1935 if (!DemandedElts.isAllOnesValue()) { 1936 // Don't simplify BROADCASTS. 1937 if (llvm::any_of(Op->op_values(), 1938 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1939 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1940 bool Updated = false; 1941 for (unsigned i = 0; i != NumElts; ++i) { 1942 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1943 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1944 KnownUndef.setBit(i); 1945 Updated = true; 1946 } 1947 } 1948 if (Updated) 1949 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1950 } 1951 } 1952 for (unsigned i = 0; i != NumElts; ++i) { 1953 SDValue SrcOp = Op.getOperand(i); 1954 if (SrcOp.isUndef()) { 1955 KnownUndef.setBit(i); 1956 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1957 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1958 KnownZero.setBit(i); 1959 } 1960 } 1961 break; 1962 } 1963 case ISD::CONCAT_VECTORS: { 1964 EVT SubVT = Op.getOperand(0).getValueType(); 1965 unsigned NumSubVecs = Op.getNumOperands(); 1966 unsigned NumSubElts = SubVT.getVectorNumElements(); 1967 for (unsigned i = 0; i != NumSubVecs; ++i) { 1968 SDValue SubOp = Op.getOperand(i); 1969 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1970 APInt SubUndef, SubZero; 1971 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1972 Depth + 1)) 1973 return true; 1974 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1975 KnownZero.insertBits(SubZero, i * NumSubElts); 1976 } 1977 break; 1978 } 1979 case ISD::INSERT_SUBVECTOR: { 1980 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1981 break; 1982 SDValue Base = Op.getOperand(0); 1983 SDValue Sub = Op.getOperand(1); 1984 EVT SubVT = Sub.getValueType(); 1985 unsigned NumSubElts = SubVT.getVectorNumElements(); 1986 const APInt &Idx = Op.getConstantOperandAPInt(2); 1987 if (Idx.ugt(NumElts - NumSubElts)) 1988 break; 1989 unsigned SubIdx = Idx.getZExtValue(); 1990 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1991 APInt SubUndef, SubZero; 1992 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1993 Depth + 1)) 1994 return true; 1995 APInt BaseElts = DemandedElts; 1996 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1997 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1998 Depth + 1)) 1999 return true; 2000 KnownUndef.insertBits(SubUndef, SubIdx); 2001 KnownZero.insertBits(SubZero, SubIdx); 2002 break; 2003 } 2004 case ISD::EXTRACT_SUBVECTOR: { 2005 SDValue Src = Op.getOperand(0); 2006 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2007 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2008 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2009 // Offset the demanded elts by the subvector index. 2010 uint64_t Idx = SubIdx->getZExtValue(); 2011 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2012 APInt SrcUndef, SrcZero; 2013 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2014 Depth + 1)) 2015 return true; 2016 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2017 KnownZero = SrcZero.extractBits(NumElts, Idx); 2018 } 2019 break; 2020 } 2021 case ISD::INSERT_VECTOR_ELT: { 2022 SDValue Vec = Op.getOperand(0); 2023 SDValue Scl = Op.getOperand(1); 2024 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2025 2026 // For a legal, constant insertion index, if we don't need this insertion 2027 // then strip it, else remove it from the demanded elts. 2028 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2029 unsigned Idx = CIdx->getZExtValue(); 2030 if (!DemandedElts[Idx]) 2031 return TLO.CombineTo(Op, Vec); 2032 2033 APInt DemandedVecElts(DemandedElts); 2034 DemandedVecElts.clearBit(Idx); 2035 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2036 KnownZero, TLO, Depth + 1)) 2037 return true; 2038 2039 KnownUndef.clearBit(Idx); 2040 if (Scl.isUndef()) 2041 KnownUndef.setBit(Idx); 2042 2043 KnownZero.clearBit(Idx); 2044 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2045 KnownZero.setBit(Idx); 2046 break; 2047 } 2048 2049 APInt VecUndef, VecZero; 2050 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2051 Depth + 1)) 2052 return true; 2053 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2054 break; 2055 } 2056 case ISD::VSELECT: { 2057 // Try to transform the select condition based on the current demanded 2058 // elements. 2059 // TODO: If a condition element is undef, we can choose from one arm of the 2060 // select (and if one arm is undef, then we can propagate that to the 2061 // result). 2062 // TODO - add support for constant vselect masks (see IR version of this). 2063 APInt UnusedUndef, UnusedZero; 2064 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2065 UnusedZero, TLO, Depth + 1)) 2066 return true; 2067 2068 // See if we can simplify either vselect operand. 2069 APInt DemandedLHS(DemandedElts); 2070 APInt DemandedRHS(DemandedElts); 2071 APInt UndefLHS, ZeroLHS; 2072 APInt UndefRHS, ZeroRHS; 2073 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2074 ZeroLHS, TLO, Depth + 1)) 2075 return true; 2076 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2077 ZeroRHS, TLO, Depth + 1)) 2078 return true; 2079 2080 KnownUndef = UndefLHS & UndefRHS; 2081 KnownZero = ZeroLHS & ZeroRHS; 2082 break; 2083 } 2084 case ISD::VECTOR_SHUFFLE: { 2085 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2086 2087 // Collect demanded elements from shuffle operands.. 2088 APInt DemandedLHS(NumElts, 0); 2089 APInt DemandedRHS(NumElts, 0); 2090 for (unsigned i = 0; i != NumElts; ++i) { 2091 int M = ShuffleMask[i]; 2092 if (M < 0 || !DemandedElts[i]) 2093 continue; 2094 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2095 if (M < (int)NumElts) 2096 DemandedLHS.setBit(M); 2097 else 2098 DemandedRHS.setBit(M - NumElts); 2099 } 2100 2101 // See if we can simplify either shuffle operand. 2102 APInt UndefLHS, ZeroLHS; 2103 APInt UndefRHS, ZeroRHS; 2104 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2105 ZeroLHS, TLO, Depth + 1)) 2106 return true; 2107 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2108 ZeroRHS, TLO, Depth + 1)) 2109 return true; 2110 2111 // Simplify mask using undef elements from LHS/RHS. 2112 bool Updated = false; 2113 bool IdentityLHS = true, IdentityRHS = true; 2114 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2115 for (unsigned i = 0; i != NumElts; ++i) { 2116 int &M = NewMask[i]; 2117 if (M < 0) 2118 continue; 2119 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2120 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2121 Updated = true; 2122 M = -1; 2123 } 2124 IdentityLHS &= (M < 0) || (M == (int)i); 2125 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2126 } 2127 2128 // Update legal shuffle masks based on demanded elements if it won't reduce 2129 // to Identity which can cause premature removal of the shuffle mask. 2130 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 2131 isShuffleMaskLegal(NewMask, VT)) 2132 return TLO.CombineTo(Op, 2133 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 2134 Op.getOperand(1), NewMask)); 2135 2136 // Propagate undef/zero elements from LHS/RHS. 2137 for (unsigned i = 0; i != NumElts; ++i) { 2138 int M = ShuffleMask[i]; 2139 if (M < 0) { 2140 KnownUndef.setBit(i); 2141 } else if (M < (int)NumElts) { 2142 if (UndefLHS[M]) 2143 KnownUndef.setBit(i); 2144 if (ZeroLHS[M]) 2145 KnownZero.setBit(i); 2146 } else { 2147 if (UndefRHS[M - NumElts]) 2148 KnownUndef.setBit(i); 2149 if (ZeroRHS[M - NumElts]) 2150 KnownZero.setBit(i); 2151 } 2152 } 2153 break; 2154 } 2155 case ISD::ANY_EXTEND_VECTOR_INREG: 2156 case ISD::SIGN_EXTEND_VECTOR_INREG: 2157 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2158 APInt SrcUndef, SrcZero; 2159 SDValue Src = Op.getOperand(0); 2160 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2161 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2162 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2163 Depth + 1)) 2164 return true; 2165 KnownZero = SrcZero.zextOrTrunc(NumElts); 2166 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2167 2168 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2169 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2170 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2171 // aext - if we just need the bottom element then we can bitcast. 2172 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2173 } 2174 2175 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2176 // zext(undef) upper bits are guaranteed to be zero. 2177 if (DemandedElts.isSubsetOf(KnownUndef)) 2178 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2179 KnownUndef.clearAllBits(); 2180 } 2181 break; 2182 } 2183 2184 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2185 // MAX, saturated math, etc. 2186 case ISD::OR: 2187 case ISD::XOR: 2188 case ISD::ADD: 2189 case ISD::SUB: 2190 case ISD::FADD: 2191 case ISD::FSUB: 2192 case ISD::FMUL: 2193 case ISD::FDIV: 2194 case ISD::FREM: { 2195 APInt UndefRHS, ZeroRHS; 2196 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2197 ZeroRHS, TLO, Depth + 1)) 2198 return true; 2199 APInt UndefLHS, ZeroLHS; 2200 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2201 ZeroLHS, TLO, Depth + 1)) 2202 return true; 2203 2204 KnownZero = ZeroLHS & ZeroRHS; 2205 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2206 break; 2207 } 2208 case ISD::MUL: 2209 case ISD::AND: { 2210 APInt SrcUndef, SrcZero; 2211 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2212 SrcZero, TLO, Depth + 1)) 2213 return true; 2214 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2215 KnownZero, TLO, Depth + 1)) 2216 return true; 2217 2218 // If either side has a zero element, then the result element is zero, even 2219 // if the other is an UNDEF. 2220 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2221 // and then handle 'and' nodes with the rest of the binop opcodes. 2222 KnownZero |= SrcZero; 2223 KnownUndef &= SrcUndef; 2224 KnownUndef &= ~KnownZero; 2225 break; 2226 } 2227 case ISD::TRUNCATE: 2228 case ISD::SIGN_EXTEND: 2229 case ISD::ZERO_EXTEND: 2230 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2231 KnownZero, TLO, Depth + 1)) 2232 return true; 2233 2234 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2235 // zext(undef) upper bits are guaranteed to be zero. 2236 if (DemandedElts.isSubsetOf(KnownUndef)) 2237 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2238 KnownUndef.clearAllBits(); 2239 } 2240 break; 2241 default: { 2242 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2243 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2244 KnownZero, TLO, Depth)) 2245 return true; 2246 } else { 2247 KnownBits Known; 2248 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2249 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2250 TLO, Depth, AssumeSingleUse)) 2251 return true; 2252 } 2253 break; 2254 } 2255 } 2256 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2257 2258 // Constant fold all undef cases. 2259 // TODO: Handle zero cases as well. 2260 if (DemandedElts.isSubsetOf(KnownUndef)) 2261 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2262 2263 return false; 2264 } 2265 2266 /// Determine which of the bits specified in Mask are known to be either zero or 2267 /// one and return them in the Known. 2268 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2269 KnownBits &Known, 2270 const APInt &DemandedElts, 2271 const SelectionDAG &DAG, 2272 unsigned Depth) const { 2273 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2274 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2275 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2276 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2277 "Should use MaskedValueIsZero if you don't know whether Op" 2278 " is a target node!"); 2279 Known.resetAll(); 2280 } 2281 2282 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2283 KnownBits &Known, 2284 const APInt &DemandedElts, 2285 const SelectionDAG &DAG, 2286 unsigned Depth) const { 2287 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2288 2289 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2290 // The low bits are known zero if the pointer is aligned. 2291 Known.Zero.setLowBits(Log2_32(Align)); 2292 } 2293 } 2294 2295 /// This method can be implemented by targets that want to expose additional 2296 /// information about sign bits to the DAG Combiner. 2297 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2298 const APInt &, 2299 const SelectionDAG &, 2300 unsigned Depth) const { 2301 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2302 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2303 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2304 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2305 "Should use ComputeNumSignBits if you don't know whether Op" 2306 " is a target node!"); 2307 return 1; 2308 } 2309 2310 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2311 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2312 TargetLoweringOpt &TLO, unsigned Depth) const { 2313 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2314 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2315 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2316 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2317 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2318 " is a target node!"); 2319 return false; 2320 } 2321 2322 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2323 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2324 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2325 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2326 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2327 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2328 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2329 "Should use SimplifyDemandedBits if you don't know whether Op" 2330 " is a target node!"); 2331 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2332 return false; 2333 } 2334 2335 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2336 return nullptr; 2337 } 2338 2339 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2340 const SelectionDAG &DAG, 2341 bool SNaN, 2342 unsigned Depth) const { 2343 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2344 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2345 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2346 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2347 "Should use isKnownNeverNaN if you don't know whether Op" 2348 " is a target node!"); 2349 return false; 2350 } 2351 2352 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2353 // work with truncating build vectors and vectors with elements of less than 2354 // 8 bits. 2355 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2356 if (!N) 2357 return false; 2358 2359 APInt CVal; 2360 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2361 CVal = CN->getAPIntValue(); 2362 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2363 auto *CN = BV->getConstantSplatNode(); 2364 if (!CN) 2365 return false; 2366 2367 // If this is a truncating build vector, truncate the splat value. 2368 // Otherwise, we may fail to match the expected values below. 2369 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2370 CVal = CN->getAPIntValue(); 2371 if (BVEltWidth < CVal.getBitWidth()) 2372 CVal = CVal.trunc(BVEltWidth); 2373 } else { 2374 return false; 2375 } 2376 2377 switch (getBooleanContents(N->getValueType(0))) { 2378 case UndefinedBooleanContent: 2379 return CVal[0]; 2380 case ZeroOrOneBooleanContent: 2381 return CVal.isOneValue(); 2382 case ZeroOrNegativeOneBooleanContent: 2383 return CVal.isAllOnesValue(); 2384 } 2385 2386 llvm_unreachable("Invalid boolean contents"); 2387 } 2388 2389 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2390 if (!N) 2391 return false; 2392 2393 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2394 if (!CN) { 2395 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2396 if (!BV) 2397 return false; 2398 2399 // Only interested in constant splats, we don't care about undef 2400 // elements in identifying boolean constants and getConstantSplatNode 2401 // returns NULL if all ops are undef; 2402 CN = BV->getConstantSplatNode(); 2403 if (!CN) 2404 return false; 2405 } 2406 2407 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2408 return !CN->getAPIntValue()[0]; 2409 2410 return CN->isNullValue(); 2411 } 2412 2413 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2414 bool SExt) const { 2415 if (VT == MVT::i1) 2416 return N->isOne(); 2417 2418 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2419 switch (Cnt) { 2420 case TargetLowering::ZeroOrOneBooleanContent: 2421 // An extended value of 1 is always true, unless its original type is i1, 2422 // in which case it will be sign extended to -1. 2423 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2424 case TargetLowering::UndefinedBooleanContent: 2425 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2426 return N->isAllOnesValue() && SExt; 2427 } 2428 llvm_unreachable("Unexpected enumeration."); 2429 } 2430 2431 /// This helper function of SimplifySetCC tries to optimize the comparison when 2432 /// either operand of the SetCC node is a bitwise-and instruction. 2433 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2434 ISD::CondCode Cond, const SDLoc &DL, 2435 DAGCombinerInfo &DCI) const { 2436 // Match these patterns in any of their permutations: 2437 // (X & Y) == Y 2438 // (X & Y) != Y 2439 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2440 std::swap(N0, N1); 2441 2442 EVT OpVT = N0.getValueType(); 2443 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2444 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2445 return SDValue(); 2446 2447 SDValue X, Y; 2448 if (N0.getOperand(0) == N1) { 2449 X = N0.getOperand(1); 2450 Y = N0.getOperand(0); 2451 } else if (N0.getOperand(1) == N1) { 2452 X = N0.getOperand(0); 2453 Y = N0.getOperand(1); 2454 } else { 2455 return SDValue(); 2456 } 2457 2458 SelectionDAG &DAG = DCI.DAG; 2459 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2460 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2461 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2462 // Note that where Y is variable and is known to have at most one bit set 2463 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2464 // equivalent when Y == 0. 2465 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2466 if (DCI.isBeforeLegalizeOps() || 2467 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2468 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2469 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2470 // If the target supports an 'and-not' or 'and-complement' logic operation, 2471 // try to use that to make a comparison operation more efficient. 2472 // But don't do this transform if the mask is a single bit because there are 2473 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2474 // 'rlwinm' on PPC). 2475 2476 // Bail out if the compare operand that we want to turn into a zero is 2477 // already a zero (otherwise, infinite loop). 2478 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2479 if (YConst && YConst->isNullValue()) 2480 return SDValue(); 2481 2482 // Transform this into: ~X & Y == 0. 2483 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2484 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2485 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2486 } 2487 2488 return SDValue(); 2489 } 2490 2491 /// There are multiple IR patterns that could be checking whether certain 2492 /// truncation of a signed number would be lossy or not. The pattern which is 2493 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2494 /// We are looking for the following pattern: (KeptBits is a constant) 2495 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2496 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2497 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2498 /// We will unfold it into the natural trunc+sext pattern: 2499 /// ((%x << C) a>> C) dstcond %x 2500 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2501 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2502 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2503 const SDLoc &DL) const { 2504 // We must be comparing with a constant. 2505 ConstantSDNode *C1; 2506 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2507 return SDValue(); 2508 2509 // N0 should be: add %x, (1 << (KeptBits-1)) 2510 if (N0->getOpcode() != ISD::ADD) 2511 return SDValue(); 2512 2513 // And we must be 'add'ing a constant. 2514 ConstantSDNode *C01; 2515 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2516 return SDValue(); 2517 2518 SDValue X = N0->getOperand(0); 2519 EVT XVT = X.getValueType(); 2520 2521 // Validate constants ... 2522 2523 APInt I1 = C1->getAPIntValue(); 2524 2525 ISD::CondCode NewCond; 2526 if (Cond == ISD::CondCode::SETULT) { 2527 NewCond = ISD::CondCode::SETEQ; 2528 } else if (Cond == ISD::CondCode::SETULE) { 2529 NewCond = ISD::CondCode::SETEQ; 2530 // But need to 'canonicalize' the constant. 2531 I1 += 1; 2532 } else if (Cond == ISD::CondCode::SETUGT) { 2533 NewCond = ISD::CondCode::SETNE; 2534 // But need to 'canonicalize' the constant. 2535 I1 += 1; 2536 } else if (Cond == ISD::CondCode::SETUGE) { 2537 NewCond = ISD::CondCode::SETNE; 2538 } else 2539 return SDValue(); 2540 2541 APInt I01 = C01->getAPIntValue(); 2542 2543 auto checkConstants = [&I1, &I01]() -> bool { 2544 // Both of them must be power-of-two, and the constant from setcc is bigger. 2545 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2546 }; 2547 2548 if (checkConstants()) { 2549 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2550 } else { 2551 // What if we invert constants? (and the target predicate) 2552 I1.negate(); 2553 I01.negate(); 2554 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2555 if (!checkConstants()) 2556 return SDValue(); 2557 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2558 } 2559 2560 // They are power-of-two, so which bit is set? 2561 const unsigned KeptBits = I1.logBase2(); 2562 const unsigned KeptBitsMinusOne = I01.logBase2(); 2563 2564 // Magic! 2565 if (KeptBits != (KeptBitsMinusOne + 1)) 2566 return SDValue(); 2567 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2568 2569 // We don't want to do this in every single case. 2570 SelectionDAG &DAG = DCI.DAG; 2571 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2572 XVT, KeptBits)) 2573 return SDValue(); 2574 2575 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2576 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2577 2578 // Unfold into: ((%x << C) a>> C) cond %x 2579 // Where 'cond' will be either 'eq' or 'ne'. 2580 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2581 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2582 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2583 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2584 2585 return T2; 2586 } 2587 2588 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2589 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2590 /// handle the commuted versions of these patterns. 2591 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2592 ISD::CondCode Cond, const SDLoc &DL, 2593 DAGCombinerInfo &DCI) const { 2594 unsigned BOpcode = N0.getOpcode(); 2595 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2596 "Unexpected binop"); 2597 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2598 2599 // (X + Y) == X --> Y == 0 2600 // (X - Y) == X --> Y == 0 2601 // (X ^ Y) == X --> Y == 0 2602 SelectionDAG &DAG = DCI.DAG; 2603 EVT OpVT = N0.getValueType(); 2604 SDValue X = N0.getOperand(0); 2605 SDValue Y = N0.getOperand(1); 2606 if (X == N1) 2607 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2608 2609 if (Y != N1) 2610 return SDValue(); 2611 2612 // (X + Y) == Y --> X == 0 2613 // (X ^ Y) == Y --> X == 0 2614 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2615 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2616 2617 // The shift would not be valid if the operands are boolean (i1). 2618 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2619 return SDValue(); 2620 2621 // (X - Y) == Y --> X == Y << 1 2622 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2623 !DCI.isBeforeLegalize()); 2624 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2625 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2626 if (!DCI.isCalledByLegalizer()) 2627 DCI.AddToWorklist(YShl1.getNode()); 2628 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2629 } 2630 2631 /// Try to simplify a setcc built with the specified operands and cc. If it is 2632 /// unable to simplify it, return a null SDValue. 2633 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2634 ISD::CondCode Cond, bool foldBooleans, 2635 DAGCombinerInfo &DCI, 2636 const SDLoc &dl) const { 2637 SelectionDAG &DAG = DCI.DAG; 2638 EVT OpVT = N0.getValueType(); 2639 2640 // Constant fold or commute setcc. 2641 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 2642 return Fold; 2643 2644 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2645 // TODO: Handle non-splat vector constants. All undef causes trouble. 2646 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2647 if (isConstOrConstSplat(N0) && 2648 (DCI.isBeforeLegalizeOps() || 2649 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2650 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2651 2652 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2653 const APInt &C1 = N1C->getAPIntValue(); 2654 2655 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2656 // equality comparison, then we're just comparing whether X itself is 2657 // zero. 2658 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2659 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2660 N0.getOperand(1).getOpcode() == ISD::Constant) { 2661 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2662 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2663 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2664 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2665 // (srl (ctlz x), 5) == 0 -> X != 0 2666 // (srl (ctlz x), 5) != 1 -> X != 0 2667 Cond = ISD::SETNE; 2668 } else { 2669 // (srl (ctlz x), 5) != 0 -> X == 0 2670 // (srl (ctlz x), 5) == 1 -> X == 0 2671 Cond = ISD::SETEQ; 2672 } 2673 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2674 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2675 Zero, Cond); 2676 } 2677 } 2678 2679 SDValue CTPOP = N0; 2680 // Look through truncs that don't change the value of a ctpop. 2681 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2682 CTPOP = N0.getOperand(0); 2683 2684 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2685 (N0 == CTPOP || 2686 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2687 EVT CTVT = CTPOP.getValueType(); 2688 SDValue CTOp = CTPOP.getOperand(0); 2689 2690 // (ctpop x) u< 2 -> (x & x-1) == 0 2691 // (ctpop x) u> 1 -> (x & x-1) != 0 2692 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2693 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2694 DAG.getConstant(1, dl, CTVT)); 2695 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2696 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2697 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2698 } 2699 2700 // (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2701 if (Cond == ISD::SETEQ && C1 == 1 && 2702 !isOperationLegalOrCustom(ISD::CTPOP, CTVT)) { 2703 SDValue Sub = 2704 DAG.getNode(ISD::SUB, dl, CTVT, CTOp, DAG.getConstant(1, dl, CTVT)); 2705 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2706 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, DAG.getConstant(0, dl, CTVT), 2707 ISD::SETUGT); 2708 SDValue RHS = 2709 DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), ISD::SETEQ); 2710 return DAG.getNode(ISD::AND, dl, VT, LHS, RHS); 2711 } 2712 } 2713 2714 // (zext x) == C --> x == (trunc C) 2715 // (sext x) == C --> x == (trunc C) 2716 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2717 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2718 unsigned MinBits = N0.getValueSizeInBits(); 2719 SDValue PreExt; 2720 bool Signed = false; 2721 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2722 // ZExt 2723 MinBits = N0->getOperand(0).getValueSizeInBits(); 2724 PreExt = N0->getOperand(0); 2725 } else if (N0->getOpcode() == ISD::AND) { 2726 // DAGCombine turns costly ZExts into ANDs 2727 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2728 if ((C->getAPIntValue()+1).isPowerOf2()) { 2729 MinBits = C->getAPIntValue().countTrailingOnes(); 2730 PreExt = N0->getOperand(0); 2731 } 2732 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2733 // SExt 2734 MinBits = N0->getOperand(0).getValueSizeInBits(); 2735 PreExt = N0->getOperand(0); 2736 Signed = true; 2737 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2738 // ZEXTLOAD / SEXTLOAD 2739 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2740 MinBits = LN0->getMemoryVT().getSizeInBits(); 2741 PreExt = N0; 2742 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2743 Signed = true; 2744 MinBits = LN0->getMemoryVT().getSizeInBits(); 2745 PreExt = N0; 2746 } 2747 } 2748 2749 // Figure out how many bits we need to preserve this constant. 2750 unsigned ReqdBits = Signed ? 2751 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2752 C1.getActiveBits(); 2753 2754 // Make sure we're not losing bits from the constant. 2755 if (MinBits > 0 && 2756 MinBits < C1.getBitWidth() && 2757 MinBits >= ReqdBits) { 2758 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2759 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2760 // Will get folded away. 2761 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2762 if (MinBits == 1 && C1 == 1) 2763 // Invert the condition. 2764 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2765 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2766 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2767 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2768 } 2769 2770 // If truncating the setcc operands is not desirable, we can still 2771 // simplify the expression in some cases: 2772 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2773 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2774 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2775 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2776 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2777 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2778 SDValue TopSetCC = N0->getOperand(0); 2779 unsigned N0Opc = N0->getOpcode(); 2780 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2781 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2782 TopSetCC.getOpcode() == ISD::SETCC && 2783 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2784 (isConstFalseVal(N1C) || 2785 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2786 2787 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2788 (!N1C->isNullValue() && Cond == ISD::SETNE); 2789 2790 if (!Inverse) 2791 return TopSetCC; 2792 2793 ISD::CondCode InvCond = ISD::getSetCCInverse( 2794 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2795 TopSetCC.getOperand(0).getValueType().isInteger()); 2796 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2797 TopSetCC.getOperand(1), 2798 InvCond); 2799 } 2800 } 2801 } 2802 2803 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2804 // equality or unsigned, and all 1 bits of the const are in the same 2805 // partial word, see if we can shorten the load. 2806 if (DCI.isBeforeLegalize() && 2807 !ISD::isSignedIntSetCC(Cond) && 2808 N0.getOpcode() == ISD::AND && C1 == 0 && 2809 N0.getNode()->hasOneUse() && 2810 isa<LoadSDNode>(N0.getOperand(0)) && 2811 N0.getOperand(0).getNode()->hasOneUse() && 2812 isa<ConstantSDNode>(N0.getOperand(1))) { 2813 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2814 APInt bestMask; 2815 unsigned bestWidth = 0, bestOffset = 0; 2816 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2817 unsigned origWidth = N0.getValueSizeInBits(); 2818 unsigned maskWidth = origWidth; 2819 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2820 // 8 bits, but have to be careful... 2821 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2822 origWidth = Lod->getMemoryVT().getSizeInBits(); 2823 const APInt &Mask = N0.getConstantOperandAPInt(1); 2824 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2825 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2826 for (unsigned offset=0; offset<origWidth/width; offset++) { 2827 if (Mask.isSubsetOf(newMask)) { 2828 if (DAG.getDataLayout().isLittleEndian()) 2829 bestOffset = (uint64_t)offset * (width/8); 2830 else 2831 bestOffset = (origWidth/width - offset - 1) * (width/8); 2832 bestMask = Mask.lshr(offset * (width/8) * 8); 2833 bestWidth = width; 2834 break; 2835 } 2836 newMask <<= width; 2837 } 2838 } 2839 } 2840 if (bestWidth) { 2841 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2842 if (newVT.isRound() && 2843 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2844 EVT PtrType = Lod->getOperand(1).getValueType(); 2845 SDValue Ptr = Lod->getBasePtr(); 2846 if (bestOffset != 0) 2847 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2848 DAG.getConstant(bestOffset, dl, PtrType)); 2849 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2850 SDValue NewLoad = DAG.getLoad( 2851 newVT, dl, Lod->getChain(), Ptr, 2852 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2853 return DAG.getSetCC(dl, VT, 2854 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2855 DAG.getConstant(bestMask.trunc(bestWidth), 2856 dl, newVT)), 2857 DAG.getConstant(0LL, dl, newVT), Cond); 2858 } 2859 } 2860 } 2861 2862 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2863 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2864 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2865 2866 // If the comparison constant has bits in the upper part, the 2867 // zero-extended value could never match. 2868 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2869 C1.getBitWidth() - InSize))) { 2870 switch (Cond) { 2871 case ISD::SETUGT: 2872 case ISD::SETUGE: 2873 case ISD::SETEQ: 2874 return DAG.getConstant(0, dl, VT); 2875 case ISD::SETULT: 2876 case ISD::SETULE: 2877 case ISD::SETNE: 2878 return DAG.getConstant(1, dl, VT); 2879 case ISD::SETGT: 2880 case ISD::SETGE: 2881 // True if the sign bit of C1 is set. 2882 return DAG.getConstant(C1.isNegative(), dl, VT); 2883 case ISD::SETLT: 2884 case ISD::SETLE: 2885 // True if the sign bit of C1 isn't set. 2886 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2887 default: 2888 break; 2889 } 2890 } 2891 2892 // Otherwise, we can perform the comparison with the low bits. 2893 switch (Cond) { 2894 case ISD::SETEQ: 2895 case ISD::SETNE: 2896 case ISD::SETUGT: 2897 case ISD::SETUGE: 2898 case ISD::SETULT: 2899 case ISD::SETULE: { 2900 EVT newVT = N0.getOperand(0).getValueType(); 2901 if (DCI.isBeforeLegalizeOps() || 2902 (isOperationLegal(ISD::SETCC, newVT) && 2903 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2904 EVT NewSetCCVT = 2905 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2906 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2907 2908 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2909 NewConst, Cond); 2910 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2911 } 2912 break; 2913 } 2914 default: 2915 break; // todo, be more careful with signed comparisons 2916 } 2917 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2918 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2919 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2920 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2921 EVT ExtDstTy = N0.getValueType(); 2922 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2923 2924 // If the constant doesn't fit into the number of bits for the source of 2925 // the sign extension, it is impossible for both sides to be equal. 2926 if (C1.getMinSignedBits() > ExtSrcTyBits) 2927 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2928 2929 SDValue ZextOp; 2930 EVT Op0Ty = N0.getOperand(0).getValueType(); 2931 if (Op0Ty == ExtSrcTy) { 2932 ZextOp = N0.getOperand(0); 2933 } else { 2934 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2935 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2936 DAG.getConstant(Imm, dl, Op0Ty)); 2937 } 2938 if (!DCI.isCalledByLegalizer()) 2939 DCI.AddToWorklist(ZextOp.getNode()); 2940 // Otherwise, make this a use of a zext. 2941 return DAG.getSetCC(dl, VT, ZextOp, 2942 DAG.getConstant(C1 & APInt::getLowBitsSet( 2943 ExtDstTyBits, 2944 ExtSrcTyBits), 2945 dl, ExtDstTy), 2946 Cond); 2947 } else if ((N1C->isNullValue() || N1C->isOne()) && 2948 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2949 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2950 if (N0.getOpcode() == ISD::SETCC && 2951 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2952 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2953 if (TrueWhenTrue) 2954 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2955 // Invert the condition. 2956 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2957 CC = ISD::getSetCCInverse(CC, 2958 N0.getOperand(0).getValueType().isInteger()); 2959 if (DCI.isBeforeLegalizeOps() || 2960 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2961 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2962 } 2963 2964 if ((N0.getOpcode() == ISD::XOR || 2965 (N0.getOpcode() == ISD::AND && 2966 N0.getOperand(0).getOpcode() == ISD::XOR && 2967 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2968 isa<ConstantSDNode>(N0.getOperand(1)) && 2969 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2970 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2971 // can only do this if the top bits are known zero. 2972 unsigned BitWidth = N0.getValueSizeInBits(); 2973 if (DAG.MaskedValueIsZero(N0, 2974 APInt::getHighBitsSet(BitWidth, 2975 BitWidth-1))) { 2976 // Okay, get the un-inverted input value. 2977 SDValue Val; 2978 if (N0.getOpcode() == ISD::XOR) { 2979 Val = N0.getOperand(0); 2980 } else { 2981 assert(N0.getOpcode() == ISD::AND && 2982 N0.getOperand(0).getOpcode() == ISD::XOR); 2983 // ((X^1)&1)^1 -> X & 1 2984 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2985 N0.getOperand(0).getOperand(0), 2986 N0.getOperand(1)); 2987 } 2988 2989 return DAG.getSetCC(dl, VT, Val, N1, 2990 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2991 } 2992 } else if (N1C->isOne() && 2993 (VT == MVT::i1 || 2994 getBooleanContents(N0->getValueType(0)) == 2995 ZeroOrOneBooleanContent)) { 2996 SDValue Op0 = N0; 2997 if (Op0.getOpcode() == ISD::TRUNCATE) 2998 Op0 = Op0.getOperand(0); 2999 3000 if ((Op0.getOpcode() == ISD::XOR) && 3001 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3002 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3003 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3004 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3005 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3006 Cond); 3007 } 3008 if (Op0.getOpcode() == ISD::AND && 3009 isa<ConstantSDNode>(Op0.getOperand(1)) && 3010 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3011 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3012 if (Op0.getValueType().bitsGT(VT)) 3013 Op0 = DAG.getNode(ISD::AND, dl, VT, 3014 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3015 DAG.getConstant(1, dl, VT)); 3016 else if (Op0.getValueType().bitsLT(VT)) 3017 Op0 = DAG.getNode(ISD::AND, dl, VT, 3018 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3019 DAG.getConstant(1, dl, VT)); 3020 3021 return DAG.getSetCC(dl, VT, Op0, 3022 DAG.getConstant(0, dl, Op0.getValueType()), 3023 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3024 } 3025 if (Op0.getOpcode() == ISD::AssertZext && 3026 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3027 return DAG.getSetCC(dl, VT, Op0, 3028 DAG.getConstant(0, dl, Op0.getValueType()), 3029 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3030 } 3031 } 3032 3033 if (SDValue V = 3034 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3035 return V; 3036 } 3037 3038 // These simplifications apply to splat vectors as well. 3039 // TODO: Handle more splat vector cases. 3040 if (auto *N1C = isConstOrConstSplat(N1)) { 3041 const APInt &C1 = N1C->getAPIntValue(); 3042 3043 APInt MinVal, MaxVal; 3044 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3045 if (ISD::isSignedIntSetCC(Cond)) { 3046 MinVal = APInt::getSignedMinValue(OperandBitSize); 3047 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3048 } else { 3049 MinVal = APInt::getMinValue(OperandBitSize); 3050 MaxVal = APInt::getMaxValue(OperandBitSize); 3051 } 3052 3053 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3054 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3055 // X >= MIN --> true 3056 if (C1 == MinVal) 3057 return DAG.getBoolConstant(true, dl, VT, OpVT); 3058 3059 if (!VT.isVector()) { // TODO: Support this for vectors. 3060 // X >= C0 --> X > (C0 - 1) 3061 APInt C = C1 - 1; 3062 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3063 if ((DCI.isBeforeLegalizeOps() || 3064 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3065 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3066 isLegalICmpImmediate(C.getSExtValue())))) { 3067 return DAG.getSetCC(dl, VT, N0, 3068 DAG.getConstant(C, dl, N1.getValueType()), 3069 NewCC); 3070 } 3071 } 3072 } 3073 3074 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3075 // X <= MAX --> true 3076 if (C1 == MaxVal) 3077 return DAG.getBoolConstant(true, dl, VT, OpVT); 3078 3079 // X <= C0 --> X < (C0 + 1) 3080 if (!VT.isVector()) { // TODO: Support this for vectors. 3081 APInt C = C1 + 1; 3082 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3083 if ((DCI.isBeforeLegalizeOps() || 3084 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3085 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3086 isLegalICmpImmediate(C.getSExtValue())))) { 3087 return DAG.getSetCC(dl, VT, N0, 3088 DAG.getConstant(C, dl, N1.getValueType()), 3089 NewCC); 3090 } 3091 } 3092 } 3093 3094 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3095 if (C1 == MinVal) 3096 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3097 3098 // TODO: Support this for vectors after legalize ops. 3099 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3100 // Canonicalize setlt X, Max --> setne X, Max 3101 if (C1 == MaxVal) 3102 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3103 3104 // If we have setult X, 1, turn it into seteq X, 0 3105 if (C1 == MinVal+1) 3106 return DAG.getSetCC(dl, VT, N0, 3107 DAG.getConstant(MinVal, dl, N0.getValueType()), 3108 ISD::SETEQ); 3109 } 3110 } 3111 3112 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3113 if (C1 == MaxVal) 3114 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3115 3116 // TODO: Support this for vectors after legalize ops. 3117 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3118 // Canonicalize setgt X, Min --> setne X, Min 3119 if (C1 == MinVal) 3120 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3121 3122 // If we have setugt X, Max-1, turn it into seteq X, Max 3123 if (C1 == MaxVal-1) 3124 return DAG.getSetCC(dl, VT, N0, 3125 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3126 ISD::SETEQ); 3127 } 3128 } 3129 3130 // If we have "setcc X, C0", check to see if we can shrink the immediate 3131 // by changing cc. 3132 // TODO: Support this for vectors after legalize ops. 3133 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3134 // SETUGT X, SINTMAX -> SETLT X, 0 3135 if (Cond == ISD::SETUGT && 3136 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3137 return DAG.getSetCC(dl, VT, N0, 3138 DAG.getConstant(0, dl, N1.getValueType()), 3139 ISD::SETLT); 3140 3141 // SETULT X, SINTMIN -> SETGT X, -1 3142 if (Cond == ISD::SETULT && 3143 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3144 SDValue ConstMinusOne = 3145 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3146 N1.getValueType()); 3147 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3148 } 3149 } 3150 } 3151 3152 // Back to non-vector simplifications. 3153 // TODO: Can we do these for vector splats? 3154 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3155 const APInt &C1 = N1C->getAPIntValue(); 3156 3157 // Fold bit comparisons when we can. 3158 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3159 (VT == N0.getValueType() || 3160 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3161 N0.getOpcode() == ISD::AND) { 3162 auto &DL = DAG.getDataLayout(); 3163 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3164 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3165 !DCI.isBeforeLegalize()); 3166 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3167 // Perform the xform if the AND RHS is a single bit. 3168 if (AndRHS->getAPIntValue().isPowerOf2()) { 3169 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3170 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3171 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3172 ShiftTy))); 3173 } 3174 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3175 // (X & 8) == 8 --> (X & 8) >> 3 3176 // Perform the xform if C1 is a single bit. 3177 if (C1.isPowerOf2()) { 3178 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3179 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3180 DAG.getConstant(C1.logBase2(), dl, 3181 ShiftTy))); 3182 } 3183 } 3184 } 3185 } 3186 3187 if (C1.getMinSignedBits() <= 64 && 3188 !isLegalICmpImmediate(C1.getSExtValue())) { 3189 // (X & -256) == 256 -> (X >> 8) == 1 3190 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3191 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3192 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3193 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3194 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3195 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3196 auto &DL = DAG.getDataLayout(); 3197 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3198 !DCI.isBeforeLegalize()); 3199 EVT CmpTy = N0.getValueType(); 3200 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3201 DAG.getConstant(ShiftBits, dl, 3202 ShiftTy)); 3203 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3204 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3205 } 3206 } 3207 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3208 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3209 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3210 // X < 0x100000000 -> (X >> 32) < 1 3211 // X >= 0x100000000 -> (X >> 32) >= 1 3212 // X <= 0x0ffffffff -> (X >> 32) < 1 3213 // X > 0x0ffffffff -> (X >> 32) >= 1 3214 unsigned ShiftBits; 3215 APInt NewC = C1; 3216 ISD::CondCode NewCond = Cond; 3217 if (AdjOne) { 3218 ShiftBits = C1.countTrailingOnes(); 3219 NewC = NewC + 1; 3220 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3221 } else { 3222 ShiftBits = C1.countTrailingZeros(); 3223 } 3224 NewC.lshrInPlace(ShiftBits); 3225 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3226 isLegalICmpImmediate(NewC.getSExtValue())) { 3227 auto &DL = DAG.getDataLayout(); 3228 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3229 !DCI.isBeforeLegalize()); 3230 EVT CmpTy = N0.getValueType(); 3231 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3232 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3233 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3234 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3235 } 3236 } 3237 } 3238 } 3239 3240 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3241 auto *CFP = cast<ConstantFPSDNode>(N1); 3242 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3243 3244 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3245 // constant if knowing that the operand is non-nan is enough. We prefer to 3246 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3247 // materialize 0.0. 3248 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3249 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3250 3251 // setcc (fneg x), C -> setcc swap(pred) x, -C 3252 if (N0.getOpcode() == ISD::FNEG) { 3253 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3254 if (DCI.isBeforeLegalizeOps() || 3255 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3256 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3257 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3258 } 3259 } 3260 3261 // If the condition is not legal, see if we can find an equivalent one 3262 // which is legal. 3263 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3264 // If the comparison was an awkward floating-point == or != and one of 3265 // the comparison operands is infinity or negative infinity, convert the 3266 // condition to a less-awkward <= or >=. 3267 if (CFP->getValueAPF().isInfinity()) { 3268 if (CFP->getValueAPF().isNegative()) { 3269 if (Cond == ISD::SETOEQ && 3270 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3271 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3272 if (Cond == ISD::SETUEQ && 3273 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3274 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3275 if (Cond == ISD::SETUNE && 3276 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3277 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3278 if (Cond == ISD::SETONE && 3279 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3280 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3281 } else { 3282 if (Cond == ISD::SETOEQ && 3283 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3284 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3285 if (Cond == ISD::SETUEQ && 3286 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3287 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3288 if (Cond == ISD::SETUNE && 3289 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3290 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3291 if (Cond == ISD::SETONE && 3292 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3293 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3294 } 3295 } 3296 } 3297 } 3298 3299 if (N0 == N1) { 3300 // The sext(setcc()) => setcc() optimization relies on the appropriate 3301 // constant being emitted. 3302 assert(!N0.getValueType().isInteger() && 3303 "Integer types should be handled by FoldSetCC"); 3304 3305 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3306 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3307 if (UOF == 2) // FP operators that are undefined on NaNs. 3308 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3309 if (UOF == unsigned(EqTrue)) 3310 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3311 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3312 // if it is not already. 3313 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3314 if (NewCond != Cond && 3315 (DCI.isBeforeLegalizeOps() || 3316 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3317 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3318 } 3319 3320 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3321 N0.getValueType().isInteger()) { 3322 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3323 N0.getOpcode() == ISD::XOR) { 3324 // Simplify (X+Y) == (X+Z) --> Y == Z 3325 if (N0.getOpcode() == N1.getOpcode()) { 3326 if (N0.getOperand(0) == N1.getOperand(0)) 3327 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3328 if (N0.getOperand(1) == N1.getOperand(1)) 3329 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3330 if (isCommutativeBinOp(N0.getOpcode())) { 3331 // If X op Y == Y op X, try other combinations. 3332 if (N0.getOperand(0) == N1.getOperand(1)) 3333 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3334 Cond); 3335 if (N0.getOperand(1) == N1.getOperand(0)) 3336 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3337 Cond); 3338 } 3339 } 3340 3341 // If RHS is a legal immediate value for a compare instruction, we need 3342 // to be careful about increasing register pressure needlessly. 3343 bool LegalRHSImm = false; 3344 3345 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3346 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3347 // Turn (X+C1) == C2 --> X == C2-C1 3348 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3349 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3350 DAG.getConstant(RHSC->getAPIntValue()- 3351 LHSR->getAPIntValue(), 3352 dl, N0.getValueType()), Cond); 3353 } 3354 3355 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3356 if (N0.getOpcode() == ISD::XOR) 3357 // If we know that all of the inverted bits are zero, don't bother 3358 // performing the inversion. 3359 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3360 return 3361 DAG.getSetCC(dl, VT, N0.getOperand(0), 3362 DAG.getConstant(LHSR->getAPIntValue() ^ 3363 RHSC->getAPIntValue(), 3364 dl, N0.getValueType()), 3365 Cond); 3366 } 3367 3368 // Turn (C1-X) == C2 --> X == C1-C2 3369 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3370 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3371 return 3372 DAG.getSetCC(dl, VT, N0.getOperand(1), 3373 DAG.getConstant(SUBC->getAPIntValue() - 3374 RHSC->getAPIntValue(), 3375 dl, N0.getValueType()), 3376 Cond); 3377 } 3378 } 3379 3380 // Could RHSC fold directly into a compare? 3381 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3382 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3383 } 3384 3385 // (X+Y) == X --> Y == 0 and similar folds. 3386 // Don't do this if X is an immediate that can fold into a cmp 3387 // instruction and X+Y has other uses. It could be an induction variable 3388 // chain, and the transform would increase register pressure. 3389 if (!LegalRHSImm || N0.hasOneUse()) 3390 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3391 return V; 3392 } 3393 3394 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3395 N1.getOpcode() == ISD::XOR) 3396 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3397 return V; 3398 3399 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3400 return V; 3401 } 3402 3403 // Fold away ALL boolean setcc's. 3404 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3405 SDValue Temp; 3406 switch (Cond) { 3407 default: llvm_unreachable("Unknown integer setcc!"); 3408 case ISD::SETEQ: // X == Y -> ~(X^Y) 3409 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3410 N0 = DAG.getNOT(dl, Temp, OpVT); 3411 if (!DCI.isCalledByLegalizer()) 3412 DCI.AddToWorklist(Temp.getNode()); 3413 break; 3414 case ISD::SETNE: // X != Y --> (X^Y) 3415 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3416 break; 3417 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3418 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3419 Temp = DAG.getNOT(dl, N0, OpVT); 3420 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3421 if (!DCI.isCalledByLegalizer()) 3422 DCI.AddToWorklist(Temp.getNode()); 3423 break; 3424 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3425 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3426 Temp = DAG.getNOT(dl, N1, OpVT); 3427 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3428 if (!DCI.isCalledByLegalizer()) 3429 DCI.AddToWorklist(Temp.getNode()); 3430 break; 3431 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3432 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3433 Temp = DAG.getNOT(dl, N0, OpVT); 3434 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3435 if (!DCI.isCalledByLegalizer()) 3436 DCI.AddToWorklist(Temp.getNode()); 3437 break; 3438 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3439 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3440 Temp = DAG.getNOT(dl, N1, OpVT); 3441 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3442 break; 3443 } 3444 if (VT.getScalarType() != MVT::i1) { 3445 if (!DCI.isCalledByLegalizer()) 3446 DCI.AddToWorklist(N0.getNode()); 3447 // FIXME: If running after legalize, we probably can't do this. 3448 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3449 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3450 } 3451 return N0; 3452 } 3453 3454 // Could not fold it. 3455 return SDValue(); 3456 } 3457 3458 /// Returns true (and the GlobalValue and the offset) if the node is a 3459 /// GlobalAddress + offset. 3460 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3461 int64_t &Offset) const { 3462 3463 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3464 3465 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3466 GA = GASD->getGlobal(); 3467 Offset += GASD->getOffset(); 3468 return true; 3469 } 3470 3471 if (N->getOpcode() == ISD::ADD) { 3472 SDValue N1 = N->getOperand(0); 3473 SDValue N2 = N->getOperand(1); 3474 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3475 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3476 Offset += V->getSExtValue(); 3477 return true; 3478 } 3479 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3480 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3481 Offset += V->getSExtValue(); 3482 return true; 3483 } 3484 } 3485 } 3486 3487 return false; 3488 } 3489 3490 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3491 DAGCombinerInfo &DCI) const { 3492 // Default implementation: no optimization. 3493 return SDValue(); 3494 } 3495 3496 //===----------------------------------------------------------------------===// 3497 // Inline Assembler Implementation Methods 3498 //===----------------------------------------------------------------------===// 3499 3500 TargetLowering::ConstraintType 3501 TargetLowering::getConstraintType(StringRef Constraint) const { 3502 unsigned S = Constraint.size(); 3503 3504 if (S == 1) { 3505 switch (Constraint[0]) { 3506 default: break; 3507 case 'r': return C_RegisterClass; 3508 case 'm': // memory 3509 case 'o': // offsetable 3510 case 'V': // not offsetable 3511 return C_Memory; 3512 case 'i': // Simple Integer or Relocatable Constant 3513 case 'n': // Simple Integer 3514 case 'E': // Floating Point Constant 3515 case 'F': // Floating Point Constant 3516 case 's': // Relocatable Constant 3517 case 'p': // Address. 3518 case 'X': // Allow ANY value. 3519 case 'I': // Target registers. 3520 case 'J': 3521 case 'K': 3522 case 'L': 3523 case 'M': 3524 case 'N': 3525 case 'O': 3526 case 'P': 3527 case '<': 3528 case '>': 3529 return C_Other; 3530 } 3531 } 3532 3533 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3534 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3535 return C_Memory; 3536 return C_Register; 3537 } 3538 return C_Unknown; 3539 } 3540 3541 /// Try to replace an X constraint, which matches anything, with another that 3542 /// has more specific requirements based on the type of the corresponding 3543 /// operand. 3544 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3545 if (ConstraintVT.isInteger()) 3546 return "r"; 3547 if (ConstraintVT.isFloatingPoint()) 3548 return "f"; // works for many targets 3549 return nullptr; 3550 } 3551 3552 SDValue TargetLowering::LowerAsmOutputForConstraint( 3553 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3554 SelectionDAG &DAG) const { 3555 return SDValue(); 3556 } 3557 3558 /// Lower the specified operand into the Ops vector. 3559 /// If it is invalid, don't add anything to Ops. 3560 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3561 std::string &Constraint, 3562 std::vector<SDValue> &Ops, 3563 SelectionDAG &DAG) const { 3564 3565 if (Constraint.length() > 1) return; 3566 3567 char ConstraintLetter = Constraint[0]; 3568 switch (ConstraintLetter) { 3569 default: break; 3570 case 'X': // Allows any operand; labels (basic block) use this. 3571 if (Op.getOpcode() == ISD::BasicBlock || 3572 Op.getOpcode() == ISD::TargetBlockAddress) { 3573 Ops.push_back(Op); 3574 return; 3575 } 3576 LLVM_FALLTHROUGH; 3577 case 'i': // Simple Integer or Relocatable Constant 3578 case 'n': // Simple Integer 3579 case 's': { // Relocatable Constant 3580 3581 GlobalAddressSDNode *GA; 3582 ConstantSDNode *C; 3583 uint64_t Offset = 0; 3584 3585 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 3586 // etc., since getelementpointer is variadic. We can't use 3587 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 3588 // while in this case the GA may be furthest from the root node which is 3589 // likely an ISD::ADD. 3590 while (1) { 3591 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 3592 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 3593 GA->getValueType(0), 3594 Offset + GA->getOffset())); 3595 return; 3596 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 3597 ConstraintLetter != 's') { 3598 // gcc prints these as sign extended. Sign extend value to 64 bits 3599 // now; without this it would get ZExt'd later in 3600 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3601 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 3602 BooleanContent BCont = getBooleanContents(MVT::i64); 3603 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 3604 : ISD::SIGN_EXTEND; 3605 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 3606 : C->getSExtValue(); 3607 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 3608 SDLoc(C), MVT::i64)); 3609 return; 3610 } else { 3611 const unsigned OpCode = Op.getOpcode(); 3612 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 3613 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 3614 Op = Op.getOperand(1); 3615 // Subtraction is not commutative. 3616 else if (OpCode == ISD::ADD && 3617 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 3618 Op = Op.getOperand(0); 3619 else 3620 return; 3621 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 3622 continue; 3623 } 3624 } 3625 return; 3626 } 3627 break; 3628 } 3629 } 3630 } 3631 3632 std::pair<unsigned, const TargetRegisterClass *> 3633 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3634 StringRef Constraint, 3635 MVT VT) const { 3636 if (Constraint.empty() || Constraint[0] != '{') 3637 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3638 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3639 3640 // Remove the braces from around the name. 3641 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3642 3643 std::pair<unsigned, const TargetRegisterClass *> R = 3644 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3645 3646 // Figure out which register class contains this reg. 3647 for (const TargetRegisterClass *RC : RI->regclasses()) { 3648 // If none of the value types for this register class are valid, we 3649 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3650 if (!isLegalRC(*RI, *RC)) 3651 continue; 3652 3653 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3654 I != E; ++I) { 3655 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3656 std::pair<unsigned, const TargetRegisterClass *> S = 3657 std::make_pair(*I, RC); 3658 3659 // If this register class has the requested value type, return it, 3660 // otherwise keep searching and return the first class found 3661 // if no other is found which explicitly has the requested type. 3662 if (RI->isTypeLegalForClass(*RC, VT)) 3663 return S; 3664 if (!R.second) 3665 R = S; 3666 } 3667 } 3668 } 3669 3670 return R; 3671 } 3672 3673 //===----------------------------------------------------------------------===// 3674 // Constraint Selection. 3675 3676 /// Return true of this is an input operand that is a matching constraint like 3677 /// "4". 3678 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3679 assert(!ConstraintCode.empty() && "No known constraint!"); 3680 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3681 } 3682 3683 /// If this is an input matching constraint, this method returns the output 3684 /// operand it matches. 3685 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3686 assert(!ConstraintCode.empty() && "No known constraint!"); 3687 return atoi(ConstraintCode.c_str()); 3688 } 3689 3690 /// Split up the constraint string from the inline assembly value into the 3691 /// specific constraints and their prefixes, and also tie in the associated 3692 /// operand values. 3693 /// If this returns an empty vector, and if the constraint string itself 3694 /// isn't empty, there was an error parsing. 3695 TargetLowering::AsmOperandInfoVector 3696 TargetLowering::ParseConstraints(const DataLayout &DL, 3697 const TargetRegisterInfo *TRI, 3698 ImmutableCallSite CS) const { 3699 /// Information about all of the constraints. 3700 AsmOperandInfoVector ConstraintOperands; 3701 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3702 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3703 3704 // Do a prepass over the constraints, canonicalizing them, and building up the 3705 // ConstraintOperands list. 3706 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3707 unsigned ResNo = 0; // ResNo - The result number of the next output. 3708 3709 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3710 ConstraintOperands.emplace_back(std::move(CI)); 3711 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3712 3713 // Update multiple alternative constraint count. 3714 if (OpInfo.multipleAlternatives.size() > maCount) 3715 maCount = OpInfo.multipleAlternatives.size(); 3716 3717 OpInfo.ConstraintVT = MVT::Other; 3718 3719 // Compute the value type for each operand. 3720 switch (OpInfo.Type) { 3721 case InlineAsm::isOutput: 3722 // Indirect outputs just consume an argument. 3723 if (OpInfo.isIndirect) { 3724 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3725 break; 3726 } 3727 3728 // The return value of the call is this value. As such, there is no 3729 // corresponding argument. 3730 assert(!CS.getType()->isVoidTy() && 3731 "Bad inline asm!"); 3732 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3733 OpInfo.ConstraintVT = 3734 getSimpleValueType(DL, STy->getElementType(ResNo)); 3735 } else { 3736 assert(ResNo == 0 && "Asm only has one result!"); 3737 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3738 } 3739 ++ResNo; 3740 break; 3741 case InlineAsm::isInput: 3742 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3743 break; 3744 case InlineAsm::isClobber: 3745 // Nothing to do. 3746 break; 3747 } 3748 3749 if (OpInfo.CallOperandVal) { 3750 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3751 if (OpInfo.isIndirect) { 3752 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3753 if (!PtrTy) 3754 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3755 OpTy = PtrTy->getElementType(); 3756 } 3757 3758 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3759 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3760 if (STy->getNumElements() == 1) 3761 OpTy = STy->getElementType(0); 3762 3763 // If OpTy is not a single value, it may be a struct/union that we 3764 // can tile with integers. 3765 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3766 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3767 switch (BitSize) { 3768 default: break; 3769 case 1: 3770 case 8: 3771 case 16: 3772 case 32: 3773 case 64: 3774 case 128: 3775 OpInfo.ConstraintVT = 3776 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3777 break; 3778 } 3779 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3780 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3781 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3782 } else { 3783 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3784 } 3785 } 3786 } 3787 3788 // If we have multiple alternative constraints, select the best alternative. 3789 if (!ConstraintOperands.empty()) { 3790 if (maCount) { 3791 unsigned bestMAIndex = 0; 3792 int bestWeight = -1; 3793 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3794 int weight = -1; 3795 unsigned maIndex; 3796 // Compute the sums of the weights for each alternative, keeping track 3797 // of the best (highest weight) one so far. 3798 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3799 int weightSum = 0; 3800 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3801 cIndex != eIndex; ++cIndex) { 3802 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3803 if (OpInfo.Type == InlineAsm::isClobber) 3804 continue; 3805 3806 // If this is an output operand with a matching input operand, 3807 // look up the matching input. If their types mismatch, e.g. one 3808 // is an integer, the other is floating point, or their sizes are 3809 // different, flag it as an maCantMatch. 3810 if (OpInfo.hasMatchingInput()) { 3811 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3812 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3813 if ((OpInfo.ConstraintVT.isInteger() != 3814 Input.ConstraintVT.isInteger()) || 3815 (OpInfo.ConstraintVT.getSizeInBits() != 3816 Input.ConstraintVT.getSizeInBits())) { 3817 weightSum = -1; // Can't match. 3818 break; 3819 } 3820 } 3821 } 3822 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3823 if (weight == -1) { 3824 weightSum = -1; 3825 break; 3826 } 3827 weightSum += weight; 3828 } 3829 // Update best. 3830 if (weightSum > bestWeight) { 3831 bestWeight = weightSum; 3832 bestMAIndex = maIndex; 3833 } 3834 } 3835 3836 // Now select chosen alternative in each constraint. 3837 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3838 cIndex != eIndex; ++cIndex) { 3839 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3840 if (cInfo.Type == InlineAsm::isClobber) 3841 continue; 3842 cInfo.selectAlternative(bestMAIndex); 3843 } 3844 } 3845 } 3846 3847 // Check and hook up tied operands, choose constraint code to use. 3848 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3849 cIndex != eIndex; ++cIndex) { 3850 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3851 3852 // If this is an output operand with a matching input operand, look up the 3853 // matching input. If their types mismatch, e.g. one is an integer, the 3854 // other is floating point, or their sizes are different, flag it as an 3855 // error. 3856 if (OpInfo.hasMatchingInput()) { 3857 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3858 3859 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3860 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3861 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3862 OpInfo.ConstraintVT); 3863 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3864 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3865 Input.ConstraintVT); 3866 if ((OpInfo.ConstraintVT.isInteger() != 3867 Input.ConstraintVT.isInteger()) || 3868 (MatchRC.second != InputRC.second)) { 3869 report_fatal_error("Unsupported asm: input constraint" 3870 " with a matching output constraint of" 3871 " incompatible type!"); 3872 } 3873 } 3874 } 3875 } 3876 3877 return ConstraintOperands; 3878 } 3879 3880 /// Return an integer indicating how general CT is. 3881 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3882 switch (CT) { 3883 case TargetLowering::C_Other: 3884 case TargetLowering::C_Unknown: 3885 return 0; 3886 case TargetLowering::C_Register: 3887 return 1; 3888 case TargetLowering::C_RegisterClass: 3889 return 2; 3890 case TargetLowering::C_Memory: 3891 return 3; 3892 } 3893 llvm_unreachable("Invalid constraint type"); 3894 } 3895 3896 /// Examine constraint type and operand type and determine a weight value. 3897 /// This object must already have been set up with the operand type 3898 /// and the current alternative constraint selected. 3899 TargetLowering::ConstraintWeight 3900 TargetLowering::getMultipleConstraintMatchWeight( 3901 AsmOperandInfo &info, int maIndex) const { 3902 InlineAsm::ConstraintCodeVector *rCodes; 3903 if (maIndex >= (int)info.multipleAlternatives.size()) 3904 rCodes = &info.Codes; 3905 else 3906 rCodes = &info.multipleAlternatives[maIndex].Codes; 3907 ConstraintWeight BestWeight = CW_Invalid; 3908 3909 // Loop over the options, keeping track of the most general one. 3910 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3911 ConstraintWeight weight = 3912 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3913 if (weight > BestWeight) 3914 BestWeight = weight; 3915 } 3916 3917 return BestWeight; 3918 } 3919 3920 /// Examine constraint type and operand type and determine a weight value. 3921 /// This object must already have been set up with the operand type 3922 /// and the current alternative constraint selected. 3923 TargetLowering::ConstraintWeight 3924 TargetLowering::getSingleConstraintMatchWeight( 3925 AsmOperandInfo &info, const char *constraint) const { 3926 ConstraintWeight weight = CW_Invalid; 3927 Value *CallOperandVal = info.CallOperandVal; 3928 // If we don't have a value, we can't do a match, 3929 // but allow it at the lowest weight. 3930 if (!CallOperandVal) 3931 return CW_Default; 3932 // Look at the constraint type. 3933 switch (*constraint) { 3934 case 'i': // immediate integer. 3935 case 'n': // immediate integer with a known value. 3936 if (isa<ConstantInt>(CallOperandVal)) 3937 weight = CW_Constant; 3938 break; 3939 case 's': // non-explicit intregal immediate. 3940 if (isa<GlobalValue>(CallOperandVal)) 3941 weight = CW_Constant; 3942 break; 3943 case 'E': // immediate float if host format. 3944 case 'F': // immediate float. 3945 if (isa<ConstantFP>(CallOperandVal)) 3946 weight = CW_Constant; 3947 break; 3948 case '<': // memory operand with autodecrement. 3949 case '>': // memory operand with autoincrement. 3950 case 'm': // memory operand. 3951 case 'o': // offsettable memory operand 3952 case 'V': // non-offsettable memory operand 3953 weight = CW_Memory; 3954 break; 3955 case 'r': // general register. 3956 case 'g': // general register, memory operand or immediate integer. 3957 // note: Clang converts "g" to "imr". 3958 if (CallOperandVal->getType()->isIntegerTy()) 3959 weight = CW_Register; 3960 break; 3961 case 'X': // any operand. 3962 default: 3963 weight = CW_Default; 3964 break; 3965 } 3966 return weight; 3967 } 3968 3969 /// If there are multiple different constraints that we could pick for this 3970 /// operand (e.g. "imr") try to pick the 'best' one. 3971 /// This is somewhat tricky: constraints fall into four classes: 3972 /// Other -> immediates and magic values 3973 /// Register -> one specific register 3974 /// RegisterClass -> a group of regs 3975 /// Memory -> memory 3976 /// Ideally, we would pick the most specific constraint possible: if we have 3977 /// something that fits into a register, we would pick it. The problem here 3978 /// is that if we have something that could either be in a register or in 3979 /// memory that use of the register could cause selection of *other* 3980 /// operands to fail: they might only succeed if we pick memory. Because of 3981 /// this the heuristic we use is: 3982 /// 3983 /// 1) If there is an 'other' constraint, and if the operand is valid for 3984 /// that constraint, use it. This makes us take advantage of 'i' 3985 /// constraints when available. 3986 /// 2) Otherwise, pick the most general constraint present. This prefers 3987 /// 'm' over 'r', for example. 3988 /// 3989 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3990 const TargetLowering &TLI, 3991 SDValue Op, SelectionDAG *DAG) { 3992 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3993 unsigned BestIdx = 0; 3994 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3995 int BestGenerality = -1; 3996 3997 // Loop over the options, keeping track of the most general one. 3998 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3999 TargetLowering::ConstraintType CType = 4000 TLI.getConstraintType(OpInfo.Codes[i]); 4001 4002 // If this is an 'other' constraint, see if the operand is valid for it. 4003 // For example, on X86 we might have an 'rI' constraint. If the operand 4004 // is an integer in the range [0..31] we want to use I (saving a load 4005 // of a register), otherwise we must use 'r'. 4006 if (CType == TargetLowering::C_Other && Op.getNode()) { 4007 assert(OpInfo.Codes[i].size() == 1 && 4008 "Unhandled multi-letter 'other' constraint"); 4009 std::vector<SDValue> ResultOps; 4010 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4011 ResultOps, *DAG); 4012 if (!ResultOps.empty()) { 4013 BestType = CType; 4014 BestIdx = i; 4015 break; 4016 } 4017 } 4018 4019 // Things with matching constraints can only be registers, per gcc 4020 // documentation. This mainly affects "g" constraints. 4021 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4022 continue; 4023 4024 // This constraint letter is more general than the previous one, use it. 4025 int Generality = getConstraintGenerality(CType); 4026 if (Generality > BestGenerality) { 4027 BestType = CType; 4028 BestIdx = i; 4029 BestGenerality = Generality; 4030 } 4031 } 4032 4033 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4034 OpInfo.ConstraintType = BestType; 4035 } 4036 4037 /// Determines the constraint code and constraint type to use for the specific 4038 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4039 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4040 SDValue Op, 4041 SelectionDAG *DAG) const { 4042 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4043 4044 // Single-letter constraints ('r') are very common. 4045 if (OpInfo.Codes.size() == 1) { 4046 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4047 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4048 } else { 4049 ChooseConstraint(OpInfo, *this, Op, DAG); 4050 } 4051 4052 // 'X' matches anything. 4053 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4054 // Labels and constants are handled elsewhere ('X' is the only thing 4055 // that matches labels). For Functions, the type here is the type of 4056 // the result, which is not what we want to look at; leave them alone. 4057 Value *v = OpInfo.CallOperandVal; 4058 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4059 OpInfo.CallOperandVal = v; 4060 return; 4061 } 4062 4063 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4064 return; 4065 4066 // Otherwise, try to resolve it to something we know about by looking at 4067 // the actual operand type. 4068 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4069 OpInfo.ConstraintCode = Repl; 4070 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4071 } 4072 } 4073 } 4074 4075 /// Given an exact SDIV by a constant, create a multiplication 4076 /// with the multiplicative inverse of the constant. 4077 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4078 const SDLoc &dl, SelectionDAG &DAG, 4079 SmallVectorImpl<SDNode *> &Created) { 4080 SDValue Op0 = N->getOperand(0); 4081 SDValue Op1 = N->getOperand(1); 4082 EVT VT = N->getValueType(0); 4083 EVT SVT = VT.getScalarType(); 4084 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4085 EVT ShSVT = ShVT.getScalarType(); 4086 4087 bool UseSRA = false; 4088 SmallVector<SDValue, 16> Shifts, Factors; 4089 4090 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4091 if (C->isNullValue()) 4092 return false; 4093 APInt Divisor = C->getAPIntValue(); 4094 unsigned Shift = Divisor.countTrailingZeros(); 4095 if (Shift) { 4096 Divisor.ashrInPlace(Shift); 4097 UseSRA = true; 4098 } 4099 // Calculate the multiplicative inverse, using Newton's method. 4100 APInt t; 4101 APInt Factor = Divisor; 4102 while ((t = Divisor * Factor) != 1) 4103 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4104 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4105 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4106 return true; 4107 }; 4108 4109 // Collect all magic values from the build vector. 4110 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4111 return SDValue(); 4112 4113 SDValue Shift, Factor; 4114 if (VT.isVector()) { 4115 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4116 Factor = DAG.getBuildVector(VT, dl, Factors); 4117 } else { 4118 Shift = Shifts[0]; 4119 Factor = Factors[0]; 4120 } 4121 4122 SDValue Res = Op0; 4123 4124 // Shift the value upfront if it is even, so the LSB is one. 4125 if (UseSRA) { 4126 // TODO: For UDIV use SRL instead of SRA. 4127 SDNodeFlags Flags; 4128 Flags.setExact(true); 4129 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4130 Created.push_back(Res.getNode()); 4131 } 4132 4133 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4134 } 4135 4136 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4137 SelectionDAG &DAG, 4138 SmallVectorImpl<SDNode *> &Created) const { 4139 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4141 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4142 return SDValue(N, 0); // Lower SDIV as SDIV 4143 return SDValue(); 4144 } 4145 4146 /// Given an ISD::SDIV node expressing a divide by constant, 4147 /// return a DAG expression to select that will generate the same value by 4148 /// multiplying by a magic number. 4149 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4150 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4151 bool IsAfterLegalization, 4152 SmallVectorImpl<SDNode *> &Created) const { 4153 SDLoc dl(N); 4154 EVT VT = N->getValueType(0); 4155 EVT SVT = VT.getScalarType(); 4156 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4157 EVT ShSVT = ShVT.getScalarType(); 4158 unsigned EltBits = VT.getScalarSizeInBits(); 4159 4160 // Check to see if we can do this. 4161 // FIXME: We should be more aggressive here. 4162 if (!isTypeLegal(VT)) 4163 return SDValue(); 4164 4165 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4166 if (N->getFlags().hasExact()) 4167 return BuildExactSDIV(*this, N, dl, DAG, Created); 4168 4169 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4170 4171 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4172 if (C->isNullValue()) 4173 return false; 4174 4175 const APInt &Divisor = C->getAPIntValue(); 4176 APInt::ms magics = Divisor.magic(); 4177 int NumeratorFactor = 0; 4178 int ShiftMask = -1; 4179 4180 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4181 // If d is +1/-1, we just multiply the numerator by +1/-1. 4182 NumeratorFactor = Divisor.getSExtValue(); 4183 magics.m = 0; 4184 magics.s = 0; 4185 ShiftMask = 0; 4186 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4187 // If d > 0 and m < 0, add the numerator. 4188 NumeratorFactor = 1; 4189 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4190 // If d < 0 and m > 0, subtract the numerator. 4191 NumeratorFactor = -1; 4192 } 4193 4194 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4195 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4196 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4197 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4198 return true; 4199 }; 4200 4201 SDValue N0 = N->getOperand(0); 4202 SDValue N1 = N->getOperand(1); 4203 4204 // Collect the shifts / magic values from each element. 4205 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4206 return SDValue(); 4207 4208 SDValue MagicFactor, Factor, Shift, ShiftMask; 4209 if (VT.isVector()) { 4210 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4211 Factor = DAG.getBuildVector(VT, dl, Factors); 4212 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4213 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4214 } else { 4215 MagicFactor = MagicFactors[0]; 4216 Factor = Factors[0]; 4217 Shift = Shifts[0]; 4218 ShiftMask = ShiftMasks[0]; 4219 } 4220 4221 // Multiply the numerator (operand 0) by the magic value. 4222 // FIXME: We should support doing a MUL in a wider type. 4223 SDValue Q; 4224 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4225 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4226 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4227 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4228 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4229 SDValue LoHi = 4230 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4231 Q = SDValue(LoHi.getNode(), 1); 4232 } else 4233 return SDValue(); // No mulhs or equivalent. 4234 Created.push_back(Q.getNode()); 4235 4236 // (Optionally) Add/subtract the numerator using Factor. 4237 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4238 Created.push_back(Factor.getNode()); 4239 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4240 Created.push_back(Q.getNode()); 4241 4242 // Shift right algebraic by shift value. 4243 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4244 Created.push_back(Q.getNode()); 4245 4246 // Extract the sign bit, mask it and add it to the quotient. 4247 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4248 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4249 Created.push_back(T.getNode()); 4250 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4251 Created.push_back(T.getNode()); 4252 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4253 } 4254 4255 /// Given an ISD::UDIV node expressing a divide by constant, 4256 /// return a DAG expression to select that will generate the same value by 4257 /// multiplying by a magic number. 4258 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4259 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4260 bool IsAfterLegalization, 4261 SmallVectorImpl<SDNode *> &Created) const { 4262 SDLoc dl(N); 4263 EVT VT = N->getValueType(0); 4264 EVT SVT = VT.getScalarType(); 4265 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4266 EVT ShSVT = ShVT.getScalarType(); 4267 unsigned EltBits = VT.getScalarSizeInBits(); 4268 4269 // Check to see if we can do this. 4270 // FIXME: We should be more aggressive here. 4271 if (!isTypeLegal(VT)) 4272 return SDValue(); 4273 4274 bool UseNPQ = false; 4275 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4276 4277 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4278 if (C->isNullValue()) 4279 return false; 4280 // FIXME: We should use a narrower constant when the upper 4281 // bits are known to be zero. 4282 APInt Divisor = C->getAPIntValue(); 4283 APInt::mu magics = Divisor.magicu(); 4284 unsigned PreShift = 0, PostShift = 0; 4285 4286 // If the divisor is even, we can avoid using the expensive fixup by 4287 // shifting the divided value upfront. 4288 if (magics.a != 0 && !Divisor[0]) { 4289 PreShift = Divisor.countTrailingZeros(); 4290 // Get magic number for the shifted divisor. 4291 magics = Divisor.lshr(PreShift).magicu(PreShift); 4292 assert(magics.a == 0 && "Should use cheap fixup now"); 4293 } 4294 4295 APInt Magic = magics.m; 4296 4297 unsigned SelNPQ; 4298 if (magics.a == 0 || Divisor.isOneValue()) { 4299 assert(magics.s < Divisor.getBitWidth() && 4300 "We shouldn't generate an undefined shift!"); 4301 PostShift = magics.s; 4302 SelNPQ = false; 4303 } else { 4304 PostShift = magics.s - 1; 4305 SelNPQ = true; 4306 } 4307 4308 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4309 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4310 NPQFactors.push_back( 4311 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4312 : APInt::getNullValue(EltBits), 4313 dl, SVT)); 4314 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4315 UseNPQ |= SelNPQ; 4316 return true; 4317 }; 4318 4319 SDValue N0 = N->getOperand(0); 4320 SDValue N1 = N->getOperand(1); 4321 4322 // Collect the shifts/magic values from each element. 4323 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4324 return SDValue(); 4325 4326 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4327 if (VT.isVector()) { 4328 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4329 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4330 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4331 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4332 } else { 4333 PreShift = PreShifts[0]; 4334 MagicFactor = MagicFactors[0]; 4335 PostShift = PostShifts[0]; 4336 } 4337 4338 SDValue Q = N0; 4339 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4340 Created.push_back(Q.getNode()); 4341 4342 // FIXME: We should support doing a MUL in a wider type. 4343 auto GetMULHU = [&](SDValue X, SDValue Y) { 4344 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4345 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4346 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4347 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4348 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4349 SDValue LoHi = 4350 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4351 return SDValue(LoHi.getNode(), 1); 4352 } 4353 return SDValue(); // No mulhu or equivalent 4354 }; 4355 4356 // Multiply the numerator (operand 0) by the magic value. 4357 Q = GetMULHU(Q, MagicFactor); 4358 if (!Q) 4359 return SDValue(); 4360 4361 Created.push_back(Q.getNode()); 4362 4363 if (UseNPQ) { 4364 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4365 Created.push_back(NPQ.getNode()); 4366 4367 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4368 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4369 if (VT.isVector()) 4370 NPQ = GetMULHU(NPQ, NPQFactor); 4371 else 4372 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4373 4374 Created.push_back(NPQ.getNode()); 4375 4376 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4377 Created.push_back(Q.getNode()); 4378 } 4379 4380 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4381 Created.push_back(Q.getNode()); 4382 4383 SDValue One = DAG.getConstant(1, dl, VT); 4384 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4385 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4386 } 4387 4388 bool TargetLowering:: 4389 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4390 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4391 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4392 "be a constant integer"); 4393 return true; 4394 } 4395 4396 return false; 4397 } 4398 4399 //===----------------------------------------------------------------------===// 4400 // Legalization Utilities 4401 //===----------------------------------------------------------------------===// 4402 4403 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4404 SDValue LHS, SDValue RHS, 4405 SmallVectorImpl<SDValue> &Result, 4406 EVT HiLoVT, SelectionDAG &DAG, 4407 MulExpansionKind Kind, SDValue LL, 4408 SDValue LH, SDValue RL, SDValue RH) const { 4409 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4410 Opcode == ISD::SMUL_LOHI); 4411 4412 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4413 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4414 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4415 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4416 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4417 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4418 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4419 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4420 4421 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4422 return false; 4423 4424 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4425 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4426 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4427 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4428 4429 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4430 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4431 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4432 4433 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4434 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4435 bool Signed) -> bool { 4436 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4437 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4438 Hi = SDValue(Lo.getNode(), 1); 4439 return true; 4440 } 4441 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4442 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4443 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4444 return true; 4445 } 4446 return false; 4447 }; 4448 4449 SDValue Lo, Hi; 4450 4451 if (!LL.getNode() && !RL.getNode() && 4452 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4453 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4454 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4455 } 4456 4457 if (!LL.getNode()) 4458 return false; 4459 4460 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4461 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4462 DAG.MaskedValueIsZero(RHS, HighMask)) { 4463 // The inputs are both zero-extended. 4464 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4465 Result.push_back(Lo); 4466 Result.push_back(Hi); 4467 if (Opcode != ISD::MUL) { 4468 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4469 Result.push_back(Zero); 4470 Result.push_back(Zero); 4471 } 4472 return true; 4473 } 4474 } 4475 4476 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4477 RHSSB > InnerBitSize) { 4478 // The input values are both sign-extended. 4479 // TODO non-MUL case? 4480 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4481 Result.push_back(Lo); 4482 Result.push_back(Hi); 4483 return true; 4484 } 4485 } 4486 4487 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4488 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4489 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4490 // FIXME getShiftAmountTy does not always return a sensible result when VT 4491 // is an illegal type, and so the type may be too small to fit the shift 4492 // amount. Override it with i32. The shift will have to be legalized. 4493 ShiftAmountTy = MVT::i32; 4494 } 4495 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4496 4497 if (!LH.getNode() && !RH.getNode() && 4498 isOperationLegalOrCustom(ISD::SRL, VT) && 4499 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4500 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4501 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4502 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4503 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4504 } 4505 4506 if (!LH.getNode()) 4507 return false; 4508 4509 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4510 return false; 4511 4512 Result.push_back(Lo); 4513 4514 if (Opcode == ISD::MUL) { 4515 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4516 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4517 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4518 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4519 Result.push_back(Hi); 4520 return true; 4521 } 4522 4523 // Compute the full width result. 4524 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4525 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4526 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4527 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4528 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4529 }; 4530 4531 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4532 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4533 return false; 4534 4535 // This is effectively the add part of a multiply-add of half-sized operands, 4536 // so it cannot overflow. 4537 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4538 4539 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4540 return false; 4541 4542 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4543 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4544 4545 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4546 isOperationLegalOrCustom(ISD::ADDE, VT)); 4547 if (UseGlue) 4548 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4549 Merge(Lo, Hi)); 4550 else 4551 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4552 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4553 4554 SDValue Carry = Next.getValue(1); 4555 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4556 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4557 4558 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4559 return false; 4560 4561 if (UseGlue) 4562 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4563 Carry); 4564 else 4565 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4566 Zero, Carry); 4567 4568 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4569 4570 if (Opcode == ISD::SMUL_LOHI) { 4571 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4572 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4573 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4574 4575 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4576 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4577 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4578 } 4579 4580 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4581 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4582 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4583 return true; 4584 } 4585 4586 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4587 SelectionDAG &DAG, MulExpansionKind Kind, 4588 SDValue LL, SDValue LH, SDValue RL, 4589 SDValue RH) const { 4590 SmallVector<SDValue, 2> Result; 4591 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4592 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4593 DAG, Kind, LL, LH, RL, RH); 4594 if (Ok) { 4595 assert(Result.size() == 2); 4596 Lo = Result[0]; 4597 Hi = Result[1]; 4598 } 4599 return Ok; 4600 } 4601 4602 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4603 SelectionDAG &DAG) const { 4604 EVT VT = Node->getValueType(0); 4605 4606 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4607 !isOperationLegalOrCustom(ISD::SRL, VT) || 4608 !isOperationLegalOrCustom(ISD::SUB, VT) || 4609 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4610 return false; 4611 4612 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4613 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4614 SDValue X = Node->getOperand(0); 4615 SDValue Y = Node->getOperand(1); 4616 SDValue Z = Node->getOperand(2); 4617 4618 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4619 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4620 SDLoc DL(SDValue(Node, 0)); 4621 4622 EVT ShVT = Z.getValueType(); 4623 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4624 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4625 4626 SDValue ShAmt; 4627 if (isPowerOf2_32(EltSizeInBits)) { 4628 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4629 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4630 } else { 4631 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4632 } 4633 4634 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4635 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4636 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4637 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4638 4639 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4640 // and that is undefined. We must compare and select to avoid UB. 4641 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4642 4643 // For fshl, 0-shift returns the 1st arg (X). 4644 // For fshr, 0-shift returns the 2nd arg (Y). 4645 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4646 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4647 return true; 4648 } 4649 4650 // TODO: Merge with expandFunnelShift. 4651 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4652 SelectionDAG &DAG) const { 4653 EVT VT = Node->getValueType(0); 4654 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4655 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4656 SDValue Op0 = Node->getOperand(0); 4657 SDValue Op1 = Node->getOperand(1); 4658 SDLoc DL(SDValue(Node, 0)); 4659 4660 EVT ShVT = Op1.getValueType(); 4661 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4662 4663 // If a rotate in the other direction is legal, use it. 4664 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4665 if (isOperationLegal(RevRot, VT)) { 4666 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4667 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4668 return true; 4669 } 4670 4671 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4672 !isOperationLegalOrCustom(ISD::SRL, VT) || 4673 !isOperationLegalOrCustom(ISD::SUB, VT) || 4674 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4675 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4676 return false; 4677 4678 // Otherwise, 4679 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4680 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4681 // 4682 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4683 "Expecting the type bitwidth to be a power of 2"); 4684 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4685 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4686 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4687 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4688 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4689 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4690 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4691 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4692 return true; 4693 } 4694 4695 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4696 SelectionDAG &DAG) const { 4697 SDValue Src = Node->getOperand(0); 4698 EVT SrcVT = Src.getValueType(); 4699 EVT DstVT = Node->getValueType(0); 4700 SDLoc dl(SDValue(Node, 0)); 4701 4702 // FIXME: Only f32 to i64 conversions are supported. 4703 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4704 return false; 4705 4706 // Expand f32 -> i64 conversion 4707 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4708 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4709 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4710 EVT IntVT = SrcVT.changeTypeToInteger(); 4711 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4712 4713 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4714 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4715 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4716 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4717 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4718 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4719 4720 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4721 4722 SDValue ExponentBits = DAG.getNode( 4723 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4724 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4725 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4726 4727 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4728 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4729 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4730 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4731 4732 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4733 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4734 DAG.getConstant(0x00800000, dl, IntVT)); 4735 4736 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4737 4738 R = DAG.getSelectCC( 4739 dl, Exponent, ExponentLoBit, 4740 DAG.getNode(ISD::SHL, dl, DstVT, R, 4741 DAG.getZExtOrTrunc( 4742 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4743 dl, IntShVT)), 4744 DAG.getNode(ISD::SRL, dl, DstVT, R, 4745 DAG.getZExtOrTrunc( 4746 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4747 dl, IntShVT)), 4748 ISD::SETGT); 4749 4750 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4751 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4752 4753 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4754 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4755 return true; 4756 } 4757 4758 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4759 SelectionDAG &DAG) const { 4760 SDLoc dl(SDValue(Node, 0)); 4761 SDValue Src = Node->getOperand(0); 4762 4763 EVT SrcVT = Src.getValueType(); 4764 EVT DstVT = Node->getValueType(0); 4765 EVT SetCCVT = 4766 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4767 4768 // Only expand vector types if we have the appropriate vector bit operations. 4769 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4770 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4771 return false; 4772 4773 // If the maximum float value is smaller then the signed integer range, 4774 // the destination signmask can't be represented by the float, so we can 4775 // just use FP_TO_SINT directly. 4776 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4777 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4778 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4779 if (APFloat::opOverflow & 4780 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4781 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4782 return true; 4783 } 4784 4785 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4786 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4787 4788 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4789 if (Strict) { 4790 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4791 // signmask then offset (the result of which should be fully representable). 4792 // Sel = Src < 0x8000000000000000 4793 // Val = select Sel, Src, Src - 0x8000000000000000 4794 // Ofs = select Sel, 0, 0x8000000000000000 4795 // Result = fp_to_sint(Val) ^ Ofs 4796 4797 // TODO: Should any fast-math-flags be set for the FSUB? 4798 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4799 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4800 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4801 DAG.getConstant(SignMask, dl, DstVT)); 4802 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4803 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4804 } else { 4805 // Expand based on maximum range of FP_TO_SINT: 4806 // True = fp_to_sint(Src) 4807 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4808 // Result = select (Src < 0x8000000000000000), True, False 4809 4810 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4811 // TODO: Should any fast-math-flags be set for the FSUB? 4812 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4813 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4814 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4815 DAG.getConstant(SignMask, dl, DstVT)); 4816 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4817 } 4818 return true; 4819 } 4820 4821 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4822 SelectionDAG &DAG) const { 4823 SDValue Src = Node->getOperand(0); 4824 EVT SrcVT = Src.getValueType(); 4825 EVT DstVT = Node->getValueType(0); 4826 4827 if (SrcVT.getScalarType() != MVT::i64) 4828 return false; 4829 4830 SDLoc dl(SDValue(Node, 0)); 4831 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4832 4833 if (DstVT.getScalarType() == MVT::f32) { 4834 // Only expand vector types if we have the appropriate vector bit 4835 // operations. 4836 if (SrcVT.isVector() && 4837 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4838 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4839 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4840 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4841 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4842 return false; 4843 4844 // For unsigned conversions, convert them to signed conversions using the 4845 // algorithm from the x86_64 __floatundidf in compiler_rt. 4846 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4847 4848 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4849 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4850 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4851 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4852 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4853 4854 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4855 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4856 4857 // TODO: This really should be implemented using a branch rather than a 4858 // select. We happen to get lucky and machinesink does the right 4859 // thing most of the time. This would be a good candidate for a 4860 // pseudo-op, or, even better, for whole-function isel. 4861 EVT SetCCVT = 4862 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4863 4864 SDValue SignBitTest = DAG.getSetCC( 4865 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4866 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4867 return true; 4868 } 4869 4870 if (DstVT.getScalarType() == MVT::f64) { 4871 // Only expand vector types if we have the appropriate vector bit 4872 // operations. 4873 if (SrcVT.isVector() && 4874 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4875 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4876 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4877 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4878 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4879 return false; 4880 4881 // Implementation of unsigned i64 to f64 following the algorithm in 4882 // __floatundidf in compiler_rt. This implementation has the advantage 4883 // of performing rounding correctly, both in the default rounding mode 4884 // and in all alternate rounding modes. 4885 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4886 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4887 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4888 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4889 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4890 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4891 4892 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4893 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4894 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4895 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4896 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4897 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4898 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4899 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4900 return true; 4901 } 4902 4903 return false; 4904 } 4905 4906 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4907 SelectionDAG &DAG) const { 4908 SDLoc dl(Node); 4909 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4910 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4911 EVT VT = Node->getValueType(0); 4912 if (isOperationLegalOrCustom(NewOp, VT)) { 4913 SDValue Quiet0 = Node->getOperand(0); 4914 SDValue Quiet1 = Node->getOperand(1); 4915 4916 if (!Node->getFlags().hasNoNaNs()) { 4917 // Insert canonicalizes if it's possible we need to quiet to get correct 4918 // sNaN behavior. 4919 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4920 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4921 Node->getFlags()); 4922 } 4923 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4924 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4925 Node->getFlags()); 4926 } 4927 } 4928 4929 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4930 } 4931 4932 return SDValue(); 4933 } 4934 4935 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4936 SelectionDAG &DAG) const { 4937 SDLoc dl(Node); 4938 EVT VT = Node->getValueType(0); 4939 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4940 SDValue Op = Node->getOperand(0); 4941 unsigned Len = VT.getScalarSizeInBits(); 4942 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4943 4944 // TODO: Add support for irregular type lengths. 4945 if (!(Len <= 128 && Len % 8 == 0)) 4946 return false; 4947 4948 // Only expand vector types if we have the appropriate vector bit operations. 4949 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4950 !isOperationLegalOrCustom(ISD::SUB, VT) || 4951 !isOperationLegalOrCustom(ISD::SRL, VT) || 4952 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4953 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4954 return false; 4955 4956 // This is the "best" algorithm from 4957 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4958 SDValue Mask55 = 4959 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4960 SDValue Mask33 = 4961 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4962 SDValue Mask0F = 4963 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4964 SDValue Mask01 = 4965 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4966 4967 // v = v - ((v >> 1) & 0x55555555...) 4968 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4969 DAG.getNode(ISD::AND, dl, VT, 4970 DAG.getNode(ISD::SRL, dl, VT, Op, 4971 DAG.getConstant(1, dl, ShVT)), 4972 Mask55)); 4973 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4974 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4975 DAG.getNode(ISD::AND, dl, VT, 4976 DAG.getNode(ISD::SRL, dl, VT, Op, 4977 DAG.getConstant(2, dl, ShVT)), 4978 Mask33)); 4979 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4980 Op = DAG.getNode(ISD::AND, dl, VT, 4981 DAG.getNode(ISD::ADD, dl, VT, Op, 4982 DAG.getNode(ISD::SRL, dl, VT, Op, 4983 DAG.getConstant(4, dl, ShVT))), 4984 Mask0F); 4985 // v = (v * 0x01010101...) >> (Len - 8) 4986 if (Len > 8) 4987 Op = 4988 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4989 DAG.getConstant(Len - 8, dl, ShVT)); 4990 4991 Result = Op; 4992 return true; 4993 } 4994 4995 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4996 SelectionDAG &DAG) const { 4997 SDLoc dl(Node); 4998 EVT VT = Node->getValueType(0); 4999 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5000 SDValue Op = Node->getOperand(0); 5001 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5002 5003 // If the non-ZERO_UNDEF version is supported we can use that instead. 5004 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 5005 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5006 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5007 return true; 5008 } 5009 5010 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5011 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5012 EVT SetCCVT = 5013 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5014 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5015 SDValue Zero = DAG.getConstant(0, dl, VT); 5016 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5017 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5018 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5019 return true; 5020 } 5021 5022 // Only expand vector types if we have the appropriate vector bit operations. 5023 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5024 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 5025 !isOperationLegalOrCustom(ISD::SRL, VT) || 5026 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5027 return false; 5028 5029 // for now, we do this: 5030 // x = x | (x >> 1); 5031 // x = x | (x >> 2); 5032 // ... 5033 // x = x | (x >>16); 5034 // x = x | (x >>32); // for 64-bit input 5035 // return popcount(~x); 5036 // 5037 // Ref: "Hacker's Delight" by Henry Warren 5038 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 5039 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 5040 Op = DAG.getNode(ISD::OR, dl, VT, Op, 5041 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 5042 } 5043 Op = DAG.getNOT(dl, Op, VT); 5044 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 5045 return true; 5046 } 5047 5048 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 5049 SelectionDAG &DAG) const { 5050 SDLoc dl(Node); 5051 EVT VT = Node->getValueType(0); 5052 SDValue Op = Node->getOperand(0); 5053 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5054 5055 // If the non-ZERO_UNDEF version is supported we can use that instead. 5056 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 5057 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 5058 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 5059 return true; 5060 } 5061 5062 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5063 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 5064 EVT SetCCVT = 5065 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5066 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 5067 SDValue Zero = DAG.getConstant(0, dl, VT); 5068 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5069 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5070 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 5071 return true; 5072 } 5073 5074 // Only expand vector types if we have the appropriate vector bit operations. 5075 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5076 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 5077 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 5078 !isOperationLegalOrCustom(ISD::SUB, VT) || 5079 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 5080 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5081 return false; 5082 5083 // for now, we use: { return popcount(~x & (x - 1)); } 5084 // unless the target has ctlz but not ctpop, in which case we use: 5085 // { return 32 - nlz(~x & (x-1)); } 5086 // Ref: "Hacker's Delight" by Henry Warren 5087 SDValue Tmp = DAG.getNode( 5088 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 5089 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 5090 5091 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 5092 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 5093 Result = 5094 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 5095 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 5096 return true; 5097 } 5098 5099 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 5100 return true; 5101 } 5102 5103 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 5104 SelectionDAG &DAG) const { 5105 SDLoc dl(N); 5106 EVT VT = N->getValueType(0); 5107 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5108 SDValue Op = N->getOperand(0); 5109 5110 // Only expand vector types if we have the appropriate vector operations. 5111 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 5112 !isOperationLegalOrCustom(ISD::ADD, VT) || 5113 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 5114 return false; 5115 5116 SDValue Shift = 5117 DAG.getNode(ISD::SRA, dl, VT, Op, 5118 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 5119 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 5120 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 5121 return true; 5122 } 5123 5124 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 5125 SelectionDAG &DAG) const { 5126 SDLoc SL(LD); 5127 SDValue Chain = LD->getChain(); 5128 SDValue BasePTR = LD->getBasePtr(); 5129 EVT SrcVT = LD->getMemoryVT(); 5130 ISD::LoadExtType ExtType = LD->getExtensionType(); 5131 5132 unsigned NumElem = SrcVT.getVectorNumElements(); 5133 5134 EVT SrcEltVT = SrcVT.getScalarType(); 5135 EVT DstEltVT = LD->getValueType(0).getScalarType(); 5136 5137 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 5138 assert(SrcEltVT.isByteSized()); 5139 5140 SmallVector<SDValue, 8> Vals; 5141 SmallVector<SDValue, 8> LoadChains; 5142 5143 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5144 SDValue ScalarLoad = 5145 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 5146 LD->getPointerInfo().getWithOffset(Idx * Stride), 5147 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 5148 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5149 5150 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 5151 5152 Vals.push_back(ScalarLoad.getValue(0)); 5153 LoadChains.push_back(ScalarLoad.getValue(1)); 5154 } 5155 5156 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 5157 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 5158 5159 return DAG.getMergeValues({Value, NewChain}, SL); 5160 } 5161 5162 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 5163 SelectionDAG &DAG) const { 5164 SDLoc SL(ST); 5165 5166 SDValue Chain = ST->getChain(); 5167 SDValue BasePtr = ST->getBasePtr(); 5168 SDValue Value = ST->getValue(); 5169 EVT StVT = ST->getMemoryVT(); 5170 5171 // The type of the data we want to save 5172 EVT RegVT = Value.getValueType(); 5173 EVT RegSclVT = RegVT.getScalarType(); 5174 5175 // The type of data as saved in memory. 5176 EVT MemSclVT = StVT.getScalarType(); 5177 5178 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 5179 unsigned NumElem = StVT.getVectorNumElements(); 5180 5181 // A vector must always be stored in memory as-is, i.e. without any padding 5182 // between the elements, since various code depend on it, e.g. in the 5183 // handling of a bitcast of a vector type to int, which may be done with a 5184 // vector store followed by an integer load. A vector that does not have 5185 // elements that are byte-sized must therefore be stored as an integer 5186 // built out of the extracted vector elements. 5187 if (!MemSclVT.isByteSized()) { 5188 unsigned NumBits = StVT.getSizeInBits(); 5189 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 5190 5191 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 5192 5193 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5194 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5195 DAG.getConstant(Idx, SL, IdxVT)); 5196 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 5197 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 5198 unsigned ShiftIntoIdx = 5199 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 5200 SDValue ShiftAmount = 5201 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 5202 SDValue ShiftedElt = 5203 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 5204 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 5205 } 5206 5207 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 5208 ST->getAlignment(), ST->getMemOperand()->getFlags(), 5209 ST->getAAInfo()); 5210 } 5211 5212 // Store Stride in bytes 5213 unsigned Stride = MemSclVT.getSizeInBits() / 8; 5214 assert(Stride && "Zero stride!"); 5215 // Extract each of the elements from the original vector and save them into 5216 // memory individually. 5217 SmallVector<SDValue, 8> Stores; 5218 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 5219 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 5220 DAG.getConstant(Idx, SL, IdxVT)); 5221 5222 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 5223 5224 // This scalar TruncStore may be illegal, but we legalize it later. 5225 SDValue Store = DAG.getTruncStore( 5226 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 5227 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 5228 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5229 5230 Stores.push_back(Store); 5231 } 5232 5233 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 5234 } 5235 5236 std::pair<SDValue, SDValue> 5237 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 5238 assert(LD->getAddressingMode() == ISD::UNINDEXED && 5239 "unaligned indexed loads not implemented!"); 5240 SDValue Chain = LD->getChain(); 5241 SDValue Ptr = LD->getBasePtr(); 5242 EVT VT = LD->getValueType(0); 5243 EVT LoadedVT = LD->getMemoryVT(); 5244 SDLoc dl(LD); 5245 auto &MF = DAG.getMachineFunction(); 5246 5247 if (VT.isFloatingPoint() || VT.isVector()) { 5248 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 5249 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 5250 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 5251 LoadedVT.isVector()) { 5252 // Scalarize the load and let the individual components be handled. 5253 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 5254 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 5255 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 5256 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 5257 } 5258 5259 // Expand to a (misaligned) integer load of the same size, 5260 // then bitconvert to floating point or vector. 5261 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 5262 LD->getMemOperand()); 5263 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 5264 if (LoadedVT != VT) 5265 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 5266 ISD::ANY_EXTEND, dl, VT, Result); 5267 5268 return std::make_pair(Result, newLoad.getValue(1)); 5269 } 5270 5271 // Copy the value to a (aligned) stack slot using (unaligned) integer 5272 // loads and stores, then do a (aligned) load from the stack slot. 5273 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5274 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5275 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5276 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5277 5278 // Make sure the stack slot is also aligned for the register type. 5279 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5280 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5281 SmallVector<SDValue, 8> Stores; 5282 SDValue StackPtr = StackBase; 5283 unsigned Offset = 0; 5284 5285 EVT PtrVT = Ptr.getValueType(); 5286 EVT StackPtrVT = StackPtr.getValueType(); 5287 5288 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5289 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5290 5291 // Do all but one copies using the full register width. 5292 for (unsigned i = 1; i < NumRegs; i++) { 5293 // Load one integer register's worth from the original location. 5294 SDValue Load = DAG.getLoad( 5295 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5296 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5297 LD->getAAInfo()); 5298 // Follow the load with a store to the stack slot. Remember the store. 5299 Stores.push_back(DAG.getStore( 5300 Load.getValue(1), dl, Load, StackPtr, 5301 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5302 // Increment the pointers. 5303 Offset += RegBytes; 5304 5305 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5306 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5307 } 5308 5309 // The last copy may be partial. Do an extending load. 5310 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5311 8 * (LoadedBytes - Offset)); 5312 SDValue Load = 5313 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5314 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5315 MinAlign(LD->getAlignment(), Offset), 5316 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5317 // Follow the load with a store to the stack slot. Remember the store. 5318 // On big-endian machines this requires a truncating store to ensure 5319 // that the bits end up in the right place. 5320 Stores.push_back(DAG.getTruncStore( 5321 Load.getValue(1), dl, Load, StackPtr, 5322 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5323 5324 // The order of the stores doesn't matter - say it with a TokenFactor. 5325 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5326 5327 // Finally, perform the original load only redirected to the stack slot. 5328 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5329 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5330 LoadedVT); 5331 5332 // Callers expect a MERGE_VALUES node. 5333 return std::make_pair(Load, TF); 5334 } 5335 5336 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5337 "Unaligned load of unsupported type."); 5338 5339 // Compute the new VT that is half the size of the old one. This is an 5340 // integer MVT. 5341 unsigned NumBits = LoadedVT.getSizeInBits(); 5342 EVT NewLoadedVT; 5343 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5344 NumBits >>= 1; 5345 5346 unsigned Alignment = LD->getAlignment(); 5347 unsigned IncrementSize = NumBits / 8; 5348 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5349 5350 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5351 if (HiExtType == ISD::NON_EXTLOAD) 5352 HiExtType = ISD::ZEXTLOAD; 5353 5354 // Load the value in two parts 5355 SDValue Lo, Hi; 5356 if (DAG.getDataLayout().isLittleEndian()) { 5357 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5358 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5359 LD->getAAInfo()); 5360 5361 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5362 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5363 LD->getPointerInfo().getWithOffset(IncrementSize), 5364 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5365 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5366 } else { 5367 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5368 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5369 LD->getAAInfo()); 5370 5371 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5372 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5373 LD->getPointerInfo().getWithOffset(IncrementSize), 5374 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5375 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5376 } 5377 5378 // aggregate the two parts 5379 SDValue ShiftAmount = 5380 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5381 DAG.getDataLayout())); 5382 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5383 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5384 5385 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5386 Hi.getValue(1)); 5387 5388 return std::make_pair(Result, TF); 5389 } 5390 5391 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5392 SelectionDAG &DAG) const { 5393 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5394 "unaligned indexed stores not implemented!"); 5395 SDValue Chain = ST->getChain(); 5396 SDValue Ptr = ST->getBasePtr(); 5397 SDValue Val = ST->getValue(); 5398 EVT VT = Val.getValueType(); 5399 int Alignment = ST->getAlignment(); 5400 auto &MF = DAG.getMachineFunction(); 5401 EVT StoreMemVT = ST->getMemoryVT(); 5402 5403 SDLoc dl(ST); 5404 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 5405 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5406 if (isTypeLegal(intVT)) { 5407 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5408 StoreMemVT.isVector()) { 5409 // Scalarize the store and let the individual components be handled. 5410 SDValue Result = scalarizeVectorStore(ST, DAG); 5411 return Result; 5412 } 5413 // Expand to a bitconvert of the value to the integer type of the 5414 // same size, then a (misaligned) int store. 5415 // FIXME: Does not handle truncating floating point stores! 5416 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5417 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5418 Alignment, ST->getMemOperand()->getFlags()); 5419 return Result; 5420 } 5421 // Do a (aligned) store to a stack slot, then copy from the stack slot 5422 // to the final destination using (unaligned) integer loads and stores. 5423 MVT RegVT = getRegisterType( 5424 *DAG.getContext(), 5425 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 5426 EVT PtrVT = Ptr.getValueType(); 5427 unsigned StoredBytes = StoreMemVT.getStoreSize(); 5428 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5429 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5430 5431 // Make sure the stack slot is also aligned for the register type. 5432 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 5433 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5434 5435 // Perform the original store, only redirected to the stack slot. 5436 SDValue Store = DAG.getTruncStore( 5437 Chain, dl, Val, StackPtr, 5438 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 5439 5440 EVT StackPtrVT = StackPtr.getValueType(); 5441 5442 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5443 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5444 SmallVector<SDValue, 8> Stores; 5445 unsigned Offset = 0; 5446 5447 // Do all but one copies using the full register width. 5448 for (unsigned i = 1; i < NumRegs; i++) { 5449 // Load one integer register's worth from the stack slot. 5450 SDValue Load = DAG.getLoad( 5451 RegVT, dl, Store, StackPtr, 5452 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5453 // Store it to the final location. Remember the store. 5454 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5455 ST->getPointerInfo().getWithOffset(Offset), 5456 MinAlign(ST->getAlignment(), Offset), 5457 ST->getMemOperand()->getFlags())); 5458 // Increment the pointers. 5459 Offset += RegBytes; 5460 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5461 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5462 } 5463 5464 // The last store may be partial. Do a truncating store. On big-endian 5465 // machines this requires an extending load from the stack slot to ensure 5466 // that the bits are in the right place. 5467 EVT LoadMemVT = 5468 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 5469 5470 // Load from the stack slot. 5471 SDValue Load = DAG.getExtLoad( 5472 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5473 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 5474 5475 Stores.push_back( 5476 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5477 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 5478 MinAlign(ST->getAlignment(), Offset), 5479 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5480 // The order of the stores doesn't matter - say it with a TokenFactor. 5481 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5482 return Result; 5483 } 5484 5485 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 5486 "Unaligned store of unknown type."); 5487 // Get the half-size VT 5488 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 5489 int NumBits = NewStoredVT.getSizeInBits(); 5490 int IncrementSize = NumBits / 8; 5491 5492 // Divide the stored value in two parts. 5493 SDValue ShiftAmount = DAG.getConstant( 5494 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 5495 SDValue Lo = Val; 5496 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5497 5498 // Store the two parts 5499 SDValue Store1, Store2; 5500 Store1 = DAG.getTruncStore(Chain, dl, 5501 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5502 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5503 ST->getMemOperand()->getFlags()); 5504 5505 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5506 Alignment = MinAlign(Alignment, IncrementSize); 5507 Store2 = DAG.getTruncStore( 5508 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5509 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5510 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5511 5512 SDValue Result = 5513 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5514 return Result; 5515 } 5516 5517 SDValue 5518 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5519 const SDLoc &DL, EVT DataVT, 5520 SelectionDAG &DAG, 5521 bool IsCompressedMemory) const { 5522 SDValue Increment; 5523 EVT AddrVT = Addr.getValueType(); 5524 EVT MaskVT = Mask.getValueType(); 5525 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5526 "Incompatible types of Data and Mask"); 5527 if (IsCompressedMemory) { 5528 // Incrementing the pointer according to number of '1's in the mask. 5529 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5530 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5531 if (MaskIntVT.getSizeInBits() < 32) { 5532 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5533 MaskIntVT = MVT::i32; 5534 } 5535 5536 // Count '1's with POPCNT. 5537 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5538 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5539 // Scale is an element size in bytes. 5540 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5541 AddrVT); 5542 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5543 } else 5544 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5545 5546 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5547 } 5548 5549 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5550 SDValue Idx, 5551 EVT VecVT, 5552 const SDLoc &dl) { 5553 if (isa<ConstantSDNode>(Idx)) 5554 return Idx; 5555 5556 EVT IdxVT = Idx.getValueType(); 5557 unsigned NElts = VecVT.getVectorNumElements(); 5558 if (isPowerOf2_32(NElts)) { 5559 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5560 Log2_32(NElts)); 5561 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5562 DAG.getConstant(Imm, dl, IdxVT)); 5563 } 5564 5565 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5566 DAG.getConstant(NElts - 1, dl, IdxVT)); 5567 } 5568 5569 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5570 SDValue VecPtr, EVT VecVT, 5571 SDValue Index) const { 5572 SDLoc dl(Index); 5573 // Make sure the index type is big enough to compute in. 5574 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5575 5576 EVT EltVT = VecVT.getVectorElementType(); 5577 5578 // Calculate the element offset and add it to the pointer. 5579 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5580 assert(EltSize * 8 == EltVT.getSizeInBits() && 5581 "Converting bits to bytes lost precision"); 5582 5583 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5584 5585 EVT IdxVT = Index.getValueType(); 5586 5587 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5588 DAG.getConstant(EltSize, dl, IdxVT)); 5589 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5590 } 5591 5592 //===----------------------------------------------------------------------===// 5593 // Implementation of Emulated TLS Model 5594 //===----------------------------------------------------------------------===// 5595 5596 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5597 SelectionDAG &DAG) const { 5598 // Access to address of TLS varialbe xyz is lowered to a function call: 5599 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5600 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5601 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5602 SDLoc dl(GA); 5603 5604 ArgListTy Args; 5605 ArgListEntry Entry; 5606 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5607 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5608 StringRef EmuTlsVarName(NameString); 5609 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5610 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5611 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5612 Entry.Ty = VoidPtrType; 5613 Args.push_back(Entry); 5614 5615 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5616 5617 TargetLowering::CallLoweringInfo CLI(DAG); 5618 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5619 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5620 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5621 5622 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5623 // At last for X86 targets, maybe good for other targets too? 5624 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5625 MFI.setAdjustsStack(true); // Is this only for X86 target? 5626 MFI.setHasCalls(true); 5627 5628 assert((GA->getOffset() == 0) && 5629 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5630 return CallResult.first; 5631 } 5632 5633 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5634 SelectionDAG &DAG) const { 5635 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5636 if (!isCtlzFast()) 5637 return SDValue(); 5638 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5639 SDLoc dl(Op); 5640 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5641 if (C->isNullValue() && CC == ISD::SETEQ) { 5642 EVT VT = Op.getOperand(0).getValueType(); 5643 SDValue Zext = Op.getOperand(0); 5644 if (VT.bitsLT(MVT::i32)) { 5645 VT = MVT::i32; 5646 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5647 } 5648 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5649 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5650 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5651 DAG.getConstant(Log2b, dl, MVT::i32)); 5652 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5653 } 5654 } 5655 return SDValue(); 5656 } 5657 5658 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5659 unsigned Opcode = Node->getOpcode(); 5660 SDValue LHS = Node->getOperand(0); 5661 SDValue RHS = Node->getOperand(1); 5662 EVT VT = LHS.getValueType(); 5663 SDLoc dl(Node); 5664 5665 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5666 assert(VT.isInteger() && "Expected operands to be integers"); 5667 5668 // usub.sat(a, b) -> umax(a, b) - b 5669 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5670 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5671 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5672 } 5673 5674 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5675 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5676 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5677 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5678 } 5679 5680 unsigned OverflowOp; 5681 switch (Opcode) { 5682 case ISD::SADDSAT: 5683 OverflowOp = ISD::SADDO; 5684 break; 5685 case ISD::UADDSAT: 5686 OverflowOp = ISD::UADDO; 5687 break; 5688 case ISD::SSUBSAT: 5689 OverflowOp = ISD::SSUBO; 5690 break; 5691 case ISD::USUBSAT: 5692 OverflowOp = ISD::USUBO; 5693 break; 5694 default: 5695 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5696 "addition or subtraction node."); 5697 } 5698 5699 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5700 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5701 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5702 LHS, RHS); 5703 SDValue SumDiff = Result.getValue(0); 5704 SDValue Overflow = Result.getValue(1); 5705 SDValue Zero = DAG.getConstant(0, dl, VT); 5706 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5707 5708 if (Opcode == ISD::UADDSAT) { 5709 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5710 // (LHS + RHS) | OverflowMask 5711 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5712 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 5713 } 5714 // Overflow ? 0xffff.... : (LHS + RHS) 5715 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5716 } else if (Opcode == ISD::USUBSAT) { 5717 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 5718 // (LHS - RHS) & ~OverflowMask 5719 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 5720 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 5721 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 5722 } 5723 // Overflow ? 0 : (LHS - RHS) 5724 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5725 } else { 5726 // SatMax -> Overflow && SumDiff < 0 5727 // SatMin -> Overflow && SumDiff >= 0 5728 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5729 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5730 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5731 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5732 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5733 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5734 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5735 } 5736 } 5737 5738 SDValue 5739 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5740 assert((Node->getOpcode() == ISD::SMULFIX || 5741 Node->getOpcode() == ISD::UMULFIX || 5742 Node->getOpcode() == ISD::SMULFIXSAT) && 5743 "Expected a fixed point multiplication opcode"); 5744 5745 SDLoc dl(Node); 5746 SDValue LHS = Node->getOperand(0); 5747 SDValue RHS = Node->getOperand(1); 5748 EVT VT = LHS.getValueType(); 5749 unsigned Scale = Node->getConstantOperandVal(2); 5750 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT; 5751 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5752 unsigned VTSize = VT.getScalarSizeInBits(); 5753 5754 if (!Scale) { 5755 // [us]mul.fix(a, b, 0) -> mul(a, b) 5756 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) { 5757 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5758 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) { 5759 SDValue Result = 5760 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 5761 SDValue Product = Result.getValue(0); 5762 SDValue Overflow = Result.getValue(1); 5763 SDValue Zero = DAG.getConstant(0, dl, VT); 5764 5765 APInt MinVal = APInt::getSignedMinValue(VTSize); 5766 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5767 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5768 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5769 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 5770 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 5771 return DAG.getSelect(dl, VT, Overflow, Result, Product); 5772 } 5773 } 5774 5775 bool Signed = 5776 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT; 5777 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5778 "Expected scale to be less than the number of bits if signed or at " 5779 "most the number of bits if unsigned."); 5780 assert(LHS.getValueType() == RHS.getValueType() && 5781 "Expected both operands to be the same type"); 5782 5783 // Get the upper and lower bits of the result. 5784 SDValue Lo, Hi; 5785 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5786 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5787 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5788 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5789 Lo = Result.getValue(0); 5790 Hi = Result.getValue(1); 5791 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5792 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5793 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5794 } else if (VT.isVector()) { 5795 return SDValue(); 5796 } else { 5797 report_fatal_error("Unable to expand fixed point multiplication."); 5798 } 5799 5800 if (Scale == VTSize) 5801 // Result is just the top half since we'd be shifting by the width of the 5802 // operand. 5803 return Hi; 5804 5805 // The result will need to be shifted right by the scale since both operands 5806 // are scaled. The result is given to us in 2 halves, so we only want part of 5807 // both in the result. 5808 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5809 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5810 DAG.getConstant(Scale, dl, ShiftTy)); 5811 if (!Saturating) 5812 return Result; 5813 5814 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign 5815 SDValue HiMask = 5816 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT); 5817 SDValue LoMask = DAG.getConstant( 5818 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT); 5819 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 5820 APInt MinVal = APInt::getSignedMinValue(VTSize); 5821 5822 Result = DAG.getSelectCC(dl, Hi, LoMask, 5823 DAG.getConstant(MaxVal, dl, VT), Result, 5824 ISD::SETGT); 5825 return DAG.getSelectCC(dl, Hi, HiMask, 5826 DAG.getConstant(MinVal, dl, VT), Result, 5827 ISD::SETLT); 5828 } 5829 5830 void TargetLowering::expandUADDSUBO( 5831 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5832 SDLoc dl(Node); 5833 SDValue LHS = Node->getOperand(0); 5834 SDValue RHS = Node->getOperand(1); 5835 bool IsAdd = Node->getOpcode() == ISD::UADDO; 5836 5837 // If ADD/SUBCARRY is legal, use that instead. 5838 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 5839 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 5840 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 5841 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 5842 { LHS, RHS, CarryIn }); 5843 Result = SDValue(NodeCarry.getNode(), 0); 5844 Overflow = SDValue(NodeCarry.getNode(), 1); 5845 return; 5846 } 5847 5848 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5849 LHS.getValueType(), LHS, RHS); 5850 5851 EVT ResultType = Node->getValueType(1); 5852 EVT SetCCType = getSetCCResultType( 5853 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5854 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 5855 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 5856 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5857 } 5858 5859 void TargetLowering::expandSADDSUBO( 5860 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 5861 SDLoc dl(Node); 5862 SDValue LHS = Node->getOperand(0); 5863 SDValue RHS = Node->getOperand(1); 5864 bool IsAdd = Node->getOpcode() == ISD::SADDO; 5865 5866 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 5867 LHS.getValueType(), LHS, RHS); 5868 5869 EVT ResultType = Node->getValueType(1); 5870 EVT OType = getSetCCResultType( 5871 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 5872 5873 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 5874 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 5875 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 5876 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 5877 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 5878 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 5879 return; 5880 } 5881 5882 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 5883 5884 // LHSSign -> LHS >= 0 5885 // RHSSign -> RHS >= 0 5886 // SumSign -> Result >= 0 5887 // 5888 // Add: 5889 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 5890 // Sub: 5891 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 5892 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 5893 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 5894 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 5895 IsAdd ? ISD::SETEQ : ISD::SETNE); 5896 5897 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 5898 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 5899 5900 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 5901 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 5902 } 5903 5904 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5905 SDValue &Overflow, SelectionDAG &DAG) const { 5906 SDLoc dl(Node); 5907 EVT VT = Node->getValueType(0); 5908 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5909 SDValue LHS = Node->getOperand(0); 5910 SDValue RHS = Node->getOperand(1); 5911 bool isSigned = Node->getOpcode() == ISD::SMULO; 5912 5913 // For power-of-two multiplications we can use a simpler shift expansion. 5914 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 5915 const APInt &C = RHSC->getAPIntValue(); 5916 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 5917 if (C.isPowerOf2()) { 5918 // smulo(x, signed_min) is same as umulo(x, signed_min). 5919 bool UseArithShift = isSigned && !C.isMinSignedValue(); 5920 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5921 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 5922 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 5923 Overflow = DAG.getSetCC(dl, SetCCVT, 5924 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 5925 dl, VT, Result, ShiftAmt), 5926 LHS, ISD::SETNE); 5927 return true; 5928 } 5929 } 5930 5931 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5932 if (VT.isVector()) 5933 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5934 VT.getVectorNumElements()); 5935 5936 SDValue BottomHalf; 5937 SDValue TopHalf; 5938 static const unsigned Ops[2][3] = 5939 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5940 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5941 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5942 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5943 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5944 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5945 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5946 RHS); 5947 TopHalf = BottomHalf.getValue(1); 5948 } else if (isTypeLegal(WideVT)) { 5949 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5950 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5951 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5952 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5953 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5954 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5955 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5956 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5957 } else { 5958 if (VT.isVector()) 5959 return false; 5960 5961 // We can fall back to a libcall with an illegal type for the MUL if we 5962 // have a libcall big enough. 5963 // Also, we can fall back to a division in some cases, but that's a big 5964 // performance hit in the general case. 5965 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5966 if (WideVT == MVT::i16) 5967 LC = RTLIB::MUL_I16; 5968 else if (WideVT == MVT::i32) 5969 LC = RTLIB::MUL_I32; 5970 else if (WideVT == MVT::i64) 5971 LC = RTLIB::MUL_I64; 5972 else if (WideVT == MVT::i128) 5973 LC = RTLIB::MUL_I128; 5974 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5975 5976 SDValue HiLHS; 5977 SDValue HiRHS; 5978 if (isSigned) { 5979 // The high part is obtained by SRA'ing all but one of the bits of low 5980 // part. 5981 unsigned LoSize = VT.getSizeInBits(); 5982 HiLHS = 5983 DAG.getNode(ISD::SRA, dl, VT, LHS, 5984 DAG.getConstant(LoSize - 1, dl, 5985 getPointerTy(DAG.getDataLayout()))); 5986 HiRHS = 5987 DAG.getNode(ISD::SRA, dl, VT, RHS, 5988 DAG.getConstant(LoSize - 1, dl, 5989 getPointerTy(DAG.getDataLayout()))); 5990 } else { 5991 HiLHS = DAG.getConstant(0, dl, VT); 5992 HiRHS = DAG.getConstant(0, dl, VT); 5993 } 5994 5995 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5996 // pre-lowered to the correct types. This all depends upon WideVT not 5997 // being a legal type for the architecture and thus has to be split to 5998 // two arguments. 5999 SDValue Ret; 6000 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 6001 // Halves of WideVT are packed into registers in different order 6002 // depending on platform endianness. This is usually handled by 6003 // the C calling convention, but we can't defer to it in 6004 // the legalizer. 6005 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 6006 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6007 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6008 /* isPostTypeLegalization */ true).first; 6009 } else { 6010 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 6011 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 6012 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 6013 /* isPostTypeLegalization */ true).first; 6014 } 6015 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 6016 "Ret value is a collection of constituent nodes holding result."); 6017 if (DAG.getDataLayout().isLittleEndian()) { 6018 // Same as above. 6019 BottomHalf = Ret.getOperand(0); 6020 TopHalf = Ret.getOperand(1); 6021 } else { 6022 BottomHalf = Ret.getOperand(1); 6023 TopHalf = Ret.getOperand(0); 6024 } 6025 } 6026 6027 Result = BottomHalf; 6028 if (isSigned) { 6029 SDValue ShiftAmt = DAG.getConstant( 6030 VT.getScalarSizeInBits() - 1, dl, 6031 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 6032 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 6033 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 6034 } else { 6035 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 6036 DAG.getConstant(0, dl, VT), ISD::SETNE); 6037 } 6038 6039 // Truncate the result if SetCC returns a larger type than needed. 6040 EVT RType = Node->getValueType(1); 6041 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 6042 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 6043 6044 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 6045 "Unexpected result type for S/UMULO legalization"); 6046 return true; 6047 } 6048 6049 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 6050 SDLoc dl(Node); 6051 bool NoNaN = Node->getFlags().hasNoNaNs(); 6052 unsigned BaseOpcode = 0; 6053 switch (Node->getOpcode()) { 6054 default: llvm_unreachable("Expected VECREDUCE opcode"); 6055 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 6056 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 6057 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 6058 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 6059 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 6060 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 6061 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 6062 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 6063 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 6064 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 6065 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 6066 case ISD::VECREDUCE_FMAX: 6067 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 6068 break; 6069 case ISD::VECREDUCE_FMIN: 6070 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 6071 break; 6072 } 6073 6074 SDValue Op = Node->getOperand(0); 6075 EVT VT = Op.getValueType(); 6076 6077 // Try to use a shuffle reduction for power of two vectors. 6078 if (VT.isPow2VectorType()) { 6079 while (VT.getVectorNumElements() > 1) { 6080 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 6081 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 6082 break; 6083 6084 SDValue Lo, Hi; 6085 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 6086 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 6087 VT = HalfVT; 6088 } 6089 } 6090 6091 EVT EltVT = VT.getVectorElementType(); 6092 unsigned NumElts = VT.getVectorNumElements(); 6093 6094 SmallVector<SDValue, 8> Ops; 6095 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 6096 6097 SDValue Res = Ops[0]; 6098 for (unsigned i = 1; i < NumElts; i++) 6099 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 6100 6101 // Result type may be wider than element type. 6102 if (EltVT != Node->getValueType(0)) 6103 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 6104 return Res; 6105 } 6106