1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Target/TargetLoweringObjectFile.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // Conservatively require the attributes of the call to match those of 56 // the return. Ignore NoAlias and NonNull because they don't affect the 57 // call sequence. 58 AttributeList CallerAttrs = F.getAttributes(); 59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 60 .removeAttribute(Attribute::NoAlias) 61 .removeAttribute(Attribute::NonNull) 62 .hasAttributes()) 63 return false; 64 65 // It's not safe to eliminate the sign / zero extension of the return value. 66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 68 return false; 69 70 // Check if the only use is a function return node. 71 return isUsedByReturnOnly(Node, Chain); 72 } 73 74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 75 const uint32_t *CallerPreservedMask, 76 const SmallVectorImpl<CCValAssign> &ArgLocs, 77 const SmallVectorImpl<SDValue> &OutVals) const { 78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 79 const CCValAssign &ArgLoc = ArgLocs[I]; 80 if (!ArgLoc.isRegLoc()) 81 continue; 82 Register Reg = ArgLoc.getLocReg(); 83 // Only look at callee saved registers. 84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 85 continue; 86 // Check that we pass the value used for the caller. 87 // (We look for a CopyFromReg reading a virtual register that is used 88 // for the function live-in value of register Reg) 89 SDValue Value = OutVals[I]; 90 if (Value->getOpcode() != ISD::CopyFromReg) 91 return false; 92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 93 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 94 return false; 95 } 96 return true; 97 } 98 99 /// Set CallLoweringInfo attribute flags based on a call instruction 100 /// and called function attributes. 101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 102 unsigned ArgIdx) { 103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 113 Alignment = Call->getParamAlignment(ArgIdx); 114 ByValType = nullptr; 115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal)) 116 ByValType = Call->getParamByValType(ArgIdx); 117 } 118 119 /// Generate a libcall taking the given operands as arguments and returning a 120 /// result of type RetVT. 121 std::pair<SDValue, SDValue> 122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 123 ArrayRef<SDValue> Ops, 124 MakeLibCallOptions CallOptions, 125 const SDLoc &dl) const { 126 TargetLowering::ArgListTy Args; 127 Args.reserve(Ops.size()); 128 129 TargetLowering::ArgListEntry Entry; 130 for (unsigned i = 0; i < Ops.size(); ++i) { 131 SDValue NewOp = Ops[i]; 132 Entry.Node = NewOp; 133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 135 CallOptions.IsSExt); 136 Entry.IsZExt = !Entry.IsSExt; 137 138 if (CallOptions.IsSoften && 139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 140 Entry.IsSExt = Entry.IsZExt = false; 141 } 142 Args.push_back(Entry); 143 } 144 145 if (LC == RTLIB::UNKNOWN_LIBCALL) 146 report_fatal_error("Unsupported library call operation!"); 147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 148 getPointerTy(DAG.getDataLayout())); 149 150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 151 TargetLowering::CallLoweringInfo CLI(DAG); 152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 153 bool zeroExtend = !signExtend; 154 155 if (CallOptions.IsSoften && 156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 157 signExtend = zeroExtend = false; 158 } 159 160 CLI.setDebugLoc(dl) 161 .setChain(DAG.getEntryNode()) 162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 163 .setNoReturn(CallOptions.DoesNotReturn) 164 .setDiscardResult(!CallOptions.IsReturnValueUsed) 165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 166 .setSExtResult(signExtend) 167 .setZExtResult(zeroExtend); 168 return LowerCallTo(CLI); 169 } 170 171 bool 172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps, 173 unsigned Limit, uint64_t Size, 174 unsigned DstAlign, unsigned SrcAlign, 175 bool IsMemset, 176 bool ZeroMemset, 177 bool MemcpyStrSrc, 178 bool AllowOverlap, 179 unsigned DstAS, unsigned SrcAS, 180 const AttributeList &FuncAttributes) const { 181 // If 'SrcAlign' is zero, that means the memory operation does not need to 182 // load the value, i.e. memset or memcpy from constant string. Otherwise, 183 // it's the inferred alignment of the source. 'DstAlign', on the other hand, 184 // is the specified alignment of the memory operation. If it is zero, that 185 // means it's possible to change the alignment of the destination. 186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does 187 // not need to be loaded. 188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign)) 189 return false; 190 191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign, 192 IsMemset, ZeroMemset, MemcpyStrSrc, 193 FuncAttributes); 194 195 if (VT == MVT::Other) { 196 // Use the largest integer type whose alignment constraints are satisfied. 197 // We only need to check DstAlign here as SrcAlign is always greater or 198 // equal to DstAlign (or zero). 199 VT = MVT::i64; 200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 && 201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign)) 202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 203 assert(VT.isInteger()); 204 205 // Find the largest legal integer type. 206 MVT LVT = MVT::i64; 207 while (!isTypeLegal(LVT)) 208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 209 assert(LVT.isInteger()); 210 211 // If the type we've chosen is larger than the largest legal integer type 212 // then use that instead. 213 if (VT.bitsGT(LVT)) 214 VT = LVT; 215 } 216 217 unsigned NumMemOps = 0; 218 while (Size != 0) { 219 unsigned VTSize = VT.getSizeInBits() / 8; 220 while (VTSize > Size) { 221 // For now, only use non-vector load / store's for the left-over pieces. 222 EVT NewVT = VT; 223 unsigned NewVTSize; 224 225 bool Found = false; 226 if (VT.isVector() || VT.isFloatingPoint()) { 227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 229 isSafeMemOpType(NewVT.getSimpleVT())) 230 Found = true; 231 else if (NewVT == MVT::i64 && 232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 233 isSafeMemOpType(MVT::f64)) { 234 // i64 is usually not legal on 32-bit targets, but f64 may be. 235 NewVT = MVT::f64; 236 Found = true; 237 } 238 } 239 240 if (!Found) { 241 do { 242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 243 if (NewVT == MVT::i8) 244 break; 245 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 246 } 247 NewVTSize = NewVT.getSizeInBits() / 8; 248 249 // If the new VT cannot cover all of the remaining bits, then consider 250 // issuing a (or a pair of) unaligned and overlapping load / store. 251 bool Fast; 252 if (NumMemOps && AllowOverlap && NewVTSize < Size && 253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign, 254 MachineMemOperand::MONone, &Fast) && 255 Fast) 256 VTSize = Size; 257 else { 258 VT = NewVT; 259 VTSize = NewVTSize; 260 } 261 } 262 263 if (++NumMemOps > Limit) 264 return false; 265 266 MemOps.push_back(VT); 267 Size -= VTSize; 268 } 269 270 return true; 271 } 272 273 /// Soften the operands of a comparison. This code is shared among BR_CC, 274 /// SELECT_CC, and SETCC handlers. 275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 276 SDValue &NewLHS, SDValue &NewRHS, 277 ISD::CondCode &CCCode, 278 const SDLoc &dl, const SDValue OldLHS, 279 const SDValue OldRHS) const { 280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 281 && "Unsupported setcc type!"); 282 283 // Expand into one or more soft-fp libcall(s). 284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 285 bool ShouldInvertCC = false; 286 switch (CCCode) { 287 case ISD::SETEQ: 288 case ISD::SETOEQ: 289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 290 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 292 break; 293 case ISD::SETNE: 294 case ISD::SETUNE: 295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 296 (VT == MVT::f64) ? RTLIB::UNE_F64 : 297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 298 break; 299 case ISD::SETGE: 300 case ISD::SETOGE: 301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 302 (VT == MVT::f64) ? RTLIB::OGE_F64 : 303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 304 break; 305 case ISD::SETLT: 306 case ISD::SETOLT: 307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 308 (VT == MVT::f64) ? RTLIB::OLT_F64 : 309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 310 break; 311 case ISD::SETLE: 312 case ISD::SETOLE: 313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 314 (VT == MVT::f64) ? RTLIB::OLE_F64 : 315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 316 break; 317 case ISD::SETGT: 318 case ISD::SETOGT: 319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 320 (VT == MVT::f64) ? RTLIB::OGT_F64 : 321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 322 break; 323 case ISD::SETUO: 324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 325 (VT == MVT::f64) ? RTLIB::UO_F64 : 326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 327 break; 328 case ISD::SETO: 329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 330 (VT == MVT::f64) ? RTLIB::O_F64 : 331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 332 break; 333 case ISD::SETONE: 334 // SETONE = SETOLT | SETOGT 335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 336 (VT == MVT::f64) ? RTLIB::OLT_F64 : 337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 339 (VT == MVT::f64) ? RTLIB::OGT_F64 : 340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 341 break; 342 case ISD::SETUEQ: 343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 344 (VT == MVT::f64) ? RTLIB::UO_F64 : 345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 347 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 349 break; 350 default: 351 // Invert CC for unordered comparisons 352 ShouldInvertCC = true; 353 switch (CCCode) { 354 case ISD::SETULT: 355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 356 (VT == MVT::f64) ? RTLIB::OGE_F64 : 357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 358 break; 359 case ISD::SETULE: 360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 361 (VT == MVT::f64) ? RTLIB::OGT_F64 : 362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 363 break; 364 case ISD::SETUGT: 365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 366 (VT == MVT::f64) ? RTLIB::OLE_F64 : 367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 368 break; 369 case ISD::SETUGE: 370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 371 (VT == MVT::f64) ? RTLIB::OLT_F64 : 372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 373 break; 374 default: llvm_unreachable("Do not know how to soften this setcc!"); 375 } 376 } 377 378 // Use the target specific return value for comparions lib calls. 379 EVT RetVT = getCmpLibcallReturnType(); 380 SDValue Ops[2] = {NewLHS, NewRHS}; 381 TargetLowering::MakeLibCallOptions CallOptions; 382 EVT OpsVT[2] = { OldLHS.getValueType(), 383 OldRHS.getValueType() }; 384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first; 386 NewRHS = DAG.getConstant(0, dl, RetVT); 387 388 CCCode = getCmpLibcallCC(LC1); 389 if (ShouldInvertCC) 390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 391 392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 393 SDValue Tmp = DAG.getNode( 394 ISD::SETCC, dl, 395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 396 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first; 398 NewLHS = DAG.getNode( 399 ISD::SETCC, dl, 400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 403 NewRHS = SDValue(); 404 } 405 } 406 407 /// Return the entry encoding for a jump table in the current function. The 408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 409 unsigned TargetLowering::getJumpTableEncoding() const { 410 // In non-pic modes, just use the address of a block. 411 if (!isPositionIndependent()) 412 return MachineJumpTableInfo::EK_BlockAddress; 413 414 // In PIC mode, if the target supports a GPRel32 directive, use it. 415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 416 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 417 418 // Otherwise, use a label difference. 419 return MachineJumpTableInfo::EK_LabelDifference32; 420 } 421 422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 423 SelectionDAG &DAG) const { 424 // If our PIC model is GP relative, use the global offset table as the base. 425 unsigned JTEncoding = getJumpTableEncoding(); 426 427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 430 431 return Table; 432 } 433 434 /// This returns the relocation base for the given PIC jumptable, the same as 435 /// getPICJumpTableRelocBase, but as an MCExpr. 436 const MCExpr * 437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 438 unsigned JTI,MCContext &Ctx) const{ 439 // The normal PIC reloc base is the label at the start of the jump table. 440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 441 } 442 443 bool 444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 445 const TargetMachine &TM = getTargetMachine(); 446 const GlobalValue *GV = GA->getGlobal(); 447 448 // If the address is not even local to this DSO we will have to load it from 449 // a got and then add the offset. 450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 451 return false; 452 453 // If the code is position independent we will have to add a base register. 454 if (isPositionIndependent()) 455 return false; 456 457 // Otherwise we can do it. 458 return true; 459 } 460 461 //===----------------------------------------------------------------------===// 462 // Optimization Methods 463 //===----------------------------------------------------------------------===// 464 465 /// If the specified instruction has a constant integer operand and there are 466 /// bits set in that constant that are not demanded, then clear those bits and 467 /// return true. 468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 469 TargetLoweringOpt &TLO) const { 470 SDLoc DL(Op); 471 unsigned Opcode = Op.getOpcode(); 472 473 // Do target-specific constant optimization. 474 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 475 return TLO.New.getNode(); 476 477 // FIXME: ISD::SELECT, ISD::SELECT_CC 478 switch (Opcode) { 479 default: 480 break; 481 case ISD::XOR: 482 case ISD::AND: 483 case ISD::OR: { 484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 485 if (!Op1C) 486 return false; 487 488 // If this is a 'not' op, don't touch it because that's a canonical form. 489 const APInt &C = Op1C->getAPIntValue(); 490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 491 return false; 492 493 if (!C.isSubsetOf(Demanded)) { 494 EVT VT = Op.getValueType(); 495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT); 496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 497 return TLO.CombineTo(Op, NewOp); 498 } 499 500 break; 501 } 502 } 503 504 return false; 505 } 506 507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 509 /// generalized for targets with other types of implicit widening casts. 510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 511 const APInt &Demanded, 512 TargetLoweringOpt &TLO) const { 513 assert(Op.getNumOperands() == 2 && 514 "ShrinkDemandedOp only supports binary operators!"); 515 assert(Op.getNode()->getNumValues() == 1 && 516 "ShrinkDemandedOp only supports nodes with one result!"); 517 518 SelectionDAG &DAG = TLO.DAG; 519 SDLoc dl(Op); 520 521 // Early return, as this function cannot handle vector types. 522 if (Op.getValueType().isVector()) 523 return false; 524 525 // Don't do this if the node has another user, which may require the 526 // full value. 527 if (!Op.getNode()->hasOneUse()) 528 return false; 529 530 // Search for the smallest integer type with free casts to and from 531 // Op's type. For expedience, just check power-of-2 integer types. 532 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 533 unsigned DemandedSize = Demanded.getActiveBits(); 534 unsigned SmallVTBits = DemandedSize; 535 if (!isPowerOf2_32(SmallVTBits)) 536 SmallVTBits = NextPowerOf2(SmallVTBits); 537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 540 TLI.isZExtFree(SmallVT, Op.getValueType())) { 541 // We found a type with free casts. 542 SDValue X = DAG.getNode( 543 Op.getOpcode(), dl, SmallVT, 544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 548 return TLO.CombineTo(Op, Z); 549 } 550 } 551 return false; 552 } 553 554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 555 DAGCombinerInfo &DCI) const { 556 SelectionDAG &DAG = DCI.DAG; 557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 558 !DCI.isBeforeLegalizeOps()); 559 KnownBits Known; 560 561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 562 if (Simplified) { 563 DCI.AddToWorklist(Op.getNode()); 564 DCI.CommitTargetLoweringOpt(TLO); 565 } 566 return Simplified; 567 } 568 569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 570 KnownBits &Known, 571 TargetLoweringOpt &TLO, 572 unsigned Depth, 573 bool AssumeSingleUse) const { 574 EVT VT = Op.getValueType(); 575 APInt DemandedElts = VT.isVector() 576 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 577 : APInt(1, 1); 578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 579 AssumeSingleUse); 580 } 581 582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 583 // TODO: Under what circumstances can we create nodes? Constant folding? 584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 586 SelectionDAG &DAG, unsigned Depth) const { 587 // Limit search depth. 588 if (Depth >= 6) 589 return SDValue(); 590 591 // Ignore UNDEFs. 592 if (Op.isUndef()) 593 return SDValue(); 594 595 // Not demanding any bits/elts from Op. 596 if (DemandedBits == 0 || DemandedElts == 0) 597 return DAG.getUNDEF(Op.getValueType()); 598 599 unsigned NumElts = DemandedElts.getBitWidth(); 600 KnownBits LHSKnown, RHSKnown; 601 switch (Op.getOpcode()) { 602 case ISD::BITCAST: { 603 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 604 EVT SrcVT = Src.getValueType(); 605 EVT DstVT = Op.getValueType(); 606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 608 609 if (NumSrcEltBits == NumDstEltBits) 610 if (SDValue V = SimplifyMultipleUseDemandedBits( 611 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 612 return DAG.getBitcast(DstVT, V); 613 614 // TODO - bigendian once we have test coverage. 615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 && 616 DAG.getDataLayout().isLittleEndian()) { 617 unsigned Scale = NumDstEltBits / NumSrcEltBits; 618 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 621 for (unsigned i = 0; i != Scale; ++i) { 622 unsigned Offset = i * NumSrcEltBits; 623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 624 if (!Sub.isNullValue()) { 625 DemandedSrcBits |= Sub; 626 for (unsigned j = 0; j != NumElts; ++j) 627 if (DemandedElts[j]) 628 DemandedSrcElts.setBit((j * Scale) + i); 629 } 630 } 631 632 if (SDValue V = SimplifyMultipleUseDemandedBits( 633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 634 return DAG.getBitcast(DstVT, V); 635 } 636 637 // TODO - bigendian once we have test coverage. 638 if ((NumSrcEltBits % NumDstEltBits) == 0 && 639 DAG.getDataLayout().isLittleEndian()) { 640 unsigned Scale = NumSrcEltBits / NumDstEltBits; 641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 644 for (unsigned i = 0; i != NumElts; ++i) 645 if (DemandedElts[i]) { 646 unsigned Offset = (i % Scale) * NumDstEltBits; 647 DemandedSrcBits.insertBits(DemandedBits, Offset); 648 DemandedSrcElts.setBit(i / Scale); 649 } 650 651 if (SDValue V = SimplifyMultipleUseDemandedBits( 652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 653 return DAG.getBitcast(DstVT, V); 654 } 655 656 break; 657 } 658 case ISD::AND: { 659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 661 662 // If all of the demanded bits are known 1 on one side, return the other. 663 // These bits cannot contribute to the result of the 'and' in this 664 // context. 665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 666 return Op.getOperand(0); 667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 668 return Op.getOperand(1); 669 break; 670 } 671 case ISD::OR: { 672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 674 675 // If all of the demanded bits are known zero on one side, return the 676 // other. These bits cannot contribute to the result of the 'or' in this 677 // context. 678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 679 return Op.getOperand(0); 680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 681 return Op.getOperand(1); 682 break; 683 } 684 case ISD::XOR: { 685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 687 688 // If all of the demanded bits are known zero on one side, return the 689 // other. 690 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 691 return Op.getOperand(0); 692 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 693 return Op.getOperand(1); 694 break; 695 } 696 case ISD::SIGN_EXTEND_INREG: { 697 // If none of the extended bits are demanded, eliminate the sextinreg. 698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits()) 700 return Op.getOperand(0); 701 break; 702 } 703 case ISD::INSERT_VECTOR_ELT: { 704 // If we don't demand the inserted element, return the base vector. 705 SDValue Vec = Op.getOperand(0); 706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 707 EVT VecVT = Vec.getValueType(); 708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 709 !DemandedElts[CIdx->getZExtValue()]) 710 return Vec; 711 break; 712 } 713 case ISD::VECTOR_SHUFFLE: { 714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 715 716 // If all the demanded elts are from one operand and are inline, 717 // then we can use the operand directly. 718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 719 for (unsigned i = 0; i != NumElts; ++i) { 720 int M = ShuffleMask[i]; 721 if (M < 0 || !DemandedElts[i]) 722 continue; 723 AllUndef = false; 724 IdentityLHS &= (M == (int)i); 725 IdentityRHS &= ((M - NumElts) == i); 726 } 727 728 if (AllUndef) 729 return DAG.getUNDEF(Op.getValueType()); 730 if (IdentityLHS) 731 return Op.getOperand(0); 732 if (IdentityRHS) 733 return Op.getOperand(1); 734 break; 735 } 736 default: 737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 739 Op, DemandedBits, DemandedElts, DAG, Depth)) 740 return V; 741 break; 742 } 743 return SDValue(); 744 } 745 746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 747 /// result of Op are ever used downstream. If we can use this information to 748 /// simplify Op, create a new simplified DAG node and return true, returning the 749 /// original and new nodes in Old and New. Otherwise, analyze the expression and 750 /// return a mask of Known bits for the expression (used to simplify the 751 /// caller). The Known bits may only be accurate for those bits in the 752 /// OriginalDemandedBits and OriginalDemandedElts. 753 bool TargetLowering::SimplifyDemandedBits( 754 SDValue Op, const APInt &OriginalDemandedBits, 755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 756 unsigned Depth, bool AssumeSingleUse) const { 757 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 758 assert(Op.getScalarValueSizeInBits() == BitWidth && 759 "Mask size mismatches value type size!"); 760 761 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 762 assert((!Op.getValueType().isVector() || 763 NumElts == Op.getValueType().getVectorNumElements()) && 764 "Unexpected vector size"); 765 766 APInt DemandedBits = OriginalDemandedBits; 767 APInt DemandedElts = OriginalDemandedElts; 768 SDLoc dl(Op); 769 auto &DL = TLO.DAG.getDataLayout(); 770 771 // Don't know anything. 772 Known = KnownBits(BitWidth); 773 774 // Undef operand. 775 if (Op.isUndef()) 776 return false; 777 778 if (Op.getOpcode() == ISD::Constant) { 779 // We know all of the bits for a constant! 780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 781 Known.Zero = ~Known.One; 782 return false; 783 } 784 785 // Other users may use these bits. 786 EVT VT = Op.getValueType(); 787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 788 if (Depth != 0) { 789 // If not at the root, Just compute the Known bits to 790 // simplify things downstream. 791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 792 return false; 793 } 794 // If this is the root being simplified, allow it to have multiple uses, 795 // just set the DemandedBits/Elts to all bits. 796 DemandedBits = APInt::getAllOnesValue(BitWidth); 797 DemandedElts = APInt::getAllOnesValue(NumElts); 798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 799 // Not demanding any bits/elts from Op. 800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 801 } else if (Depth >= 6) { // Limit search depth. 802 return false; 803 } 804 805 KnownBits Known2, KnownOut; 806 switch (Op.getOpcode()) { 807 case ISD::SCALAR_TO_VECTOR: { 808 if (!DemandedElts[0]) 809 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 810 811 KnownBits SrcKnown; 812 SDValue Src = Op.getOperand(0); 813 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 814 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 815 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 816 return true; 817 Known = SrcKnown.zextOrTrunc(BitWidth, false); 818 break; 819 } 820 case ISD::BUILD_VECTOR: 821 // Collect the known bits that are shared by every demanded element. 822 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 823 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 824 return false; // Don't fall through, will infinitely loop. 825 case ISD::LOAD: { 826 LoadSDNode *LD = cast<LoadSDNode>(Op); 827 if (getTargetConstantFromLoad(LD)) { 828 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 829 return false; // Don't fall through, will infinitely loop. 830 } 831 break; 832 } 833 case ISD::INSERT_VECTOR_ELT: { 834 SDValue Vec = Op.getOperand(0); 835 SDValue Scl = Op.getOperand(1); 836 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 837 EVT VecVT = Vec.getValueType(); 838 839 // If index isn't constant, assume we need all vector elements AND the 840 // inserted element. 841 APInt DemandedVecElts(DemandedElts); 842 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 843 unsigned Idx = CIdx->getZExtValue(); 844 DemandedVecElts.clearBit(Idx); 845 846 // Inserted element is not required. 847 if (!DemandedElts[Idx]) 848 return TLO.CombineTo(Op, Vec); 849 } 850 851 KnownBits KnownScl; 852 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 853 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 854 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 855 return true; 856 857 Known = KnownScl.zextOrTrunc(BitWidth, false); 858 859 KnownBits KnownVec; 860 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 861 Depth + 1)) 862 return true; 863 864 if (!!DemandedVecElts) { 865 Known.One &= KnownVec.One; 866 Known.Zero &= KnownVec.Zero; 867 } 868 869 return false; 870 } 871 case ISD::INSERT_SUBVECTOR: { 872 SDValue Base = Op.getOperand(0); 873 SDValue Sub = Op.getOperand(1); 874 EVT SubVT = Sub.getValueType(); 875 unsigned NumSubElts = SubVT.getVectorNumElements(); 876 877 // If index isn't constant, assume we need the original demanded base 878 // elements and ALL the inserted subvector elements. 879 APInt BaseElts = DemandedElts; 880 APInt SubElts = APInt::getAllOnesValue(NumSubElts); 881 if (isa<ConstantSDNode>(Op.getOperand(2))) { 882 const APInt &Idx = Op.getConstantOperandAPInt(2); 883 if (Idx.ule(NumElts - NumSubElts)) { 884 unsigned SubIdx = Idx.getZExtValue(); 885 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 886 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 887 } 888 } 889 890 KnownBits KnownSub, KnownBase; 891 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO, 892 Depth + 1)) 893 return true; 894 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO, 895 Depth + 1)) 896 return true; 897 898 Known.Zero.setAllBits(); 899 Known.One.setAllBits(); 900 if (!!SubElts) { 901 Known.One &= KnownSub.One; 902 Known.Zero &= KnownSub.Zero; 903 } 904 if (!!BaseElts) { 905 Known.One &= KnownBase.One; 906 Known.Zero &= KnownBase.Zero; 907 } 908 break; 909 } 910 case ISD::CONCAT_VECTORS: { 911 Known.Zero.setAllBits(); 912 Known.One.setAllBits(); 913 EVT SubVT = Op.getOperand(0).getValueType(); 914 unsigned NumSubVecs = Op.getNumOperands(); 915 unsigned NumSubElts = SubVT.getVectorNumElements(); 916 for (unsigned i = 0; i != NumSubVecs; ++i) { 917 APInt DemandedSubElts = 918 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 919 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 920 Known2, TLO, Depth + 1)) 921 return true; 922 // Known bits are shared by every demanded subvector element. 923 if (!!DemandedSubElts) { 924 Known.One &= Known2.One; 925 Known.Zero &= Known2.Zero; 926 } 927 } 928 break; 929 } 930 case ISD::VECTOR_SHUFFLE: { 931 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 932 933 // Collect demanded elements from shuffle operands.. 934 APInt DemandedLHS(NumElts, 0); 935 APInt DemandedRHS(NumElts, 0); 936 for (unsigned i = 0; i != NumElts; ++i) { 937 if (!DemandedElts[i]) 938 continue; 939 int M = ShuffleMask[i]; 940 if (M < 0) { 941 // For UNDEF elements, we don't know anything about the common state of 942 // the shuffle result. 943 DemandedLHS.clearAllBits(); 944 DemandedRHS.clearAllBits(); 945 break; 946 } 947 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 948 if (M < (int)NumElts) 949 DemandedLHS.setBit(M); 950 else 951 DemandedRHS.setBit(M - NumElts); 952 } 953 954 if (!!DemandedLHS || !!DemandedRHS) { 955 SDValue Op0 = Op.getOperand(0); 956 SDValue Op1 = Op.getOperand(1); 957 958 Known.Zero.setAllBits(); 959 Known.One.setAllBits(); 960 if (!!DemandedLHS) { 961 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 962 Depth + 1)) 963 return true; 964 Known.One &= Known2.One; 965 Known.Zero &= Known2.Zero; 966 } 967 if (!!DemandedRHS) { 968 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 969 Depth + 1)) 970 return true; 971 Known.One &= Known2.One; 972 Known.Zero &= Known2.Zero; 973 } 974 975 // Attempt to avoid multi-use ops if we don't need anything from them. 976 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 977 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 978 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 979 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 980 if (DemandedOp0 || DemandedOp1) { 981 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 982 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 983 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 984 return TLO.CombineTo(Op, NewOp); 985 } 986 } 987 break; 988 } 989 case ISD::AND: { 990 SDValue Op0 = Op.getOperand(0); 991 SDValue Op1 = Op.getOperand(1); 992 993 // If the RHS is a constant, check to see if the LHS would be zero without 994 // using the bits from the RHS. Below, we use knowledge about the RHS to 995 // simplify the LHS, here we're using information from the LHS to simplify 996 // the RHS. 997 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 998 // Do not increment Depth here; that can cause an infinite loop. 999 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1000 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1001 if ((LHSKnown.Zero & DemandedBits) == 1002 (~RHSC->getAPIntValue() & DemandedBits)) 1003 return TLO.CombineTo(Op, Op0); 1004 1005 // If any of the set bits in the RHS are known zero on the LHS, shrink 1006 // the constant. 1007 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 1008 return true; 1009 1010 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1011 // constant, but if this 'and' is only clearing bits that were just set by 1012 // the xor, then this 'and' can be eliminated by shrinking the mask of 1013 // the xor. For example, for a 32-bit X: 1014 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1015 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1016 LHSKnown.One == ~RHSC->getAPIntValue()) { 1017 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1018 return TLO.CombineTo(Op, Xor); 1019 } 1020 } 1021 1022 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1023 Depth + 1)) 1024 return true; 1025 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1026 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1027 Known2, TLO, Depth + 1)) 1028 return true; 1029 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1030 1031 // Attempt to avoid multi-use ops if we don't need anything from them. 1032 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1033 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1034 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1035 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1036 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1037 if (DemandedOp0 || DemandedOp1) { 1038 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1039 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1040 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1041 return TLO.CombineTo(Op, NewOp); 1042 } 1043 } 1044 1045 // If all of the demanded bits are known one on one side, return the other. 1046 // These bits cannot contribute to the result of the 'and'. 1047 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1048 return TLO.CombineTo(Op, Op0); 1049 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1050 return TLO.CombineTo(Op, Op1); 1051 // If all of the demanded bits in the inputs are known zeros, return zero. 1052 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1053 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1054 // If the RHS is a constant, see if we can simplify it. 1055 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 1056 return true; 1057 // If the operation can be done in a smaller type, do so. 1058 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1059 return true; 1060 1061 // Output known-1 bits are only known if set in both the LHS & RHS. 1062 Known.One &= Known2.One; 1063 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1064 Known.Zero |= Known2.Zero; 1065 break; 1066 } 1067 case ISD::OR: { 1068 SDValue Op0 = Op.getOperand(0); 1069 SDValue Op1 = Op.getOperand(1); 1070 1071 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1072 Depth + 1)) 1073 return true; 1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1075 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1076 Known2, TLO, Depth + 1)) 1077 return true; 1078 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1079 1080 // Attempt to avoid multi-use ops if we don't need anything from them. 1081 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1082 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1083 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1084 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1085 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1086 if (DemandedOp0 || DemandedOp1) { 1087 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1088 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1089 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1090 return TLO.CombineTo(Op, NewOp); 1091 } 1092 } 1093 1094 // If all of the demanded bits are known zero on one side, return the other. 1095 // These bits cannot contribute to the result of the 'or'. 1096 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1097 return TLO.CombineTo(Op, Op0); 1098 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1099 return TLO.CombineTo(Op, Op1); 1100 // If the RHS is a constant, see if we can simplify it. 1101 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1102 return true; 1103 // If the operation can be done in a smaller type, do so. 1104 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1105 return true; 1106 1107 // Output known-0 bits are only known if clear in both the LHS & RHS. 1108 Known.Zero &= Known2.Zero; 1109 // Output known-1 are known to be set if set in either the LHS | RHS. 1110 Known.One |= Known2.One; 1111 break; 1112 } 1113 case ISD::XOR: { 1114 SDValue Op0 = Op.getOperand(0); 1115 SDValue Op1 = Op.getOperand(1); 1116 1117 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1118 Depth + 1)) 1119 return true; 1120 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1121 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1122 Depth + 1)) 1123 return true; 1124 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1125 1126 // Attempt to avoid multi-use ops if we don't need anything from them. 1127 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1128 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1129 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1130 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1131 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1132 if (DemandedOp0 || DemandedOp1) { 1133 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1134 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1135 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1136 return TLO.CombineTo(Op, NewOp); 1137 } 1138 } 1139 1140 // If all of the demanded bits are known zero on one side, return the other. 1141 // These bits cannot contribute to the result of the 'xor'. 1142 if (DemandedBits.isSubsetOf(Known.Zero)) 1143 return TLO.CombineTo(Op, Op0); 1144 if (DemandedBits.isSubsetOf(Known2.Zero)) 1145 return TLO.CombineTo(Op, Op1); 1146 // If the operation can be done in a smaller type, do so. 1147 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1148 return true; 1149 1150 // If all of the unknown bits are known to be zero on one side or the other 1151 // (but not both) turn this into an *inclusive* or. 1152 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1153 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1154 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1155 1156 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1157 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1158 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1159 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1160 1161 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 1162 // If one side is a constant, and all of the known set bits on the other 1163 // side are also set in the constant, turn this into an AND, as we know 1164 // the bits will be cleared. 1165 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1166 // NB: it is okay if more bits are known than are requested 1167 if (C->getAPIntValue() == Known2.One) { 1168 SDValue ANDC = 1169 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1170 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1171 } 1172 1173 // If the RHS is a constant, see if we can change it. Don't alter a -1 1174 // constant because that's a 'not' op, and that is better for combining 1175 // and codegen. 1176 if (!C->isAllOnesValue()) { 1177 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 1178 // We're flipping all demanded bits. Flip the undemanded bits too. 1179 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1180 return TLO.CombineTo(Op, New); 1181 } 1182 // If we can't turn this into a 'not', try to shrink the constant. 1183 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1184 return true; 1185 } 1186 } 1187 1188 Known = std::move(KnownOut); 1189 break; 1190 } 1191 case ISD::SELECT: 1192 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1193 Depth + 1)) 1194 return true; 1195 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1196 Depth + 1)) 1197 return true; 1198 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1199 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1200 1201 // If the operands are constants, see if we can simplify them. 1202 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1203 return true; 1204 1205 // Only known if known in both the LHS and RHS. 1206 Known.One &= Known2.One; 1207 Known.Zero &= Known2.Zero; 1208 break; 1209 case ISD::SELECT_CC: 1210 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1211 Depth + 1)) 1212 return true; 1213 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1214 Depth + 1)) 1215 return true; 1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1217 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1218 1219 // If the operands are constants, see if we can simplify them. 1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 1221 return true; 1222 1223 // Only known if known in both the LHS and RHS. 1224 Known.One &= Known2.One; 1225 Known.Zero &= Known2.Zero; 1226 break; 1227 case ISD::SETCC: { 1228 SDValue Op0 = Op.getOperand(0); 1229 SDValue Op1 = Op.getOperand(1); 1230 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1231 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1232 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1233 // -1, we may be able to bypass the setcc. 1234 if (DemandedBits.isSignMask() && 1235 Op0.getScalarValueSizeInBits() == BitWidth && 1236 getBooleanContents(VT) == 1237 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1238 // If we're testing X < 0, then this compare isn't needed - just use X! 1239 // FIXME: We're limiting to integer types here, but this should also work 1240 // if we don't care about FP signed-zero. The use of SETLT with FP means 1241 // that we don't care about NaNs. 1242 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1243 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1244 return TLO.CombineTo(Op, Op0); 1245 1246 // TODO: Should we check for other forms of sign-bit comparisons? 1247 // Examples: X <= -1, X >= 0 1248 } 1249 if (getBooleanContents(Op0.getValueType()) == 1250 TargetLowering::ZeroOrOneBooleanContent && 1251 BitWidth > 1) 1252 Known.Zero.setBitsFrom(1); 1253 break; 1254 } 1255 case ISD::SHL: { 1256 SDValue Op0 = Op.getOperand(0); 1257 SDValue Op1 = Op.getOperand(1); 1258 1259 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1260 // If the shift count is an invalid immediate, don't do anything. 1261 if (SA->getAPIntValue().uge(BitWidth)) 1262 break; 1263 1264 unsigned ShAmt = SA->getZExtValue(); 1265 if (ShAmt == 0) 1266 return TLO.CombineTo(Op, Op0); 1267 1268 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1269 // single shift. We can do this if the bottom bits (which are shifted 1270 // out) are never demanded. 1271 // TODO - support non-uniform vector amounts. 1272 if (Op0.getOpcode() == ISD::SRL) { 1273 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 1274 if (ConstantSDNode *SA2 = 1275 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1276 if (SA2->getAPIntValue().ult(BitWidth)) { 1277 unsigned C1 = SA2->getZExtValue(); 1278 unsigned Opc = ISD::SHL; 1279 int Diff = ShAmt - C1; 1280 if (Diff < 0) { 1281 Diff = -Diff; 1282 Opc = ISD::SRL; 1283 } 1284 1285 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 1286 return TLO.CombineTo( 1287 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1288 } 1289 } 1290 } 1291 } 1292 1293 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 1294 Known, TLO, Depth + 1)) 1295 return true; 1296 1297 // Try shrinking the operation as long as the shift amount will still be 1298 // in range. 1299 if ((ShAmt < DemandedBits.getActiveBits()) && 1300 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1301 return true; 1302 1303 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1304 // are not demanded. This will likely allow the anyext to be folded away. 1305 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1306 SDValue InnerOp = Op0.getOperand(0); 1307 EVT InnerVT = InnerOp.getValueType(); 1308 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1309 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1310 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1311 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1312 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1313 ShTy = InnerVT; 1314 SDValue NarrowShl = 1315 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1316 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1317 return TLO.CombineTo( 1318 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1319 } 1320 // Repeat the SHL optimization above in cases where an extension 1321 // intervenes: (shl (anyext (shr x, c1)), c2) to 1322 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1323 // aren't demanded (as above) and that the shifted upper c1 bits of 1324 // x aren't demanded. 1325 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1326 InnerOp.hasOneUse()) { 1327 if (ConstantSDNode *SA2 = 1328 isConstOrConstSplat(InnerOp.getOperand(1))) { 1329 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 1330 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1331 DemandedBits.getActiveBits() <= 1332 (InnerBits - InnerShAmt + ShAmt) && 1333 DemandedBits.countTrailingZeros() >= ShAmt) { 1334 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 1335 Op1.getValueType()); 1336 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1337 InnerOp.getOperand(0)); 1338 return TLO.CombineTo( 1339 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1340 } 1341 } 1342 } 1343 } 1344 1345 Known.Zero <<= ShAmt; 1346 Known.One <<= ShAmt; 1347 // low bits known zero. 1348 Known.Zero.setLowBits(ShAmt); 1349 } 1350 break; 1351 } 1352 case ISD::SRL: { 1353 SDValue Op0 = Op.getOperand(0); 1354 SDValue Op1 = Op.getOperand(1); 1355 1356 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1357 // If the shift count is an invalid immediate, don't do anything. 1358 if (SA->getAPIntValue().uge(BitWidth)) 1359 break; 1360 1361 unsigned ShAmt = SA->getZExtValue(); 1362 if (ShAmt == 0) 1363 return TLO.CombineTo(Op, Op0); 1364 1365 EVT ShiftVT = Op1.getValueType(); 1366 APInt InDemandedMask = (DemandedBits << ShAmt); 1367 1368 // If the shift is exact, then it does demand the low bits (and knows that 1369 // they are zero). 1370 if (Op->getFlags().hasExact()) 1371 InDemandedMask.setLowBits(ShAmt); 1372 1373 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1374 // single shift. We can do this if the top bits (which are shifted out) 1375 // are never demanded. 1376 // TODO - support non-uniform vector amounts. 1377 if (Op0.getOpcode() == ISD::SHL) { 1378 if (ConstantSDNode *SA2 = 1379 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) { 1380 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 1381 if (SA2->getAPIntValue().ult(BitWidth)) { 1382 unsigned C1 = SA2->getZExtValue(); 1383 unsigned Opc = ISD::SRL; 1384 int Diff = ShAmt - C1; 1385 if (Diff < 0) { 1386 Diff = -Diff; 1387 Opc = ISD::SHL; 1388 } 1389 1390 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1391 return TLO.CombineTo( 1392 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1393 } 1394 } 1395 } 1396 } 1397 1398 // Compute the new bits that are at the top now. 1399 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1400 Depth + 1)) 1401 return true; 1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1403 Known.Zero.lshrInPlace(ShAmt); 1404 Known.One.lshrInPlace(ShAmt); 1405 1406 Known.Zero.setHighBits(ShAmt); // High bits known zero. 1407 } 1408 break; 1409 } 1410 case ISD::SRA: { 1411 SDValue Op0 = Op.getOperand(0); 1412 SDValue Op1 = Op.getOperand(1); 1413 1414 // If this is an arithmetic shift right and only the low-bit is set, we can 1415 // always convert this into a logical shr, even if the shift amount is 1416 // variable. The low bit of the shift cannot be an input sign bit unless 1417 // the shift amount is >= the size of the datatype, which is undefined. 1418 if (DemandedBits.isOneValue()) 1419 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1420 1421 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1422 // If the shift count is an invalid immediate, don't do anything. 1423 if (SA->getAPIntValue().uge(BitWidth)) 1424 break; 1425 1426 unsigned ShAmt = SA->getZExtValue(); 1427 if (ShAmt == 0) 1428 return TLO.CombineTo(Op, Op0); 1429 1430 APInt InDemandedMask = (DemandedBits << ShAmt); 1431 1432 // If the shift is exact, then it does demand the low bits (and knows that 1433 // they are zero). 1434 if (Op->getFlags().hasExact()) 1435 InDemandedMask.setLowBits(ShAmt); 1436 1437 // If any of the demanded bits are produced by the sign extension, we also 1438 // demand the input sign bit. 1439 if (DemandedBits.countLeadingZeros() < ShAmt) 1440 InDemandedMask.setSignBit(); 1441 1442 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1443 Depth + 1)) 1444 return true; 1445 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1446 Known.Zero.lshrInPlace(ShAmt); 1447 Known.One.lshrInPlace(ShAmt); 1448 1449 // If the input sign bit is known to be zero, or if none of the top bits 1450 // are demanded, turn this into an unsigned shift right. 1451 if (Known.Zero[BitWidth - ShAmt - 1] || 1452 DemandedBits.countLeadingZeros() >= ShAmt) { 1453 SDNodeFlags Flags; 1454 Flags.setExact(Op->getFlags().hasExact()); 1455 return TLO.CombineTo( 1456 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1457 } 1458 1459 int Log2 = DemandedBits.exactLogBase2(); 1460 if (Log2 >= 0) { 1461 // The bit must come from the sign. 1462 SDValue NewSA = 1463 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1464 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1465 } 1466 1467 if (Known.One[BitWidth - ShAmt - 1]) 1468 // New bits are known one. 1469 Known.One.setHighBits(ShAmt); 1470 } 1471 break; 1472 } 1473 case ISD::FSHL: 1474 case ISD::FSHR: { 1475 SDValue Op0 = Op.getOperand(0); 1476 SDValue Op1 = Op.getOperand(1); 1477 SDValue Op2 = Op.getOperand(2); 1478 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1479 1480 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1481 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1482 1483 // For fshl, 0-shift returns the 1st arg. 1484 // For fshr, 0-shift returns the 2nd arg. 1485 if (Amt == 0) { 1486 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1487 Known, TLO, Depth + 1)) 1488 return true; 1489 break; 1490 } 1491 1492 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1493 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1494 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1495 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1496 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1497 Depth + 1)) 1498 return true; 1499 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1500 Depth + 1)) 1501 return true; 1502 1503 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1504 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1505 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1506 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1507 Known.One |= Known2.One; 1508 Known.Zero |= Known2.Zero; 1509 } 1510 break; 1511 } 1512 case ISD::BITREVERSE: { 1513 SDValue Src = Op.getOperand(0); 1514 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1515 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1516 Depth + 1)) 1517 return true; 1518 Known.One = Known2.One.reverseBits(); 1519 Known.Zero = Known2.Zero.reverseBits(); 1520 break; 1521 } 1522 case ISD::SIGN_EXTEND_INREG: { 1523 SDValue Op0 = Op.getOperand(0); 1524 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1525 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1526 1527 // If we only care about the highest bit, don't bother shifting right. 1528 if (DemandedBits.isSignMask()) { 1529 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0); 1530 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1; 1531 // However if the input is already sign extended we expect the sign 1532 // extension to be dropped altogether later and do not simplify. 1533 if (!AlreadySignExtended) { 1534 // Compute the correct shift amount type, which must be getShiftAmountTy 1535 // for scalar types after legalization. 1536 EVT ShiftAmtTy = VT; 1537 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1538 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1539 1540 SDValue ShiftAmt = 1541 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1542 return TLO.CombineTo(Op, 1543 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1544 } 1545 } 1546 1547 // If none of the extended bits are demanded, eliminate the sextinreg. 1548 if (DemandedBits.getActiveBits() <= ExVTBits) 1549 return TLO.CombineTo(Op, Op0); 1550 1551 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1552 1553 // Since the sign extended bits are demanded, we know that the sign 1554 // bit is demanded. 1555 InputDemandedBits.setBit(ExVTBits - 1); 1556 1557 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1558 return true; 1559 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1560 1561 // If the sign bit of the input is known set or clear, then we know the 1562 // top bits of the result. 1563 1564 // If the input sign bit is known zero, convert this into a zero extension. 1565 if (Known.Zero[ExVTBits - 1]) 1566 return TLO.CombineTo( 1567 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1568 1569 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1570 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1571 Known.One.setBitsFrom(ExVTBits); 1572 Known.Zero &= Mask; 1573 } else { // Input sign bit unknown 1574 Known.Zero &= Mask; 1575 Known.One &= Mask; 1576 } 1577 break; 1578 } 1579 case ISD::BUILD_PAIR: { 1580 EVT HalfVT = Op.getOperand(0).getValueType(); 1581 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1582 1583 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1584 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1585 1586 KnownBits KnownLo, KnownHi; 1587 1588 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1589 return true; 1590 1591 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1592 return true; 1593 1594 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1595 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1596 1597 Known.One = KnownLo.One.zext(BitWidth) | 1598 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1599 break; 1600 } 1601 case ISD::ZERO_EXTEND: 1602 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1603 SDValue Src = Op.getOperand(0); 1604 EVT SrcVT = Src.getValueType(); 1605 unsigned InBits = SrcVT.getScalarSizeInBits(); 1606 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1607 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 1608 1609 // If none of the top bits are demanded, convert this into an any_extend. 1610 if (DemandedBits.getActiveBits() <= InBits) { 1611 // If we only need the non-extended bits of the bottom element 1612 // then we can just bitcast to the result. 1613 if (IsVecInReg && DemandedElts == 1 && 1614 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1615 TLO.DAG.getDataLayout().isLittleEndian()) 1616 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1617 1618 unsigned Opc = 1619 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1620 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1621 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1622 } 1623 1624 APInt InDemandedBits = DemandedBits.trunc(InBits); 1625 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1626 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1627 Depth + 1)) 1628 return true; 1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1630 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1631 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1632 break; 1633 } 1634 case ISD::SIGN_EXTEND: 1635 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1636 SDValue Src = Op.getOperand(0); 1637 EVT SrcVT = Src.getValueType(); 1638 unsigned InBits = SrcVT.getScalarSizeInBits(); 1639 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1640 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 1641 1642 // If none of the top bits are demanded, convert this into an any_extend. 1643 if (DemandedBits.getActiveBits() <= InBits) { 1644 // If we only need the non-extended bits of the bottom element 1645 // then we can just bitcast to the result. 1646 if (IsVecInReg && DemandedElts == 1 && 1647 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1648 TLO.DAG.getDataLayout().isLittleEndian()) 1649 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1650 1651 unsigned Opc = 1652 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 1653 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1654 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1655 } 1656 1657 APInt InDemandedBits = DemandedBits.trunc(InBits); 1658 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1659 1660 // Since some of the sign extended bits are demanded, we know that the sign 1661 // bit is demanded. 1662 InDemandedBits.setBit(InBits - 1); 1663 1664 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1665 Depth + 1)) 1666 return true; 1667 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1668 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1669 1670 // If the sign bit is known one, the top bits match. 1671 Known = Known.sext(BitWidth); 1672 1673 // If the sign bit is known zero, convert this to a zero extend. 1674 if (Known.isNonNegative()) { 1675 unsigned Opc = 1676 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 1677 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 1678 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 1679 } 1680 break; 1681 } 1682 case ISD::ANY_EXTEND: 1683 case ISD::ANY_EXTEND_VECTOR_INREG: { 1684 SDValue Src = Op.getOperand(0); 1685 EVT SrcVT = Src.getValueType(); 1686 unsigned InBits = SrcVT.getScalarSizeInBits(); 1687 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1688 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 1689 1690 // If we only need the bottom element then we can just bitcast. 1691 // TODO: Handle ANY_EXTEND? 1692 if (IsVecInReg && DemandedElts == 1 && 1693 VT.getSizeInBits() == SrcVT.getSizeInBits() && 1694 TLO.DAG.getDataLayout().isLittleEndian()) 1695 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 1696 1697 APInt InDemandedBits = DemandedBits.trunc(InBits); 1698 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 1699 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 1700 Depth + 1)) 1701 return true; 1702 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1703 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1704 Known = Known.zext(BitWidth, false /* => any extend */); 1705 break; 1706 } 1707 case ISD::TRUNCATE: { 1708 SDValue Src = Op.getOperand(0); 1709 1710 // Simplify the input, using demanded bit information, and compute the known 1711 // zero/one bits live out. 1712 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1713 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1714 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1715 return true; 1716 Known = Known.trunc(BitWidth); 1717 1718 // Attempt to avoid multi-use ops if we don't need anything from them. 1719 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1720 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 1721 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 1722 1723 // If the input is only used by this truncate, see if we can shrink it based 1724 // on the known demanded bits. 1725 if (Src.getNode()->hasOneUse()) { 1726 switch (Src.getOpcode()) { 1727 default: 1728 break; 1729 case ISD::SRL: 1730 // Shrink SRL by a constant if none of the high bits shifted in are 1731 // demanded. 1732 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1733 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1734 // undesirable. 1735 break; 1736 1737 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1738 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth)) 1739 break; 1740 1741 SDValue Shift = Src.getOperand(1); 1742 uint64_t ShVal = ShAmt->getZExtValue(); 1743 1744 if (TLO.LegalTypes()) 1745 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1746 1747 APInt HighBits = 1748 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 1749 HighBits.lshrInPlace(ShVal); 1750 HighBits = HighBits.trunc(BitWidth); 1751 1752 if (!(HighBits & DemandedBits)) { 1753 // None of the shifted in bits are needed. Add a truncate of the 1754 // shift input, then shift it. 1755 SDValue NewTrunc = 1756 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1757 return TLO.CombineTo( 1758 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1759 } 1760 break; 1761 } 1762 } 1763 1764 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1765 break; 1766 } 1767 case ISD::AssertZext: { 1768 // AssertZext demands all of the high bits, plus any of the low bits 1769 // demanded by its users. 1770 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1771 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1772 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1773 TLO, Depth + 1)) 1774 return true; 1775 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1776 1777 Known.Zero |= ~InMask; 1778 break; 1779 } 1780 case ISD::EXTRACT_VECTOR_ELT: { 1781 SDValue Src = Op.getOperand(0); 1782 SDValue Idx = Op.getOperand(1); 1783 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1784 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1785 1786 // Demand the bits from every vector element without a constant index. 1787 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1788 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1789 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1790 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1791 1792 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1793 // anything about the extended bits. 1794 APInt DemandedSrcBits = DemandedBits; 1795 if (BitWidth > EltBitWidth) 1796 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1797 1798 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1799 Depth + 1)) 1800 return true; 1801 1802 Known = Known2; 1803 if (BitWidth > EltBitWidth) 1804 Known = Known.zext(BitWidth, false /* => any extend */); 1805 break; 1806 } 1807 case ISD::BITCAST: { 1808 SDValue Src = Op.getOperand(0); 1809 EVT SrcVT = Src.getValueType(); 1810 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1811 1812 // If this is an FP->Int bitcast and if the sign bit is the only 1813 // thing demanded, turn this into a FGETSIGN. 1814 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1815 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1816 SrcVT.isFloatingPoint()) { 1817 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1818 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1819 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1820 SrcVT != MVT::f128) { 1821 // Cannot eliminate/lower SHL for f128 yet. 1822 EVT Ty = OpVTLegal ? VT : MVT::i32; 1823 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1824 // place. We expect the SHL to be eliminated by other optimizations. 1825 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1826 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1827 if (!OpVTLegal && OpVTSizeInBits > 32) 1828 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1829 unsigned ShVal = Op.getValueSizeInBits() - 1; 1830 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1831 return TLO.CombineTo(Op, 1832 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1833 } 1834 } 1835 1836 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 1837 // Demand the elt/bit if any of the original elts/bits are demanded. 1838 // TODO - bigendian once we have test coverage. 1839 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 && 1840 TLO.DAG.getDataLayout().isLittleEndian()) { 1841 unsigned Scale = BitWidth / NumSrcEltBits; 1842 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1843 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1844 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1845 for (unsigned i = 0; i != Scale; ++i) { 1846 unsigned Offset = i * NumSrcEltBits; 1847 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1848 if (!Sub.isNullValue()) { 1849 DemandedSrcBits |= Sub; 1850 for (unsigned j = 0; j != NumElts; ++j) 1851 if (DemandedElts[j]) 1852 DemandedSrcElts.setBit((j * Scale) + i); 1853 } 1854 } 1855 1856 APInt KnownSrcUndef, KnownSrcZero; 1857 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1858 KnownSrcZero, TLO, Depth + 1)) 1859 return true; 1860 1861 KnownBits KnownSrcBits; 1862 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1863 KnownSrcBits, TLO, Depth + 1)) 1864 return true; 1865 } else if ((NumSrcEltBits % BitWidth) == 0 && 1866 TLO.DAG.getDataLayout().isLittleEndian()) { 1867 unsigned Scale = NumSrcEltBits / BitWidth; 1868 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 1869 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits); 1870 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts); 1871 for (unsigned i = 0; i != NumElts; ++i) 1872 if (DemandedElts[i]) { 1873 unsigned Offset = (i % Scale) * BitWidth; 1874 DemandedSrcBits.insertBits(DemandedBits, Offset); 1875 DemandedSrcElts.setBit(i / Scale); 1876 } 1877 1878 if (SrcVT.isVector()) { 1879 APInt KnownSrcUndef, KnownSrcZero; 1880 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 1881 KnownSrcZero, TLO, Depth + 1)) 1882 return true; 1883 } 1884 1885 KnownBits KnownSrcBits; 1886 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 1887 KnownSrcBits, TLO, Depth + 1)) 1888 return true; 1889 } 1890 1891 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1892 // recursive call where Known may be useful to the caller. 1893 if (Depth > 0) { 1894 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1895 return false; 1896 } 1897 break; 1898 } 1899 case ISD::ADD: 1900 case ISD::MUL: 1901 case ISD::SUB: { 1902 // Add, Sub, and Mul don't demand any bits in positions beyond that 1903 // of the highest bit demanded of them. 1904 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1905 SDNodeFlags Flags = Op.getNode()->getFlags(); 1906 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1907 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1908 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1909 Depth + 1) || 1910 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1911 Depth + 1) || 1912 // See if the operation should be performed at a smaller bit width. 1913 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1914 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1915 // Disable the nsw and nuw flags. We can no longer guarantee that we 1916 // won't wrap after simplification. 1917 Flags.setNoSignedWrap(false); 1918 Flags.setNoUnsignedWrap(false); 1919 SDValue NewOp = 1920 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1921 return TLO.CombineTo(Op, NewOp); 1922 } 1923 return true; 1924 } 1925 1926 // Attempt to avoid multi-use ops if we don't need anything from them. 1927 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1928 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1929 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1930 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1931 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 1932 if (DemandedOp0 || DemandedOp1) { 1933 Flags.setNoSignedWrap(false); 1934 Flags.setNoUnsignedWrap(false); 1935 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1936 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1937 SDValue NewOp = 1938 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1939 return TLO.CombineTo(Op, NewOp); 1940 } 1941 } 1942 1943 // If we have a constant operand, we may be able to turn it into -1 if we 1944 // do not demand the high bits. This can make the constant smaller to 1945 // encode, allow more general folding, or match specialized instruction 1946 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1947 // is probably not useful (and could be detrimental). 1948 ConstantSDNode *C = isConstOrConstSplat(Op1); 1949 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1950 if (C && !C->isAllOnesValue() && !C->isOne() && 1951 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1952 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1953 // Disable the nsw and nuw flags. We can no longer guarantee that we 1954 // won't wrap after simplification. 1955 Flags.setNoSignedWrap(false); 1956 Flags.setNoUnsignedWrap(false); 1957 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1958 return TLO.CombineTo(Op, NewOp); 1959 } 1960 1961 LLVM_FALLTHROUGH; 1962 } 1963 default: 1964 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1965 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1966 Known, TLO, Depth)) 1967 return true; 1968 break; 1969 } 1970 1971 // Just use computeKnownBits to compute output bits. 1972 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1973 break; 1974 } 1975 1976 // If we know the value of all of the demanded bits, return this as a 1977 // constant. 1978 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1979 // Avoid folding to a constant if any OpaqueConstant is involved. 1980 const SDNode *N = Op.getNode(); 1981 for (SDNodeIterator I = SDNodeIterator::begin(N), 1982 E = SDNodeIterator::end(N); 1983 I != E; ++I) { 1984 SDNode *Op = *I; 1985 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1986 if (C->isOpaque()) 1987 return false; 1988 } 1989 // TODO: Handle float bits as well. 1990 if (VT.isInteger()) 1991 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1992 } 1993 1994 return false; 1995 } 1996 1997 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1998 const APInt &DemandedElts, 1999 APInt &KnownUndef, 2000 APInt &KnownZero, 2001 DAGCombinerInfo &DCI) const { 2002 SelectionDAG &DAG = DCI.DAG; 2003 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2004 !DCI.isBeforeLegalizeOps()); 2005 2006 bool Simplified = 2007 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2008 if (Simplified) { 2009 DCI.AddToWorklist(Op.getNode()); 2010 DCI.CommitTargetLoweringOpt(TLO); 2011 } 2012 2013 return Simplified; 2014 } 2015 2016 /// Given a vector binary operation and known undefined elements for each input 2017 /// operand, compute whether each element of the output is undefined. 2018 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2019 const APInt &UndefOp0, 2020 const APInt &UndefOp1) { 2021 EVT VT = BO.getValueType(); 2022 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2023 "Vector binop only"); 2024 2025 EVT EltVT = VT.getVectorElementType(); 2026 unsigned NumElts = VT.getVectorNumElements(); 2027 assert(UndefOp0.getBitWidth() == NumElts && 2028 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2029 2030 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2031 const APInt &UndefVals) { 2032 if (UndefVals[Index]) 2033 return DAG.getUNDEF(EltVT); 2034 2035 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2036 // Try hard to make sure that the getNode() call is not creating temporary 2037 // nodes. Ignore opaque integers because they do not constant fold. 2038 SDValue Elt = BV->getOperand(Index); 2039 auto *C = dyn_cast<ConstantSDNode>(Elt); 2040 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2041 return Elt; 2042 } 2043 2044 return SDValue(); 2045 }; 2046 2047 APInt KnownUndef = APInt::getNullValue(NumElts); 2048 for (unsigned i = 0; i != NumElts; ++i) { 2049 // If both inputs for this element are either constant or undef and match 2050 // the element type, compute the constant/undef result for this element of 2051 // the vector. 2052 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2053 // not handle FP constants. The code within getNode() should be refactored 2054 // to avoid the danger of creating a bogus temporary node here. 2055 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2056 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2057 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2058 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2059 KnownUndef.setBit(i); 2060 } 2061 return KnownUndef; 2062 } 2063 2064 bool TargetLowering::SimplifyDemandedVectorElts( 2065 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2066 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2067 bool AssumeSingleUse) const { 2068 EVT VT = Op.getValueType(); 2069 APInt DemandedElts = OriginalDemandedElts; 2070 unsigned NumElts = DemandedElts.getBitWidth(); 2071 assert(VT.isVector() && "Expected vector op"); 2072 assert(VT.getVectorNumElements() == NumElts && 2073 "Mask size mismatches value type element count!"); 2074 2075 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 2076 2077 // Undef operand. 2078 if (Op.isUndef()) { 2079 KnownUndef.setAllBits(); 2080 return false; 2081 } 2082 2083 // If Op has other users, assume that all elements are needed. 2084 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2085 DemandedElts.setAllBits(); 2086 2087 // Not demanding any elements from Op. 2088 if (DemandedElts == 0) { 2089 KnownUndef.setAllBits(); 2090 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2091 } 2092 2093 // Limit search depth. 2094 if (Depth >= 6) 2095 return false; 2096 2097 SDLoc DL(Op); 2098 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2099 2100 switch (Op.getOpcode()) { 2101 case ISD::SCALAR_TO_VECTOR: { 2102 if (!DemandedElts[0]) { 2103 KnownUndef.setAllBits(); 2104 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2105 } 2106 KnownUndef.setHighBits(NumElts - 1); 2107 break; 2108 } 2109 case ISD::BITCAST: { 2110 SDValue Src = Op.getOperand(0); 2111 EVT SrcVT = Src.getValueType(); 2112 2113 // We only handle vectors here. 2114 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2115 if (!SrcVT.isVector()) 2116 break; 2117 2118 // Fast handling of 'identity' bitcasts. 2119 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2120 if (NumSrcElts == NumElts) 2121 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2122 KnownZero, TLO, Depth + 1); 2123 2124 APInt SrcZero, SrcUndef; 2125 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 2126 2127 // Bitcast from 'large element' src vector to 'small element' vector, we 2128 // must demand a source element if any DemandedElt maps to it. 2129 if ((NumElts % NumSrcElts) == 0) { 2130 unsigned Scale = NumElts / NumSrcElts; 2131 for (unsigned i = 0; i != NumElts; ++i) 2132 if (DemandedElts[i]) 2133 SrcDemandedElts.setBit(i / Scale); 2134 2135 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2136 TLO, Depth + 1)) 2137 return true; 2138 2139 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2140 // of the large element. 2141 // TODO - bigendian once we have test coverage. 2142 if (TLO.DAG.getDataLayout().isLittleEndian()) { 2143 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2144 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 2145 for (unsigned i = 0; i != NumElts; ++i) 2146 if (DemandedElts[i]) { 2147 unsigned Ofs = (i % Scale) * EltSizeInBits; 2148 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2149 } 2150 2151 KnownBits Known; 2152 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 2153 return true; 2154 } 2155 2156 // If the src element is zero/undef then all the output elements will be - 2157 // only demanded elements are guaranteed to be correct. 2158 for (unsigned i = 0; i != NumSrcElts; ++i) { 2159 if (SrcDemandedElts[i]) { 2160 if (SrcZero[i]) 2161 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2162 if (SrcUndef[i]) 2163 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2164 } 2165 } 2166 } 2167 2168 // Bitcast from 'small element' src vector to 'large element' vector, we 2169 // demand all smaller source elements covered by the larger demanded element 2170 // of this vector. 2171 if ((NumSrcElts % NumElts) == 0) { 2172 unsigned Scale = NumSrcElts / NumElts; 2173 for (unsigned i = 0; i != NumElts; ++i) 2174 if (DemandedElts[i]) 2175 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 2176 2177 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2178 TLO, Depth + 1)) 2179 return true; 2180 2181 // If all the src elements covering an output element are zero/undef, then 2182 // the output element will be as well, assuming it was demanded. 2183 for (unsigned i = 0; i != NumElts; ++i) { 2184 if (DemandedElts[i]) { 2185 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 2186 KnownZero.setBit(i); 2187 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 2188 KnownUndef.setBit(i); 2189 } 2190 } 2191 } 2192 break; 2193 } 2194 case ISD::BUILD_VECTOR: { 2195 // Check all elements and simplify any unused elements with UNDEF. 2196 if (!DemandedElts.isAllOnesValue()) { 2197 // Don't simplify BROADCASTS. 2198 if (llvm::any_of(Op->op_values(), 2199 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2200 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2201 bool Updated = false; 2202 for (unsigned i = 0; i != NumElts; ++i) { 2203 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2204 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2205 KnownUndef.setBit(i); 2206 Updated = true; 2207 } 2208 } 2209 if (Updated) 2210 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2211 } 2212 } 2213 for (unsigned i = 0; i != NumElts; ++i) { 2214 SDValue SrcOp = Op.getOperand(i); 2215 if (SrcOp.isUndef()) { 2216 KnownUndef.setBit(i); 2217 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2218 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2219 KnownZero.setBit(i); 2220 } 2221 } 2222 break; 2223 } 2224 case ISD::CONCAT_VECTORS: { 2225 EVT SubVT = Op.getOperand(0).getValueType(); 2226 unsigned NumSubVecs = Op.getNumOperands(); 2227 unsigned NumSubElts = SubVT.getVectorNumElements(); 2228 for (unsigned i = 0; i != NumSubVecs; ++i) { 2229 SDValue SubOp = Op.getOperand(i); 2230 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2231 APInt SubUndef, SubZero; 2232 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2233 Depth + 1)) 2234 return true; 2235 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2236 KnownZero.insertBits(SubZero, i * NumSubElts); 2237 } 2238 break; 2239 } 2240 case ISD::INSERT_SUBVECTOR: { 2241 if (!isa<ConstantSDNode>(Op.getOperand(2))) 2242 break; 2243 SDValue Base = Op.getOperand(0); 2244 SDValue Sub = Op.getOperand(1); 2245 EVT SubVT = Sub.getValueType(); 2246 unsigned NumSubElts = SubVT.getVectorNumElements(); 2247 const APInt &Idx = Op.getConstantOperandAPInt(2); 2248 if (Idx.ugt(NumElts - NumSubElts)) 2249 break; 2250 unsigned SubIdx = Idx.getZExtValue(); 2251 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 2252 APInt SubUndef, SubZero; 2253 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 2254 Depth + 1)) 2255 return true; 2256 APInt BaseElts = DemandedElts; 2257 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 2258 2259 // If none of the base operand elements are demanded, replace it with undef. 2260 if (!BaseElts && !Base.isUndef()) 2261 return TLO.CombineTo(Op, 2262 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2263 TLO.DAG.getUNDEF(VT), 2264 Op.getOperand(1), 2265 Op.getOperand(2))); 2266 2267 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 2268 Depth + 1)) 2269 return true; 2270 KnownUndef.insertBits(SubUndef, SubIdx); 2271 KnownZero.insertBits(SubZero, SubIdx); 2272 break; 2273 } 2274 case ISD::EXTRACT_SUBVECTOR: { 2275 SDValue Src = Op.getOperand(0); 2276 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2277 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2278 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 2279 // Offset the demanded elts by the subvector index. 2280 uint64_t Idx = SubIdx->getZExtValue(); 2281 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2282 APInt SrcUndef, SrcZero; 2283 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 2284 Depth + 1)) 2285 return true; 2286 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2287 KnownZero = SrcZero.extractBits(NumElts, Idx); 2288 } 2289 break; 2290 } 2291 case ISD::INSERT_VECTOR_ELT: { 2292 SDValue Vec = Op.getOperand(0); 2293 SDValue Scl = Op.getOperand(1); 2294 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2295 2296 // For a legal, constant insertion index, if we don't need this insertion 2297 // then strip it, else remove it from the demanded elts. 2298 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2299 unsigned Idx = CIdx->getZExtValue(); 2300 if (!DemandedElts[Idx]) 2301 return TLO.CombineTo(Op, Vec); 2302 2303 APInt DemandedVecElts(DemandedElts); 2304 DemandedVecElts.clearBit(Idx); 2305 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2306 KnownZero, TLO, Depth + 1)) 2307 return true; 2308 2309 KnownUndef.clearBit(Idx); 2310 if (Scl.isUndef()) 2311 KnownUndef.setBit(Idx); 2312 2313 KnownZero.clearBit(Idx); 2314 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 2315 KnownZero.setBit(Idx); 2316 break; 2317 } 2318 2319 APInt VecUndef, VecZero; 2320 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2321 Depth + 1)) 2322 return true; 2323 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2324 break; 2325 } 2326 case ISD::VSELECT: { 2327 // Try to transform the select condition based on the current demanded 2328 // elements. 2329 // TODO: If a condition element is undef, we can choose from one arm of the 2330 // select (and if one arm is undef, then we can propagate that to the 2331 // result). 2332 // TODO - add support for constant vselect masks (see IR version of this). 2333 APInt UnusedUndef, UnusedZero; 2334 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2335 UnusedZero, TLO, Depth + 1)) 2336 return true; 2337 2338 // See if we can simplify either vselect operand. 2339 APInt DemandedLHS(DemandedElts); 2340 APInt DemandedRHS(DemandedElts); 2341 APInt UndefLHS, ZeroLHS; 2342 APInt UndefRHS, ZeroRHS; 2343 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2344 ZeroLHS, TLO, Depth + 1)) 2345 return true; 2346 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2347 ZeroRHS, TLO, Depth + 1)) 2348 return true; 2349 2350 KnownUndef = UndefLHS & UndefRHS; 2351 KnownZero = ZeroLHS & ZeroRHS; 2352 break; 2353 } 2354 case ISD::VECTOR_SHUFFLE: { 2355 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2356 2357 // Collect demanded elements from shuffle operands.. 2358 APInt DemandedLHS(NumElts, 0); 2359 APInt DemandedRHS(NumElts, 0); 2360 for (unsigned i = 0; i != NumElts; ++i) { 2361 int M = ShuffleMask[i]; 2362 if (M < 0 || !DemandedElts[i]) 2363 continue; 2364 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2365 if (M < (int)NumElts) 2366 DemandedLHS.setBit(M); 2367 else 2368 DemandedRHS.setBit(M - NumElts); 2369 } 2370 2371 // See if we can simplify either shuffle operand. 2372 APInt UndefLHS, ZeroLHS; 2373 APInt UndefRHS, ZeroRHS; 2374 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2375 ZeroLHS, TLO, Depth + 1)) 2376 return true; 2377 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2378 ZeroRHS, TLO, Depth + 1)) 2379 return true; 2380 2381 // Simplify mask using undef elements from LHS/RHS. 2382 bool Updated = false; 2383 bool IdentityLHS = true, IdentityRHS = true; 2384 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2385 for (unsigned i = 0; i != NumElts; ++i) { 2386 int &M = NewMask[i]; 2387 if (M < 0) 2388 continue; 2389 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2390 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2391 Updated = true; 2392 M = -1; 2393 } 2394 IdentityLHS &= (M < 0) || (M == (int)i); 2395 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2396 } 2397 2398 // Update legal shuffle masks based on demanded elements if it won't reduce 2399 // to Identity which can cause premature removal of the shuffle mask. 2400 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2401 SDValue LegalShuffle = 2402 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2403 NewMask, TLO.DAG); 2404 if (LegalShuffle) 2405 return TLO.CombineTo(Op, LegalShuffle); 2406 } 2407 2408 // Propagate undef/zero elements from LHS/RHS. 2409 for (unsigned i = 0; i != NumElts; ++i) { 2410 int M = ShuffleMask[i]; 2411 if (M < 0) { 2412 KnownUndef.setBit(i); 2413 } else if (M < (int)NumElts) { 2414 if (UndefLHS[M]) 2415 KnownUndef.setBit(i); 2416 if (ZeroLHS[M]) 2417 KnownZero.setBit(i); 2418 } else { 2419 if (UndefRHS[M - NumElts]) 2420 KnownUndef.setBit(i); 2421 if (ZeroRHS[M - NumElts]) 2422 KnownZero.setBit(i); 2423 } 2424 } 2425 break; 2426 } 2427 case ISD::ANY_EXTEND_VECTOR_INREG: 2428 case ISD::SIGN_EXTEND_VECTOR_INREG: 2429 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2430 APInt SrcUndef, SrcZero; 2431 SDValue Src = Op.getOperand(0); 2432 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2433 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 2434 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2435 Depth + 1)) 2436 return true; 2437 KnownZero = SrcZero.zextOrTrunc(NumElts); 2438 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 2439 2440 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 2441 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 2442 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) { 2443 // aext - if we just need the bottom element then we can bitcast. 2444 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2445 } 2446 2447 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 2448 // zext(undef) upper bits are guaranteed to be zero. 2449 if (DemandedElts.isSubsetOf(KnownUndef)) 2450 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2451 KnownUndef.clearAllBits(); 2452 } 2453 break; 2454 } 2455 2456 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 2457 // MAX, saturated math, etc. 2458 case ISD::OR: 2459 case ISD::XOR: 2460 case ISD::ADD: 2461 case ISD::SUB: 2462 case ISD::FADD: 2463 case ISD::FSUB: 2464 case ISD::FMUL: 2465 case ISD::FDIV: 2466 case ISD::FREM: { 2467 APInt UndefRHS, ZeroRHS; 2468 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2469 ZeroRHS, TLO, Depth + 1)) 2470 return true; 2471 APInt UndefLHS, ZeroLHS; 2472 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2473 ZeroLHS, TLO, Depth + 1)) 2474 return true; 2475 2476 KnownZero = ZeroLHS & ZeroRHS; 2477 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 2478 break; 2479 } 2480 case ISD::SHL: 2481 case ISD::SRL: 2482 case ISD::SRA: 2483 case ISD::ROTL: 2484 case ISD::ROTR: { 2485 APInt UndefRHS, ZeroRHS; 2486 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 2487 ZeroRHS, TLO, Depth + 1)) 2488 return true; 2489 APInt UndefLHS, ZeroLHS; 2490 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 2491 ZeroLHS, TLO, Depth + 1)) 2492 return true; 2493 2494 KnownZero = ZeroLHS; 2495 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 2496 break; 2497 } 2498 case ISD::MUL: 2499 case ISD::AND: { 2500 APInt SrcUndef, SrcZero; 2501 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 2502 SrcZero, TLO, Depth + 1)) 2503 return true; 2504 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2505 KnownZero, TLO, Depth + 1)) 2506 return true; 2507 2508 // If either side has a zero element, then the result element is zero, even 2509 // if the other is an UNDEF. 2510 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 2511 // and then handle 'and' nodes with the rest of the binop opcodes. 2512 KnownZero |= SrcZero; 2513 KnownUndef &= SrcUndef; 2514 KnownUndef &= ~KnownZero; 2515 break; 2516 } 2517 case ISD::TRUNCATE: 2518 case ISD::SIGN_EXTEND: 2519 case ISD::ZERO_EXTEND: 2520 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 2521 KnownZero, TLO, Depth + 1)) 2522 return true; 2523 2524 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 2525 // zext(undef) upper bits are guaranteed to be zero. 2526 if (DemandedElts.isSubsetOf(KnownUndef)) 2527 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 2528 KnownUndef.clearAllBits(); 2529 } 2530 break; 2531 default: { 2532 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2533 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 2534 KnownZero, TLO, Depth)) 2535 return true; 2536 } else { 2537 KnownBits Known; 2538 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 2539 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 2540 TLO, Depth, AssumeSingleUse)) 2541 return true; 2542 } 2543 break; 2544 } 2545 } 2546 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 2547 2548 // Constant fold all undef cases. 2549 // TODO: Handle zero cases as well. 2550 if (DemandedElts.isSubsetOf(KnownUndef)) 2551 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2552 2553 return false; 2554 } 2555 2556 /// Determine which of the bits specified in Mask are known to be either zero or 2557 /// one and return them in the Known. 2558 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 2559 KnownBits &Known, 2560 const APInt &DemandedElts, 2561 const SelectionDAG &DAG, 2562 unsigned Depth) const { 2563 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2564 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2565 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2566 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2567 "Should use MaskedValueIsZero if you don't know whether Op" 2568 " is a target node!"); 2569 Known.resetAll(); 2570 } 2571 2572 void TargetLowering::computeKnownBitsForTargetInstr( 2573 Register R, KnownBits &Known, const APInt &DemandedElts, 2574 const MachineRegisterInfo &MRI, unsigned Depth) const { 2575 Known.resetAll(); 2576 } 2577 2578 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2579 KnownBits &Known, 2580 const APInt &DemandedElts, 2581 const SelectionDAG &DAG, 2582 unsigned Depth) const { 2583 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2584 2585 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2586 // The low bits are known zero if the pointer is aligned. 2587 Known.Zero.setLowBits(Log2_32(Align)); 2588 } 2589 } 2590 2591 /// This method can be implemented by targets that want to expose additional 2592 /// information about sign bits to the DAG Combiner. 2593 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2594 const APInt &, 2595 const SelectionDAG &, 2596 unsigned Depth) const { 2597 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2598 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2599 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2600 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2601 "Should use ComputeNumSignBits if you don't know whether Op" 2602 " is a target node!"); 2603 return 1; 2604 } 2605 2606 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2607 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2608 TargetLoweringOpt &TLO, unsigned Depth) const { 2609 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2610 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2611 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2612 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2613 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2614 " is a target node!"); 2615 return false; 2616 } 2617 2618 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2619 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2620 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2621 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2622 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2623 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2624 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2625 "Should use SimplifyDemandedBits if you don't know whether Op" 2626 " is a target node!"); 2627 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2628 return false; 2629 } 2630 2631 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 2632 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2633 SelectionDAG &DAG, unsigned Depth) const { 2634 assert( 2635 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 2636 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2637 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2638 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2639 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 2640 " is a target node!"); 2641 return SDValue(); 2642 } 2643 2644 SDValue 2645 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 2646 SDValue N1, MutableArrayRef<int> Mask, 2647 SelectionDAG &DAG) const { 2648 bool LegalMask = isShuffleMaskLegal(Mask, VT); 2649 if (!LegalMask) { 2650 std::swap(N0, N1); 2651 ShuffleVectorSDNode::commuteMask(Mask); 2652 LegalMask = isShuffleMaskLegal(Mask, VT); 2653 } 2654 2655 if (!LegalMask) 2656 return SDValue(); 2657 2658 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 2659 } 2660 2661 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 2662 return nullptr; 2663 } 2664 2665 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2666 const SelectionDAG &DAG, 2667 bool SNaN, 2668 unsigned Depth) const { 2669 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2670 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2671 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2672 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2673 "Should use isKnownNeverNaN if you don't know whether Op" 2674 " is a target node!"); 2675 return false; 2676 } 2677 2678 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2679 // work with truncating build vectors and vectors with elements of less than 2680 // 8 bits. 2681 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2682 if (!N) 2683 return false; 2684 2685 APInt CVal; 2686 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2687 CVal = CN->getAPIntValue(); 2688 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2689 auto *CN = BV->getConstantSplatNode(); 2690 if (!CN) 2691 return false; 2692 2693 // If this is a truncating build vector, truncate the splat value. 2694 // Otherwise, we may fail to match the expected values below. 2695 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2696 CVal = CN->getAPIntValue(); 2697 if (BVEltWidth < CVal.getBitWidth()) 2698 CVal = CVal.trunc(BVEltWidth); 2699 } else { 2700 return false; 2701 } 2702 2703 switch (getBooleanContents(N->getValueType(0))) { 2704 case UndefinedBooleanContent: 2705 return CVal[0]; 2706 case ZeroOrOneBooleanContent: 2707 return CVal.isOneValue(); 2708 case ZeroOrNegativeOneBooleanContent: 2709 return CVal.isAllOnesValue(); 2710 } 2711 2712 llvm_unreachable("Invalid boolean contents"); 2713 } 2714 2715 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2716 if (!N) 2717 return false; 2718 2719 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2720 if (!CN) { 2721 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2722 if (!BV) 2723 return false; 2724 2725 // Only interested in constant splats, we don't care about undef 2726 // elements in identifying boolean constants and getConstantSplatNode 2727 // returns NULL if all ops are undef; 2728 CN = BV->getConstantSplatNode(); 2729 if (!CN) 2730 return false; 2731 } 2732 2733 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2734 return !CN->getAPIntValue()[0]; 2735 2736 return CN->isNullValue(); 2737 } 2738 2739 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2740 bool SExt) const { 2741 if (VT == MVT::i1) 2742 return N->isOne(); 2743 2744 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2745 switch (Cnt) { 2746 case TargetLowering::ZeroOrOneBooleanContent: 2747 // An extended value of 1 is always true, unless its original type is i1, 2748 // in which case it will be sign extended to -1. 2749 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2750 case TargetLowering::UndefinedBooleanContent: 2751 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2752 return N->isAllOnesValue() && SExt; 2753 } 2754 llvm_unreachable("Unexpected enumeration."); 2755 } 2756 2757 /// This helper function of SimplifySetCC tries to optimize the comparison when 2758 /// either operand of the SetCC node is a bitwise-and instruction. 2759 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2760 ISD::CondCode Cond, const SDLoc &DL, 2761 DAGCombinerInfo &DCI) const { 2762 // Match these patterns in any of their permutations: 2763 // (X & Y) == Y 2764 // (X & Y) != Y 2765 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2766 std::swap(N0, N1); 2767 2768 EVT OpVT = N0.getValueType(); 2769 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2770 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2771 return SDValue(); 2772 2773 SDValue X, Y; 2774 if (N0.getOperand(0) == N1) { 2775 X = N0.getOperand(1); 2776 Y = N0.getOperand(0); 2777 } else if (N0.getOperand(1) == N1) { 2778 X = N0.getOperand(0); 2779 Y = N0.getOperand(1); 2780 } else { 2781 return SDValue(); 2782 } 2783 2784 SelectionDAG &DAG = DCI.DAG; 2785 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2786 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2787 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2788 // Note that where Y is variable and is known to have at most one bit set 2789 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2790 // equivalent when Y == 0. 2791 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2792 if (DCI.isBeforeLegalizeOps() || 2793 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2794 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2795 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2796 // If the target supports an 'and-not' or 'and-complement' logic operation, 2797 // try to use that to make a comparison operation more efficient. 2798 // But don't do this transform if the mask is a single bit because there are 2799 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2800 // 'rlwinm' on PPC). 2801 2802 // Bail out if the compare operand that we want to turn into a zero is 2803 // already a zero (otherwise, infinite loop). 2804 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2805 if (YConst && YConst->isNullValue()) 2806 return SDValue(); 2807 2808 // Transform this into: ~X & Y == 0. 2809 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2810 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2811 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2812 } 2813 2814 return SDValue(); 2815 } 2816 2817 /// There are multiple IR patterns that could be checking whether certain 2818 /// truncation of a signed number would be lossy or not. The pattern which is 2819 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2820 /// We are looking for the following pattern: (KeptBits is a constant) 2821 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2822 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2823 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2824 /// We will unfold it into the natural trunc+sext pattern: 2825 /// ((%x << C) a>> C) dstcond %x 2826 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2827 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2828 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2829 const SDLoc &DL) const { 2830 // We must be comparing with a constant. 2831 ConstantSDNode *C1; 2832 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2833 return SDValue(); 2834 2835 // N0 should be: add %x, (1 << (KeptBits-1)) 2836 if (N0->getOpcode() != ISD::ADD) 2837 return SDValue(); 2838 2839 // And we must be 'add'ing a constant. 2840 ConstantSDNode *C01; 2841 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2842 return SDValue(); 2843 2844 SDValue X = N0->getOperand(0); 2845 EVT XVT = X.getValueType(); 2846 2847 // Validate constants ... 2848 2849 APInt I1 = C1->getAPIntValue(); 2850 2851 ISD::CondCode NewCond; 2852 if (Cond == ISD::CondCode::SETULT) { 2853 NewCond = ISD::CondCode::SETEQ; 2854 } else if (Cond == ISD::CondCode::SETULE) { 2855 NewCond = ISD::CondCode::SETEQ; 2856 // But need to 'canonicalize' the constant. 2857 I1 += 1; 2858 } else if (Cond == ISD::CondCode::SETUGT) { 2859 NewCond = ISD::CondCode::SETNE; 2860 // But need to 'canonicalize' the constant. 2861 I1 += 1; 2862 } else if (Cond == ISD::CondCode::SETUGE) { 2863 NewCond = ISD::CondCode::SETNE; 2864 } else 2865 return SDValue(); 2866 2867 APInt I01 = C01->getAPIntValue(); 2868 2869 auto checkConstants = [&I1, &I01]() -> bool { 2870 // Both of them must be power-of-two, and the constant from setcc is bigger. 2871 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2872 }; 2873 2874 if (checkConstants()) { 2875 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2876 } else { 2877 // What if we invert constants? (and the target predicate) 2878 I1.negate(); 2879 I01.negate(); 2880 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2881 if (!checkConstants()) 2882 return SDValue(); 2883 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2884 } 2885 2886 // They are power-of-two, so which bit is set? 2887 const unsigned KeptBits = I1.logBase2(); 2888 const unsigned KeptBitsMinusOne = I01.logBase2(); 2889 2890 // Magic! 2891 if (KeptBits != (KeptBitsMinusOne + 1)) 2892 return SDValue(); 2893 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2894 2895 // We don't want to do this in every single case. 2896 SelectionDAG &DAG = DCI.DAG; 2897 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2898 XVT, KeptBits)) 2899 return SDValue(); 2900 2901 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2902 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2903 2904 // Unfold into: ((%x << C) a>> C) cond %x 2905 // Where 'cond' will be either 'eq' or 'ne'. 2906 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2907 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2908 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2909 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2910 2911 return T2; 2912 } 2913 2914 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 2915 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 2916 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 2917 DAGCombinerInfo &DCI, const SDLoc &DL) const { 2918 assert(isConstOrConstSplat(N1C) && 2919 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() && 2920 "Should be a comparison with 0."); 2921 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2922 "Valid only for [in]equality comparisons."); 2923 2924 unsigned NewShiftOpcode; 2925 SDValue X, C, Y; 2926 2927 SelectionDAG &DAG = DCI.DAG; 2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2929 2930 // Look for '(C l>>/<< Y)'. 2931 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 2932 // The shift should be one-use. 2933 if (!V.hasOneUse()) 2934 return false; 2935 unsigned OldShiftOpcode = V.getOpcode(); 2936 switch (OldShiftOpcode) { 2937 case ISD::SHL: 2938 NewShiftOpcode = ISD::SRL; 2939 break; 2940 case ISD::SRL: 2941 NewShiftOpcode = ISD::SHL; 2942 break; 2943 default: 2944 return false; // must be a logical shift. 2945 } 2946 // We should be shifting a constant. 2947 // FIXME: best to use isConstantOrConstantVector(). 2948 C = V.getOperand(0); 2949 ConstantSDNode *CC = 2950 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2951 if (!CC) 2952 return false; 2953 Y = V.getOperand(1); 2954 2955 ConstantSDNode *XC = 2956 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 2957 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 2958 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 2959 }; 2960 2961 // LHS of comparison should be an one-use 'and'. 2962 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 2963 return SDValue(); 2964 2965 X = N0.getOperand(0); 2966 SDValue Mask = N0.getOperand(1); 2967 2968 // 'and' is commutative! 2969 if (!Match(Mask)) { 2970 std::swap(X, Mask); 2971 if (!Match(Mask)) 2972 return SDValue(); 2973 } 2974 2975 EVT VT = X.getValueType(); 2976 2977 // Produce: 2978 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 2979 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 2980 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 2981 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 2982 return T2; 2983 } 2984 2985 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2986 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2987 /// handle the commuted versions of these patterns. 2988 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2989 ISD::CondCode Cond, const SDLoc &DL, 2990 DAGCombinerInfo &DCI) const { 2991 unsigned BOpcode = N0.getOpcode(); 2992 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2993 "Unexpected binop"); 2994 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2995 2996 // (X + Y) == X --> Y == 0 2997 // (X - Y) == X --> Y == 0 2998 // (X ^ Y) == X --> Y == 0 2999 SelectionDAG &DAG = DCI.DAG; 3000 EVT OpVT = N0.getValueType(); 3001 SDValue X = N0.getOperand(0); 3002 SDValue Y = N0.getOperand(1); 3003 if (X == N1) 3004 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3005 3006 if (Y != N1) 3007 return SDValue(); 3008 3009 // (X + Y) == Y --> X == 0 3010 // (X ^ Y) == Y --> X == 0 3011 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3012 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3013 3014 // The shift would not be valid if the operands are boolean (i1). 3015 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3016 return SDValue(); 3017 3018 // (X - Y) == Y --> X == Y << 1 3019 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3020 !DCI.isBeforeLegalize()); 3021 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3022 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3023 if (!DCI.isCalledByLegalizer()) 3024 DCI.AddToWorklist(YShl1.getNode()); 3025 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3026 } 3027 3028 /// Try to simplify a setcc built with the specified operands and cc. If it is 3029 /// unable to simplify it, return a null SDValue. 3030 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3031 ISD::CondCode Cond, bool foldBooleans, 3032 DAGCombinerInfo &DCI, 3033 const SDLoc &dl) const { 3034 SelectionDAG &DAG = DCI.DAG; 3035 EVT OpVT = N0.getValueType(); 3036 3037 // Constant fold or commute setcc. 3038 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3039 return Fold; 3040 3041 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3042 // TODO: Handle non-splat vector constants. All undef causes trouble. 3043 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3044 if (isConstOrConstSplat(N0) && 3045 (DCI.isBeforeLegalizeOps() || 3046 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3047 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3048 3049 // If we have a subtract with the same 2 non-constant operands as this setcc 3050 // -- but in reverse order -- then try to commute the operands of this setcc 3051 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3052 // instruction on some targets. 3053 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3054 (DCI.isBeforeLegalizeOps() || 3055 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3056 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) && 3057 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } )) 3058 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3059 3060 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3061 const APInt &C1 = N1C->getAPIntValue(); 3062 3063 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3064 // equality comparison, then we're just comparing whether X itself is 3065 // zero. 3066 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 3067 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3068 N0.getOperand(1).getOpcode() == ISD::Constant) { 3069 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 3070 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3071 ShAmt == Log2_32(N0.getValueSizeInBits())) { 3072 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3073 // (srl (ctlz x), 5) == 0 -> X != 0 3074 // (srl (ctlz x), 5) != 1 -> X != 0 3075 Cond = ISD::SETNE; 3076 } else { 3077 // (srl (ctlz x), 5) != 0 -> X == 0 3078 // (srl (ctlz x), 5) == 1 -> X == 0 3079 Cond = ISD::SETEQ; 3080 } 3081 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3082 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 3083 Zero, Cond); 3084 } 3085 } 3086 3087 SDValue CTPOP = N0; 3088 // Look through truncs that don't change the value of a ctpop. 3089 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 3090 CTPOP = N0.getOperand(0); 3091 3092 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 3093 (N0 == CTPOP || 3094 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 3095 EVT CTVT = CTPOP.getValueType(); 3096 SDValue CTOp = CTPOP.getOperand(0); 3097 3098 // (ctpop x) u< 2 -> (x & x-1) == 0 3099 // (ctpop x) u> 1 -> (x & x-1) != 0 3100 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 3101 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3102 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3103 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3104 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3105 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 3106 } 3107 3108 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3109 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) && 3110 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3111 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3112 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3113 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3114 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3115 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true); 3116 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3117 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3118 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3119 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3120 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3121 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3122 } 3123 } 3124 3125 // (zext x) == C --> x == (trunc C) 3126 // (sext x) == C --> x == (trunc C) 3127 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3128 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3129 unsigned MinBits = N0.getValueSizeInBits(); 3130 SDValue PreExt; 3131 bool Signed = false; 3132 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3133 // ZExt 3134 MinBits = N0->getOperand(0).getValueSizeInBits(); 3135 PreExt = N0->getOperand(0); 3136 } else if (N0->getOpcode() == ISD::AND) { 3137 // DAGCombine turns costly ZExts into ANDs 3138 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3139 if ((C->getAPIntValue()+1).isPowerOf2()) { 3140 MinBits = C->getAPIntValue().countTrailingOnes(); 3141 PreExt = N0->getOperand(0); 3142 } 3143 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3144 // SExt 3145 MinBits = N0->getOperand(0).getValueSizeInBits(); 3146 PreExt = N0->getOperand(0); 3147 Signed = true; 3148 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3149 // ZEXTLOAD / SEXTLOAD 3150 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3151 MinBits = LN0->getMemoryVT().getSizeInBits(); 3152 PreExt = N0; 3153 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3154 Signed = true; 3155 MinBits = LN0->getMemoryVT().getSizeInBits(); 3156 PreExt = N0; 3157 } 3158 } 3159 3160 // Figure out how many bits we need to preserve this constant. 3161 unsigned ReqdBits = Signed ? 3162 C1.getBitWidth() - C1.getNumSignBits() + 1 : 3163 C1.getActiveBits(); 3164 3165 // Make sure we're not losing bits from the constant. 3166 if (MinBits > 0 && 3167 MinBits < C1.getBitWidth() && 3168 MinBits >= ReqdBits) { 3169 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3170 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3171 // Will get folded away. 3172 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3173 if (MinBits == 1 && C1 == 1) 3174 // Invert the condition. 3175 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3176 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3177 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3178 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3179 } 3180 3181 // If truncating the setcc operands is not desirable, we can still 3182 // simplify the expression in some cases: 3183 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3184 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3185 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3186 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3187 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3188 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3189 SDValue TopSetCC = N0->getOperand(0); 3190 unsigned N0Opc = N0->getOpcode(); 3191 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3192 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3193 TopSetCC.getOpcode() == ISD::SETCC && 3194 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3195 (isConstFalseVal(N1C) || 3196 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3197 3198 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 3199 (!N1C->isNullValue() && Cond == ISD::SETNE); 3200 3201 if (!Inverse) 3202 return TopSetCC; 3203 3204 ISD::CondCode InvCond = ISD::getSetCCInverse( 3205 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3206 TopSetCC.getOperand(0).getValueType().isInteger()); 3207 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3208 TopSetCC.getOperand(1), 3209 InvCond); 3210 } 3211 } 3212 } 3213 3214 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3215 // equality or unsigned, and all 1 bits of the const are in the same 3216 // partial word, see if we can shorten the load. 3217 if (DCI.isBeforeLegalize() && 3218 !ISD::isSignedIntSetCC(Cond) && 3219 N0.getOpcode() == ISD::AND && C1 == 0 && 3220 N0.getNode()->hasOneUse() && 3221 isa<LoadSDNode>(N0.getOperand(0)) && 3222 N0.getOperand(0).getNode()->hasOneUse() && 3223 isa<ConstantSDNode>(N0.getOperand(1))) { 3224 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3225 APInt bestMask; 3226 unsigned bestWidth = 0, bestOffset = 0; 3227 if (!Lod->isVolatile() && Lod->isUnindexed()) { 3228 unsigned origWidth = N0.getValueSizeInBits(); 3229 unsigned maskWidth = origWidth; 3230 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3231 // 8 bits, but have to be careful... 3232 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3233 origWidth = Lod->getMemoryVT().getSizeInBits(); 3234 const APInt &Mask = N0.getConstantOperandAPInt(1); 3235 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3236 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3237 for (unsigned offset=0; offset<origWidth/width; offset++) { 3238 if (Mask.isSubsetOf(newMask)) { 3239 if (DAG.getDataLayout().isLittleEndian()) 3240 bestOffset = (uint64_t)offset * (width/8); 3241 else 3242 bestOffset = (origWidth/width - offset - 1) * (width/8); 3243 bestMask = Mask.lshr(offset * (width/8) * 8); 3244 bestWidth = width; 3245 break; 3246 } 3247 newMask <<= width; 3248 } 3249 } 3250 } 3251 if (bestWidth) { 3252 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3253 if (newVT.isRound() && 3254 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3255 EVT PtrType = Lod->getOperand(1).getValueType(); 3256 SDValue Ptr = Lod->getBasePtr(); 3257 if (bestOffset != 0) 3258 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 3259 DAG.getConstant(bestOffset, dl, PtrType)); 3260 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 3261 SDValue NewLoad = DAG.getLoad( 3262 newVT, dl, Lod->getChain(), Ptr, 3263 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 3264 return DAG.getSetCC(dl, VT, 3265 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3266 DAG.getConstant(bestMask.trunc(bestWidth), 3267 dl, newVT)), 3268 DAG.getConstant(0LL, dl, newVT), Cond); 3269 } 3270 } 3271 } 3272 3273 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3274 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3275 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3276 3277 // If the comparison constant has bits in the upper part, the 3278 // zero-extended value could never match. 3279 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 3280 C1.getBitWidth() - InSize))) { 3281 switch (Cond) { 3282 case ISD::SETUGT: 3283 case ISD::SETUGE: 3284 case ISD::SETEQ: 3285 return DAG.getConstant(0, dl, VT); 3286 case ISD::SETULT: 3287 case ISD::SETULE: 3288 case ISD::SETNE: 3289 return DAG.getConstant(1, dl, VT); 3290 case ISD::SETGT: 3291 case ISD::SETGE: 3292 // True if the sign bit of C1 is set. 3293 return DAG.getConstant(C1.isNegative(), dl, VT); 3294 case ISD::SETLT: 3295 case ISD::SETLE: 3296 // True if the sign bit of C1 isn't set. 3297 return DAG.getConstant(C1.isNonNegative(), dl, VT); 3298 default: 3299 break; 3300 } 3301 } 3302 3303 // Otherwise, we can perform the comparison with the low bits. 3304 switch (Cond) { 3305 case ISD::SETEQ: 3306 case ISD::SETNE: 3307 case ISD::SETUGT: 3308 case ISD::SETUGE: 3309 case ISD::SETULT: 3310 case ISD::SETULE: { 3311 EVT newVT = N0.getOperand(0).getValueType(); 3312 if (DCI.isBeforeLegalizeOps() || 3313 (isOperationLegal(ISD::SETCC, newVT) && 3314 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 3315 EVT NewSetCCVT = 3316 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 3317 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 3318 3319 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 3320 NewConst, Cond); 3321 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 3322 } 3323 break; 3324 } 3325 default: 3326 break; // todo, be more careful with signed comparisons 3327 } 3328 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 3329 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3330 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 3331 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 3332 EVT ExtDstTy = N0.getValueType(); 3333 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 3334 3335 // If the constant doesn't fit into the number of bits for the source of 3336 // the sign extension, it is impossible for both sides to be equal. 3337 if (C1.getMinSignedBits() > ExtSrcTyBits) 3338 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 3339 3340 SDValue ZextOp; 3341 EVT Op0Ty = N0.getOperand(0).getValueType(); 3342 if (Op0Ty == ExtSrcTy) { 3343 ZextOp = N0.getOperand(0); 3344 } else { 3345 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 3346 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 3347 DAG.getConstant(Imm, dl, Op0Ty)); 3348 } 3349 if (!DCI.isCalledByLegalizer()) 3350 DCI.AddToWorklist(ZextOp.getNode()); 3351 // Otherwise, make this a use of a zext. 3352 return DAG.getSetCC(dl, VT, ZextOp, 3353 DAG.getConstant(C1 & APInt::getLowBitsSet( 3354 ExtDstTyBits, 3355 ExtSrcTyBits), 3356 dl, ExtDstTy), 3357 Cond); 3358 } else if ((N1C->isNullValue() || N1C->isOne()) && 3359 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3360 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 3361 if (N0.getOpcode() == ISD::SETCC && 3362 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 3363 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 3364 if (TrueWhenTrue) 3365 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 3366 // Invert the condition. 3367 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 3368 CC = ISD::getSetCCInverse(CC, 3369 N0.getOperand(0).getValueType().isInteger()); 3370 if (DCI.isBeforeLegalizeOps() || 3371 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 3372 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 3373 } 3374 3375 if ((N0.getOpcode() == ISD::XOR || 3376 (N0.getOpcode() == ISD::AND && 3377 N0.getOperand(0).getOpcode() == ISD::XOR && 3378 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 3379 isa<ConstantSDNode>(N0.getOperand(1)) && 3380 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 3381 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 3382 // can only do this if the top bits are known zero. 3383 unsigned BitWidth = N0.getValueSizeInBits(); 3384 if (DAG.MaskedValueIsZero(N0, 3385 APInt::getHighBitsSet(BitWidth, 3386 BitWidth-1))) { 3387 // Okay, get the un-inverted input value. 3388 SDValue Val; 3389 if (N0.getOpcode() == ISD::XOR) { 3390 Val = N0.getOperand(0); 3391 } else { 3392 assert(N0.getOpcode() == ISD::AND && 3393 N0.getOperand(0).getOpcode() == ISD::XOR); 3394 // ((X^1)&1)^1 -> X & 1 3395 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 3396 N0.getOperand(0).getOperand(0), 3397 N0.getOperand(1)); 3398 } 3399 3400 return DAG.getSetCC(dl, VT, Val, N1, 3401 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3402 } 3403 } else if (N1C->isOne() && 3404 (VT == MVT::i1 || 3405 getBooleanContents(N0->getValueType(0)) == 3406 ZeroOrOneBooleanContent)) { 3407 SDValue Op0 = N0; 3408 if (Op0.getOpcode() == ISD::TRUNCATE) 3409 Op0 = Op0.getOperand(0); 3410 3411 if ((Op0.getOpcode() == ISD::XOR) && 3412 Op0.getOperand(0).getOpcode() == ISD::SETCC && 3413 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 3414 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 3415 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 3416 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 3417 Cond); 3418 } 3419 if (Op0.getOpcode() == ISD::AND && 3420 isa<ConstantSDNode>(Op0.getOperand(1)) && 3421 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 3422 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 3423 if (Op0.getValueType().bitsGT(VT)) 3424 Op0 = DAG.getNode(ISD::AND, dl, VT, 3425 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 3426 DAG.getConstant(1, dl, VT)); 3427 else if (Op0.getValueType().bitsLT(VT)) 3428 Op0 = DAG.getNode(ISD::AND, dl, VT, 3429 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 3430 DAG.getConstant(1, dl, VT)); 3431 3432 return DAG.getSetCC(dl, VT, Op0, 3433 DAG.getConstant(0, dl, Op0.getValueType()), 3434 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3435 } 3436 if (Op0.getOpcode() == ISD::AssertZext && 3437 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 3438 return DAG.getSetCC(dl, VT, Op0, 3439 DAG.getConstant(0, dl, Op0.getValueType()), 3440 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3441 } 3442 } 3443 3444 // Given: 3445 // icmp eq/ne (urem %x, %y), 0 3446 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 3447 // icmp eq/ne %x, 0 3448 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() && 3449 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3450 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 3451 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 3452 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 3453 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 3454 } 3455 3456 if (SDValue V = 3457 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 3458 return V; 3459 } 3460 3461 // These simplifications apply to splat vectors as well. 3462 // TODO: Handle more splat vector cases. 3463 if (auto *N1C = isConstOrConstSplat(N1)) { 3464 const APInt &C1 = N1C->getAPIntValue(); 3465 3466 APInt MinVal, MaxVal; 3467 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 3468 if (ISD::isSignedIntSetCC(Cond)) { 3469 MinVal = APInt::getSignedMinValue(OperandBitSize); 3470 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 3471 } else { 3472 MinVal = APInt::getMinValue(OperandBitSize); 3473 MaxVal = APInt::getMaxValue(OperandBitSize); 3474 } 3475 3476 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 3477 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 3478 // X >= MIN --> true 3479 if (C1 == MinVal) 3480 return DAG.getBoolConstant(true, dl, VT, OpVT); 3481 3482 if (!VT.isVector()) { // TODO: Support this for vectors. 3483 // X >= C0 --> X > (C0 - 1) 3484 APInt C = C1 - 1; 3485 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 3486 if ((DCI.isBeforeLegalizeOps() || 3487 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3488 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3489 isLegalICmpImmediate(C.getSExtValue())))) { 3490 return DAG.getSetCC(dl, VT, N0, 3491 DAG.getConstant(C, dl, N1.getValueType()), 3492 NewCC); 3493 } 3494 } 3495 } 3496 3497 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 3498 // X <= MAX --> true 3499 if (C1 == MaxVal) 3500 return DAG.getBoolConstant(true, dl, VT, OpVT); 3501 3502 // X <= C0 --> X < (C0 + 1) 3503 if (!VT.isVector()) { // TODO: Support this for vectors. 3504 APInt C = C1 + 1; 3505 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 3506 if ((DCI.isBeforeLegalizeOps() || 3507 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 3508 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 3509 isLegalICmpImmediate(C.getSExtValue())))) { 3510 return DAG.getSetCC(dl, VT, N0, 3511 DAG.getConstant(C, dl, N1.getValueType()), 3512 NewCC); 3513 } 3514 } 3515 } 3516 3517 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 3518 if (C1 == MinVal) 3519 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 3520 3521 // TODO: Support this for vectors after legalize ops. 3522 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3523 // Canonicalize setlt X, Max --> setne X, Max 3524 if (C1 == MaxVal) 3525 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3526 3527 // If we have setult X, 1, turn it into seteq X, 0 3528 if (C1 == MinVal+1) 3529 return DAG.getSetCC(dl, VT, N0, 3530 DAG.getConstant(MinVal, dl, N0.getValueType()), 3531 ISD::SETEQ); 3532 } 3533 } 3534 3535 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 3536 if (C1 == MaxVal) 3537 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 3538 3539 // TODO: Support this for vectors after legalize ops. 3540 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3541 // Canonicalize setgt X, Min --> setne X, Min 3542 if (C1 == MinVal) 3543 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 3544 3545 // If we have setugt X, Max-1, turn it into seteq X, Max 3546 if (C1 == MaxVal-1) 3547 return DAG.getSetCC(dl, VT, N0, 3548 DAG.getConstant(MaxVal, dl, N0.getValueType()), 3549 ISD::SETEQ); 3550 } 3551 } 3552 3553 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 3554 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3555 if (C1.isNullValue()) 3556 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 3557 VT, N0, N1, Cond, DCI, dl)) 3558 return CC; 3559 } 3560 3561 // If we have "setcc X, C0", check to see if we can shrink the immediate 3562 // by changing cc. 3563 // TODO: Support this for vectors after legalize ops. 3564 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 3565 // SETUGT X, SINTMAX -> SETLT X, 0 3566 if (Cond == ISD::SETUGT && 3567 C1 == APInt::getSignedMaxValue(OperandBitSize)) 3568 return DAG.getSetCC(dl, VT, N0, 3569 DAG.getConstant(0, dl, N1.getValueType()), 3570 ISD::SETLT); 3571 3572 // SETULT X, SINTMIN -> SETGT X, -1 3573 if (Cond == ISD::SETULT && 3574 C1 == APInt::getSignedMinValue(OperandBitSize)) { 3575 SDValue ConstMinusOne = 3576 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 3577 N1.getValueType()); 3578 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 3579 } 3580 } 3581 } 3582 3583 // Back to non-vector simplifications. 3584 // TODO: Can we do these for vector splats? 3585 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3586 const APInt &C1 = N1C->getAPIntValue(); 3587 3588 // Fold bit comparisons when we can. 3589 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3590 (VT == N0.getValueType() || 3591 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 3592 N0.getOpcode() == ISD::AND) { 3593 auto &DL = DAG.getDataLayout(); 3594 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3595 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3596 !DCI.isBeforeLegalize()); 3597 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 3598 // Perform the xform if the AND RHS is a single bit. 3599 if (AndRHS->getAPIntValue().isPowerOf2()) { 3600 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3601 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3602 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 3603 ShiftTy))); 3604 } 3605 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 3606 // (X & 8) == 8 --> (X & 8) >> 3 3607 // Perform the xform if C1 is a single bit. 3608 if (C1.isPowerOf2()) { 3609 return DAG.getNode(ISD::TRUNCATE, dl, VT, 3610 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 3611 DAG.getConstant(C1.logBase2(), dl, 3612 ShiftTy))); 3613 } 3614 } 3615 } 3616 } 3617 3618 if (C1.getMinSignedBits() <= 64 && 3619 !isLegalICmpImmediate(C1.getSExtValue())) { 3620 // (X & -256) == 256 -> (X >> 8) == 1 3621 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3622 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 3623 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3624 const APInt &AndRHSC = AndRHS->getAPIntValue(); 3625 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 3626 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 3627 auto &DL = DAG.getDataLayout(); 3628 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3629 !DCI.isBeforeLegalize()); 3630 EVT CmpTy = N0.getValueType(); 3631 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 3632 DAG.getConstant(ShiftBits, dl, 3633 ShiftTy)); 3634 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 3635 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 3636 } 3637 } 3638 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 3639 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 3640 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 3641 // X < 0x100000000 -> (X >> 32) < 1 3642 // X >= 0x100000000 -> (X >> 32) >= 1 3643 // X <= 0x0ffffffff -> (X >> 32) < 1 3644 // X > 0x0ffffffff -> (X >> 32) >= 1 3645 unsigned ShiftBits; 3646 APInt NewC = C1; 3647 ISD::CondCode NewCond = Cond; 3648 if (AdjOne) { 3649 ShiftBits = C1.countTrailingOnes(); 3650 NewC = NewC + 1; 3651 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3652 } else { 3653 ShiftBits = C1.countTrailingZeros(); 3654 } 3655 NewC.lshrInPlace(ShiftBits); 3656 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 3657 isLegalICmpImmediate(NewC.getSExtValue())) { 3658 auto &DL = DAG.getDataLayout(); 3659 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 3660 !DCI.isBeforeLegalize()); 3661 EVT CmpTy = N0.getValueType(); 3662 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 3663 DAG.getConstant(ShiftBits, dl, ShiftTy)); 3664 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 3665 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 3666 } 3667 } 3668 } 3669 } 3670 3671 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 3672 auto *CFP = cast<ConstantFPSDNode>(N1); 3673 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 3674 3675 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 3676 // constant if knowing that the operand is non-nan is enough. We prefer to 3677 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 3678 // materialize 0.0. 3679 if (Cond == ISD::SETO || Cond == ISD::SETUO) 3680 return DAG.getSetCC(dl, VT, N0, N0, Cond); 3681 3682 // setcc (fneg x), C -> setcc swap(pred) x, -C 3683 if (N0.getOpcode() == ISD::FNEG) { 3684 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 3685 if (DCI.isBeforeLegalizeOps() || 3686 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 3687 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 3688 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 3689 } 3690 } 3691 3692 // If the condition is not legal, see if we can find an equivalent one 3693 // which is legal. 3694 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 3695 // If the comparison was an awkward floating-point == or != and one of 3696 // the comparison operands is infinity or negative infinity, convert the 3697 // condition to a less-awkward <= or >=. 3698 if (CFP->getValueAPF().isInfinity()) { 3699 if (CFP->getValueAPF().isNegative()) { 3700 if (Cond == ISD::SETOEQ && 3701 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3702 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 3703 if (Cond == ISD::SETUEQ && 3704 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3705 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3706 if (Cond == ISD::SETUNE && 3707 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3708 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3709 if (Cond == ISD::SETONE && 3710 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3711 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3712 } else { 3713 if (Cond == ISD::SETOEQ && 3714 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3715 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3716 if (Cond == ISD::SETUEQ && 3717 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3718 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3719 if (Cond == ISD::SETUNE && 3720 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3721 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3722 if (Cond == ISD::SETONE && 3723 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3724 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3725 } 3726 } 3727 } 3728 } 3729 3730 if (N0 == N1) { 3731 // The sext(setcc()) => setcc() optimization relies on the appropriate 3732 // constant being emitted. 3733 assert(!N0.getValueType().isInteger() && 3734 "Integer types should be handled by FoldSetCC"); 3735 3736 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3737 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3738 if (UOF == 2) // FP operators that are undefined on NaNs. 3739 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3740 if (UOF == unsigned(EqTrue)) 3741 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3742 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3743 // if it is not already. 3744 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3745 if (NewCond != Cond && 3746 (DCI.isBeforeLegalizeOps() || 3747 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3748 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3749 } 3750 3751 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3752 N0.getValueType().isInteger()) { 3753 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3754 N0.getOpcode() == ISD::XOR) { 3755 // Simplify (X+Y) == (X+Z) --> Y == Z 3756 if (N0.getOpcode() == N1.getOpcode()) { 3757 if (N0.getOperand(0) == N1.getOperand(0)) 3758 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3759 if (N0.getOperand(1) == N1.getOperand(1)) 3760 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3761 if (isCommutativeBinOp(N0.getOpcode())) { 3762 // If X op Y == Y op X, try other combinations. 3763 if (N0.getOperand(0) == N1.getOperand(1)) 3764 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3765 Cond); 3766 if (N0.getOperand(1) == N1.getOperand(0)) 3767 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3768 Cond); 3769 } 3770 } 3771 3772 // If RHS is a legal immediate value for a compare instruction, we need 3773 // to be careful about increasing register pressure needlessly. 3774 bool LegalRHSImm = false; 3775 3776 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3777 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3778 // Turn (X+C1) == C2 --> X == C2-C1 3779 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3780 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3781 DAG.getConstant(RHSC->getAPIntValue()- 3782 LHSR->getAPIntValue(), 3783 dl, N0.getValueType()), Cond); 3784 } 3785 3786 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3787 if (N0.getOpcode() == ISD::XOR) 3788 // If we know that all of the inverted bits are zero, don't bother 3789 // performing the inversion. 3790 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3791 return 3792 DAG.getSetCC(dl, VT, N0.getOperand(0), 3793 DAG.getConstant(LHSR->getAPIntValue() ^ 3794 RHSC->getAPIntValue(), 3795 dl, N0.getValueType()), 3796 Cond); 3797 } 3798 3799 // Turn (C1-X) == C2 --> X == C1-C2 3800 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3801 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3802 return 3803 DAG.getSetCC(dl, VT, N0.getOperand(1), 3804 DAG.getConstant(SUBC->getAPIntValue() - 3805 RHSC->getAPIntValue(), 3806 dl, N0.getValueType()), 3807 Cond); 3808 } 3809 } 3810 3811 // Could RHSC fold directly into a compare? 3812 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3813 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3814 } 3815 3816 // (X+Y) == X --> Y == 0 and similar folds. 3817 // Don't do this if X is an immediate that can fold into a cmp 3818 // instruction and X+Y has other uses. It could be an induction variable 3819 // chain, and the transform would increase register pressure. 3820 if (!LegalRHSImm || N0.hasOneUse()) 3821 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3822 return V; 3823 } 3824 3825 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3826 N1.getOpcode() == ISD::XOR) 3827 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3828 return V; 3829 3830 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3831 return V; 3832 } 3833 3834 // Fold remainder of division by a constant. 3835 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 3836 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 3837 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3838 3839 // When division is cheap or optimizing for minimum size, 3840 // fall through to DIVREM creation by skipping this fold. 3841 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) { 3842 if (N0.getOpcode() == ISD::UREM) { 3843 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3844 return Folded; 3845 } else if (N0.getOpcode() == ISD::SREM) { 3846 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 3847 return Folded; 3848 } 3849 } 3850 } 3851 3852 // Fold away ALL boolean setcc's. 3853 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3854 SDValue Temp; 3855 switch (Cond) { 3856 default: llvm_unreachable("Unknown integer setcc!"); 3857 case ISD::SETEQ: // X == Y -> ~(X^Y) 3858 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3859 N0 = DAG.getNOT(dl, Temp, OpVT); 3860 if (!DCI.isCalledByLegalizer()) 3861 DCI.AddToWorklist(Temp.getNode()); 3862 break; 3863 case ISD::SETNE: // X != Y --> (X^Y) 3864 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3865 break; 3866 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3867 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3868 Temp = DAG.getNOT(dl, N0, OpVT); 3869 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3870 if (!DCI.isCalledByLegalizer()) 3871 DCI.AddToWorklist(Temp.getNode()); 3872 break; 3873 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3874 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3875 Temp = DAG.getNOT(dl, N1, OpVT); 3876 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3877 if (!DCI.isCalledByLegalizer()) 3878 DCI.AddToWorklist(Temp.getNode()); 3879 break; 3880 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3881 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3882 Temp = DAG.getNOT(dl, N0, OpVT); 3883 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3884 if (!DCI.isCalledByLegalizer()) 3885 DCI.AddToWorklist(Temp.getNode()); 3886 break; 3887 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3888 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3889 Temp = DAG.getNOT(dl, N1, OpVT); 3890 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3891 break; 3892 } 3893 if (VT.getScalarType() != MVT::i1) { 3894 if (!DCI.isCalledByLegalizer()) 3895 DCI.AddToWorklist(N0.getNode()); 3896 // FIXME: If running after legalize, we probably can't do this. 3897 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3898 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3899 } 3900 return N0; 3901 } 3902 3903 // Could not fold it. 3904 return SDValue(); 3905 } 3906 3907 /// Returns true (and the GlobalValue and the offset) if the node is a 3908 /// GlobalAddress + offset. 3909 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3910 int64_t &Offset) const { 3911 3912 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3913 3914 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3915 GA = GASD->getGlobal(); 3916 Offset += GASD->getOffset(); 3917 return true; 3918 } 3919 3920 if (N->getOpcode() == ISD::ADD) { 3921 SDValue N1 = N->getOperand(0); 3922 SDValue N2 = N->getOperand(1); 3923 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3924 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3925 Offset += V->getSExtValue(); 3926 return true; 3927 } 3928 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3929 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3930 Offset += V->getSExtValue(); 3931 return true; 3932 } 3933 } 3934 } 3935 3936 return false; 3937 } 3938 3939 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3940 DAGCombinerInfo &DCI) const { 3941 // Default implementation: no optimization. 3942 return SDValue(); 3943 } 3944 3945 //===----------------------------------------------------------------------===// 3946 // Inline Assembler Implementation Methods 3947 //===----------------------------------------------------------------------===// 3948 3949 TargetLowering::ConstraintType 3950 TargetLowering::getConstraintType(StringRef Constraint) const { 3951 unsigned S = Constraint.size(); 3952 3953 if (S == 1) { 3954 switch (Constraint[0]) { 3955 default: break; 3956 case 'r': 3957 return C_RegisterClass; 3958 case 'm': // memory 3959 case 'o': // offsetable 3960 case 'V': // not offsetable 3961 return C_Memory; 3962 case 'n': // Simple Integer 3963 case 'E': // Floating Point Constant 3964 case 'F': // Floating Point Constant 3965 return C_Immediate; 3966 case 'i': // Simple Integer or Relocatable Constant 3967 case 's': // Relocatable Constant 3968 case 'p': // Address. 3969 case 'X': // Allow ANY value. 3970 case 'I': // Target registers. 3971 case 'J': 3972 case 'K': 3973 case 'L': 3974 case 'M': 3975 case 'N': 3976 case 'O': 3977 case 'P': 3978 case '<': 3979 case '>': 3980 return C_Other; 3981 } 3982 } 3983 3984 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3985 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3986 return C_Memory; 3987 return C_Register; 3988 } 3989 return C_Unknown; 3990 } 3991 3992 /// Try to replace an X constraint, which matches anything, with another that 3993 /// has more specific requirements based on the type of the corresponding 3994 /// operand. 3995 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3996 if (ConstraintVT.isInteger()) 3997 return "r"; 3998 if (ConstraintVT.isFloatingPoint()) 3999 return "f"; // works for many targets 4000 return nullptr; 4001 } 4002 4003 SDValue TargetLowering::LowerAsmOutputForConstraint( 4004 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 4005 SelectionDAG &DAG) const { 4006 return SDValue(); 4007 } 4008 4009 /// Lower the specified operand into the Ops vector. 4010 /// If it is invalid, don't add anything to Ops. 4011 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4012 std::string &Constraint, 4013 std::vector<SDValue> &Ops, 4014 SelectionDAG &DAG) const { 4015 4016 if (Constraint.length() > 1) return; 4017 4018 char ConstraintLetter = Constraint[0]; 4019 switch (ConstraintLetter) { 4020 default: break; 4021 case 'X': // Allows any operand; labels (basic block) use this. 4022 if (Op.getOpcode() == ISD::BasicBlock || 4023 Op.getOpcode() == ISD::TargetBlockAddress) { 4024 Ops.push_back(Op); 4025 return; 4026 } 4027 LLVM_FALLTHROUGH; 4028 case 'i': // Simple Integer or Relocatable Constant 4029 case 'n': // Simple Integer 4030 case 's': { // Relocatable Constant 4031 4032 GlobalAddressSDNode *GA; 4033 ConstantSDNode *C; 4034 BlockAddressSDNode *BA; 4035 uint64_t Offset = 0; 4036 4037 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4038 // etc., since getelementpointer is variadic. We can't use 4039 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4040 // while in this case the GA may be furthest from the root node which is 4041 // likely an ISD::ADD. 4042 while (1) { 4043 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') { 4044 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4045 GA->getValueType(0), 4046 Offset + GA->getOffset())); 4047 return; 4048 } else if ((C = dyn_cast<ConstantSDNode>(Op)) && 4049 ConstraintLetter != 's') { 4050 // gcc prints these as sign extended. Sign extend value to 64 bits 4051 // now; without this it would get ZExt'd later in 4052 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4053 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4054 BooleanContent BCont = getBooleanContents(MVT::i64); 4055 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont) 4056 : ISD::SIGN_EXTEND; 4057 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() 4058 : C->getSExtValue(); 4059 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal, 4060 SDLoc(C), MVT::i64)); 4061 return; 4062 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) && 4063 ConstraintLetter != 'n') { 4064 Ops.push_back(DAG.getTargetBlockAddress( 4065 BA->getBlockAddress(), BA->getValueType(0), 4066 Offset + BA->getOffset(), BA->getTargetFlags())); 4067 return; 4068 } else { 4069 const unsigned OpCode = Op.getOpcode(); 4070 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4071 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4072 Op = Op.getOperand(1); 4073 // Subtraction is not commutative. 4074 else if (OpCode == ISD::ADD && 4075 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4076 Op = Op.getOperand(0); 4077 else 4078 return; 4079 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4080 continue; 4081 } 4082 } 4083 return; 4084 } 4085 break; 4086 } 4087 } 4088 } 4089 4090 std::pair<unsigned, const TargetRegisterClass *> 4091 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4092 StringRef Constraint, 4093 MVT VT) const { 4094 if (Constraint.empty() || Constraint[0] != '{') 4095 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4096 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4097 4098 // Remove the braces from around the name. 4099 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4100 4101 std::pair<unsigned, const TargetRegisterClass *> R = 4102 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4103 4104 // Figure out which register class contains this reg. 4105 for (const TargetRegisterClass *RC : RI->regclasses()) { 4106 // If none of the value types for this register class are valid, we 4107 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4108 if (!isLegalRC(*RI, *RC)) 4109 continue; 4110 4111 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 4112 I != E; ++I) { 4113 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 4114 std::pair<unsigned, const TargetRegisterClass *> S = 4115 std::make_pair(*I, RC); 4116 4117 // If this register class has the requested value type, return it, 4118 // otherwise keep searching and return the first class found 4119 // if no other is found which explicitly has the requested type. 4120 if (RI->isTypeLegalForClass(*RC, VT)) 4121 return S; 4122 if (!R.second) 4123 R = S; 4124 } 4125 } 4126 } 4127 4128 return R; 4129 } 4130 4131 //===----------------------------------------------------------------------===// 4132 // Constraint Selection. 4133 4134 /// Return true of this is an input operand that is a matching constraint like 4135 /// "4". 4136 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4137 assert(!ConstraintCode.empty() && "No known constraint!"); 4138 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4139 } 4140 4141 /// If this is an input matching constraint, this method returns the output 4142 /// operand it matches. 4143 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4144 assert(!ConstraintCode.empty() && "No known constraint!"); 4145 return atoi(ConstraintCode.c_str()); 4146 } 4147 4148 /// Split up the constraint string from the inline assembly value into the 4149 /// specific constraints and their prefixes, and also tie in the associated 4150 /// operand values. 4151 /// If this returns an empty vector, and if the constraint string itself 4152 /// isn't empty, there was an error parsing. 4153 TargetLowering::AsmOperandInfoVector 4154 TargetLowering::ParseConstraints(const DataLayout &DL, 4155 const TargetRegisterInfo *TRI, 4156 ImmutableCallSite CS) const { 4157 /// Information about all of the constraints. 4158 AsmOperandInfoVector ConstraintOperands; 4159 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 4160 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4161 4162 // Do a prepass over the constraints, canonicalizing them, and building up the 4163 // ConstraintOperands list. 4164 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4165 unsigned ResNo = 0; // ResNo - The result number of the next output. 4166 4167 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4168 ConstraintOperands.emplace_back(std::move(CI)); 4169 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4170 4171 // Update multiple alternative constraint count. 4172 if (OpInfo.multipleAlternatives.size() > maCount) 4173 maCount = OpInfo.multipleAlternatives.size(); 4174 4175 OpInfo.ConstraintVT = MVT::Other; 4176 4177 // Compute the value type for each operand. 4178 switch (OpInfo.Type) { 4179 case InlineAsm::isOutput: 4180 // Indirect outputs just consume an argument. 4181 if (OpInfo.isIndirect) { 4182 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4183 break; 4184 } 4185 4186 // The return value of the call is this value. As such, there is no 4187 // corresponding argument. 4188 assert(!CS.getType()->isVoidTy() && 4189 "Bad inline asm!"); 4190 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 4191 OpInfo.ConstraintVT = 4192 getSimpleValueType(DL, STy->getElementType(ResNo)); 4193 } else { 4194 assert(ResNo == 0 && "Asm only has one result!"); 4195 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 4196 } 4197 ++ResNo; 4198 break; 4199 case InlineAsm::isInput: 4200 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 4201 break; 4202 case InlineAsm::isClobber: 4203 // Nothing to do. 4204 break; 4205 } 4206 4207 if (OpInfo.CallOperandVal) { 4208 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4209 if (OpInfo.isIndirect) { 4210 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 4211 if (!PtrTy) 4212 report_fatal_error("Indirect operand for inline asm not a pointer!"); 4213 OpTy = PtrTy->getElementType(); 4214 } 4215 4216 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4217 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4218 if (STy->getNumElements() == 1) 4219 OpTy = STy->getElementType(0); 4220 4221 // If OpTy is not a single value, it may be a struct/union that we 4222 // can tile with integers. 4223 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4224 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4225 switch (BitSize) { 4226 default: break; 4227 case 1: 4228 case 8: 4229 case 16: 4230 case 32: 4231 case 64: 4232 case 128: 4233 OpInfo.ConstraintVT = 4234 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 4235 break; 4236 } 4237 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 4238 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 4239 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 4240 } else { 4241 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 4242 } 4243 } 4244 } 4245 4246 // If we have multiple alternative constraints, select the best alternative. 4247 if (!ConstraintOperands.empty()) { 4248 if (maCount) { 4249 unsigned bestMAIndex = 0; 4250 int bestWeight = -1; 4251 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 4252 int weight = -1; 4253 unsigned maIndex; 4254 // Compute the sums of the weights for each alternative, keeping track 4255 // of the best (highest weight) one so far. 4256 for (maIndex = 0; maIndex < maCount; ++maIndex) { 4257 int weightSum = 0; 4258 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4259 cIndex != eIndex; ++cIndex) { 4260 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4261 if (OpInfo.Type == InlineAsm::isClobber) 4262 continue; 4263 4264 // If this is an output operand with a matching input operand, 4265 // look up the matching input. If their types mismatch, e.g. one 4266 // is an integer, the other is floating point, or their sizes are 4267 // different, flag it as an maCantMatch. 4268 if (OpInfo.hasMatchingInput()) { 4269 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4270 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4271 if ((OpInfo.ConstraintVT.isInteger() != 4272 Input.ConstraintVT.isInteger()) || 4273 (OpInfo.ConstraintVT.getSizeInBits() != 4274 Input.ConstraintVT.getSizeInBits())) { 4275 weightSum = -1; // Can't match. 4276 break; 4277 } 4278 } 4279 } 4280 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 4281 if (weight == -1) { 4282 weightSum = -1; 4283 break; 4284 } 4285 weightSum += weight; 4286 } 4287 // Update best. 4288 if (weightSum > bestWeight) { 4289 bestWeight = weightSum; 4290 bestMAIndex = maIndex; 4291 } 4292 } 4293 4294 // Now select chosen alternative in each constraint. 4295 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4296 cIndex != eIndex; ++cIndex) { 4297 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 4298 if (cInfo.Type == InlineAsm::isClobber) 4299 continue; 4300 cInfo.selectAlternative(bestMAIndex); 4301 } 4302 } 4303 } 4304 4305 // Check and hook up tied operands, choose constraint code to use. 4306 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 4307 cIndex != eIndex; ++cIndex) { 4308 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 4309 4310 // If this is an output operand with a matching input operand, look up the 4311 // matching input. If their types mismatch, e.g. one is an integer, the 4312 // other is floating point, or their sizes are different, flag it as an 4313 // error. 4314 if (OpInfo.hasMatchingInput()) { 4315 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 4316 4317 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 4318 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 4319 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 4320 OpInfo.ConstraintVT); 4321 std::pair<unsigned, const TargetRegisterClass *> InputRC = 4322 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 4323 Input.ConstraintVT); 4324 if ((OpInfo.ConstraintVT.isInteger() != 4325 Input.ConstraintVT.isInteger()) || 4326 (MatchRC.second != InputRC.second)) { 4327 report_fatal_error("Unsupported asm: input constraint" 4328 " with a matching output constraint of" 4329 " incompatible type!"); 4330 } 4331 } 4332 } 4333 } 4334 4335 return ConstraintOperands; 4336 } 4337 4338 /// Return an integer indicating how general CT is. 4339 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 4340 switch (CT) { 4341 case TargetLowering::C_Immediate: 4342 case TargetLowering::C_Other: 4343 case TargetLowering::C_Unknown: 4344 return 0; 4345 case TargetLowering::C_Register: 4346 return 1; 4347 case TargetLowering::C_RegisterClass: 4348 return 2; 4349 case TargetLowering::C_Memory: 4350 return 3; 4351 } 4352 llvm_unreachable("Invalid constraint type"); 4353 } 4354 4355 /// Examine constraint type and operand type and determine a weight value. 4356 /// This object must already have been set up with the operand type 4357 /// and the current alternative constraint selected. 4358 TargetLowering::ConstraintWeight 4359 TargetLowering::getMultipleConstraintMatchWeight( 4360 AsmOperandInfo &info, int maIndex) const { 4361 InlineAsm::ConstraintCodeVector *rCodes; 4362 if (maIndex >= (int)info.multipleAlternatives.size()) 4363 rCodes = &info.Codes; 4364 else 4365 rCodes = &info.multipleAlternatives[maIndex].Codes; 4366 ConstraintWeight BestWeight = CW_Invalid; 4367 4368 // Loop over the options, keeping track of the most general one. 4369 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 4370 ConstraintWeight weight = 4371 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 4372 if (weight > BestWeight) 4373 BestWeight = weight; 4374 } 4375 4376 return BestWeight; 4377 } 4378 4379 /// Examine constraint type and operand type and determine a weight value. 4380 /// This object must already have been set up with the operand type 4381 /// and the current alternative constraint selected. 4382 TargetLowering::ConstraintWeight 4383 TargetLowering::getSingleConstraintMatchWeight( 4384 AsmOperandInfo &info, const char *constraint) const { 4385 ConstraintWeight weight = CW_Invalid; 4386 Value *CallOperandVal = info.CallOperandVal; 4387 // If we don't have a value, we can't do a match, 4388 // but allow it at the lowest weight. 4389 if (!CallOperandVal) 4390 return CW_Default; 4391 // Look at the constraint type. 4392 switch (*constraint) { 4393 case 'i': // immediate integer. 4394 case 'n': // immediate integer with a known value. 4395 if (isa<ConstantInt>(CallOperandVal)) 4396 weight = CW_Constant; 4397 break; 4398 case 's': // non-explicit intregal immediate. 4399 if (isa<GlobalValue>(CallOperandVal)) 4400 weight = CW_Constant; 4401 break; 4402 case 'E': // immediate float if host format. 4403 case 'F': // immediate float. 4404 if (isa<ConstantFP>(CallOperandVal)) 4405 weight = CW_Constant; 4406 break; 4407 case '<': // memory operand with autodecrement. 4408 case '>': // memory operand with autoincrement. 4409 case 'm': // memory operand. 4410 case 'o': // offsettable memory operand 4411 case 'V': // non-offsettable memory operand 4412 weight = CW_Memory; 4413 break; 4414 case 'r': // general register. 4415 case 'g': // general register, memory operand or immediate integer. 4416 // note: Clang converts "g" to "imr". 4417 if (CallOperandVal->getType()->isIntegerTy()) 4418 weight = CW_Register; 4419 break; 4420 case 'X': // any operand. 4421 default: 4422 weight = CW_Default; 4423 break; 4424 } 4425 return weight; 4426 } 4427 4428 /// If there are multiple different constraints that we could pick for this 4429 /// operand (e.g. "imr") try to pick the 'best' one. 4430 /// This is somewhat tricky: constraints fall into four classes: 4431 /// Other -> immediates and magic values 4432 /// Register -> one specific register 4433 /// RegisterClass -> a group of regs 4434 /// Memory -> memory 4435 /// Ideally, we would pick the most specific constraint possible: if we have 4436 /// something that fits into a register, we would pick it. The problem here 4437 /// is that if we have something that could either be in a register or in 4438 /// memory that use of the register could cause selection of *other* 4439 /// operands to fail: they might only succeed if we pick memory. Because of 4440 /// this the heuristic we use is: 4441 /// 4442 /// 1) If there is an 'other' constraint, and if the operand is valid for 4443 /// that constraint, use it. This makes us take advantage of 'i' 4444 /// constraints when available. 4445 /// 2) Otherwise, pick the most general constraint present. This prefers 4446 /// 'm' over 'r', for example. 4447 /// 4448 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 4449 const TargetLowering &TLI, 4450 SDValue Op, SelectionDAG *DAG) { 4451 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 4452 unsigned BestIdx = 0; 4453 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 4454 int BestGenerality = -1; 4455 4456 // Loop over the options, keeping track of the most general one. 4457 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 4458 TargetLowering::ConstraintType CType = 4459 TLI.getConstraintType(OpInfo.Codes[i]); 4460 4461 // If this is an 'other' or 'immediate' constraint, see if the operand is 4462 // valid for it. For example, on X86 we might have an 'rI' constraint. If 4463 // the operand is an integer in the range [0..31] we want to use I (saving a 4464 // load of a register), otherwise we must use 'r'. 4465 if ((CType == TargetLowering::C_Other || 4466 CType == TargetLowering::C_Immediate) && Op.getNode()) { 4467 assert(OpInfo.Codes[i].size() == 1 && 4468 "Unhandled multi-letter 'other' constraint"); 4469 std::vector<SDValue> ResultOps; 4470 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 4471 ResultOps, *DAG); 4472 if (!ResultOps.empty()) { 4473 BestType = CType; 4474 BestIdx = i; 4475 break; 4476 } 4477 } 4478 4479 // Things with matching constraints can only be registers, per gcc 4480 // documentation. This mainly affects "g" constraints. 4481 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 4482 continue; 4483 4484 // This constraint letter is more general than the previous one, use it. 4485 int Generality = getConstraintGenerality(CType); 4486 if (Generality > BestGenerality) { 4487 BestType = CType; 4488 BestIdx = i; 4489 BestGenerality = Generality; 4490 } 4491 } 4492 4493 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 4494 OpInfo.ConstraintType = BestType; 4495 } 4496 4497 /// Determines the constraint code and constraint type to use for the specific 4498 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 4499 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 4500 SDValue Op, 4501 SelectionDAG *DAG) const { 4502 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 4503 4504 // Single-letter constraints ('r') are very common. 4505 if (OpInfo.Codes.size() == 1) { 4506 OpInfo.ConstraintCode = OpInfo.Codes[0]; 4507 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4508 } else { 4509 ChooseConstraint(OpInfo, *this, Op, DAG); 4510 } 4511 4512 // 'X' matches anything. 4513 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 4514 // Labels and constants are handled elsewhere ('X' is the only thing 4515 // that matches labels). For Functions, the type here is the type of 4516 // the result, which is not what we want to look at; leave them alone. 4517 Value *v = OpInfo.CallOperandVal; 4518 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 4519 OpInfo.CallOperandVal = v; 4520 return; 4521 } 4522 4523 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 4524 return; 4525 4526 // Otherwise, try to resolve it to something we know about by looking at 4527 // the actual operand type. 4528 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 4529 OpInfo.ConstraintCode = Repl; 4530 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 4531 } 4532 } 4533 } 4534 4535 /// Given an exact SDIV by a constant, create a multiplication 4536 /// with the multiplicative inverse of the constant. 4537 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 4538 const SDLoc &dl, SelectionDAG &DAG, 4539 SmallVectorImpl<SDNode *> &Created) { 4540 SDValue Op0 = N->getOperand(0); 4541 SDValue Op1 = N->getOperand(1); 4542 EVT VT = N->getValueType(0); 4543 EVT SVT = VT.getScalarType(); 4544 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 4545 EVT ShSVT = ShVT.getScalarType(); 4546 4547 bool UseSRA = false; 4548 SmallVector<SDValue, 16> Shifts, Factors; 4549 4550 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4551 if (C->isNullValue()) 4552 return false; 4553 APInt Divisor = C->getAPIntValue(); 4554 unsigned Shift = Divisor.countTrailingZeros(); 4555 if (Shift) { 4556 Divisor.ashrInPlace(Shift); 4557 UseSRA = true; 4558 } 4559 // Calculate the multiplicative inverse, using Newton's method. 4560 APInt t; 4561 APInt Factor = Divisor; 4562 while ((t = Divisor * Factor) != 1) 4563 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 4564 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 4565 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 4566 return true; 4567 }; 4568 4569 // Collect all magic values from the build vector. 4570 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 4571 return SDValue(); 4572 4573 SDValue Shift, Factor; 4574 if (VT.isVector()) { 4575 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4576 Factor = DAG.getBuildVector(VT, dl, Factors); 4577 } else { 4578 Shift = Shifts[0]; 4579 Factor = Factors[0]; 4580 } 4581 4582 SDValue Res = Op0; 4583 4584 // Shift the value upfront if it is even, so the LSB is one. 4585 if (UseSRA) { 4586 // TODO: For UDIV use SRL instead of SRA. 4587 SDNodeFlags Flags; 4588 Flags.setExact(true); 4589 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 4590 Created.push_back(Res.getNode()); 4591 } 4592 4593 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 4594 } 4595 4596 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 4597 SelectionDAG &DAG, 4598 SmallVectorImpl<SDNode *> &Created) const { 4599 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4600 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4601 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 4602 return SDValue(N, 0); // Lower SDIV as SDIV 4603 return SDValue(); 4604 } 4605 4606 /// Given an ISD::SDIV node expressing a divide by constant, 4607 /// return a DAG expression to select that will generate the same value by 4608 /// multiplying by a magic number. 4609 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4610 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 4611 bool IsAfterLegalization, 4612 SmallVectorImpl<SDNode *> &Created) const { 4613 SDLoc dl(N); 4614 EVT VT = N->getValueType(0); 4615 EVT SVT = VT.getScalarType(); 4616 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4617 EVT ShSVT = ShVT.getScalarType(); 4618 unsigned EltBits = VT.getScalarSizeInBits(); 4619 4620 // Check to see if we can do this. 4621 // FIXME: We should be more aggressive here. 4622 if (!isTypeLegal(VT)) 4623 return SDValue(); 4624 4625 // If the sdiv has an 'exact' bit we can use a simpler lowering. 4626 if (N->getFlags().hasExact()) 4627 return BuildExactSDIV(*this, N, dl, DAG, Created); 4628 4629 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 4630 4631 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 4632 if (C->isNullValue()) 4633 return false; 4634 4635 const APInt &Divisor = C->getAPIntValue(); 4636 APInt::ms magics = Divisor.magic(); 4637 int NumeratorFactor = 0; 4638 int ShiftMask = -1; 4639 4640 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 4641 // If d is +1/-1, we just multiply the numerator by +1/-1. 4642 NumeratorFactor = Divisor.getSExtValue(); 4643 magics.m = 0; 4644 magics.s = 0; 4645 ShiftMask = 0; 4646 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 4647 // If d > 0 and m < 0, add the numerator. 4648 NumeratorFactor = 1; 4649 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 4650 // If d < 0 and m > 0, subtract the numerator. 4651 NumeratorFactor = -1; 4652 } 4653 4654 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 4655 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 4656 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 4657 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 4658 return true; 4659 }; 4660 4661 SDValue N0 = N->getOperand(0); 4662 SDValue N1 = N->getOperand(1); 4663 4664 // Collect the shifts / magic values from each element. 4665 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 4666 return SDValue(); 4667 4668 SDValue MagicFactor, Factor, Shift, ShiftMask; 4669 if (VT.isVector()) { 4670 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4671 Factor = DAG.getBuildVector(VT, dl, Factors); 4672 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 4673 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 4674 } else { 4675 MagicFactor = MagicFactors[0]; 4676 Factor = Factors[0]; 4677 Shift = Shifts[0]; 4678 ShiftMask = ShiftMasks[0]; 4679 } 4680 4681 // Multiply the numerator (operand 0) by the magic value. 4682 // FIXME: We should support doing a MUL in a wider type. 4683 SDValue Q; 4684 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 4685 : isOperationLegalOrCustom(ISD::MULHS, VT)) 4686 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 4687 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 4688 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 4689 SDValue LoHi = 4690 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 4691 Q = SDValue(LoHi.getNode(), 1); 4692 } else 4693 return SDValue(); // No mulhs or equivalent. 4694 Created.push_back(Q.getNode()); 4695 4696 // (Optionally) Add/subtract the numerator using Factor. 4697 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 4698 Created.push_back(Factor.getNode()); 4699 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 4700 Created.push_back(Q.getNode()); 4701 4702 // Shift right algebraic by shift value. 4703 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 4704 Created.push_back(Q.getNode()); 4705 4706 // Extract the sign bit, mask it and add it to the quotient. 4707 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 4708 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 4709 Created.push_back(T.getNode()); 4710 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 4711 Created.push_back(T.getNode()); 4712 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 4713 } 4714 4715 /// Given an ISD::UDIV node expressing a divide by constant, 4716 /// return a DAG expression to select that will generate the same value by 4717 /// multiplying by a magic number. 4718 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 4719 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 4720 bool IsAfterLegalization, 4721 SmallVectorImpl<SDNode *> &Created) const { 4722 SDLoc dl(N); 4723 EVT VT = N->getValueType(0); 4724 EVT SVT = VT.getScalarType(); 4725 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4726 EVT ShSVT = ShVT.getScalarType(); 4727 unsigned EltBits = VT.getScalarSizeInBits(); 4728 4729 // Check to see if we can do this. 4730 // FIXME: We should be more aggressive here. 4731 if (!isTypeLegal(VT)) 4732 return SDValue(); 4733 4734 bool UseNPQ = false; 4735 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4736 4737 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4738 if (C->isNullValue()) 4739 return false; 4740 // FIXME: We should use a narrower constant when the upper 4741 // bits are known to be zero. 4742 APInt Divisor = C->getAPIntValue(); 4743 APInt::mu magics = Divisor.magicu(); 4744 unsigned PreShift = 0, PostShift = 0; 4745 4746 // If the divisor is even, we can avoid using the expensive fixup by 4747 // shifting the divided value upfront. 4748 if (magics.a != 0 && !Divisor[0]) { 4749 PreShift = Divisor.countTrailingZeros(); 4750 // Get magic number for the shifted divisor. 4751 magics = Divisor.lshr(PreShift).magicu(PreShift); 4752 assert(magics.a == 0 && "Should use cheap fixup now"); 4753 } 4754 4755 APInt Magic = magics.m; 4756 4757 unsigned SelNPQ; 4758 if (magics.a == 0 || Divisor.isOneValue()) { 4759 assert(magics.s < Divisor.getBitWidth() && 4760 "We shouldn't generate an undefined shift!"); 4761 PostShift = magics.s; 4762 SelNPQ = false; 4763 } else { 4764 PostShift = magics.s - 1; 4765 SelNPQ = true; 4766 } 4767 4768 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4769 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4770 NPQFactors.push_back( 4771 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4772 : APInt::getNullValue(EltBits), 4773 dl, SVT)); 4774 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4775 UseNPQ |= SelNPQ; 4776 return true; 4777 }; 4778 4779 SDValue N0 = N->getOperand(0); 4780 SDValue N1 = N->getOperand(1); 4781 4782 // Collect the shifts/magic values from each element. 4783 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4784 return SDValue(); 4785 4786 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4787 if (VT.isVector()) { 4788 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4789 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4790 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4791 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4792 } else { 4793 PreShift = PreShifts[0]; 4794 MagicFactor = MagicFactors[0]; 4795 PostShift = PostShifts[0]; 4796 } 4797 4798 SDValue Q = N0; 4799 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4800 Created.push_back(Q.getNode()); 4801 4802 // FIXME: We should support doing a MUL in a wider type. 4803 auto GetMULHU = [&](SDValue X, SDValue Y) { 4804 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4805 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4806 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4807 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4808 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4809 SDValue LoHi = 4810 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4811 return SDValue(LoHi.getNode(), 1); 4812 } 4813 return SDValue(); // No mulhu or equivalent 4814 }; 4815 4816 // Multiply the numerator (operand 0) by the magic value. 4817 Q = GetMULHU(Q, MagicFactor); 4818 if (!Q) 4819 return SDValue(); 4820 4821 Created.push_back(Q.getNode()); 4822 4823 if (UseNPQ) { 4824 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4825 Created.push_back(NPQ.getNode()); 4826 4827 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4828 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4829 if (VT.isVector()) 4830 NPQ = GetMULHU(NPQ, NPQFactor); 4831 else 4832 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4833 4834 Created.push_back(NPQ.getNode()); 4835 4836 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4837 Created.push_back(Q.getNode()); 4838 } 4839 4840 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4841 Created.push_back(Q.getNode()); 4842 4843 SDValue One = DAG.getConstant(1, dl, VT); 4844 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4845 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4846 } 4847 4848 /// If all values in Values that *don't* match the predicate are same 'splat' 4849 /// value, then replace all values with that splat value. 4850 /// Else, if AlternativeReplacement was provided, then replace all values that 4851 /// do match predicate with AlternativeReplacement value. 4852 static void 4853 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 4854 std::function<bool(SDValue)> Predicate, 4855 SDValue AlternativeReplacement = SDValue()) { 4856 SDValue Replacement; 4857 // Is there a value for which the Predicate does *NOT* match? What is it? 4858 auto SplatValue = llvm::find_if_not(Values, Predicate); 4859 if (SplatValue != Values.end()) { 4860 // Does Values consist only of SplatValue's and values matching Predicate? 4861 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 4862 return Value == *SplatValue || Predicate(Value); 4863 })) // Then we shall replace values matching predicate with SplatValue. 4864 Replacement = *SplatValue; 4865 } 4866 if (!Replacement) { 4867 // Oops, we did not find the "baseline" splat value. 4868 if (!AlternativeReplacement) 4869 return; // Nothing to do. 4870 // Let's replace with provided value then. 4871 Replacement = AlternativeReplacement; 4872 } 4873 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 4874 } 4875 4876 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 4877 /// where the divisor is constant and the comparison target is zero, 4878 /// return a DAG expression that will generate the same comparison result 4879 /// using only multiplications, additions and shifts/rotations. 4880 /// Ref: "Hacker's Delight" 10-17. 4881 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 4882 SDValue CompTargetNode, 4883 ISD::CondCode Cond, 4884 DAGCombinerInfo &DCI, 4885 const SDLoc &DL) const { 4886 SmallVector<SDNode *, 2> Built; 4887 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 4888 DCI, DL, Built)) { 4889 for (SDNode *N : Built) 4890 DCI.AddToWorklist(N); 4891 return Folded; 4892 } 4893 4894 return SDValue(); 4895 } 4896 4897 SDValue 4898 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 4899 SDValue CompTargetNode, ISD::CondCode Cond, 4900 DAGCombinerInfo &DCI, const SDLoc &DL, 4901 SmallVectorImpl<SDNode *> &Created) const { 4902 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 4903 // - D must be constant, with D = D0 * 2^K where D0 is odd 4904 // - P is the multiplicative inverse of D0 modulo 2^W 4905 // - Q = floor(((2^W) - 1) / D) 4906 // where W is the width of the common type of N and D. 4907 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4908 "Only applicable for (in)equality comparisons."); 4909 4910 SelectionDAG &DAG = DCI.DAG; 4911 4912 EVT VT = REMNode.getValueType(); 4913 EVT SVT = VT.getScalarType(); 4914 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4915 EVT ShSVT = ShVT.getScalarType(); 4916 4917 // If MUL is unavailable, we cannot proceed in any case. 4918 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 4919 return SDValue(); 4920 4921 // TODO: Could support comparing with non-zero too. 4922 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 4923 if (!CompTarget || !CompTarget->isNullValue()) 4924 return SDValue(); 4925 4926 bool HadOneDivisor = false; 4927 bool AllDivisorsAreOnes = true; 4928 bool HadEvenDivisor = false; 4929 bool AllDivisorsArePowerOfTwo = true; 4930 SmallVector<SDValue, 16> PAmts, KAmts, QAmts; 4931 4932 auto BuildUREMPattern = [&](ConstantSDNode *C) { 4933 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 4934 if (C->isNullValue()) 4935 return false; 4936 4937 const APInt &D = C->getAPIntValue(); 4938 // If all divisors are ones, we will prefer to avoid the fold. 4939 HadOneDivisor |= D.isOneValue(); 4940 AllDivisorsAreOnes &= D.isOneValue(); 4941 4942 // Decompose D into D0 * 2^K 4943 unsigned K = D.countTrailingZeros(); 4944 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 4945 APInt D0 = D.lshr(K); 4946 4947 // D is even if it has trailing zeros. 4948 HadEvenDivisor |= (K != 0); 4949 // D is a power-of-two if D0 is one. 4950 // If all divisors are power-of-two, we will prefer to avoid the fold. 4951 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 4952 4953 // P = inv(D0, 2^W) 4954 // 2^W requires W + 1 bits, so we have to extend and then truncate. 4955 unsigned W = D.getBitWidth(); 4956 APInt P = D0.zext(W + 1) 4957 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 4958 .trunc(W); 4959 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 4960 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 4961 4962 // Q = floor((2^W - 1) / D) 4963 APInt Q = APInt::getAllOnesValue(W).udiv(D); 4964 4965 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 4966 "We are expecting that K is always less than all-ones for ShSVT"); 4967 4968 // If the divisor is 1 the result can be constant-folded. 4969 if (D.isOneValue()) { 4970 // Set P and K amount to a bogus values so we can try to splat them. 4971 P = 0; 4972 K = -1; 4973 assert(Q.isAllOnesValue() && 4974 "Expecting all-ones comparison for one divisor"); 4975 } 4976 4977 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 4978 KAmts.push_back( 4979 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 4980 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 4981 return true; 4982 }; 4983 4984 SDValue N = REMNode.getOperand(0); 4985 SDValue D = REMNode.getOperand(1); 4986 4987 // Collect the values from each element. 4988 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern)) 4989 return SDValue(); 4990 4991 // If this is a urem by a one, avoid the fold since it can be constant-folded. 4992 if (AllDivisorsAreOnes) 4993 return SDValue(); 4994 4995 // If this is a urem by a powers-of-two, avoid the fold since it can be 4996 // best implemented as a bit test. 4997 if (AllDivisorsArePowerOfTwo) 4998 return SDValue(); 4999 5000 SDValue PVal, KVal, QVal; 5001 if (VT.isVector()) { 5002 if (HadOneDivisor) { 5003 // Try to turn PAmts into a splat, since we don't care about the values 5004 // that are currently '0'. If we can't, just keep '0'`s. 5005 turnVectorIntoSplatVector(PAmts, isNullConstant); 5006 // Try to turn KAmts into a splat, since we don't care about the values 5007 // that are currently '-1'. If we can't, change them to '0'`s. 5008 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5009 DAG.getConstant(0, DL, ShSVT)); 5010 } 5011 5012 PVal = DAG.getBuildVector(VT, DL, PAmts); 5013 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5014 QVal = DAG.getBuildVector(VT, DL, QAmts); 5015 } else { 5016 PVal = PAmts[0]; 5017 KVal = KAmts[0]; 5018 QVal = QAmts[0]; 5019 } 5020 5021 // (mul N, P) 5022 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5023 Created.push_back(Op0.getNode()); 5024 5025 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5026 // divisors as a performance improvement, since rotating by 0 is a no-op. 5027 if (HadEvenDivisor) { 5028 // We need ROTR to do this. 5029 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5030 return SDValue(); 5031 SDNodeFlags Flags; 5032 Flags.setExact(true); 5033 // UREM: (rotr (mul N, P), K) 5034 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5035 Created.push_back(Op0.getNode()); 5036 } 5037 5038 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5039 return DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5040 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5041 } 5042 5043 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5044 /// where the divisor is constant and the comparison target is zero, 5045 /// return a DAG expression that will generate the same comparison result 5046 /// using only multiplications, additions and shifts/rotations. 5047 /// Ref: "Hacker's Delight" 10-17. 5048 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5049 SDValue CompTargetNode, 5050 ISD::CondCode Cond, 5051 DAGCombinerInfo &DCI, 5052 const SDLoc &DL) const { 5053 SmallVector<SDNode *, 7> Built; 5054 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5055 DCI, DL, Built)) { 5056 assert(Built.size() <= 7 && "Max size prediction failed."); 5057 for (SDNode *N : Built) 5058 DCI.AddToWorklist(N); 5059 return Folded; 5060 } 5061 5062 return SDValue(); 5063 } 5064 5065 SDValue 5066 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 5067 SDValue CompTargetNode, ISD::CondCode Cond, 5068 DAGCombinerInfo &DCI, const SDLoc &DL, 5069 SmallVectorImpl<SDNode *> &Created) const { 5070 // Fold: 5071 // (seteq/ne (srem N, D), 0) 5072 // To: 5073 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 5074 // 5075 // - D must be constant, with D = D0 * 2^K where D0 is odd 5076 // - P is the multiplicative inverse of D0 modulo 2^W 5077 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 5078 // - Q = floor((2 * A) / (2^K)) 5079 // where W is the width of the common type of N and D. 5080 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5081 "Only applicable for (in)equality comparisons."); 5082 5083 SelectionDAG &DAG = DCI.DAG; 5084 5085 EVT VT = REMNode.getValueType(); 5086 EVT SVT = VT.getScalarType(); 5087 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5088 EVT ShSVT = ShVT.getScalarType(); 5089 5090 // If MUL is unavailable, we cannot proceed in any case. 5091 if (!isOperationLegalOrCustom(ISD::MUL, VT)) 5092 return SDValue(); 5093 5094 // TODO: Could support comparing with non-zero too. 5095 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 5096 if (!CompTarget || !CompTarget->isNullValue()) 5097 return SDValue(); 5098 5099 bool HadIntMinDivisor = false; 5100 bool HadOneDivisor = false; 5101 bool AllDivisorsAreOnes = true; 5102 bool HadEvenDivisor = false; 5103 bool NeedToApplyOffset = false; 5104 bool AllDivisorsArePowerOfTwo = true; 5105 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 5106 5107 auto BuildSREMPattern = [&](ConstantSDNode *C) { 5108 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5109 if (C->isNullValue()) 5110 return false; 5111 5112 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 5113 5114 // WARNING: this fold is only valid for positive divisors! 5115 APInt D = C->getAPIntValue(); 5116 if (D.isNegative()) 5117 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 5118 5119 HadIntMinDivisor |= D.isMinSignedValue(); 5120 5121 // If all divisors are ones, we will prefer to avoid the fold. 5122 HadOneDivisor |= D.isOneValue(); 5123 AllDivisorsAreOnes &= D.isOneValue(); 5124 5125 // Decompose D into D0 * 2^K 5126 unsigned K = D.countTrailingZeros(); 5127 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate."); 5128 APInt D0 = D.lshr(K); 5129 5130 if (!D.isMinSignedValue()) { 5131 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 5132 // we don't care about this lane in this fold, we'll special-handle it. 5133 HadEvenDivisor |= (K != 0); 5134 } 5135 5136 // D is a power-of-two if D0 is one. This includes INT_MIN. 5137 // If all divisors are power-of-two, we will prefer to avoid the fold. 5138 AllDivisorsArePowerOfTwo &= D0.isOneValue(); 5139 5140 // P = inv(D0, 2^W) 5141 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5142 unsigned W = D.getBitWidth(); 5143 APInt P = D0.zext(W + 1) 5144 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5145 .trunc(W); 5146 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable 5147 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check."); 5148 5149 // A = floor((2^(W - 1) - 1) / D0) & -2^K 5150 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 5151 A.clearLowBits(K); 5152 5153 if (!D.isMinSignedValue()) { 5154 // If divisor INT_MIN, then we don't care about this lane in this fold, 5155 // we'll special-handle it. 5156 NeedToApplyOffset |= A != 0; 5157 } 5158 5159 // Q = floor((2 * A) / (2^K)) 5160 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 5161 5162 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) && 5163 "We are expecting that A is always less than all-ones for SVT"); 5164 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) && 5165 "We are expecting that K is always less than all-ones for ShSVT"); 5166 5167 // If the divisor is 1 the result can be constant-folded. Likewise, we 5168 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 5169 if (D.isOneValue()) { 5170 // Set P, A and K to a bogus values so we can try to splat them. 5171 P = 0; 5172 A = -1; 5173 K = -1; 5174 5175 // x ?% 1 == 0 <--> true <--> x u<= -1 5176 Q = -1; 5177 } 5178 5179 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5180 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 5181 KAmts.push_back( 5182 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5183 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5184 return true; 5185 }; 5186 5187 SDValue N = REMNode.getOperand(0); 5188 SDValue D = REMNode.getOperand(1); 5189 5190 // Collect the values from each element. 5191 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 5192 return SDValue(); 5193 5194 // If this is a srem by a one, avoid the fold since it can be constant-folded. 5195 if (AllDivisorsAreOnes) 5196 return SDValue(); 5197 5198 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 5199 // since it can be best implemented as a bit test. 5200 if (AllDivisorsArePowerOfTwo) 5201 return SDValue(); 5202 5203 SDValue PVal, AVal, KVal, QVal; 5204 if (VT.isVector()) { 5205 if (HadOneDivisor) { 5206 // Try to turn PAmts into a splat, since we don't care about the values 5207 // that are currently '0'. If we can't, just keep '0'`s. 5208 turnVectorIntoSplatVector(PAmts, isNullConstant); 5209 // Try to turn AAmts into a splat, since we don't care about the 5210 // values that are currently '-1'. If we can't, change them to '0'`s. 5211 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 5212 DAG.getConstant(0, DL, SVT)); 5213 // Try to turn KAmts into a splat, since we don't care about the values 5214 // that are currently '-1'. If we can't, change them to '0'`s. 5215 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5216 DAG.getConstant(0, DL, ShSVT)); 5217 } 5218 5219 PVal = DAG.getBuildVector(VT, DL, PAmts); 5220 AVal = DAG.getBuildVector(VT, DL, AAmts); 5221 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5222 QVal = DAG.getBuildVector(VT, DL, QAmts); 5223 } else { 5224 PVal = PAmts[0]; 5225 AVal = AAmts[0]; 5226 KVal = KAmts[0]; 5227 QVal = QAmts[0]; 5228 } 5229 5230 // (mul N, P) 5231 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5232 Created.push_back(Op0.getNode()); 5233 5234 if (NeedToApplyOffset) { 5235 // We need ADD to do this. 5236 if (!isOperationLegalOrCustom(ISD::ADD, VT)) 5237 return SDValue(); 5238 5239 // (add (mul N, P), A) 5240 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 5241 Created.push_back(Op0.getNode()); 5242 } 5243 5244 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5245 // divisors as a performance improvement, since rotating by 0 is a no-op. 5246 if (HadEvenDivisor) { 5247 // We need ROTR to do this. 5248 if (!isOperationLegalOrCustom(ISD::ROTR, VT)) 5249 return SDValue(); 5250 SDNodeFlags Flags; 5251 Flags.setExact(true); 5252 // SREM: (rotr (add (mul N, P), A), K) 5253 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags); 5254 Created.push_back(Op0.getNode()); 5255 } 5256 5257 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 5258 SDValue Fold = 5259 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5260 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5261 5262 // If we didn't have lanes with INT_MIN divisor, then we're done. 5263 if (!HadIntMinDivisor) 5264 return Fold; 5265 5266 // That fold is only valid for positive divisors. Which effectively means, 5267 // it is invalid for INT_MIN divisors. So if we have such a lane, 5268 // we must fix-up results for said lanes. 5269 assert(VT.isVector() && "Can/should only get here for vectors."); 5270 5271 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 5272 !isOperationLegalOrCustom(ISD::AND, VT) || 5273 !isOperationLegalOrCustom(Cond, VT) || 5274 !isOperationLegalOrCustom(ISD::VSELECT, VT)) 5275 return SDValue(); 5276 5277 Created.push_back(Fold.getNode()); 5278 5279 SDValue IntMin = DAG.getConstant( 5280 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 5281 SDValue IntMax = DAG.getConstant( 5282 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 5283 SDValue Zero = 5284 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT); 5285 5286 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 5287 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 5288 Created.push_back(DivisorIsIntMin.getNode()); 5289 5290 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 5291 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 5292 Created.push_back(Masked.getNode()); 5293 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 5294 Created.push_back(MaskedIsZero.getNode()); 5295 5296 // To produce final result we need to blend 2 vectors: 'SetCC' and 5297 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 5298 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 5299 // constant-folded, select can get lowered to a shuffle with constant mask. 5300 SDValue Blended = 5301 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold); 5302 5303 return Blended; 5304 } 5305 5306 bool TargetLowering:: 5307 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 5308 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 5309 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 5310 "be a constant integer"); 5311 return true; 5312 } 5313 5314 return false; 5315 } 5316 5317 //===----------------------------------------------------------------------===// 5318 // Legalization Utilities 5319 //===----------------------------------------------------------------------===// 5320 5321 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 5322 SDValue LHS, SDValue RHS, 5323 SmallVectorImpl<SDValue> &Result, 5324 EVT HiLoVT, SelectionDAG &DAG, 5325 MulExpansionKind Kind, SDValue LL, 5326 SDValue LH, SDValue RL, SDValue RH) const { 5327 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 5328 Opcode == ISD::SMUL_LOHI); 5329 5330 bool HasMULHS = (Kind == MulExpansionKind::Always) || 5331 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 5332 bool HasMULHU = (Kind == MulExpansionKind::Always) || 5333 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 5334 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 5335 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 5336 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 5337 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 5338 5339 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 5340 return false; 5341 5342 unsigned OuterBitSize = VT.getScalarSizeInBits(); 5343 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 5344 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 5345 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 5346 5347 // LL, LH, RL, and RH must be either all NULL or all set to a value. 5348 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 5349 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 5350 5351 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 5352 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 5353 bool Signed) -> bool { 5354 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 5355 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 5356 Hi = SDValue(Lo.getNode(), 1); 5357 return true; 5358 } 5359 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 5360 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 5361 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 5362 return true; 5363 } 5364 return false; 5365 }; 5366 5367 SDValue Lo, Hi; 5368 5369 if (!LL.getNode() && !RL.getNode() && 5370 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5371 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 5372 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 5373 } 5374 5375 if (!LL.getNode()) 5376 return false; 5377 5378 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 5379 if (DAG.MaskedValueIsZero(LHS, HighMask) && 5380 DAG.MaskedValueIsZero(RHS, HighMask)) { 5381 // The inputs are both zero-extended. 5382 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 5383 Result.push_back(Lo); 5384 Result.push_back(Hi); 5385 if (Opcode != ISD::MUL) { 5386 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5387 Result.push_back(Zero); 5388 Result.push_back(Zero); 5389 } 5390 return true; 5391 } 5392 } 5393 5394 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 5395 RHSSB > InnerBitSize) { 5396 // The input values are both sign-extended. 5397 // TODO non-MUL case? 5398 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 5399 Result.push_back(Lo); 5400 Result.push_back(Hi); 5401 return true; 5402 } 5403 } 5404 5405 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 5406 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5407 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 5408 // FIXME getShiftAmountTy does not always return a sensible result when VT 5409 // is an illegal type, and so the type may be too small to fit the shift 5410 // amount. Override it with i32. The shift will have to be legalized. 5411 ShiftAmountTy = MVT::i32; 5412 } 5413 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 5414 5415 if (!LH.getNode() && !RH.getNode() && 5416 isOperationLegalOrCustom(ISD::SRL, VT) && 5417 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 5418 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 5419 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 5420 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 5421 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 5422 } 5423 5424 if (!LH.getNode()) 5425 return false; 5426 5427 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 5428 return false; 5429 5430 Result.push_back(Lo); 5431 5432 if (Opcode == ISD::MUL) { 5433 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 5434 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 5435 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 5436 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 5437 Result.push_back(Hi); 5438 return true; 5439 } 5440 5441 // Compute the full width result. 5442 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 5443 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 5444 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5445 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 5446 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5447 }; 5448 5449 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 5450 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 5451 return false; 5452 5453 // This is effectively the add part of a multiply-add of half-sized operands, 5454 // so it cannot overflow. 5455 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5456 5457 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 5458 return false; 5459 5460 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 5461 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5462 5463 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 5464 isOperationLegalOrCustom(ISD::ADDE, VT)); 5465 if (UseGlue) 5466 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 5467 Merge(Lo, Hi)); 5468 else 5469 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 5470 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 5471 5472 SDValue Carry = Next.getValue(1); 5473 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5474 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5475 5476 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 5477 return false; 5478 5479 if (UseGlue) 5480 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 5481 Carry); 5482 else 5483 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 5484 Zero, Carry); 5485 5486 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 5487 5488 if (Opcode == ISD::SMUL_LOHI) { 5489 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5490 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 5491 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 5492 5493 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 5494 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 5495 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 5496 } 5497 5498 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5499 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 5500 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 5501 return true; 5502 } 5503 5504 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 5505 SelectionDAG &DAG, MulExpansionKind Kind, 5506 SDValue LL, SDValue LH, SDValue RL, 5507 SDValue RH) const { 5508 SmallVector<SDValue, 2> Result; 5509 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 5510 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 5511 DAG, Kind, LL, LH, RL, RH); 5512 if (Ok) { 5513 assert(Result.size() == 2); 5514 Lo = Result[0]; 5515 Hi = Result[1]; 5516 } 5517 return Ok; 5518 } 5519 5520 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 5521 SelectionDAG &DAG) const { 5522 EVT VT = Node->getValueType(0); 5523 5524 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5525 !isOperationLegalOrCustom(ISD::SRL, VT) || 5526 !isOperationLegalOrCustom(ISD::SUB, VT) || 5527 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5528 return false; 5529 5530 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 5531 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 5532 SDValue X = Node->getOperand(0); 5533 SDValue Y = Node->getOperand(1); 5534 SDValue Z = Node->getOperand(2); 5535 5536 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5537 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 5538 SDLoc DL(SDValue(Node, 0)); 5539 5540 EVT ShVT = Z.getValueType(); 5541 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5542 SDValue Zero = DAG.getConstant(0, DL, ShVT); 5543 5544 SDValue ShAmt; 5545 if (isPowerOf2_32(EltSizeInBits)) { 5546 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5547 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 5548 } else { 5549 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 5550 } 5551 5552 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 5553 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 5554 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 5555 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 5556 5557 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 5558 // and that is undefined. We must compare and select to avoid UB. 5559 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 5560 5561 // For fshl, 0-shift returns the 1st arg (X). 5562 // For fshr, 0-shift returns the 2nd arg (Y). 5563 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 5564 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 5565 return true; 5566 } 5567 5568 // TODO: Merge with expandFunnelShift. 5569 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 5570 SelectionDAG &DAG) const { 5571 EVT VT = Node->getValueType(0); 5572 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 5573 bool IsLeft = Node->getOpcode() == ISD::ROTL; 5574 SDValue Op0 = Node->getOperand(0); 5575 SDValue Op1 = Node->getOperand(1); 5576 SDLoc DL(SDValue(Node, 0)); 5577 5578 EVT ShVT = Op1.getValueType(); 5579 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 5580 5581 // If a rotate in the other direction is legal, use it. 5582 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 5583 if (isOperationLegal(RevRot, VT)) { 5584 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5585 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 5586 return true; 5587 } 5588 5589 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 5590 !isOperationLegalOrCustom(ISD::SRL, VT) || 5591 !isOperationLegalOrCustom(ISD::SUB, VT) || 5592 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 5593 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5594 return false; 5595 5596 // Otherwise, 5597 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 5598 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 5599 // 5600 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 5601 "Expecting the type bitwidth to be a power of 2"); 5602 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 5603 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 5604 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 5605 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 5606 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 5607 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 5608 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 5609 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 5610 return true; 5611 } 5612 5613 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 5614 SelectionDAG &DAG) const { 5615 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5616 SDValue Src = Node->getOperand(OpNo); 5617 EVT SrcVT = Src.getValueType(); 5618 EVT DstVT = Node->getValueType(0); 5619 SDLoc dl(SDValue(Node, 0)); 5620 5621 // FIXME: Only f32 to i64 conversions are supported. 5622 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 5623 return false; 5624 5625 if (Node->isStrictFPOpcode()) 5626 // When a NaN is converted to an integer a trap is allowed. We can't 5627 // use this expansion here because it would eliminate that trap. Other 5628 // traps are also allowed and cannot be eliminated. See 5629 // IEEE 754-2008 sec 5.8. 5630 return false; 5631 5632 // Expand f32 -> i64 conversion 5633 // This algorithm comes from compiler-rt's implementation of fixsfdi: 5634 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 5635 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 5636 EVT IntVT = SrcVT.changeTypeToInteger(); 5637 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 5638 5639 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 5640 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 5641 SDValue Bias = DAG.getConstant(127, dl, IntVT); 5642 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 5643 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 5644 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 5645 5646 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 5647 5648 SDValue ExponentBits = DAG.getNode( 5649 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 5650 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 5651 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 5652 5653 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 5654 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 5655 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 5656 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 5657 5658 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 5659 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 5660 DAG.getConstant(0x00800000, dl, IntVT)); 5661 5662 R = DAG.getZExtOrTrunc(R, dl, DstVT); 5663 5664 R = DAG.getSelectCC( 5665 dl, Exponent, ExponentLoBit, 5666 DAG.getNode(ISD::SHL, dl, DstVT, R, 5667 DAG.getZExtOrTrunc( 5668 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 5669 dl, IntShVT)), 5670 DAG.getNode(ISD::SRL, dl, DstVT, R, 5671 DAG.getZExtOrTrunc( 5672 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 5673 dl, IntShVT)), 5674 ISD::SETGT); 5675 5676 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 5677 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 5678 5679 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 5680 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 5681 return true; 5682 } 5683 5684 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 5685 SDValue &Chain, 5686 SelectionDAG &DAG) const { 5687 SDLoc dl(SDValue(Node, 0)); 5688 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 5689 SDValue Src = Node->getOperand(OpNo); 5690 5691 EVT SrcVT = Src.getValueType(); 5692 EVT DstVT = Node->getValueType(0); 5693 EVT SetCCVT = 5694 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5695 5696 // Only expand vector types if we have the appropriate vector bit operations. 5697 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 5698 ISD::FP_TO_SINT; 5699 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 5700 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 5701 return false; 5702 5703 // If the maximum float value is smaller then the signed integer range, 5704 // the destination signmask can't be represented by the float, so we can 5705 // just use FP_TO_SINT directly. 5706 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 5707 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 5708 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 5709 if (APFloat::opOverflow & 5710 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 5711 if (Node->isStrictFPOpcode()) { 5712 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 5713 { Node->getOperand(0), Src }); 5714 Chain = Result.getValue(1); 5715 } else 5716 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5717 return true; 5718 } 5719 5720 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 5721 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 5722 5723 bool Strict = Node->isStrictFPOpcode() || 5724 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 5725 5726 if (Strict) { 5727 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 5728 // signmask then offset (the result of which should be fully representable). 5729 // Sel = Src < 0x8000000000000000 5730 // Val = select Sel, Src, Src - 0x8000000000000000 5731 // Ofs = select Sel, 0, 0x8000000000000000 5732 // Result = fp_to_sint(Val) ^ Ofs 5733 5734 // TODO: Should any fast-math-flags be set for the FSUB? 5735 SDValue SrcBiased; 5736 if (Node->isStrictFPOpcode()) 5737 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 5738 { Node->getOperand(0), Src, Cst }); 5739 else 5740 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst); 5741 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased); 5742 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 5743 DAG.getConstant(SignMask, dl, DstVT)); 5744 SDValue SInt; 5745 if (Node->isStrictFPOpcode()) { 5746 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 5747 { SrcBiased.getValue(1), Val }); 5748 Chain = SInt.getValue(1); 5749 } else 5750 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 5751 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs); 5752 } else { 5753 // Expand based on maximum range of FP_TO_SINT: 5754 // True = fp_to_sint(Src) 5755 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 5756 // Result = select (Src < 0x8000000000000000), True, False 5757 5758 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 5759 // TODO: Should any fast-math-flags be set for the FSUB? 5760 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 5761 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 5762 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 5763 DAG.getConstant(SignMask, dl, DstVT)); 5764 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 5765 } 5766 return true; 5767 } 5768 5769 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 5770 SelectionDAG &DAG) const { 5771 SDValue Src = Node->getOperand(0); 5772 EVT SrcVT = Src.getValueType(); 5773 EVT DstVT = Node->getValueType(0); 5774 5775 if (SrcVT.getScalarType() != MVT::i64) 5776 return false; 5777 5778 SDLoc dl(SDValue(Node, 0)); 5779 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 5780 5781 if (DstVT.getScalarType() == MVT::f32) { 5782 // Only expand vector types if we have the appropriate vector bit 5783 // operations. 5784 if (SrcVT.isVector() && 5785 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5786 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5787 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 5788 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5789 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5790 return false; 5791 5792 // For unsigned conversions, convert them to signed conversions using the 5793 // algorithm from the x86_64 __floatundidf in compiler_rt. 5794 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 5795 5796 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 5797 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 5798 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 5799 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 5800 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 5801 5802 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 5803 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 5804 5805 // TODO: This really should be implemented using a branch rather than a 5806 // select. We happen to get lucky and machinesink does the right 5807 // thing most of the time. This would be a good candidate for a 5808 // pseudo-op, or, even better, for whole-function isel. 5809 EVT SetCCVT = 5810 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 5811 5812 SDValue SignBitTest = DAG.getSetCC( 5813 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 5814 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 5815 return true; 5816 } 5817 5818 if (DstVT.getScalarType() == MVT::f64) { 5819 // Only expand vector types if we have the appropriate vector bit 5820 // operations. 5821 if (SrcVT.isVector() && 5822 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 5823 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 5824 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 5825 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 5826 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 5827 return false; 5828 5829 // Implementation of unsigned i64 to f64 following the algorithm in 5830 // __floatundidf in compiler_rt. This implementation has the advantage 5831 // of performing rounding correctly, both in the default rounding mode 5832 // and in all alternate rounding modes. 5833 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 5834 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 5835 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 5836 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 5837 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 5838 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 5839 5840 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 5841 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 5842 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 5843 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 5844 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 5845 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 5846 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 5847 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 5848 return true; 5849 } 5850 5851 return false; 5852 } 5853 5854 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 5855 SelectionDAG &DAG) const { 5856 SDLoc dl(Node); 5857 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 5858 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 5859 EVT VT = Node->getValueType(0); 5860 if (isOperationLegalOrCustom(NewOp, VT)) { 5861 SDValue Quiet0 = Node->getOperand(0); 5862 SDValue Quiet1 = Node->getOperand(1); 5863 5864 if (!Node->getFlags().hasNoNaNs()) { 5865 // Insert canonicalizes if it's possible we need to quiet to get correct 5866 // sNaN behavior. 5867 if (!DAG.isKnownNeverSNaN(Quiet0)) { 5868 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 5869 Node->getFlags()); 5870 } 5871 if (!DAG.isKnownNeverSNaN(Quiet1)) { 5872 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 5873 Node->getFlags()); 5874 } 5875 } 5876 5877 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 5878 } 5879 5880 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 5881 // instead if there are no NaNs. 5882 if (Node->getFlags().hasNoNaNs()) { 5883 unsigned IEEE2018Op = 5884 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 5885 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 5886 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 5887 Node->getOperand(1), Node->getFlags()); 5888 } 5889 } 5890 5891 return SDValue(); 5892 } 5893 5894 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 5895 SelectionDAG &DAG) const { 5896 SDLoc dl(Node); 5897 EVT VT = Node->getValueType(0); 5898 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5899 SDValue Op = Node->getOperand(0); 5900 unsigned Len = VT.getScalarSizeInBits(); 5901 assert(VT.isInteger() && "CTPOP not implemented for this type."); 5902 5903 // TODO: Add support for irregular type lengths. 5904 if (!(Len <= 128 && Len % 8 == 0)) 5905 return false; 5906 5907 // Only expand vector types if we have the appropriate vector bit operations. 5908 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 5909 !isOperationLegalOrCustom(ISD::SUB, VT) || 5910 !isOperationLegalOrCustom(ISD::SRL, VT) || 5911 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 5912 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 5913 return false; 5914 5915 // This is the "best" algorithm from 5916 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 5917 SDValue Mask55 = 5918 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 5919 SDValue Mask33 = 5920 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 5921 SDValue Mask0F = 5922 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 5923 SDValue Mask01 = 5924 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 5925 5926 // v = v - ((v >> 1) & 0x55555555...) 5927 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 5928 DAG.getNode(ISD::AND, dl, VT, 5929 DAG.getNode(ISD::SRL, dl, VT, Op, 5930 DAG.getConstant(1, dl, ShVT)), 5931 Mask55)); 5932 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 5933 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 5934 DAG.getNode(ISD::AND, dl, VT, 5935 DAG.getNode(ISD::SRL, dl, VT, Op, 5936 DAG.getConstant(2, dl, ShVT)), 5937 Mask33)); 5938 // v = (v + (v >> 4)) & 0x0F0F0F0F... 5939 Op = DAG.getNode(ISD::AND, dl, VT, 5940 DAG.getNode(ISD::ADD, dl, VT, Op, 5941 DAG.getNode(ISD::SRL, dl, VT, Op, 5942 DAG.getConstant(4, dl, ShVT))), 5943 Mask0F); 5944 // v = (v * 0x01010101...) >> (Len - 8) 5945 if (Len > 8) 5946 Op = 5947 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 5948 DAG.getConstant(Len - 8, dl, ShVT)); 5949 5950 Result = Op; 5951 return true; 5952 } 5953 5954 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 5955 SelectionDAG &DAG) const { 5956 SDLoc dl(Node); 5957 EVT VT = Node->getValueType(0); 5958 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5959 SDValue Op = Node->getOperand(0); 5960 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 5961 5962 // If the non-ZERO_UNDEF version is supported we can use that instead. 5963 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 5964 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 5965 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 5966 return true; 5967 } 5968 5969 // If the ZERO_UNDEF version is supported use that and handle the zero case. 5970 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 5971 EVT SetCCVT = 5972 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5973 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 5974 SDValue Zero = DAG.getConstant(0, dl, VT); 5975 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 5976 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 5977 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 5978 return true; 5979 } 5980 5981 // Only expand vector types if we have the appropriate vector bit operations. 5982 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 5983 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 5984 !isOperationLegalOrCustom(ISD::SRL, VT) || 5985 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 5986 return false; 5987 5988 // for now, we do this: 5989 // x = x | (x >> 1); 5990 // x = x | (x >> 2); 5991 // ... 5992 // x = x | (x >>16); 5993 // x = x | (x >>32); // for 64-bit input 5994 // return popcount(~x); 5995 // 5996 // Ref: "Hacker's Delight" by Henry Warren 5997 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 5998 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 5999 Op = DAG.getNode(ISD::OR, dl, VT, Op, 6000 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 6001 } 6002 Op = DAG.getNOT(dl, Op, VT); 6003 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 6004 return true; 6005 } 6006 6007 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 6008 SelectionDAG &DAG) const { 6009 SDLoc dl(Node); 6010 EVT VT = Node->getValueType(0); 6011 SDValue Op = Node->getOperand(0); 6012 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 6013 6014 // If the non-ZERO_UNDEF version is supported we can use that instead. 6015 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 6016 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 6017 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 6018 return true; 6019 } 6020 6021 // If the ZERO_UNDEF version is supported use that and handle the zero case. 6022 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 6023 EVT SetCCVT = 6024 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6025 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 6026 SDValue Zero = DAG.getConstant(0, dl, VT); 6027 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 6028 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 6029 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 6030 return true; 6031 } 6032 6033 // Only expand vector types if we have the appropriate vector bit operations. 6034 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 6035 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 6036 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 6037 !isOperationLegalOrCustom(ISD::SUB, VT) || 6038 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 6039 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6040 return false; 6041 6042 // for now, we use: { return popcount(~x & (x - 1)); } 6043 // unless the target has ctlz but not ctpop, in which case we use: 6044 // { return 32 - nlz(~x & (x-1)); } 6045 // Ref: "Hacker's Delight" by Henry Warren 6046 SDValue Tmp = DAG.getNode( 6047 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 6048 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 6049 6050 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 6051 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 6052 Result = 6053 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 6054 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 6055 return true; 6056 } 6057 6058 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 6059 return true; 6060 } 6061 6062 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 6063 SelectionDAG &DAG) const { 6064 SDLoc dl(N); 6065 EVT VT = N->getValueType(0); 6066 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 6067 SDValue Op = N->getOperand(0); 6068 6069 // Only expand vector types if we have the appropriate vector operations. 6070 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 6071 !isOperationLegalOrCustom(ISD::ADD, VT) || 6072 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 6073 return false; 6074 6075 SDValue Shift = 6076 DAG.getNode(ISD::SRA, dl, VT, Op, 6077 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 6078 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 6079 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 6080 return true; 6081 } 6082 6083 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 6084 SelectionDAG &DAG) const { 6085 SDLoc SL(LD); 6086 SDValue Chain = LD->getChain(); 6087 SDValue BasePTR = LD->getBasePtr(); 6088 EVT SrcVT = LD->getMemoryVT(); 6089 ISD::LoadExtType ExtType = LD->getExtensionType(); 6090 6091 unsigned NumElem = SrcVT.getVectorNumElements(); 6092 6093 EVT SrcEltVT = SrcVT.getScalarType(); 6094 EVT DstEltVT = LD->getValueType(0).getScalarType(); 6095 6096 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 6097 assert(SrcEltVT.isByteSized()); 6098 6099 SmallVector<SDValue, 8> Vals; 6100 SmallVector<SDValue, 8> LoadChains; 6101 6102 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6103 SDValue ScalarLoad = 6104 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 6105 LD->getPointerInfo().getWithOffset(Idx * Stride), 6106 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 6107 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6108 6109 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 6110 6111 Vals.push_back(ScalarLoad.getValue(0)); 6112 LoadChains.push_back(ScalarLoad.getValue(1)); 6113 } 6114 6115 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 6116 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 6117 6118 return DAG.getMergeValues({Value, NewChain}, SL); 6119 } 6120 6121 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 6122 SelectionDAG &DAG) const { 6123 SDLoc SL(ST); 6124 6125 SDValue Chain = ST->getChain(); 6126 SDValue BasePtr = ST->getBasePtr(); 6127 SDValue Value = ST->getValue(); 6128 EVT StVT = ST->getMemoryVT(); 6129 6130 // The type of the data we want to save 6131 EVT RegVT = Value.getValueType(); 6132 EVT RegSclVT = RegVT.getScalarType(); 6133 6134 // The type of data as saved in memory. 6135 EVT MemSclVT = StVT.getScalarType(); 6136 6137 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 6138 unsigned NumElem = StVT.getVectorNumElements(); 6139 6140 // A vector must always be stored in memory as-is, i.e. without any padding 6141 // between the elements, since various code depend on it, e.g. in the 6142 // handling of a bitcast of a vector type to int, which may be done with a 6143 // vector store followed by an integer load. A vector that does not have 6144 // elements that are byte-sized must therefore be stored as an integer 6145 // built out of the extracted vector elements. 6146 if (!MemSclVT.isByteSized()) { 6147 unsigned NumBits = StVT.getSizeInBits(); 6148 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 6149 6150 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 6151 6152 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6153 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6154 DAG.getConstant(Idx, SL, IdxVT)); 6155 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 6156 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 6157 unsigned ShiftIntoIdx = 6158 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 6159 SDValue ShiftAmount = 6160 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 6161 SDValue ShiftedElt = 6162 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 6163 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 6164 } 6165 6166 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 6167 ST->getAlignment(), ST->getMemOperand()->getFlags(), 6168 ST->getAAInfo()); 6169 } 6170 6171 // Store Stride in bytes 6172 unsigned Stride = MemSclVT.getSizeInBits() / 8; 6173 assert(Stride && "Zero stride!"); 6174 // Extract each of the elements from the original vector and save them into 6175 // memory individually. 6176 SmallVector<SDValue, 8> Stores; 6177 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 6178 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 6179 DAG.getConstant(Idx, SL, IdxVT)); 6180 6181 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 6182 6183 // This scalar TruncStore may be illegal, but we legalize it later. 6184 SDValue Store = DAG.getTruncStore( 6185 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 6186 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 6187 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6188 6189 Stores.push_back(Store); 6190 } 6191 6192 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 6193 } 6194 6195 std::pair<SDValue, SDValue> 6196 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 6197 assert(LD->getAddressingMode() == ISD::UNINDEXED && 6198 "unaligned indexed loads not implemented!"); 6199 SDValue Chain = LD->getChain(); 6200 SDValue Ptr = LD->getBasePtr(); 6201 EVT VT = LD->getValueType(0); 6202 EVT LoadedVT = LD->getMemoryVT(); 6203 SDLoc dl(LD); 6204 auto &MF = DAG.getMachineFunction(); 6205 6206 if (VT.isFloatingPoint() || VT.isVector()) { 6207 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 6208 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 6209 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 6210 LoadedVT.isVector()) { 6211 // Scalarize the load and let the individual components be handled. 6212 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 6213 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 6214 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 6215 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 6216 } 6217 6218 // Expand to a (misaligned) integer load of the same size, 6219 // then bitconvert to floating point or vector. 6220 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 6221 LD->getMemOperand()); 6222 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 6223 if (LoadedVT != VT) 6224 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 6225 ISD::ANY_EXTEND, dl, VT, Result); 6226 6227 return std::make_pair(Result, newLoad.getValue(1)); 6228 } 6229 6230 // Copy the value to a (aligned) stack slot using (unaligned) integer 6231 // loads and stores, then do a (aligned) load from the stack slot. 6232 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 6233 unsigned LoadedBytes = LoadedVT.getStoreSize(); 6234 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6235 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 6236 6237 // Make sure the stack slot is also aligned for the register type. 6238 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 6239 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 6240 SmallVector<SDValue, 8> Stores; 6241 SDValue StackPtr = StackBase; 6242 unsigned Offset = 0; 6243 6244 EVT PtrVT = Ptr.getValueType(); 6245 EVT StackPtrVT = StackPtr.getValueType(); 6246 6247 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6248 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6249 6250 // Do all but one copies using the full register width. 6251 for (unsigned i = 1; i < NumRegs; i++) { 6252 // Load one integer register's worth from the original location. 6253 SDValue Load = DAG.getLoad( 6254 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 6255 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 6256 LD->getAAInfo()); 6257 // Follow the load with a store to the stack slot. Remember the store. 6258 Stores.push_back(DAG.getStore( 6259 Load.getValue(1), dl, Load, StackPtr, 6260 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 6261 // Increment the pointers. 6262 Offset += RegBytes; 6263 6264 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6265 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6266 } 6267 6268 // The last copy may be partial. Do an extending load. 6269 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 6270 8 * (LoadedBytes - Offset)); 6271 SDValue Load = 6272 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 6273 LD->getPointerInfo().getWithOffset(Offset), MemVT, 6274 MinAlign(LD->getAlignment(), Offset), 6275 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6276 // Follow the load with a store to the stack slot. Remember the store. 6277 // On big-endian machines this requires a truncating store to ensure 6278 // that the bits end up in the right place. 6279 Stores.push_back(DAG.getTruncStore( 6280 Load.getValue(1), dl, Load, StackPtr, 6281 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 6282 6283 // The order of the stores doesn't matter - say it with a TokenFactor. 6284 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6285 6286 // Finally, perform the original load only redirected to the stack slot. 6287 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 6288 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 6289 LoadedVT); 6290 6291 // Callers expect a MERGE_VALUES node. 6292 return std::make_pair(Load, TF); 6293 } 6294 6295 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 6296 "Unaligned load of unsupported type."); 6297 6298 // Compute the new VT that is half the size of the old one. This is an 6299 // integer MVT. 6300 unsigned NumBits = LoadedVT.getSizeInBits(); 6301 EVT NewLoadedVT; 6302 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 6303 NumBits >>= 1; 6304 6305 unsigned Alignment = LD->getAlignment(); 6306 unsigned IncrementSize = NumBits / 8; 6307 ISD::LoadExtType HiExtType = LD->getExtensionType(); 6308 6309 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 6310 if (HiExtType == ISD::NON_EXTLOAD) 6311 HiExtType = ISD::ZEXTLOAD; 6312 6313 // Load the value in two parts 6314 SDValue Lo, Hi; 6315 if (DAG.getDataLayout().isLittleEndian()) { 6316 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6317 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6318 LD->getAAInfo()); 6319 6320 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6321 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 6322 LD->getPointerInfo().getWithOffset(IncrementSize), 6323 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6324 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6325 } else { 6326 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 6327 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 6328 LD->getAAInfo()); 6329 6330 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6331 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 6332 LD->getPointerInfo().getWithOffset(IncrementSize), 6333 NewLoadedVT, MinAlign(Alignment, IncrementSize), 6334 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 6335 } 6336 6337 // aggregate the two parts 6338 SDValue ShiftAmount = 6339 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 6340 DAG.getDataLayout())); 6341 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 6342 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 6343 6344 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 6345 Hi.getValue(1)); 6346 6347 return std::make_pair(Result, TF); 6348 } 6349 6350 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 6351 SelectionDAG &DAG) const { 6352 assert(ST->getAddressingMode() == ISD::UNINDEXED && 6353 "unaligned indexed stores not implemented!"); 6354 SDValue Chain = ST->getChain(); 6355 SDValue Ptr = ST->getBasePtr(); 6356 SDValue Val = ST->getValue(); 6357 EVT VT = Val.getValueType(); 6358 int Alignment = ST->getAlignment(); 6359 auto &MF = DAG.getMachineFunction(); 6360 EVT StoreMemVT = ST->getMemoryVT(); 6361 6362 SDLoc dl(ST); 6363 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 6364 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 6365 if (isTypeLegal(intVT)) { 6366 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 6367 StoreMemVT.isVector()) { 6368 // Scalarize the store and let the individual components be handled. 6369 SDValue Result = scalarizeVectorStore(ST, DAG); 6370 return Result; 6371 } 6372 // Expand to a bitconvert of the value to the integer type of the 6373 // same size, then a (misaligned) int store. 6374 // FIXME: Does not handle truncating floating point stores! 6375 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 6376 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 6377 Alignment, ST->getMemOperand()->getFlags()); 6378 return Result; 6379 } 6380 // Do a (aligned) store to a stack slot, then copy from the stack slot 6381 // to the final destination using (unaligned) integer loads and stores. 6382 MVT RegVT = getRegisterType( 6383 *DAG.getContext(), 6384 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 6385 EVT PtrVT = Ptr.getValueType(); 6386 unsigned StoredBytes = StoreMemVT.getStoreSize(); 6387 unsigned RegBytes = RegVT.getSizeInBits() / 8; 6388 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 6389 6390 // Make sure the stack slot is also aligned for the register type. 6391 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 6392 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 6393 6394 // Perform the original store, only redirected to the stack slot. 6395 SDValue Store = DAG.getTruncStore( 6396 Chain, dl, Val, StackPtr, 6397 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 6398 6399 EVT StackPtrVT = StackPtr.getValueType(); 6400 6401 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 6402 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 6403 SmallVector<SDValue, 8> Stores; 6404 unsigned Offset = 0; 6405 6406 // Do all but one copies using the full register width. 6407 for (unsigned i = 1; i < NumRegs; i++) { 6408 // Load one integer register's worth from the stack slot. 6409 SDValue Load = DAG.getLoad( 6410 RegVT, dl, Store, StackPtr, 6411 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 6412 // Store it to the final location. Remember the store. 6413 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 6414 ST->getPointerInfo().getWithOffset(Offset), 6415 MinAlign(ST->getAlignment(), Offset), 6416 ST->getMemOperand()->getFlags())); 6417 // Increment the pointers. 6418 Offset += RegBytes; 6419 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 6420 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 6421 } 6422 6423 // The last store may be partial. Do a truncating store. On big-endian 6424 // machines this requires an extending load from the stack slot to ensure 6425 // that the bits are in the right place. 6426 EVT LoadMemVT = 6427 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 6428 6429 // Load from the stack slot. 6430 SDValue Load = DAG.getExtLoad( 6431 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 6432 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 6433 6434 Stores.push_back( 6435 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 6436 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 6437 MinAlign(ST->getAlignment(), Offset), 6438 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 6439 // The order of the stores doesn't matter - say it with a TokenFactor. 6440 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 6441 return Result; 6442 } 6443 6444 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 6445 "Unaligned store of unknown type."); 6446 // Get the half-size VT 6447 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 6448 int NumBits = NewStoredVT.getSizeInBits(); 6449 int IncrementSize = NumBits / 8; 6450 6451 // Divide the stored value in two parts. 6452 SDValue ShiftAmount = DAG.getConstant( 6453 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 6454 SDValue Lo = Val; 6455 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 6456 6457 // Store the two parts 6458 SDValue Store1, Store2; 6459 Store1 = DAG.getTruncStore(Chain, dl, 6460 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 6461 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 6462 ST->getMemOperand()->getFlags()); 6463 6464 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 6465 Alignment = MinAlign(Alignment, IncrementSize); 6466 Store2 = DAG.getTruncStore( 6467 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 6468 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 6469 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 6470 6471 SDValue Result = 6472 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 6473 return Result; 6474 } 6475 6476 SDValue 6477 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 6478 const SDLoc &DL, EVT DataVT, 6479 SelectionDAG &DAG, 6480 bool IsCompressedMemory) const { 6481 SDValue Increment; 6482 EVT AddrVT = Addr.getValueType(); 6483 EVT MaskVT = Mask.getValueType(); 6484 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 6485 "Incompatible types of Data and Mask"); 6486 if (IsCompressedMemory) { 6487 // Incrementing the pointer according to number of '1's in the mask. 6488 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 6489 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 6490 if (MaskIntVT.getSizeInBits() < 32) { 6491 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 6492 MaskIntVT = MVT::i32; 6493 } 6494 6495 // Count '1's with POPCNT. 6496 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 6497 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 6498 // Scale is an element size in bytes. 6499 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 6500 AddrVT); 6501 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 6502 } else 6503 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 6504 6505 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 6506 } 6507 6508 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 6509 SDValue Idx, 6510 EVT VecVT, 6511 const SDLoc &dl) { 6512 if (isa<ConstantSDNode>(Idx)) 6513 return Idx; 6514 6515 EVT IdxVT = Idx.getValueType(); 6516 unsigned NElts = VecVT.getVectorNumElements(); 6517 if (isPowerOf2_32(NElts)) { 6518 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 6519 Log2_32(NElts)); 6520 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 6521 DAG.getConstant(Imm, dl, IdxVT)); 6522 } 6523 6524 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 6525 DAG.getConstant(NElts - 1, dl, IdxVT)); 6526 } 6527 6528 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 6529 SDValue VecPtr, EVT VecVT, 6530 SDValue Index) const { 6531 SDLoc dl(Index); 6532 // Make sure the index type is big enough to compute in. 6533 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 6534 6535 EVT EltVT = VecVT.getVectorElementType(); 6536 6537 // Calculate the element offset and add it to the pointer. 6538 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 6539 assert(EltSize * 8 == EltVT.getSizeInBits() && 6540 "Converting bits to bytes lost precision"); 6541 6542 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 6543 6544 EVT IdxVT = Index.getValueType(); 6545 6546 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 6547 DAG.getConstant(EltSize, dl, IdxVT)); 6548 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 6549 } 6550 6551 //===----------------------------------------------------------------------===// 6552 // Implementation of Emulated TLS Model 6553 //===----------------------------------------------------------------------===// 6554 6555 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 6556 SelectionDAG &DAG) const { 6557 // Access to address of TLS varialbe xyz is lowered to a function call: 6558 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 6559 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 6560 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 6561 SDLoc dl(GA); 6562 6563 ArgListTy Args; 6564 ArgListEntry Entry; 6565 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 6566 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 6567 StringRef EmuTlsVarName(NameString); 6568 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 6569 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 6570 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 6571 Entry.Ty = VoidPtrType; 6572 Args.push_back(Entry); 6573 6574 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 6575 6576 TargetLowering::CallLoweringInfo CLI(DAG); 6577 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 6578 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 6579 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6580 6581 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 6582 // At last for X86 targets, maybe good for other targets too? 6583 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6584 MFI.setAdjustsStack(true); // Is this only for X86 target? 6585 MFI.setHasCalls(true); 6586 6587 assert((GA->getOffset() == 0) && 6588 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 6589 return CallResult.first; 6590 } 6591 6592 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 6593 SelectionDAG &DAG) const { 6594 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 6595 if (!isCtlzFast()) 6596 return SDValue(); 6597 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 6598 SDLoc dl(Op); 6599 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 6600 if (C->isNullValue() && CC == ISD::SETEQ) { 6601 EVT VT = Op.getOperand(0).getValueType(); 6602 SDValue Zext = Op.getOperand(0); 6603 if (VT.bitsLT(MVT::i32)) { 6604 VT = MVT::i32; 6605 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 6606 } 6607 unsigned Log2b = Log2_32(VT.getSizeInBits()); 6608 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 6609 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 6610 DAG.getConstant(Log2b, dl, MVT::i32)); 6611 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 6612 } 6613 } 6614 return SDValue(); 6615 } 6616 6617 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 6618 unsigned Opcode = Node->getOpcode(); 6619 SDValue LHS = Node->getOperand(0); 6620 SDValue RHS = Node->getOperand(1); 6621 EVT VT = LHS.getValueType(); 6622 SDLoc dl(Node); 6623 6624 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 6625 assert(VT.isInteger() && "Expected operands to be integers"); 6626 6627 // usub.sat(a, b) -> umax(a, b) - b 6628 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 6629 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 6630 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 6631 } 6632 6633 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 6634 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 6635 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 6636 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 6637 } 6638 6639 unsigned OverflowOp; 6640 switch (Opcode) { 6641 case ISD::SADDSAT: 6642 OverflowOp = ISD::SADDO; 6643 break; 6644 case ISD::UADDSAT: 6645 OverflowOp = ISD::UADDO; 6646 break; 6647 case ISD::SSUBSAT: 6648 OverflowOp = ISD::SSUBO; 6649 break; 6650 case ISD::USUBSAT: 6651 OverflowOp = ISD::USUBO; 6652 break; 6653 default: 6654 llvm_unreachable("Expected method to receive signed or unsigned saturation " 6655 "addition or subtraction node."); 6656 } 6657 6658 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 6659 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6660 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 6661 LHS, RHS); 6662 SDValue SumDiff = Result.getValue(0); 6663 SDValue Overflow = Result.getValue(1); 6664 SDValue Zero = DAG.getConstant(0, dl, VT); 6665 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 6666 6667 if (Opcode == ISD::UADDSAT) { 6668 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6669 // (LHS + RHS) | OverflowMask 6670 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6671 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 6672 } 6673 // Overflow ? 0xffff.... : (LHS + RHS) 6674 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 6675 } else if (Opcode == ISD::USUBSAT) { 6676 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 6677 // (LHS - RHS) & ~OverflowMask 6678 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 6679 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 6680 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 6681 } 6682 // Overflow ? 0 : (LHS - RHS) 6683 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 6684 } else { 6685 // SatMax -> Overflow && SumDiff < 0 6686 // SatMin -> Overflow && SumDiff >= 0 6687 APInt MinVal = APInt::getSignedMinValue(BitWidth); 6688 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 6689 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6690 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6691 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 6692 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 6693 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 6694 } 6695 } 6696 6697 SDValue 6698 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 6699 assert((Node->getOpcode() == ISD::SMULFIX || 6700 Node->getOpcode() == ISD::UMULFIX || 6701 Node->getOpcode() == ISD::SMULFIXSAT || 6702 Node->getOpcode() == ISD::UMULFIXSAT) && 6703 "Expected a fixed point multiplication opcode"); 6704 6705 SDLoc dl(Node); 6706 SDValue LHS = Node->getOperand(0); 6707 SDValue RHS = Node->getOperand(1); 6708 EVT VT = LHS.getValueType(); 6709 unsigned Scale = Node->getConstantOperandVal(2); 6710 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 6711 Node->getOpcode() == ISD::UMULFIXSAT); 6712 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 6713 Node->getOpcode() == ISD::SMULFIXSAT); 6714 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6715 unsigned VTSize = VT.getScalarSizeInBits(); 6716 6717 if (!Scale) { 6718 // [us]mul.fix(a, b, 0) -> mul(a, b) 6719 if (!Saturating) { 6720 if (isOperationLegalOrCustom(ISD::MUL, VT)) 6721 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6722 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 6723 SDValue Result = 6724 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6725 SDValue Product = Result.getValue(0); 6726 SDValue Overflow = Result.getValue(1); 6727 SDValue Zero = DAG.getConstant(0, dl, VT); 6728 6729 APInt MinVal = APInt::getSignedMinValue(VTSize); 6730 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 6731 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 6732 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6733 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT); 6734 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin); 6735 return DAG.getSelect(dl, VT, Overflow, Result, Product); 6736 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 6737 SDValue Result = 6738 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 6739 SDValue Product = Result.getValue(0); 6740 SDValue Overflow = Result.getValue(1); 6741 6742 APInt MaxVal = APInt::getMaxValue(VTSize); 6743 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 6744 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 6745 } 6746 } 6747 6748 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 6749 "Expected scale to be less than the number of bits if signed or at " 6750 "most the number of bits if unsigned."); 6751 assert(LHS.getValueType() == RHS.getValueType() && 6752 "Expected both operands to be the same type"); 6753 6754 // Get the upper and lower bits of the result. 6755 SDValue Lo, Hi; 6756 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 6757 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 6758 if (isOperationLegalOrCustom(LoHiOp, VT)) { 6759 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 6760 Lo = Result.getValue(0); 6761 Hi = Result.getValue(1); 6762 } else if (isOperationLegalOrCustom(HiOp, VT)) { 6763 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6764 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 6765 } else if (VT.isVector()) { 6766 return SDValue(); 6767 } else { 6768 report_fatal_error("Unable to expand fixed point multiplication."); 6769 } 6770 6771 if (Scale == VTSize) 6772 // Result is just the top half since we'd be shifting by the width of the 6773 // operand. Overflow impossible so this works for both UMULFIX and 6774 // UMULFIXSAT. 6775 return Hi; 6776 6777 // The result will need to be shifted right by the scale since both operands 6778 // are scaled. The result is given to us in 2 halves, so we only want part of 6779 // both in the result. 6780 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6781 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 6782 DAG.getConstant(Scale, dl, ShiftTy)); 6783 if (!Saturating) 6784 return Result; 6785 6786 if (!Signed) { 6787 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 6788 // widened multiplication) aren't all zeroes. 6789 6790 // Saturate to max if ((Hi >> Scale) != 0), 6791 // which is the same as if (Hi > ((1 << Scale) - 1)) 6792 APInt MaxVal = APInt::getMaxValue(VTSize); 6793 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 6794 dl, VT); 6795 Result = DAG.getSelectCC(dl, Hi, LowMask, 6796 DAG.getConstant(MaxVal, dl, VT), Result, 6797 ISD::SETUGT); 6798 6799 return Result; 6800 } 6801 6802 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 6803 // widened multiplication) aren't all ones or all zeroes. 6804 6805 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 6806 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 6807 6808 if (Scale == 0) { 6809 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 6810 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 6811 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 6812 // Saturated to SatMin if wide product is negative, and SatMax if wide 6813 // product is positive ... 6814 SDValue Zero = DAG.getConstant(0, dl, VT); 6815 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 6816 ISD::SETLT); 6817 // ... but only if we overflowed. 6818 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 6819 } 6820 6821 // We handled Scale==0 above so all the bits to examine is in Hi. 6822 6823 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 6824 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 6825 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 6826 dl, VT); 6827 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 6828 // Saturate to min if (Hi >> (Scale - 1)) < -1), 6829 // which is the same as if (HI < (-1 << (Scale - 1)) 6830 SDValue HighMask = 6831 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 6832 dl, VT); 6833 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 6834 return Result; 6835 } 6836 6837 void TargetLowering::expandUADDSUBO( 6838 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6839 SDLoc dl(Node); 6840 SDValue LHS = Node->getOperand(0); 6841 SDValue RHS = Node->getOperand(1); 6842 bool IsAdd = Node->getOpcode() == ISD::UADDO; 6843 6844 // If ADD/SUBCARRY is legal, use that instead. 6845 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 6846 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 6847 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 6848 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 6849 { LHS, RHS, CarryIn }); 6850 Result = SDValue(NodeCarry.getNode(), 0); 6851 Overflow = SDValue(NodeCarry.getNode(), 1); 6852 return; 6853 } 6854 6855 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6856 LHS.getValueType(), LHS, RHS); 6857 6858 EVT ResultType = Node->getValueType(1); 6859 EVT SetCCType = getSetCCResultType( 6860 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6861 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 6862 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 6863 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6864 } 6865 6866 void TargetLowering::expandSADDSUBO( 6867 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 6868 SDLoc dl(Node); 6869 SDValue LHS = Node->getOperand(0); 6870 SDValue RHS = Node->getOperand(1); 6871 bool IsAdd = Node->getOpcode() == ISD::SADDO; 6872 6873 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 6874 LHS.getValueType(), LHS, RHS); 6875 6876 EVT ResultType = Node->getValueType(1); 6877 EVT OType = getSetCCResultType( 6878 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 6879 6880 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 6881 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 6882 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) { 6883 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 6884 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 6885 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 6886 return; 6887 } 6888 6889 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 6890 6891 // LHSSign -> LHS >= 0 6892 // RHSSign -> RHS >= 0 6893 // SumSign -> Result >= 0 6894 // 6895 // Add: 6896 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 6897 // Sub: 6898 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 6899 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 6900 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 6901 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 6902 IsAdd ? ISD::SETEQ : ISD::SETNE); 6903 6904 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE); 6905 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 6906 6907 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 6908 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType); 6909 } 6910 6911 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 6912 SDValue &Overflow, SelectionDAG &DAG) const { 6913 SDLoc dl(Node); 6914 EVT VT = Node->getValueType(0); 6915 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6916 SDValue LHS = Node->getOperand(0); 6917 SDValue RHS = Node->getOperand(1); 6918 bool isSigned = Node->getOpcode() == ISD::SMULO; 6919 6920 // For power-of-two multiplications we can use a simpler shift expansion. 6921 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 6922 const APInt &C = RHSC->getAPIntValue(); 6923 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 6924 if (C.isPowerOf2()) { 6925 // smulo(x, signed_min) is same as umulo(x, signed_min). 6926 bool UseArithShift = isSigned && !C.isMinSignedValue(); 6927 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6928 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 6929 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 6930 Overflow = DAG.getSetCC(dl, SetCCVT, 6931 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 6932 dl, VT, Result, ShiftAmt), 6933 LHS, ISD::SETNE); 6934 return true; 6935 } 6936 } 6937 6938 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 6939 if (VT.isVector()) 6940 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 6941 VT.getVectorNumElements()); 6942 6943 SDValue BottomHalf; 6944 SDValue TopHalf; 6945 static const unsigned Ops[2][3] = 6946 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 6947 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 6948 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 6949 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 6950 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 6951 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 6952 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 6953 RHS); 6954 TopHalf = BottomHalf.getValue(1); 6955 } else if (isTypeLegal(WideVT)) { 6956 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 6957 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 6958 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 6959 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 6960 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 6961 getShiftAmountTy(WideVT, DAG.getDataLayout())); 6962 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 6963 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 6964 } else { 6965 if (VT.isVector()) 6966 return false; 6967 6968 // We can fall back to a libcall with an illegal type for the MUL if we 6969 // have a libcall big enough. 6970 // Also, we can fall back to a division in some cases, but that's a big 6971 // performance hit in the general case. 6972 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 6973 if (WideVT == MVT::i16) 6974 LC = RTLIB::MUL_I16; 6975 else if (WideVT == MVT::i32) 6976 LC = RTLIB::MUL_I32; 6977 else if (WideVT == MVT::i64) 6978 LC = RTLIB::MUL_I64; 6979 else if (WideVT == MVT::i128) 6980 LC = RTLIB::MUL_I128; 6981 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 6982 6983 SDValue HiLHS; 6984 SDValue HiRHS; 6985 if (isSigned) { 6986 // The high part is obtained by SRA'ing all but one of the bits of low 6987 // part. 6988 unsigned LoSize = VT.getSizeInBits(); 6989 HiLHS = 6990 DAG.getNode(ISD::SRA, dl, VT, LHS, 6991 DAG.getConstant(LoSize - 1, dl, 6992 getPointerTy(DAG.getDataLayout()))); 6993 HiRHS = 6994 DAG.getNode(ISD::SRA, dl, VT, RHS, 6995 DAG.getConstant(LoSize - 1, dl, 6996 getPointerTy(DAG.getDataLayout()))); 6997 } else { 6998 HiLHS = DAG.getConstant(0, dl, VT); 6999 HiRHS = DAG.getConstant(0, dl, VT); 7000 } 7001 7002 // Here we're passing the 2 arguments explicitly as 4 arguments that are 7003 // pre-lowered to the correct types. This all depends upon WideVT not 7004 // being a legal type for the architecture and thus has to be split to 7005 // two arguments. 7006 SDValue Ret; 7007 TargetLowering::MakeLibCallOptions CallOptions; 7008 CallOptions.setSExt(isSigned); 7009 CallOptions.setIsPostTypeLegalization(true); 7010 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 7011 // Halves of WideVT are packed into registers in different order 7012 // depending on platform endianness. This is usually handled by 7013 // the C calling convention, but we can't defer to it in 7014 // the legalizer. 7015 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 7016 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7017 } else { 7018 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 7019 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 7020 } 7021 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 7022 "Ret value is a collection of constituent nodes holding result."); 7023 if (DAG.getDataLayout().isLittleEndian()) { 7024 // Same as above. 7025 BottomHalf = Ret.getOperand(0); 7026 TopHalf = Ret.getOperand(1); 7027 } else { 7028 BottomHalf = Ret.getOperand(1); 7029 TopHalf = Ret.getOperand(0); 7030 } 7031 } 7032 7033 Result = BottomHalf; 7034 if (isSigned) { 7035 SDValue ShiftAmt = DAG.getConstant( 7036 VT.getScalarSizeInBits() - 1, dl, 7037 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 7038 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 7039 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 7040 } else { 7041 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 7042 DAG.getConstant(0, dl, VT), ISD::SETNE); 7043 } 7044 7045 // Truncate the result if SetCC returns a larger type than needed. 7046 EVT RType = Node->getValueType(1); 7047 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 7048 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 7049 7050 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 7051 "Unexpected result type for S/UMULO legalization"); 7052 return true; 7053 } 7054 7055 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 7056 SDLoc dl(Node); 7057 bool NoNaN = Node->getFlags().hasNoNaNs(); 7058 unsigned BaseOpcode = 0; 7059 switch (Node->getOpcode()) { 7060 default: llvm_unreachable("Expected VECREDUCE opcode"); 7061 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break; 7062 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break; 7063 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break; 7064 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break; 7065 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break; 7066 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break; 7067 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break; 7068 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break; 7069 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break; 7070 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break; 7071 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break; 7072 case ISD::VECREDUCE_FMAX: 7073 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM; 7074 break; 7075 case ISD::VECREDUCE_FMIN: 7076 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM; 7077 break; 7078 } 7079 7080 SDValue Op = Node->getOperand(0); 7081 EVT VT = Op.getValueType(); 7082 7083 // Try to use a shuffle reduction for power of two vectors. 7084 if (VT.isPow2VectorType()) { 7085 while (VT.getVectorNumElements() > 1) { 7086 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 7087 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 7088 break; 7089 7090 SDValue Lo, Hi; 7091 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 7092 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 7093 VT = HalfVT; 7094 } 7095 } 7096 7097 EVT EltVT = VT.getVectorElementType(); 7098 unsigned NumElts = VT.getVectorNumElements(); 7099 7100 SmallVector<SDValue, 8> Ops; 7101 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 7102 7103 SDValue Res = Ops[0]; 7104 for (unsigned i = 1; i < NumElts; i++) 7105 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 7106 7107 // Result type may be wider than element type. 7108 if (EltVT != Node->getValueType(0)) 7109 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 7110 return Res; 7111 } 7112