1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
103                                                      unsigned ArgIdx) {
104   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment = Call->getParamAlignment(ArgIdx);
115   ByValType = nullptr;
116   if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
117     ByValType = Call->getParamByValType(ArgIdx);
118 }
119 
120 /// Generate a libcall taking the given operands as arguments and returning a
121 /// result of type RetVT.
122 std::pair<SDValue, SDValue>
123 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
124                             ArrayRef<SDValue> Ops, bool isSigned,
125                             const SDLoc &dl, bool doesNotReturn,
126                             bool isReturnValueUsed,
127                             bool isPostTypeLegalization) const {
128   TargetLowering::ArgListTy Args;
129   Args.reserve(Ops.size());
130 
131   TargetLowering::ArgListEntry Entry;
132   for (SDValue Op : Ops) {
133     Entry.Node = Op;
134     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
135     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
136     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
137     Args.push_back(Entry);
138   }
139 
140   if (LC == RTLIB::UNKNOWN_LIBCALL)
141     report_fatal_error("Unsupported library call operation!");
142   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
143                                          getPointerTy(DAG.getDataLayout()));
144 
145   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
146   TargetLowering::CallLoweringInfo CLI(DAG);
147   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
148   CLI.setDebugLoc(dl)
149       .setChain(DAG.getEntryNode())
150       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
151       .setNoReturn(doesNotReturn)
152       .setDiscardResult(!isReturnValueUsed)
153       .setIsPostTypeLegalization(isPostTypeLegalization)
154       .setSExtResult(signExtend)
155       .setZExtResult(!signExtend);
156   return LowerCallTo(CLI);
157 }
158 
159 bool
160 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
161                                          unsigned Limit, uint64_t Size,
162                                          unsigned DstAlign, unsigned SrcAlign,
163                                          bool IsMemset,
164                                          bool ZeroMemset,
165                                          bool MemcpyStrSrc,
166                                          bool AllowOverlap,
167                                          unsigned DstAS, unsigned SrcAS,
168                                          const AttributeList &FuncAttributes) const {
169   // If 'SrcAlign' is zero, that means the memory operation does not need to
170   // load the value, i.e. memset or memcpy from constant string. Otherwise,
171   // it's the inferred alignment of the source. 'DstAlign', on the other hand,
172   // is the specified alignment of the memory operation. If it is zero, that
173   // means it's possible to change the alignment of the destination.
174   // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
175   // not need to be loaded.
176   if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
177     return false;
178 
179   EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
180                                IsMemset, ZeroMemset, MemcpyStrSrc,
181                                FuncAttributes);
182 
183   if (VT == MVT::Other) {
184     // Use the largest integer type whose alignment constraints are satisfied.
185     // We only need to check DstAlign here as SrcAlign is always greater or
186     // equal to DstAlign (or zero).
187     VT = MVT::i64;
188     while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
189            !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
190       VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
191     assert(VT.isInteger());
192 
193     // Find the largest legal integer type.
194     MVT LVT = MVT::i64;
195     while (!isTypeLegal(LVT))
196       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
197     assert(LVT.isInteger());
198 
199     // If the type we've chosen is larger than the largest legal integer type
200     // then use that instead.
201     if (VT.bitsGT(LVT))
202       VT = LVT;
203   }
204 
205   unsigned NumMemOps = 0;
206   while (Size != 0) {
207     unsigned VTSize = VT.getSizeInBits() / 8;
208     while (VTSize > Size) {
209       // For now, only use non-vector load / store's for the left-over pieces.
210       EVT NewVT = VT;
211       unsigned NewVTSize;
212 
213       bool Found = false;
214       if (VT.isVector() || VT.isFloatingPoint()) {
215         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
216         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
217             isSafeMemOpType(NewVT.getSimpleVT()))
218           Found = true;
219         else if (NewVT == MVT::i64 &&
220                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
221                  isSafeMemOpType(MVT::f64)) {
222           // i64 is usually not legal on 32-bit targets, but f64 may be.
223           NewVT = MVT::f64;
224           Found = true;
225         }
226       }
227 
228       if (!Found) {
229         do {
230           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
231           if (NewVT == MVT::i8)
232             break;
233         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
234       }
235       NewVTSize = NewVT.getSizeInBits() / 8;
236 
237       // If the new VT cannot cover all of the remaining bits, then consider
238       // issuing a (or a pair of) unaligned and overlapping load / store.
239       bool Fast;
240       if (NumMemOps && AllowOverlap && NewVTSize < Size &&
241           allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
242                                          MachineMemOperand::MONone, &Fast) &&
243           Fast)
244         VTSize = Size;
245       else {
246         VT = NewVT;
247         VTSize = NewVTSize;
248       }
249     }
250 
251     if (++NumMemOps > Limit)
252       return false;
253 
254     MemOps.push_back(VT);
255     Size -= VTSize;
256   }
257 
258   return true;
259 }
260 
261 /// Soften the operands of a comparison. This code is shared among BR_CC,
262 /// SELECT_CC, and SETCC handlers.
263 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
264                                          SDValue &NewLHS, SDValue &NewRHS,
265                                          ISD::CondCode &CCCode,
266                                          const SDLoc &dl) const {
267   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
268          && "Unsupported setcc type!");
269 
270   // Expand into one or more soft-fp libcall(s).
271   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
272   bool ShouldInvertCC = false;
273   switch (CCCode) {
274   case ISD::SETEQ:
275   case ISD::SETOEQ:
276     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
277           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
278           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
279     break;
280   case ISD::SETNE:
281   case ISD::SETUNE:
282     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
283           (VT == MVT::f64) ? RTLIB::UNE_F64 :
284           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
285     break;
286   case ISD::SETGE:
287   case ISD::SETOGE:
288     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
289           (VT == MVT::f64) ? RTLIB::OGE_F64 :
290           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
291     break;
292   case ISD::SETLT:
293   case ISD::SETOLT:
294     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
295           (VT == MVT::f64) ? RTLIB::OLT_F64 :
296           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
297     break;
298   case ISD::SETLE:
299   case ISD::SETOLE:
300     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
301           (VT == MVT::f64) ? RTLIB::OLE_F64 :
302           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
303     break;
304   case ISD::SETGT:
305   case ISD::SETOGT:
306     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
307           (VT == MVT::f64) ? RTLIB::OGT_F64 :
308           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
309     break;
310   case ISD::SETUO:
311     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
312           (VT == MVT::f64) ? RTLIB::UO_F64 :
313           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
314     break;
315   case ISD::SETO:
316     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
317           (VT == MVT::f64) ? RTLIB::O_F64 :
318           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
319     break;
320   case ISD::SETONE:
321     // SETONE = SETOLT | SETOGT
322     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
323           (VT == MVT::f64) ? RTLIB::OLT_F64 :
324           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
325     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
326           (VT == MVT::f64) ? RTLIB::OGT_F64 :
327           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
328     break;
329   case ISD::SETUEQ:
330     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
331           (VT == MVT::f64) ? RTLIB::UO_F64 :
332           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
333     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
334           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
335           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
336     break;
337   default:
338     // Invert CC for unordered comparisons
339     ShouldInvertCC = true;
340     switch (CCCode) {
341     case ISD::SETULT:
342       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
343             (VT == MVT::f64) ? RTLIB::OGE_F64 :
344             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
345       break;
346     case ISD::SETULE:
347       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
348             (VT == MVT::f64) ? RTLIB::OGT_F64 :
349             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
350       break;
351     case ISD::SETUGT:
352       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
353             (VT == MVT::f64) ? RTLIB::OLE_F64 :
354             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
355       break;
356     case ISD::SETUGE:
357       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
358             (VT == MVT::f64) ? RTLIB::OLT_F64 :
359             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
360       break;
361     default: llvm_unreachable("Do not know how to soften this setcc!");
362     }
363   }
364 
365   // Use the target specific return value for comparions lib calls.
366   EVT RetVT = getCmpLibcallReturnType();
367   SDValue Ops[2] = {NewLHS, NewRHS};
368   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
369                        dl).first;
370   NewRHS = DAG.getConstant(0, dl, RetVT);
371 
372   CCCode = getCmpLibcallCC(LC1);
373   if (ShouldInvertCC)
374     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
375 
376   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
377     SDValue Tmp = DAG.getNode(
378         ISD::SETCC, dl,
379         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
380         NewLHS, NewRHS, DAG.getCondCode(CCCode));
381     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
382                          dl).first;
383     NewLHS = DAG.getNode(
384         ISD::SETCC, dl,
385         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
386         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
387     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
388     NewRHS = SDValue();
389   }
390 }
391 
392 /// Return the entry encoding for a jump table in the current function. The
393 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
394 unsigned TargetLowering::getJumpTableEncoding() const {
395   // In non-pic modes, just use the address of a block.
396   if (!isPositionIndependent())
397     return MachineJumpTableInfo::EK_BlockAddress;
398 
399   // In PIC mode, if the target supports a GPRel32 directive, use it.
400   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
401     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
402 
403   // Otherwise, use a label difference.
404   return MachineJumpTableInfo::EK_LabelDifference32;
405 }
406 
407 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
408                                                  SelectionDAG &DAG) const {
409   // If our PIC model is GP relative, use the global offset table as the base.
410   unsigned JTEncoding = getJumpTableEncoding();
411 
412   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
413       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
414     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
415 
416   return Table;
417 }
418 
419 /// This returns the relocation base for the given PIC jumptable, the same as
420 /// getPICJumpTableRelocBase, but as an MCExpr.
421 const MCExpr *
422 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
423                                              unsigned JTI,MCContext &Ctx) const{
424   // The normal PIC reloc base is the label at the start of the jump table.
425   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
426 }
427 
428 bool
429 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
430   const TargetMachine &TM = getTargetMachine();
431   const GlobalValue *GV = GA->getGlobal();
432 
433   // If the address is not even local to this DSO we will have to load it from
434   // a got and then add the offset.
435   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
436     return false;
437 
438   // If the code is position independent we will have to add a base register.
439   if (isPositionIndependent())
440     return false;
441 
442   // Otherwise we can do it.
443   return true;
444 }
445 
446 //===----------------------------------------------------------------------===//
447 //  Optimization Methods
448 //===----------------------------------------------------------------------===//
449 
450 /// If the specified instruction has a constant integer operand and there are
451 /// bits set in that constant that are not demanded, then clear those bits and
452 /// return true.
453 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
454                                             TargetLoweringOpt &TLO) const {
455   SDLoc DL(Op);
456   unsigned Opcode = Op.getOpcode();
457 
458   // Do target-specific constant optimization.
459   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
460     return TLO.New.getNode();
461 
462   // FIXME: ISD::SELECT, ISD::SELECT_CC
463   switch (Opcode) {
464   default:
465     break;
466   case ISD::XOR:
467   case ISD::AND:
468   case ISD::OR: {
469     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
470     if (!Op1C)
471       return false;
472 
473     // If this is a 'not' op, don't touch it because that's a canonical form.
474     const APInt &C = Op1C->getAPIntValue();
475     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
476       return false;
477 
478     if (!C.isSubsetOf(Demanded)) {
479       EVT VT = Op.getValueType();
480       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
481       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
482       return TLO.CombineTo(Op, NewOp);
483     }
484 
485     break;
486   }
487   }
488 
489   return false;
490 }
491 
492 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
493 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
494 /// generalized for targets with other types of implicit widening casts.
495 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
496                                       const APInt &Demanded,
497                                       TargetLoweringOpt &TLO) const {
498   assert(Op.getNumOperands() == 2 &&
499          "ShrinkDemandedOp only supports binary operators!");
500   assert(Op.getNode()->getNumValues() == 1 &&
501          "ShrinkDemandedOp only supports nodes with one result!");
502 
503   SelectionDAG &DAG = TLO.DAG;
504   SDLoc dl(Op);
505 
506   // Early return, as this function cannot handle vector types.
507   if (Op.getValueType().isVector())
508     return false;
509 
510   // Don't do this if the node has another user, which may require the
511   // full value.
512   if (!Op.getNode()->hasOneUse())
513     return false;
514 
515   // Search for the smallest integer type with free casts to and from
516   // Op's type. For expedience, just check power-of-2 integer types.
517   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
518   unsigned DemandedSize = Demanded.getActiveBits();
519   unsigned SmallVTBits = DemandedSize;
520   if (!isPowerOf2_32(SmallVTBits))
521     SmallVTBits = NextPowerOf2(SmallVTBits);
522   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
523     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
524     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
525         TLI.isZExtFree(SmallVT, Op.getValueType())) {
526       // We found a type with free casts.
527       SDValue X = DAG.getNode(
528           Op.getOpcode(), dl, SmallVT,
529           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
530           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
531       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
532       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
533       return TLO.CombineTo(Op, Z);
534     }
535   }
536   return false;
537 }
538 
539 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
540                                           DAGCombinerInfo &DCI) const {
541   SelectionDAG &DAG = DCI.DAG;
542   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
543                         !DCI.isBeforeLegalizeOps());
544   KnownBits Known;
545 
546   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
547   if (Simplified) {
548     DCI.AddToWorklist(Op.getNode());
549     DCI.CommitTargetLoweringOpt(TLO);
550   }
551   return Simplified;
552 }
553 
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555                                           KnownBits &Known,
556                                           TargetLoweringOpt &TLO,
557                                           unsigned Depth,
558                                           bool AssumeSingleUse) const {
559   EVT VT = Op.getValueType();
560   APInt DemandedElts = VT.isVector()
561                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
562                            : APInt(1, 1);
563   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
564                               AssumeSingleUse);
565 }
566 
567 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
568 // TODO: Under what circumstances can we create nodes? Constant folding?
569 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
570     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
571     SelectionDAG &DAG, unsigned Depth) const {
572   if (Depth >= 6) // Limit search depth.
573     return SDValue();
574 
575   unsigned NumElts = DemandedElts.getBitWidth();
576   KnownBits LHSKnown, RHSKnown;
577   switch (Op.getOpcode()) {
578   case ISD::BITCAST: {
579     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
580     EVT SrcVT = Src.getValueType();
581     EVT DstVT = Op.getValueType();
582     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
583     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
584 
585     if (NumSrcEltBits == NumDstEltBits)
586       if (SDValue V = SimplifyMultipleUseDemandedBits(
587               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
588         return DAG.getBitcast(DstVT, V);
589 
590     // TODO - bigendian once we have test coverage.
591     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
592         DAG.getDataLayout().isLittleEndian()) {
593       unsigned Scale = NumDstEltBits / NumSrcEltBits;
594       unsigned NumSrcElts = SrcVT.getVectorNumElements();
595       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
596       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
597       for (unsigned i = 0; i != Scale; ++i) {
598         unsigned Offset = i * NumSrcEltBits;
599         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
600         if (!Sub.isNullValue()) {
601           DemandedSrcBits |= Sub;
602           for (unsigned j = 0; j != NumElts; ++j)
603             if (DemandedElts[j])
604               DemandedSrcElts.setBit((j * Scale) + i);
605         }
606       }
607 
608       if (SDValue V = SimplifyMultipleUseDemandedBits(
609               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
610         return DAG.getBitcast(DstVT, V);
611     }
612 
613     // TODO - bigendian once we have test coverage.
614     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
615         DAG.getDataLayout().isLittleEndian()) {
616       unsigned Scale = NumSrcEltBits / NumDstEltBits;
617       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
618       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
619       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
620       for (unsigned i = 0; i != NumElts; ++i)
621         if (DemandedElts[i]) {
622           unsigned Offset = (i % Scale) * NumDstEltBits;
623           DemandedSrcBits.insertBits(DemandedBits, Offset);
624           DemandedSrcElts.setBit(i / Scale);
625         }
626 
627       if (SDValue V = SimplifyMultipleUseDemandedBits(
628               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
629         return DAG.getBitcast(DstVT, V);
630     }
631 
632     break;
633   }
634   case ISD::AND: {
635     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
636     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
637 
638     // If all of the demanded bits are known 1 on one side, return the other.
639     // These bits cannot contribute to the result of the 'and' in this
640     // context.
641     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
642       return Op.getOperand(0);
643     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
644       return Op.getOperand(1);
645     break;
646   }
647   case ISD::OR: {
648     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
649     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
650 
651     // If all of the demanded bits are known zero on one side, return the
652     // other.  These bits cannot contribute to the result of the 'or' in this
653     // context.
654     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
655       return Op.getOperand(0);
656     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
657       return Op.getOperand(1);
658     break;
659   }
660   case ISD::XOR: {
661     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
662     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
663 
664     // If all of the demanded bits are known zero on one side, return the
665     // other.
666     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
667       return Op.getOperand(0);
668     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
669       return Op.getOperand(1);
670     break;
671   }
672   case ISD::SIGN_EXTEND_INREG: {
673     // If none of the extended bits are demanded, eliminate the sextinreg.
674     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
675     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
676       return Op.getOperand(0);
677     break;
678   }
679   case ISD::INSERT_VECTOR_ELT: {
680     // If we don't demand the inserted element, return the base vector.
681     SDValue Vec = Op.getOperand(0);
682     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
683     EVT VecVT = Vec.getValueType();
684     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
685         !DemandedElts[CIdx->getZExtValue()])
686       return Vec;
687     break;
688   }
689   case ISD::VECTOR_SHUFFLE: {
690     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
691 
692     // If all the demanded elts are from one operand and are inline,
693     // then we can use the operand directly.
694     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
695     for (unsigned i = 0; i != NumElts; ++i) {
696       int M = ShuffleMask[i];
697       if (M < 0 || !DemandedElts[i])
698         continue;
699       AllUndef = false;
700       IdentityLHS &= (M == (int)i);
701       IdentityRHS &= ((M - NumElts) == i);
702     }
703 
704     if (AllUndef)
705       return DAG.getUNDEF(Op.getValueType());
706     if (IdentityLHS)
707       return Op.getOperand(0);
708     if (IdentityRHS)
709       return Op.getOperand(1);
710     break;
711   }
712   default:
713     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
714       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
715               Op, DemandedBits, DemandedElts, DAG, Depth))
716         return V;
717     break;
718   }
719   return SDValue();
720 }
721 
722 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
723 /// result of Op are ever used downstream. If we can use this information to
724 /// simplify Op, create a new simplified DAG node and return true, returning the
725 /// original and new nodes in Old and New. Otherwise, analyze the expression and
726 /// return a mask of Known bits for the expression (used to simplify the
727 /// caller).  The Known bits may only be accurate for those bits in the
728 /// OriginalDemandedBits and OriginalDemandedElts.
729 bool TargetLowering::SimplifyDemandedBits(
730     SDValue Op, const APInt &OriginalDemandedBits,
731     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
732     unsigned Depth, bool AssumeSingleUse) const {
733   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
734   assert(Op.getScalarValueSizeInBits() == BitWidth &&
735          "Mask size mismatches value type size!");
736 
737   unsigned NumElts = OriginalDemandedElts.getBitWidth();
738   assert((!Op.getValueType().isVector() ||
739           NumElts == Op.getValueType().getVectorNumElements()) &&
740          "Unexpected vector size");
741 
742   APInt DemandedBits = OriginalDemandedBits;
743   APInt DemandedElts = OriginalDemandedElts;
744   SDLoc dl(Op);
745   auto &DL = TLO.DAG.getDataLayout();
746 
747   // Don't know anything.
748   Known = KnownBits(BitWidth);
749 
750   // Undef operand.
751   if (Op.isUndef())
752     return false;
753 
754   if (Op.getOpcode() == ISD::Constant) {
755     // We know all of the bits for a constant!
756     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
757     Known.Zero = ~Known.One;
758     return false;
759   }
760 
761   // Other users may use these bits.
762   EVT VT = Op.getValueType();
763   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
764     if (Depth != 0) {
765       // If not at the root, Just compute the Known bits to
766       // simplify things downstream.
767       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
768       return false;
769     }
770     // If this is the root being simplified, allow it to have multiple uses,
771     // just set the DemandedBits/Elts to all bits.
772     DemandedBits = APInt::getAllOnesValue(BitWidth);
773     DemandedElts = APInt::getAllOnesValue(NumElts);
774   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
775     // Not demanding any bits/elts from Op.
776     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
777   } else if (Depth >= 6) { // Limit search depth.
778     return false;
779   }
780 
781   KnownBits Known2, KnownOut;
782   switch (Op.getOpcode()) {
783   case ISD::SCALAR_TO_VECTOR: {
784     if (!DemandedElts[0])
785       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
786 
787     KnownBits SrcKnown;
788     SDValue Src = Op.getOperand(0);
789     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
790     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
791     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
792       return true;
793     Known = SrcKnown.zextOrTrunc(BitWidth, false);
794     break;
795   }
796   case ISD::BUILD_VECTOR:
797     // Collect the known bits that are shared by every demanded element.
798     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
799     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
800     return false; // Don't fall through, will infinitely loop.
801   case ISD::LOAD: {
802     LoadSDNode *LD = cast<LoadSDNode>(Op);
803     if (getTargetConstantFromLoad(LD)) {
804       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
805       return false; // Don't fall through, will infinitely loop.
806     }
807     break;
808   }
809   case ISD::INSERT_VECTOR_ELT: {
810     SDValue Vec = Op.getOperand(0);
811     SDValue Scl = Op.getOperand(1);
812     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
813     EVT VecVT = Vec.getValueType();
814 
815     // If index isn't constant, assume we need all vector elements AND the
816     // inserted element.
817     APInt DemandedVecElts(DemandedElts);
818     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
819       unsigned Idx = CIdx->getZExtValue();
820       DemandedVecElts.clearBit(Idx);
821 
822       // Inserted element is not required.
823       if (!DemandedElts[Idx])
824         return TLO.CombineTo(Op, Vec);
825     }
826 
827     KnownBits KnownScl;
828     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
829     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
830     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
831       return true;
832 
833     Known = KnownScl.zextOrTrunc(BitWidth, false);
834 
835     KnownBits KnownVec;
836     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
837                              Depth + 1))
838       return true;
839 
840     if (!!DemandedVecElts) {
841       Known.One &= KnownVec.One;
842       Known.Zero &= KnownVec.Zero;
843     }
844 
845     return false;
846   }
847   case ISD::INSERT_SUBVECTOR: {
848     SDValue Base = Op.getOperand(0);
849     SDValue Sub = Op.getOperand(1);
850     EVT SubVT = Sub.getValueType();
851     unsigned NumSubElts = SubVT.getVectorNumElements();
852 
853     // If index isn't constant, assume we need the original demanded base
854     // elements and ALL the inserted subvector elements.
855     APInt BaseElts = DemandedElts;
856     APInt SubElts = APInt::getAllOnesValue(NumSubElts);
857     if (isa<ConstantSDNode>(Op.getOperand(2))) {
858       const APInt &Idx = Op.getConstantOperandAPInt(2);
859       if (Idx.ule(NumElts - NumSubElts)) {
860         unsigned SubIdx = Idx.getZExtValue();
861         SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
862         BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
863       }
864     }
865 
866     KnownBits KnownSub, KnownBase;
867     if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
868                              Depth + 1))
869       return true;
870     if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
871                              Depth + 1))
872       return true;
873 
874     Known.Zero.setAllBits();
875     Known.One.setAllBits();
876     if (!!SubElts) {
877         Known.One &= KnownSub.One;
878         Known.Zero &= KnownSub.Zero;
879     }
880     if (!!BaseElts) {
881         Known.One &= KnownBase.One;
882         Known.Zero &= KnownBase.Zero;
883     }
884     break;
885   }
886   case ISD::CONCAT_VECTORS: {
887     Known.Zero.setAllBits();
888     Known.One.setAllBits();
889     EVT SubVT = Op.getOperand(0).getValueType();
890     unsigned NumSubVecs = Op.getNumOperands();
891     unsigned NumSubElts = SubVT.getVectorNumElements();
892     for (unsigned i = 0; i != NumSubVecs; ++i) {
893       APInt DemandedSubElts =
894           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
895       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
896                                Known2, TLO, Depth + 1))
897         return true;
898       // Known bits are shared by every demanded subvector element.
899       if (!!DemandedSubElts) {
900         Known.One &= Known2.One;
901         Known.Zero &= Known2.Zero;
902       }
903     }
904     break;
905   }
906   case ISD::VECTOR_SHUFFLE: {
907     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
908 
909     // Collect demanded elements from shuffle operands..
910     APInt DemandedLHS(NumElts, 0);
911     APInt DemandedRHS(NumElts, 0);
912     for (unsigned i = 0; i != NumElts; ++i) {
913       if (!DemandedElts[i])
914         continue;
915       int M = ShuffleMask[i];
916       if (M < 0) {
917         // For UNDEF elements, we don't know anything about the common state of
918         // the shuffle result.
919         DemandedLHS.clearAllBits();
920         DemandedRHS.clearAllBits();
921         break;
922       }
923       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
924       if (M < (int)NumElts)
925         DemandedLHS.setBit(M);
926       else
927         DemandedRHS.setBit(M - NumElts);
928     }
929 
930     if (!!DemandedLHS || !!DemandedRHS) {
931       Known.Zero.setAllBits();
932       Known.One.setAllBits();
933       if (!!DemandedLHS) {
934         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
935                                  Known2, TLO, Depth + 1))
936           return true;
937         Known.One &= Known2.One;
938         Known.Zero &= Known2.Zero;
939       }
940       if (!!DemandedRHS) {
941         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
942                                  Known2, TLO, Depth + 1))
943           return true;
944         Known.One &= Known2.One;
945         Known.Zero &= Known2.Zero;
946       }
947     }
948     break;
949   }
950   case ISD::AND: {
951     SDValue Op0 = Op.getOperand(0);
952     SDValue Op1 = Op.getOperand(1);
953 
954     // If the RHS is a constant, check to see if the LHS would be zero without
955     // using the bits from the RHS.  Below, we use knowledge about the RHS to
956     // simplify the LHS, here we're using information from the LHS to simplify
957     // the RHS.
958     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
959       // Do not increment Depth here; that can cause an infinite loop.
960       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
961       // If the LHS already has zeros where RHSC does, this 'and' is dead.
962       if ((LHSKnown.Zero & DemandedBits) ==
963           (~RHSC->getAPIntValue() & DemandedBits))
964         return TLO.CombineTo(Op, Op0);
965 
966       // If any of the set bits in the RHS are known zero on the LHS, shrink
967       // the constant.
968       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
969         return true;
970 
971       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
972       // constant, but if this 'and' is only clearing bits that were just set by
973       // the xor, then this 'and' can be eliminated by shrinking the mask of
974       // the xor. For example, for a 32-bit X:
975       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
976       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
977           LHSKnown.One == ~RHSC->getAPIntValue()) {
978         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
979         return TLO.CombineTo(Op, Xor);
980       }
981     }
982 
983     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
984                              Depth + 1))
985       return true;
986     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
987     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
988                              Known2, TLO, Depth + 1))
989       return true;
990     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
991 
992     // Attempt to avoid multi-use ops if we don't need anything from them.
993     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
994       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
995           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
996       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
997           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
998       if (DemandedOp0 || DemandedOp1) {
999         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1000         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1001         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1002         return TLO.CombineTo(Op, NewOp);
1003       }
1004     }
1005 
1006     // If all of the demanded bits are known one on one side, return the other.
1007     // These bits cannot contribute to the result of the 'and'.
1008     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1009       return TLO.CombineTo(Op, Op0);
1010     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1011       return TLO.CombineTo(Op, Op1);
1012     // If all of the demanded bits in the inputs are known zeros, return zero.
1013     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1014       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1015     // If the RHS is a constant, see if we can simplify it.
1016     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1017       return true;
1018     // If the operation can be done in a smaller type, do so.
1019     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1020       return true;
1021 
1022     // Output known-1 bits are only known if set in both the LHS & RHS.
1023     Known.One &= Known2.One;
1024     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1025     Known.Zero |= Known2.Zero;
1026     break;
1027   }
1028   case ISD::OR: {
1029     SDValue Op0 = Op.getOperand(0);
1030     SDValue Op1 = Op.getOperand(1);
1031 
1032     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1033                              Depth + 1))
1034       return true;
1035     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1036     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1037                              Known2, TLO, Depth + 1))
1038       return true;
1039     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1040 
1041     // Attempt to avoid multi-use ops if we don't need anything from them.
1042     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1043       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1044           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1045       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1046           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1047       if (DemandedOp0 || DemandedOp1) {
1048         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1049         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1050         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1051         return TLO.CombineTo(Op, NewOp);
1052       }
1053     }
1054 
1055     // If all of the demanded bits are known zero on one side, return the other.
1056     // These bits cannot contribute to the result of the 'or'.
1057     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1058       return TLO.CombineTo(Op, Op0);
1059     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1060       return TLO.CombineTo(Op, Op1);
1061     // If the RHS is a constant, see if we can simplify it.
1062     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1063       return true;
1064     // If the operation can be done in a smaller type, do so.
1065     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1066       return true;
1067 
1068     // Output known-0 bits are only known if clear in both the LHS & RHS.
1069     Known.Zero &= Known2.Zero;
1070     // Output known-1 are known to be set if set in either the LHS | RHS.
1071     Known.One |= Known2.One;
1072     break;
1073   }
1074   case ISD::XOR: {
1075     SDValue Op0 = Op.getOperand(0);
1076     SDValue Op1 = Op.getOperand(1);
1077 
1078     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1079                              Depth + 1))
1080       return true;
1081     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1082     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1083                              Depth + 1))
1084       return true;
1085     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1086 
1087     // Attempt to avoid multi-use ops if we don't need anything from them.
1088     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1089       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1090           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1091       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1092           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1093       if (DemandedOp0 || DemandedOp1) {
1094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1096         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1097         return TLO.CombineTo(Op, NewOp);
1098       }
1099     }
1100 
1101     // If all of the demanded bits are known zero on one side, return the other.
1102     // These bits cannot contribute to the result of the 'xor'.
1103     if (DemandedBits.isSubsetOf(Known.Zero))
1104       return TLO.CombineTo(Op, Op0);
1105     if (DemandedBits.isSubsetOf(Known2.Zero))
1106       return TLO.CombineTo(Op, Op1);
1107     // If the operation can be done in a smaller type, do so.
1108     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1109       return true;
1110 
1111     // If all of the unknown bits are known to be zero on one side or the other
1112     // (but not both) turn this into an *inclusive* or.
1113     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1114     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1115       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1116 
1117     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1118     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1119     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1120     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1121 
1122     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1123       // If one side is a constant, and all of the known set bits on the other
1124       // side are also set in the constant, turn this into an AND, as we know
1125       // the bits will be cleared.
1126       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1127       // NB: it is okay if more bits are known than are requested
1128       if (C->getAPIntValue() == Known2.One) {
1129         SDValue ANDC =
1130             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1131         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1132       }
1133 
1134       // If the RHS is a constant, see if we can change it. Don't alter a -1
1135       // constant because that's a 'not' op, and that is better for combining
1136       // and codegen.
1137       if (!C->isAllOnesValue()) {
1138         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1139           // We're flipping all demanded bits. Flip the undemanded bits too.
1140           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1141           return TLO.CombineTo(Op, New);
1142         }
1143         // If we can't turn this into a 'not', try to shrink the constant.
1144         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1145           return true;
1146       }
1147     }
1148 
1149     Known = std::move(KnownOut);
1150     break;
1151   }
1152   case ISD::SELECT:
1153     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1154                              Depth + 1))
1155       return true;
1156     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1157                              Depth + 1))
1158       return true;
1159     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1160     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1161 
1162     // If the operands are constants, see if we can simplify them.
1163     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1164       return true;
1165 
1166     // Only known if known in both the LHS and RHS.
1167     Known.One &= Known2.One;
1168     Known.Zero &= Known2.Zero;
1169     break;
1170   case ISD::SELECT_CC:
1171     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1172                              Depth + 1))
1173       return true;
1174     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1175                              Depth + 1))
1176       return true;
1177     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1178     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1179 
1180     // If the operands are constants, see if we can simplify them.
1181     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1182       return true;
1183 
1184     // Only known if known in both the LHS and RHS.
1185     Known.One &= Known2.One;
1186     Known.Zero &= Known2.Zero;
1187     break;
1188   case ISD::SETCC: {
1189     SDValue Op0 = Op.getOperand(0);
1190     SDValue Op1 = Op.getOperand(1);
1191     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1192     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1193     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1194     // -1, we may be able to bypass the setcc.
1195     if (DemandedBits.isSignMask() &&
1196         Op0.getScalarValueSizeInBits() == BitWidth &&
1197         getBooleanContents(VT) ==
1198             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1199       // If we're testing X < 0, then this compare isn't needed - just use X!
1200       // FIXME: We're limiting to integer types here, but this should also work
1201       // if we don't care about FP signed-zero. The use of SETLT with FP means
1202       // that we don't care about NaNs.
1203       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1204           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1205         return TLO.CombineTo(Op, Op0);
1206 
1207       // TODO: Should we check for other forms of sign-bit comparisons?
1208       // Examples: X <= -1, X >= 0
1209     }
1210     if (getBooleanContents(Op0.getValueType()) ==
1211             TargetLowering::ZeroOrOneBooleanContent &&
1212         BitWidth > 1)
1213       Known.Zero.setBitsFrom(1);
1214     break;
1215   }
1216   case ISD::SHL: {
1217     SDValue Op0 = Op.getOperand(0);
1218     SDValue Op1 = Op.getOperand(1);
1219 
1220     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1221       // If the shift count is an invalid immediate, don't do anything.
1222       if (SA->getAPIntValue().uge(BitWidth))
1223         break;
1224 
1225       unsigned ShAmt = SA->getZExtValue();
1226       if (ShAmt == 0)
1227         return TLO.CombineTo(Op, Op0);
1228 
1229       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1230       // single shift.  We can do this if the bottom bits (which are shifted
1231       // out) are never demanded.
1232       // TODO - support non-uniform vector amounts.
1233       if (Op0.getOpcode() == ISD::SRL) {
1234         if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1235           if (ConstantSDNode *SA2 =
1236                   isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1237             if (SA2->getAPIntValue().ult(BitWidth)) {
1238               unsigned C1 = SA2->getZExtValue();
1239               unsigned Opc = ISD::SHL;
1240               int Diff = ShAmt - C1;
1241               if (Diff < 0) {
1242                 Diff = -Diff;
1243                 Opc = ISD::SRL;
1244               }
1245 
1246               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1247               return TLO.CombineTo(
1248                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1249             }
1250           }
1251         }
1252       }
1253 
1254       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1255                                Known, TLO, Depth + 1))
1256         return true;
1257 
1258       // Try shrinking the operation as long as the shift amount will still be
1259       // in range.
1260       if ((ShAmt < DemandedBits.getActiveBits()) &&
1261           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1262         return true;
1263 
1264       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1265       // are not demanded. This will likely allow the anyext to be folded away.
1266       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1267         SDValue InnerOp = Op0.getOperand(0);
1268         EVT InnerVT = InnerOp.getValueType();
1269         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1270         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1271             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1272           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1273           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1274             ShTy = InnerVT;
1275           SDValue NarrowShl =
1276               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1277                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1278           return TLO.CombineTo(
1279               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1280         }
1281         // Repeat the SHL optimization above in cases where an extension
1282         // intervenes: (shl (anyext (shr x, c1)), c2) to
1283         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1284         // aren't demanded (as above) and that the shifted upper c1 bits of
1285         // x aren't demanded.
1286         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1287             InnerOp.hasOneUse()) {
1288           if (ConstantSDNode *SA2 =
1289                   isConstOrConstSplat(InnerOp.getOperand(1))) {
1290             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1291             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1292                 DemandedBits.getActiveBits() <=
1293                     (InnerBits - InnerShAmt + ShAmt) &&
1294                 DemandedBits.countTrailingZeros() >= ShAmt) {
1295               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1296                                                   Op1.getValueType());
1297               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1298                                                InnerOp.getOperand(0));
1299               return TLO.CombineTo(
1300                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1301             }
1302           }
1303         }
1304       }
1305 
1306       Known.Zero <<= ShAmt;
1307       Known.One <<= ShAmt;
1308       // low bits known zero.
1309       Known.Zero.setLowBits(ShAmt);
1310     }
1311     break;
1312   }
1313   case ISD::SRL: {
1314     SDValue Op0 = Op.getOperand(0);
1315     SDValue Op1 = Op.getOperand(1);
1316 
1317     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1318       // If the shift count is an invalid immediate, don't do anything.
1319       if (SA->getAPIntValue().uge(BitWidth))
1320         break;
1321 
1322       unsigned ShAmt = SA->getZExtValue();
1323       if (ShAmt == 0)
1324         return TLO.CombineTo(Op, Op0);
1325 
1326       EVT ShiftVT = Op1.getValueType();
1327       APInt InDemandedMask = (DemandedBits << ShAmt);
1328 
1329       // If the shift is exact, then it does demand the low bits (and knows that
1330       // they are zero).
1331       if (Op->getFlags().hasExact())
1332         InDemandedMask.setLowBits(ShAmt);
1333 
1334       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1335       // single shift.  We can do this if the top bits (which are shifted out)
1336       // are never demanded.
1337       // TODO - support non-uniform vector amounts.
1338       if (Op0.getOpcode() == ISD::SHL) {
1339         if (ConstantSDNode *SA2 =
1340                 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1341           if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1342             if (SA2->getAPIntValue().ult(BitWidth)) {
1343               unsigned C1 = SA2->getZExtValue();
1344               unsigned Opc = ISD::SRL;
1345               int Diff = ShAmt - C1;
1346               if (Diff < 0) {
1347                 Diff = -Diff;
1348                 Opc = ISD::SHL;
1349               }
1350 
1351               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1352               return TLO.CombineTo(
1353                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1354             }
1355           }
1356         }
1357       }
1358 
1359       // Compute the new bits that are at the top now.
1360       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1361                                Depth + 1))
1362         return true;
1363       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1364       Known.Zero.lshrInPlace(ShAmt);
1365       Known.One.lshrInPlace(ShAmt);
1366 
1367       Known.Zero.setHighBits(ShAmt); // High bits known zero.
1368     }
1369     break;
1370   }
1371   case ISD::SRA: {
1372     SDValue Op0 = Op.getOperand(0);
1373     SDValue Op1 = Op.getOperand(1);
1374 
1375     // If this is an arithmetic shift right and only the low-bit is set, we can
1376     // always convert this into a logical shr, even if the shift amount is
1377     // variable.  The low bit of the shift cannot be an input sign bit unless
1378     // the shift amount is >= the size of the datatype, which is undefined.
1379     if (DemandedBits.isOneValue())
1380       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1381 
1382     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1383       // If the shift count is an invalid immediate, don't do anything.
1384       if (SA->getAPIntValue().uge(BitWidth))
1385         break;
1386 
1387       unsigned ShAmt = SA->getZExtValue();
1388       if (ShAmt == 0)
1389         return TLO.CombineTo(Op, Op0);
1390 
1391       APInt InDemandedMask = (DemandedBits << ShAmt);
1392 
1393       // If the shift is exact, then it does demand the low bits (and knows that
1394       // they are zero).
1395       if (Op->getFlags().hasExact())
1396         InDemandedMask.setLowBits(ShAmt);
1397 
1398       // If any of the demanded bits are produced by the sign extension, we also
1399       // demand the input sign bit.
1400       if (DemandedBits.countLeadingZeros() < ShAmt)
1401         InDemandedMask.setSignBit();
1402 
1403       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1404                                Depth + 1))
1405         return true;
1406       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1407       Known.Zero.lshrInPlace(ShAmt);
1408       Known.One.lshrInPlace(ShAmt);
1409 
1410       // If the input sign bit is known to be zero, or if none of the top bits
1411       // are demanded, turn this into an unsigned shift right.
1412       if (Known.Zero[BitWidth - ShAmt - 1] ||
1413           DemandedBits.countLeadingZeros() >= ShAmt) {
1414         SDNodeFlags Flags;
1415         Flags.setExact(Op->getFlags().hasExact());
1416         return TLO.CombineTo(
1417             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1418       }
1419 
1420       int Log2 = DemandedBits.exactLogBase2();
1421       if (Log2 >= 0) {
1422         // The bit must come from the sign.
1423         SDValue NewSA =
1424             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1425         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1426       }
1427 
1428       if (Known.One[BitWidth - ShAmt - 1])
1429         // New bits are known one.
1430         Known.One.setHighBits(ShAmt);
1431     }
1432     break;
1433   }
1434   case ISD::FSHL:
1435   case ISD::FSHR: {
1436     SDValue Op0 = Op.getOperand(0);
1437     SDValue Op1 = Op.getOperand(1);
1438     SDValue Op2 = Op.getOperand(2);
1439     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1440 
1441     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1442       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1443 
1444       // For fshl, 0-shift returns the 1st arg.
1445       // For fshr, 0-shift returns the 2nd arg.
1446       if (Amt == 0) {
1447         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1448                                  Known, TLO, Depth + 1))
1449           return true;
1450         break;
1451       }
1452 
1453       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1454       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1455       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1456       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1457       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1458                                Depth + 1))
1459         return true;
1460       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1461                                Depth + 1))
1462         return true;
1463 
1464       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1465       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1466       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1467       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1468       Known.One |= Known2.One;
1469       Known.Zero |= Known2.Zero;
1470     }
1471     break;
1472   }
1473   case ISD::BITREVERSE: {
1474     SDValue Src = Op.getOperand(0);
1475     APInt DemandedSrcBits = DemandedBits.reverseBits();
1476     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1477                              Depth + 1))
1478       return true;
1479     Known.One = Known2.One.reverseBits();
1480     Known.Zero = Known2.Zero.reverseBits();
1481     break;
1482   }
1483   case ISD::SIGN_EXTEND_INREG: {
1484     SDValue Op0 = Op.getOperand(0);
1485     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1486     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1487 
1488     // If we only care about the highest bit, don't bother shifting right.
1489     if (DemandedBits.isSignMask()) {
1490       unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1491       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1492       // However if the input is already sign extended we expect the sign
1493       // extension to be dropped altogether later and do not simplify.
1494       if (!AlreadySignExtended) {
1495         // Compute the correct shift amount type, which must be getShiftAmountTy
1496         // for scalar types after legalization.
1497         EVT ShiftAmtTy = VT;
1498         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1499           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1500 
1501         SDValue ShiftAmt =
1502             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1503         return TLO.CombineTo(Op,
1504                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1505       }
1506     }
1507 
1508     // If none of the extended bits are demanded, eliminate the sextinreg.
1509     if (DemandedBits.getActiveBits() <= ExVTBits)
1510       return TLO.CombineTo(Op, Op0);
1511 
1512     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1513 
1514     // Since the sign extended bits are demanded, we know that the sign
1515     // bit is demanded.
1516     InputDemandedBits.setBit(ExVTBits - 1);
1517 
1518     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1519       return true;
1520     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1521 
1522     // If the sign bit of the input is known set or clear, then we know the
1523     // top bits of the result.
1524 
1525     // If the input sign bit is known zero, convert this into a zero extension.
1526     if (Known.Zero[ExVTBits - 1])
1527       return TLO.CombineTo(
1528           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1529 
1530     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1531     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1532       Known.One.setBitsFrom(ExVTBits);
1533       Known.Zero &= Mask;
1534     } else { // Input sign bit unknown
1535       Known.Zero &= Mask;
1536       Known.One &= Mask;
1537     }
1538     break;
1539   }
1540   case ISD::BUILD_PAIR: {
1541     EVT HalfVT = Op.getOperand(0).getValueType();
1542     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1543 
1544     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1545     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1546 
1547     KnownBits KnownLo, KnownHi;
1548 
1549     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1550       return true;
1551 
1552     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1553       return true;
1554 
1555     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1556                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1557 
1558     Known.One = KnownLo.One.zext(BitWidth) |
1559                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1560     break;
1561   }
1562   case ISD::ZERO_EXTEND:
1563   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1564     SDValue Src = Op.getOperand(0);
1565     EVT SrcVT = Src.getValueType();
1566     unsigned InBits = SrcVT.getScalarSizeInBits();
1567     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1568     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1569 
1570     // If none of the top bits are demanded, convert this into an any_extend.
1571     if (DemandedBits.getActiveBits() <= InBits) {
1572       // If we only need the non-extended bits of the bottom element
1573       // then we can just bitcast to the result.
1574       if (IsVecInReg && DemandedElts == 1 &&
1575           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1576           TLO.DAG.getDataLayout().isLittleEndian())
1577         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1578 
1579       unsigned Opc =
1580           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1581       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1582         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1583     }
1584 
1585     APInt InDemandedBits = DemandedBits.trunc(InBits);
1586     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1587     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1588                              Depth + 1))
1589       return true;
1590     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1591     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1592     Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1593     break;
1594   }
1595   case ISD::SIGN_EXTEND:
1596   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1597     SDValue Src = Op.getOperand(0);
1598     EVT SrcVT = Src.getValueType();
1599     unsigned InBits = SrcVT.getScalarSizeInBits();
1600     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1601     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1602 
1603     // If none of the top bits are demanded, convert this into an any_extend.
1604     if (DemandedBits.getActiveBits() <= InBits) {
1605       // If we only need the non-extended bits of the bottom element
1606       // then we can just bitcast to the result.
1607       if (IsVecInReg && DemandedElts == 1 &&
1608           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1609           TLO.DAG.getDataLayout().isLittleEndian())
1610         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1611 
1612       unsigned Opc =
1613           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1614       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1615         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1616     }
1617 
1618     APInt InDemandedBits = DemandedBits.trunc(InBits);
1619     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1620 
1621     // Since some of the sign extended bits are demanded, we know that the sign
1622     // bit is demanded.
1623     InDemandedBits.setBit(InBits - 1);
1624 
1625     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1626                              Depth + 1))
1627       return true;
1628     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1629     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1630 
1631     // If the sign bit is known one, the top bits match.
1632     Known = Known.sext(BitWidth);
1633 
1634     // If the sign bit is known zero, convert this to a zero extend.
1635     if (Known.isNonNegative()) {
1636       unsigned Opc =
1637           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1638       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1639         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1640     }
1641     break;
1642   }
1643   case ISD::ANY_EXTEND:
1644   case ISD::ANY_EXTEND_VECTOR_INREG: {
1645     SDValue Src = Op.getOperand(0);
1646     EVT SrcVT = Src.getValueType();
1647     unsigned InBits = SrcVT.getScalarSizeInBits();
1648     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1649     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1650 
1651     // If we only need the bottom element then we can just bitcast.
1652     // TODO: Handle ANY_EXTEND?
1653     if (IsVecInReg && DemandedElts == 1 &&
1654         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1655         TLO.DAG.getDataLayout().isLittleEndian())
1656       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1657 
1658     APInt InDemandedBits = DemandedBits.trunc(InBits);
1659     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1660     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1661                              Depth + 1))
1662       return true;
1663     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1664     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1665     Known = Known.zext(BitWidth, false /* => any extend */);
1666     break;
1667   }
1668   case ISD::TRUNCATE: {
1669     SDValue Src = Op.getOperand(0);
1670 
1671     // Simplify the input, using demanded bit information, and compute the known
1672     // zero/one bits live out.
1673     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1674     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1675     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1676       return true;
1677     Known = Known.trunc(BitWidth);
1678 
1679     // If the input is only used by this truncate, see if we can shrink it based
1680     // on the known demanded bits.
1681     if (Src.getNode()->hasOneUse()) {
1682       switch (Src.getOpcode()) {
1683       default:
1684         break;
1685       case ISD::SRL:
1686         // Shrink SRL by a constant if none of the high bits shifted in are
1687         // demanded.
1688         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1689           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1690           // undesirable.
1691           break;
1692 
1693         auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1694         if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1695           break;
1696 
1697         SDValue Shift = Src.getOperand(1);
1698         uint64_t ShVal = ShAmt->getZExtValue();
1699 
1700         if (TLO.LegalTypes())
1701           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1702 
1703         APInt HighBits =
1704             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1705         HighBits.lshrInPlace(ShVal);
1706         HighBits = HighBits.trunc(BitWidth);
1707 
1708         if (!(HighBits & DemandedBits)) {
1709           // None of the shifted in bits are needed.  Add a truncate of the
1710           // shift input, then shift it.
1711           SDValue NewTrunc =
1712               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1713           return TLO.CombineTo(
1714               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1715         }
1716         break;
1717       }
1718     }
1719 
1720     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1721     break;
1722   }
1723   case ISD::AssertZext: {
1724     // AssertZext demands all of the high bits, plus any of the low bits
1725     // demanded by its users.
1726     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1727     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1728     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1729                              TLO, Depth + 1))
1730       return true;
1731     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1732 
1733     Known.Zero |= ~InMask;
1734     break;
1735   }
1736   case ISD::EXTRACT_VECTOR_ELT: {
1737     SDValue Src = Op.getOperand(0);
1738     SDValue Idx = Op.getOperand(1);
1739     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1740     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1741 
1742     // Demand the bits from every vector element without a constant index.
1743     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1744     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1745       if (CIdx->getAPIntValue().ult(NumSrcElts))
1746         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1747 
1748     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1749     // anything about the extended bits.
1750     APInt DemandedSrcBits = DemandedBits;
1751     if (BitWidth > EltBitWidth)
1752       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1753 
1754     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1755                              Depth + 1))
1756       return true;
1757 
1758     Known = Known2;
1759     if (BitWidth > EltBitWidth)
1760       Known = Known.zext(BitWidth, false /* => any extend */);
1761     break;
1762   }
1763   case ISD::BITCAST: {
1764     SDValue Src = Op.getOperand(0);
1765     EVT SrcVT = Src.getValueType();
1766     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1767 
1768     // If this is an FP->Int bitcast and if the sign bit is the only
1769     // thing demanded, turn this into a FGETSIGN.
1770     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1771         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1772         SrcVT.isFloatingPoint()) {
1773       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1774       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1775       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1776           SrcVT != MVT::f128) {
1777         // Cannot eliminate/lower SHL for f128 yet.
1778         EVT Ty = OpVTLegal ? VT : MVT::i32;
1779         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1780         // place.  We expect the SHL to be eliminated by other optimizations.
1781         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1782         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1783         if (!OpVTLegal && OpVTSizeInBits > 32)
1784           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1785         unsigned ShVal = Op.getValueSizeInBits() - 1;
1786         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1787         return TLO.CombineTo(Op,
1788                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1789       }
1790     }
1791 
1792     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1793     // Demand the elt/bit if any of the original elts/bits are demanded.
1794     // TODO - bigendian once we have test coverage.
1795     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1796     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1797         (BitWidth % NumSrcEltBits) == 0 &&
1798         TLO.DAG.getDataLayout().isLittleEndian()) {
1799       unsigned Scale = BitWidth / NumSrcEltBits;
1800       unsigned NumSrcElts = SrcVT.getVectorNumElements();
1801       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1802       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1803       for (unsigned i = 0; i != Scale; ++i) {
1804         unsigned Offset = i * NumSrcEltBits;
1805         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1806         if (!Sub.isNullValue()) {
1807           DemandedSrcBits |= Sub;
1808           for (unsigned j = 0; j != NumElts; ++j)
1809             if (DemandedElts[j])
1810               DemandedSrcElts.setBit((j * Scale) + i);
1811         }
1812       }
1813 
1814       APInt KnownSrcUndef, KnownSrcZero;
1815       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1816                                      KnownSrcZero, TLO, Depth + 1))
1817         return true;
1818 
1819       KnownBits KnownSrcBits;
1820       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1821                                KnownSrcBits, TLO, Depth + 1))
1822         return true;
1823     } else if ((NumSrcEltBits % BitWidth) == 0 &&
1824                TLO.DAG.getDataLayout().isLittleEndian()) {
1825       unsigned Scale = NumSrcEltBits / BitWidth;
1826       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1827       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1828       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1829       for (unsigned i = 0; i != NumElts; ++i)
1830         if (DemandedElts[i]) {
1831           unsigned Offset = (i % Scale) * BitWidth;
1832           DemandedSrcBits.insertBits(DemandedBits, Offset);
1833           DemandedSrcElts.setBit(i / Scale);
1834         }
1835 
1836       if (SrcVT.isVector()) {
1837         APInt KnownSrcUndef, KnownSrcZero;
1838         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1839                                        KnownSrcZero, TLO, Depth + 1))
1840           return true;
1841       }
1842 
1843       KnownBits KnownSrcBits;
1844       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1845                                KnownSrcBits, TLO, Depth + 1))
1846         return true;
1847     }
1848 
1849     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1850     // recursive call where Known may be useful to the caller.
1851     if (Depth > 0) {
1852       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1853       return false;
1854     }
1855     break;
1856   }
1857   case ISD::ADD:
1858   case ISD::MUL:
1859   case ISD::SUB: {
1860     // Add, Sub, and Mul don't demand any bits in positions beyond that
1861     // of the highest bit demanded of them.
1862     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1863     SDNodeFlags Flags = Op.getNode()->getFlags();
1864     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1865     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1866     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1867                              Depth + 1) ||
1868         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1869                              Depth + 1) ||
1870         // See if the operation should be performed at a smaller bit width.
1871         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1872       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1873         // Disable the nsw and nuw flags. We can no longer guarantee that we
1874         // won't wrap after simplification.
1875         Flags.setNoSignedWrap(false);
1876         Flags.setNoUnsignedWrap(false);
1877         SDValue NewOp =
1878             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1879         return TLO.CombineTo(Op, NewOp);
1880       }
1881       return true;
1882     }
1883 
1884     // Attempt to avoid multi-use ops if we don't need anything from them.
1885     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1886       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1887           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1888       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1889           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1890       if (DemandedOp0 || DemandedOp1) {
1891         Flags.setNoSignedWrap(false);
1892         Flags.setNoUnsignedWrap(false);
1893         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1894         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1895         SDValue NewOp =
1896             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1897         return TLO.CombineTo(Op, NewOp);
1898       }
1899     }
1900 
1901     // If we have a constant operand, we may be able to turn it into -1 if we
1902     // do not demand the high bits. This can make the constant smaller to
1903     // encode, allow more general folding, or match specialized instruction
1904     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1905     // is probably not useful (and could be detrimental).
1906     ConstantSDNode *C = isConstOrConstSplat(Op1);
1907     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1908     if (C && !C->isAllOnesValue() && !C->isOne() &&
1909         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1910       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1911       // We can't guarantee that the new math op doesn't wrap, so explicitly
1912       // clear those flags to prevent folding with a potential existing node
1913       // that has those flags set.
1914       SDNodeFlags Flags;
1915       Flags.setNoSignedWrap(false);
1916       Flags.setNoUnsignedWrap(false);
1917       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1918       return TLO.CombineTo(Op, NewOp);
1919     }
1920 
1921     LLVM_FALLTHROUGH;
1922   }
1923   default:
1924     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1925       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1926                                             Known, TLO, Depth))
1927         return true;
1928       break;
1929     }
1930 
1931     // Just use computeKnownBits to compute output bits.
1932     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1933     break;
1934   }
1935 
1936   // If we know the value of all of the demanded bits, return this as a
1937   // constant.
1938   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1939     // Avoid folding to a constant if any OpaqueConstant is involved.
1940     const SDNode *N = Op.getNode();
1941     for (SDNodeIterator I = SDNodeIterator::begin(N),
1942                         E = SDNodeIterator::end(N);
1943          I != E; ++I) {
1944       SDNode *Op = *I;
1945       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1946         if (C->isOpaque())
1947           return false;
1948     }
1949     // TODO: Handle float bits as well.
1950     if (VT.isInteger())
1951       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1952   }
1953 
1954   return false;
1955 }
1956 
1957 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1958                                                 const APInt &DemandedElts,
1959                                                 APInt &KnownUndef,
1960                                                 APInt &KnownZero,
1961                                                 DAGCombinerInfo &DCI) const {
1962   SelectionDAG &DAG = DCI.DAG;
1963   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1964                         !DCI.isBeforeLegalizeOps());
1965 
1966   bool Simplified =
1967       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1968   if (Simplified) {
1969     DCI.AddToWorklist(Op.getNode());
1970     DCI.CommitTargetLoweringOpt(TLO);
1971   }
1972 
1973   return Simplified;
1974 }
1975 
1976 /// Given a vector binary operation and known undefined elements for each input
1977 /// operand, compute whether each element of the output is undefined.
1978 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1979                                          const APInt &UndefOp0,
1980                                          const APInt &UndefOp1) {
1981   EVT VT = BO.getValueType();
1982   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
1983          "Vector binop only");
1984 
1985   EVT EltVT = VT.getVectorElementType();
1986   unsigned NumElts = VT.getVectorNumElements();
1987   assert(UndefOp0.getBitWidth() == NumElts &&
1988          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1989 
1990   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1991                                    const APInt &UndefVals) {
1992     if (UndefVals[Index])
1993       return DAG.getUNDEF(EltVT);
1994 
1995     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1996       // Try hard to make sure that the getNode() call is not creating temporary
1997       // nodes. Ignore opaque integers because they do not constant fold.
1998       SDValue Elt = BV->getOperand(Index);
1999       auto *C = dyn_cast<ConstantSDNode>(Elt);
2000       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2001         return Elt;
2002     }
2003 
2004     return SDValue();
2005   };
2006 
2007   APInt KnownUndef = APInt::getNullValue(NumElts);
2008   for (unsigned i = 0; i != NumElts; ++i) {
2009     // If both inputs for this element are either constant or undef and match
2010     // the element type, compute the constant/undef result for this element of
2011     // the vector.
2012     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2013     // not handle FP constants. The code within getNode() should be refactored
2014     // to avoid the danger of creating a bogus temporary node here.
2015     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2016     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2017     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2018       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2019         KnownUndef.setBit(i);
2020   }
2021   return KnownUndef;
2022 }
2023 
2024 bool TargetLowering::SimplifyDemandedVectorElts(
2025     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2026     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2027     bool AssumeSingleUse) const {
2028   EVT VT = Op.getValueType();
2029   APInt DemandedElts = OriginalDemandedElts;
2030   unsigned NumElts = DemandedElts.getBitWidth();
2031   assert(VT.isVector() && "Expected vector op");
2032   assert(VT.getVectorNumElements() == NumElts &&
2033          "Mask size mismatches value type element count!");
2034 
2035   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2036 
2037   // Undef operand.
2038   if (Op.isUndef()) {
2039     KnownUndef.setAllBits();
2040     return false;
2041   }
2042 
2043   // If Op has other users, assume that all elements are needed.
2044   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2045     DemandedElts.setAllBits();
2046 
2047   // Not demanding any elements from Op.
2048   if (DemandedElts == 0) {
2049     KnownUndef.setAllBits();
2050     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2051   }
2052 
2053   // Limit search depth.
2054   if (Depth >= 6)
2055     return false;
2056 
2057   SDLoc DL(Op);
2058   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2059 
2060   switch (Op.getOpcode()) {
2061   case ISD::SCALAR_TO_VECTOR: {
2062     if (!DemandedElts[0]) {
2063       KnownUndef.setAllBits();
2064       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2065     }
2066     KnownUndef.setHighBits(NumElts - 1);
2067     break;
2068   }
2069   case ISD::BITCAST: {
2070     SDValue Src = Op.getOperand(0);
2071     EVT SrcVT = Src.getValueType();
2072 
2073     // We only handle vectors here.
2074     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2075     if (!SrcVT.isVector())
2076       break;
2077 
2078     // Fast handling of 'identity' bitcasts.
2079     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2080     if (NumSrcElts == NumElts)
2081       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2082                                         KnownZero, TLO, Depth + 1);
2083 
2084     APInt SrcZero, SrcUndef;
2085     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2086 
2087     // Bitcast from 'large element' src vector to 'small element' vector, we
2088     // must demand a source element if any DemandedElt maps to it.
2089     if ((NumElts % NumSrcElts) == 0) {
2090       unsigned Scale = NumElts / NumSrcElts;
2091       for (unsigned i = 0; i != NumElts; ++i)
2092         if (DemandedElts[i])
2093           SrcDemandedElts.setBit(i / Scale);
2094 
2095       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2096                                      TLO, Depth + 1))
2097         return true;
2098 
2099       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2100       // of the large element.
2101       // TODO - bigendian once we have test coverage.
2102       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2103         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2104         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2105         for (unsigned i = 0; i != NumElts; ++i)
2106           if (DemandedElts[i]) {
2107             unsigned Ofs = (i % Scale) * EltSizeInBits;
2108             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2109           }
2110 
2111         KnownBits Known;
2112         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2113           return true;
2114       }
2115 
2116       // If the src element is zero/undef then all the output elements will be -
2117       // only demanded elements are guaranteed to be correct.
2118       for (unsigned i = 0; i != NumSrcElts; ++i) {
2119         if (SrcDemandedElts[i]) {
2120           if (SrcZero[i])
2121             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2122           if (SrcUndef[i])
2123             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2124         }
2125       }
2126     }
2127 
2128     // Bitcast from 'small element' src vector to 'large element' vector, we
2129     // demand all smaller source elements covered by the larger demanded element
2130     // of this vector.
2131     if ((NumSrcElts % NumElts) == 0) {
2132       unsigned Scale = NumSrcElts / NumElts;
2133       for (unsigned i = 0; i != NumElts; ++i)
2134         if (DemandedElts[i])
2135           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2136 
2137       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2138                                      TLO, Depth + 1))
2139         return true;
2140 
2141       // If all the src elements covering an output element are zero/undef, then
2142       // the output element will be as well, assuming it was demanded.
2143       for (unsigned i = 0; i != NumElts; ++i) {
2144         if (DemandedElts[i]) {
2145           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2146             KnownZero.setBit(i);
2147           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2148             KnownUndef.setBit(i);
2149         }
2150       }
2151     }
2152     break;
2153   }
2154   case ISD::BUILD_VECTOR: {
2155     // Check all elements and simplify any unused elements with UNDEF.
2156     if (!DemandedElts.isAllOnesValue()) {
2157       // Don't simplify BROADCASTS.
2158       if (llvm::any_of(Op->op_values(),
2159                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2160         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2161         bool Updated = false;
2162         for (unsigned i = 0; i != NumElts; ++i) {
2163           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2164             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2165             KnownUndef.setBit(i);
2166             Updated = true;
2167           }
2168         }
2169         if (Updated)
2170           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2171       }
2172     }
2173     for (unsigned i = 0; i != NumElts; ++i) {
2174       SDValue SrcOp = Op.getOperand(i);
2175       if (SrcOp.isUndef()) {
2176         KnownUndef.setBit(i);
2177       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2178                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2179         KnownZero.setBit(i);
2180       }
2181     }
2182     break;
2183   }
2184   case ISD::CONCAT_VECTORS: {
2185     EVT SubVT = Op.getOperand(0).getValueType();
2186     unsigned NumSubVecs = Op.getNumOperands();
2187     unsigned NumSubElts = SubVT.getVectorNumElements();
2188     for (unsigned i = 0; i != NumSubVecs; ++i) {
2189       SDValue SubOp = Op.getOperand(i);
2190       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2191       APInt SubUndef, SubZero;
2192       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2193                                      Depth + 1))
2194         return true;
2195       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2196       KnownZero.insertBits(SubZero, i * NumSubElts);
2197     }
2198     break;
2199   }
2200   case ISD::INSERT_SUBVECTOR: {
2201     if (!isa<ConstantSDNode>(Op.getOperand(2)))
2202       break;
2203     SDValue Base = Op.getOperand(0);
2204     SDValue Sub = Op.getOperand(1);
2205     EVT SubVT = Sub.getValueType();
2206     unsigned NumSubElts = SubVT.getVectorNumElements();
2207     const APInt &Idx = Op.getConstantOperandAPInt(2);
2208     if (Idx.ugt(NumElts - NumSubElts))
2209       break;
2210     unsigned SubIdx = Idx.getZExtValue();
2211     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2212     APInt SubUndef, SubZero;
2213     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2214                                    Depth + 1))
2215       return true;
2216     APInt BaseElts = DemandedElts;
2217     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2218 
2219     // If none of the base operand elements are demanded, replace it with undef.
2220     if (!BaseElts && !Base.isUndef())
2221       return TLO.CombineTo(Op,
2222                            TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2223                                            TLO.DAG.getUNDEF(VT),
2224                                            Op.getOperand(1),
2225                                            Op.getOperand(2)));
2226 
2227     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2228                                    Depth + 1))
2229       return true;
2230     KnownUndef.insertBits(SubUndef, SubIdx);
2231     KnownZero.insertBits(SubZero, SubIdx);
2232     break;
2233   }
2234   case ISD::EXTRACT_SUBVECTOR: {
2235     SDValue Src = Op.getOperand(0);
2236     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2238     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2239       // Offset the demanded elts by the subvector index.
2240       uint64_t Idx = SubIdx->getZExtValue();
2241       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2242       APInt SrcUndef, SrcZero;
2243       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2244                                      Depth + 1))
2245         return true;
2246       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2247       KnownZero = SrcZero.extractBits(NumElts, Idx);
2248     }
2249     break;
2250   }
2251   case ISD::INSERT_VECTOR_ELT: {
2252     SDValue Vec = Op.getOperand(0);
2253     SDValue Scl = Op.getOperand(1);
2254     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2255 
2256     // For a legal, constant insertion index, if we don't need this insertion
2257     // then strip it, else remove it from the demanded elts.
2258     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2259       unsigned Idx = CIdx->getZExtValue();
2260       if (!DemandedElts[Idx])
2261         return TLO.CombineTo(Op, Vec);
2262 
2263       APInt DemandedVecElts(DemandedElts);
2264       DemandedVecElts.clearBit(Idx);
2265       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2266                                      KnownZero, TLO, Depth + 1))
2267         return true;
2268 
2269       KnownUndef.clearBit(Idx);
2270       if (Scl.isUndef())
2271         KnownUndef.setBit(Idx);
2272 
2273       KnownZero.clearBit(Idx);
2274       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2275         KnownZero.setBit(Idx);
2276       break;
2277     }
2278 
2279     APInt VecUndef, VecZero;
2280     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2281                                    Depth + 1))
2282       return true;
2283     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2284     break;
2285   }
2286   case ISD::VSELECT: {
2287     // Try to transform the select condition based on the current demanded
2288     // elements.
2289     // TODO: If a condition element is undef, we can choose from one arm of the
2290     //       select (and if one arm is undef, then we can propagate that to the
2291     //       result).
2292     // TODO - add support for constant vselect masks (see IR version of this).
2293     APInt UnusedUndef, UnusedZero;
2294     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2295                                    UnusedZero, TLO, Depth + 1))
2296       return true;
2297 
2298     // See if we can simplify either vselect operand.
2299     APInt DemandedLHS(DemandedElts);
2300     APInt DemandedRHS(DemandedElts);
2301     APInt UndefLHS, ZeroLHS;
2302     APInt UndefRHS, ZeroRHS;
2303     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2304                                    ZeroLHS, TLO, Depth + 1))
2305       return true;
2306     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2307                                    ZeroRHS, TLO, Depth + 1))
2308       return true;
2309 
2310     KnownUndef = UndefLHS & UndefRHS;
2311     KnownZero = ZeroLHS & ZeroRHS;
2312     break;
2313   }
2314   case ISD::VECTOR_SHUFFLE: {
2315     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2316 
2317     // Collect demanded elements from shuffle operands..
2318     APInt DemandedLHS(NumElts, 0);
2319     APInt DemandedRHS(NumElts, 0);
2320     for (unsigned i = 0; i != NumElts; ++i) {
2321       int M = ShuffleMask[i];
2322       if (M < 0 || !DemandedElts[i])
2323         continue;
2324       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2325       if (M < (int)NumElts)
2326         DemandedLHS.setBit(M);
2327       else
2328         DemandedRHS.setBit(M - NumElts);
2329     }
2330 
2331     // See if we can simplify either shuffle operand.
2332     APInt UndefLHS, ZeroLHS;
2333     APInt UndefRHS, ZeroRHS;
2334     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2335                                    ZeroLHS, TLO, Depth + 1))
2336       return true;
2337     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2338                                    ZeroRHS, TLO, Depth + 1))
2339       return true;
2340 
2341     // Simplify mask using undef elements from LHS/RHS.
2342     bool Updated = false;
2343     bool IdentityLHS = true, IdentityRHS = true;
2344     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2345     for (unsigned i = 0; i != NumElts; ++i) {
2346       int &M = NewMask[i];
2347       if (M < 0)
2348         continue;
2349       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2350           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2351         Updated = true;
2352         M = -1;
2353       }
2354       IdentityLHS &= (M < 0) || (M == (int)i);
2355       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2356     }
2357 
2358     // Update legal shuffle masks based on demanded elements if it won't reduce
2359     // to Identity which can cause premature removal of the shuffle mask.
2360     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
2361         isShuffleMaskLegal(NewMask, VT))
2362       return TLO.CombineTo(Op,
2363                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
2364                                                     Op.getOperand(1), NewMask));
2365 
2366     // Propagate undef/zero elements from LHS/RHS.
2367     for (unsigned i = 0; i != NumElts; ++i) {
2368       int M = ShuffleMask[i];
2369       if (M < 0) {
2370         KnownUndef.setBit(i);
2371       } else if (M < (int)NumElts) {
2372         if (UndefLHS[M])
2373           KnownUndef.setBit(i);
2374         if (ZeroLHS[M])
2375           KnownZero.setBit(i);
2376       } else {
2377         if (UndefRHS[M - NumElts])
2378           KnownUndef.setBit(i);
2379         if (ZeroRHS[M - NumElts])
2380           KnownZero.setBit(i);
2381       }
2382     }
2383     break;
2384   }
2385   case ISD::ANY_EXTEND_VECTOR_INREG:
2386   case ISD::SIGN_EXTEND_VECTOR_INREG:
2387   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2388     APInt SrcUndef, SrcZero;
2389     SDValue Src = Op.getOperand(0);
2390     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2391     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2392     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2393                                    Depth + 1))
2394       return true;
2395     KnownZero = SrcZero.zextOrTrunc(NumElts);
2396     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2397 
2398     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2399         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2400         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2401       // aext - if we just need the bottom element then we can bitcast.
2402       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2403     }
2404 
2405     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2406       // zext(undef) upper bits are guaranteed to be zero.
2407       if (DemandedElts.isSubsetOf(KnownUndef))
2408         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2409       KnownUndef.clearAllBits();
2410     }
2411     break;
2412   }
2413 
2414   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2415   // MAX, saturated math, etc.
2416   case ISD::OR:
2417   case ISD::XOR:
2418   case ISD::ADD:
2419   case ISD::SUB:
2420   case ISD::FADD:
2421   case ISD::FSUB:
2422   case ISD::FMUL:
2423   case ISD::FDIV:
2424   case ISD::FREM: {
2425     APInt UndefRHS, ZeroRHS;
2426     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2427                                    ZeroRHS, TLO, Depth + 1))
2428       return true;
2429     APInt UndefLHS, ZeroLHS;
2430     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2431                                    ZeroLHS, TLO, Depth + 1))
2432       return true;
2433 
2434     KnownZero = ZeroLHS & ZeroRHS;
2435     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2436     break;
2437   }
2438   case ISD::SHL:
2439   case ISD::SRL:
2440   case ISD::SRA:
2441   case ISD::ROTL:
2442   case ISD::ROTR: {
2443     APInt UndefRHS, ZeroRHS;
2444     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2445                                    ZeroRHS, TLO, Depth + 1))
2446       return true;
2447     APInt UndefLHS, ZeroLHS;
2448     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2449                                    ZeroLHS, TLO, Depth + 1))
2450       return true;
2451 
2452     KnownZero = ZeroLHS;
2453     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2454     break;
2455   }
2456   case ISD::MUL:
2457   case ISD::AND: {
2458     APInt SrcUndef, SrcZero;
2459     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2460                                    SrcZero, TLO, Depth + 1))
2461       return true;
2462     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2463                                    KnownZero, TLO, Depth + 1))
2464       return true;
2465 
2466     // If either side has a zero element, then the result element is zero, even
2467     // if the other is an UNDEF.
2468     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2469     // and then handle 'and' nodes with the rest of the binop opcodes.
2470     KnownZero |= SrcZero;
2471     KnownUndef &= SrcUndef;
2472     KnownUndef &= ~KnownZero;
2473     break;
2474   }
2475   case ISD::TRUNCATE:
2476   case ISD::SIGN_EXTEND:
2477   case ISD::ZERO_EXTEND:
2478     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2479                                    KnownZero, TLO, Depth + 1))
2480       return true;
2481 
2482     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2483       // zext(undef) upper bits are guaranteed to be zero.
2484       if (DemandedElts.isSubsetOf(KnownUndef))
2485         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2486       KnownUndef.clearAllBits();
2487     }
2488     break;
2489   default: {
2490     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2491       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2492                                                   KnownZero, TLO, Depth))
2493         return true;
2494     } else {
2495       KnownBits Known;
2496       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2497       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2498                                TLO, Depth, AssumeSingleUse))
2499         return true;
2500     }
2501     break;
2502   }
2503   }
2504   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2505 
2506   // Constant fold all undef cases.
2507   // TODO: Handle zero cases as well.
2508   if (DemandedElts.isSubsetOf(KnownUndef))
2509     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2510 
2511   return false;
2512 }
2513 
2514 /// Determine which of the bits specified in Mask are known to be either zero or
2515 /// one and return them in the Known.
2516 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2517                                                    KnownBits &Known,
2518                                                    const APInt &DemandedElts,
2519                                                    const SelectionDAG &DAG,
2520                                                    unsigned Depth) const {
2521   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2522           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2523           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2524           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2525          "Should use MaskedValueIsZero if you don't know whether Op"
2526          " is a target node!");
2527   Known.resetAll();
2528 }
2529 
2530 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2531                                                    KnownBits &Known,
2532                                                    const APInt &DemandedElts,
2533                                                    const SelectionDAG &DAG,
2534                                                    unsigned Depth) const {
2535   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2536 
2537   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2538     // The low bits are known zero if the pointer is aligned.
2539     Known.Zero.setLowBits(Log2_32(Align));
2540   }
2541 }
2542 
2543 /// This method can be implemented by targets that want to expose additional
2544 /// information about sign bits to the DAG Combiner.
2545 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2546                                                          const APInt &,
2547                                                          const SelectionDAG &,
2548                                                          unsigned Depth) const {
2549   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2550           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2551           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2552           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2553          "Should use ComputeNumSignBits if you don't know whether Op"
2554          " is a target node!");
2555   return 1;
2556 }
2557 
2558 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2559     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2560     TargetLoweringOpt &TLO, unsigned Depth) const {
2561   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2562           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2563           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2564           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2565          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2566          " is a target node!");
2567   return false;
2568 }
2569 
2570 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2571     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2572     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2573   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2574           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2575           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2576           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2577          "Should use SimplifyDemandedBits if you don't know whether Op"
2578          " is a target node!");
2579   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2580   return false;
2581 }
2582 
2583 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2584     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2585     SelectionDAG &DAG, unsigned Depth) const {
2586   assert(
2587       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2588        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2589        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2590        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2591       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2592       " is a target node!");
2593   return SDValue();
2594 }
2595 
2596 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2597   return nullptr;
2598 }
2599 
2600 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2601                                                   const SelectionDAG &DAG,
2602                                                   bool SNaN,
2603                                                   unsigned Depth) const {
2604   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2605           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2606           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2607           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2608          "Should use isKnownNeverNaN if you don't know whether Op"
2609          " is a target node!");
2610   return false;
2611 }
2612 
2613 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2614 // work with truncating build vectors and vectors with elements of less than
2615 // 8 bits.
2616 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2617   if (!N)
2618     return false;
2619 
2620   APInt CVal;
2621   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2622     CVal = CN->getAPIntValue();
2623   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2624     auto *CN = BV->getConstantSplatNode();
2625     if (!CN)
2626       return false;
2627 
2628     // If this is a truncating build vector, truncate the splat value.
2629     // Otherwise, we may fail to match the expected values below.
2630     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2631     CVal = CN->getAPIntValue();
2632     if (BVEltWidth < CVal.getBitWidth())
2633       CVal = CVal.trunc(BVEltWidth);
2634   } else {
2635     return false;
2636   }
2637 
2638   switch (getBooleanContents(N->getValueType(0))) {
2639   case UndefinedBooleanContent:
2640     return CVal[0];
2641   case ZeroOrOneBooleanContent:
2642     return CVal.isOneValue();
2643   case ZeroOrNegativeOneBooleanContent:
2644     return CVal.isAllOnesValue();
2645   }
2646 
2647   llvm_unreachable("Invalid boolean contents");
2648 }
2649 
2650 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2651   if (!N)
2652     return false;
2653 
2654   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2655   if (!CN) {
2656     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2657     if (!BV)
2658       return false;
2659 
2660     // Only interested in constant splats, we don't care about undef
2661     // elements in identifying boolean constants and getConstantSplatNode
2662     // returns NULL if all ops are undef;
2663     CN = BV->getConstantSplatNode();
2664     if (!CN)
2665       return false;
2666   }
2667 
2668   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2669     return !CN->getAPIntValue()[0];
2670 
2671   return CN->isNullValue();
2672 }
2673 
2674 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2675                                        bool SExt) const {
2676   if (VT == MVT::i1)
2677     return N->isOne();
2678 
2679   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2680   switch (Cnt) {
2681   case TargetLowering::ZeroOrOneBooleanContent:
2682     // An extended value of 1 is always true, unless its original type is i1,
2683     // in which case it will be sign extended to -1.
2684     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2685   case TargetLowering::UndefinedBooleanContent:
2686   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2687     return N->isAllOnesValue() && SExt;
2688   }
2689   llvm_unreachable("Unexpected enumeration.");
2690 }
2691 
2692 /// This helper function of SimplifySetCC tries to optimize the comparison when
2693 /// either operand of the SetCC node is a bitwise-and instruction.
2694 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2695                                          ISD::CondCode Cond, const SDLoc &DL,
2696                                          DAGCombinerInfo &DCI) const {
2697   // Match these patterns in any of their permutations:
2698   // (X & Y) == Y
2699   // (X & Y) != Y
2700   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2701     std::swap(N0, N1);
2702 
2703   EVT OpVT = N0.getValueType();
2704   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2705       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2706     return SDValue();
2707 
2708   SDValue X, Y;
2709   if (N0.getOperand(0) == N1) {
2710     X = N0.getOperand(1);
2711     Y = N0.getOperand(0);
2712   } else if (N0.getOperand(1) == N1) {
2713     X = N0.getOperand(0);
2714     Y = N0.getOperand(1);
2715   } else {
2716     return SDValue();
2717   }
2718 
2719   SelectionDAG &DAG = DCI.DAG;
2720   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2721   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2722     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2723     // Note that where Y is variable and is known to have at most one bit set
2724     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2725     // equivalent when Y == 0.
2726     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2727     if (DCI.isBeforeLegalizeOps() ||
2728         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2729       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2730   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2731     // If the target supports an 'and-not' or 'and-complement' logic operation,
2732     // try to use that to make a comparison operation more efficient.
2733     // But don't do this transform if the mask is a single bit because there are
2734     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2735     // 'rlwinm' on PPC).
2736 
2737     // Bail out if the compare operand that we want to turn into a zero is
2738     // already a zero (otherwise, infinite loop).
2739     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2740     if (YConst && YConst->isNullValue())
2741       return SDValue();
2742 
2743     // Transform this into: ~X & Y == 0.
2744     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2745     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2746     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2747   }
2748 
2749   return SDValue();
2750 }
2751 
2752 /// There are multiple IR patterns that could be checking whether certain
2753 /// truncation of a signed number would be lossy or not. The pattern which is
2754 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2755 /// We are looking for the following pattern: (KeptBits is a constant)
2756 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2757 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2758 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2759 /// We will unfold it into the natural trunc+sext pattern:
2760 ///   ((%x << C) a>> C) dstcond %x
2761 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2762 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2763     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2764     const SDLoc &DL) const {
2765   // We must be comparing with a constant.
2766   ConstantSDNode *C1;
2767   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2768     return SDValue();
2769 
2770   // N0 should be:  add %x, (1 << (KeptBits-1))
2771   if (N0->getOpcode() != ISD::ADD)
2772     return SDValue();
2773 
2774   // And we must be 'add'ing a constant.
2775   ConstantSDNode *C01;
2776   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2777     return SDValue();
2778 
2779   SDValue X = N0->getOperand(0);
2780   EVT XVT = X.getValueType();
2781 
2782   // Validate constants ...
2783 
2784   APInt I1 = C1->getAPIntValue();
2785 
2786   ISD::CondCode NewCond;
2787   if (Cond == ISD::CondCode::SETULT) {
2788     NewCond = ISD::CondCode::SETEQ;
2789   } else if (Cond == ISD::CondCode::SETULE) {
2790     NewCond = ISD::CondCode::SETEQ;
2791     // But need to 'canonicalize' the constant.
2792     I1 += 1;
2793   } else if (Cond == ISD::CondCode::SETUGT) {
2794     NewCond = ISD::CondCode::SETNE;
2795     // But need to 'canonicalize' the constant.
2796     I1 += 1;
2797   } else if (Cond == ISD::CondCode::SETUGE) {
2798     NewCond = ISD::CondCode::SETNE;
2799   } else
2800     return SDValue();
2801 
2802   APInt I01 = C01->getAPIntValue();
2803 
2804   auto checkConstants = [&I1, &I01]() -> bool {
2805     // Both of them must be power-of-two, and the constant from setcc is bigger.
2806     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2807   };
2808 
2809   if (checkConstants()) {
2810     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2811   } else {
2812     // What if we invert constants? (and the target predicate)
2813     I1.negate();
2814     I01.negate();
2815     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2816     if (!checkConstants())
2817       return SDValue();
2818     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2819   }
2820 
2821   // They are power-of-two, so which bit is set?
2822   const unsigned KeptBits = I1.logBase2();
2823   const unsigned KeptBitsMinusOne = I01.logBase2();
2824 
2825   // Magic!
2826   if (KeptBits != (KeptBitsMinusOne + 1))
2827     return SDValue();
2828   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2829 
2830   // We don't want to do this in every single case.
2831   SelectionDAG &DAG = DCI.DAG;
2832   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2833           XVT, KeptBits))
2834     return SDValue();
2835 
2836   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2837   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2838 
2839   // Unfold into:  ((%x << C) a>> C) cond %x
2840   // Where 'cond' will be either 'eq' or 'ne'.
2841   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2842   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2843   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2844   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2845 
2846   return T2;
2847 }
2848 
2849 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
2850 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2851     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2852     DAGCombinerInfo &DCI, const SDLoc &DL) const {
2853   assert(isConstOrConstSplat(N1C) &&
2854          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2855          "Should be a comparison with 0.");
2856   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2857          "Valid only for [in]equality comparisons.");
2858 
2859   unsigned NewShiftOpcode;
2860   SDValue X, C, Y;
2861 
2862   SelectionDAG &DAG = DCI.DAG;
2863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2864 
2865   // Look for '(C l>>/<< Y)'.
2866   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2867     // The shift should be one-use.
2868     if (!V.hasOneUse())
2869       return false;
2870     unsigned OldShiftOpcode = V.getOpcode();
2871     switch (OldShiftOpcode) {
2872     case ISD::SHL:
2873       NewShiftOpcode = ISD::SRL;
2874       break;
2875     case ISD::SRL:
2876       NewShiftOpcode = ISD::SHL;
2877       break;
2878     default:
2879       return false; // must be a logical shift.
2880     }
2881     // We should be shifting a constant.
2882     // FIXME: best to use isConstantOrConstantVector().
2883     C = V.getOperand(0);
2884     ConstantSDNode *CC =
2885         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2886     if (!CC)
2887       return false;
2888     Y = V.getOperand(1);
2889 
2890     ConstantSDNode *XC =
2891         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2892     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2893         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2894   };
2895 
2896   // LHS of comparison should be an one-use 'and'.
2897   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2898     return SDValue();
2899 
2900   X = N0.getOperand(0);
2901   SDValue Mask = N0.getOperand(1);
2902 
2903   // 'and' is commutative!
2904   if (!Match(Mask)) {
2905     std::swap(X, Mask);
2906     if (!Match(Mask))
2907       return SDValue();
2908   }
2909 
2910   EVT VT = X.getValueType();
2911 
2912   // Produce:
2913   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2914   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2915   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2916   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2917   return T2;
2918 }
2919 
2920 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2921 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2922 /// handle the commuted versions of these patterns.
2923 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2924                                            ISD::CondCode Cond, const SDLoc &DL,
2925                                            DAGCombinerInfo &DCI) const {
2926   unsigned BOpcode = N0.getOpcode();
2927   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2928          "Unexpected binop");
2929   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2930 
2931   // (X + Y) == X --> Y == 0
2932   // (X - Y) == X --> Y == 0
2933   // (X ^ Y) == X --> Y == 0
2934   SelectionDAG &DAG = DCI.DAG;
2935   EVT OpVT = N0.getValueType();
2936   SDValue X = N0.getOperand(0);
2937   SDValue Y = N0.getOperand(1);
2938   if (X == N1)
2939     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
2940 
2941   if (Y != N1)
2942     return SDValue();
2943 
2944   // (X + Y) == Y --> X == 0
2945   // (X ^ Y) == Y --> X == 0
2946   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
2947     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
2948 
2949   // The shift would not be valid if the operands are boolean (i1).
2950   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
2951     return SDValue();
2952 
2953   // (X - Y) == Y --> X == Y << 1
2954   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
2955                                  !DCI.isBeforeLegalize());
2956   SDValue One = DAG.getConstant(1, DL, ShiftVT);
2957   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
2958   if (!DCI.isCalledByLegalizer())
2959     DCI.AddToWorklist(YShl1.getNode());
2960   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
2961 }
2962 
2963 /// Try to simplify a setcc built with the specified operands and cc. If it is
2964 /// unable to simplify it, return a null SDValue.
2965 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2966                                       ISD::CondCode Cond, bool foldBooleans,
2967                                       DAGCombinerInfo &DCI,
2968                                       const SDLoc &dl) const {
2969   SelectionDAG &DAG = DCI.DAG;
2970   EVT OpVT = N0.getValueType();
2971 
2972   // Constant fold or commute setcc.
2973   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
2974     return Fold;
2975 
2976   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2977   // TODO: Handle non-splat vector constants. All undef causes trouble.
2978   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2979   if (isConstOrConstSplat(N0) &&
2980       (DCI.isBeforeLegalizeOps() ||
2981        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2982     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2983 
2984   // If we have a subtract with the same 2 non-constant operands as this setcc
2985   // -- but in reverse order -- then try to commute the operands of this setcc
2986   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
2987   // instruction on some targets.
2988   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
2989       (DCI.isBeforeLegalizeOps() ||
2990        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
2991       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
2992       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
2993     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2994 
2995   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2996     const APInt &C1 = N1C->getAPIntValue();
2997 
2998     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2999     // equality comparison, then we're just comparing whether X itself is
3000     // zero.
3001     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3002         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3003         N0.getOperand(1).getOpcode() == ISD::Constant) {
3004       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3005       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3006           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3007         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3008           // (srl (ctlz x), 5) == 0  -> X != 0
3009           // (srl (ctlz x), 5) != 1  -> X != 0
3010           Cond = ISD::SETNE;
3011         } else {
3012           // (srl (ctlz x), 5) != 0  -> X == 0
3013           // (srl (ctlz x), 5) == 1  -> X == 0
3014           Cond = ISD::SETEQ;
3015         }
3016         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3017         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3018                             Zero, Cond);
3019       }
3020     }
3021 
3022     SDValue CTPOP = N0;
3023     // Look through truncs that don't change the value of a ctpop.
3024     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3025       CTPOP = N0.getOperand(0);
3026 
3027     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3028         (N0 == CTPOP ||
3029          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3030       EVT CTVT = CTPOP.getValueType();
3031       SDValue CTOp = CTPOP.getOperand(0);
3032 
3033       // (ctpop x) u< 2 -> (x & x-1) == 0
3034       // (ctpop x) u> 1 -> (x & x-1) != 0
3035       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3036         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3037         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3038         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3039         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3040         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3041       }
3042 
3043       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3044       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3045           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3046         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3047         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3048         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3049         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3050         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3051         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3052         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3053         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3054         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3055         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3056         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3057       }
3058     }
3059 
3060     // (zext x) == C --> x == (trunc C)
3061     // (sext x) == C --> x == (trunc C)
3062     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3063         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3064       unsigned MinBits = N0.getValueSizeInBits();
3065       SDValue PreExt;
3066       bool Signed = false;
3067       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3068         // ZExt
3069         MinBits = N0->getOperand(0).getValueSizeInBits();
3070         PreExt = N0->getOperand(0);
3071       } else if (N0->getOpcode() == ISD::AND) {
3072         // DAGCombine turns costly ZExts into ANDs
3073         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3074           if ((C->getAPIntValue()+1).isPowerOf2()) {
3075             MinBits = C->getAPIntValue().countTrailingOnes();
3076             PreExt = N0->getOperand(0);
3077           }
3078       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3079         // SExt
3080         MinBits = N0->getOperand(0).getValueSizeInBits();
3081         PreExt = N0->getOperand(0);
3082         Signed = true;
3083       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3084         // ZEXTLOAD / SEXTLOAD
3085         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3086           MinBits = LN0->getMemoryVT().getSizeInBits();
3087           PreExt = N0;
3088         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3089           Signed = true;
3090           MinBits = LN0->getMemoryVT().getSizeInBits();
3091           PreExt = N0;
3092         }
3093       }
3094 
3095       // Figure out how many bits we need to preserve this constant.
3096       unsigned ReqdBits = Signed ?
3097         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3098         C1.getActiveBits();
3099 
3100       // Make sure we're not losing bits from the constant.
3101       if (MinBits > 0 &&
3102           MinBits < C1.getBitWidth() &&
3103           MinBits >= ReqdBits) {
3104         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3105         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3106           // Will get folded away.
3107           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3108           if (MinBits == 1 && C1 == 1)
3109             // Invert the condition.
3110             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3111                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3112           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3113           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3114         }
3115 
3116         // If truncating the setcc operands is not desirable, we can still
3117         // simplify the expression in some cases:
3118         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3119         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3120         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3121         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3122         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3123         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3124         SDValue TopSetCC = N0->getOperand(0);
3125         unsigned N0Opc = N0->getOpcode();
3126         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3127         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3128             TopSetCC.getOpcode() == ISD::SETCC &&
3129             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3130             (isConstFalseVal(N1C) ||
3131              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3132 
3133           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3134                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3135 
3136           if (!Inverse)
3137             return TopSetCC;
3138 
3139           ISD::CondCode InvCond = ISD::getSetCCInverse(
3140               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3141               TopSetCC.getOperand(0).getValueType().isInteger());
3142           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3143                                       TopSetCC.getOperand(1),
3144                                       InvCond);
3145         }
3146       }
3147     }
3148 
3149     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3150     // equality or unsigned, and all 1 bits of the const are in the same
3151     // partial word, see if we can shorten the load.
3152     if (DCI.isBeforeLegalize() &&
3153         !ISD::isSignedIntSetCC(Cond) &&
3154         N0.getOpcode() == ISD::AND && C1 == 0 &&
3155         N0.getNode()->hasOneUse() &&
3156         isa<LoadSDNode>(N0.getOperand(0)) &&
3157         N0.getOperand(0).getNode()->hasOneUse() &&
3158         isa<ConstantSDNode>(N0.getOperand(1))) {
3159       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3160       APInt bestMask;
3161       unsigned bestWidth = 0, bestOffset = 0;
3162       if (!Lod->isVolatile() && Lod->isUnindexed()) {
3163         unsigned origWidth = N0.getValueSizeInBits();
3164         unsigned maskWidth = origWidth;
3165         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3166         // 8 bits, but have to be careful...
3167         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3168           origWidth = Lod->getMemoryVT().getSizeInBits();
3169         const APInt &Mask = N0.getConstantOperandAPInt(1);
3170         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3171           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3172           for (unsigned offset=0; offset<origWidth/width; offset++) {
3173             if (Mask.isSubsetOf(newMask)) {
3174               if (DAG.getDataLayout().isLittleEndian())
3175                 bestOffset = (uint64_t)offset * (width/8);
3176               else
3177                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3178               bestMask = Mask.lshr(offset * (width/8) * 8);
3179               bestWidth = width;
3180               break;
3181             }
3182             newMask <<= width;
3183           }
3184         }
3185       }
3186       if (bestWidth) {
3187         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3188         if (newVT.isRound() &&
3189             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3190           EVT PtrType = Lod->getOperand(1).getValueType();
3191           SDValue Ptr = Lod->getBasePtr();
3192           if (bestOffset != 0)
3193             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3194                               DAG.getConstant(bestOffset, dl, PtrType));
3195           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3196           SDValue NewLoad = DAG.getLoad(
3197               newVT, dl, Lod->getChain(), Ptr,
3198               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3199           return DAG.getSetCC(dl, VT,
3200                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3201                                       DAG.getConstant(bestMask.trunc(bestWidth),
3202                                                       dl, newVT)),
3203                               DAG.getConstant(0LL, dl, newVT), Cond);
3204         }
3205       }
3206     }
3207 
3208     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3209     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3210       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3211 
3212       // If the comparison constant has bits in the upper part, the
3213       // zero-extended value could never match.
3214       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3215                                               C1.getBitWidth() - InSize))) {
3216         switch (Cond) {
3217         case ISD::SETUGT:
3218         case ISD::SETUGE:
3219         case ISD::SETEQ:
3220           return DAG.getConstant(0, dl, VT);
3221         case ISD::SETULT:
3222         case ISD::SETULE:
3223         case ISD::SETNE:
3224           return DAG.getConstant(1, dl, VT);
3225         case ISD::SETGT:
3226         case ISD::SETGE:
3227           // True if the sign bit of C1 is set.
3228           return DAG.getConstant(C1.isNegative(), dl, VT);
3229         case ISD::SETLT:
3230         case ISD::SETLE:
3231           // True if the sign bit of C1 isn't set.
3232           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3233         default:
3234           break;
3235         }
3236       }
3237 
3238       // Otherwise, we can perform the comparison with the low bits.
3239       switch (Cond) {
3240       case ISD::SETEQ:
3241       case ISD::SETNE:
3242       case ISD::SETUGT:
3243       case ISD::SETUGE:
3244       case ISD::SETULT:
3245       case ISD::SETULE: {
3246         EVT newVT = N0.getOperand(0).getValueType();
3247         if (DCI.isBeforeLegalizeOps() ||
3248             (isOperationLegal(ISD::SETCC, newVT) &&
3249              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3250           EVT NewSetCCVT =
3251               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3252           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3253 
3254           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3255                                           NewConst, Cond);
3256           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3257         }
3258         break;
3259       }
3260       default:
3261         break; // todo, be more careful with signed comparisons
3262       }
3263     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3264                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3265       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3266       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3267       EVT ExtDstTy = N0.getValueType();
3268       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3269 
3270       // If the constant doesn't fit into the number of bits for the source of
3271       // the sign extension, it is impossible for both sides to be equal.
3272       if (C1.getMinSignedBits() > ExtSrcTyBits)
3273         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3274 
3275       SDValue ZextOp;
3276       EVT Op0Ty = N0.getOperand(0).getValueType();
3277       if (Op0Ty == ExtSrcTy) {
3278         ZextOp = N0.getOperand(0);
3279       } else {
3280         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3281         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3282                              DAG.getConstant(Imm, dl, Op0Ty));
3283       }
3284       if (!DCI.isCalledByLegalizer())
3285         DCI.AddToWorklist(ZextOp.getNode());
3286       // Otherwise, make this a use of a zext.
3287       return DAG.getSetCC(dl, VT, ZextOp,
3288                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3289                                                               ExtDstTyBits,
3290                                                               ExtSrcTyBits),
3291                                           dl, ExtDstTy),
3292                           Cond);
3293     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3294                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3295       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3296       if (N0.getOpcode() == ISD::SETCC &&
3297           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3298         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3299         if (TrueWhenTrue)
3300           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3301         // Invert the condition.
3302         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3303         CC = ISD::getSetCCInverse(CC,
3304                                   N0.getOperand(0).getValueType().isInteger());
3305         if (DCI.isBeforeLegalizeOps() ||
3306             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3307           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3308       }
3309 
3310       if ((N0.getOpcode() == ISD::XOR ||
3311            (N0.getOpcode() == ISD::AND &&
3312             N0.getOperand(0).getOpcode() == ISD::XOR &&
3313             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3314           isa<ConstantSDNode>(N0.getOperand(1)) &&
3315           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3316         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3317         // can only do this if the top bits are known zero.
3318         unsigned BitWidth = N0.getValueSizeInBits();
3319         if (DAG.MaskedValueIsZero(N0,
3320                                   APInt::getHighBitsSet(BitWidth,
3321                                                         BitWidth-1))) {
3322           // Okay, get the un-inverted input value.
3323           SDValue Val;
3324           if (N0.getOpcode() == ISD::XOR) {
3325             Val = N0.getOperand(0);
3326           } else {
3327             assert(N0.getOpcode() == ISD::AND &&
3328                     N0.getOperand(0).getOpcode() == ISD::XOR);
3329             // ((X^1)&1)^1 -> X & 1
3330             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3331                               N0.getOperand(0).getOperand(0),
3332                               N0.getOperand(1));
3333           }
3334 
3335           return DAG.getSetCC(dl, VT, Val, N1,
3336                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3337         }
3338       } else if (N1C->isOne() &&
3339                  (VT == MVT::i1 ||
3340                   getBooleanContents(N0->getValueType(0)) ==
3341                       ZeroOrOneBooleanContent)) {
3342         SDValue Op0 = N0;
3343         if (Op0.getOpcode() == ISD::TRUNCATE)
3344           Op0 = Op0.getOperand(0);
3345 
3346         if ((Op0.getOpcode() == ISD::XOR) &&
3347             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3348             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3349           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3350           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3351           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3352                               Cond);
3353         }
3354         if (Op0.getOpcode() == ISD::AND &&
3355             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3356             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3357           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3358           if (Op0.getValueType().bitsGT(VT))
3359             Op0 = DAG.getNode(ISD::AND, dl, VT,
3360                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3361                           DAG.getConstant(1, dl, VT));
3362           else if (Op0.getValueType().bitsLT(VT))
3363             Op0 = DAG.getNode(ISD::AND, dl, VT,
3364                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3365                         DAG.getConstant(1, dl, VT));
3366 
3367           return DAG.getSetCC(dl, VT, Op0,
3368                               DAG.getConstant(0, dl, Op0.getValueType()),
3369                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3370         }
3371         if (Op0.getOpcode() == ISD::AssertZext &&
3372             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3373           return DAG.getSetCC(dl, VT, Op0,
3374                               DAG.getConstant(0, dl, Op0.getValueType()),
3375                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3376       }
3377     }
3378 
3379     // Given:
3380     //   icmp eq/ne (urem %x, %y), 0
3381     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3382     //   icmp eq/ne %x, 0
3383     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3384         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3385       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3386       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3387       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3388         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3389     }
3390 
3391     if (SDValue V =
3392             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3393       return V;
3394   }
3395 
3396   // These simplifications apply to splat vectors as well.
3397   // TODO: Handle more splat vector cases.
3398   if (auto *N1C = isConstOrConstSplat(N1)) {
3399     const APInt &C1 = N1C->getAPIntValue();
3400 
3401     APInt MinVal, MaxVal;
3402     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3403     if (ISD::isSignedIntSetCC(Cond)) {
3404       MinVal = APInt::getSignedMinValue(OperandBitSize);
3405       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3406     } else {
3407       MinVal = APInt::getMinValue(OperandBitSize);
3408       MaxVal = APInt::getMaxValue(OperandBitSize);
3409     }
3410 
3411     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3412     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3413       // X >= MIN --> true
3414       if (C1 == MinVal)
3415         return DAG.getBoolConstant(true, dl, VT, OpVT);
3416 
3417       if (!VT.isVector()) { // TODO: Support this for vectors.
3418         // X >= C0 --> X > (C0 - 1)
3419         APInt C = C1 - 1;
3420         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3421         if ((DCI.isBeforeLegalizeOps() ||
3422              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3423             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3424                                   isLegalICmpImmediate(C.getSExtValue())))) {
3425           return DAG.getSetCC(dl, VT, N0,
3426                               DAG.getConstant(C, dl, N1.getValueType()),
3427                               NewCC);
3428         }
3429       }
3430     }
3431 
3432     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3433       // X <= MAX --> true
3434       if (C1 == MaxVal)
3435         return DAG.getBoolConstant(true, dl, VT, OpVT);
3436 
3437       // X <= C0 --> X < (C0 + 1)
3438       if (!VT.isVector()) { // TODO: Support this for vectors.
3439         APInt C = C1 + 1;
3440         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3441         if ((DCI.isBeforeLegalizeOps() ||
3442              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3443             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3444                                   isLegalICmpImmediate(C.getSExtValue())))) {
3445           return DAG.getSetCC(dl, VT, N0,
3446                               DAG.getConstant(C, dl, N1.getValueType()),
3447                               NewCC);
3448         }
3449       }
3450     }
3451 
3452     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3453       if (C1 == MinVal)
3454         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3455 
3456       // TODO: Support this for vectors after legalize ops.
3457       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3458         // Canonicalize setlt X, Max --> setne X, Max
3459         if (C1 == MaxVal)
3460           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3461 
3462         // If we have setult X, 1, turn it into seteq X, 0
3463         if (C1 == MinVal+1)
3464           return DAG.getSetCC(dl, VT, N0,
3465                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3466                               ISD::SETEQ);
3467       }
3468     }
3469 
3470     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3471       if (C1 == MaxVal)
3472         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3473 
3474       // TODO: Support this for vectors after legalize ops.
3475       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3476         // Canonicalize setgt X, Min --> setne X, Min
3477         if (C1 == MinVal)
3478           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3479 
3480         // If we have setugt X, Max-1, turn it into seteq X, Max
3481         if (C1 == MaxVal-1)
3482           return DAG.getSetCC(dl, VT, N0,
3483                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3484                               ISD::SETEQ);
3485       }
3486     }
3487 
3488     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3489       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3490       if (C1.isNullValue())
3491         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3492                 VT, N0, N1, Cond, DCI, dl))
3493           return CC;
3494     }
3495 
3496     // If we have "setcc X, C0", check to see if we can shrink the immediate
3497     // by changing cc.
3498     // TODO: Support this for vectors after legalize ops.
3499     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3500       // SETUGT X, SINTMAX  -> SETLT X, 0
3501       if (Cond == ISD::SETUGT &&
3502           C1 == APInt::getSignedMaxValue(OperandBitSize))
3503         return DAG.getSetCC(dl, VT, N0,
3504                             DAG.getConstant(0, dl, N1.getValueType()),
3505                             ISD::SETLT);
3506 
3507       // SETULT X, SINTMIN  -> SETGT X, -1
3508       if (Cond == ISD::SETULT &&
3509           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3510         SDValue ConstMinusOne =
3511             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3512                             N1.getValueType());
3513         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3514       }
3515     }
3516   }
3517 
3518   // Back to non-vector simplifications.
3519   // TODO: Can we do these for vector splats?
3520   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3521     const APInt &C1 = N1C->getAPIntValue();
3522 
3523     // Fold bit comparisons when we can.
3524     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3525         (VT == N0.getValueType() ||
3526          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3527         N0.getOpcode() == ISD::AND) {
3528       auto &DL = DAG.getDataLayout();
3529       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3530         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3531                                        !DCI.isBeforeLegalize());
3532         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3533           // Perform the xform if the AND RHS is a single bit.
3534           if (AndRHS->getAPIntValue().isPowerOf2()) {
3535             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3536                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3537                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3538                                    ShiftTy)));
3539           }
3540         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3541           // (X & 8) == 8  -->  (X & 8) >> 3
3542           // Perform the xform if C1 is a single bit.
3543           if (C1.isPowerOf2()) {
3544             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3545                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3546                                       DAG.getConstant(C1.logBase2(), dl,
3547                                                       ShiftTy)));
3548           }
3549         }
3550       }
3551     }
3552 
3553     if (C1.getMinSignedBits() <= 64 &&
3554         !isLegalICmpImmediate(C1.getSExtValue())) {
3555       // (X & -256) == 256 -> (X >> 8) == 1
3556       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3557           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3558         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3559           const APInt &AndRHSC = AndRHS->getAPIntValue();
3560           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3561             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3562             auto &DL = DAG.getDataLayout();
3563             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3564                                            !DCI.isBeforeLegalize());
3565             EVT CmpTy = N0.getValueType();
3566             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3567                                         DAG.getConstant(ShiftBits, dl,
3568                                                         ShiftTy));
3569             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3570             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3571           }
3572         }
3573       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3574                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3575         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3576         // X <  0x100000000 -> (X >> 32) <  1
3577         // X >= 0x100000000 -> (X >> 32) >= 1
3578         // X <= 0x0ffffffff -> (X >> 32) <  1
3579         // X >  0x0ffffffff -> (X >> 32) >= 1
3580         unsigned ShiftBits;
3581         APInt NewC = C1;
3582         ISD::CondCode NewCond = Cond;
3583         if (AdjOne) {
3584           ShiftBits = C1.countTrailingOnes();
3585           NewC = NewC + 1;
3586           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3587         } else {
3588           ShiftBits = C1.countTrailingZeros();
3589         }
3590         NewC.lshrInPlace(ShiftBits);
3591         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3592           isLegalICmpImmediate(NewC.getSExtValue())) {
3593           auto &DL = DAG.getDataLayout();
3594           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3595                                          !DCI.isBeforeLegalize());
3596           EVT CmpTy = N0.getValueType();
3597           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3598                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3599           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3600           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3601         }
3602       }
3603     }
3604   }
3605 
3606   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3607     auto *CFP = cast<ConstantFPSDNode>(N1);
3608     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3609 
3610     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3611     // constant if knowing that the operand is non-nan is enough.  We prefer to
3612     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3613     // materialize 0.0.
3614     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3615       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3616 
3617     // setcc (fneg x), C -> setcc swap(pred) x, -C
3618     if (N0.getOpcode() == ISD::FNEG) {
3619       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3620       if (DCI.isBeforeLegalizeOps() ||
3621           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3622         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3623         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3624       }
3625     }
3626 
3627     // If the condition is not legal, see if we can find an equivalent one
3628     // which is legal.
3629     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3630       // If the comparison was an awkward floating-point == or != and one of
3631       // the comparison operands is infinity or negative infinity, convert the
3632       // condition to a less-awkward <= or >=.
3633       if (CFP->getValueAPF().isInfinity()) {
3634         if (CFP->getValueAPF().isNegative()) {
3635           if (Cond == ISD::SETOEQ &&
3636               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3637             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3638           if (Cond == ISD::SETUEQ &&
3639               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3640             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3641           if (Cond == ISD::SETUNE &&
3642               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3643             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3644           if (Cond == ISD::SETONE &&
3645               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3646             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3647         } else {
3648           if (Cond == ISD::SETOEQ &&
3649               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3650             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3651           if (Cond == ISD::SETUEQ &&
3652               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3653             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3654           if (Cond == ISD::SETUNE &&
3655               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3656             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3657           if (Cond == ISD::SETONE &&
3658               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3659             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3660         }
3661       }
3662     }
3663   }
3664 
3665   if (N0 == N1) {
3666     // The sext(setcc()) => setcc() optimization relies on the appropriate
3667     // constant being emitted.
3668     assert(!N0.getValueType().isInteger() &&
3669            "Integer types should be handled by FoldSetCC");
3670 
3671     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3672     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3673     if (UOF == 2) // FP operators that are undefined on NaNs.
3674       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3675     if (UOF == unsigned(EqTrue))
3676       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3677     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3678     // if it is not already.
3679     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3680     if (NewCond != Cond &&
3681         (DCI.isBeforeLegalizeOps() ||
3682                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3683       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3684   }
3685 
3686   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3687       N0.getValueType().isInteger()) {
3688     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3689         N0.getOpcode() == ISD::XOR) {
3690       // Simplify (X+Y) == (X+Z) -->  Y == Z
3691       if (N0.getOpcode() == N1.getOpcode()) {
3692         if (N0.getOperand(0) == N1.getOperand(0))
3693           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3694         if (N0.getOperand(1) == N1.getOperand(1))
3695           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3696         if (isCommutativeBinOp(N0.getOpcode())) {
3697           // If X op Y == Y op X, try other combinations.
3698           if (N0.getOperand(0) == N1.getOperand(1))
3699             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3700                                 Cond);
3701           if (N0.getOperand(1) == N1.getOperand(0))
3702             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3703                                 Cond);
3704         }
3705       }
3706 
3707       // If RHS is a legal immediate value for a compare instruction, we need
3708       // to be careful about increasing register pressure needlessly.
3709       bool LegalRHSImm = false;
3710 
3711       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3712         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3713           // Turn (X+C1) == C2 --> X == C2-C1
3714           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3715             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3716                                 DAG.getConstant(RHSC->getAPIntValue()-
3717                                                 LHSR->getAPIntValue(),
3718                                 dl, N0.getValueType()), Cond);
3719           }
3720 
3721           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3722           if (N0.getOpcode() == ISD::XOR)
3723             // If we know that all of the inverted bits are zero, don't bother
3724             // performing the inversion.
3725             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3726               return
3727                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3728                              DAG.getConstant(LHSR->getAPIntValue() ^
3729                                                RHSC->getAPIntValue(),
3730                                              dl, N0.getValueType()),
3731                              Cond);
3732         }
3733 
3734         // Turn (C1-X) == C2 --> X == C1-C2
3735         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3736           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3737             return
3738               DAG.getSetCC(dl, VT, N0.getOperand(1),
3739                            DAG.getConstant(SUBC->getAPIntValue() -
3740                                              RHSC->getAPIntValue(),
3741                                            dl, N0.getValueType()),
3742                            Cond);
3743           }
3744         }
3745 
3746         // Could RHSC fold directly into a compare?
3747         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3748           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3749       }
3750 
3751       // (X+Y) == X --> Y == 0 and similar folds.
3752       // Don't do this if X is an immediate that can fold into a cmp
3753       // instruction and X+Y has other uses. It could be an induction variable
3754       // chain, and the transform would increase register pressure.
3755       if (!LegalRHSImm || N0.hasOneUse())
3756         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3757           return V;
3758     }
3759 
3760     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3761         N1.getOpcode() == ISD::XOR)
3762       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3763         return V;
3764 
3765     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3766       return V;
3767   }
3768 
3769   // Fold remainder of division by a constant.
3770   if (N0.getOpcode() == ISD::UREM && N0.hasOneUse() &&
3771       (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3772     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3773 
3774     // When division is cheap or optimizing for minimum size,
3775     // fall through to DIVREM creation by skipping this fold.
3776     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize))
3777       if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3778         return Folded;
3779   }
3780 
3781   // Fold away ALL boolean setcc's.
3782   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3783     SDValue Temp;
3784     switch (Cond) {
3785     default: llvm_unreachable("Unknown integer setcc!");
3786     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3787       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3788       N0 = DAG.getNOT(dl, Temp, OpVT);
3789       if (!DCI.isCalledByLegalizer())
3790         DCI.AddToWorklist(Temp.getNode());
3791       break;
3792     case ISD::SETNE:  // X != Y   -->  (X^Y)
3793       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3794       break;
3795     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3796     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3797       Temp = DAG.getNOT(dl, N0, OpVT);
3798       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3799       if (!DCI.isCalledByLegalizer())
3800         DCI.AddToWorklist(Temp.getNode());
3801       break;
3802     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3803     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3804       Temp = DAG.getNOT(dl, N1, OpVT);
3805       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3806       if (!DCI.isCalledByLegalizer())
3807         DCI.AddToWorklist(Temp.getNode());
3808       break;
3809     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3810     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3811       Temp = DAG.getNOT(dl, N0, OpVT);
3812       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3813       if (!DCI.isCalledByLegalizer())
3814         DCI.AddToWorklist(Temp.getNode());
3815       break;
3816     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3817     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3818       Temp = DAG.getNOT(dl, N1, OpVT);
3819       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3820       break;
3821     }
3822     if (VT.getScalarType() != MVT::i1) {
3823       if (!DCI.isCalledByLegalizer())
3824         DCI.AddToWorklist(N0.getNode());
3825       // FIXME: If running after legalize, we probably can't do this.
3826       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3827       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3828     }
3829     return N0;
3830   }
3831 
3832   // Could not fold it.
3833   return SDValue();
3834 }
3835 
3836 /// Returns true (and the GlobalValue and the offset) if the node is a
3837 /// GlobalAddress + offset.
3838 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3839                                     int64_t &Offset) const {
3840 
3841   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3842 
3843   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3844     GA = GASD->getGlobal();
3845     Offset += GASD->getOffset();
3846     return true;
3847   }
3848 
3849   if (N->getOpcode() == ISD::ADD) {
3850     SDValue N1 = N->getOperand(0);
3851     SDValue N2 = N->getOperand(1);
3852     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3853       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3854         Offset += V->getSExtValue();
3855         return true;
3856       }
3857     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3858       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3859         Offset += V->getSExtValue();
3860         return true;
3861       }
3862     }
3863   }
3864 
3865   return false;
3866 }
3867 
3868 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3869                                           DAGCombinerInfo &DCI) const {
3870   // Default implementation: no optimization.
3871   return SDValue();
3872 }
3873 
3874 //===----------------------------------------------------------------------===//
3875 //  Inline Assembler Implementation Methods
3876 //===----------------------------------------------------------------------===//
3877 
3878 TargetLowering::ConstraintType
3879 TargetLowering::getConstraintType(StringRef Constraint) const {
3880   unsigned S = Constraint.size();
3881 
3882   if (S == 1) {
3883     switch (Constraint[0]) {
3884     default: break;
3885     case 'r':
3886       return C_RegisterClass;
3887     case 'm': // memory
3888     case 'o': // offsetable
3889     case 'V': // not offsetable
3890       return C_Memory;
3891     case 'n': // Simple Integer
3892     case 'E': // Floating Point Constant
3893     case 'F': // Floating Point Constant
3894       return C_Immediate;
3895     case 'i': // Simple Integer or Relocatable Constant
3896     case 's': // Relocatable Constant
3897     case 'p': // Address.
3898     case 'X': // Allow ANY value.
3899     case 'I': // Target registers.
3900     case 'J':
3901     case 'K':
3902     case 'L':
3903     case 'M':
3904     case 'N':
3905     case 'O':
3906     case 'P':
3907     case '<':
3908     case '>':
3909       return C_Other;
3910     }
3911   }
3912 
3913   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3914     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3915       return C_Memory;
3916     return C_Register;
3917   }
3918   return C_Unknown;
3919 }
3920 
3921 /// Try to replace an X constraint, which matches anything, with another that
3922 /// has more specific requirements based on the type of the corresponding
3923 /// operand.
3924 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3925   if (ConstraintVT.isInteger())
3926     return "r";
3927   if (ConstraintVT.isFloatingPoint())
3928     return "f"; // works for many targets
3929   return nullptr;
3930 }
3931 
3932 SDValue TargetLowering::LowerAsmOutputForConstraint(
3933     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
3934     SelectionDAG &DAG) const {
3935   return SDValue();
3936 }
3937 
3938 /// Lower the specified operand into the Ops vector.
3939 /// If it is invalid, don't add anything to Ops.
3940 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3941                                                   std::string &Constraint,
3942                                                   std::vector<SDValue> &Ops,
3943                                                   SelectionDAG &DAG) const {
3944 
3945   if (Constraint.length() > 1) return;
3946 
3947   char ConstraintLetter = Constraint[0];
3948   switch (ConstraintLetter) {
3949   default: break;
3950   case 'X':     // Allows any operand; labels (basic block) use this.
3951     if (Op.getOpcode() == ISD::BasicBlock ||
3952         Op.getOpcode() == ISD::TargetBlockAddress) {
3953       Ops.push_back(Op);
3954       return;
3955     }
3956     LLVM_FALLTHROUGH;
3957   case 'i':    // Simple Integer or Relocatable Constant
3958   case 'n':    // Simple Integer
3959   case 's': {  // Relocatable Constant
3960 
3961     GlobalAddressSDNode *GA;
3962     ConstantSDNode *C;
3963     BlockAddressSDNode *BA;
3964     uint64_t Offset = 0;
3965 
3966     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
3967     // etc., since getelementpointer is variadic. We can't use
3968     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
3969     // while in this case the GA may be furthest from the root node which is
3970     // likely an ISD::ADD.
3971     while (1) {
3972       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
3973         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
3974                                                  GA->getValueType(0),
3975                                                  Offset + GA->getOffset()));
3976         return;
3977       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
3978                  ConstraintLetter != 's') {
3979         // gcc prints these as sign extended.  Sign extend value to 64 bits
3980         // now; without this it would get ZExt'd later in
3981         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3982         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
3983         BooleanContent BCont = getBooleanContents(MVT::i64);
3984         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
3985                                       : ISD::SIGN_EXTEND;
3986         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
3987                                                     : C->getSExtValue();
3988         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
3989                                             SDLoc(C), MVT::i64));
3990         return;
3991       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
3992                  ConstraintLetter != 'n') {
3993         Ops.push_back(DAG.getTargetBlockAddress(
3994             BA->getBlockAddress(), BA->getValueType(0),
3995             Offset + BA->getOffset(), BA->getTargetFlags()));
3996         return;
3997       } else {
3998         const unsigned OpCode = Op.getOpcode();
3999         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4000           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4001             Op = Op.getOperand(1);
4002           // Subtraction is not commutative.
4003           else if (OpCode == ISD::ADD &&
4004                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4005             Op = Op.getOperand(0);
4006           else
4007             return;
4008           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4009           continue;
4010         }
4011       }
4012       return;
4013     }
4014     break;
4015   }
4016   }
4017 }
4018 
4019 std::pair<unsigned, const TargetRegisterClass *>
4020 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4021                                              StringRef Constraint,
4022                                              MVT VT) const {
4023   if (Constraint.empty() || Constraint[0] != '{')
4024     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4025   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4026 
4027   // Remove the braces from around the name.
4028   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4029 
4030   std::pair<unsigned, const TargetRegisterClass *> R =
4031       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4032 
4033   // Figure out which register class contains this reg.
4034   for (const TargetRegisterClass *RC : RI->regclasses()) {
4035     // If none of the value types for this register class are valid, we
4036     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4037     if (!isLegalRC(*RI, *RC))
4038       continue;
4039 
4040     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4041          I != E; ++I) {
4042       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4043         std::pair<unsigned, const TargetRegisterClass *> S =
4044             std::make_pair(*I, RC);
4045 
4046         // If this register class has the requested value type, return it,
4047         // otherwise keep searching and return the first class found
4048         // if no other is found which explicitly has the requested type.
4049         if (RI->isTypeLegalForClass(*RC, VT))
4050           return S;
4051         if (!R.second)
4052           R = S;
4053       }
4054     }
4055   }
4056 
4057   return R;
4058 }
4059 
4060 //===----------------------------------------------------------------------===//
4061 // Constraint Selection.
4062 
4063 /// Return true of this is an input operand that is a matching constraint like
4064 /// "4".
4065 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4066   assert(!ConstraintCode.empty() && "No known constraint!");
4067   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4068 }
4069 
4070 /// If this is an input matching constraint, this method returns the output
4071 /// operand it matches.
4072 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4073   assert(!ConstraintCode.empty() && "No known constraint!");
4074   return atoi(ConstraintCode.c_str());
4075 }
4076 
4077 /// Split up the constraint string from the inline assembly value into the
4078 /// specific constraints and their prefixes, and also tie in the associated
4079 /// operand values.
4080 /// If this returns an empty vector, and if the constraint string itself
4081 /// isn't empty, there was an error parsing.
4082 TargetLowering::AsmOperandInfoVector
4083 TargetLowering::ParseConstraints(const DataLayout &DL,
4084                                  const TargetRegisterInfo *TRI,
4085                                  ImmutableCallSite CS) const {
4086   /// Information about all of the constraints.
4087   AsmOperandInfoVector ConstraintOperands;
4088   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4089   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4090 
4091   // Do a prepass over the constraints, canonicalizing them, and building up the
4092   // ConstraintOperands list.
4093   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4094   unsigned ResNo = 0; // ResNo - The result number of the next output.
4095 
4096   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4097     ConstraintOperands.emplace_back(std::move(CI));
4098     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4099 
4100     // Update multiple alternative constraint count.
4101     if (OpInfo.multipleAlternatives.size() > maCount)
4102       maCount = OpInfo.multipleAlternatives.size();
4103 
4104     OpInfo.ConstraintVT = MVT::Other;
4105 
4106     // Compute the value type for each operand.
4107     switch (OpInfo.Type) {
4108     case InlineAsm::isOutput:
4109       // Indirect outputs just consume an argument.
4110       if (OpInfo.isIndirect) {
4111         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4112         break;
4113       }
4114 
4115       // The return value of the call is this value.  As such, there is no
4116       // corresponding argument.
4117       assert(!CS.getType()->isVoidTy() &&
4118              "Bad inline asm!");
4119       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4120         OpInfo.ConstraintVT =
4121             getSimpleValueType(DL, STy->getElementType(ResNo));
4122       } else {
4123         assert(ResNo == 0 && "Asm only has one result!");
4124         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4125       }
4126       ++ResNo;
4127       break;
4128     case InlineAsm::isInput:
4129       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4130       break;
4131     case InlineAsm::isClobber:
4132       // Nothing to do.
4133       break;
4134     }
4135 
4136     if (OpInfo.CallOperandVal) {
4137       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4138       if (OpInfo.isIndirect) {
4139         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4140         if (!PtrTy)
4141           report_fatal_error("Indirect operand for inline asm not a pointer!");
4142         OpTy = PtrTy->getElementType();
4143       }
4144 
4145       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4146       if (StructType *STy = dyn_cast<StructType>(OpTy))
4147         if (STy->getNumElements() == 1)
4148           OpTy = STy->getElementType(0);
4149 
4150       // If OpTy is not a single value, it may be a struct/union that we
4151       // can tile with integers.
4152       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4153         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4154         switch (BitSize) {
4155         default: break;
4156         case 1:
4157         case 8:
4158         case 16:
4159         case 32:
4160         case 64:
4161         case 128:
4162           OpInfo.ConstraintVT =
4163               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4164           break;
4165         }
4166       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4167         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4168         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4169       } else {
4170         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4171       }
4172     }
4173   }
4174 
4175   // If we have multiple alternative constraints, select the best alternative.
4176   if (!ConstraintOperands.empty()) {
4177     if (maCount) {
4178       unsigned bestMAIndex = 0;
4179       int bestWeight = -1;
4180       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4181       int weight = -1;
4182       unsigned maIndex;
4183       // Compute the sums of the weights for each alternative, keeping track
4184       // of the best (highest weight) one so far.
4185       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4186         int weightSum = 0;
4187         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4188              cIndex != eIndex; ++cIndex) {
4189           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4190           if (OpInfo.Type == InlineAsm::isClobber)
4191             continue;
4192 
4193           // If this is an output operand with a matching input operand,
4194           // look up the matching input. If their types mismatch, e.g. one
4195           // is an integer, the other is floating point, or their sizes are
4196           // different, flag it as an maCantMatch.
4197           if (OpInfo.hasMatchingInput()) {
4198             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4199             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4200               if ((OpInfo.ConstraintVT.isInteger() !=
4201                    Input.ConstraintVT.isInteger()) ||
4202                   (OpInfo.ConstraintVT.getSizeInBits() !=
4203                    Input.ConstraintVT.getSizeInBits())) {
4204                 weightSum = -1; // Can't match.
4205                 break;
4206               }
4207             }
4208           }
4209           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4210           if (weight == -1) {
4211             weightSum = -1;
4212             break;
4213           }
4214           weightSum += weight;
4215         }
4216         // Update best.
4217         if (weightSum > bestWeight) {
4218           bestWeight = weightSum;
4219           bestMAIndex = maIndex;
4220         }
4221       }
4222 
4223       // Now select chosen alternative in each constraint.
4224       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4225            cIndex != eIndex; ++cIndex) {
4226         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4227         if (cInfo.Type == InlineAsm::isClobber)
4228           continue;
4229         cInfo.selectAlternative(bestMAIndex);
4230       }
4231     }
4232   }
4233 
4234   // Check and hook up tied operands, choose constraint code to use.
4235   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4236        cIndex != eIndex; ++cIndex) {
4237     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4238 
4239     // If this is an output operand with a matching input operand, look up the
4240     // matching input. If their types mismatch, e.g. one is an integer, the
4241     // other is floating point, or their sizes are different, flag it as an
4242     // error.
4243     if (OpInfo.hasMatchingInput()) {
4244       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4245 
4246       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4247         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4248             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4249                                          OpInfo.ConstraintVT);
4250         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4251             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4252                                          Input.ConstraintVT);
4253         if ((OpInfo.ConstraintVT.isInteger() !=
4254              Input.ConstraintVT.isInteger()) ||
4255             (MatchRC.second != InputRC.second)) {
4256           report_fatal_error("Unsupported asm: input constraint"
4257                              " with a matching output constraint of"
4258                              " incompatible type!");
4259         }
4260       }
4261     }
4262   }
4263 
4264   return ConstraintOperands;
4265 }
4266 
4267 /// Return an integer indicating how general CT is.
4268 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4269   switch (CT) {
4270   case TargetLowering::C_Immediate:
4271   case TargetLowering::C_Other:
4272   case TargetLowering::C_Unknown:
4273     return 0;
4274   case TargetLowering::C_Register:
4275     return 1;
4276   case TargetLowering::C_RegisterClass:
4277     return 2;
4278   case TargetLowering::C_Memory:
4279     return 3;
4280   }
4281   llvm_unreachable("Invalid constraint type");
4282 }
4283 
4284 /// Examine constraint type and operand type and determine a weight value.
4285 /// This object must already have been set up with the operand type
4286 /// and the current alternative constraint selected.
4287 TargetLowering::ConstraintWeight
4288   TargetLowering::getMultipleConstraintMatchWeight(
4289     AsmOperandInfo &info, int maIndex) const {
4290   InlineAsm::ConstraintCodeVector *rCodes;
4291   if (maIndex >= (int)info.multipleAlternatives.size())
4292     rCodes = &info.Codes;
4293   else
4294     rCodes = &info.multipleAlternatives[maIndex].Codes;
4295   ConstraintWeight BestWeight = CW_Invalid;
4296 
4297   // Loop over the options, keeping track of the most general one.
4298   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4299     ConstraintWeight weight =
4300       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4301     if (weight > BestWeight)
4302       BestWeight = weight;
4303   }
4304 
4305   return BestWeight;
4306 }
4307 
4308 /// Examine constraint type and operand type and determine a weight value.
4309 /// This object must already have been set up with the operand type
4310 /// and the current alternative constraint selected.
4311 TargetLowering::ConstraintWeight
4312   TargetLowering::getSingleConstraintMatchWeight(
4313     AsmOperandInfo &info, const char *constraint) const {
4314   ConstraintWeight weight = CW_Invalid;
4315   Value *CallOperandVal = info.CallOperandVal;
4316     // If we don't have a value, we can't do a match,
4317     // but allow it at the lowest weight.
4318   if (!CallOperandVal)
4319     return CW_Default;
4320   // Look at the constraint type.
4321   switch (*constraint) {
4322     case 'i': // immediate integer.
4323     case 'n': // immediate integer with a known value.
4324       if (isa<ConstantInt>(CallOperandVal))
4325         weight = CW_Constant;
4326       break;
4327     case 's': // non-explicit intregal immediate.
4328       if (isa<GlobalValue>(CallOperandVal))
4329         weight = CW_Constant;
4330       break;
4331     case 'E': // immediate float if host format.
4332     case 'F': // immediate float.
4333       if (isa<ConstantFP>(CallOperandVal))
4334         weight = CW_Constant;
4335       break;
4336     case '<': // memory operand with autodecrement.
4337     case '>': // memory operand with autoincrement.
4338     case 'm': // memory operand.
4339     case 'o': // offsettable memory operand
4340     case 'V': // non-offsettable memory operand
4341       weight = CW_Memory;
4342       break;
4343     case 'r': // general register.
4344     case 'g': // general register, memory operand or immediate integer.
4345               // note: Clang converts "g" to "imr".
4346       if (CallOperandVal->getType()->isIntegerTy())
4347         weight = CW_Register;
4348       break;
4349     case 'X': // any operand.
4350   default:
4351     weight = CW_Default;
4352     break;
4353   }
4354   return weight;
4355 }
4356 
4357 /// If there are multiple different constraints that we could pick for this
4358 /// operand (e.g. "imr") try to pick the 'best' one.
4359 /// This is somewhat tricky: constraints fall into four classes:
4360 ///    Other         -> immediates and magic values
4361 ///    Register      -> one specific register
4362 ///    RegisterClass -> a group of regs
4363 ///    Memory        -> memory
4364 /// Ideally, we would pick the most specific constraint possible: if we have
4365 /// something that fits into a register, we would pick it.  The problem here
4366 /// is that if we have something that could either be in a register or in
4367 /// memory that use of the register could cause selection of *other*
4368 /// operands to fail: they might only succeed if we pick memory.  Because of
4369 /// this the heuristic we use is:
4370 ///
4371 ///  1) If there is an 'other' constraint, and if the operand is valid for
4372 ///     that constraint, use it.  This makes us take advantage of 'i'
4373 ///     constraints when available.
4374 ///  2) Otherwise, pick the most general constraint present.  This prefers
4375 ///     'm' over 'r', for example.
4376 ///
4377 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4378                              const TargetLowering &TLI,
4379                              SDValue Op, SelectionDAG *DAG) {
4380   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4381   unsigned BestIdx = 0;
4382   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4383   int BestGenerality = -1;
4384 
4385   // Loop over the options, keeping track of the most general one.
4386   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4387     TargetLowering::ConstraintType CType =
4388       TLI.getConstraintType(OpInfo.Codes[i]);
4389 
4390     // If this is an 'other' or 'immediate' constraint, see if the operand is
4391     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4392     // the operand is an integer in the range [0..31] we want to use I (saving a
4393     // load of a register), otherwise we must use 'r'.
4394     if ((CType == TargetLowering::C_Other ||
4395          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4396       assert(OpInfo.Codes[i].size() == 1 &&
4397              "Unhandled multi-letter 'other' constraint");
4398       std::vector<SDValue> ResultOps;
4399       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4400                                        ResultOps, *DAG);
4401       if (!ResultOps.empty()) {
4402         BestType = CType;
4403         BestIdx = i;
4404         break;
4405       }
4406     }
4407 
4408     // Things with matching constraints can only be registers, per gcc
4409     // documentation.  This mainly affects "g" constraints.
4410     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4411       continue;
4412 
4413     // This constraint letter is more general than the previous one, use it.
4414     int Generality = getConstraintGenerality(CType);
4415     if (Generality > BestGenerality) {
4416       BestType = CType;
4417       BestIdx = i;
4418       BestGenerality = Generality;
4419     }
4420   }
4421 
4422   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4423   OpInfo.ConstraintType = BestType;
4424 }
4425 
4426 /// Determines the constraint code and constraint type to use for the specific
4427 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4428 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4429                                             SDValue Op,
4430                                             SelectionDAG *DAG) const {
4431   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4432 
4433   // Single-letter constraints ('r') are very common.
4434   if (OpInfo.Codes.size() == 1) {
4435     OpInfo.ConstraintCode = OpInfo.Codes[0];
4436     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4437   } else {
4438     ChooseConstraint(OpInfo, *this, Op, DAG);
4439   }
4440 
4441   // 'X' matches anything.
4442   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4443     // Labels and constants are handled elsewhere ('X' is the only thing
4444     // that matches labels).  For Functions, the type here is the type of
4445     // the result, which is not what we want to look at; leave them alone.
4446     Value *v = OpInfo.CallOperandVal;
4447     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4448       OpInfo.CallOperandVal = v;
4449       return;
4450     }
4451 
4452     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4453       return;
4454 
4455     // Otherwise, try to resolve it to something we know about by looking at
4456     // the actual operand type.
4457     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4458       OpInfo.ConstraintCode = Repl;
4459       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4460     }
4461   }
4462 }
4463 
4464 /// Given an exact SDIV by a constant, create a multiplication
4465 /// with the multiplicative inverse of the constant.
4466 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4467                               const SDLoc &dl, SelectionDAG &DAG,
4468                               SmallVectorImpl<SDNode *> &Created) {
4469   SDValue Op0 = N->getOperand(0);
4470   SDValue Op1 = N->getOperand(1);
4471   EVT VT = N->getValueType(0);
4472   EVT SVT = VT.getScalarType();
4473   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4474   EVT ShSVT = ShVT.getScalarType();
4475 
4476   bool UseSRA = false;
4477   SmallVector<SDValue, 16> Shifts, Factors;
4478 
4479   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4480     if (C->isNullValue())
4481       return false;
4482     APInt Divisor = C->getAPIntValue();
4483     unsigned Shift = Divisor.countTrailingZeros();
4484     if (Shift) {
4485       Divisor.ashrInPlace(Shift);
4486       UseSRA = true;
4487     }
4488     // Calculate the multiplicative inverse, using Newton's method.
4489     APInt t;
4490     APInt Factor = Divisor;
4491     while ((t = Divisor * Factor) != 1)
4492       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4493     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4494     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4495     return true;
4496   };
4497 
4498   // Collect all magic values from the build vector.
4499   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4500     return SDValue();
4501 
4502   SDValue Shift, Factor;
4503   if (VT.isVector()) {
4504     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4505     Factor = DAG.getBuildVector(VT, dl, Factors);
4506   } else {
4507     Shift = Shifts[0];
4508     Factor = Factors[0];
4509   }
4510 
4511   SDValue Res = Op0;
4512 
4513   // Shift the value upfront if it is even, so the LSB is one.
4514   if (UseSRA) {
4515     // TODO: For UDIV use SRL instead of SRA.
4516     SDNodeFlags Flags;
4517     Flags.setExact(true);
4518     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4519     Created.push_back(Res.getNode());
4520   }
4521 
4522   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4523 }
4524 
4525 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4526                               SelectionDAG &DAG,
4527                               SmallVectorImpl<SDNode *> &Created) const {
4528   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4529   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4530   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4531     return SDValue(N, 0); // Lower SDIV as SDIV
4532   return SDValue();
4533 }
4534 
4535 /// Given an ISD::SDIV node expressing a divide by constant,
4536 /// return a DAG expression to select that will generate the same value by
4537 /// multiplying by a magic number.
4538 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4539 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4540                                   bool IsAfterLegalization,
4541                                   SmallVectorImpl<SDNode *> &Created) const {
4542   SDLoc dl(N);
4543   EVT VT = N->getValueType(0);
4544   EVT SVT = VT.getScalarType();
4545   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4546   EVT ShSVT = ShVT.getScalarType();
4547   unsigned EltBits = VT.getScalarSizeInBits();
4548 
4549   // Check to see if we can do this.
4550   // FIXME: We should be more aggressive here.
4551   if (!isTypeLegal(VT))
4552     return SDValue();
4553 
4554   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4555   if (N->getFlags().hasExact())
4556     return BuildExactSDIV(*this, N, dl, DAG, Created);
4557 
4558   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4559 
4560   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4561     if (C->isNullValue())
4562       return false;
4563 
4564     const APInt &Divisor = C->getAPIntValue();
4565     APInt::ms magics = Divisor.magic();
4566     int NumeratorFactor = 0;
4567     int ShiftMask = -1;
4568 
4569     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4570       // If d is +1/-1, we just multiply the numerator by +1/-1.
4571       NumeratorFactor = Divisor.getSExtValue();
4572       magics.m = 0;
4573       magics.s = 0;
4574       ShiftMask = 0;
4575     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4576       // If d > 0 and m < 0, add the numerator.
4577       NumeratorFactor = 1;
4578     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4579       // If d < 0 and m > 0, subtract the numerator.
4580       NumeratorFactor = -1;
4581     }
4582 
4583     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4584     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4585     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4586     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4587     return true;
4588   };
4589 
4590   SDValue N0 = N->getOperand(0);
4591   SDValue N1 = N->getOperand(1);
4592 
4593   // Collect the shifts / magic values from each element.
4594   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4595     return SDValue();
4596 
4597   SDValue MagicFactor, Factor, Shift, ShiftMask;
4598   if (VT.isVector()) {
4599     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4600     Factor = DAG.getBuildVector(VT, dl, Factors);
4601     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4602     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4603   } else {
4604     MagicFactor = MagicFactors[0];
4605     Factor = Factors[0];
4606     Shift = Shifts[0];
4607     ShiftMask = ShiftMasks[0];
4608   }
4609 
4610   // Multiply the numerator (operand 0) by the magic value.
4611   // FIXME: We should support doing a MUL in a wider type.
4612   SDValue Q;
4613   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4614                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4615     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4616   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4617                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4618     SDValue LoHi =
4619         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4620     Q = SDValue(LoHi.getNode(), 1);
4621   } else
4622     return SDValue(); // No mulhs or equivalent.
4623   Created.push_back(Q.getNode());
4624 
4625   // (Optionally) Add/subtract the numerator using Factor.
4626   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4627   Created.push_back(Factor.getNode());
4628   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4629   Created.push_back(Q.getNode());
4630 
4631   // Shift right algebraic by shift value.
4632   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4633   Created.push_back(Q.getNode());
4634 
4635   // Extract the sign bit, mask it and add it to the quotient.
4636   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4637   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4638   Created.push_back(T.getNode());
4639   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4640   Created.push_back(T.getNode());
4641   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4642 }
4643 
4644 /// Given an ISD::UDIV node expressing a divide by constant,
4645 /// return a DAG expression to select that will generate the same value by
4646 /// multiplying by a magic number.
4647 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4648 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4649                                   bool IsAfterLegalization,
4650                                   SmallVectorImpl<SDNode *> &Created) const {
4651   SDLoc dl(N);
4652   EVT VT = N->getValueType(0);
4653   EVT SVT = VT.getScalarType();
4654   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4655   EVT ShSVT = ShVT.getScalarType();
4656   unsigned EltBits = VT.getScalarSizeInBits();
4657 
4658   // Check to see if we can do this.
4659   // FIXME: We should be more aggressive here.
4660   if (!isTypeLegal(VT))
4661     return SDValue();
4662 
4663   bool UseNPQ = false;
4664   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4665 
4666   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4667     if (C->isNullValue())
4668       return false;
4669     // FIXME: We should use a narrower constant when the upper
4670     // bits are known to be zero.
4671     APInt Divisor = C->getAPIntValue();
4672     APInt::mu magics = Divisor.magicu();
4673     unsigned PreShift = 0, PostShift = 0;
4674 
4675     // If the divisor is even, we can avoid using the expensive fixup by
4676     // shifting the divided value upfront.
4677     if (magics.a != 0 && !Divisor[0]) {
4678       PreShift = Divisor.countTrailingZeros();
4679       // Get magic number for the shifted divisor.
4680       magics = Divisor.lshr(PreShift).magicu(PreShift);
4681       assert(magics.a == 0 && "Should use cheap fixup now");
4682     }
4683 
4684     APInt Magic = magics.m;
4685 
4686     unsigned SelNPQ;
4687     if (magics.a == 0 || Divisor.isOneValue()) {
4688       assert(magics.s < Divisor.getBitWidth() &&
4689              "We shouldn't generate an undefined shift!");
4690       PostShift = magics.s;
4691       SelNPQ = false;
4692     } else {
4693       PostShift = magics.s - 1;
4694       SelNPQ = true;
4695     }
4696 
4697     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4698     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4699     NPQFactors.push_back(
4700         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4701                                : APInt::getNullValue(EltBits),
4702                         dl, SVT));
4703     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4704     UseNPQ |= SelNPQ;
4705     return true;
4706   };
4707 
4708   SDValue N0 = N->getOperand(0);
4709   SDValue N1 = N->getOperand(1);
4710 
4711   // Collect the shifts/magic values from each element.
4712   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4713     return SDValue();
4714 
4715   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4716   if (VT.isVector()) {
4717     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4718     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4719     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4720     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4721   } else {
4722     PreShift = PreShifts[0];
4723     MagicFactor = MagicFactors[0];
4724     PostShift = PostShifts[0];
4725   }
4726 
4727   SDValue Q = N0;
4728   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4729   Created.push_back(Q.getNode());
4730 
4731   // FIXME: We should support doing a MUL in a wider type.
4732   auto GetMULHU = [&](SDValue X, SDValue Y) {
4733     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4734                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4735       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4736     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4737                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4738       SDValue LoHi =
4739           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4740       return SDValue(LoHi.getNode(), 1);
4741     }
4742     return SDValue(); // No mulhu or equivalent
4743   };
4744 
4745   // Multiply the numerator (operand 0) by the magic value.
4746   Q = GetMULHU(Q, MagicFactor);
4747   if (!Q)
4748     return SDValue();
4749 
4750   Created.push_back(Q.getNode());
4751 
4752   if (UseNPQ) {
4753     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4754     Created.push_back(NPQ.getNode());
4755 
4756     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4757     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4758     if (VT.isVector())
4759       NPQ = GetMULHU(NPQ, NPQFactor);
4760     else
4761       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4762 
4763     Created.push_back(NPQ.getNode());
4764 
4765     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4766     Created.push_back(Q.getNode());
4767   }
4768 
4769   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4770   Created.push_back(Q.getNode());
4771 
4772   SDValue One = DAG.getConstant(1, dl, VT);
4773   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4774   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4775 }
4776 
4777 /// If all values in Values that *don't* match the predicate are same 'splat'
4778 /// value, then replace all values with that splat value.
4779 /// Else, if AlternativeReplacement was provided, then replace all values that
4780 /// do match predicate with AlternativeReplacement value.
4781 static void
4782 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4783                           std::function<bool(SDValue)> Predicate,
4784                           SDValue AlternativeReplacement = SDValue()) {
4785   SDValue Replacement;
4786   // Is there a value for which the Predicate does *NOT* match? What is it?
4787   auto SplatValue = llvm::find_if_not(Values, Predicate);
4788   if (SplatValue != Values.end()) {
4789     // Does Values consist only of SplatValue's and values matching Predicate?
4790     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4791           return Value == *SplatValue || Predicate(Value);
4792         })) // Then we shall replace values matching predicate with SplatValue.
4793       Replacement = *SplatValue;
4794   }
4795   if (!Replacement) {
4796     // Oops, we did not find the "baseline" splat value.
4797     if (!AlternativeReplacement)
4798       return; // Nothing to do.
4799     // Let's replace with provided value then.
4800     Replacement = AlternativeReplacement;
4801   }
4802   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4803 }
4804 
4805 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4806 /// where the divisor is constant and the comparison target is zero,
4807 /// return a DAG expression that will generate the same comparison result
4808 /// using only multiplications, additions and shifts/rotations.
4809 /// Ref: "Hacker's Delight" 10-17.
4810 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4811                                         SDValue CompTargetNode,
4812                                         ISD::CondCode Cond,
4813                                         DAGCombinerInfo &DCI,
4814                                         const SDLoc &DL) const {
4815   SmallVector<SDNode *, 2> Built;
4816   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4817                                          DCI, DL, Built)) {
4818     for (SDNode *N : Built)
4819       DCI.AddToWorklist(N);
4820     return Folded;
4821   }
4822 
4823   return SDValue();
4824 }
4825 
4826 SDValue
4827 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4828                                   SDValue CompTargetNode, ISD::CondCode Cond,
4829                                   DAGCombinerInfo &DCI, const SDLoc &DL,
4830                                   SmallVectorImpl<SDNode *> &Created) const {
4831   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4832   // - D must be constant, with D = D0 * 2^K where D0 is odd
4833   // - P is the multiplicative inverse of D0 modulo 2^W
4834   // - Q = floor((2^W - 1) / D0)
4835   // where W is the width of the common type of N and D.
4836   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4837          "Only applicable for (in)equality comparisons.");
4838 
4839   SelectionDAG &DAG = DCI.DAG;
4840 
4841   EVT VT = REMNode.getValueType();
4842   EVT SVT = VT.getScalarType();
4843   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4844   EVT ShSVT = ShVT.getScalarType();
4845 
4846   // If MUL is unavailable, we cannot proceed in any case.
4847   if (!isOperationLegalOrCustom(ISD::MUL, VT))
4848     return SDValue();
4849 
4850   // TODO: Could support comparing with non-zero too.
4851   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4852   if (!CompTarget || !CompTarget->isNullValue())
4853     return SDValue();
4854 
4855   bool HadOneDivisor = false;
4856   bool AllDivisorsAreOnes = true;
4857   bool HadEvenDivisor = false;
4858   bool AllDivisorsArePowerOfTwo = true;
4859   SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4860 
4861   auto BuildUREMPattern = [&](ConstantSDNode *C) {
4862     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4863     if (C->isNullValue())
4864       return false;
4865 
4866     const APInt &D = C->getAPIntValue();
4867     // If all divisors are ones, we will prefer to avoid the fold.
4868     HadOneDivisor |= D.isOneValue();
4869     AllDivisorsAreOnes &= D.isOneValue();
4870 
4871     // Decompose D into D0 * 2^K
4872     unsigned K = D.countTrailingZeros();
4873     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4874     APInt D0 = D.lshr(K);
4875 
4876     // D is even if it has trailing zeros.
4877     HadEvenDivisor |= (K != 0);
4878     // D is a power-of-two if D0 is one.
4879     // If all divisors are power-of-two, we will prefer to avoid the fold.
4880     AllDivisorsArePowerOfTwo &= D0.isOneValue();
4881 
4882     // P = inv(D0, 2^W)
4883     // 2^W requires W + 1 bits, so we have to extend and then truncate.
4884     unsigned W = D.getBitWidth();
4885     APInt P = D0.zext(W + 1)
4886                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4887                   .trunc(W);
4888     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4889     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4890 
4891     // Q = floor((2^W - 1) / D)
4892     APInt Q = APInt::getAllOnesValue(W).udiv(D);
4893 
4894     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4895            "We are expecting that K is always less than all-ones for ShSVT");
4896 
4897     // If the divisor is 1 the result can be constant-folded.
4898     if (D.isOneValue()) {
4899       // Set P and K amount to a bogus values so we can try to splat them.
4900       P = 0;
4901       K = -1;
4902       assert(Q.isAllOnesValue() &&
4903              "Expecting all-ones comparison for one divisor");
4904     }
4905 
4906     PAmts.push_back(DAG.getConstant(P, DL, SVT));
4907     KAmts.push_back(
4908         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4909     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4910     return true;
4911   };
4912 
4913   SDValue N = REMNode.getOperand(0);
4914   SDValue D = REMNode.getOperand(1);
4915 
4916   // Collect the values from each element.
4917   if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4918     return SDValue();
4919 
4920   // If this is a urem by a one, avoid the fold since it can be constant-folded.
4921   if (AllDivisorsAreOnes)
4922     return SDValue();
4923 
4924   // If this is a urem by a powers-of-two, avoid the fold since it can be
4925   // best implemented as a bit test.
4926   if (AllDivisorsArePowerOfTwo)
4927     return SDValue();
4928 
4929   SDValue PVal, KVal, QVal;
4930   if (VT.isVector()) {
4931     if (HadOneDivisor) {
4932       // Try to turn PAmts into a splat, since we don't care about the values
4933       // that are currently '0'. If we can't, just keep '0'`s.
4934       turnVectorIntoSplatVector(PAmts, isNullConstant);
4935       // Try to turn KAmts into a splat, since we don't care about the values
4936       // that are currently '-1'. If we can't, change them to '0'`s.
4937       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
4938                                 DAG.getConstant(0, DL, ShSVT));
4939     }
4940 
4941     PVal = DAG.getBuildVector(VT, DL, PAmts);
4942     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
4943     QVal = DAG.getBuildVector(VT, DL, QAmts);
4944   } else {
4945     PVal = PAmts[0];
4946     KVal = KAmts[0];
4947     QVal = QAmts[0];
4948   }
4949 
4950   // (mul N, P)
4951   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
4952   Created.push_back(Op0.getNode());
4953 
4954   // Rotate right only if any divisor was even. We avoid rotates for all-odd
4955   // divisors as a performance improvement, since rotating by 0 is a no-op.
4956   if (HadEvenDivisor) {
4957     // We need ROTR to do this.
4958     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
4959       return SDValue();
4960     SDNodeFlags Flags;
4961     Flags.setExact(true);
4962     // UREM: (rotr (mul N, P), K)
4963     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
4964     Created.push_back(Op0.getNode());
4965   }
4966 
4967   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
4968   return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
4969                       ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
4970 }
4971 
4972 bool TargetLowering::
4973 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4974   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4975     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4976                                 "be a constant integer");
4977     return true;
4978   }
4979 
4980   return false;
4981 }
4982 
4983 //===----------------------------------------------------------------------===//
4984 // Legalization Utilities
4985 //===----------------------------------------------------------------------===//
4986 
4987 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4988                                     SDValue LHS, SDValue RHS,
4989                                     SmallVectorImpl<SDValue> &Result,
4990                                     EVT HiLoVT, SelectionDAG &DAG,
4991                                     MulExpansionKind Kind, SDValue LL,
4992                                     SDValue LH, SDValue RL, SDValue RH) const {
4993   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4994          Opcode == ISD::SMUL_LOHI);
4995 
4996   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4997                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4998   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4999                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5000   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5001                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5002   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5003                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5004 
5005   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5006     return false;
5007 
5008   unsigned OuterBitSize = VT.getScalarSizeInBits();
5009   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5010   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5011   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5012 
5013   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5014   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5015          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5016 
5017   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5018   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5019                           bool Signed) -> bool {
5020     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5021       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5022       Hi = SDValue(Lo.getNode(), 1);
5023       return true;
5024     }
5025     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5026       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5027       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5028       return true;
5029     }
5030     return false;
5031   };
5032 
5033   SDValue Lo, Hi;
5034 
5035   if (!LL.getNode() && !RL.getNode() &&
5036       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5037     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5038     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5039   }
5040 
5041   if (!LL.getNode())
5042     return false;
5043 
5044   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5045   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5046       DAG.MaskedValueIsZero(RHS, HighMask)) {
5047     // The inputs are both zero-extended.
5048     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5049       Result.push_back(Lo);
5050       Result.push_back(Hi);
5051       if (Opcode != ISD::MUL) {
5052         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5053         Result.push_back(Zero);
5054         Result.push_back(Zero);
5055       }
5056       return true;
5057     }
5058   }
5059 
5060   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5061       RHSSB > InnerBitSize) {
5062     // The input values are both sign-extended.
5063     // TODO non-MUL case?
5064     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5065       Result.push_back(Lo);
5066       Result.push_back(Hi);
5067       return true;
5068     }
5069   }
5070 
5071   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5072   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5073   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5074     // FIXME getShiftAmountTy does not always return a sensible result when VT
5075     // is an illegal type, and so the type may be too small to fit the shift
5076     // amount. Override it with i32. The shift will have to be legalized.
5077     ShiftAmountTy = MVT::i32;
5078   }
5079   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5080 
5081   if (!LH.getNode() && !RH.getNode() &&
5082       isOperationLegalOrCustom(ISD::SRL, VT) &&
5083       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5084     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5085     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5086     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5087     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5088   }
5089 
5090   if (!LH.getNode())
5091     return false;
5092 
5093   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5094     return false;
5095 
5096   Result.push_back(Lo);
5097 
5098   if (Opcode == ISD::MUL) {
5099     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5100     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5101     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5102     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5103     Result.push_back(Hi);
5104     return true;
5105   }
5106 
5107   // Compute the full width result.
5108   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5109     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5110     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5111     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5112     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5113   };
5114 
5115   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5116   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5117     return false;
5118 
5119   // This is effectively the add part of a multiply-add of half-sized operands,
5120   // so it cannot overflow.
5121   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5122 
5123   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5124     return false;
5125 
5126   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5127   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5128 
5129   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5130                   isOperationLegalOrCustom(ISD::ADDE, VT));
5131   if (UseGlue)
5132     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5133                        Merge(Lo, Hi));
5134   else
5135     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5136                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5137 
5138   SDValue Carry = Next.getValue(1);
5139   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5140   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5141 
5142   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5143     return false;
5144 
5145   if (UseGlue)
5146     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5147                      Carry);
5148   else
5149     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5150                      Zero, Carry);
5151 
5152   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5153 
5154   if (Opcode == ISD::SMUL_LOHI) {
5155     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5156                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5157     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5158 
5159     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5160                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5161     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5162   }
5163 
5164   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5165   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5166   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5167   return true;
5168 }
5169 
5170 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5171                                SelectionDAG &DAG, MulExpansionKind Kind,
5172                                SDValue LL, SDValue LH, SDValue RL,
5173                                SDValue RH) const {
5174   SmallVector<SDValue, 2> Result;
5175   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5176                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5177                            DAG, Kind, LL, LH, RL, RH);
5178   if (Ok) {
5179     assert(Result.size() == 2);
5180     Lo = Result[0];
5181     Hi = Result[1];
5182   }
5183   return Ok;
5184 }
5185 
5186 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5187                                        SelectionDAG &DAG) const {
5188   EVT VT = Node->getValueType(0);
5189 
5190   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5191                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5192                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5193                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5194     return false;
5195 
5196   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5197   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5198   SDValue X = Node->getOperand(0);
5199   SDValue Y = Node->getOperand(1);
5200   SDValue Z = Node->getOperand(2);
5201 
5202   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5203   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5204   SDLoc DL(SDValue(Node, 0));
5205 
5206   EVT ShVT = Z.getValueType();
5207   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5208   SDValue Zero = DAG.getConstant(0, DL, ShVT);
5209 
5210   SDValue ShAmt;
5211   if (isPowerOf2_32(EltSizeInBits)) {
5212     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5213     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5214   } else {
5215     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5216   }
5217 
5218   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5219   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5220   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5221   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5222 
5223   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5224   // and that is undefined. We must compare and select to avoid UB.
5225   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5226 
5227   // For fshl, 0-shift returns the 1st arg (X).
5228   // For fshr, 0-shift returns the 2nd arg (Y).
5229   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5230   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5231   return true;
5232 }
5233 
5234 // TODO: Merge with expandFunnelShift.
5235 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5236                                SelectionDAG &DAG) const {
5237   EVT VT = Node->getValueType(0);
5238   unsigned EltSizeInBits = VT.getScalarSizeInBits();
5239   bool IsLeft = Node->getOpcode() == ISD::ROTL;
5240   SDValue Op0 = Node->getOperand(0);
5241   SDValue Op1 = Node->getOperand(1);
5242   SDLoc DL(SDValue(Node, 0));
5243 
5244   EVT ShVT = Op1.getValueType();
5245   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5246 
5247   // If a rotate in the other direction is legal, use it.
5248   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5249   if (isOperationLegal(RevRot, VT)) {
5250     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5251     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5252     return true;
5253   }
5254 
5255   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5256                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5257                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5258                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5259                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5260     return false;
5261 
5262   // Otherwise,
5263   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5264   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5265   //
5266   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5267          "Expecting the type bitwidth to be a power of 2");
5268   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5269   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5270   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5271   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5272   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5273   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5274   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5275                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
5276   return true;
5277 }
5278 
5279 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5280                                       SelectionDAG &DAG) const {
5281   SDValue Src = Node->getOperand(0);
5282   EVT SrcVT = Src.getValueType();
5283   EVT DstVT = Node->getValueType(0);
5284   SDLoc dl(SDValue(Node, 0));
5285 
5286   // FIXME: Only f32 to i64 conversions are supported.
5287   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5288     return false;
5289 
5290   // Expand f32 -> i64 conversion
5291   // This algorithm comes from compiler-rt's implementation of fixsfdi:
5292   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5293   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5294   EVT IntVT = SrcVT.changeTypeToInteger();
5295   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5296 
5297   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5298   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5299   SDValue Bias = DAG.getConstant(127, dl, IntVT);
5300   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5301   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5302   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5303 
5304   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5305 
5306   SDValue ExponentBits = DAG.getNode(
5307       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5308       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5309   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5310 
5311   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5312                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5313                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5314   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5315 
5316   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5317                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5318                           DAG.getConstant(0x00800000, dl, IntVT));
5319 
5320   R = DAG.getZExtOrTrunc(R, dl, DstVT);
5321 
5322   R = DAG.getSelectCC(
5323       dl, Exponent, ExponentLoBit,
5324       DAG.getNode(ISD::SHL, dl, DstVT, R,
5325                   DAG.getZExtOrTrunc(
5326                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5327                       dl, IntShVT)),
5328       DAG.getNode(ISD::SRL, dl, DstVT, R,
5329                   DAG.getZExtOrTrunc(
5330                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5331                       dl, IntShVT)),
5332       ISD::SETGT);
5333 
5334   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5335                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5336 
5337   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5338                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5339   return true;
5340 }
5341 
5342 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5343                                       SelectionDAG &DAG) const {
5344   SDLoc dl(SDValue(Node, 0));
5345   SDValue Src = Node->getOperand(0);
5346 
5347   EVT SrcVT = Src.getValueType();
5348   EVT DstVT = Node->getValueType(0);
5349   EVT SetCCVT =
5350       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5351 
5352   // Only expand vector types if we have the appropriate vector bit operations.
5353   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
5354                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5355     return false;
5356 
5357   // If the maximum float value is smaller then the signed integer range,
5358   // the destination signmask can't be represented by the float, so we can
5359   // just use FP_TO_SINT directly.
5360   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5361   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5362   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5363   if (APFloat::opOverflow &
5364       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5365     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5366     return true;
5367   }
5368 
5369   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5370   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5371 
5372   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5373   if (Strict) {
5374     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5375     // signmask then offset (the result of which should be fully representable).
5376     // Sel = Src < 0x8000000000000000
5377     // Val = select Sel, Src, Src - 0x8000000000000000
5378     // Ofs = select Sel, 0, 0x8000000000000000
5379     // Result = fp_to_sint(Val) ^ Ofs
5380 
5381     // TODO: Should any fast-math-flags be set for the FSUB?
5382     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
5383                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5384     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5385                                 DAG.getConstant(SignMask, dl, DstVT));
5386     Result = DAG.getNode(ISD::XOR, dl, DstVT,
5387                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
5388   } else {
5389     // Expand based on maximum range of FP_TO_SINT:
5390     // True = fp_to_sint(Src)
5391     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5392     // Result = select (Src < 0x8000000000000000), True, False
5393 
5394     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5395     // TODO: Should any fast-math-flags be set for the FSUB?
5396     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5397                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5398     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5399                         DAG.getConstant(SignMask, dl, DstVT));
5400     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5401   }
5402   return true;
5403 }
5404 
5405 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5406                                       SelectionDAG &DAG) const {
5407   SDValue Src = Node->getOperand(0);
5408   EVT SrcVT = Src.getValueType();
5409   EVT DstVT = Node->getValueType(0);
5410 
5411   if (SrcVT.getScalarType() != MVT::i64)
5412     return false;
5413 
5414   SDLoc dl(SDValue(Node, 0));
5415   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5416 
5417   if (DstVT.getScalarType() == MVT::f32) {
5418     // Only expand vector types if we have the appropriate vector bit
5419     // operations.
5420     if (SrcVT.isVector() &&
5421         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5422          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5423          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5424          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5425          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5426       return false;
5427 
5428     // For unsigned conversions, convert them to signed conversions using the
5429     // algorithm from the x86_64 __floatundidf in compiler_rt.
5430     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5431 
5432     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5433     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5434     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5435     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5436     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5437 
5438     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5439     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5440 
5441     // TODO: This really should be implemented using a branch rather than a
5442     // select.  We happen to get lucky and machinesink does the right
5443     // thing most of the time.  This would be a good candidate for a
5444     // pseudo-op, or, even better, for whole-function isel.
5445     EVT SetCCVT =
5446         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5447 
5448     SDValue SignBitTest = DAG.getSetCC(
5449         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5450     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5451     return true;
5452   }
5453 
5454   if (DstVT.getScalarType() == MVT::f64) {
5455     // Only expand vector types if we have the appropriate vector bit
5456     // operations.
5457     if (SrcVT.isVector() &&
5458         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5459          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5460          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5461          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5462          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5463       return false;
5464 
5465     // Implementation of unsigned i64 to f64 following the algorithm in
5466     // __floatundidf in compiler_rt. This implementation has the advantage
5467     // of performing rounding correctly, both in the default rounding mode
5468     // and in all alternate rounding modes.
5469     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5470     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5471         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5472     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5473     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5474     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5475 
5476     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5477     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5478     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5479     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5480     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5481     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5482     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5483     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5484     return true;
5485   }
5486 
5487   return false;
5488 }
5489 
5490 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5491                                               SelectionDAG &DAG) const {
5492   SDLoc dl(Node);
5493   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5494     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5495   EVT VT = Node->getValueType(0);
5496   if (isOperationLegalOrCustom(NewOp, VT)) {
5497     SDValue Quiet0 = Node->getOperand(0);
5498     SDValue Quiet1 = Node->getOperand(1);
5499 
5500     if (!Node->getFlags().hasNoNaNs()) {
5501       // Insert canonicalizes if it's possible we need to quiet to get correct
5502       // sNaN behavior.
5503       if (!DAG.isKnownNeverSNaN(Quiet0)) {
5504         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5505                              Node->getFlags());
5506       }
5507       if (!DAG.isKnownNeverSNaN(Quiet1)) {
5508         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5509                              Node->getFlags());
5510       }
5511     }
5512 
5513     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5514   }
5515 
5516   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5517   // instead if there are no NaNs.
5518   if (Node->getFlags().hasNoNaNs()) {
5519     unsigned IEEE2018Op =
5520         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5521     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5522       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5523                          Node->getOperand(1), Node->getFlags());
5524     }
5525   }
5526 
5527   return SDValue();
5528 }
5529 
5530 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5531                                  SelectionDAG &DAG) const {
5532   SDLoc dl(Node);
5533   EVT VT = Node->getValueType(0);
5534   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5535   SDValue Op = Node->getOperand(0);
5536   unsigned Len = VT.getScalarSizeInBits();
5537   assert(VT.isInteger() && "CTPOP not implemented for this type.");
5538 
5539   // TODO: Add support for irregular type lengths.
5540   if (!(Len <= 128 && Len % 8 == 0))
5541     return false;
5542 
5543   // Only expand vector types if we have the appropriate vector bit operations.
5544   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5545                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5546                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5547                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5548                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5549     return false;
5550 
5551   // This is the "best" algorithm from
5552   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5553   SDValue Mask55 =
5554       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5555   SDValue Mask33 =
5556       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5557   SDValue Mask0F =
5558       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5559   SDValue Mask01 =
5560       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5561 
5562   // v = v - ((v >> 1) & 0x55555555...)
5563   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5564                    DAG.getNode(ISD::AND, dl, VT,
5565                                DAG.getNode(ISD::SRL, dl, VT, Op,
5566                                            DAG.getConstant(1, dl, ShVT)),
5567                                Mask55));
5568   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5569   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5570                    DAG.getNode(ISD::AND, dl, VT,
5571                                DAG.getNode(ISD::SRL, dl, VT, Op,
5572                                            DAG.getConstant(2, dl, ShVT)),
5573                                Mask33));
5574   // v = (v + (v >> 4)) & 0x0F0F0F0F...
5575   Op = DAG.getNode(ISD::AND, dl, VT,
5576                    DAG.getNode(ISD::ADD, dl, VT, Op,
5577                                DAG.getNode(ISD::SRL, dl, VT, Op,
5578                                            DAG.getConstant(4, dl, ShVT))),
5579                    Mask0F);
5580   // v = (v * 0x01010101...) >> (Len - 8)
5581   if (Len > 8)
5582     Op =
5583         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5584                     DAG.getConstant(Len - 8, dl, ShVT));
5585 
5586   Result = Op;
5587   return true;
5588 }
5589 
5590 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5591                                 SelectionDAG &DAG) const {
5592   SDLoc dl(Node);
5593   EVT VT = Node->getValueType(0);
5594   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5595   SDValue Op = Node->getOperand(0);
5596   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5597 
5598   // If the non-ZERO_UNDEF version is supported we can use that instead.
5599   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5600       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5601     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5602     return true;
5603   }
5604 
5605   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5606   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5607     EVT SetCCVT =
5608         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5609     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5610     SDValue Zero = DAG.getConstant(0, dl, VT);
5611     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5612     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5613                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5614     return true;
5615   }
5616 
5617   // Only expand vector types if we have the appropriate vector bit operations.
5618   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5619                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5620                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5621                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5622     return false;
5623 
5624   // for now, we do this:
5625   // x = x | (x >> 1);
5626   // x = x | (x >> 2);
5627   // ...
5628   // x = x | (x >>16);
5629   // x = x | (x >>32); // for 64-bit input
5630   // return popcount(~x);
5631   //
5632   // Ref: "Hacker's Delight" by Henry Warren
5633   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5634     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5635     Op = DAG.getNode(ISD::OR, dl, VT, Op,
5636                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
5637   }
5638   Op = DAG.getNOT(dl, Op, VT);
5639   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
5640   return true;
5641 }
5642 
5643 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
5644                                 SelectionDAG &DAG) const {
5645   SDLoc dl(Node);
5646   EVT VT = Node->getValueType(0);
5647   SDValue Op = Node->getOperand(0);
5648   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5649 
5650   // If the non-ZERO_UNDEF version is supported we can use that instead.
5651   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
5652       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
5653     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
5654     return true;
5655   }
5656 
5657   // If the ZERO_UNDEF version is supported use that and handle the zero case.
5658   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
5659     EVT SetCCVT =
5660         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5661     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
5662     SDValue Zero = DAG.getConstant(0, dl, VT);
5663     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5664     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5665                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
5666     return true;
5667   }
5668 
5669   // Only expand vector types if we have the appropriate vector bit operations.
5670   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5671                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
5672                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
5673                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5674                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
5675                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5676     return false;
5677 
5678   // for now, we use: { return popcount(~x & (x - 1)); }
5679   // unless the target has ctlz but not ctpop, in which case we use:
5680   // { return 32 - nlz(~x & (x-1)); }
5681   // Ref: "Hacker's Delight" by Henry Warren
5682   SDValue Tmp = DAG.getNode(
5683       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
5684       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
5685 
5686   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
5687   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
5688     Result =
5689         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
5690                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
5691     return true;
5692   }
5693 
5694   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
5695   return true;
5696 }
5697 
5698 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
5699                                SelectionDAG &DAG) const {
5700   SDLoc dl(N);
5701   EVT VT = N->getValueType(0);
5702   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5703   SDValue Op = N->getOperand(0);
5704 
5705   // Only expand vector types if we have the appropriate vector operations.
5706   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
5707                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
5708                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
5709     return false;
5710 
5711   SDValue Shift =
5712       DAG.getNode(ISD::SRA, dl, VT, Op,
5713                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
5714   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
5715   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
5716   return true;
5717 }
5718 
5719 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
5720                                             SelectionDAG &DAG) const {
5721   SDLoc SL(LD);
5722   SDValue Chain = LD->getChain();
5723   SDValue BasePTR = LD->getBasePtr();
5724   EVT SrcVT = LD->getMemoryVT();
5725   ISD::LoadExtType ExtType = LD->getExtensionType();
5726 
5727   unsigned NumElem = SrcVT.getVectorNumElements();
5728 
5729   EVT SrcEltVT = SrcVT.getScalarType();
5730   EVT DstEltVT = LD->getValueType(0).getScalarType();
5731 
5732   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
5733   assert(SrcEltVT.isByteSized());
5734 
5735   SmallVector<SDValue, 8> Vals;
5736   SmallVector<SDValue, 8> LoadChains;
5737 
5738   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5739     SDValue ScalarLoad =
5740         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
5741                        LD->getPointerInfo().getWithOffset(Idx * Stride),
5742                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
5743                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5744 
5745     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
5746 
5747     Vals.push_back(ScalarLoad.getValue(0));
5748     LoadChains.push_back(ScalarLoad.getValue(1));
5749   }
5750 
5751   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
5752   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
5753 
5754   return DAG.getMergeValues({Value, NewChain}, SL);
5755 }
5756 
5757 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
5758                                              SelectionDAG &DAG) const {
5759   SDLoc SL(ST);
5760 
5761   SDValue Chain = ST->getChain();
5762   SDValue BasePtr = ST->getBasePtr();
5763   SDValue Value = ST->getValue();
5764   EVT StVT = ST->getMemoryVT();
5765 
5766   // The type of the data we want to save
5767   EVT RegVT = Value.getValueType();
5768   EVT RegSclVT = RegVT.getScalarType();
5769 
5770   // The type of data as saved in memory.
5771   EVT MemSclVT = StVT.getScalarType();
5772 
5773   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
5774   unsigned NumElem = StVT.getVectorNumElements();
5775 
5776   // A vector must always be stored in memory as-is, i.e. without any padding
5777   // between the elements, since various code depend on it, e.g. in the
5778   // handling of a bitcast of a vector type to int, which may be done with a
5779   // vector store followed by an integer load. A vector that does not have
5780   // elements that are byte-sized must therefore be stored as an integer
5781   // built out of the extracted vector elements.
5782   if (!MemSclVT.isByteSized()) {
5783     unsigned NumBits = StVT.getSizeInBits();
5784     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
5785 
5786     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
5787 
5788     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5789       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5790                                 DAG.getConstant(Idx, SL, IdxVT));
5791       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
5792       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
5793       unsigned ShiftIntoIdx =
5794           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
5795       SDValue ShiftAmount =
5796           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
5797       SDValue ShiftedElt =
5798           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
5799       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
5800     }
5801 
5802     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
5803                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
5804                         ST->getAAInfo());
5805   }
5806 
5807   // Store Stride in bytes
5808   unsigned Stride = MemSclVT.getSizeInBits() / 8;
5809   assert(Stride && "Zero stride!");
5810   // Extract each of the elements from the original vector and save them into
5811   // memory individually.
5812   SmallVector<SDValue, 8> Stores;
5813   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
5814     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
5815                               DAG.getConstant(Idx, SL, IdxVT));
5816 
5817     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
5818 
5819     // This scalar TruncStore may be illegal, but we legalize it later.
5820     SDValue Store = DAG.getTruncStore(
5821         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
5822         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
5823         ST->getMemOperand()->getFlags(), ST->getAAInfo());
5824 
5825     Stores.push_back(Store);
5826   }
5827 
5828   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
5829 }
5830 
5831 std::pair<SDValue, SDValue>
5832 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
5833   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
5834          "unaligned indexed loads not implemented!");
5835   SDValue Chain = LD->getChain();
5836   SDValue Ptr = LD->getBasePtr();
5837   EVT VT = LD->getValueType(0);
5838   EVT LoadedVT = LD->getMemoryVT();
5839   SDLoc dl(LD);
5840   auto &MF = DAG.getMachineFunction();
5841 
5842   if (VT.isFloatingPoint() || VT.isVector()) {
5843     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
5844     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
5845       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
5846           LoadedVT.isVector()) {
5847         // Scalarize the load and let the individual components be handled.
5848         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
5849         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
5850           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
5851         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
5852       }
5853 
5854       // Expand to a (misaligned) integer load of the same size,
5855       // then bitconvert to floating point or vector.
5856       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
5857                                     LD->getMemOperand());
5858       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
5859       if (LoadedVT != VT)
5860         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
5861                              ISD::ANY_EXTEND, dl, VT, Result);
5862 
5863       return std::make_pair(Result, newLoad.getValue(1));
5864     }
5865 
5866     // Copy the value to a (aligned) stack slot using (unaligned) integer
5867     // loads and stores, then do a (aligned) load from the stack slot.
5868     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
5869     unsigned LoadedBytes = LoadedVT.getStoreSize();
5870     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5871     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
5872 
5873     // Make sure the stack slot is also aligned for the register type.
5874     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
5875     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
5876     SmallVector<SDValue, 8> Stores;
5877     SDValue StackPtr = StackBase;
5878     unsigned Offset = 0;
5879 
5880     EVT PtrVT = Ptr.getValueType();
5881     EVT StackPtrVT = StackPtr.getValueType();
5882 
5883     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5884     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5885 
5886     // Do all but one copies using the full register width.
5887     for (unsigned i = 1; i < NumRegs; i++) {
5888       // Load one integer register's worth from the original location.
5889       SDValue Load = DAG.getLoad(
5890           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
5891           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
5892           LD->getAAInfo());
5893       // Follow the load with a store to the stack slot.  Remember the store.
5894       Stores.push_back(DAG.getStore(
5895           Load.getValue(1), dl, Load, StackPtr,
5896           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
5897       // Increment the pointers.
5898       Offset += RegBytes;
5899 
5900       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5901       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5902     }
5903 
5904     // The last copy may be partial.  Do an extending load.
5905     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5906                                   8 * (LoadedBytes - Offset));
5907     SDValue Load =
5908         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
5909                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
5910                        MinAlign(LD->getAlignment(), Offset),
5911                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
5912     // Follow the load with a store to the stack slot.  Remember the store.
5913     // On big-endian machines this requires a truncating store to ensure
5914     // that the bits end up in the right place.
5915     Stores.push_back(DAG.getTruncStore(
5916         Load.getValue(1), dl, Load, StackPtr,
5917         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
5918 
5919     // The order of the stores doesn't matter - say it with a TokenFactor.
5920     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5921 
5922     // Finally, perform the original load only redirected to the stack slot.
5923     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
5924                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
5925                           LoadedVT);
5926 
5927     // Callers expect a MERGE_VALUES node.
5928     return std::make_pair(Load, TF);
5929   }
5930 
5931   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5932          "Unaligned load of unsupported type.");
5933 
5934   // Compute the new VT that is half the size of the old one.  This is an
5935   // integer MVT.
5936   unsigned NumBits = LoadedVT.getSizeInBits();
5937   EVT NewLoadedVT;
5938   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5939   NumBits >>= 1;
5940 
5941   unsigned Alignment = LD->getAlignment();
5942   unsigned IncrementSize = NumBits / 8;
5943   ISD::LoadExtType HiExtType = LD->getExtensionType();
5944 
5945   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5946   if (HiExtType == ISD::NON_EXTLOAD)
5947     HiExtType = ISD::ZEXTLOAD;
5948 
5949   // Load the value in two parts
5950   SDValue Lo, Hi;
5951   if (DAG.getDataLayout().isLittleEndian()) {
5952     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5953                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5954                         LD->getAAInfo());
5955 
5956     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5957     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5958                         LD->getPointerInfo().getWithOffset(IncrementSize),
5959                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5960                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5961   } else {
5962     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5963                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5964                         LD->getAAInfo());
5965 
5966     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5967     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5968                         LD->getPointerInfo().getWithOffset(IncrementSize),
5969                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5970                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5971   }
5972 
5973   // aggregate the two parts
5974   SDValue ShiftAmount =
5975       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5976                                                     DAG.getDataLayout()));
5977   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5978   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5979 
5980   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5981                              Hi.getValue(1));
5982 
5983   return std::make_pair(Result, TF);
5984 }
5985 
5986 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5987                                              SelectionDAG &DAG) const {
5988   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5989          "unaligned indexed stores not implemented!");
5990   SDValue Chain = ST->getChain();
5991   SDValue Ptr = ST->getBasePtr();
5992   SDValue Val = ST->getValue();
5993   EVT VT = Val.getValueType();
5994   int Alignment = ST->getAlignment();
5995   auto &MF = DAG.getMachineFunction();
5996   EVT StoreMemVT = ST->getMemoryVT();
5997 
5998   SDLoc dl(ST);
5999   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6000     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6001     if (isTypeLegal(intVT)) {
6002       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6003           StoreMemVT.isVector()) {
6004         // Scalarize the store and let the individual components be handled.
6005         SDValue Result = scalarizeVectorStore(ST, DAG);
6006         return Result;
6007       }
6008       // Expand to a bitconvert of the value to the integer type of the
6009       // same size, then a (misaligned) int store.
6010       // FIXME: Does not handle truncating floating point stores!
6011       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6012       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6013                             Alignment, ST->getMemOperand()->getFlags());
6014       return Result;
6015     }
6016     // Do a (aligned) store to a stack slot, then copy from the stack slot
6017     // to the final destination using (unaligned) integer loads and stores.
6018     MVT RegVT = getRegisterType(
6019         *DAG.getContext(),
6020         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6021     EVT PtrVT = Ptr.getValueType();
6022     unsigned StoredBytes = StoreMemVT.getStoreSize();
6023     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6024     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6025 
6026     // Make sure the stack slot is also aligned for the register type.
6027     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6028     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6029 
6030     // Perform the original store, only redirected to the stack slot.
6031     SDValue Store = DAG.getTruncStore(
6032         Chain, dl, Val, StackPtr,
6033         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6034 
6035     EVT StackPtrVT = StackPtr.getValueType();
6036 
6037     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6038     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6039     SmallVector<SDValue, 8> Stores;
6040     unsigned Offset = 0;
6041 
6042     // Do all but one copies using the full register width.
6043     for (unsigned i = 1; i < NumRegs; i++) {
6044       // Load one integer register's worth from the stack slot.
6045       SDValue Load = DAG.getLoad(
6046           RegVT, dl, Store, StackPtr,
6047           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6048       // Store it to the final location.  Remember the store.
6049       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6050                                     ST->getPointerInfo().getWithOffset(Offset),
6051                                     MinAlign(ST->getAlignment(), Offset),
6052                                     ST->getMemOperand()->getFlags()));
6053       // Increment the pointers.
6054       Offset += RegBytes;
6055       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6056       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6057     }
6058 
6059     // The last store may be partial.  Do a truncating store.  On big-endian
6060     // machines this requires an extending load from the stack slot to ensure
6061     // that the bits are in the right place.
6062     EVT LoadMemVT =
6063         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6064 
6065     // Load from the stack slot.
6066     SDValue Load = DAG.getExtLoad(
6067         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6068         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6069 
6070     Stores.push_back(
6071         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6072                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6073                           MinAlign(ST->getAlignment(), Offset),
6074                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6075     // The order of the stores doesn't matter - say it with a TokenFactor.
6076     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6077     return Result;
6078   }
6079 
6080   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6081          "Unaligned store of unknown type.");
6082   // Get the half-size VT
6083   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6084   int NumBits = NewStoredVT.getSizeInBits();
6085   int IncrementSize = NumBits / 8;
6086 
6087   // Divide the stored value in two parts.
6088   SDValue ShiftAmount = DAG.getConstant(
6089       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6090   SDValue Lo = Val;
6091   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6092 
6093   // Store the two parts
6094   SDValue Store1, Store2;
6095   Store1 = DAG.getTruncStore(Chain, dl,
6096                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6097                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6098                              ST->getMemOperand()->getFlags());
6099 
6100   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6101   Alignment = MinAlign(Alignment, IncrementSize);
6102   Store2 = DAG.getTruncStore(
6103       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6104       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6105       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6106 
6107   SDValue Result =
6108       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6109   return Result;
6110 }
6111 
6112 SDValue
6113 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6114                                        const SDLoc &DL, EVT DataVT,
6115                                        SelectionDAG &DAG,
6116                                        bool IsCompressedMemory) const {
6117   SDValue Increment;
6118   EVT AddrVT = Addr.getValueType();
6119   EVT MaskVT = Mask.getValueType();
6120   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6121          "Incompatible types of Data and Mask");
6122   if (IsCompressedMemory) {
6123     // Incrementing the pointer according to number of '1's in the mask.
6124     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6125     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6126     if (MaskIntVT.getSizeInBits() < 32) {
6127       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6128       MaskIntVT = MVT::i32;
6129     }
6130 
6131     // Count '1's with POPCNT.
6132     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6133     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6134     // Scale is an element size in bytes.
6135     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6136                                     AddrVT);
6137     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6138   } else
6139     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6140 
6141   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6142 }
6143 
6144 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6145                                        SDValue Idx,
6146                                        EVT VecVT,
6147                                        const SDLoc &dl) {
6148   if (isa<ConstantSDNode>(Idx))
6149     return Idx;
6150 
6151   EVT IdxVT = Idx.getValueType();
6152   unsigned NElts = VecVT.getVectorNumElements();
6153   if (isPowerOf2_32(NElts)) {
6154     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6155                                      Log2_32(NElts));
6156     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6157                        DAG.getConstant(Imm, dl, IdxVT));
6158   }
6159 
6160   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6161                      DAG.getConstant(NElts - 1, dl, IdxVT));
6162 }
6163 
6164 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6165                                                 SDValue VecPtr, EVT VecVT,
6166                                                 SDValue Index) const {
6167   SDLoc dl(Index);
6168   // Make sure the index type is big enough to compute in.
6169   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6170 
6171   EVT EltVT = VecVT.getVectorElementType();
6172 
6173   // Calculate the element offset and add it to the pointer.
6174   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6175   assert(EltSize * 8 == EltVT.getSizeInBits() &&
6176          "Converting bits to bytes lost precision");
6177 
6178   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6179 
6180   EVT IdxVT = Index.getValueType();
6181 
6182   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6183                       DAG.getConstant(EltSize, dl, IdxVT));
6184   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6185 }
6186 
6187 //===----------------------------------------------------------------------===//
6188 // Implementation of Emulated TLS Model
6189 //===----------------------------------------------------------------------===//
6190 
6191 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6192                                                 SelectionDAG &DAG) const {
6193   // Access to address of TLS varialbe xyz is lowered to a function call:
6194   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6195   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6196   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6197   SDLoc dl(GA);
6198 
6199   ArgListTy Args;
6200   ArgListEntry Entry;
6201   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6202   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6203   StringRef EmuTlsVarName(NameString);
6204   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6205   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6206   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6207   Entry.Ty = VoidPtrType;
6208   Args.push_back(Entry);
6209 
6210   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6211 
6212   TargetLowering::CallLoweringInfo CLI(DAG);
6213   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6214   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6215   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6216 
6217   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6218   // At last for X86 targets, maybe good for other targets too?
6219   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6220   MFI.setAdjustsStack(true); // Is this only for X86 target?
6221   MFI.setHasCalls(true);
6222 
6223   assert((GA->getOffset() == 0) &&
6224          "Emulated TLS must have zero offset in GlobalAddressSDNode");
6225   return CallResult.first;
6226 }
6227 
6228 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6229                                                 SelectionDAG &DAG) const {
6230   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6231   if (!isCtlzFast())
6232     return SDValue();
6233   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6234   SDLoc dl(Op);
6235   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6236     if (C->isNullValue() && CC == ISD::SETEQ) {
6237       EVT VT = Op.getOperand(0).getValueType();
6238       SDValue Zext = Op.getOperand(0);
6239       if (VT.bitsLT(MVT::i32)) {
6240         VT = MVT::i32;
6241         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6242       }
6243       unsigned Log2b = Log2_32(VT.getSizeInBits());
6244       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6245       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6246                                 DAG.getConstant(Log2b, dl, MVT::i32));
6247       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6248     }
6249   }
6250   return SDValue();
6251 }
6252 
6253 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6254   unsigned Opcode = Node->getOpcode();
6255   SDValue LHS = Node->getOperand(0);
6256   SDValue RHS = Node->getOperand(1);
6257   EVT VT = LHS.getValueType();
6258   SDLoc dl(Node);
6259 
6260   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6261   assert(VT.isInteger() && "Expected operands to be integers");
6262 
6263   // usub.sat(a, b) -> umax(a, b) - b
6264   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6265     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6266     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6267   }
6268 
6269   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6270     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6271     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6272     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6273   }
6274 
6275   unsigned OverflowOp;
6276   switch (Opcode) {
6277   case ISD::SADDSAT:
6278     OverflowOp = ISD::SADDO;
6279     break;
6280   case ISD::UADDSAT:
6281     OverflowOp = ISD::UADDO;
6282     break;
6283   case ISD::SSUBSAT:
6284     OverflowOp = ISD::SSUBO;
6285     break;
6286   case ISD::USUBSAT:
6287     OverflowOp = ISD::USUBO;
6288     break;
6289   default:
6290     llvm_unreachable("Expected method to receive signed or unsigned saturation "
6291                      "addition or subtraction node.");
6292   }
6293 
6294   unsigned BitWidth = LHS.getScalarValueSizeInBits();
6295   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6296   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6297                                LHS, RHS);
6298   SDValue SumDiff = Result.getValue(0);
6299   SDValue Overflow = Result.getValue(1);
6300   SDValue Zero = DAG.getConstant(0, dl, VT);
6301   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6302 
6303   if (Opcode == ISD::UADDSAT) {
6304     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6305       // (LHS + RHS) | OverflowMask
6306       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6307       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6308     }
6309     // Overflow ? 0xffff.... : (LHS + RHS)
6310     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6311   } else if (Opcode == ISD::USUBSAT) {
6312     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6313       // (LHS - RHS) & ~OverflowMask
6314       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6315       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6316       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6317     }
6318     // Overflow ? 0 : (LHS - RHS)
6319     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6320   } else {
6321     // SatMax -> Overflow && SumDiff < 0
6322     // SatMin -> Overflow && SumDiff >= 0
6323     APInt MinVal = APInt::getSignedMinValue(BitWidth);
6324     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6325     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6326     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6327     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6328     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6329     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6330   }
6331 }
6332 
6333 SDValue
6334 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6335   assert((Node->getOpcode() == ISD::SMULFIX ||
6336           Node->getOpcode() == ISD::UMULFIX ||
6337           Node->getOpcode() == ISD::SMULFIXSAT) &&
6338          "Expected a fixed point multiplication opcode");
6339 
6340   SDLoc dl(Node);
6341   SDValue LHS = Node->getOperand(0);
6342   SDValue RHS = Node->getOperand(1);
6343   EVT VT = LHS.getValueType();
6344   unsigned Scale = Node->getConstantOperandVal(2);
6345   bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6346   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6347   unsigned VTSize = VT.getScalarSizeInBits();
6348 
6349   if (!Scale) {
6350     // [us]mul.fix(a, b, 0) -> mul(a, b)
6351     if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6352       return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6353     } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6354       SDValue Result =
6355           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6356       SDValue Product = Result.getValue(0);
6357       SDValue Overflow = Result.getValue(1);
6358       SDValue Zero = DAG.getConstant(0, dl, VT);
6359 
6360       APInt MinVal = APInt::getSignedMinValue(VTSize);
6361       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6362       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6363       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6364       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6365       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6366       return DAG.getSelect(dl, VT, Overflow, Result, Product);
6367     }
6368   }
6369 
6370   bool Signed =
6371       Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6372   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6373          "Expected scale to be less than the number of bits if signed or at "
6374          "most the number of bits if unsigned.");
6375   assert(LHS.getValueType() == RHS.getValueType() &&
6376          "Expected both operands to be the same type");
6377 
6378   // Get the upper and lower bits of the result.
6379   SDValue Lo, Hi;
6380   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6381   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6382   if (isOperationLegalOrCustom(LoHiOp, VT)) {
6383     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6384     Lo = Result.getValue(0);
6385     Hi = Result.getValue(1);
6386   } else if (isOperationLegalOrCustom(HiOp, VT)) {
6387     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6388     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6389   } else if (VT.isVector()) {
6390     return SDValue();
6391   } else {
6392     report_fatal_error("Unable to expand fixed point multiplication.");
6393   }
6394 
6395   if (Scale == VTSize)
6396     // Result is just the top half since we'd be shifting by the width of the
6397     // operand.
6398     return Hi;
6399 
6400   // The result will need to be shifted right by the scale since both operands
6401   // are scaled. The result is given to us in 2 halves, so we only want part of
6402   // both in the result.
6403   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6404   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6405                                DAG.getConstant(Scale, dl, ShiftTy));
6406   if (!Saturating)
6407     return Result;
6408 
6409   unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6410   SDValue HiMask =
6411       DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6412   SDValue LoMask = DAG.getConstant(
6413       APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6414   APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6415   APInt MinVal = APInt::getSignedMinValue(VTSize);
6416 
6417   Result = DAG.getSelectCC(dl, Hi, LoMask,
6418                            DAG.getConstant(MaxVal, dl, VT), Result,
6419                            ISD::SETGT);
6420   return DAG.getSelectCC(dl, Hi, HiMask,
6421                          DAG.getConstant(MinVal, dl, VT), Result,
6422                          ISD::SETLT);
6423 }
6424 
6425 void TargetLowering::expandUADDSUBO(
6426     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6427   SDLoc dl(Node);
6428   SDValue LHS = Node->getOperand(0);
6429   SDValue RHS = Node->getOperand(1);
6430   bool IsAdd = Node->getOpcode() == ISD::UADDO;
6431 
6432   // If ADD/SUBCARRY is legal, use that instead.
6433   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6434   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6435     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6436     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6437                                     { LHS, RHS, CarryIn });
6438     Result = SDValue(NodeCarry.getNode(), 0);
6439     Overflow = SDValue(NodeCarry.getNode(), 1);
6440     return;
6441   }
6442 
6443   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6444                             LHS.getValueType(), LHS, RHS);
6445 
6446   EVT ResultType = Node->getValueType(1);
6447   EVT SetCCType = getSetCCResultType(
6448       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6449   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6450   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6451   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6452 }
6453 
6454 void TargetLowering::expandSADDSUBO(
6455     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6456   SDLoc dl(Node);
6457   SDValue LHS = Node->getOperand(0);
6458   SDValue RHS = Node->getOperand(1);
6459   bool IsAdd = Node->getOpcode() == ISD::SADDO;
6460 
6461   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6462                             LHS.getValueType(), LHS, RHS);
6463 
6464   EVT ResultType = Node->getValueType(1);
6465   EVT OType = getSetCCResultType(
6466       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6467 
6468   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6469   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6470   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6471     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6472     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6473     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6474     return;
6475   }
6476 
6477   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6478 
6479   //   LHSSign -> LHS >= 0
6480   //   RHSSign -> RHS >= 0
6481   //   SumSign -> Result >= 0
6482   //
6483   //   Add:
6484   //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6485   //   Sub:
6486   //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6487   SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6488   SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6489   SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6490                                     IsAdd ? ISD::SETEQ : ISD::SETNE);
6491 
6492   SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6493   SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6494 
6495   SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6496   Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6497 }
6498 
6499 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6500                                 SDValue &Overflow, SelectionDAG &DAG) const {
6501   SDLoc dl(Node);
6502   EVT VT = Node->getValueType(0);
6503   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6504   SDValue LHS = Node->getOperand(0);
6505   SDValue RHS = Node->getOperand(1);
6506   bool isSigned = Node->getOpcode() == ISD::SMULO;
6507 
6508   // For power-of-two multiplications we can use a simpler shift expansion.
6509   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6510     const APInt &C = RHSC->getAPIntValue();
6511     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6512     if (C.isPowerOf2()) {
6513       // smulo(x, signed_min) is same as umulo(x, signed_min).
6514       bool UseArithShift = isSigned && !C.isMinSignedValue();
6515       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6516       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6517       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6518       Overflow = DAG.getSetCC(dl, SetCCVT,
6519           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6520                       dl, VT, Result, ShiftAmt),
6521           LHS, ISD::SETNE);
6522       return true;
6523     }
6524   }
6525 
6526   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6527   if (VT.isVector())
6528     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6529                               VT.getVectorNumElements());
6530 
6531   SDValue BottomHalf;
6532   SDValue TopHalf;
6533   static const unsigned Ops[2][3] =
6534       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6535         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6536   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6537     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6538     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6539   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6540     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6541                              RHS);
6542     TopHalf = BottomHalf.getValue(1);
6543   } else if (isTypeLegal(WideVT)) {
6544     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6545     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6546     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6547     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6548     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6549         getShiftAmountTy(WideVT, DAG.getDataLayout()));
6550     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6551                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6552   } else {
6553     if (VT.isVector())
6554       return false;
6555 
6556     // We can fall back to a libcall with an illegal type for the MUL if we
6557     // have a libcall big enough.
6558     // Also, we can fall back to a division in some cases, but that's a big
6559     // performance hit in the general case.
6560     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6561     if (WideVT == MVT::i16)
6562       LC = RTLIB::MUL_I16;
6563     else if (WideVT == MVT::i32)
6564       LC = RTLIB::MUL_I32;
6565     else if (WideVT == MVT::i64)
6566       LC = RTLIB::MUL_I64;
6567     else if (WideVT == MVT::i128)
6568       LC = RTLIB::MUL_I128;
6569     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6570 
6571     SDValue HiLHS;
6572     SDValue HiRHS;
6573     if (isSigned) {
6574       // The high part is obtained by SRA'ing all but one of the bits of low
6575       // part.
6576       unsigned LoSize = VT.getSizeInBits();
6577       HiLHS =
6578           DAG.getNode(ISD::SRA, dl, VT, LHS,
6579                       DAG.getConstant(LoSize - 1, dl,
6580                                       getPointerTy(DAG.getDataLayout())));
6581       HiRHS =
6582           DAG.getNode(ISD::SRA, dl, VT, RHS,
6583                       DAG.getConstant(LoSize - 1, dl,
6584                                       getPointerTy(DAG.getDataLayout())));
6585     } else {
6586         HiLHS = DAG.getConstant(0, dl, VT);
6587         HiRHS = DAG.getConstant(0, dl, VT);
6588     }
6589 
6590     // Here we're passing the 2 arguments explicitly as 4 arguments that are
6591     // pre-lowered to the correct types. This all depends upon WideVT not
6592     // being a legal type for the architecture and thus has to be split to
6593     // two arguments.
6594     SDValue Ret;
6595     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6596       // Halves of WideVT are packed into registers in different order
6597       // depending on platform endianness. This is usually handled by
6598       // the C calling convention, but we can't defer to it in
6599       // the legalizer.
6600       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6601       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6602           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6603           /* isPostTypeLegalization */ true).first;
6604     } else {
6605       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6606       Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl,
6607           /* doesNotReturn */ false, /* isReturnValueUsed */ true,
6608           /* isPostTypeLegalization */ true).first;
6609     }
6610     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6611            "Ret value is a collection of constituent nodes holding result.");
6612     if (DAG.getDataLayout().isLittleEndian()) {
6613       // Same as above.
6614       BottomHalf = Ret.getOperand(0);
6615       TopHalf = Ret.getOperand(1);
6616     } else {
6617       BottomHalf = Ret.getOperand(1);
6618       TopHalf = Ret.getOperand(0);
6619     }
6620   }
6621 
6622   Result = BottomHalf;
6623   if (isSigned) {
6624     SDValue ShiftAmt = DAG.getConstant(
6625         VT.getScalarSizeInBits() - 1, dl,
6626         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6627     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6628     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6629   } else {
6630     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6631                             DAG.getConstant(0, dl, VT), ISD::SETNE);
6632   }
6633 
6634   // Truncate the result if SetCC returns a larger type than needed.
6635   EVT RType = Node->getValueType(1);
6636   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
6637     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
6638 
6639   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
6640          "Unexpected result type for S/UMULO legalization");
6641   return true;
6642 }
6643 
6644 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
6645   SDLoc dl(Node);
6646   bool NoNaN = Node->getFlags().hasNoNaNs();
6647   unsigned BaseOpcode = 0;
6648   switch (Node->getOpcode()) {
6649   default: llvm_unreachable("Expected VECREDUCE opcode");
6650   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
6651   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
6652   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
6653   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
6654   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
6655   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
6656   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
6657   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
6658   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
6659   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
6660   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
6661   case ISD::VECREDUCE_FMAX:
6662     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
6663     break;
6664   case ISD::VECREDUCE_FMIN:
6665     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
6666     break;
6667   }
6668 
6669   SDValue Op = Node->getOperand(0);
6670   EVT VT = Op.getValueType();
6671 
6672   // Try to use a shuffle reduction for power of two vectors.
6673   if (VT.isPow2VectorType()) {
6674     while (VT.getVectorNumElements() > 1) {
6675       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
6676       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
6677         break;
6678 
6679       SDValue Lo, Hi;
6680       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
6681       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
6682       VT = HalfVT;
6683     }
6684   }
6685 
6686   EVT EltVT = VT.getVectorElementType();
6687   unsigned NumElts = VT.getVectorNumElements();
6688 
6689   SmallVector<SDValue, 8> Ops;
6690   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
6691 
6692   SDValue Res = Ops[0];
6693   for (unsigned i = 1; i < NumElts; i++)
6694     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
6695 
6696   // Result type may be wider than element type.
6697   if (EltVT != Node->getValueType(0))
6698     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
6699   return Res;
6700 }
6701