1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/CallingConvLower.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/MachineRegisterInfo.h" 22 #include "llvm/CodeGen/SelectionDAG.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function *F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore noalias because it doesn't affect the call sequence. 58 AttributeList CallerAttrs = F->getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .hasAttributes()) 62 return false; 63 64 // It's not safe to eliminate the sign / zero extension of the return value. 65 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 66 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 67 return false; 68 69 // Check if the only use is a function return node. 70 return isUsedByReturnOnly(Node, Chain); 71 } 72 73 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 74 const uint32_t *CallerPreservedMask, 75 const SmallVectorImpl<CCValAssign> &ArgLocs, 76 const SmallVectorImpl<SDValue> &OutVals) const { 77 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 78 const CCValAssign &ArgLoc = ArgLocs[I]; 79 if (!ArgLoc.isRegLoc()) 80 continue; 81 unsigned Reg = ArgLoc.getLocReg(); 82 // Only look at callee saved registers. 83 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 84 continue; 85 // Check that we pass the value used for the caller. 86 // (We look for a CopyFromReg reading a virtual register that is used 87 // for the function live-in value of register Reg) 88 SDValue Value = OutVals[I]; 89 if (Value->getOpcode() != ISD::CopyFromReg) 90 return false; 91 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 92 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 93 return false; 94 } 95 return true; 96 } 97 98 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 99 /// and called function attributes. 100 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 101 unsigned AttrIdx) { 102 IsSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 103 IsZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 104 IsInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 105 IsSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 106 IsNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 107 IsByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 108 IsInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 109 IsReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 110 IsSwiftSelf = CS->paramHasAttr(AttrIdx, Attribute::SwiftSelf); 111 IsSwiftError = CS->paramHasAttr(AttrIdx, Attribute::SwiftError); 112 Alignment = CS->getParamAlignment(AttrIdx); 113 } 114 115 /// Generate a libcall taking the given operands as arguments and returning a 116 /// result of type RetVT. 117 std::pair<SDValue, SDValue> 118 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 119 ArrayRef<SDValue> Ops, bool isSigned, 120 const SDLoc &dl, bool doesNotReturn, 121 bool isReturnValueUsed) const { 122 TargetLowering::ArgListTy Args; 123 Args.reserve(Ops.size()); 124 125 TargetLowering::ArgListEntry Entry; 126 for (SDValue Op : Ops) { 127 Entry.Node = Op; 128 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 129 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 130 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 131 Args.push_back(Entry); 132 } 133 134 if (LC == RTLIB::UNKNOWN_LIBCALL) 135 report_fatal_error("Unsupported library call operation!"); 136 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 137 getPointerTy(DAG.getDataLayout())); 138 139 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 140 TargetLowering::CallLoweringInfo CLI(DAG); 141 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 142 CLI.setDebugLoc(dl) 143 .setChain(DAG.getEntryNode()) 144 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 145 .setNoReturn(doesNotReturn) 146 .setDiscardResult(!isReturnValueUsed) 147 .setSExtResult(signExtend) 148 .setZExtResult(!signExtend); 149 return LowerCallTo(CLI); 150 } 151 152 /// Soften the operands of a comparison. This code is shared among BR_CC, 153 /// SELECT_CC, and SETCC handlers. 154 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 155 SDValue &NewLHS, SDValue &NewRHS, 156 ISD::CondCode &CCCode, 157 const SDLoc &dl) const { 158 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 159 && "Unsupported setcc type!"); 160 161 // Expand into one or more soft-fp libcall(s). 162 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 163 bool ShouldInvertCC = false; 164 switch (CCCode) { 165 case ISD::SETEQ: 166 case ISD::SETOEQ: 167 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 168 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 169 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 170 break; 171 case ISD::SETNE: 172 case ISD::SETUNE: 173 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 174 (VT == MVT::f64) ? RTLIB::UNE_F64 : 175 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 176 break; 177 case ISD::SETGE: 178 case ISD::SETOGE: 179 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 180 (VT == MVT::f64) ? RTLIB::OGE_F64 : 181 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 182 break; 183 case ISD::SETLT: 184 case ISD::SETOLT: 185 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 186 (VT == MVT::f64) ? RTLIB::OLT_F64 : 187 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 188 break; 189 case ISD::SETLE: 190 case ISD::SETOLE: 191 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 192 (VT == MVT::f64) ? RTLIB::OLE_F64 : 193 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 194 break; 195 case ISD::SETGT: 196 case ISD::SETOGT: 197 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 198 (VT == MVT::f64) ? RTLIB::OGT_F64 : 199 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 200 break; 201 case ISD::SETUO: 202 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 203 (VT == MVT::f64) ? RTLIB::UO_F64 : 204 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 205 break; 206 case ISD::SETO: 207 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 208 (VT == MVT::f64) ? RTLIB::O_F64 : 209 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 210 break; 211 case ISD::SETONE: 212 // SETONE = SETOLT | SETOGT 213 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 214 (VT == MVT::f64) ? RTLIB::OLT_F64 : 215 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 216 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 217 (VT == MVT::f64) ? RTLIB::OGT_F64 : 218 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 219 break; 220 case ISD::SETUEQ: 221 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 222 (VT == MVT::f64) ? RTLIB::UO_F64 : 223 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 224 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 225 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 226 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 227 break; 228 default: 229 // Invert CC for unordered comparisons 230 ShouldInvertCC = true; 231 switch (CCCode) { 232 case ISD::SETULT: 233 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 234 (VT == MVT::f64) ? RTLIB::OGE_F64 : 235 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 236 break; 237 case ISD::SETULE: 238 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 239 (VT == MVT::f64) ? RTLIB::OGT_F64 : 240 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 241 break; 242 case ISD::SETUGT: 243 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 244 (VT == MVT::f64) ? RTLIB::OLE_F64 : 245 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 246 break; 247 case ISD::SETUGE: 248 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 249 (VT == MVT::f64) ? RTLIB::OLT_F64 : 250 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 251 break; 252 default: llvm_unreachable("Do not know how to soften this setcc!"); 253 } 254 } 255 256 // Use the target specific return value for comparions lib calls. 257 EVT RetVT = getCmpLibcallReturnType(); 258 SDValue Ops[2] = {NewLHS, NewRHS}; 259 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 260 dl).first; 261 NewRHS = DAG.getConstant(0, dl, RetVT); 262 263 CCCode = getCmpLibcallCC(LC1); 264 if (ShouldInvertCC) 265 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 266 267 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 268 SDValue Tmp = DAG.getNode( 269 ISD::SETCC, dl, 270 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 271 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 272 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 273 dl).first; 274 NewLHS = DAG.getNode( 275 ISD::SETCC, dl, 276 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 277 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 278 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 279 NewRHS = SDValue(); 280 } 281 } 282 283 /// Return the entry encoding for a jump table in the current function. The 284 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 285 unsigned TargetLowering::getJumpTableEncoding() const { 286 // In non-pic modes, just use the address of a block. 287 if (!isPositionIndependent()) 288 return MachineJumpTableInfo::EK_BlockAddress; 289 290 // In PIC mode, if the target supports a GPRel32 directive, use it. 291 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 292 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 293 294 // Otherwise, use a label difference. 295 return MachineJumpTableInfo::EK_LabelDifference32; 296 } 297 298 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 299 SelectionDAG &DAG) const { 300 // If our PIC model is GP relative, use the global offset table as the base. 301 unsigned JTEncoding = getJumpTableEncoding(); 302 303 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 304 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 305 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 306 307 return Table; 308 } 309 310 /// This returns the relocation base for the given PIC jumptable, the same as 311 /// getPICJumpTableRelocBase, but as an MCExpr. 312 const MCExpr * 313 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 314 unsigned JTI,MCContext &Ctx) const{ 315 // The normal PIC reloc base is the label at the start of the jump table. 316 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 317 } 318 319 bool 320 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 321 const TargetMachine &TM = getTargetMachine(); 322 const GlobalValue *GV = GA->getGlobal(); 323 324 // If the address is not even local to this DSO we will have to load it from 325 // a got and then add the offset. 326 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 327 return false; 328 329 // If the code is position independent we will have to add a base register. 330 if (isPositionIndependent()) 331 return false; 332 333 // Otherwise we can do it. 334 return true; 335 } 336 337 //===----------------------------------------------------------------------===// 338 // Optimization Methods 339 //===----------------------------------------------------------------------===// 340 341 /// If the specified instruction has a constant integer operand and there are 342 /// bits set in that constant that are not demanded, then clear those bits and 343 /// return true. 344 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant( 345 SDValue Op, const APInt &Demanded) { 346 SDLoc DL(Op); 347 unsigned Opcode = Op.getOpcode(); 348 349 // FIXME: ISD::SELECT, ISD::SELECT_CC 350 switch (Opcode) { 351 default: 352 break; 353 case ISD::XOR: 354 case ISD::AND: 355 case ISD::OR: { 356 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 357 if (!Op1C) 358 return false; 359 360 // If this is a 'not' op, don't touch it because that's a canonical form. 361 const APInt &C = Op1C->getAPIntValue(); 362 if (Opcode == ISD::XOR && (C | ~Demanded).isAllOnesValue()) 363 return false; 364 365 if (C.intersects(~Demanded)) { 366 EVT VT = Op.getValueType(); 367 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 368 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 369 return CombineTo(Op, NewOp); 370 } 371 372 break; 373 } 374 } 375 376 return false; 377 } 378 379 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 380 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 381 /// generalized for targets with other types of implicit widening casts. 382 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 383 unsigned BitWidth, 384 const APInt &Demanded, 385 const SDLoc &dl) { 386 assert(Op.getNumOperands() == 2 && 387 "ShrinkDemandedOp only supports binary operators!"); 388 assert(Op.getNode()->getNumValues() == 1 && 389 "ShrinkDemandedOp only supports nodes with one result!"); 390 391 // Early return, as this function cannot handle vector types. 392 if (Op.getValueType().isVector()) 393 return false; 394 395 // Don't do this if the node has another user, which may require the 396 // full value. 397 if (!Op.getNode()->hasOneUse()) 398 return false; 399 400 // Search for the smallest integer type with free casts to and from 401 // Op's type. For expedience, just check power-of-2 integer types. 402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 403 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 404 unsigned SmallVTBits = DemandedSize; 405 if (!isPowerOf2_32(SmallVTBits)) 406 SmallVTBits = NextPowerOf2(SmallVTBits); 407 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 408 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 409 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 410 TLI.isZExtFree(SmallVT, Op.getValueType())) { 411 // We found a type with free casts. 412 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 413 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 414 Op.getNode()->getOperand(0)), 415 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 416 Op.getNode()->getOperand(1))); 417 bool NeedZext = DemandedSize > SmallVTBits; 418 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 419 dl, Op.getValueType(), X); 420 return CombineTo(Op, Z); 421 } 422 } 423 return false; 424 } 425 426 bool 427 TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User, 428 unsigned OpIdx, 429 const APInt &Demanded, 430 DAGCombinerInfo &DCI) { 431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 432 SDValue Op = User->getOperand(OpIdx); 433 APInt KnownZero, KnownOne; 434 435 if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, 436 *this, 0, true)) 437 return false; 438 439 440 // Old will not always be the same as Op. For example: 441 // 442 // Demanded = 0xffffff 443 // Op = i64 truncate (i32 and x, 0xffffff) 444 // In this case simplify demand bits will want to replace the 'and' node 445 // with the value 'x', which will give us: 446 // Old = i32 and x, 0xffffff 447 // New = x 448 if (Old.hasOneUse()) { 449 // For the one use case, we just commit the change. 450 DCI.CommitTargetLoweringOpt(*this); 451 return true; 452 } 453 454 // If Old has more than one use then it must be Op, because the 455 // AssumeSingleUse flag is not propogated to recursive calls of 456 // SimplifyDemanded bits, so the only node with multiple use that 457 // it will attempt to combine will be opt. 458 assert(Old == Op); 459 460 SmallVector <SDValue, 4> NewOps; 461 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { 462 if (i == OpIdx) { 463 NewOps.push_back(New); 464 continue; 465 } 466 NewOps.push_back(User->getOperand(i)); 467 } 468 DAG.UpdateNodeOperands(User, NewOps); 469 // Op has less users now, so we may be able to perform additional combines 470 // with it. 471 DCI.AddToWorklist(Op.getNode()); 472 // User's operands have been updated, so we may be able to do new combines 473 // with it. 474 DCI.AddToWorklist(User); 475 return true; 476 } 477 478 bool TargetLowering::SimplifyDemandedBits(SDValue Op, APInt &DemandedMask, 479 DAGCombinerInfo &DCI) const { 480 481 SelectionDAG &DAG = DCI.DAG; 482 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 483 !DCI.isBeforeLegalizeOps()); 484 APInt KnownZero, KnownOne; 485 486 bool Simplified = SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, 487 TLO); 488 if (Simplified) 489 DCI.CommitTargetLoweringOpt(TLO); 490 return Simplified; 491 } 492 493 /// Look at Op. At this point, we know that only the DemandedMask bits of the 494 /// result of Op are ever used downstream. If we can use this information to 495 /// simplify Op, create a new simplified DAG node and return true, returning the 496 /// original and new nodes in Old and New. Otherwise, analyze the expression and 497 /// return a mask of KnownOne and KnownZero bits for the expression (used to 498 /// simplify the caller). The KnownZero/One bits may only be accurate for those 499 /// bits in the DemandedMask. 500 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 501 const APInt &DemandedMask, 502 APInt &KnownZero, 503 APInt &KnownOne, 504 TargetLoweringOpt &TLO, 505 unsigned Depth, 506 bool AssumeSingleUse) const { 507 unsigned BitWidth = DemandedMask.getBitWidth(); 508 assert(Op.getScalarValueSizeInBits() == BitWidth && 509 "Mask size mismatches value type size!"); 510 APInt NewMask = DemandedMask; 511 SDLoc dl(Op); 512 auto &DL = TLO.DAG.getDataLayout(); 513 514 // Don't know anything. 515 KnownZero = KnownOne = APInt(BitWidth, 0); 516 517 // Other users may use these bits. 518 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 519 if (Depth != 0) { 520 // If not at the root, Just compute the KnownZero/KnownOne bits to 521 // simplify things downstream. 522 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 523 return false; 524 } 525 // If this is the root being simplified, allow it to have multiple uses, 526 // just set the NewMask to all bits. 527 NewMask = APInt::getAllOnesValue(BitWidth); 528 } else if (DemandedMask == 0) { 529 // Not demanding any bits from Op. 530 if (!Op.isUndef()) 531 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 532 return false; 533 } else if (Depth == 6) { // Limit search depth. 534 return false; 535 } 536 537 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 538 switch (Op.getOpcode()) { 539 case ISD::Constant: 540 // We know all of the bits for a constant! 541 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 542 KnownZero = ~KnownOne; 543 return false; // Don't fall through, will infinitely loop. 544 case ISD::BUILD_VECTOR: 545 // Collect the known bits that are shared by every constant vector element. 546 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 547 for (SDValue SrcOp : Op->ops()) { 548 if (!isa<ConstantSDNode>(SrcOp)) { 549 // We can only handle all constant values - bail out with no known bits. 550 KnownZero = KnownOne = APInt(BitWidth, 0); 551 return false; 552 } 553 KnownOne2 = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 554 KnownZero2 = ~KnownOne2; 555 556 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 557 if (KnownOne2.getBitWidth() != BitWidth) { 558 assert(KnownOne2.getBitWidth() > BitWidth && 559 KnownZero2.getBitWidth() > BitWidth && 560 "Expected BUILD_VECTOR implicit truncation"); 561 KnownOne2 = KnownOne2.trunc(BitWidth); 562 KnownZero2 = KnownZero2.trunc(BitWidth); 563 } 564 565 // Known bits are the values that are shared by every element. 566 // TODO: support per-element known bits. 567 KnownOne &= KnownOne2; 568 KnownZero &= KnownZero2; 569 } 570 return false; // Don't fall through, will infinitely loop. 571 case ISD::AND: 572 // If the RHS is a constant, check to see if the LHS would be zero without 573 // using the bits from the RHS. Below, we use knowledge about the RHS to 574 // simplify the LHS, here we're using information from the LHS to simplify 575 // the RHS. 576 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 577 SDValue Op0 = Op.getOperand(0); 578 APInt LHSZero, LHSOne; 579 // Do not increment Depth here; that can cause an infinite loop. 580 TLO.DAG.computeKnownBits(Op0, LHSZero, LHSOne, Depth); 581 // If the LHS already has zeros where RHSC does, this and is dead. 582 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 583 return TLO.CombineTo(Op, Op0); 584 585 // If any of the set bits in the RHS are known zero on the LHS, shrink 586 // the constant. 587 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 588 return true; 589 590 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 591 // constant, but if this 'and' is only clearing bits that were just set by 592 // the xor, then this 'and' can be eliminated by shrinking the mask of 593 // the xor. For example, for a 32-bit X: 594 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 595 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 596 LHSOne == ~RHSC->getAPIntValue()) { 597 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, Op.getValueType(), 598 Op0.getOperand(0), Op.getOperand(1)); 599 return TLO.CombineTo(Op, Xor); 600 } 601 } 602 603 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 604 KnownOne, TLO, Depth+1)) 605 return true; 606 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 607 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 608 KnownZero2, KnownOne2, TLO, Depth+1)) 609 return true; 610 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 611 612 // If all of the demanded bits are known one on one side, return the other. 613 // These bits cannot contribute to the result of the 'and'. 614 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 615 return TLO.CombineTo(Op, Op.getOperand(0)); 616 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 617 return TLO.CombineTo(Op, Op.getOperand(1)); 618 // If all of the demanded bits in the inputs are known zeros, return zero. 619 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 620 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 621 // If the RHS is a constant, see if we can simplify it. 622 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 623 return true; 624 // If the operation can be done in a smaller type, do so. 625 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 626 return true; 627 628 // Output known-1 bits are only known if set in both the LHS & RHS. 629 KnownOne &= KnownOne2; 630 // Output known-0 are known to be clear if zero in either the LHS | RHS. 631 KnownZero |= KnownZero2; 632 break; 633 case ISD::OR: 634 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 635 KnownOne, TLO, Depth+1)) 636 return true; 637 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 638 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 639 KnownZero2, KnownOne2, TLO, Depth+1)) 640 return true; 641 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 642 643 // If all of the demanded bits are known zero on one side, return the other. 644 // These bits cannot contribute to the result of the 'or'. 645 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 646 return TLO.CombineTo(Op, Op.getOperand(0)); 647 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 648 return TLO.CombineTo(Op, Op.getOperand(1)); 649 // If all of the potentially set bits on one side are known to be set on 650 // the other side, just use the 'other' side. 651 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 652 return TLO.CombineTo(Op, Op.getOperand(0)); 653 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 654 return TLO.CombineTo(Op, Op.getOperand(1)); 655 // If the RHS is a constant, see if we can simplify it. 656 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 657 return true; 658 // If the operation can be done in a smaller type, do so. 659 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 660 return true; 661 662 // Output known-0 bits are only known if clear in both the LHS & RHS. 663 KnownZero &= KnownZero2; 664 // Output known-1 are known to be set if set in either the LHS | RHS. 665 KnownOne |= KnownOne2; 666 break; 667 case ISD::XOR: 668 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 669 KnownOne, TLO, Depth+1)) 670 return true; 671 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 672 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 673 KnownOne2, TLO, Depth+1)) 674 return true; 675 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 676 677 // If all of the demanded bits are known zero on one side, return the other. 678 // These bits cannot contribute to the result of the 'xor'. 679 if ((KnownZero & NewMask) == NewMask) 680 return TLO.CombineTo(Op, Op.getOperand(0)); 681 if ((KnownZero2 & NewMask) == NewMask) 682 return TLO.CombineTo(Op, Op.getOperand(1)); 683 // If the operation can be done in a smaller type, do so. 684 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 685 return true; 686 687 // If all of the unknown bits are known to be zero on one side or the other 688 // (but not both) turn this into an *inclusive* or. 689 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 690 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 691 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 692 Op.getOperand(0), 693 Op.getOperand(1))); 694 695 // Output known-0 bits are known if clear or set in both the LHS & RHS. 696 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 697 // Output known-1 are known to be set if set in only one of the LHS, RHS. 698 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 699 700 // If all of the demanded bits on one side are known, and all of the set 701 // bits on that side are also known to be set on the other side, turn this 702 // into an AND, as we know the bits will be cleared. 703 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 704 // NB: it is okay if more bits are known than are requested 705 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 706 if (KnownOne == KnownOne2) { // set bits are the same on both sides 707 EVT VT = Op.getValueType(); 708 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 709 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 710 Op.getOperand(0), ANDC)); 711 } 712 } 713 714 // If the RHS is a constant, see if we can simplify it. 715 // for XOR, we prefer to force bits to 1 if they will make a -1. 716 // If we can't force bits, try to shrink the constant. 717 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 718 APInt Expanded = C->getAPIntValue() | (~NewMask); 719 // If we can expand it to have all bits set, do it. 720 if (Expanded.isAllOnesValue()) { 721 if (Expanded != C->getAPIntValue()) { 722 EVT VT = Op.getValueType(); 723 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 724 TLO.DAG.getConstant(Expanded, dl, VT)); 725 return TLO.CombineTo(Op, New); 726 } 727 // If it already has all the bits set, nothing to change 728 // but don't shrink either! 729 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 730 return true; 731 } 732 } 733 734 KnownZero = KnownZeroOut; 735 KnownOne = KnownOneOut; 736 break; 737 case ISD::SELECT: 738 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 739 KnownOne, TLO, Depth+1)) 740 return true; 741 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 742 KnownOne2, TLO, Depth+1)) 743 return true; 744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 745 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 746 747 // If the operands are constants, see if we can simplify them. 748 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 749 return true; 750 751 // Only known if known in both the LHS and RHS. 752 KnownOne &= KnownOne2; 753 KnownZero &= KnownZero2; 754 break; 755 case ISD::SELECT_CC: 756 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 757 KnownOne, TLO, Depth+1)) 758 return true; 759 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 760 KnownOne2, TLO, Depth+1)) 761 return true; 762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 763 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 764 765 // If the operands are constants, see if we can simplify them. 766 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 767 return true; 768 769 // Only known if known in both the LHS and RHS. 770 KnownOne &= KnownOne2; 771 KnownZero &= KnownZero2; 772 break; 773 case ISD::SETCC: { 774 SDValue Op0 = Op.getOperand(0); 775 SDValue Op1 = Op.getOperand(1); 776 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 777 // If (1) we only need the sign-bit, (2) the setcc operands are the same 778 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 779 // -1, we may be able to bypass the setcc. 780 if (NewMask.isSignBit() && Op0.getScalarValueSizeInBits() == BitWidth && 781 getBooleanContents(Op.getValueType()) == 782 BooleanContent::ZeroOrNegativeOneBooleanContent) { 783 // If we're testing X < 0, then this compare isn't needed - just use X! 784 // FIXME: We're limiting to integer types here, but this should also work 785 // if we don't care about FP signed-zero. The use of SETLT with FP means 786 // that we don't care about NaNs. 787 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 788 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 789 return TLO.CombineTo(Op, Op0); 790 791 // TODO: Should we check for other forms of sign-bit comparisons? 792 // Examples: X <= -1, X >= 0 793 } 794 break; 795 } 796 case ISD::SHL: 797 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 798 unsigned ShAmt = SA->getZExtValue(); 799 SDValue InOp = Op.getOperand(0); 800 801 // If the shift count is an invalid immediate, don't do anything. 802 if (ShAmt >= BitWidth) 803 break; 804 805 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 806 // single shift. We can do this if the bottom bits (which are shifted 807 // out) are never demanded. 808 if (InOp.getOpcode() == ISD::SRL && 809 isa<ConstantSDNode>(InOp.getOperand(1))) { 810 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 811 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 812 unsigned Opc = ISD::SHL; 813 int Diff = ShAmt-C1; 814 if (Diff < 0) { 815 Diff = -Diff; 816 Opc = ISD::SRL; 817 } 818 819 SDValue NewSA = 820 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 821 EVT VT = Op.getValueType(); 822 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 823 InOp.getOperand(0), NewSA)); 824 } 825 } 826 827 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 828 KnownZero, KnownOne, TLO, Depth+1)) 829 return true; 830 831 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 832 // are not demanded. This will likely allow the anyext to be folded away. 833 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 834 SDValue InnerOp = InOp.getNode()->getOperand(0); 835 EVT InnerVT = InnerOp.getValueType(); 836 unsigned InnerBits = InnerVT.getSizeInBits(); 837 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 838 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 839 EVT ShTy = getShiftAmountTy(InnerVT, DL); 840 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 841 ShTy = InnerVT; 842 SDValue NarrowShl = 843 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 844 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 845 return 846 TLO.CombineTo(Op, 847 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 848 NarrowShl)); 849 } 850 // Repeat the SHL optimization above in cases where an extension 851 // intervenes: (shl (anyext (shr x, c1)), c2) to 852 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 853 // aren't demanded (as above) and that the shifted upper c1 bits of 854 // x aren't demanded. 855 if (InOp.hasOneUse() && 856 InnerOp.getOpcode() == ISD::SRL && 857 InnerOp.hasOneUse() && 858 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 859 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 860 ->getZExtValue(); 861 if (InnerShAmt < ShAmt && 862 InnerShAmt < InnerBits && 863 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 864 NewMask.trunc(ShAmt) == 0) { 865 SDValue NewSA = 866 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 867 Op.getOperand(1).getValueType()); 868 EVT VT = Op.getValueType(); 869 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 870 InnerOp.getOperand(0)); 871 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 872 NewExt, NewSA)); 873 } 874 } 875 } 876 877 KnownZero <<= SA->getZExtValue(); 878 KnownOne <<= SA->getZExtValue(); 879 // low bits known zero. 880 KnownZero.setLowBits(SA->getZExtValue()); 881 } 882 break; 883 case ISD::SRL: 884 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 885 EVT VT = Op.getValueType(); 886 unsigned ShAmt = SA->getZExtValue(); 887 unsigned VTSize = VT.getSizeInBits(); 888 SDValue InOp = Op.getOperand(0); 889 890 // If the shift count is an invalid immediate, don't do anything. 891 if (ShAmt >= BitWidth) 892 break; 893 894 APInt InDemandedMask = (NewMask << ShAmt); 895 896 // If the shift is exact, then it does demand the low bits (and knows that 897 // they are zero). 898 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 899 InDemandedMask.setLowBits(ShAmt); 900 901 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 902 // single shift. We can do this if the top bits (which are shifted out) 903 // are never demanded. 904 if (InOp.getOpcode() == ISD::SHL && 905 isa<ConstantSDNode>(InOp.getOperand(1))) { 906 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 907 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 908 unsigned Opc = ISD::SRL; 909 int Diff = ShAmt-C1; 910 if (Diff < 0) { 911 Diff = -Diff; 912 Opc = ISD::SHL; 913 } 914 915 SDValue NewSA = 916 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 917 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 918 InOp.getOperand(0), NewSA)); 919 } 920 } 921 922 // Compute the new bits that are at the top now. 923 if (SimplifyDemandedBits(InOp, InDemandedMask, 924 KnownZero, KnownOne, TLO, Depth+1)) 925 return true; 926 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 927 KnownZero = KnownZero.lshr(ShAmt); 928 KnownOne = KnownOne.lshr(ShAmt); 929 930 KnownZero.setHighBits(ShAmt); // High bits known zero. 931 } 932 break; 933 case ISD::SRA: 934 // If this is an arithmetic shift right and only the low-bit is set, we can 935 // always convert this into a logical shr, even if the shift amount is 936 // variable. The low bit of the shift cannot be an input sign bit unless 937 // the shift amount is >= the size of the datatype, which is undefined. 938 if (NewMask == 1) 939 return TLO.CombineTo(Op, 940 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 941 Op.getOperand(0), Op.getOperand(1))); 942 943 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 944 EVT VT = Op.getValueType(); 945 unsigned ShAmt = SA->getZExtValue(); 946 947 // If the shift count is an invalid immediate, don't do anything. 948 if (ShAmt >= BitWidth) 949 break; 950 951 APInt InDemandedMask = (NewMask << ShAmt); 952 953 // If the shift is exact, then it does demand the low bits (and knows that 954 // they are zero). 955 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 956 InDemandedMask.setLowBits(ShAmt); 957 958 // If any of the demanded bits are produced by the sign extension, we also 959 // demand the input sign bit. 960 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 961 if (HighBits.intersects(NewMask)) 962 InDemandedMask |= APInt::getSignBit(VT.getScalarSizeInBits()); 963 964 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 965 KnownZero, KnownOne, TLO, Depth+1)) 966 return true; 967 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 968 KnownZero = KnownZero.lshr(ShAmt); 969 KnownOne = KnownOne.lshr(ShAmt); 970 971 // Handle the sign bit, adjusted to where it is now in the mask. 972 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 973 974 // If the input sign bit is known to be zero, or if none of the top bits 975 // are demanded, turn this into an unsigned shift right. 976 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 977 SDNodeFlags Flags; 978 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 979 return TLO.CombineTo(Op, 980 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 981 Op.getOperand(1), &Flags)); 982 } 983 984 int Log2 = NewMask.exactLogBase2(); 985 if (Log2 >= 0) { 986 // The bit must come from the sign. 987 SDValue NewSA = 988 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 989 Op.getOperand(1).getValueType()); 990 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 991 Op.getOperand(0), NewSA)); 992 } 993 994 if (KnownOne.intersects(SignBit)) 995 // New bits are known one. 996 KnownOne |= HighBits; 997 } 998 break; 999 case ISD::SIGN_EXTEND_INREG: { 1000 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1001 1002 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 1003 // If we only care about the highest bit, don't bother shifting right. 1004 if (MsbMask == NewMask) { 1005 unsigned ShAmt = ExVT.getScalarSizeInBits(); 1006 SDValue InOp = Op.getOperand(0); 1007 unsigned VTBits = Op->getValueType(0).getScalarSizeInBits(); 1008 bool AlreadySignExtended = 1009 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 1010 // However if the input is already sign extended we expect the sign 1011 // extension to be dropped altogether later and do not simplify. 1012 if (!AlreadySignExtended) { 1013 // Compute the correct shift amount type, which must be getShiftAmountTy 1014 // for scalar types after legalization. 1015 EVT ShiftAmtTy = Op.getValueType(); 1016 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1017 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1018 1019 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 1020 ShiftAmtTy); 1021 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1022 Op.getValueType(), InOp, 1023 ShiftAmt)); 1024 } 1025 } 1026 1027 // Sign extension. Compute the demanded bits in the result that are not 1028 // present in the input. 1029 APInt NewBits = 1030 APInt::getHighBitsSet(BitWidth, 1031 BitWidth - ExVT.getScalarSizeInBits()); 1032 1033 // If none of the extended bits are demanded, eliminate the sextinreg. 1034 if ((NewBits & NewMask) == 0) 1035 return TLO.CombineTo(Op, Op.getOperand(0)); 1036 1037 APInt InSignBit = 1038 APInt::getSignBit(ExVT.getScalarSizeInBits()).zext(BitWidth); 1039 APInt InputDemandedBits = 1040 APInt::getLowBitsSet(BitWidth, 1041 ExVT.getScalarSizeInBits()) & 1042 NewMask; 1043 1044 // Since the sign extended bits are demanded, we know that the sign 1045 // bit is demanded. 1046 InputDemandedBits |= InSignBit; 1047 1048 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 1049 KnownZero, KnownOne, TLO, Depth+1)) 1050 return true; 1051 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1052 1053 // If the sign bit of the input is known set or clear, then we know the 1054 // top bits of the result. 1055 1056 // If the input sign bit is known zero, convert this into a zero extension. 1057 if (KnownZero.intersects(InSignBit)) 1058 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg( 1059 Op.getOperand(0), dl, ExVT.getScalarType())); 1060 1061 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 1062 KnownOne |= NewBits; 1063 KnownZero &= ~NewBits; 1064 } else { // Input sign bit unknown 1065 KnownZero &= ~NewBits; 1066 KnownOne &= ~NewBits; 1067 } 1068 break; 1069 } 1070 case ISD::BUILD_PAIR: { 1071 EVT HalfVT = Op.getOperand(0).getValueType(); 1072 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1073 1074 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1075 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1076 1077 APInt KnownZeroLo, KnownOneLo; 1078 APInt KnownZeroHi, KnownOneHi; 1079 1080 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 1081 KnownOneLo, TLO, Depth + 1)) 1082 return true; 1083 1084 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 1085 KnownOneHi, TLO, Depth + 1)) 1086 return true; 1087 1088 KnownZero = KnownZeroLo.zext(BitWidth) | 1089 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 1090 1091 KnownOne = KnownOneLo.zext(BitWidth) | 1092 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 1093 break; 1094 } 1095 case ISD::ZERO_EXTEND: { 1096 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1097 APInt InMask = NewMask.trunc(OperandBitWidth); 1098 1099 // If none of the top bits are demanded, convert this into an any_extend. 1100 APInt NewBits = 1101 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 1102 if (!NewBits.intersects(NewMask)) 1103 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1104 Op.getValueType(), 1105 Op.getOperand(0))); 1106 1107 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1108 KnownZero, KnownOne, TLO, Depth+1)) 1109 return true; 1110 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1111 KnownZero = KnownZero.zext(BitWidth); 1112 KnownOne = KnownOne.zext(BitWidth); 1113 KnownZero |= NewBits; 1114 break; 1115 } 1116 case ISD::SIGN_EXTEND: { 1117 EVT InVT = Op.getOperand(0).getValueType(); 1118 unsigned InBits = InVT.getScalarSizeInBits(); 1119 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 1120 APInt InSignBit = APInt::getOneBitSet(BitWidth, InBits - 1); 1121 APInt NewBits = ~InMask & NewMask; 1122 1123 // If none of the top bits are demanded, convert this into an any_extend. 1124 if (NewBits == 0) 1125 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 1126 Op.getValueType(), 1127 Op.getOperand(0))); 1128 1129 // Since some of the sign extended bits are demanded, we know that the sign 1130 // bit is demanded. 1131 APInt InDemandedBits = InMask & NewMask; 1132 InDemandedBits |= InSignBit; 1133 InDemandedBits = InDemandedBits.trunc(InBits); 1134 1135 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 1136 KnownOne, TLO, Depth+1)) 1137 return true; 1138 KnownZero = KnownZero.zext(BitWidth); 1139 KnownOne = KnownOne.zext(BitWidth); 1140 1141 // If the sign bit is known zero, convert this to a zero extend. 1142 if (KnownZero.intersects(InSignBit)) 1143 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 1144 Op.getValueType(), 1145 Op.getOperand(0))); 1146 1147 // If the sign bit is known one, the top bits match. 1148 if (KnownOne.intersects(InSignBit)) { 1149 KnownOne |= NewBits; 1150 assert((KnownZero & NewBits) == 0); 1151 } else { // Otherwise, top bits aren't known. 1152 assert((KnownOne & NewBits) == 0); 1153 assert((KnownZero & NewBits) == 0); 1154 } 1155 break; 1156 } 1157 case ISD::ANY_EXTEND: { 1158 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1159 APInt InMask = NewMask.trunc(OperandBitWidth); 1160 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 1161 KnownZero, KnownOne, TLO, Depth+1)) 1162 return true; 1163 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1164 KnownZero = KnownZero.zext(BitWidth); 1165 KnownOne = KnownOne.zext(BitWidth); 1166 break; 1167 } 1168 case ISD::TRUNCATE: { 1169 // Simplify the input, using demanded bit information, and compute the known 1170 // zero/one bits live out. 1171 unsigned OperandBitWidth = Op.getOperand(0).getScalarValueSizeInBits(); 1172 APInt TruncMask = NewMask.zext(OperandBitWidth); 1173 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 1174 KnownZero, KnownOne, TLO, Depth+1)) 1175 return true; 1176 KnownZero = KnownZero.trunc(BitWidth); 1177 KnownOne = KnownOne.trunc(BitWidth); 1178 1179 // If the input is only used by this truncate, see if we can shrink it based 1180 // on the known demanded bits. 1181 if (Op.getOperand(0).getNode()->hasOneUse()) { 1182 SDValue In = Op.getOperand(0); 1183 switch (In.getOpcode()) { 1184 default: break; 1185 case ISD::SRL: 1186 // Shrink SRL by a constant if none of the high bits shifted in are 1187 // demanded. 1188 if (TLO.LegalTypes() && 1189 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1190 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1191 // undesirable. 1192 break; 1193 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1194 if (!ShAmt) 1195 break; 1196 SDValue Shift = In.getOperand(1); 1197 if (TLO.LegalTypes()) { 1198 uint64_t ShVal = ShAmt->getZExtValue(); 1199 Shift = TLO.DAG.getConstant(ShVal, dl, 1200 getShiftAmountTy(Op.getValueType(), DL)); 1201 } 1202 1203 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1204 OperandBitWidth - BitWidth); 1205 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1206 1207 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1208 // None of the shifted in bits are needed. Add a truncate of the 1209 // shift input, then shift it. 1210 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1211 Op.getValueType(), 1212 In.getOperand(0)); 1213 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1214 Op.getValueType(), 1215 NewTrunc, 1216 Shift)); 1217 } 1218 break; 1219 } 1220 } 1221 1222 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1223 break; 1224 } 1225 case ISD::AssertZext: { 1226 // AssertZext demands all of the high bits, plus any of the low bits 1227 // demanded by its users. 1228 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1229 APInt InMask = APInt::getLowBitsSet(BitWidth, 1230 VT.getSizeInBits()); 1231 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1232 KnownZero, KnownOne, TLO, Depth+1)) 1233 return true; 1234 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1235 1236 KnownZero |= ~InMask & NewMask; 1237 break; 1238 } 1239 case ISD::BITCAST: 1240 // If this is an FP->Int bitcast and if the sign bit is the only 1241 // thing demanded, turn this into a FGETSIGN. 1242 if (!TLO.LegalOperations() && 1243 !Op.getValueType().isVector() && 1244 !Op.getOperand(0).getValueType().isVector() && 1245 NewMask == APInt::getSignBit(Op.getValueSizeInBits()) && 1246 Op.getOperand(0).getValueType().isFloatingPoint()) { 1247 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1248 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1249 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple() && 1250 Op.getOperand(0).getValueType() != MVT::f128) { 1251 // Cannot eliminate/lower SHL for f128 yet. 1252 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1253 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1254 // place. We expect the SHL to be eliminated by other optimizations. 1255 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1256 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1257 if (!OpVTLegal && OpVTSizeInBits > 32) 1258 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1259 unsigned ShVal = Op.getValueSizeInBits() - 1; 1260 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1261 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1262 Op.getValueType(), 1263 Sign, ShAmt)); 1264 } 1265 } 1266 break; 1267 case ISD::ADD: 1268 case ISD::MUL: 1269 case ISD::SUB: { 1270 // Add, Sub, and Mul don't demand any bits in positions beyond that 1271 // of the highest bit demanded of them. 1272 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1273 BitWidth - NewMask.countLeadingZeros()); 1274 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1275 KnownOne2, TLO, Depth+1) || 1276 SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1277 KnownOne2, TLO, Depth+1) || 1278 // See if the operation should be performed at a smaller bit width. 1279 TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) { 1280 const SDNodeFlags *Flags = Op.getNode()->getFlags(); 1281 if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { 1282 // Disable the nsw and nuw flags. We can no longer guarantee that we 1283 // won't wrap after simplification. 1284 SDNodeFlags NewFlags = *Flags; 1285 NewFlags.setNoSignedWrap(false); 1286 NewFlags.setNoUnsignedWrap(false); 1287 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), 1288 Op.getOperand(0), Op.getOperand(1), 1289 &NewFlags); 1290 return TLO.CombineTo(Op, NewOp); 1291 } 1292 return true; 1293 } 1294 LLVM_FALLTHROUGH; 1295 } 1296 default: 1297 // Just use computeKnownBits to compute output bits. 1298 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1299 break; 1300 } 1301 1302 // If we know the value of all of the demanded bits, return this as a 1303 // constant. 1304 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1305 // Avoid folding to a constant if any OpaqueConstant is involved. 1306 const SDNode *N = Op.getNode(); 1307 for (SDNodeIterator I = SDNodeIterator::begin(N), 1308 E = SDNodeIterator::end(N); I != E; ++I) { 1309 SDNode *Op = *I; 1310 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1311 if (C->isOpaque()) 1312 return false; 1313 } 1314 return TLO.CombineTo(Op, 1315 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1316 } 1317 1318 return false; 1319 } 1320 1321 /// Determine which of the bits specified in Mask are known to be either zero or 1322 /// one and return them in the KnownZero/KnownOne bitsets. 1323 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1324 APInt &KnownZero, 1325 APInt &KnownOne, 1326 const SelectionDAG &DAG, 1327 unsigned Depth) const { 1328 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1329 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1330 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1331 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1332 "Should use MaskedValueIsZero if you don't know whether Op" 1333 " is a target node!"); 1334 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1335 } 1336 1337 /// This method can be implemented by targets that want to expose additional 1338 /// information about sign bits to the DAG Combiner. 1339 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1340 const SelectionDAG &, 1341 unsigned Depth) const { 1342 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1343 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1344 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1345 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1346 "Should use ComputeNumSignBits if you don't know whether Op" 1347 " is a target node!"); 1348 return 1; 1349 } 1350 1351 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1352 if (!N) 1353 return false; 1354 1355 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1356 if (!CN) { 1357 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1358 if (!BV) 1359 return false; 1360 1361 // Only interested in constant splats, we don't care about undef 1362 // elements in identifying boolean constants and getConstantSplatNode 1363 // returns NULL if all ops are undef; 1364 CN = BV->getConstantSplatNode(); 1365 if (!CN) 1366 return false; 1367 } 1368 1369 switch (getBooleanContents(N->getValueType(0))) { 1370 case UndefinedBooleanContent: 1371 return CN->getAPIntValue()[0]; 1372 case ZeroOrOneBooleanContent: 1373 return CN->isOne(); 1374 case ZeroOrNegativeOneBooleanContent: 1375 return CN->isAllOnesValue(); 1376 } 1377 1378 llvm_unreachable("Invalid boolean contents"); 1379 } 1380 1381 SDValue TargetLowering::getConstTrueVal(SelectionDAG &DAG, EVT VT, 1382 const SDLoc &DL) const { 1383 unsigned ElementWidth = VT.getScalarSizeInBits(); 1384 APInt TrueInt = 1385 getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent 1386 ? APInt(ElementWidth, 1) 1387 : APInt::getAllOnesValue(ElementWidth); 1388 return DAG.getConstant(TrueInt, DL, VT); 1389 } 1390 1391 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1392 if (!N) 1393 return false; 1394 1395 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1396 if (!CN) { 1397 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1398 if (!BV) 1399 return false; 1400 1401 // Only interested in constant splats, we don't care about undef 1402 // elements in identifying boolean constants and getConstantSplatNode 1403 // returns NULL if all ops are undef; 1404 CN = BV->getConstantSplatNode(); 1405 if (!CN) 1406 return false; 1407 } 1408 1409 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1410 return !CN->getAPIntValue()[0]; 1411 1412 return CN->isNullValue(); 1413 } 1414 1415 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 1416 bool SExt) const { 1417 if (VT == MVT::i1) 1418 return N->isOne(); 1419 1420 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 1421 switch (Cnt) { 1422 case TargetLowering::ZeroOrOneBooleanContent: 1423 // An extended value of 1 is always true, unless its original type is i1, 1424 // in which case it will be sign extended to -1. 1425 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 1426 case TargetLowering::UndefinedBooleanContent: 1427 case TargetLowering::ZeroOrNegativeOneBooleanContent: 1428 return N->isAllOnesValue() && SExt; 1429 } 1430 llvm_unreachable("Unexpected enumeration."); 1431 } 1432 1433 /// This helper function of SimplifySetCC tries to optimize the comparison when 1434 /// either operand of the SetCC node is a bitwise-and instruction. 1435 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 1436 ISD::CondCode Cond, 1437 DAGCombinerInfo &DCI, 1438 const SDLoc &DL) const { 1439 // Match these patterns in any of their permutations: 1440 // (X & Y) == Y 1441 // (X & Y) != Y 1442 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 1443 std::swap(N0, N1); 1444 1445 EVT OpVT = N0.getValueType(); 1446 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 1447 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 1448 return SDValue(); 1449 1450 SDValue X, Y; 1451 if (N0.getOperand(0) == N1) { 1452 X = N0.getOperand(1); 1453 Y = N0.getOperand(0); 1454 } else if (N0.getOperand(1) == N1) { 1455 X = N0.getOperand(0); 1456 Y = N0.getOperand(1); 1457 } else { 1458 return SDValue(); 1459 } 1460 1461 SelectionDAG &DAG = DCI.DAG; 1462 SDValue Zero = DAG.getConstant(0, DL, OpVT); 1463 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 1464 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 1465 // Note that where Y is variable and is known to have at most one bit set 1466 // (for example, if it is Z & 1) we cannot do this; the expressions are not 1467 // equivalent when Y == 0. 1468 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 1469 if (DCI.isBeforeLegalizeOps() || 1470 isCondCodeLegal(Cond, N0.getSimpleValueType())) 1471 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 1472 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 1473 // If the target supports an 'and-not' or 'and-complement' logic operation, 1474 // try to use that to make a comparison operation more efficient. 1475 // But don't do this transform if the mask is a single bit because there are 1476 // more efficient ways to deal with that case (for example, 'bt' on x86 or 1477 // 'rlwinm' on PPC). 1478 1479 // Bail out if the compare operand that we want to turn into a zero is 1480 // already a zero (otherwise, infinite loop). 1481 auto *YConst = dyn_cast<ConstantSDNode>(Y); 1482 if (YConst && YConst->isNullValue()) 1483 return SDValue(); 1484 1485 // Transform this into: ~X & Y == 0. 1486 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 1487 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 1488 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 1489 } 1490 1491 return SDValue(); 1492 } 1493 1494 /// Try to simplify a setcc built with the specified operands and cc. If it is 1495 /// unable to simplify it, return a null SDValue. 1496 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1497 ISD::CondCode Cond, bool foldBooleans, 1498 DAGCombinerInfo &DCI, 1499 const SDLoc &dl) const { 1500 SelectionDAG &DAG = DCI.DAG; 1501 1502 // These setcc operations always fold. 1503 switch (Cond) { 1504 default: break; 1505 case ISD::SETFALSE: 1506 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1507 case ISD::SETTRUE: 1508 case ISD::SETTRUE2: { 1509 TargetLowering::BooleanContent Cnt = 1510 getBooleanContents(N0->getValueType(0)); 1511 return DAG.getConstant( 1512 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1513 VT); 1514 } 1515 } 1516 1517 // Ensure that the constant occurs on the RHS, and fold constant 1518 // comparisons. 1519 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1520 if (isa<ConstantSDNode>(N0.getNode()) && 1521 (DCI.isBeforeLegalizeOps() || 1522 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1523 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1524 1525 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1526 const APInt &C1 = N1C->getAPIntValue(); 1527 1528 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1529 // equality comparison, then we're just comparing whether X itself is 1530 // zero. 1531 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1532 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1533 N0.getOperand(1).getOpcode() == ISD::Constant) { 1534 const APInt &ShAmt 1535 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1536 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1537 ShAmt == Log2_32(N0.getValueSizeInBits())) { 1538 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1539 // (srl (ctlz x), 5) == 0 -> X != 0 1540 // (srl (ctlz x), 5) != 1 -> X != 0 1541 Cond = ISD::SETNE; 1542 } else { 1543 // (srl (ctlz x), 5) != 0 -> X == 0 1544 // (srl (ctlz x), 5) == 1 -> X == 0 1545 Cond = ISD::SETEQ; 1546 } 1547 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1548 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1549 Zero, Cond); 1550 } 1551 } 1552 1553 SDValue CTPOP = N0; 1554 // Look through truncs that don't change the value of a ctpop. 1555 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1556 CTPOP = N0.getOperand(0); 1557 1558 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1559 (N0 == CTPOP || 1560 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 1561 EVT CTVT = CTPOP.getValueType(); 1562 SDValue CTOp = CTPOP.getOperand(0); 1563 1564 // (ctpop x) u< 2 -> (x & x-1) == 0 1565 // (ctpop x) u> 1 -> (x & x-1) != 0 1566 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1567 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1568 DAG.getConstant(1, dl, CTVT)); 1569 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1570 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1571 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1572 } 1573 1574 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1575 } 1576 1577 // (zext x) == C --> x == (trunc C) 1578 // (sext x) == C --> x == (trunc C) 1579 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1580 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1581 unsigned MinBits = N0.getValueSizeInBits(); 1582 SDValue PreExt; 1583 bool Signed = false; 1584 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1585 // ZExt 1586 MinBits = N0->getOperand(0).getValueSizeInBits(); 1587 PreExt = N0->getOperand(0); 1588 } else if (N0->getOpcode() == ISD::AND) { 1589 // DAGCombine turns costly ZExts into ANDs 1590 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1591 if ((C->getAPIntValue()+1).isPowerOf2()) { 1592 MinBits = C->getAPIntValue().countTrailingOnes(); 1593 PreExt = N0->getOperand(0); 1594 } 1595 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1596 // SExt 1597 MinBits = N0->getOperand(0).getValueSizeInBits(); 1598 PreExt = N0->getOperand(0); 1599 Signed = true; 1600 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 1601 // ZEXTLOAD / SEXTLOAD 1602 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1603 MinBits = LN0->getMemoryVT().getSizeInBits(); 1604 PreExt = N0; 1605 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1606 Signed = true; 1607 MinBits = LN0->getMemoryVT().getSizeInBits(); 1608 PreExt = N0; 1609 } 1610 } 1611 1612 // Figure out how many bits we need to preserve this constant. 1613 unsigned ReqdBits = Signed ? 1614 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1615 C1.getActiveBits(); 1616 1617 // Make sure we're not losing bits from the constant. 1618 if (MinBits > 0 && 1619 MinBits < C1.getBitWidth() && 1620 MinBits >= ReqdBits) { 1621 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1622 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1623 // Will get folded away. 1624 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1625 if (MinBits == 1 && C1 == 1) 1626 // Invert the condition. 1627 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 1628 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1629 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1630 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1631 } 1632 1633 // If truncating the setcc operands is not desirable, we can still 1634 // simplify the expression in some cases: 1635 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 1636 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 1637 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 1638 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 1639 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 1640 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 1641 SDValue TopSetCC = N0->getOperand(0); 1642 unsigned N0Opc = N0->getOpcode(); 1643 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 1644 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 1645 TopSetCC.getOpcode() == ISD::SETCC && 1646 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 1647 (isConstFalseVal(N1C) || 1648 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 1649 1650 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 1651 (!N1C->isNullValue() && Cond == ISD::SETNE); 1652 1653 if (!Inverse) 1654 return TopSetCC; 1655 1656 ISD::CondCode InvCond = ISD::getSetCCInverse( 1657 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 1658 TopSetCC.getOperand(0).getValueType().isInteger()); 1659 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 1660 TopSetCC.getOperand(1), 1661 InvCond); 1662 1663 } 1664 } 1665 } 1666 1667 // If the LHS is '(and load, const)', the RHS is 0, 1668 // the test is for equality or unsigned, and all 1 bits of the const are 1669 // in the same partial word, see if we can shorten the load. 1670 if (DCI.isBeforeLegalize() && 1671 !ISD::isSignedIntSetCC(Cond) && 1672 N0.getOpcode() == ISD::AND && C1 == 0 && 1673 N0.getNode()->hasOneUse() && 1674 isa<LoadSDNode>(N0.getOperand(0)) && 1675 N0.getOperand(0).getNode()->hasOneUse() && 1676 isa<ConstantSDNode>(N0.getOperand(1))) { 1677 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1678 APInt bestMask; 1679 unsigned bestWidth = 0, bestOffset = 0; 1680 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1681 unsigned origWidth = N0.getValueSizeInBits(); 1682 unsigned maskWidth = origWidth; 1683 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1684 // 8 bits, but have to be careful... 1685 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1686 origWidth = Lod->getMemoryVT().getSizeInBits(); 1687 const APInt &Mask = 1688 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1689 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1690 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1691 for (unsigned offset=0; offset<origWidth/width; offset++) { 1692 if ((newMask & Mask) == Mask) { 1693 if (!DAG.getDataLayout().isLittleEndian()) 1694 bestOffset = (origWidth/width - offset - 1) * (width/8); 1695 else 1696 bestOffset = (uint64_t)offset * (width/8); 1697 bestMask = Mask.lshr(offset * (width/8) * 8); 1698 bestWidth = width; 1699 break; 1700 } 1701 newMask = newMask << width; 1702 } 1703 } 1704 } 1705 if (bestWidth) { 1706 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1707 if (newVT.isRound()) { 1708 EVT PtrType = Lod->getOperand(1).getValueType(); 1709 SDValue Ptr = Lod->getBasePtr(); 1710 if (bestOffset != 0) 1711 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1712 DAG.getConstant(bestOffset, dl, PtrType)); 1713 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1714 SDValue NewLoad = DAG.getLoad( 1715 newVT, dl, Lod->getChain(), Ptr, 1716 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 1717 return DAG.getSetCC(dl, VT, 1718 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1719 DAG.getConstant(bestMask.trunc(bestWidth), 1720 dl, newVT)), 1721 DAG.getConstant(0LL, dl, newVT), Cond); 1722 } 1723 } 1724 } 1725 1726 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1727 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1728 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 1729 1730 // If the comparison constant has bits in the upper part, the 1731 // zero-extended value could never match. 1732 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1733 C1.getBitWidth() - InSize))) { 1734 switch (Cond) { 1735 case ISD::SETUGT: 1736 case ISD::SETUGE: 1737 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1738 case ISD::SETULT: 1739 case ISD::SETULE: 1740 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1741 case ISD::SETGT: 1742 case ISD::SETGE: 1743 // True if the sign bit of C1 is set. 1744 return DAG.getConstant(C1.isNegative(), dl, VT); 1745 case ISD::SETLT: 1746 case ISD::SETLE: 1747 // True if the sign bit of C1 isn't set. 1748 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1749 default: 1750 break; 1751 } 1752 } 1753 1754 // Otherwise, we can perform the comparison with the low bits. 1755 switch (Cond) { 1756 case ISD::SETEQ: 1757 case ISD::SETNE: 1758 case ISD::SETUGT: 1759 case ISD::SETUGE: 1760 case ISD::SETULT: 1761 case ISD::SETULE: { 1762 EVT newVT = N0.getOperand(0).getValueType(); 1763 if (DCI.isBeforeLegalizeOps() || 1764 (isOperationLegal(ISD::SETCC, newVT) && 1765 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1766 EVT NewSetCCVT = 1767 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1768 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1769 1770 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1771 NewConst, Cond); 1772 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1773 } 1774 break; 1775 } 1776 default: 1777 break; // todo, be more careful with signed comparisons 1778 } 1779 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1780 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1781 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1782 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1783 EVT ExtDstTy = N0.getValueType(); 1784 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1785 1786 // If the constant doesn't fit into the number of bits for the source of 1787 // the sign extension, it is impossible for both sides to be equal. 1788 if (C1.getMinSignedBits() > ExtSrcTyBits) 1789 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1790 1791 SDValue ZextOp; 1792 EVT Op0Ty = N0.getOperand(0).getValueType(); 1793 if (Op0Ty == ExtSrcTy) { 1794 ZextOp = N0.getOperand(0); 1795 } else { 1796 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1797 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1798 DAG.getConstant(Imm, dl, Op0Ty)); 1799 } 1800 if (!DCI.isCalledByLegalizer()) 1801 DCI.AddToWorklist(ZextOp.getNode()); 1802 // Otherwise, make this a use of a zext. 1803 return DAG.getSetCC(dl, VT, ZextOp, 1804 DAG.getConstant(C1 & APInt::getLowBitsSet( 1805 ExtDstTyBits, 1806 ExtSrcTyBits), 1807 dl, ExtDstTy), 1808 Cond); 1809 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1810 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1811 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1812 if (N0.getOpcode() == ISD::SETCC && 1813 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1814 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1815 if (TrueWhenTrue) 1816 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1817 // Invert the condition. 1818 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1819 CC = ISD::getSetCCInverse(CC, 1820 N0.getOperand(0).getValueType().isInteger()); 1821 if (DCI.isBeforeLegalizeOps() || 1822 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1823 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1824 } 1825 1826 if ((N0.getOpcode() == ISD::XOR || 1827 (N0.getOpcode() == ISD::AND && 1828 N0.getOperand(0).getOpcode() == ISD::XOR && 1829 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1830 isa<ConstantSDNode>(N0.getOperand(1)) && 1831 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1832 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1833 // can only do this if the top bits are known zero. 1834 unsigned BitWidth = N0.getValueSizeInBits(); 1835 if (DAG.MaskedValueIsZero(N0, 1836 APInt::getHighBitsSet(BitWidth, 1837 BitWidth-1))) { 1838 // Okay, get the un-inverted input value. 1839 SDValue Val; 1840 if (N0.getOpcode() == ISD::XOR) 1841 Val = N0.getOperand(0); 1842 else { 1843 assert(N0.getOpcode() == ISD::AND && 1844 N0.getOperand(0).getOpcode() == ISD::XOR); 1845 // ((X^1)&1)^1 -> X & 1 1846 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1847 N0.getOperand(0).getOperand(0), 1848 N0.getOperand(1)); 1849 } 1850 1851 return DAG.getSetCC(dl, VT, Val, N1, 1852 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1853 } 1854 } else if (N1C->getAPIntValue() == 1 && 1855 (VT == MVT::i1 || 1856 getBooleanContents(N0->getValueType(0)) == 1857 ZeroOrOneBooleanContent)) { 1858 SDValue Op0 = N0; 1859 if (Op0.getOpcode() == ISD::TRUNCATE) 1860 Op0 = Op0.getOperand(0); 1861 1862 if ((Op0.getOpcode() == ISD::XOR) && 1863 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1864 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1865 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1866 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1867 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1868 Cond); 1869 } 1870 if (Op0.getOpcode() == ISD::AND && 1871 isa<ConstantSDNode>(Op0.getOperand(1)) && 1872 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1873 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1874 if (Op0.getValueType().bitsGT(VT)) 1875 Op0 = DAG.getNode(ISD::AND, dl, VT, 1876 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1877 DAG.getConstant(1, dl, VT)); 1878 else if (Op0.getValueType().bitsLT(VT)) 1879 Op0 = DAG.getNode(ISD::AND, dl, VT, 1880 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1881 DAG.getConstant(1, dl, VT)); 1882 1883 return DAG.getSetCC(dl, VT, Op0, 1884 DAG.getConstant(0, dl, Op0.getValueType()), 1885 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1886 } 1887 if (Op0.getOpcode() == ISD::AssertZext && 1888 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1889 return DAG.getSetCC(dl, VT, Op0, 1890 DAG.getConstant(0, dl, Op0.getValueType()), 1891 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1892 } 1893 } 1894 1895 APInt MinVal, MaxVal; 1896 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1897 if (ISD::isSignedIntSetCC(Cond)) { 1898 MinVal = APInt::getSignedMinValue(OperandBitSize); 1899 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1900 } else { 1901 MinVal = APInt::getMinValue(OperandBitSize); 1902 MaxVal = APInt::getMaxValue(OperandBitSize); 1903 } 1904 1905 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1906 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1907 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1908 // X >= C0 --> X > (C0 - 1) 1909 APInt C = C1 - 1; 1910 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1911 if ((DCI.isBeforeLegalizeOps() || 1912 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1913 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1914 isLegalICmpImmediate(C.getSExtValue())))) { 1915 return DAG.getSetCC(dl, VT, N0, 1916 DAG.getConstant(C, dl, N1.getValueType()), 1917 NewCC); 1918 } 1919 } 1920 1921 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1922 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1923 // X <= C0 --> X < (C0 + 1) 1924 APInt C = C1 + 1; 1925 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1926 if ((DCI.isBeforeLegalizeOps() || 1927 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1928 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1929 isLegalICmpImmediate(C.getSExtValue())))) { 1930 return DAG.getSetCC(dl, VT, N0, 1931 DAG.getConstant(C, dl, N1.getValueType()), 1932 NewCC); 1933 } 1934 } 1935 1936 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1937 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1938 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1939 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1940 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1941 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1942 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1943 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1944 1945 // Canonicalize setgt X, Min --> setne X, Min 1946 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1947 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1948 // Canonicalize setlt X, Max --> setne X, Max 1949 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1950 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1951 1952 // If we have setult X, 1, turn it into seteq X, 0 1953 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1954 return DAG.getSetCC(dl, VT, N0, 1955 DAG.getConstant(MinVal, dl, N0.getValueType()), 1956 ISD::SETEQ); 1957 // If we have setugt X, Max-1, turn it into seteq X, Max 1958 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1959 return DAG.getSetCC(dl, VT, N0, 1960 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1961 ISD::SETEQ); 1962 1963 // If we have "setcc X, C0", check to see if we can shrink the immediate 1964 // by changing cc. 1965 1966 // SETUGT X, SINTMAX -> SETLT X, 0 1967 if (Cond == ISD::SETUGT && 1968 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1969 return DAG.getSetCC(dl, VT, N0, 1970 DAG.getConstant(0, dl, N1.getValueType()), 1971 ISD::SETLT); 1972 1973 // SETULT X, SINTMIN -> SETGT X, -1 1974 if (Cond == ISD::SETULT && 1975 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1976 SDValue ConstMinusOne = 1977 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1978 N1.getValueType()); 1979 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1980 } 1981 1982 // Fold bit comparisons when we can. 1983 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1984 (VT == N0.getValueType() || 1985 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1986 N0.getOpcode() == ISD::AND) { 1987 auto &DL = DAG.getDataLayout(); 1988 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1989 EVT ShiftTy = DCI.isBeforeLegalize() 1990 ? getPointerTy(DL) 1991 : getShiftAmountTy(N0.getValueType(), DL); 1992 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1993 // Perform the xform if the AND RHS is a single bit. 1994 if (AndRHS->getAPIntValue().isPowerOf2()) { 1995 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1996 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1997 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1998 ShiftTy))); 1999 } 2000 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2001 // (X & 8) == 8 --> (X & 8) >> 3 2002 // Perform the xform if C1 is a single bit. 2003 if (C1.isPowerOf2()) { 2004 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2005 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2006 DAG.getConstant(C1.logBase2(), dl, 2007 ShiftTy))); 2008 } 2009 } 2010 } 2011 } 2012 2013 if (C1.getMinSignedBits() <= 64 && 2014 !isLegalICmpImmediate(C1.getSExtValue())) { 2015 // (X & -256) == 256 -> (X >> 8) == 1 2016 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2017 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2018 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2019 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2020 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2021 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2022 auto &DL = DAG.getDataLayout(); 2023 EVT ShiftTy = DCI.isBeforeLegalize() 2024 ? getPointerTy(DL) 2025 : getShiftAmountTy(N0.getValueType(), DL); 2026 EVT CmpTy = N0.getValueType(); 2027 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2028 DAG.getConstant(ShiftBits, dl, 2029 ShiftTy)); 2030 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2031 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2032 } 2033 } 2034 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2035 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2036 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2037 // X < 0x100000000 -> (X >> 32) < 1 2038 // X >= 0x100000000 -> (X >> 32) >= 1 2039 // X <= 0x0ffffffff -> (X >> 32) < 1 2040 // X > 0x0ffffffff -> (X >> 32) >= 1 2041 unsigned ShiftBits; 2042 APInt NewC = C1; 2043 ISD::CondCode NewCond = Cond; 2044 if (AdjOne) { 2045 ShiftBits = C1.countTrailingOnes(); 2046 NewC = NewC + 1; 2047 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2048 } else { 2049 ShiftBits = C1.countTrailingZeros(); 2050 } 2051 NewC = NewC.lshr(ShiftBits); 2052 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2053 isLegalICmpImmediate(NewC.getSExtValue())) { 2054 auto &DL = DAG.getDataLayout(); 2055 EVT ShiftTy = DCI.isBeforeLegalize() 2056 ? getPointerTy(DL) 2057 : getShiftAmountTy(N0.getValueType(), DL); 2058 EVT CmpTy = N0.getValueType(); 2059 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2060 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2061 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2062 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2063 } 2064 } 2065 } 2066 } 2067 2068 if (isa<ConstantFPSDNode>(N0.getNode())) { 2069 // Constant fold or commute setcc. 2070 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2071 if (O.getNode()) return O; 2072 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2073 // If the RHS of an FP comparison is a constant, simplify it away in 2074 // some cases. 2075 if (CFP->getValueAPF().isNaN()) { 2076 // If an operand is known to be a nan, we can fold it. 2077 switch (ISD::getUnorderedFlavor(Cond)) { 2078 default: llvm_unreachable("Unknown flavor!"); 2079 case 0: // Known false. 2080 return DAG.getConstant(0, dl, VT); 2081 case 1: // Known true. 2082 return DAG.getConstant(1, dl, VT); 2083 case 2: // Undefined. 2084 return DAG.getUNDEF(VT); 2085 } 2086 } 2087 2088 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2089 // constant if knowing that the operand is non-nan is enough. We prefer to 2090 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2091 // materialize 0.0. 2092 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2093 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2094 2095 // setcc (fneg x), C -> setcc swap(pred) x, -C 2096 if (N0.getOpcode() == ISD::FNEG) { 2097 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2098 if (DCI.isBeforeLegalizeOps() || 2099 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2100 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2101 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2102 } 2103 } 2104 2105 // If the condition is not legal, see if we can find an equivalent one 2106 // which is legal. 2107 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2108 // If the comparison was an awkward floating-point == or != and one of 2109 // the comparison operands is infinity or negative infinity, convert the 2110 // condition to a less-awkward <= or >=. 2111 if (CFP->getValueAPF().isInfinity()) { 2112 if (CFP->getValueAPF().isNegative()) { 2113 if (Cond == ISD::SETOEQ && 2114 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2115 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2116 if (Cond == ISD::SETUEQ && 2117 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2118 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2119 if (Cond == ISD::SETUNE && 2120 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2121 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2122 if (Cond == ISD::SETONE && 2123 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2124 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2125 } else { 2126 if (Cond == ISD::SETOEQ && 2127 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2128 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2129 if (Cond == ISD::SETUEQ && 2130 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2131 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2132 if (Cond == ISD::SETUNE && 2133 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2134 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2135 if (Cond == ISD::SETONE && 2136 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2137 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2138 } 2139 } 2140 } 2141 } 2142 2143 if (N0 == N1) { 2144 // The sext(setcc()) => setcc() optimization relies on the appropriate 2145 // constant being emitted. 2146 uint64_t EqVal = 0; 2147 switch (getBooleanContents(N0.getValueType())) { 2148 case UndefinedBooleanContent: 2149 case ZeroOrOneBooleanContent: 2150 EqVal = ISD::isTrueWhenEqual(Cond); 2151 break; 2152 case ZeroOrNegativeOneBooleanContent: 2153 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 2154 break; 2155 } 2156 2157 // We can always fold X == X for integer setcc's. 2158 if (N0.getValueType().isInteger()) { 2159 return DAG.getConstant(EqVal, dl, VT); 2160 } 2161 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2162 if (UOF == 2) // FP operators that are undefined on NaNs. 2163 return DAG.getConstant(EqVal, dl, VT); 2164 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 2165 return DAG.getConstant(EqVal, dl, VT); 2166 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2167 // if it is not already. 2168 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2169 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 2170 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 2171 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2172 } 2173 2174 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2175 N0.getValueType().isInteger()) { 2176 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2177 N0.getOpcode() == ISD::XOR) { 2178 // Simplify (X+Y) == (X+Z) --> Y == Z 2179 if (N0.getOpcode() == N1.getOpcode()) { 2180 if (N0.getOperand(0) == N1.getOperand(0)) 2181 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2182 if (N0.getOperand(1) == N1.getOperand(1)) 2183 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2184 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 2185 // If X op Y == Y op X, try other combinations. 2186 if (N0.getOperand(0) == N1.getOperand(1)) 2187 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2188 Cond); 2189 if (N0.getOperand(1) == N1.getOperand(0)) 2190 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2191 Cond); 2192 } 2193 } 2194 2195 // If RHS is a legal immediate value for a compare instruction, we need 2196 // to be careful about increasing register pressure needlessly. 2197 bool LegalRHSImm = false; 2198 2199 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2200 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2201 // Turn (X+C1) == C2 --> X == C2-C1 2202 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2203 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2204 DAG.getConstant(RHSC->getAPIntValue()- 2205 LHSR->getAPIntValue(), 2206 dl, N0.getValueType()), Cond); 2207 } 2208 2209 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2210 if (N0.getOpcode() == ISD::XOR) 2211 // If we know that all of the inverted bits are zero, don't bother 2212 // performing the inversion. 2213 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2214 return 2215 DAG.getSetCC(dl, VT, N0.getOperand(0), 2216 DAG.getConstant(LHSR->getAPIntValue() ^ 2217 RHSC->getAPIntValue(), 2218 dl, N0.getValueType()), 2219 Cond); 2220 } 2221 2222 // Turn (C1-X) == C2 --> X == C1-C2 2223 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2224 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2225 return 2226 DAG.getSetCC(dl, VT, N0.getOperand(1), 2227 DAG.getConstant(SUBC->getAPIntValue() - 2228 RHSC->getAPIntValue(), 2229 dl, N0.getValueType()), 2230 Cond); 2231 } 2232 } 2233 2234 // Could RHSC fold directly into a compare? 2235 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2236 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2237 } 2238 2239 // Simplify (X+Z) == X --> Z == 0 2240 // Don't do this if X is an immediate that can fold into a cmp 2241 // instruction and X+Z has other uses. It could be an induction variable 2242 // chain, and the transform would increase register pressure. 2243 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2244 if (N0.getOperand(0) == N1) 2245 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2246 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2247 if (N0.getOperand(1) == N1) { 2248 if (DAG.isCommutativeBinOp(N0.getOpcode())) 2249 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2250 DAG.getConstant(0, dl, N0.getValueType()), 2251 Cond); 2252 if (N0.getNode()->hasOneUse()) { 2253 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2254 auto &DL = DAG.getDataLayout(); 2255 // (Z-X) == X --> Z == X<<1 2256 SDValue SH = DAG.getNode( 2257 ISD::SHL, dl, N1.getValueType(), N1, 2258 DAG.getConstant(1, dl, 2259 getShiftAmountTy(N1.getValueType(), DL))); 2260 if (!DCI.isCalledByLegalizer()) 2261 DCI.AddToWorklist(SH.getNode()); 2262 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2263 } 2264 } 2265 } 2266 } 2267 2268 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 2269 N1.getOpcode() == ISD::XOR) { 2270 // Simplify X == (X+Z) --> Z == 0 2271 if (N1.getOperand(0) == N0) 2272 return DAG.getSetCC(dl, VT, N1.getOperand(1), 2273 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2274 if (N1.getOperand(1) == N0) { 2275 if (DAG.isCommutativeBinOp(N1.getOpcode())) 2276 return DAG.getSetCC(dl, VT, N1.getOperand(0), 2277 DAG.getConstant(0, dl, N1.getValueType()), Cond); 2278 if (N1.getNode()->hasOneUse()) { 2279 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 2280 auto &DL = DAG.getDataLayout(); 2281 // X == (Z-X) --> X<<1 == Z 2282 SDValue SH = DAG.getNode( 2283 ISD::SHL, dl, N1.getValueType(), N0, 2284 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 2285 if (!DCI.isCalledByLegalizer()) 2286 DCI.AddToWorklist(SH.getNode()); 2287 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 2288 } 2289 } 2290 } 2291 2292 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 2293 return V; 2294 } 2295 2296 // Fold away ALL boolean setcc's. 2297 SDValue Temp; 2298 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2299 switch (Cond) { 2300 default: llvm_unreachable("Unknown integer setcc!"); 2301 case ISD::SETEQ: // X == Y -> ~(X^Y) 2302 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2303 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2304 if (!DCI.isCalledByLegalizer()) 2305 DCI.AddToWorklist(Temp.getNode()); 2306 break; 2307 case ISD::SETNE: // X != Y --> (X^Y) 2308 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2309 break; 2310 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2311 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2312 Temp = DAG.getNOT(dl, N0, MVT::i1); 2313 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2314 if (!DCI.isCalledByLegalizer()) 2315 DCI.AddToWorklist(Temp.getNode()); 2316 break; 2317 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2318 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2319 Temp = DAG.getNOT(dl, N1, MVT::i1); 2320 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2321 if (!DCI.isCalledByLegalizer()) 2322 DCI.AddToWorklist(Temp.getNode()); 2323 break; 2324 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2325 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2326 Temp = DAG.getNOT(dl, N0, MVT::i1); 2327 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2328 if (!DCI.isCalledByLegalizer()) 2329 DCI.AddToWorklist(Temp.getNode()); 2330 break; 2331 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2332 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2333 Temp = DAG.getNOT(dl, N1, MVT::i1); 2334 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2335 break; 2336 } 2337 if (VT != MVT::i1) { 2338 if (!DCI.isCalledByLegalizer()) 2339 DCI.AddToWorklist(N0.getNode()); 2340 // FIXME: If running after legalize, we probably can't do this. 2341 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2342 } 2343 return N0; 2344 } 2345 2346 // Could not fold it. 2347 return SDValue(); 2348 } 2349 2350 /// Returns true (and the GlobalValue and the offset) if the node is a 2351 /// GlobalAddress + offset. 2352 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2353 int64_t &Offset) const { 2354 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 2355 GA = GASD->getGlobal(); 2356 Offset += GASD->getOffset(); 2357 return true; 2358 } 2359 2360 if (N->getOpcode() == ISD::ADD) { 2361 SDValue N1 = N->getOperand(0); 2362 SDValue N2 = N->getOperand(1); 2363 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2364 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 2365 Offset += V->getSExtValue(); 2366 return true; 2367 } 2368 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2369 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 2370 Offset += V->getSExtValue(); 2371 return true; 2372 } 2373 } 2374 } 2375 2376 return false; 2377 } 2378 2379 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 2380 DAGCombinerInfo &DCI) const { 2381 // Default implementation: no optimization. 2382 return SDValue(); 2383 } 2384 2385 //===----------------------------------------------------------------------===// 2386 // Inline Assembler Implementation Methods 2387 //===----------------------------------------------------------------------===// 2388 2389 TargetLowering::ConstraintType 2390 TargetLowering::getConstraintType(StringRef Constraint) const { 2391 unsigned S = Constraint.size(); 2392 2393 if (S == 1) { 2394 switch (Constraint[0]) { 2395 default: break; 2396 case 'r': return C_RegisterClass; 2397 case 'm': // memory 2398 case 'o': // offsetable 2399 case 'V': // not offsetable 2400 return C_Memory; 2401 case 'i': // Simple Integer or Relocatable Constant 2402 case 'n': // Simple Integer 2403 case 'E': // Floating Point Constant 2404 case 'F': // Floating Point Constant 2405 case 's': // Relocatable Constant 2406 case 'p': // Address. 2407 case 'X': // Allow ANY value. 2408 case 'I': // Target registers. 2409 case 'J': 2410 case 'K': 2411 case 'L': 2412 case 'M': 2413 case 'N': 2414 case 'O': 2415 case 'P': 2416 case '<': 2417 case '>': 2418 return C_Other; 2419 } 2420 } 2421 2422 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2423 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2424 return C_Memory; 2425 return C_Register; 2426 } 2427 return C_Unknown; 2428 } 2429 2430 /// Try to replace an X constraint, which matches anything, with another that 2431 /// has more specific requirements based on the type of the corresponding 2432 /// operand. 2433 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2434 if (ConstraintVT.isInteger()) 2435 return "r"; 2436 if (ConstraintVT.isFloatingPoint()) 2437 return "f"; // works for many targets 2438 return nullptr; 2439 } 2440 2441 /// Lower the specified operand into the Ops vector. 2442 /// If it is invalid, don't add anything to Ops. 2443 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2444 std::string &Constraint, 2445 std::vector<SDValue> &Ops, 2446 SelectionDAG &DAG) const { 2447 2448 if (Constraint.length() > 1) return; 2449 2450 char ConstraintLetter = Constraint[0]; 2451 switch (ConstraintLetter) { 2452 default: break; 2453 case 'X': // Allows any operand; labels (basic block) use this. 2454 if (Op.getOpcode() == ISD::BasicBlock) { 2455 Ops.push_back(Op); 2456 return; 2457 } 2458 LLVM_FALLTHROUGH; 2459 case 'i': // Simple Integer or Relocatable Constant 2460 case 'n': // Simple Integer 2461 case 's': { // Relocatable Constant 2462 // These operands are interested in values of the form (GV+C), where C may 2463 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2464 // is possible and fine if either GV or C are missing. 2465 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2466 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2467 2468 // If we have "(add GV, C)", pull out GV/C 2469 if (Op.getOpcode() == ISD::ADD) { 2470 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2471 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2472 if (!C || !GA) { 2473 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2474 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2475 } 2476 if (!C || !GA) { 2477 C = nullptr; 2478 GA = nullptr; 2479 } 2480 } 2481 2482 // If we find a valid operand, map to the TargetXXX version so that the 2483 // value itself doesn't get selected. 2484 if (GA) { // Either &GV or &GV+C 2485 if (ConstraintLetter != 'n') { 2486 int64_t Offs = GA->getOffset(); 2487 if (C) Offs += C->getZExtValue(); 2488 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2489 C ? SDLoc(C) : SDLoc(), 2490 Op.getValueType(), Offs)); 2491 } 2492 return; 2493 } 2494 if (C) { // just C, no GV. 2495 // Simple constants are not allowed for 's'. 2496 if (ConstraintLetter != 's') { 2497 // gcc prints these as sign extended. Sign extend value to 64 bits 2498 // now; without this it would get ZExt'd later in 2499 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2500 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2501 SDLoc(C), MVT::i64)); 2502 } 2503 return; 2504 } 2505 break; 2506 } 2507 } 2508 } 2509 2510 std::pair<unsigned, const TargetRegisterClass *> 2511 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2512 StringRef Constraint, 2513 MVT VT) const { 2514 if (Constraint.empty() || Constraint[0] != '{') 2515 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2516 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2517 2518 // Remove the braces from around the name. 2519 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2520 2521 std::pair<unsigned, const TargetRegisterClass*> R = 2522 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2523 2524 // Figure out which register class contains this reg. 2525 for (const TargetRegisterClass *RC : RI->regclasses()) { 2526 // If none of the value types for this register class are valid, we 2527 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2528 if (!isLegalRC(RC)) 2529 continue; 2530 2531 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2532 I != E; ++I) { 2533 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 2534 std::pair<unsigned, const TargetRegisterClass*> S = 2535 std::make_pair(*I, RC); 2536 2537 // If this register class has the requested value type, return it, 2538 // otherwise keep searching and return the first class found 2539 // if no other is found which explicitly has the requested type. 2540 if (RC->hasType(VT)) 2541 return S; 2542 else if (!R.second) 2543 R = S; 2544 } 2545 } 2546 } 2547 2548 return R; 2549 } 2550 2551 //===----------------------------------------------------------------------===// 2552 // Constraint Selection. 2553 2554 /// Return true of this is an input operand that is a matching constraint like 2555 /// "4". 2556 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2557 assert(!ConstraintCode.empty() && "No known constraint!"); 2558 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2559 } 2560 2561 /// If this is an input matching constraint, this method returns the output 2562 /// operand it matches. 2563 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2564 assert(!ConstraintCode.empty() && "No known constraint!"); 2565 return atoi(ConstraintCode.c_str()); 2566 } 2567 2568 /// Split up the constraint string from the inline assembly value into the 2569 /// specific constraints and their prefixes, and also tie in the associated 2570 /// operand values. 2571 /// If this returns an empty vector, and if the constraint string itself 2572 /// isn't empty, there was an error parsing. 2573 TargetLowering::AsmOperandInfoVector 2574 TargetLowering::ParseConstraints(const DataLayout &DL, 2575 const TargetRegisterInfo *TRI, 2576 ImmutableCallSite CS) const { 2577 /// Information about all of the constraints. 2578 AsmOperandInfoVector ConstraintOperands; 2579 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2580 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2581 2582 // Do a prepass over the constraints, canonicalizing them, and building up the 2583 // ConstraintOperands list. 2584 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2585 unsigned ResNo = 0; // ResNo - The result number of the next output. 2586 2587 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2588 ConstraintOperands.emplace_back(std::move(CI)); 2589 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2590 2591 // Update multiple alternative constraint count. 2592 if (OpInfo.multipleAlternatives.size() > maCount) 2593 maCount = OpInfo.multipleAlternatives.size(); 2594 2595 OpInfo.ConstraintVT = MVT::Other; 2596 2597 // Compute the value type for each operand. 2598 switch (OpInfo.Type) { 2599 case InlineAsm::isOutput: 2600 // Indirect outputs just consume an argument. 2601 if (OpInfo.isIndirect) { 2602 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2603 break; 2604 } 2605 2606 // The return value of the call is this value. As such, there is no 2607 // corresponding argument. 2608 assert(!CS.getType()->isVoidTy() && 2609 "Bad inline asm!"); 2610 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2611 OpInfo.ConstraintVT = 2612 getSimpleValueType(DL, STy->getElementType(ResNo)); 2613 } else { 2614 assert(ResNo == 0 && "Asm only has one result!"); 2615 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2616 } 2617 ++ResNo; 2618 break; 2619 case InlineAsm::isInput: 2620 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2621 break; 2622 case InlineAsm::isClobber: 2623 // Nothing to do. 2624 break; 2625 } 2626 2627 if (OpInfo.CallOperandVal) { 2628 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2629 if (OpInfo.isIndirect) { 2630 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2631 if (!PtrTy) 2632 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2633 OpTy = PtrTy->getElementType(); 2634 } 2635 2636 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2637 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2638 if (STy->getNumElements() == 1) 2639 OpTy = STy->getElementType(0); 2640 2641 // If OpTy is not a single value, it may be a struct/union that we 2642 // can tile with integers. 2643 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2644 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2645 switch (BitSize) { 2646 default: break; 2647 case 1: 2648 case 8: 2649 case 16: 2650 case 32: 2651 case 64: 2652 case 128: 2653 OpInfo.ConstraintVT = 2654 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2655 break; 2656 } 2657 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2658 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2659 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2660 } else { 2661 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2662 } 2663 } 2664 } 2665 2666 // If we have multiple alternative constraints, select the best alternative. 2667 if (!ConstraintOperands.empty()) { 2668 if (maCount) { 2669 unsigned bestMAIndex = 0; 2670 int bestWeight = -1; 2671 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2672 int weight = -1; 2673 unsigned maIndex; 2674 // Compute the sums of the weights for each alternative, keeping track 2675 // of the best (highest weight) one so far. 2676 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2677 int weightSum = 0; 2678 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2679 cIndex != eIndex; ++cIndex) { 2680 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2681 if (OpInfo.Type == InlineAsm::isClobber) 2682 continue; 2683 2684 // If this is an output operand with a matching input operand, 2685 // look up the matching input. If their types mismatch, e.g. one 2686 // is an integer, the other is floating point, or their sizes are 2687 // different, flag it as an maCantMatch. 2688 if (OpInfo.hasMatchingInput()) { 2689 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2690 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2691 if ((OpInfo.ConstraintVT.isInteger() != 2692 Input.ConstraintVT.isInteger()) || 2693 (OpInfo.ConstraintVT.getSizeInBits() != 2694 Input.ConstraintVT.getSizeInBits())) { 2695 weightSum = -1; // Can't match. 2696 break; 2697 } 2698 } 2699 } 2700 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2701 if (weight == -1) { 2702 weightSum = -1; 2703 break; 2704 } 2705 weightSum += weight; 2706 } 2707 // Update best. 2708 if (weightSum > bestWeight) { 2709 bestWeight = weightSum; 2710 bestMAIndex = maIndex; 2711 } 2712 } 2713 2714 // Now select chosen alternative in each constraint. 2715 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2716 cIndex != eIndex; ++cIndex) { 2717 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2718 if (cInfo.Type == InlineAsm::isClobber) 2719 continue; 2720 cInfo.selectAlternative(bestMAIndex); 2721 } 2722 } 2723 } 2724 2725 // Check and hook up tied operands, choose constraint code to use. 2726 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2727 cIndex != eIndex; ++cIndex) { 2728 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2729 2730 // If this is an output operand with a matching input operand, look up the 2731 // matching input. If their types mismatch, e.g. one is an integer, the 2732 // other is floating point, or their sizes are different, flag it as an 2733 // error. 2734 if (OpInfo.hasMatchingInput()) { 2735 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2736 2737 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2738 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2739 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2740 OpInfo.ConstraintVT); 2741 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2742 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2743 Input.ConstraintVT); 2744 if ((OpInfo.ConstraintVT.isInteger() != 2745 Input.ConstraintVT.isInteger()) || 2746 (MatchRC.second != InputRC.second)) { 2747 report_fatal_error("Unsupported asm: input constraint" 2748 " with a matching output constraint of" 2749 " incompatible type!"); 2750 } 2751 } 2752 } 2753 } 2754 2755 return ConstraintOperands; 2756 } 2757 2758 /// Return an integer indicating how general CT is. 2759 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2760 switch (CT) { 2761 case TargetLowering::C_Other: 2762 case TargetLowering::C_Unknown: 2763 return 0; 2764 case TargetLowering::C_Register: 2765 return 1; 2766 case TargetLowering::C_RegisterClass: 2767 return 2; 2768 case TargetLowering::C_Memory: 2769 return 3; 2770 } 2771 llvm_unreachable("Invalid constraint type"); 2772 } 2773 2774 /// Examine constraint type and operand type and determine a weight value. 2775 /// This object must already have been set up with the operand type 2776 /// and the current alternative constraint selected. 2777 TargetLowering::ConstraintWeight 2778 TargetLowering::getMultipleConstraintMatchWeight( 2779 AsmOperandInfo &info, int maIndex) const { 2780 InlineAsm::ConstraintCodeVector *rCodes; 2781 if (maIndex >= (int)info.multipleAlternatives.size()) 2782 rCodes = &info.Codes; 2783 else 2784 rCodes = &info.multipleAlternatives[maIndex].Codes; 2785 ConstraintWeight BestWeight = CW_Invalid; 2786 2787 // Loop over the options, keeping track of the most general one. 2788 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2789 ConstraintWeight weight = 2790 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2791 if (weight > BestWeight) 2792 BestWeight = weight; 2793 } 2794 2795 return BestWeight; 2796 } 2797 2798 /// Examine constraint type and operand type and determine a weight value. 2799 /// This object must already have been set up with the operand type 2800 /// and the current alternative constraint selected. 2801 TargetLowering::ConstraintWeight 2802 TargetLowering::getSingleConstraintMatchWeight( 2803 AsmOperandInfo &info, const char *constraint) const { 2804 ConstraintWeight weight = CW_Invalid; 2805 Value *CallOperandVal = info.CallOperandVal; 2806 // If we don't have a value, we can't do a match, 2807 // but allow it at the lowest weight. 2808 if (!CallOperandVal) 2809 return CW_Default; 2810 // Look at the constraint type. 2811 switch (*constraint) { 2812 case 'i': // immediate integer. 2813 case 'n': // immediate integer with a known value. 2814 if (isa<ConstantInt>(CallOperandVal)) 2815 weight = CW_Constant; 2816 break; 2817 case 's': // non-explicit intregal immediate. 2818 if (isa<GlobalValue>(CallOperandVal)) 2819 weight = CW_Constant; 2820 break; 2821 case 'E': // immediate float if host format. 2822 case 'F': // immediate float. 2823 if (isa<ConstantFP>(CallOperandVal)) 2824 weight = CW_Constant; 2825 break; 2826 case '<': // memory operand with autodecrement. 2827 case '>': // memory operand with autoincrement. 2828 case 'm': // memory operand. 2829 case 'o': // offsettable memory operand 2830 case 'V': // non-offsettable memory operand 2831 weight = CW_Memory; 2832 break; 2833 case 'r': // general register. 2834 case 'g': // general register, memory operand or immediate integer. 2835 // note: Clang converts "g" to "imr". 2836 if (CallOperandVal->getType()->isIntegerTy()) 2837 weight = CW_Register; 2838 break; 2839 case 'X': // any operand. 2840 default: 2841 weight = CW_Default; 2842 break; 2843 } 2844 return weight; 2845 } 2846 2847 /// If there are multiple different constraints that we could pick for this 2848 /// operand (e.g. "imr") try to pick the 'best' one. 2849 /// This is somewhat tricky: constraints fall into four classes: 2850 /// Other -> immediates and magic values 2851 /// Register -> one specific register 2852 /// RegisterClass -> a group of regs 2853 /// Memory -> memory 2854 /// Ideally, we would pick the most specific constraint possible: if we have 2855 /// something that fits into a register, we would pick it. The problem here 2856 /// is that if we have something that could either be in a register or in 2857 /// memory that use of the register could cause selection of *other* 2858 /// operands to fail: they might only succeed if we pick memory. Because of 2859 /// this the heuristic we use is: 2860 /// 2861 /// 1) If there is an 'other' constraint, and if the operand is valid for 2862 /// that constraint, use it. This makes us take advantage of 'i' 2863 /// constraints when available. 2864 /// 2) Otherwise, pick the most general constraint present. This prefers 2865 /// 'm' over 'r', for example. 2866 /// 2867 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2868 const TargetLowering &TLI, 2869 SDValue Op, SelectionDAG *DAG) { 2870 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2871 unsigned BestIdx = 0; 2872 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2873 int BestGenerality = -1; 2874 2875 // Loop over the options, keeping track of the most general one. 2876 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2877 TargetLowering::ConstraintType CType = 2878 TLI.getConstraintType(OpInfo.Codes[i]); 2879 2880 // If this is an 'other' constraint, see if the operand is valid for it. 2881 // For example, on X86 we might have an 'rI' constraint. If the operand 2882 // is an integer in the range [0..31] we want to use I (saving a load 2883 // of a register), otherwise we must use 'r'. 2884 if (CType == TargetLowering::C_Other && Op.getNode()) { 2885 assert(OpInfo.Codes[i].size() == 1 && 2886 "Unhandled multi-letter 'other' constraint"); 2887 std::vector<SDValue> ResultOps; 2888 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2889 ResultOps, *DAG); 2890 if (!ResultOps.empty()) { 2891 BestType = CType; 2892 BestIdx = i; 2893 break; 2894 } 2895 } 2896 2897 // Things with matching constraints can only be registers, per gcc 2898 // documentation. This mainly affects "g" constraints. 2899 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2900 continue; 2901 2902 // This constraint letter is more general than the previous one, use it. 2903 int Generality = getConstraintGenerality(CType); 2904 if (Generality > BestGenerality) { 2905 BestType = CType; 2906 BestIdx = i; 2907 BestGenerality = Generality; 2908 } 2909 } 2910 2911 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2912 OpInfo.ConstraintType = BestType; 2913 } 2914 2915 /// Determines the constraint code and constraint type to use for the specific 2916 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 2917 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2918 SDValue Op, 2919 SelectionDAG *DAG) const { 2920 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2921 2922 // Single-letter constraints ('r') are very common. 2923 if (OpInfo.Codes.size() == 1) { 2924 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2925 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2926 } else { 2927 ChooseConstraint(OpInfo, *this, Op, DAG); 2928 } 2929 2930 // 'X' matches anything. 2931 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2932 // Labels and constants are handled elsewhere ('X' is the only thing 2933 // that matches labels). For Functions, the type here is the type of 2934 // the result, which is not what we want to look at; leave them alone. 2935 Value *v = OpInfo.CallOperandVal; 2936 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2937 OpInfo.CallOperandVal = v; 2938 return; 2939 } 2940 2941 // Otherwise, try to resolve it to something we know about by looking at 2942 // the actual operand type. 2943 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2944 OpInfo.ConstraintCode = Repl; 2945 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2946 } 2947 } 2948 } 2949 2950 /// \brief Given an exact SDIV by a constant, create a multiplication 2951 /// with the multiplicative inverse of the constant. 2952 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2953 const SDLoc &dl, SelectionDAG &DAG, 2954 std::vector<SDNode *> &Created) { 2955 assert(d != 0 && "Division by zero!"); 2956 2957 // Shift the value upfront if it is even, so the LSB is one. 2958 unsigned ShAmt = d.countTrailingZeros(); 2959 if (ShAmt) { 2960 // TODO: For UDIV use SRL instead of SRA. 2961 SDValue Amt = 2962 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2963 DAG.getDataLayout())); 2964 SDNodeFlags Flags; 2965 Flags.setExact(true); 2966 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2967 Created.push_back(Op1.getNode()); 2968 d = d.ashr(ShAmt); 2969 } 2970 2971 // Calculate the multiplicative inverse, using Newton's method. 2972 APInt t, xn = d; 2973 while ((t = d*xn) != 1) 2974 xn *= APInt(d.getBitWidth(), 2) - t; 2975 2976 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2977 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2978 Created.push_back(Mul.getNode()); 2979 return Mul; 2980 } 2981 2982 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 2983 SelectionDAG &DAG, 2984 std::vector<SDNode *> *Created) const { 2985 AttributeList Attr = DAG.getMachineFunction().getFunction()->getAttributes(); 2986 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2987 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 2988 return SDValue(N,0); // Lower SDIV as SDIV 2989 return SDValue(); 2990 } 2991 2992 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2993 /// return a DAG expression to select that will generate the same value by 2994 /// multiplying by a magic number. 2995 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2996 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2997 SelectionDAG &DAG, bool IsAfterLegalization, 2998 std::vector<SDNode *> *Created) const { 2999 assert(Created && "No vector to hold sdiv ops."); 3000 3001 EVT VT = N->getValueType(0); 3002 SDLoc dl(N); 3003 3004 // Check to see if we can do this. 3005 // FIXME: We should be more aggressive here. 3006 if (!isTypeLegal(VT)) 3007 return SDValue(); 3008 3009 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3010 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 3011 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 3012 3013 APInt::ms magics = Divisor.magic(); 3014 3015 // Multiply the numerator (operand 0) by the magic value 3016 // FIXME: We should support doing a MUL in a wider type 3017 SDValue Q; 3018 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 3019 isOperationLegalOrCustom(ISD::MULHS, VT)) 3020 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 3021 DAG.getConstant(magics.m, dl, VT)); 3022 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 3023 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 3024 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 3025 N->getOperand(0), 3026 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3027 else 3028 return SDValue(); // No mulhs or equvialent 3029 // If d > 0 and m < 0, add the numerator 3030 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3031 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 3032 Created->push_back(Q.getNode()); 3033 } 3034 // If d < 0 and m > 0, subtract the numerator. 3035 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3036 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 3037 Created->push_back(Q.getNode()); 3038 } 3039 auto &DL = DAG.getDataLayout(); 3040 // Shift right algebraic if shift value is nonzero 3041 if (magics.s > 0) { 3042 Q = DAG.getNode( 3043 ISD::SRA, dl, VT, Q, 3044 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3045 Created->push_back(Q.getNode()); 3046 } 3047 // Extract the sign bit and add it to the quotient 3048 SDValue T = 3049 DAG.getNode(ISD::SRL, dl, VT, Q, 3050 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 3051 getShiftAmountTy(Q.getValueType(), DL))); 3052 Created->push_back(T.getNode()); 3053 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3054 } 3055 3056 /// \brief Given an ISD::UDIV node expressing a divide by constant, 3057 /// return a DAG expression to select that will generate the same value by 3058 /// multiplying by a magic number. 3059 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3060 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 3061 SelectionDAG &DAG, bool IsAfterLegalization, 3062 std::vector<SDNode *> *Created) const { 3063 assert(Created && "No vector to hold udiv ops."); 3064 3065 EVT VT = N->getValueType(0); 3066 SDLoc dl(N); 3067 auto &DL = DAG.getDataLayout(); 3068 3069 // Check to see if we can do this. 3070 // FIXME: We should be more aggressive here. 3071 if (!isTypeLegal(VT)) 3072 return SDValue(); 3073 3074 // FIXME: We should use a narrower constant when the upper 3075 // bits are known to be zero. 3076 APInt::mu magics = Divisor.magicu(); 3077 3078 SDValue Q = N->getOperand(0); 3079 3080 // If the divisor is even, we can avoid using the expensive fixup by shifting 3081 // the divided value upfront. 3082 if (magics.a != 0 && !Divisor[0]) { 3083 unsigned Shift = Divisor.countTrailingZeros(); 3084 Q = DAG.getNode( 3085 ISD::SRL, dl, VT, Q, 3086 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 3087 Created->push_back(Q.getNode()); 3088 3089 // Get magic number for the shifted divisor. 3090 magics = Divisor.lshr(Shift).magicu(Shift); 3091 assert(magics.a == 0 && "Should use cheap fixup now"); 3092 } 3093 3094 // Multiply the numerator (operand 0) by the magic value 3095 // FIXME: We should support doing a MUL in a wider type 3096 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 3097 isOperationLegalOrCustom(ISD::MULHU, VT)) 3098 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 3099 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 3100 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 3101 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 3102 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 3103 else 3104 return SDValue(); // No mulhu or equivalent 3105 3106 Created->push_back(Q.getNode()); 3107 3108 if (magics.a == 0) { 3109 assert(magics.s < Divisor.getBitWidth() && 3110 "We shouldn't generate an undefined shift!"); 3111 return DAG.getNode( 3112 ISD::SRL, dl, VT, Q, 3113 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 3114 } else { 3115 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 3116 Created->push_back(NPQ.getNode()); 3117 NPQ = DAG.getNode( 3118 ISD::SRL, dl, VT, NPQ, 3119 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 3120 Created->push_back(NPQ.getNode()); 3121 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3122 Created->push_back(NPQ.getNode()); 3123 return DAG.getNode( 3124 ISD::SRL, dl, VT, NPQ, 3125 DAG.getConstant(magics.s - 1, dl, 3126 getShiftAmountTy(NPQ.getValueType(), DL))); 3127 } 3128 } 3129 3130 bool TargetLowering:: 3131 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 3132 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 3133 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 3134 "be a constant integer"); 3135 return true; 3136 } 3137 3138 return false; 3139 } 3140 3141 //===----------------------------------------------------------------------===// 3142 // Legalization Utilities 3143 //===----------------------------------------------------------------------===// 3144 3145 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 3146 SDValue LHS, SDValue RHS, 3147 SmallVectorImpl<SDValue> &Result, 3148 EVT HiLoVT, SelectionDAG &DAG, 3149 MulExpansionKind Kind, SDValue LL, 3150 SDValue LH, SDValue RL, SDValue RH) const { 3151 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 3152 Opcode == ISD::SMUL_LOHI); 3153 3154 bool HasMULHS = (Kind == MulExpansionKind::Always) || 3155 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 3156 bool HasMULHU = (Kind == MulExpansionKind::Always) || 3157 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 3158 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 3159 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 3160 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 3161 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 3162 3163 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 3164 return false; 3165 3166 unsigned OuterBitSize = VT.getScalarSizeInBits(); 3167 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 3168 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 3169 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 3170 3171 // LL, LH, RL, and RH must be either all NULL or all set to a value. 3172 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 3173 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 3174 3175 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 3176 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 3177 bool Signed) -> bool { 3178 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 3179 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 3180 Hi = SDValue(Lo.getNode(), 1); 3181 return true; 3182 } 3183 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 3184 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 3185 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 3186 return true; 3187 } 3188 return false; 3189 }; 3190 3191 SDValue Lo, Hi; 3192 3193 if (!LL.getNode() && !RL.getNode() && 3194 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3195 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 3196 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 3197 } 3198 3199 if (!LL.getNode()) 3200 return false; 3201 3202 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 3203 if (DAG.MaskedValueIsZero(LHS, HighMask) && 3204 DAG.MaskedValueIsZero(RHS, HighMask)) { 3205 // The inputs are both zero-extended. 3206 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 3207 Result.push_back(Lo); 3208 Result.push_back(Hi); 3209 if (Opcode != ISD::MUL) { 3210 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3211 Result.push_back(Zero); 3212 Result.push_back(Zero); 3213 } 3214 return true; 3215 } 3216 } 3217 3218 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 3219 RHSSB > InnerBitSize) { 3220 // The input values are both sign-extended. 3221 // TODO non-MUL case? 3222 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 3223 Result.push_back(Lo); 3224 Result.push_back(Hi); 3225 return true; 3226 } 3227 } 3228 3229 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 3230 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 3231 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 3232 // FIXME getShiftAmountTy does not always return a sensible result when VT 3233 // is an illegal type, and so the type may be too small to fit the shift 3234 // amount. Override it with i32. The shift will have to be legalized. 3235 ShiftAmountTy = MVT::i32; 3236 } 3237 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 3238 3239 if (!LH.getNode() && !RH.getNode() && 3240 isOperationLegalOrCustom(ISD::SRL, VT) && 3241 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 3242 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 3243 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 3244 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 3245 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 3246 } 3247 3248 if (!LH.getNode()) 3249 return false; 3250 3251 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 3252 return false; 3253 3254 Result.push_back(Lo); 3255 3256 if (Opcode == ISD::MUL) { 3257 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 3258 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 3259 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 3260 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 3261 Result.push_back(Hi); 3262 return true; 3263 } 3264 3265 // Compute the full width result. 3266 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 3267 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3268 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3269 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3270 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 3271 }; 3272 3273 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 3274 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 3275 return false; 3276 3277 // This is effectively the add part of a multiply-add of half-sized operands, 3278 // so it cannot overflow. 3279 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3280 3281 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 3282 return false; 3283 3284 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 3285 Merge(Lo, Hi)); 3286 3287 SDValue Carry = Next.getValue(1); 3288 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3289 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3290 3291 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 3292 return false; 3293 3294 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 3295 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 3296 Carry); 3297 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 3298 3299 if (Opcode == ISD::SMUL_LOHI) { 3300 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3301 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 3302 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 3303 3304 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 3305 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 3306 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 3307 } 3308 3309 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3310 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 3311 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 3312 return true; 3313 } 3314 3315 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 3316 SelectionDAG &DAG, MulExpansionKind Kind, 3317 SDValue LL, SDValue LH, SDValue RL, 3318 SDValue RH) const { 3319 SmallVector<SDValue, 2> Result; 3320 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 3321 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 3322 DAG, Kind, LL, LH, RL, RH); 3323 if (Ok) { 3324 assert(Result.size() == 2); 3325 Lo = Result[0]; 3326 Hi = Result[1]; 3327 } 3328 return Ok; 3329 } 3330 3331 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 3332 SelectionDAG &DAG) const { 3333 EVT VT = Node->getOperand(0).getValueType(); 3334 EVT NVT = Node->getValueType(0); 3335 SDLoc dl(SDValue(Node, 0)); 3336 3337 // FIXME: Only f32 to i64 conversions are supported. 3338 if (VT != MVT::f32 || NVT != MVT::i64) 3339 return false; 3340 3341 // Expand f32 -> i64 conversion 3342 // This algorithm comes from compiler-rt's implementation of fixsfdi: 3343 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 3344 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 3345 VT.getSizeInBits()); 3346 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 3347 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 3348 SDValue Bias = DAG.getConstant(127, dl, IntVT); 3349 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 3350 IntVT); 3351 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 3352 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 3353 3354 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3355 3356 auto &DL = DAG.getDataLayout(); 3357 SDValue ExponentBits = DAG.getNode( 3358 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3359 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3360 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3361 3362 SDValue Sign = DAG.getNode( 3363 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3364 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3365 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3366 3367 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3368 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3369 DAG.getConstant(0x00800000, dl, IntVT)); 3370 3371 R = DAG.getZExtOrTrunc(R, dl, NVT); 3372 3373 R = DAG.getSelectCC( 3374 dl, Exponent, ExponentLoBit, 3375 DAG.getNode(ISD::SHL, dl, NVT, R, 3376 DAG.getZExtOrTrunc( 3377 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3378 dl, getShiftAmountTy(IntVT, DL))), 3379 DAG.getNode(ISD::SRL, dl, NVT, R, 3380 DAG.getZExtOrTrunc( 3381 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3382 dl, getShiftAmountTy(IntVT, DL))), 3383 ISD::SETGT); 3384 3385 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3386 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3387 Sign); 3388 3389 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3390 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3391 return true; 3392 } 3393 3394 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 3395 SelectionDAG &DAG) const { 3396 SDLoc SL(LD); 3397 SDValue Chain = LD->getChain(); 3398 SDValue BasePTR = LD->getBasePtr(); 3399 EVT SrcVT = LD->getMemoryVT(); 3400 ISD::LoadExtType ExtType = LD->getExtensionType(); 3401 3402 unsigned NumElem = SrcVT.getVectorNumElements(); 3403 3404 EVT SrcEltVT = SrcVT.getScalarType(); 3405 EVT DstEltVT = LD->getValueType(0).getScalarType(); 3406 3407 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 3408 assert(SrcEltVT.isByteSized()); 3409 3410 EVT PtrVT = BasePTR.getValueType(); 3411 3412 SmallVector<SDValue, 8> Vals; 3413 SmallVector<SDValue, 8> LoadChains; 3414 3415 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3416 SDValue ScalarLoad = 3417 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 3418 LD->getPointerInfo().getWithOffset(Idx * Stride), 3419 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 3420 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3421 3422 BasePTR = DAG.getNode(ISD::ADD, SL, PtrVT, BasePTR, 3423 DAG.getConstant(Stride, SL, PtrVT)); 3424 3425 Vals.push_back(ScalarLoad.getValue(0)); 3426 LoadChains.push_back(ScalarLoad.getValue(1)); 3427 } 3428 3429 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 3430 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 3431 3432 return DAG.getMergeValues({ Value, NewChain }, SL); 3433 } 3434 3435 // FIXME: This relies on each element having a byte size, otherwise the stride 3436 // is 0 and just overwrites the same location. ExpandStore currently expects 3437 // this broken behavior. 3438 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 3439 SelectionDAG &DAG) const { 3440 SDLoc SL(ST); 3441 3442 SDValue Chain = ST->getChain(); 3443 SDValue BasePtr = ST->getBasePtr(); 3444 SDValue Value = ST->getValue(); 3445 EVT StVT = ST->getMemoryVT(); 3446 3447 // The type of the data we want to save 3448 EVT RegVT = Value.getValueType(); 3449 EVT RegSclVT = RegVT.getScalarType(); 3450 3451 // The type of data as saved in memory. 3452 EVT MemSclVT = StVT.getScalarType(); 3453 3454 EVT PtrVT = BasePtr.getValueType(); 3455 3456 // Store Stride in bytes 3457 unsigned Stride = MemSclVT.getSizeInBits() / 8; 3458 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 3459 unsigned NumElem = StVT.getVectorNumElements(); 3460 3461 // Extract each of the elements from the original vector and save them into 3462 // memory individually. 3463 SmallVector<SDValue, 8> Stores; 3464 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 3465 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 3466 DAG.getConstant(Idx, SL, IdxVT)); 3467 3468 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 3469 DAG.getConstant(Idx * Stride, SL, PtrVT)); 3470 3471 // This scalar TruncStore may be illegal, but we legalize it later. 3472 SDValue Store = DAG.getTruncStore( 3473 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 3474 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 3475 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3476 3477 Stores.push_back(Store); 3478 } 3479 3480 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 3481 } 3482 3483 std::pair<SDValue, SDValue> 3484 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 3485 assert(LD->getAddressingMode() == ISD::UNINDEXED && 3486 "unaligned indexed loads not implemented!"); 3487 SDValue Chain = LD->getChain(); 3488 SDValue Ptr = LD->getBasePtr(); 3489 EVT VT = LD->getValueType(0); 3490 EVT LoadedVT = LD->getMemoryVT(); 3491 SDLoc dl(LD); 3492 if (VT.isFloatingPoint() || VT.isVector()) { 3493 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 3494 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 3495 if (!isOperationLegalOrCustom(ISD::LOAD, intVT)) { 3496 // Scalarize the load and let the individual components be handled. 3497 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 3498 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 3499 } 3500 3501 // Expand to a (misaligned) integer load of the same size, 3502 // then bitconvert to floating point or vector. 3503 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 3504 LD->getMemOperand()); 3505 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 3506 if (LoadedVT != VT) 3507 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 3508 ISD::ANY_EXTEND, dl, VT, Result); 3509 3510 return std::make_pair(Result, newLoad.getValue(1)); 3511 } 3512 3513 // Copy the value to a (aligned) stack slot using (unaligned) integer 3514 // loads and stores, then do a (aligned) load from the stack slot. 3515 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 3516 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 3517 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3518 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 3519 3520 // Make sure the stack slot is also aligned for the register type. 3521 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 3522 3523 SmallVector<SDValue, 8> Stores; 3524 SDValue StackPtr = StackBase; 3525 unsigned Offset = 0; 3526 3527 EVT PtrVT = Ptr.getValueType(); 3528 EVT StackPtrVT = StackPtr.getValueType(); 3529 3530 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3531 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3532 3533 // Do all but one copies using the full register width. 3534 for (unsigned i = 1; i < NumRegs; i++) { 3535 // Load one integer register's worth from the original location. 3536 SDValue Load = DAG.getLoad( 3537 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 3538 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 3539 LD->getAAInfo()); 3540 // Follow the load with a store to the stack slot. Remember the store. 3541 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 3542 MachinePointerInfo())); 3543 // Increment the pointers. 3544 Offset += RegBytes; 3545 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3546 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, StackPtr, 3547 StackPtrIncrement); 3548 } 3549 3550 // The last copy may be partial. Do an extending load. 3551 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3552 8 * (LoadedBytes - Offset)); 3553 SDValue Load = 3554 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 3555 LD->getPointerInfo().getWithOffset(Offset), MemVT, 3556 MinAlign(LD->getAlignment(), Offset), 3557 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3558 // Follow the load with a store to the stack slot. Remember the store. 3559 // On big-endian machines this requires a truncating store to ensure 3560 // that the bits end up in the right place. 3561 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 3562 MachinePointerInfo(), MemVT)); 3563 3564 // The order of the stores doesn't matter - say it with a TokenFactor. 3565 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3566 3567 // Finally, perform the original load only redirected to the stack slot. 3568 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 3569 MachinePointerInfo(), LoadedVT); 3570 3571 // Callers expect a MERGE_VALUES node. 3572 return std::make_pair(Load, TF); 3573 } 3574 3575 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 3576 "Unaligned load of unsupported type."); 3577 3578 // Compute the new VT that is half the size of the old one. This is an 3579 // integer MVT. 3580 unsigned NumBits = LoadedVT.getSizeInBits(); 3581 EVT NewLoadedVT; 3582 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 3583 NumBits >>= 1; 3584 3585 unsigned Alignment = LD->getAlignment(); 3586 unsigned IncrementSize = NumBits / 8; 3587 ISD::LoadExtType HiExtType = LD->getExtensionType(); 3588 3589 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 3590 if (HiExtType == ISD::NON_EXTLOAD) 3591 HiExtType = ISD::ZEXTLOAD; 3592 3593 // Load the value in two parts 3594 SDValue Lo, Hi; 3595 if (DAG.getDataLayout().isLittleEndian()) { 3596 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3597 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3598 LD->getAAInfo()); 3599 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3600 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3601 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 3602 LD->getPointerInfo().getWithOffset(IncrementSize), 3603 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3604 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3605 } else { 3606 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 3607 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 3608 LD->getAAInfo()); 3609 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 3610 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 3611 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 3612 LD->getPointerInfo().getWithOffset(IncrementSize), 3613 NewLoadedVT, MinAlign(Alignment, IncrementSize), 3614 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 3615 } 3616 3617 // aggregate the two parts 3618 SDValue ShiftAmount = 3619 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 3620 DAG.getDataLayout())); 3621 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 3622 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 3623 3624 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 3625 Hi.getValue(1)); 3626 3627 return std::make_pair(Result, TF); 3628 } 3629 3630 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 3631 SelectionDAG &DAG) const { 3632 assert(ST->getAddressingMode() == ISD::UNINDEXED && 3633 "unaligned indexed stores not implemented!"); 3634 SDValue Chain = ST->getChain(); 3635 SDValue Ptr = ST->getBasePtr(); 3636 SDValue Val = ST->getValue(); 3637 EVT VT = Val.getValueType(); 3638 int Alignment = ST->getAlignment(); 3639 3640 SDLoc dl(ST); 3641 if (ST->getMemoryVT().isFloatingPoint() || 3642 ST->getMemoryVT().isVector()) { 3643 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 3644 if (isTypeLegal(intVT)) { 3645 if (!isOperationLegalOrCustom(ISD::STORE, intVT)) { 3646 // Scalarize the store and let the individual components be handled. 3647 SDValue Result = scalarizeVectorStore(ST, DAG); 3648 3649 return Result; 3650 } 3651 // Expand to a bitconvert of the value to the integer type of the 3652 // same size, then a (misaligned) int store. 3653 // FIXME: Does not handle truncating floating point stores! 3654 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 3655 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 3656 Alignment, ST->getMemOperand()->getFlags()); 3657 return Result; 3658 } 3659 // Do a (aligned) store to a stack slot, then copy from the stack slot 3660 // to the final destination using (unaligned) integer loads and stores. 3661 EVT StoredVT = ST->getMemoryVT(); 3662 MVT RegVT = 3663 getRegisterType(*DAG.getContext(), 3664 EVT::getIntegerVT(*DAG.getContext(), 3665 StoredVT.getSizeInBits())); 3666 EVT PtrVT = Ptr.getValueType(); 3667 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 3668 unsigned RegBytes = RegVT.getSizeInBits() / 8; 3669 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 3670 3671 // Make sure the stack slot is also aligned for the register type. 3672 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 3673 3674 // Perform the original store, only redirected to the stack slot. 3675 SDValue Store = DAG.getTruncStore(Chain, dl, Val, StackPtr, 3676 MachinePointerInfo(), StoredVT); 3677 3678 EVT StackPtrVT = StackPtr.getValueType(); 3679 3680 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 3681 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 3682 SmallVector<SDValue, 8> Stores; 3683 unsigned Offset = 0; 3684 3685 // Do all but one copies using the full register width. 3686 for (unsigned i = 1; i < NumRegs; i++) { 3687 // Load one integer register's worth from the stack slot. 3688 SDValue Load = 3689 DAG.getLoad(RegVT, dl, Store, StackPtr, MachinePointerInfo()); 3690 // Store it to the final location. Remember the store. 3691 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 3692 ST->getPointerInfo().getWithOffset(Offset), 3693 MinAlign(ST->getAlignment(), Offset), 3694 ST->getMemOperand()->getFlags())); 3695 // Increment the pointers. 3696 Offset += RegBytes; 3697 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtrVT, 3698 StackPtr, StackPtrIncrement); 3699 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, PtrIncrement); 3700 } 3701 3702 // The last store may be partial. Do a truncating store. On big-endian 3703 // machines this requires an extending load from the stack slot to ensure 3704 // that the bits are in the right place. 3705 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 3706 8 * (StoredBytes - Offset)); 3707 3708 // Load from the stack slot. 3709 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 3710 MachinePointerInfo(), MemVT); 3711 3712 Stores.push_back( 3713 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 3714 ST->getPointerInfo().getWithOffset(Offset), MemVT, 3715 MinAlign(ST->getAlignment(), Offset), 3716 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 3717 // The order of the stores doesn't matter - say it with a TokenFactor. 3718 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 3719 return Result; 3720 } 3721 3722 assert(ST->getMemoryVT().isInteger() && 3723 !ST->getMemoryVT().isVector() && 3724 "Unaligned store of unknown type."); 3725 // Get the half-size VT 3726 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 3727 int NumBits = NewStoredVT.getSizeInBits(); 3728 int IncrementSize = NumBits / 8; 3729 3730 // Divide the stored value in two parts. 3731 SDValue ShiftAmount = 3732 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 3733 DAG.getDataLayout())); 3734 SDValue Lo = Val; 3735 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 3736 3737 // Store the two parts 3738 SDValue Store1, Store2; 3739 Store1 = DAG.getTruncStore(Chain, dl, 3740 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 3741 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 3742 ST->getMemOperand()->getFlags()); 3743 3744 EVT PtrVT = Ptr.getValueType(); 3745 Ptr = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3746 DAG.getConstant(IncrementSize, dl, PtrVT)); 3747 Alignment = MinAlign(Alignment, IncrementSize); 3748 Store2 = DAG.getTruncStore( 3749 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 3750 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 3751 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 3752 3753 SDValue Result = 3754 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 3755 return Result; 3756 } 3757 3758 SDValue 3759 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 3760 const SDLoc &DL, EVT DataVT, 3761 SelectionDAG &DAG, 3762 bool IsCompressedMemory) const { 3763 SDValue Increment; 3764 EVT AddrVT = Addr.getValueType(); 3765 EVT MaskVT = Mask.getValueType(); 3766 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 3767 "Incompatible types of Data and Mask"); 3768 if (IsCompressedMemory) { 3769 // Incrementing the pointer according to number of '1's in the mask. 3770 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 3771 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 3772 if (MaskIntVT.getSizeInBits() < 32) { 3773 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 3774 MaskIntVT = MVT::i32; 3775 } 3776 3777 // Count '1's with POPCNT. 3778 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 3779 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 3780 // Scale is an element size in bytes. 3781 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 3782 AddrVT); 3783 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 3784 } else 3785 Increment = DAG.getConstant(DataVT.getSizeInBits() / 8, DL, AddrVT); 3786 3787 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 3788 } 3789 3790 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 3791 SDValue Idx, 3792 EVT VecVT, 3793 const SDLoc &dl) { 3794 if (isa<ConstantSDNode>(Idx)) 3795 return Idx; 3796 3797 EVT IdxVT = Idx.getValueType(); 3798 unsigned NElts = VecVT.getVectorNumElements(); 3799 if (isPowerOf2_32(NElts)) { 3800 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 3801 Log2_32(NElts)); 3802 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 3803 DAG.getConstant(Imm, dl, IdxVT)); 3804 } 3805 3806 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 3807 DAG.getConstant(NElts - 1, dl, IdxVT)); 3808 } 3809 3810 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 3811 SDValue VecPtr, EVT VecVT, 3812 SDValue Index) const { 3813 SDLoc dl(Index); 3814 // Make sure the index type is big enough to compute in. 3815 Index = DAG.getZExtOrTrunc(Index, dl, getPointerTy(DAG.getDataLayout())); 3816 3817 EVT EltVT = VecVT.getVectorElementType(); 3818 3819 // Calculate the element offset and add it to the pointer. 3820 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 3821 assert(EltSize * 8 == EltVT.getSizeInBits() && 3822 "Converting bits to bytes lost precision"); 3823 3824 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 3825 3826 EVT IdxVT = Index.getValueType(); 3827 3828 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 3829 DAG.getConstant(EltSize, dl, IdxVT)); 3830 return DAG.getNode(ISD::ADD, dl, IdxVT, Index, VecPtr); 3831 } 3832 3833 //===----------------------------------------------------------------------===// 3834 // Implementation of Emulated TLS Model 3835 //===----------------------------------------------------------------------===// 3836 3837 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 3838 SelectionDAG &DAG) const { 3839 // Access to address of TLS varialbe xyz is lowered to a function call: 3840 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 3841 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 3842 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 3843 SDLoc dl(GA); 3844 3845 ArgListTy Args; 3846 ArgListEntry Entry; 3847 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 3848 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 3849 StringRef EmuTlsVarName(NameString); 3850 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 3851 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 3852 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 3853 Entry.Ty = VoidPtrType; 3854 Args.push_back(Entry); 3855 3856 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 3857 3858 TargetLowering::CallLoweringInfo CLI(DAG); 3859 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 3860 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 3861 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 3862 3863 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 3864 // At last for X86 targets, maybe good for other targets too? 3865 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 3866 MFI.setAdjustsStack(true); // Is this only for X86 target? 3867 MFI.setHasCalls(true); 3868 3869 assert((GA->getOffset() == 0) && 3870 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 3871 return CallResult.first; 3872 } 3873 3874 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 3875 SelectionDAG &DAG) const { 3876 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 3877 if (!isCtlzFast()) 3878 return SDValue(); 3879 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 3880 SDLoc dl(Op); 3881 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 3882 if (C->isNullValue() && CC == ISD::SETEQ) { 3883 EVT VT = Op.getOperand(0).getValueType(); 3884 SDValue Zext = Op.getOperand(0); 3885 if (VT.bitsLT(MVT::i32)) { 3886 VT = MVT::i32; 3887 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 3888 } 3889 unsigned Log2b = Log2_32(VT.getSizeInBits()); 3890 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 3891 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 3892 DAG.getConstant(Log2b, dl, MVT::i32)); 3893 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 3894 } 3895 } 3896 return SDValue(); 3897 } 3898