1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLowering class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/CodeGen/Analysis.h" 18 #include "llvm/CodeGen/MachineFrameInfo.h" 19 #include "llvm/CodeGen/MachineFunction.h" 20 #include "llvm/CodeGen/MachineJumpTableInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/MC/MCAsmInfo.h" 27 #include "llvm/MC/MCExpr.h" 28 #include "llvm/Support/CommandLine.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Target/TargetLoweringObjectFile.h" 32 #include "llvm/Target/TargetMachine.h" 33 #include "llvm/Target/TargetRegisterInfo.h" 34 #include "llvm/Target/TargetSubtargetInfo.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 /// Check whether a given call node is in tail position within its function. If 47 /// so, it sets Chain to the input chain of the tail call. 48 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 49 SDValue &Chain) const { 50 const Function *F = DAG.getMachineFunction().getFunction(); 51 52 // Conservatively require the attributes of the call to match those of 53 // the return. Ignore noalias because it doesn't affect the call sequence. 54 AttributeSet CallerAttrs = F->getAttributes(); 55 if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex) 56 .removeAttribute(Attribute::NoAlias).hasAttributes()) 57 return false; 58 59 // It's not safe to eliminate the sign / zero extension of the return value. 60 if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || 61 CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 62 return false; 63 64 // Check if the only use is a function return node. 65 return isUsedByReturnOnly(Node, Chain); 66 } 67 68 /// \brief Set CallLoweringInfo attribute flags based on a call instruction 69 /// and called function attributes. 70 void TargetLowering::ArgListEntry::setAttributes(ImmutableCallSite *CS, 71 unsigned AttrIdx) { 72 isSExt = CS->paramHasAttr(AttrIdx, Attribute::SExt); 73 isZExt = CS->paramHasAttr(AttrIdx, Attribute::ZExt); 74 isInReg = CS->paramHasAttr(AttrIdx, Attribute::InReg); 75 isSRet = CS->paramHasAttr(AttrIdx, Attribute::StructRet); 76 isNest = CS->paramHasAttr(AttrIdx, Attribute::Nest); 77 isByVal = CS->paramHasAttr(AttrIdx, Attribute::ByVal); 78 isInAlloca = CS->paramHasAttr(AttrIdx, Attribute::InAlloca); 79 isReturned = CS->paramHasAttr(AttrIdx, Attribute::Returned); 80 Alignment = CS->getParamAlignment(AttrIdx); 81 } 82 83 /// Generate a libcall taking the given operands as arguments and returning a 84 /// result of type RetVT. 85 std::pair<SDValue, SDValue> 86 TargetLowering::makeLibCall(SelectionDAG &DAG, 87 RTLIB::Libcall LC, EVT RetVT, 88 const SDValue *Ops, unsigned NumOps, 89 bool isSigned, SDLoc dl, 90 bool doesNotReturn, 91 bool isReturnValueUsed) const { 92 TargetLowering::ArgListTy Args; 93 Args.reserve(NumOps); 94 95 TargetLowering::ArgListEntry Entry; 96 for (unsigned i = 0; i != NumOps; ++i) { 97 Entry.Node = Ops[i]; 98 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 99 Entry.isSExt = shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 100 Entry.isZExt = !shouldSignExtendTypeInLibCall(Ops[i].getValueType(), isSigned); 101 Args.push_back(Entry); 102 } 103 if (LC == RTLIB::UNKNOWN_LIBCALL) 104 report_fatal_error("Unsupported library call operation!"); 105 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 106 getPointerTy(DAG.getDataLayout())); 107 108 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 109 TargetLowering::CallLoweringInfo CLI(DAG); 110 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 111 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 112 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 113 .setNoReturn(doesNotReturn).setDiscardResult(!isReturnValueUsed) 114 .setSExtResult(signExtend).setZExtResult(!signExtend); 115 return LowerCallTo(CLI); 116 } 117 118 119 /// SoftenSetCCOperands - Soften the operands of a comparison. This code is 120 /// shared among BR_CC, SELECT_CC, and SETCC handlers. 121 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 122 SDValue &NewLHS, SDValue &NewRHS, 123 ISD::CondCode &CCCode, 124 SDLoc dl) const { 125 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128) 126 && "Unsupported setcc type!"); 127 128 // Expand into one or more soft-fp libcall(s). 129 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 130 switch (CCCode) { 131 case ISD::SETEQ: 132 case ISD::SETOEQ: 133 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 134 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 135 break; 136 case ISD::SETNE: 137 case ISD::SETUNE: 138 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 139 (VT == MVT::f64) ? RTLIB::UNE_F64 : RTLIB::UNE_F128; 140 break; 141 case ISD::SETGE: 142 case ISD::SETOGE: 143 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 144 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 145 break; 146 case ISD::SETLT: 147 case ISD::SETOLT: 148 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 149 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 150 break; 151 case ISD::SETLE: 152 case ISD::SETOLE: 153 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 154 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 155 break; 156 case ISD::SETGT: 157 case ISD::SETOGT: 158 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 159 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 160 break; 161 case ISD::SETUO: 162 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 163 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 164 break; 165 case ISD::SETO: 166 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 167 (VT == MVT::f64) ? RTLIB::O_F64 : RTLIB::O_F128; 168 break; 169 default: 170 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 171 (VT == MVT::f64) ? RTLIB::UO_F64 : RTLIB::UO_F128; 172 switch (CCCode) { 173 case ISD::SETONE: 174 // SETONE = SETOLT | SETOGT 175 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 176 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 177 // Fallthrough 178 case ISD::SETUGT: 179 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 180 (VT == MVT::f64) ? RTLIB::OGT_F64 : RTLIB::OGT_F128; 181 break; 182 case ISD::SETUGE: 183 LC2 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : RTLIB::OGE_F128; 185 break; 186 case ISD::SETULT: 187 LC2 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 188 (VT == MVT::f64) ? RTLIB::OLT_F64 : RTLIB::OLT_F128; 189 break; 190 case ISD::SETULE: 191 LC2 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 192 (VT == MVT::f64) ? RTLIB::OLE_F64 : RTLIB::OLE_F128; 193 break; 194 case ISD::SETUEQ: 195 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 196 (VT == MVT::f64) ? RTLIB::OEQ_F64 : RTLIB::OEQ_F128; 197 break; 198 default: llvm_unreachable("Do not know how to soften this setcc!"); 199 } 200 } 201 202 // Use the target specific return value for comparions lib calls. 203 EVT RetVT = getCmpLibcallReturnType(); 204 SDValue Ops[2] = { NewLHS, NewRHS }; 205 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, 2, false/*sign irrelevant*/, 206 dl).first; 207 NewRHS = DAG.getConstant(0, dl, RetVT); 208 CCCode = getCmpLibcallCC(LC1); 209 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 210 SDValue Tmp = DAG.getNode( 211 ISD::SETCC, dl, 212 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 213 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 214 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, 2, false/*sign irrelevant*/, 215 dl).first; 216 NewLHS = DAG.getNode( 217 ISD::SETCC, dl, 218 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 219 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 220 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 221 NewRHS = SDValue(); 222 } 223 } 224 225 /// getJumpTableEncoding - Return the entry encoding for a jump table in the 226 /// current function. The returned value is a member of the 227 /// MachineJumpTableInfo::JTEntryKind enum. 228 unsigned TargetLowering::getJumpTableEncoding() const { 229 // In non-pic modes, just use the address of a block. 230 if (getTargetMachine().getRelocationModel() != Reloc::PIC_) 231 return MachineJumpTableInfo::EK_BlockAddress; 232 233 // In PIC mode, if the target supports a GPRel32 directive, use it. 234 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 235 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 236 237 // Otherwise, use a label difference. 238 return MachineJumpTableInfo::EK_LabelDifference32; 239 } 240 241 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 242 SelectionDAG &DAG) const { 243 // If our PIC model is GP relative, use the global offset table as the base. 244 unsigned JTEncoding = getJumpTableEncoding(); 245 246 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 247 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 248 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 249 250 return Table; 251 } 252 253 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the 254 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an 255 /// MCExpr. 256 const MCExpr * 257 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 258 unsigned JTI,MCContext &Ctx) const{ 259 // The normal PIC reloc base is the label at the start of the jump table. 260 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 261 } 262 263 bool 264 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 265 // Assume that everything is safe in static mode. 266 if (getTargetMachine().getRelocationModel() == Reloc::Static) 267 return true; 268 269 // In dynamic-no-pic mode, assume that known defined values are safe. 270 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC && 271 GA && GA->getGlobal()->isStrongDefinitionForLinker()) 272 return true; 273 274 // Otherwise assume nothing is safe. 275 return false; 276 } 277 278 //===----------------------------------------------------------------------===// 279 // Optimization Methods 280 //===----------------------------------------------------------------------===// 281 282 /// ShrinkDemandedConstant - Check to see if the specified operand of the 283 /// specified instruction is a constant integer. If so, check to see if there 284 /// are any bits set in the constant that are not demanded. If so, shrink the 285 /// constant and return true. 286 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op, 287 const APInt &Demanded) { 288 SDLoc dl(Op); 289 290 // FIXME: ISD::SELECT, ISD::SELECT_CC 291 switch (Op.getOpcode()) { 292 default: break; 293 case ISD::XOR: 294 case ISD::AND: 295 case ISD::OR: { 296 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 297 if (!C) return false; 298 299 if (Op.getOpcode() == ISD::XOR && 300 (C->getAPIntValue() | (~Demanded)).isAllOnesValue()) 301 return false; 302 303 // if we can expand it to have all bits set, do it 304 if (C->getAPIntValue().intersects(~Demanded)) { 305 EVT VT = Op.getValueType(); 306 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0), 307 DAG.getConstant(Demanded & 308 C->getAPIntValue(), 309 dl, VT)); 310 return CombineTo(Op, New); 311 } 312 313 break; 314 } 315 } 316 317 return false; 318 } 319 320 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the 321 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening 322 /// cast, but it could be generalized for targets with other types of 323 /// implicit widening casts. 324 bool 325 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op, 326 unsigned BitWidth, 327 const APInt &Demanded, 328 SDLoc dl) { 329 assert(Op.getNumOperands() == 2 && 330 "ShrinkDemandedOp only supports binary operators!"); 331 assert(Op.getNode()->getNumValues() == 1 && 332 "ShrinkDemandedOp only supports nodes with one result!"); 333 334 // Early return, as this function cannot handle vector types. 335 if (Op.getValueType().isVector()) 336 return false; 337 338 // Don't do this if the node has another user, which may require the 339 // full value. 340 if (!Op.getNode()->hasOneUse()) 341 return false; 342 343 // Search for the smallest integer type with free casts to and from 344 // Op's type. For expedience, just check power-of-2 integer types. 345 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 346 unsigned DemandedSize = BitWidth - Demanded.countLeadingZeros(); 347 unsigned SmallVTBits = DemandedSize; 348 if (!isPowerOf2_32(SmallVTBits)) 349 SmallVTBits = NextPowerOf2(SmallVTBits); 350 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 351 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 352 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 353 TLI.isZExtFree(SmallVT, Op.getValueType())) { 354 // We found a type with free casts. 355 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT, 356 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 357 Op.getNode()->getOperand(0)), 358 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, 359 Op.getNode()->getOperand(1))); 360 bool NeedZext = DemandedSize > SmallVTBits; 361 SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, 362 dl, Op.getValueType(), X); 363 return CombineTo(Op, Z); 364 } 365 } 366 return false; 367 } 368 369 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the 370 /// DemandedMask bits of the result of Op are ever used downstream. If we can 371 /// use this information to simplify Op, create a new simplified DAG node and 372 /// return true, returning the original and new nodes in Old and New. Otherwise, 373 /// analyze the expression and return a mask of KnownOne and KnownZero bits for 374 /// the expression (used to simplify the caller). The KnownZero/One bits may 375 /// only be accurate for those bits in the DemandedMask. 376 bool TargetLowering::SimplifyDemandedBits(SDValue Op, 377 const APInt &DemandedMask, 378 APInt &KnownZero, 379 APInt &KnownOne, 380 TargetLoweringOpt &TLO, 381 unsigned Depth) const { 382 unsigned BitWidth = DemandedMask.getBitWidth(); 383 assert(Op.getValueType().getScalarType().getSizeInBits() == BitWidth && 384 "Mask size mismatches value type size!"); 385 APInt NewMask = DemandedMask; 386 SDLoc dl(Op); 387 auto &DL = TLO.DAG.getDataLayout(); 388 389 // Don't know anything. 390 KnownZero = KnownOne = APInt(BitWidth, 0); 391 392 // Other users may use these bits. 393 if (!Op.getNode()->hasOneUse()) { 394 if (Depth != 0) { 395 // If not at the root, Just compute the KnownZero/KnownOne bits to 396 // simplify things downstream. 397 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 398 return false; 399 } 400 // If this is the root being simplified, allow it to have multiple uses, 401 // just set the NewMask to all bits. 402 NewMask = APInt::getAllOnesValue(BitWidth); 403 } else if (DemandedMask == 0) { 404 // Not demanding any bits from Op. 405 if (Op.getOpcode() != ISD::UNDEF) 406 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType())); 407 return false; 408 } else if (Depth == 6) { // Limit search depth. 409 return false; 410 } 411 412 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut; 413 switch (Op.getOpcode()) { 414 case ISD::Constant: 415 // We know all of the bits for a constant! 416 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue(); 417 KnownZero = ~KnownOne; 418 return false; // Don't fall through, will infinitely loop. 419 case ISD::AND: 420 // If the RHS is a constant, check to see if the LHS would be zero without 421 // using the bits from the RHS. Below, we use knowledge about the RHS to 422 // simplify the LHS, here we're using information from the LHS to simplify 423 // the RHS. 424 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 425 APInt LHSZero, LHSOne; 426 // Do not increment Depth here; that can cause an infinite loop. 427 TLO.DAG.computeKnownBits(Op.getOperand(0), LHSZero, LHSOne, Depth); 428 // If the LHS already has zeros where RHSC does, this and is dead. 429 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask)) 430 return TLO.CombineTo(Op, Op.getOperand(0)); 431 // If any of the set bits in the RHS are known zero on the LHS, shrink 432 // the constant. 433 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask)) 434 return true; 435 } 436 437 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 438 KnownOne, TLO, Depth+1)) 439 return true; 440 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 441 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask, 442 KnownZero2, KnownOne2, TLO, Depth+1)) 443 return true; 444 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 445 446 // If all of the demanded bits are known one on one side, return the other. 447 // These bits cannot contribute to the result of the 'and'. 448 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 449 return TLO.CombineTo(Op, Op.getOperand(0)); 450 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 451 return TLO.CombineTo(Op, Op.getOperand(1)); 452 // If all of the demanded bits in the inputs are known zeros, return zero. 453 if ((NewMask & (KnownZero|KnownZero2)) == NewMask) 454 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); 455 // If the RHS is a constant, see if we can simplify it. 456 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask)) 457 return true; 458 // If the operation can be done in a smaller type, do so. 459 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 460 return true; 461 462 // Output known-1 bits are only known if set in both the LHS & RHS. 463 KnownOne &= KnownOne2; 464 // Output known-0 are known to be clear if zero in either the LHS | RHS. 465 KnownZero |= KnownZero2; 466 break; 467 case ISD::OR: 468 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 469 KnownOne, TLO, Depth+1)) 470 return true; 471 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 472 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask, 473 KnownZero2, KnownOne2, TLO, Depth+1)) 474 return true; 475 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 476 477 // If all of the demanded bits are known zero on one side, return the other. 478 // These bits cannot contribute to the result of the 'or'. 479 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask)) 480 return TLO.CombineTo(Op, Op.getOperand(0)); 481 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask)) 482 return TLO.CombineTo(Op, Op.getOperand(1)); 483 // If all of the potentially set bits on one side are known to be set on 484 // the other side, just use the 'other' side. 485 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask)) 486 return TLO.CombineTo(Op, Op.getOperand(0)); 487 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) 488 return TLO.CombineTo(Op, Op.getOperand(1)); 489 // If the RHS is a constant, see if we can simplify it. 490 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 491 return true; 492 // If the operation can be done in a smaller type, do so. 493 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 494 return true; 495 496 // Output known-0 bits are only known if clear in both the LHS & RHS. 497 KnownZero &= KnownZero2; 498 // Output known-1 are known to be set if set in either the LHS | RHS. 499 KnownOne |= KnownOne2; 500 break; 501 case ISD::XOR: 502 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero, 503 KnownOne, TLO, Depth+1)) 504 return true; 505 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 506 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2, 507 KnownOne2, TLO, Depth+1)) 508 return true; 509 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 510 511 // If all of the demanded bits are known zero on one side, return the other. 512 // These bits cannot contribute to the result of the 'xor'. 513 if ((KnownZero & NewMask) == NewMask) 514 return TLO.CombineTo(Op, Op.getOperand(0)); 515 if ((KnownZero2 & NewMask) == NewMask) 516 return TLO.CombineTo(Op, Op.getOperand(1)); 517 // If the operation can be done in a smaller type, do so. 518 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 519 return true; 520 521 // If all of the unknown bits are known to be zero on one side or the other 522 // (but not both) turn this into an *inclusive* or. 523 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 524 if ((NewMask & ~KnownZero & ~KnownZero2) == 0) 525 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(), 526 Op.getOperand(0), 527 Op.getOperand(1))); 528 529 // Output known-0 bits are known if clear or set in both the LHS & RHS. 530 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 531 // Output known-1 are known to be set if set in only one of the LHS, RHS. 532 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 533 534 // If all of the demanded bits on one side are known, and all of the set 535 // bits on that side are also known to be set on the other side, turn this 536 // into an AND, as we know the bits will be cleared. 537 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 538 // NB: it is okay if more bits are known than are requested 539 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known on one side 540 if (KnownOne == KnownOne2) { // set bits are the same on both sides 541 EVT VT = Op.getValueType(); 542 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, dl, VT); 543 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, 544 Op.getOperand(0), ANDC)); 545 } 546 } 547 548 // If the RHS is a constant, see if we can simplify it. 549 // for XOR, we prefer to force bits to 1 if they will make a -1. 550 // if we can't force bits, try to shrink constant 551 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 552 APInt Expanded = C->getAPIntValue() | (~NewMask); 553 // if we can expand it to have all bits set, do it 554 if (Expanded.isAllOnesValue()) { 555 if (Expanded != C->getAPIntValue()) { 556 EVT VT = Op.getValueType(); 557 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0), 558 TLO.DAG.getConstant(Expanded, dl, VT)); 559 return TLO.CombineTo(Op, New); 560 } 561 // if it already has all the bits set, nothing to change 562 // but don't shrink either! 563 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) { 564 return true; 565 } 566 } 567 568 KnownZero = KnownZeroOut; 569 KnownOne = KnownOneOut; 570 break; 571 case ISD::SELECT: 572 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero, 573 KnownOne, TLO, Depth+1)) 574 return true; 575 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2, 576 KnownOne2, TLO, Depth+1)) 577 return true; 578 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 579 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 580 581 // If the operands are constants, see if we can simplify them. 582 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 583 return true; 584 585 // Only known if known in both the LHS and RHS. 586 KnownOne &= KnownOne2; 587 KnownZero &= KnownZero2; 588 break; 589 case ISD::SELECT_CC: 590 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero, 591 KnownOne, TLO, Depth+1)) 592 return true; 593 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2, 594 KnownOne2, TLO, Depth+1)) 595 return true; 596 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 597 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 598 599 // If the operands are constants, see if we can simplify them. 600 if (TLO.ShrinkDemandedConstant(Op, NewMask)) 601 return true; 602 603 // Only known if known in both the LHS and RHS. 604 KnownOne &= KnownOne2; 605 KnownZero &= KnownZero2; 606 break; 607 case ISD::SHL: 608 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 609 unsigned ShAmt = SA->getZExtValue(); 610 SDValue InOp = Op.getOperand(0); 611 612 // If the shift count is an invalid immediate, don't do anything. 613 if (ShAmt >= BitWidth) 614 break; 615 616 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 617 // single shift. We can do this if the bottom bits (which are shifted 618 // out) are never demanded. 619 if (InOp.getOpcode() == ISD::SRL && 620 isa<ConstantSDNode>(InOp.getOperand(1))) { 621 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 622 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 623 unsigned Opc = ISD::SHL; 624 int Diff = ShAmt-C1; 625 if (Diff < 0) { 626 Diff = -Diff; 627 Opc = ISD::SRL; 628 } 629 630 SDValue NewSA = 631 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 632 EVT VT = Op.getValueType(); 633 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 634 InOp.getOperand(0), NewSA)); 635 } 636 } 637 638 if (SimplifyDemandedBits(InOp, NewMask.lshr(ShAmt), 639 KnownZero, KnownOne, TLO, Depth+1)) 640 return true; 641 642 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 643 // are not demanded. This will likely allow the anyext to be folded away. 644 if (InOp.getNode()->getOpcode() == ISD::ANY_EXTEND) { 645 SDValue InnerOp = InOp.getNode()->getOperand(0); 646 EVT InnerVT = InnerOp.getValueType(); 647 unsigned InnerBits = InnerVT.getSizeInBits(); 648 if (ShAmt < InnerBits && NewMask.lshr(InnerBits) == 0 && 649 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 650 EVT ShTy = getShiftAmountTy(InnerVT, DL); 651 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 652 ShTy = InnerVT; 653 SDValue NarrowShl = 654 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 655 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 656 return 657 TLO.CombineTo(Op, 658 TLO.DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), 659 NarrowShl)); 660 } 661 // Repeat the SHL optimization above in cases where an extension 662 // intervenes: (shl (anyext (shr x, c1)), c2) to 663 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 664 // aren't demanded (as above) and that the shifted upper c1 bits of 665 // x aren't demanded. 666 if (InOp.hasOneUse() && 667 InnerOp.getOpcode() == ISD::SRL && 668 InnerOp.hasOneUse() && 669 isa<ConstantSDNode>(InnerOp.getOperand(1))) { 670 uint64_t InnerShAmt = cast<ConstantSDNode>(InnerOp.getOperand(1)) 671 ->getZExtValue(); 672 if (InnerShAmt < ShAmt && 673 InnerShAmt < InnerBits && 674 NewMask.lshr(InnerBits - InnerShAmt + ShAmt) == 0 && 675 NewMask.trunc(ShAmt) == 0) { 676 SDValue NewSA = 677 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 678 Op.getOperand(1).getValueType()); 679 EVT VT = Op.getValueType(); 680 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 681 InnerOp.getOperand(0)); 682 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, 683 NewExt, NewSA)); 684 } 685 } 686 } 687 688 KnownZero <<= SA->getZExtValue(); 689 KnownOne <<= SA->getZExtValue(); 690 // low bits known zero. 691 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue()); 692 } 693 break; 694 case ISD::SRL: 695 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 696 EVT VT = Op.getValueType(); 697 unsigned ShAmt = SA->getZExtValue(); 698 unsigned VTSize = VT.getSizeInBits(); 699 SDValue InOp = Op.getOperand(0); 700 701 // If the shift count is an invalid immediate, don't do anything. 702 if (ShAmt >= BitWidth) 703 break; 704 705 APInt InDemandedMask = (NewMask << ShAmt); 706 707 // If the shift is exact, then it does demand the low bits (and knows that 708 // they are zero). 709 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 710 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 711 712 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 713 // single shift. We can do this if the top bits (which are shifted out) 714 // are never demanded. 715 if (InOp.getOpcode() == ISD::SHL && 716 isa<ConstantSDNode>(InOp.getOperand(1))) { 717 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) { 718 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue(); 719 unsigned Opc = ISD::SRL; 720 int Diff = ShAmt-C1; 721 if (Diff < 0) { 722 Diff = -Diff; 723 Opc = ISD::SHL; 724 } 725 726 SDValue NewSA = 727 TLO.DAG.getConstant(Diff, dl, Op.getOperand(1).getValueType()); 728 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, 729 InOp.getOperand(0), NewSA)); 730 } 731 } 732 733 // Compute the new bits that are at the top now. 734 if (SimplifyDemandedBits(InOp, InDemandedMask, 735 KnownZero, KnownOne, TLO, Depth+1)) 736 return true; 737 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 738 KnownZero = KnownZero.lshr(ShAmt); 739 KnownOne = KnownOne.lshr(ShAmt); 740 741 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 742 KnownZero |= HighBits; // High bits known zero. 743 } 744 break; 745 case ISD::SRA: 746 // If this is an arithmetic shift right and only the low-bit is set, we can 747 // always convert this into a logical shr, even if the shift amount is 748 // variable. The low bit of the shift cannot be an input sign bit unless 749 // the shift amount is >= the size of the datatype, which is undefined. 750 if (NewMask == 1) 751 return TLO.CombineTo(Op, 752 TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(), 753 Op.getOperand(0), Op.getOperand(1))); 754 755 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 756 EVT VT = Op.getValueType(); 757 unsigned ShAmt = SA->getZExtValue(); 758 759 // If the shift count is an invalid immediate, don't do anything. 760 if (ShAmt >= BitWidth) 761 break; 762 763 APInt InDemandedMask = (NewMask << ShAmt); 764 765 // If the shift is exact, then it does demand the low bits (and knows that 766 // they are zero). 767 if (cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()) 768 InDemandedMask |= APInt::getLowBitsSet(BitWidth, ShAmt); 769 770 // If any of the demanded bits are produced by the sign extension, we also 771 // demand the input sign bit. 772 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt); 773 if (HighBits.intersects(NewMask)) 774 InDemandedMask |= APInt::getSignBit(VT.getScalarType().getSizeInBits()); 775 776 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask, 777 KnownZero, KnownOne, TLO, Depth+1)) 778 return true; 779 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 780 KnownZero = KnownZero.lshr(ShAmt); 781 KnownOne = KnownOne.lshr(ShAmt); 782 783 // Handle the sign bit, adjusted to where it is now in the mask. 784 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt); 785 786 // If the input sign bit is known to be zero, or if none of the top bits 787 // are demanded, turn this into an unsigned shift right. 788 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) { 789 SDNodeFlags Flags; 790 Flags.setExact(cast<BinaryWithFlagsSDNode>(Op)->Flags.hasExact()); 791 return TLO.CombineTo(Op, 792 TLO.DAG.getNode(ISD::SRL, dl, VT, Op.getOperand(0), 793 Op.getOperand(1), &Flags)); 794 } 795 796 int Log2 = NewMask.exactLogBase2(); 797 if (Log2 >= 0) { 798 // The bit must come from the sign. 799 SDValue NewSA = 800 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, 801 Op.getOperand(1).getValueType()); 802 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, 803 Op.getOperand(0), NewSA)); 804 } 805 806 if (KnownOne.intersects(SignBit)) 807 // New bits are known one. 808 KnownOne |= HighBits; 809 } 810 break; 811 case ISD::SIGN_EXTEND_INREG: { 812 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 813 814 APInt MsbMask = APInt::getHighBitsSet(BitWidth, 1); 815 // If we only care about the highest bit, don't bother shifting right. 816 if (MsbMask == NewMask) { 817 unsigned ShAmt = ExVT.getScalarType().getSizeInBits(); 818 SDValue InOp = Op.getOperand(0); 819 unsigned VTBits = Op->getValueType(0).getScalarType().getSizeInBits(); 820 bool AlreadySignExtended = 821 TLO.DAG.ComputeNumSignBits(InOp) >= VTBits-ShAmt+1; 822 // However if the input is already sign extended we expect the sign 823 // extension to be dropped altogether later and do not simplify. 824 if (!AlreadySignExtended) { 825 // Compute the correct shift amount type, which must be getShiftAmountTy 826 // for scalar types after legalization. 827 EVT ShiftAmtTy = Op.getValueType(); 828 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 829 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 830 831 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ShAmt, dl, 832 ShiftAmtTy); 833 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 834 Op.getValueType(), InOp, 835 ShiftAmt)); 836 } 837 } 838 839 // Sign extension. Compute the demanded bits in the result that are not 840 // present in the input. 841 APInt NewBits = 842 APInt::getHighBitsSet(BitWidth, 843 BitWidth - ExVT.getScalarType().getSizeInBits()); 844 845 // If none of the extended bits are demanded, eliminate the sextinreg. 846 if ((NewBits & NewMask) == 0) 847 return TLO.CombineTo(Op, Op.getOperand(0)); 848 849 APInt InSignBit = 850 APInt::getSignBit(ExVT.getScalarType().getSizeInBits()).zext(BitWidth); 851 APInt InputDemandedBits = 852 APInt::getLowBitsSet(BitWidth, 853 ExVT.getScalarType().getSizeInBits()) & 854 NewMask; 855 856 // Since the sign extended bits are demanded, we know that the sign 857 // bit is demanded. 858 InputDemandedBits |= InSignBit; 859 860 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits, 861 KnownZero, KnownOne, TLO, Depth+1)) 862 return true; 863 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 864 865 // If the sign bit of the input is known set or clear, then we know the 866 // top bits of the result. 867 868 // If the input sign bit is known zero, convert this into a zero extension. 869 if (KnownZero.intersects(InSignBit)) 870 return TLO.CombineTo(Op, 871 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,ExVT)); 872 873 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set 874 KnownOne |= NewBits; 875 KnownZero &= ~NewBits; 876 } else { // Input sign bit unknown 877 KnownZero &= ~NewBits; 878 KnownOne &= ~NewBits; 879 } 880 break; 881 } 882 case ISD::BUILD_PAIR: { 883 EVT HalfVT = Op.getOperand(0).getValueType(); 884 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 885 886 APInt MaskLo = NewMask.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 887 APInt MaskHi = NewMask.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 888 889 APInt KnownZeroLo, KnownOneLo; 890 APInt KnownZeroHi, KnownOneHi; 891 892 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownZeroLo, 893 KnownOneLo, TLO, Depth + 1)) 894 return true; 895 896 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownZeroHi, 897 KnownOneHi, TLO, Depth + 1)) 898 return true; 899 900 KnownZero = KnownZeroLo.zext(BitWidth) | 901 KnownZeroHi.zext(BitWidth).shl(HalfBitWidth); 902 903 KnownOne = KnownOneLo.zext(BitWidth) | 904 KnownOneHi.zext(BitWidth).shl(HalfBitWidth); 905 break; 906 } 907 case ISD::ZERO_EXTEND: { 908 unsigned OperandBitWidth = 909 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 910 APInt InMask = NewMask.trunc(OperandBitWidth); 911 912 // If none of the top bits are demanded, convert this into an any_extend. 913 APInt NewBits = 914 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask; 915 if (!NewBits.intersects(NewMask)) 916 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 917 Op.getValueType(), 918 Op.getOperand(0))); 919 920 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 921 KnownZero, KnownOne, TLO, Depth+1)) 922 return true; 923 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 924 KnownZero = KnownZero.zext(BitWidth); 925 KnownOne = KnownOne.zext(BitWidth); 926 KnownZero |= NewBits; 927 break; 928 } 929 case ISD::SIGN_EXTEND: { 930 EVT InVT = Op.getOperand(0).getValueType(); 931 unsigned InBits = InVT.getScalarType().getSizeInBits(); 932 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits); 933 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits); 934 APInt NewBits = ~InMask & NewMask; 935 936 // If none of the top bits are demanded, convert this into an any_extend. 937 if (NewBits == 0) 938 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl, 939 Op.getValueType(), 940 Op.getOperand(0))); 941 942 // Since some of the sign extended bits are demanded, we know that the sign 943 // bit is demanded. 944 APInt InDemandedBits = InMask & NewMask; 945 InDemandedBits |= InSignBit; 946 InDemandedBits = InDemandedBits.trunc(InBits); 947 948 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero, 949 KnownOne, TLO, Depth+1)) 950 return true; 951 KnownZero = KnownZero.zext(BitWidth); 952 KnownOne = KnownOne.zext(BitWidth); 953 954 // If the sign bit is known zero, convert this to a zero extend. 955 if (KnownZero.intersects(InSignBit)) 956 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, 957 Op.getValueType(), 958 Op.getOperand(0))); 959 960 // If the sign bit is known one, the top bits match. 961 if (KnownOne.intersects(InSignBit)) { 962 KnownOne |= NewBits; 963 assert((KnownZero & NewBits) == 0); 964 } else { // Otherwise, top bits aren't known. 965 assert((KnownOne & NewBits) == 0); 966 assert((KnownZero & NewBits) == 0); 967 } 968 break; 969 } 970 case ISD::ANY_EXTEND: { 971 unsigned OperandBitWidth = 972 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 973 APInt InMask = NewMask.trunc(OperandBitWidth); 974 if (SimplifyDemandedBits(Op.getOperand(0), InMask, 975 KnownZero, KnownOne, TLO, Depth+1)) 976 return true; 977 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 978 KnownZero = KnownZero.zext(BitWidth); 979 KnownOne = KnownOne.zext(BitWidth); 980 break; 981 } 982 case ISD::TRUNCATE: { 983 // Simplify the input, using demanded bit information, and compute the known 984 // zero/one bits live out. 985 unsigned OperandBitWidth = 986 Op.getOperand(0).getValueType().getScalarType().getSizeInBits(); 987 APInt TruncMask = NewMask.zext(OperandBitWidth); 988 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask, 989 KnownZero, KnownOne, TLO, Depth+1)) 990 return true; 991 KnownZero = KnownZero.trunc(BitWidth); 992 KnownOne = KnownOne.trunc(BitWidth); 993 994 // If the input is only used by this truncate, see if we can shrink it based 995 // on the known demanded bits. 996 if (Op.getOperand(0).getNode()->hasOneUse()) { 997 SDValue In = Op.getOperand(0); 998 switch (In.getOpcode()) { 999 default: break; 1000 case ISD::SRL: 1001 // Shrink SRL by a constant if none of the high bits shifted in are 1002 // demanded. 1003 if (TLO.LegalTypes() && 1004 !isTypeDesirableForOp(ISD::SRL, Op.getValueType())) 1005 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1006 // undesirable. 1007 break; 1008 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1)); 1009 if (!ShAmt) 1010 break; 1011 SDValue Shift = In.getOperand(1); 1012 if (TLO.LegalTypes()) { 1013 uint64_t ShVal = ShAmt->getZExtValue(); 1014 Shift = TLO.DAG.getConstant(ShVal, dl, 1015 getShiftAmountTy(Op.getValueType(), DL)); 1016 } 1017 1018 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1019 OperandBitWidth - BitWidth); 1020 HighBits = HighBits.lshr(ShAmt->getZExtValue()).trunc(BitWidth); 1021 1022 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) { 1023 // None of the shifted in bits are needed. Add a truncate of the 1024 // shift input, then shift it. 1025 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl, 1026 Op.getValueType(), 1027 In.getOperand(0)); 1028 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, 1029 Op.getValueType(), 1030 NewTrunc, 1031 Shift)); 1032 } 1033 break; 1034 } 1035 } 1036 1037 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1038 break; 1039 } 1040 case ISD::AssertZext: { 1041 // AssertZext demands all of the high bits, plus any of the low bits 1042 // demanded by its users. 1043 EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1044 APInt InMask = APInt::getLowBitsSet(BitWidth, 1045 VT.getSizeInBits()); 1046 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | NewMask, 1047 KnownZero, KnownOne, TLO, Depth+1)) 1048 return true; 1049 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1050 1051 KnownZero |= ~InMask & NewMask; 1052 break; 1053 } 1054 case ISD::BITCAST: 1055 // If this is an FP->Int bitcast and if the sign bit is the only 1056 // thing demanded, turn this into a FGETSIGN. 1057 if (!TLO.LegalOperations() && 1058 !Op.getValueType().isVector() && 1059 !Op.getOperand(0).getValueType().isVector() && 1060 NewMask == APInt::getSignBit(Op.getValueType().getSizeInBits()) && 1061 Op.getOperand(0).getValueType().isFloatingPoint()) { 1062 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, Op.getValueType()); 1063 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1064 if ((OpVTLegal || i32Legal) && Op.getValueType().isSimple()) { 1065 EVT Ty = OpVTLegal ? Op.getValueType() : MVT::i32; 1066 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1067 // place. We expect the SHL to be eliminated by other optimizations. 1068 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Op.getOperand(0)); 1069 unsigned OpVTSizeInBits = Op.getValueType().getSizeInBits(); 1070 if (!OpVTLegal && OpVTSizeInBits > 32) 1071 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), Sign); 1072 unsigned ShVal = Op.getValueType().getSizeInBits()-1; 1073 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, Op.getValueType()); 1074 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, 1075 Op.getValueType(), 1076 Sign, ShAmt)); 1077 } 1078 } 1079 break; 1080 case ISD::ADD: 1081 case ISD::MUL: 1082 case ISD::SUB: { 1083 // Add, Sub, and Mul don't demand any bits in positions beyond that 1084 // of the highest bit demanded of them. 1085 APInt LoMask = APInt::getLowBitsSet(BitWidth, 1086 BitWidth - NewMask.countLeadingZeros()); 1087 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2, 1088 KnownOne2, TLO, Depth+1)) 1089 return true; 1090 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, 1091 KnownOne2, TLO, Depth+1)) 1092 return true; 1093 // See if the operation should be performed at a smaller bit width. 1094 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) 1095 return true; 1096 } 1097 // FALL THROUGH 1098 default: 1099 // Just use computeKnownBits to compute output bits. 1100 TLO.DAG.computeKnownBits(Op, KnownZero, KnownOne, Depth); 1101 break; 1102 } 1103 1104 // If we know the value of all of the demanded bits, return this as a 1105 // constant. 1106 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { 1107 // Avoid folding to a constant if any OpaqueConstant is involved. 1108 const SDNode *N = Op.getNode(); 1109 for (SDNodeIterator I = SDNodeIterator::begin(N), 1110 E = SDNodeIterator::end(N); I != E; ++I) { 1111 SDNode *Op = *I; 1112 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1113 if (C->isOpaque()) 1114 return false; 1115 } 1116 return TLO.CombineTo(Op, 1117 TLO.DAG.getConstant(KnownOne, dl, Op.getValueType())); 1118 } 1119 1120 return false; 1121 } 1122 1123 /// computeKnownBitsForTargetNode - Determine which of the bits specified 1124 /// in Mask are known to be either zero or one and return them in the 1125 /// KnownZero/KnownOne bitsets. 1126 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1127 APInt &KnownZero, 1128 APInt &KnownOne, 1129 const SelectionDAG &DAG, 1130 unsigned Depth) const { 1131 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1132 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1133 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1134 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1135 "Should use MaskedValueIsZero if you don't know whether Op" 1136 " is a target node!"); 1137 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); 1138 } 1139 1140 /// ComputeNumSignBitsForTargetNode - This method can be implemented by 1141 /// targets that want to expose additional information about sign bits to the 1142 /// DAG Combiner. 1143 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1144 const SelectionDAG &, 1145 unsigned Depth) const { 1146 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1147 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1148 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1149 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1150 "Should use ComputeNumSignBits if you don't know whether Op" 1151 " is a target node!"); 1152 return 1; 1153 } 1154 1155 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly 1156 /// one bit set. This differs from computeKnownBits in that it doesn't need to 1157 /// determine which bit is set. 1158 /// 1159 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) { 1160 // A left-shift of a constant one will have exactly one bit set, because 1161 // shifting the bit off the end is undefined. 1162 if (Val.getOpcode() == ISD::SHL) 1163 if (ConstantSDNode *C = 1164 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1165 if (C->getAPIntValue() == 1) 1166 return true; 1167 1168 // Similarly, a right-shift of a constant sign-bit will have exactly 1169 // one bit set. 1170 if (Val.getOpcode() == ISD::SRL) 1171 if (ConstantSDNode *C = 1172 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0))) 1173 if (C->getAPIntValue().isSignBit()) 1174 return true; 1175 1176 // More could be done here, though the above checks are enough 1177 // to handle some common cases. 1178 1179 // Fall back to computeKnownBits to catch other known cases. 1180 EVT OpVT = Val.getValueType(); 1181 unsigned BitWidth = OpVT.getScalarType().getSizeInBits(); 1182 APInt KnownZero, KnownOne; 1183 DAG.computeKnownBits(Val, KnownZero, KnownOne); 1184 return (KnownZero.countPopulation() == BitWidth - 1) && 1185 (KnownOne.countPopulation() == 1); 1186 } 1187 1188 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1189 if (!N) 1190 return false; 1191 1192 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1193 if (!CN) { 1194 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1195 if (!BV) 1196 return false; 1197 1198 BitVector UndefElements; 1199 CN = BV->getConstantSplatNode(&UndefElements); 1200 // Only interested in constant splats, and we don't try to handle undef 1201 // elements in identifying boolean constants. 1202 if (!CN || UndefElements.none()) 1203 return false; 1204 } 1205 1206 switch (getBooleanContents(N->getValueType(0))) { 1207 case UndefinedBooleanContent: 1208 return CN->getAPIntValue()[0]; 1209 case ZeroOrOneBooleanContent: 1210 return CN->isOne(); 1211 case ZeroOrNegativeOneBooleanContent: 1212 return CN->isAllOnesValue(); 1213 } 1214 1215 llvm_unreachable("Invalid boolean contents"); 1216 } 1217 1218 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 1219 if (!N) 1220 return false; 1221 1222 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 1223 if (!CN) { 1224 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 1225 if (!BV) 1226 return false; 1227 1228 BitVector UndefElements; 1229 CN = BV->getConstantSplatNode(&UndefElements); 1230 // Only interested in constant splats, and we don't try to handle undef 1231 // elements in identifying boolean constants. 1232 if (!CN || UndefElements.none()) 1233 return false; 1234 } 1235 1236 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 1237 return !CN->getAPIntValue()[0]; 1238 1239 return CN->isNullValue(); 1240 } 1241 1242 /// SimplifySetCC - Try to simplify a setcc built with the specified operands 1243 /// and cc. If it is unable to simplify it, return a null SDValue. 1244 SDValue 1245 TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 1246 ISD::CondCode Cond, bool foldBooleans, 1247 DAGCombinerInfo &DCI, SDLoc dl) const { 1248 SelectionDAG &DAG = DCI.DAG; 1249 1250 // These setcc operations always fold. 1251 switch (Cond) { 1252 default: break; 1253 case ISD::SETFALSE: 1254 case ISD::SETFALSE2: return DAG.getConstant(0, dl, VT); 1255 case ISD::SETTRUE: 1256 case ISD::SETTRUE2: { 1257 TargetLowering::BooleanContent Cnt = 1258 getBooleanContents(N0->getValueType(0)); 1259 return DAG.getConstant( 1260 Cnt == TargetLowering::ZeroOrNegativeOneBooleanContent ? -1ULL : 1, dl, 1261 VT); 1262 } 1263 } 1264 1265 // Ensure that the constant occurs on the RHS, and fold constant 1266 // comparisons. 1267 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 1268 if (isa<ConstantSDNode>(N0.getNode()) && 1269 (DCI.isBeforeLegalizeOps() || 1270 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 1271 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 1272 1273 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 1274 const APInt &C1 = N1C->getAPIntValue(); 1275 1276 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 1277 // equality comparison, then we're just comparing whether X itself is 1278 // zero. 1279 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) && 1280 N0.getOperand(0).getOpcode() == ISD::CTLZ && 1281 N0.getOperand(1).getOpcode() == ISD::Constant) { 1282 const APInt &ShAmt 1283 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1284 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1285 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) { 1286 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 1287 // (srl (ctlz x), 5) == 0 -> X != 0 1288 // (srl (ctlz x), 5) != 1 -> X != 0 1289 Cond = ISD::SETNE; 1290 } else { 1291 // (srl (ctlz x), 5) != 0 -> X == 0 1292 // (srl (ctlz x), 5) == 1 -> X == 0 1293 Cond = ISD::SETEQ; 1294 } 1295 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 1296 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 1297 Zero, Cond); 1298 } 1299 } 1300 1301 SDValue CTPOP = N0; 1302 // Look through truncs that don't change the value of a ctpop. 1303 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 1304 CTPOP = N0.getOperand(0); 1305 1306 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 1307 (N0 == CTPOP || N0.getValueType().getSizeInBits() > 1308 Log2_32_Ceil(CTPOP.getValueType().getSizeInBits()))) { 1309 EVT CTVT = CTPOP.getValueType(); 1310 SDValue CTOp = CTPOP.getOperand(0); 1311 1312 // (ctpop x) u< 2 -> (x & x-1) == 0 1313 // (ctpop x) u> 1 -> (x & x-1) != 0 1314 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 1315 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 1316 DAG.getConstant(1, dl, CTVT)); 1317 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 1318 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 1319 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 1320 } 1321 1322 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 1323 } 1324 1325 // (zext x) == C --> x == (trunc C) 1326 // (sext x) == C --> x == (trunc C) 1327 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1328 DCI.isBeforeLegalize() && N0->hasOneUse()) { 1329 unsigned MinBits = N0.getValueSizeInBits(); 1330 SDValue PreExt; 1331 bool Signed = false; 1332 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 1333 // ZExt 1334 MinBits = N0->getOperand(0).getValueSizeInBits(); 1335 PreExt = N0->getOperand(0); 1336 } else if (N0->getOpcode() == ISD::AND) { 1337 // DAGCombine turns costly ZExts into ANDs 1338 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 1339 if ((C->getAPIntValue()+1).isPowerOf2()) { 1340 MinBits = C->getAPIntValue().countTrailingOnes(); 1341 PreExt = N0->getOperand(0); 1342 } 1343 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 1344 // SExt 1345 MinBits = N0->getOperand(0).getValueSizeInBits(); 1346 PreExt = N0->getOperand(0); 1347 Signed = true; 1348 } else if (LoadSDNode *LN0 = dyn_cast<LoadSDNode>(N0)) { 1349 // ZEXTLOAD / SEXTLOAD 1350 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 1351 MinBits = LN0->getMemoryVT().getSizeInBits(); 1352 PreExt = N0; 1353 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 1354 Signed = true; 1355 MinBits = LN0->getMemoryVT().getSizeInBits(); 1356 PreExt = N0; 1357 } 1358 } 1359 1360 // Figure out how many bits we need to preserve this constant. 1361 unsigned ReqdBits = Signed ? 1362 C1.getBitWidth() - C1.getNumSignBits() + 1 : 1363 C1.getActiveBits(); 1364 1365 // Make sure we're not losing bits from the constant. 1366 if (MinBits > 0 && 1367 MinBits < C1.getBitWidth() && 1368 MinBits >= ReqdBits) { 1369 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 1370 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 1371 // Will get folded away. 1372 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 1373 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 1374 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 1375 } 1376 } 1377 } 1378 1379 // If the LHS is '(and load, const)', the RHS is 0, 1380 // the test is for equality or unsigned, and all 1 bits of the const are 1381 // in the same partial word, see if we can shorten the load. 1382 if (DCI.isBeforeLegalize() && 1383 !ISD::isSignedIntSetCC(Cond) && 1384 N0.getOpcode() == ISD::AND && C1 == 0 && 1385 N0.getNode()->hasOneUse() && 1386 isa<LoadSDNode>(N0.getOperand(0)) && 1387 N0.getOperand(0).getNode()->hasOneUse() && 1388 isa<ConstantSDNode>(N0.getOperand(1))) { 1389 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 1390 APInt bestMask; 1391 unsigned bestWidth = 0, bestOffset = 0; 1392 if (!Lod->isVolatile() && Lod->isUnindexed()) { 1393 unsigned origWidth = N0.getValueType().getSizeInBits(); 1394 unsigned maskWidth = origWidth; 1395 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 1396 // 8 bits, but have to be careful... 1397 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 1398 origWidth = Lod->getMemoryVT().getSizeInBits(); 1399 const APInt &Mask = 1400 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 1401 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 1402 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 1403 for (unsigned offset=0; offset<origWidth/width; offset++) { 1404 if ((newMask & Mask) == Mask) { 1405 if (!DAG.getDataLayout().isLittleEndian()) 1406 bestOffset = (origWidth/width - offset - 1) * (width/8); 1407 else 1408 bestOffset = (uint64_t)offset * (width/8); 1409 bestMask = Mask.lshr(offset * (width/8) * 8); 1410 bestWidth = width; 1411 break; 1412 } 1413 newMask = newMask << width; 1414 } 1415 } 1416 } 1417 if (bestWidth) { 1418 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 1419 if (newVT.isRound()) { 1420 EVT PtrType = Lod->getOperand(1).getValueType(); 1421 SDValue Ptr = Lod->getBasePtr(); 1422 if (bestOffset != 0) 1423 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 1424 DAG.getConstant(bestOffset, dl, PtrType)); 1425 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 1426 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 1427 Lod->getPointerInfo().getWithOffset(bestOffset), 1428 false, false, false, NewAlign); 1429 return DAG.getSetCC(dl, VT, 1430 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 1431 DAG.getConstant(bestMask.trunc(bestWidth), 1432 dl, newVT)), 1433 DAG.getConstant(0LL, dl, newVT), Cond); 1434 } 1435 } 1436 } 1437 1438 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 1439 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 1440 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits(); 1441 1442 // If the comparison constant has bits in the upper part, the 1443 // zero-extended value could never match. 1444 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 1445 C1.getBitWidth() - InSize))) { 1446 switch (Cond) { 1447 case ISD::SETUGT: 1448 case ISD::SETUGE: 1449 case ISD::SETEQ: return DAG.getConstant(0, dl, VT); 1450 case ISD::SETULT: 1451 case ISD::SETULE: 1452 case ISD::SETNE: return DAG.getConstant(1, dl, VT); 1453 case ISD::SETGT: 1454 case ISD::SETGE: 1455 // True if the sign bit of C1 is set. 1456 return DAG.getConstant(C1.isNegative(), dl, VT); 1457 case ISD::SETLT: 1458 case ISD::SETLE: 1459 // True if the sign bit of C1 isn't set. 1460 return DAG.getConstant(C1.isNonNegative(), dl, VT); 1461 default: 1462 break; 1463 } 1464 } 1465 1466 // Otherwise, we can perform the comparison with the low bits. 1467 switch (Cond) { 1468 case ISD::SETEQ: 1469 case ISD::SETNE: 1470 case ISD::SETUGT: 1471 case ISD::SETUGE: 1472 case ISD::SETULT: 1473 case ISD::SETULE: { 1474 EVT newVT = N0.getOperand(0).getValueType(); 1475 if (DCI.isBeforeLegalizeOps() || 1476 (isOperationLegal(ISD::SETCC, newVT) && 1477 getCondCodeAction(Cond, newVT.getSimpleVT()) == Legal)) { 1478 EVT NewSetCCVT = 1479 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 1480 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 1481 1482 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 1483 NewConst, Cond); 1484 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 1485 } 1486 break; 1487 } 1488 default: 1489 break; // todo, be more careful with signed comparisons 1490 } 1491 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 1492 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1493 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 1494 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 1495 EVT ExtDstTy = N0.getValueType(); 1496 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 1497 1498 // If the constant doesn't fit into the number of bits for the source of 1499 // the sign extension, it is impossible for both sides to be equal. 1500 if (C1.getMinSignedBits() > ExtSrcTyBits) 1501 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 1502 1503 SDValue ZextOp; 1504 EVT Op0Ty = N0.getOperand(0).getValueType(); 1505 if (Op0Ty == ExtSrcTy) { 1506 ZextOp = N0.getOperand(0); 1507 } else { 1508 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 1509 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 1510 DAG.getConstant(Imm, dl, Op0Ty)); 1511 } 1512 if (!DCI.isCalledByLegalizer()) 1513 DCI.AddToWorklist(ZextOp.getNode()); 1514 // Otherwise, make this a use of a zext. 1515 return DAG.getSetCC(dl, VT, ZextOp, 1516 DAG.getConstant(C1 & APInt::getLowBitsSet( 1517 ExtDstTyBits, 1518 ExtSrcTyBits), 1519 dl, ExtDstTy), 1520 Cond); 1521 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) && 1522 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 1523 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 1524 if (N0.getOpcode() == ISD::SETCC && 1525 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 1526 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getAPIntValue() != 1); 1527 if (TrueWhenTrue) 1528 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 1529 // Invert the condition. 1530 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 1531 CC = ISD::getSetCCInverse(CC, 1532 N0.getOperand(0).getValueType().isInteger()); 1533 if (DCI.isBeforeLegalizeOps() || 1534 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 1535 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 1536 } 1537 1538 if ((N0.getOpcode() == ISD::XOR || 1539 (N0.getOpcode() == ISD::AND && 1540 N0.getOperand(0).getOpcode() == ISD::XOR && 1541 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 1542 isa<ConstantSDNode>(N0.getOperand(1)) && 1543 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) { 1544 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 1545 // can only do this if the top bits are known zero. 1546 unsigned BitWidth = N0.getValueSizeInBits(); 1547 if (DAG.MaskedValueIsZero(N0, 1548 APInt::getHighBitsSet(BitWidth, 1549 BitWidth-1))) { 1550 // Okay, get the un-inverted input value. 1551 SDValue Val; 1552 if (N0.getOpcode() == ISD::XOR) 1553 Val = N0.getOperand(0); 1554 else { 1555 assert(N0.getOpcode() == ISD::AND && 1556 N0.getOperand(0).getOpcode() == ISD::XOR); 1557 // ((X^1)&1)^1 -> X & 1 1558 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 1559 N0.getOperand(0).getOperand(0), 1560 N0.getOperand(1)); 1561 } 1562 1563 return DAG.getSetCC(dl, VT, Val, N1, 1564 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1565 } 1566 } else if (N1C->getAPIntValue() == 1 && 1567 (VT == MVT::i1 || 1568 getBooleanContents(N0->getValueType(0)) == 1569 ZeroOrOneBooleanContent)) { 1570 SDValue Op0 = N0; 1571 if (Op0.getOpcode() == ISD::TRUNCATE) 1572 Op0 = Op0.getOperand(0); 1573 1574 if ((Op0.getOpcode() == ISD::XOR) && 1575 Op0.getOperand(0).getOpcode() == ISD::SETCC && 1576 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 1577 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 1578 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 1579 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 1580 Cond); 1581 } 1582 if (Op0.getOpcode() == ISD::AND && 1583 isa<ConstantSDNode>(Op0.getOperand(1)) && 1584 cast<ConstantSDNode>(Op0.getOperand(1))->getAPIntValue() == 1) { 1585 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 1586 if (Op0.getValueType().bitsGT(VT)) 1587 Op0 = DAG.getNode(ISD::AND, dl, VT, 1588 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 1589 DAG.getConstant(1, dl, VT)); 1590 else if (Op0.getValueType().bitsLT(VT)) 1591 Op0 = DAG.getNode(ISD::AND, dl, VT, 1592 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 1593 DAG.getConstant(1, dl, VT)); 1594 1595 return DAG.getSetCC(dl, VT, Op0, 1596 DAG.getConstant(0, dl, Op0.getValueType()), 1597 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1598 } 1599 if (Op0.getOpcode() == ISD::AssertZext && 1600 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 1601 return DAG.getSetCC(dl, VT, Op0, 1602 DAG.getConstant(0, dl, Op0.getValueType()), 1603 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 1604 } 1605 } 1606 1607 APInt MinVal, MaxVal; 1608 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits(); 1609 if (ISD::isSignedIntSetCC(Cond)) { 1610 MinVal = APInt::getSignedMinValue(OperandBitSize); 1611 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 1612 } else { 1613 MinVal = APInt::getMinValue(OperandBitSize); 1614 MaxVal = APInt::getMaxValue(OperandBitSize); 1615 } 1616 1617 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 1618 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 1619 if (C1 == MinVal) return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1620 // X >= C0 --> X > (C0 - 1) 1621 APInt C = C1 - 1; 1622 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 1623 if ((DCI.isBeforeLegalizeOps() || 1624 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1625 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1626 isLegalICmpImmediate(C.getSExtValue())))) { 1627 return DAG.getSetCC(dl, VT, N0, 1628 DAG.getConstant(C, dl, N1.getValueType()), 1629 NewCC); 1630 } 1631 } 1632 1633 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 1634 if (C1 == MaxVal) return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1635 // X <= C0 --> X < (C0 + 1) 1636 APInt C = C1 + 1; 1637 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 1638 if ((DCI.isBeforeLegalizeOps() || 1639 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 1640 (!N1C->isOpaque() || (N1C->isOpaque() && C.getBitWidth() <= 64 && 1641 isLegalICmpImmediate(C.getSExtValue())))) { 1642 return DAG.getSetCC(dl, VT, N0, 1643 DAG.getConstant(C, dl, N1.getValueType()), 1644 NewCC); 1645 } 1646 } 1647 1648 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal) 1649 return DAG.getConstant(0, dl, VT); // X < MIN --> false 1650 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal) 1651 return DAG.getConstant(1, dl, VT); // X >= MIN --> true 1652 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal) 1653 return DAG.getConstant(0, dl, VT); // X > MAX --> false 1654 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal) 1655 return DAG.getConstant(1, dl, VT); // X <= MAX --> true 1656 1657 // Canonicalize setgt X, Min --> setne X, Min 1658 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal) 1659 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1660 // Canonicalize setlt X, Max --> setne X, Max 1661 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal) 1662 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 1663 1664 // If we have setult X, 1, turn it into seteq X, 0 1665 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1) 1666 return DAG.getSetCC(dl, VT, N0, 1667 DAG.getConstant(MinVal, dl, N0.getValueType()), 1668 ISD::SETEQ); 1669 // If we have setugt X, Max-1, turn it into seteq X, Max 1670 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1) 1671 return DAG.getSetCC(dl, VT, N0, 1672 DAG.getConstant(MaxVal, dl, N0.getValueType()), 1673 ISD::SETEQ); 1674 1675 // If we have "setcc X, C0", check to see if we can shrink the immediate 1676 // by changing cc. 1677 1678 // SETUGT X, SINTMAX -> SETLT X, 0 1679 if (Cond == ISD::SETUGT && 1680 C1 == APInt::getSignedMaxValue(OperandBitSize)) 1681 return DAG.getSetCC(dl, VT, N0, 1682 DAG.getConstant(0, dl, N1.getValueType()), 1683 ISD::SETLT); 1684 1685 // SETULT X, SINTMIN -> SETGT X, -1 1686 if (Cond == ISD::SETULT && 1687 C1 == APInt::getSignedMinValue(OperandBitSize)) { 1688 SDValue ConstMinusOne = 1689 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 1690 N1.getValueType()); 1691 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 1692 } 1693 1694 // Fold bit comparisons when we can. 1695 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1696 (VT == N0.getValueType() || 1697 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 1698 N0.getOpcode() == ISD::AND) { 1699 auto &DL = DAG.getDataLayout(); 1700 if (ConstantSDNode *AndRHS = 1701 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1702 EVT ShiftTy = DCI.isBeforeLegalize() 1703 ? getPointerTy(DL) 1704 : getShiftAmountTy(N0.getValueType(), DL); 1705 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 1706 // Perform the xform if the AND RHS is a single bit. 1707 if (AndRHS->getAPIntValue().isPowerOf2()) { 1708 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1709 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1710 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 1711 ShiftTy))); 1712 } 1713 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 1714 // (X & 8) == 8 --> (X & 8) >> 3 1715 // Perform the xform if C1 is a single bit. 1716 if (C1.isPowerOf2()) { 1717 return DAG.getNode(ISD::TRUNCATE, dl, VT, 1718 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 1719 DAG.getConstant(C1.logBase2(), dl, 1720 ShiftTy))); 1721 } 1722 } 1723 } 1724 } 1725 1726 if (C1.getMinSignedBits() <= 64 && 1727 !isLegalICmpImmediate(C1.getSExtValue())) { 1728 // (X & -256) == 256 -> (X >> 8) == 1 1729 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1730 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 1731 if (ConstantSDNode *AndRHS = 1732 dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1733 const APInt &AndRHSC = AndRHS->getAPIntValue(); 1734 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 1735 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 1736 auto &DL = DAG.getDataLayout(); 1737 EVT ShiftTy = DCI.isBeforeLegalize() 1738 ? getPointerTy(DL) 1739 : getShiftAmountTy(N0.getValueType(), DL); 1740 EVT CmpTy = N0.getValueType(); 1741 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 1742 DAG.getConstant(ShiftBits, dl, 1743 ShiftTy)); 1744 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 1745 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 1746 } 1747 } 1748 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 1749 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 1750 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 1751 // X < 0x100000000 -> (X >> 32) < 1 1752 // X >= 0x100000000 -> (X >> 32) >= 1 1753 // X <= 0x0ffffffff -> (X >> 32) < 1 1754 // X > 0x0ffffffff -> (X >> 32) >= 1 1755 unsigned ShiftBits; 1756 APInt NewC = C1; 1757 ISD::CondCode NewCond = Cond; 1758 if (AdjOne) { 1759 ShiftBits = C1.countTrailingOnes(); 1760 NewC = NewC + 1; 1761 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 1762 } else { 1763 ShiftBits = C1.countTrailingZeros(); 1764 } 1765 NewC = NewC.lshr(ShiftBits); 1766 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 1767 isLegalICmpImmediate(NewC.getSExtValue())) { 1768 auto &DL = DAG.getDataLayout(); 1769 EVT ShiftTy = DCI.isBeforeLegalize() 1770 ? getPointerTy(DL) 1771 : getShiftAmountTy(N0.getValueType(), DL); 1772 EVT CmpTy = N0.getValueType(); 1773 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 1774 DAG.getConstant(ShiftBits, dl, ShiftTy)); 1775 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 1776 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 1777 } 1778 } 1779 } 1780 } 1781 1782 if (isa<ConstantFPSDNode>(N0.getNode())) { 1783 // Constant fold or commute setcc. 1784 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 1785 if (O.getNode()) return O; 1786 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 1787 // If the RHS of an FP comparison is a constant, simplify it away in 1788 // some cases. 1789 if (CFP->getValueAPF().isNaN()) { 1790 // If an operand is known to be a nan, we can fold it. 1791 switch (ISD::getUnorderedFlavor(Cond)) { 1792 default: llvm_unreachable("Unknown flavor!"); 1793 case 0: // Known false. 1794 return DAG.getConstant(0, dl, VT); 1795 case 1: // Known true. 1796 return DAG.getConstant(1, dl, VT); 1797 case 2: // Undefined. 1798 return DAG.getUNDEF(VT); 1799 } 1800 } 1801 1802 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 1803 // constant if knowing that the operand is non-nan is enough. We prefer to 1804 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 1805 // materialize 0.0. 1806 if (Cond == ISD::SETO || Cond == ISD::SETUO) 1807 return DAG.getSetCC(dl, VT, N0, N0, Cond); 1808 1809 // If the condition is not legal, see if we can find an equivalent one 1810 // which is legal. 1811 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 1812 // If the comparison was an awkward floating-point == or != and one of 1813 // the comparison operands is infinity or negative infinity, convert the 1814 // condition to a less-awkward <= or >=. 1815 if (CFP->getValueAPF().isInfinity()) { 1816 if (CFP->getValueAPF().isNegative()) { 1817 if (Cond == ISD::SETOEQ && 1818 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1819 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 1820 if (Cond == ISD::SETUEQ && 1821 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 1822 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 1823 if (Cond == ISD::SETUNE && 1824 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1825 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 1826 if (Cond == ISD::SETONE && 1827 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 1828 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 1829 } else { 1830 if (Cond == ISD::SETOEQ && 1831 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1832 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 1833 if (Cond == ISD::SETUEQ && 1834 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 1835 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 1836 if (Cond == ISD::SETUNE && 1837 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1838 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 1839 if (Cond == ISD::SETONE && 1840 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 1841 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 1842 } 1843 } 1844 } 1845 } 1846 1847 if (N0 == N1) { 1848 // The sext(setcc()) => setcc() optimization relies on the appropriate 1849 // constant being emitted. 1850 uint64_t EqVal = 0; 1851 switch (getBooleanContents(N0.getValueType())) { 1852 case UndefinedBooleanContent: 1853 case ZeroOrOneBooleanContent: 1854 EqVal = ISD::isTrueWhenEqual(Cond); 1855 break; 1856 case ZeroOrNegativeOneBooleanContent: 1857 EqVal = ISD::isTrueWhenEqual(Cond) ? -1 : 0; 1858 break; 1859 } 1860 1861 // We can always fold X == X for integer setcc's. 1862 if (N0.getValueType().isInteger()) { 1863 return DAG.getConstant(EqVal, dl, VT); 1864 } 1865 unsigned UOF = ISD::getUnorderedFlavor(Cond); 1866 if (UOF == 2) // FP operators that are undefined on NaNs. 1867 return DAG.getConstant(EqVal, dl, VT); 1868 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond))) 1869 return DAG.getConstant(EqVal, dl, VT); 1870 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 1871 // if it is not already. 1872 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 1873 if (NewCond != Cond && (DCI.isBeforeLegalizeOps() || 1874 getCondCodeAction(NewCond, N0.getSimpleValueType()) == Legal)) 1875 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 1876 } 1877 1878 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 1879 N0.getValueType().isInteger()) { 1880 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 1881 N0.getOpcode() == ISD::XOR) { 1882 // Simplify (X+Y) == (X+Z) --> Y == Z 1883 if (N0.getOpcode() == N1.getOpcode()) { 1884 if (N0.getOperand(0) == N1.getOperand(0)) 1885 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 1886 if (N0.getOperand(1) == N1.getOperand(1)) 1887 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 1888 if (DAG.isCommutativeBinOp(N0.getOpcode())) { 1889 // If X op Y == Y op X, try other combinations. 1890 if (N0.getOperand(0) == N1.getOperand(1)) 1891 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 1892 Cond); 1893 if (N0.getOperand(1) == N1.getOperand(0)) 1894 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 1895 Cond); 1896 } 1897 } 1898 1899 // If RHS is a legal immediate value for a compare instruction, we need 1900 // to be careful about increasing register pressure needlessly. 1901 bool LegalRHSImm = false; 1902 1903 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) { 1904 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 1905 // Turn (X+C1) == C2 --> X == C2-C1 1906 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 1907 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1908 DAG.getConstant(RHSC->getAPIntValue()- 1909 LHSR->getAPIntValue(), 1910 dl, N0.getValueType()), Cond); 1911 } 1912 1913 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 1914 if (N0.getOpcode() == ISD::XOR) 1915 // If we know that all of the inverted bits are zero, don't bother 1916 // performing the inversion. 1917 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 1918 return 1919 DAG.getSetCC(dl, VT, N0.getOperand(0), 1920 DAG.getConstant(LHSR->getAPIntValue() ^ 1921 RHSC->getAPIntValue(), 1922 dl, N0.getValueType()), 1923 Cond); 1924 } 1925 1926 // Turn (C1-X) == C2 --> X == C1-C2 1927 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 1928 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 1929 return 1930 DAG.getSetCC(dl, VT, N0.getOperand(1), 1931 DAG.getConstant(SUBC->getAPIntValue() - 1932 RHSC->getAPIntValue(), 1933 dl, N0.getValueType()), 1934 Cond); 1935 } 1936 } 1937 1938 // Could RHSC fold directly into a compare? 1939 if (RHSC->getValueType(0).getSizeInBits() <= 64) 1940 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 1941 } 1942 1943 // Simplify (X+Z) == X --> Z == 0 1944 // Don't do this if X is an immediate that can fold into a cmp 1945 // instruction and X+Z has other uses. It could be an induction variable 1946 // chain, and the transform would increase register pressure. 1947 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 1948 if (N0.getOperand(0) == N1) 1949 return DAG.getSetCC(dl, VT, N0.getOperand(1), 1950 DAG.getConstant(0, dl, N0.getValueType()), Cond); 1951 if (N0.getOperand(1) == N1) { 1952 if (DAG.isCommutativeBinOp(N0.getOpcode())) 1953 return DAG.getSetCC(dl, VT, N0.getOperand(0), 1954 DAG.getConstant(0, dl, N0.getValueType()), 1955 Cond); 1956 if (N0.getNode()->hasOneUse()) { 1957 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 1958 auto &DL = DAG.getDataLayout(); 1959 // (Z-X) == X --> Z == X<<1 1960 SDValue SH = DAG.getNode( 1961 ISD::SHL, dl, N1.getValueType(), N1, 1962 DAG.getConstant(1, dl, 1963 getShiftAmountTy(N1.getValueType(), DL))); 1964 if (!DCI.isCalledByLegalizer()) 1965 DCI.AddToWorklist(SH.getNode()); 1966 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 1967 } 1968 } 1969 } 1970 } 1971 1972 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 1973 N1.getOpcode() == ISD::XOR) { 1974 // Simplify X == (X+Z) --> Z == 0 1975 if (N1.getOperand(0) == N0) 1976 return DAG.getSetCC(dl, VT, N1.getOperand(1), 1977 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1978 if (N1.getOperand(1) == N0) { 1979 if (DAG.isCommutativeBinOp(N1.getOpcode())) 1980 return DAG.getSetCC(dl, VT, N1.getOperand(0), 1981 DAG.getConstant(0, dl, N1.getValueType()), Cond); 1982 if (N1.getNode()->hasOneUse()) { 1983 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 1984 auto &DL = DAG.getDataLayout(); 1985 // X == (Z-X) --> X<<1 == Z 1986 SDValue SH = DAG.getNode( 1987 ISD::SHL, dl, N1.getValueType(), N0, 1988 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL))); 1989 if (!DCI.isCalledByLegalizer()) 1990 DCI.AddToWorklist(SH.getNode()); 1991 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 1992 } 1993 } 1994 } 1995 1996 // Simplify x&y == y to x&y != 0 if y has exactly one bit set. 1997 // Note that where y is variable and is known to have at most 1998 // one bit set (for example, if it is z&1) we cannot do this; 1999 // the expressions are not equivalent when y==0. 2000 if (N0.getOpcode() == ISD::AND) 2001 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) { 2002 if (ValueHasExactlyOneBitSet(N1, DAG)) { 2003 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2004 if (DCI.isBeforeLegalizeOps() || 2005 isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2006 SDValue Zero = DAG.getConstant(0, dl, N1.getValueType()); 2007 return DAG.getSetCC(dl, VT, N0, Zero, Cond); 2008 } 2009 } 2010 } 2011 if (N1.getOpcode() == ISD::AND) 2012 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) { 2013 if (ValueHasExactlyOneBitSet(N0, DAG)) { 2014 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2015 if (DCI.isBeforeLegalizeOps() || 2016 isCondCodeLegal(Cond, N1.getSimpleValueType())) { 2017 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2018 return DAG.getSetCC(dl, VT, N1, Zero, Cond); 2019 } 2020 } 2021 } 2022 } 2023 2024 // Fold away ALL boolean setcc's. 2025 SDValue Temp; 2026 if (N0.getValueType() == MVT::i1 && foldBooleans) { 2027 switch (Cond) { 2028 default: llvm_unreachable("Unknown integer setcc!"); 2029 case ISD::SETEQ: // X == Y -> ~(X^Y) 2030 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2031 N0 = DAG.getNOT(dl, Temp, MVT::i1); 2032 if (!DCI.isCalledByLegalizer()) 2033 DCI.AddToWorklist(Temp.getNode()); 2034 break; 2035 case ISD::SETNE: // X != Y --> (X^Y) 2036 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1); 2037 break; 2038 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 2039 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 2040 Temp = DAG.getNOT(dl, N0, MVT::i1); 2041 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp); 2042 if (!DCI.isCalledByLegalizer()) 2043 DCI.AddToWorklist(Temp.getNode()); 2044 break; 2045 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 2046 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 2047 Temp = DAG.getNOT(dl, N1, MVT::i1); 2048 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp); 2049 if (!DCI.isCalledByLegalizer()) 2050 DCI.AddToWorklist(Temp.getNode()); 2051 break; 2052 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 2053 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 2054 Temp = DAG.getNOT(dl, N0, MVT::i1); 2055 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp); 2056 if (!DCI.isCalledByLegalizer()) 2057 DCI.AddToWorklist(Temp.getNode()); 2058 break; 2059 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 2060 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 2061 Temp = DAG.getNOT(dl, N1, MVT::i1); 2062 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp); 2063 break; 2064 } 2065 if (VT != MVT::i1) { 2066 if (!DCI.isCalledByLegalizer()) 2067 DCI.AddToWorklist(N0.getNode()); 2068 // FIXME: If running after legalize, we probably can't do this. 2069 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0); 2070 } 2071 return N0; 2072 } 2073 2074 // Could not fold it. 2075 return SDValue(); 2076 } 2077 2078 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the 2079 /// node is a GlobalAddress + offset. 2080 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA, 2081 int64_t &Offset) const { 2082 if (isa<GlobalAddressSDNode>(N)) { 2083 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N); 2084 GA = GASD->getGlobal(); 2085 Offset += GASD->getOffset(); 2086 return true; 2087 } 2088 2089 if (N->getOpcode() == ISD::ADD) { 2090 SDValue N1 = N->getOperand(0); 2091 SDValue N2 = N->getOperand(1); 2092 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 2093 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2); 2094 if (V) { 2095 Offset += V->getSExtValue(); 2096 return true; 2097 } 2098 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 2099 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1); 2100 if (V) { 2101 Offset += V->getSExtValue(); 2102 return true; 2103 } 2104 } 2105 } 2106 2107 return false; 2108 } 2109 2110 2111 SDValue TargetLowering:: 2112 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { 2113 // Default implementation: no optimization. 2114 return SDValue(); 2115 } 2116 2117 //===----------------------------------------------------------------------===// 2118 // Inline Assembler Implementation Methods 2119 //===----------------------------------------------------------------------===// 2120 2121 TargetLowering::ConstraintType 2122 TargetLowering::getConstraintType(StringRef Constraint) const { 2123 unsigned S = Constraint.size(); 2124 2125 if (S == 1) { 2126 switch (Constraint[0]) { 2127 default: break; 2128 case 'r': return C_RegisterClass; 2129 case 'm': // memory 2130 case 'o': // offsetable 2131 case 'V': // not offsetable 2132 return C_Memory; 2133 case 'i': // Simple Integer or Relocatable Constant 2134 case 'n': // Simple Integer 2135 case 'E': // Floating Point Constant 2136 case 'F': // Floating Point Constant 2137 case 's': // Relocatable Constant 2138 case 'p': // Address. 2139 case 'X': // Allow ANY value. 2140 case 'I': // Target registers. 2141 case 'J': 2142 case 'K': 2143 case 'L': 2144 case 'M': 2145 case 'N': 2146 case 'O': 2147 case 'P': 2148 case '<': 2149 case '>': 2150 return C_Other; 2151 } 2152 } 2153 2154 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 2155 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 2156 return C_Memory; 2157 return C_Register; 2158 } 2159 return C_Unknown; 2160 } 2161 2162 /// LowerXConstraint - try to replace an X constraint, which matches anything, 2163 /// with another that has more specific requirements based on the type of the 2164 /// corresponding operand. 2165 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 2166 if (ConstraintVT.isInteger()) 2167 return "r"; 2168 if (ConstraintVT.isFloatingPoint()) 2169 return "f"; // works for many targets 2170 return nullptr; 2171 } 2172 2173 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 2174 /// vector. If it is invalid, don't add anything to Ops. 2175 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 2176 std::string &Constraint, 2177 std::vector<SDValue> &Ops, 2178 SelectionDAG &DAG) const { 2179 2180 if (Constraint.length() > 1) return; 2181 2182 char ConstraintLetter = Constraint[0]; 2183 switch (ConstraintLetter) { 2184 default: break; 2185 case 'X': // Allows any operand; labels (basic block) use this. 2186 if (Op.getOpcode() == ISD::BasicBlock) { 2187 Ops.push_back(Op); 2188 return; 2189 } 2190 // fall through 2191 case 'i': // Simple Integer or Relocatable Constant 2192 case 'n': // Simple Integer 2193 case 's': { // Relocatable Constant 2194 // These operands are interested in values of the form (GV+C), where C may 2195 // be folded in as an offset of GV, or it may be explicitly added. Also, it 2196 // is possible and fine if either GV or C are missing. 2197 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 2198 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 2199 2200 // If we have "(add GV, C)", pull out GV/C 2201 if (Op.getOpcode() == ISD::ADD) { 2202 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 2203 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 2204 if (!C || !GA) { 2205 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 2206 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 2207 } 2208 if (!C || !GA) 2209 C = nullptr, GA = nullptr; 2210 } 2211 2212 // If we find a valid operand, map to the TargetXXX version so that the 2213 // value itself doesn't get selected. 2214 if (GA) { // Either &GV or &GV+C 2215 if (ConstraintLetter != 'n') { 2216 int64_t Offs = GA->getOffset(); 2217 if (C) Offs += C->getZExtValue(); 2218 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 2219 C ? SDLoc(C) : SDLoc(), 2220 Op.getValueType(), Offs)); 2221 return; 2222 } 2223 } 2224 if (C) { // just C, no GV. 2225 // Simple constants are not allowed for 's'. 2226 if (ConstraintLetter != 's') { 2227 // gcc prints these as sign extended. Sign extend value to 64 bits 2228 // now; without this it would get ZExt'd later in 2229 // ScheduleDAGSDNodes::EmitNode, which is very generic. 2230 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(), 2231 SDLoc(C), MVT::i64)); 2232 return; 2233 } 2234 } 2235 break; 2236 } 2237 } 2238 } 2239 2240 std::pair<unsigned, const TargetRegisterClass *> 2241 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 2242 StringRef Constraint, 2243 MVT VT) const { 2244 if (Constraint.empty() || Constraint[0] != '{') 2245 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 2246 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 2247 2248 // Remove the braces from around the name. 2249 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 2250 2251 std::pair<unsigned, const TargetRegisterClass*> R = 2252 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 2253 2254 // Figure out which register class contains this reg. 2255 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(), 2256 E = RI->regclass_end(); RCI != E; ++RCI) { 2257 const TargetRegisterClass *RC = *RCI; 2258 2259 // If none of the value types for this register class are valid, we 2260 // can't use it. For example, 64-bit reg classes on 32-bit targets. 2261 if (!isLegalRC(RC)) 2262 continue; 2263 2264 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 2265 I != E; ++I) { 2266 if (RegName.equals_lower(RI->getName(*I))) { 2267 std::pair<unsigned, const TargetRegisterClass*> S = 2268 std::make_pair(*I, RC); 2269 2270 // If this register class has the requested value type, return it, 2271 // otherwise keep searching and return the first class found 2272 // if no other is found which explicitly has the requested type. 2273 if (RC->hasType(VT)) 2274 return S; 2275 else if (!R.second) 2276 R = S; 2277 } 2278 } 2279 } 2280 2281 return R; 2282 } 2283 2284 //===----------------------------------------------------------------------===// 2285 // Constraint Selection. 2286 2287 /// isMatchingInputConstraint - Return true of this is an input operand that is 2288 /// a matching constraint like "4". 2289 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 2290 assert(!ConstraintCode.empty() && "No known constraint!"); 2291 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 2292 } 2293 2294 /// getMatchedOperand - If this is an input matching constraint, this method 2295 /// returns the output operand it matches. 2296 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 2297 assert(!ConstraintCode.empty() && "No known constraint!"); 2298 return atoi(ConstraintCode.c_str()); 2299 } 2300 2301 2302 /// ParseConstraints - Split up the constraint string from the inline 2303 /// assembly value into the specific constraints and their prefixes, 2304 /// and also tie in the associated operand values. 2305 /// If this returns an empty vector, and if the constraint string itself 2306 /// isn't empty, there was an error parsing. 2307 TargetLowering::AsmOperandInfoVector 2308 TargetLowering::ParseConstraints(const DataLayout &DL, 2309 const TargetRegisterInfo *TRI, 2310 ImmutableCallSite CS) const { 2311 /// ConstraintOperands - Information about all of the constraints. 2312 AsmOperandInfoVector ConstraintOperands; 2313 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 2314 unsigned maCount = 0; // Largest number of multiple alternative constraints. 2315 2316 // Do a prepass over the constraints, canonicalizing them, and building up the 2317 // ConstraintOperands list. 2318 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 2319 unsigned ResNo = 0; // ResNo - The result number of the next output. 2320 2321 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 2322 ConstraintOperands.emplace_back(std::move(CI)); 2323 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 2324 2325 // Update multiple alternative constraint count. 2326 if (OpInfo.multipleAlternatives.size() > maCount) 2327 maCount = OpInfo.multipleAlternatives.size(); 2328 2329 OpInfo.ConstraintVT = MVT::Other; 2330 2331 // Compute the value type for each operand. 2332 switch (OpInfo.Type) { 2333 case InlineAsm::isOutput: 2334 // Indirect outputs just consume an argument. 2335 if (OpInfo.isIndirect) { 2336 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2337 break; 2338 } 2339 2340 // The return value of the call is this value. As such, there is no 2341 // corresponding argument. 2342 assert(!CS.getType()->isVoidTy() && 2343 "Bad inline asm!"); 2344 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 2345 OpInfo.ConstraintVT = 2346 getSimpleValueType(DL, STy->getElementType(ResNo)); 2347 } else { 2348 assert(ResNo == 0 && "Asm only has one result!"); 2349 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 2350 } 2351 ++ResNo; 2352 break; 2353 case InlineAsm::isInput: 2354 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 2355 break; 2356 case InlineAsm::isClobber: 2357 // Nothing to do. 2358 break; 2359 } 2360 2361 if (OpInfo.CallOperandVal) { 2362 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 2363 if (OpInfo.isIndirect) { 2364 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 2365 if (!PtrTy) 2366 report_fatal_error("Indirect operand for inline asm not a pointer!"); 2367 OpTy = PtrTy->getElementType(); 2368 } 2369 2370 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 2371 if (StructType *STy = dyn_cast<StructType>(OpTy)) 2372 if (STy->getNumElements() == 1) 2373 OpTy = STy->getElementType(0); 2374 2375 // If OpTy is not a single value, it may be a struct/union that we 2376 // can tile with integers. 2377 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 2378 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 2379 switch (BitSize) { 2380 default: break; 2381 case 1: 2382 case 8: 2383 case 16: 2384 case 32: 2385 case 64: 2386 case 128: 2387 OpInfo.ConstraintVT = 2388 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 2389 break; 2390 } 2391 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 2392 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 2393 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 2394 } else { 2395 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 2396 } 2397 } 2398 } 2399 2400 // If we have multiple alternative constraints, select the best alternative. 2401 if (!ConstraintOperands.empty()) { 2402 if (maCount) { 2403 unsigned bestMAIndex = 0; 2404 int bestWeight = -1; 2405 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 2406 int weight = -1; 2407 unsigned maIndex; 2408 // Compute the sums of the weights for each alternative, keeping track 2409 // of the best (highest weight) one so far. 2410 for (maIndex = 0; maIndex < maCount; ++maIndex) { 2411 int weightSum = 0; 2412 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2413 cIndex != eIndex; ++cIndex) { 2414 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2415 if (OpInfo.Type == InlineAsm::isClobber) 2416 continue; 2417 2418 // If this is an output operand with a matching input operand, 2419 // look up the matching input. If their types mismatch, e.g. one 2420 // is an integer, the other is floating point, or their sizes are 2421 // different, flag it as an maCantMatch. 2422 if (OpInfo.hasMatchingInput()) { 2423 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2424 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2425 if ((OpInfo.ConstraintVT.isInteger() != 2426 Input.ConstraintVT.isInteger()) || 2427 (OpInfo.ConstraintVT.getSizeInBits() != 2428 Input.ConstraintVT.getSizeInBits())) { 2429 weightSum = -1; // Can't match. 2430 break; 2431 } 2432 } 2433 } 2434 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 2435 if (weight == -1) { 2436 weightSum = -1; 2437 break; 2438 } 2439 weightSum += weight; 2440 } 2441 // Update best. 2442 if (weightSum > bestWeight) { 2443 bestWeight = weightSum; 2444 bestMAIndex = maIndex; 2445 } 2446 } 2447 2448 // Now select chosen alternative in each constraint. 2449 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2450 cIndex != eIndex; ++cIndex) { 2451 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 2452 if (cInfo.Type == InlineAsm::isClobber) 2453 continue; 2454 cInfo.selectAlternative(bestMAIndex); 2455 } 2456 } 2457 } 2458 2459 // Check and hook up tied operands, choose constraint code to use. 2460 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 2461 cIndex != eIndex; ++cIndex) { 2462 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 2463 2464 // If this is an output operand with a matching input operand, look up the 2465 // matching input. If their types mismatch, e.g. one is an integer, the 2466 // other is floating point, or their sizes are different, flag it as an 2467 // error. 2468 if (OpInfo.hasMatchingInput()) { 2469 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 2470 2471 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 2472 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 2473 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 2474 OpInfo.ConstraintVT); 2475 std::pair<unsigned, const TargetRegisterClass *> InputRC = 2476 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 2477 Input.ConstraintVT); 2478 if ((OpInfo.ConstraintVT.isInteger() != 2479 Input.ConstraintVT.isInteger()) || 2480 (MatchRC.second != InputRC.second)) { 2481 report_fatal_error("Unsupported asm: input constraint" 2482 " with a matching output constraint of" 2483 " incompatible type!"); 2484 } 2485 } 2486 2487 } 2488 } 2489 2490 return ConstraintOperands; 2491 } 2492 2493 2494 /// getConstraintGenerality - Return an integer indicating how general CT 2495 /// is. 2496 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 2497 switch (CT) { 2498 case TargetLowering::C_Other: 2499 case TargetLowering::C_Unknown: 2500 return 0; 2501 case TargetLowering::C_Register: 2502 return 1; 2503 case TargetLowering::C_RegisterClass: 2504 return 2; 2505 case TargetLowering::C_Memory: 2506 return 3; 2507 } 2508 llvm_unreachable("Invalid constraint type"); 2509 } 2510 2511 /// Examine constraint type and operand type and determine a weight value. 2512 /// This object must already have been set up with the operand type 2513 /// and the current alternative constraint selected. 2514 TargetLowering::ConstraintWeight 2515 TargetLowering::getMultipleConstraintMatchWeight( 2516 AsmOperandInfo &info, int maIndex) const { 2517 InlineAsm::ConstraintCodeVector *rCodes; 2518 if (maIndex >= (int)info.multipleAlternatives.size()) 2519 rCodes = &info.Codes; 2520 else 2521 rCodes = &info.multipleAlternatives[maIndex].Codes; 2522 ConstraintWeight BestWeight = CW_Invalid; 2523 2524 // Loop over the options, keeping track of the most general one. 2525 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 2526 ConstraintWeight weight = 2527 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 2528 if (weight > BestWeight) 2529 BestWeight = weight; 2530 } 2531 2532 return BestWeight; 2533 } 2534 2535 /// Examine constraint type and operand type and determine a weight value. 2536 /// This object must already have been set up with the operand type 2537 /// and the current alternative constraint selected. 2538 TargetLowering::ConstraintWeight 2539 TargetLowering::getSingleConstraintMatchWeight( 2540 AsmOperandInfo &info, const char *constraint) const { 2541 ConstraintWeight weight = CW_Invalid; 2542 Value *CallOperandVal = info.CallOperandVal; 2543 // If we don't have a value, we can't do a match, 2544 // but allow it at the lowest weight. 2545 if (!CallOperandVal) 2546 return CW_Default; 2547 // Look at the constraint type. 2548 switch (*constraint) { 2549 case 'i': // immediate integer. 2550 case 'n': // immediate integer with a known value. 2551 if (isa<ConstantInt>(CallOperandVal)) 2552 weight = CW_Constant; 2553 break; 2554 case 's': // non-explicit intregal immediate. 2555 if (isa<GlobalValue>(CallOperandVal)) 2556 weight = CW_Constant; 2557 break; 2558 case 'E': // immediate float if host format. 2559 case 'F': // immediate float. 2560 if (isa<ConstantFP>(CallOperandVal)) 2561 weight = CW_Constant; 2562 break; 2563 case '<': // memory operand with autodecrement. 2564 case '>': // memory operand with autoincrement. 2565 case 'm': // memory operand. 2566 case 'o': // offsettable memory operand 2567 case 'V': // non-offsettable memory operand 2568 weight = CW_Memory; 2569 break; 2570 case 'r': // general register. 2571 case 'g': // general register, memory operand or immediate integer. 2572 // note: Clang converts "g" to "imr". 2573 if (CallOperandVal->getType()->isIntegerTy()) 2574 weight = CW_Register; 2575 break; 2576 case 'X': // any operand. 2577 default: 2578 weight = CW_Default; 2579 break; 2580 } 2581 return weight; 2582 } 2583 2584 /// ChooseConstraint - If there are multiple different constraints that we 2585 /// could pick for this operand (e.g. "imr") try to pick the 'best' one. 2586 /// This is somewhat tricky: constraints fall into four classes: 2587 /// Other -> immediates and magic values 2588 /// Register -> one specific register 2589 /// RegisterClass -> a group of regs 2590 /// Memory -> memory 2591 /// Ideally, we would pick the most specific constraint possible: if we have 2592 /// something that fits into a register, we would pick it. The problem here 2593 /// is that if we have something that could either be in a register or in 2594 /// memory that use of the register could cause selection of *other* 2595 /// operands to fail: they might only succeed if we pick memory. Because of 2596 /// this the heuristic we use is: 2597 /// 2598 /// 1) If there is an 'other' constraint, and if the operand is valid for 2599 /// that constraint, use it. This makes us take advantage of 'i' 2600 /// constraints when available. 2601 /// 2) Otherwise, pick the most general constraint present. This prefers 2602 /// 'm' over 'r', for example. 2603 /// 2604 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 2605 const TargetLowering &TLI, 2606 SDValue Op, SelectionDAG *DAG) { 2607 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 2608 unsigned BestIdx = 0; 2609 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 2610 int BestGenerality = -1; 2611 2612 // Loop over the options, keeping track of the most general one. 2613 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 2614 TargetLowering::ConstraintType CType = 2615 TLI.getConstraintType(OpInfo.Codes[i]); 2616 2617 // If this is an 'other' constraint, see if the operand is valid for it. 2618 // For example, on X86 we might have an 'rI' constraint. If the operand 2619 // is an integer in the range [0..31] we want to use I (saving a load 2620 // of a register), otherwise we must use 'r'. 2621 if (CType == TargetLowering::C_Other && Op.getNode()) { 2622 assert(OpInfo.Codes[i].size() == 1 && 2623 "Unhandled multi-letter 'other' constraint"); 2624 std::vector<SDValue> ResultOps; 2625 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 2626 ResultOps, *DAG); 2627 if (!ResultOps.empty()) { 2628 BestType = CType; 2629 BestIdx = i; 2630 break; 2631 } 2632 } 2633 2634 // Things with matching constraints can only be registers, per gcc 2635 // documentation. This mainly affects "g" constraints. 2636 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 2637 continue; 2638 2639 // This constraint letter is more general than the previous one, use it. 2640 int Generality = getConstraintGenerality(CType); 2641 if (Generality > BestGenerality) { 2642 BestType = CType; 2643 BestIdx = i; 2644 BestGenerality = Generality; 2645 } 2646 } 2647 2648 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 2649 OpInfo.ConstraintType = BestType; 2650 } 2651 2652 /// ComputeConstraintToUse - Determines the constraint code and constraint 2653 /// type to use for the specific AsmOperandInfo, setting 2654 /// OpInfo.ConstraintCode and OpInfo.ConstraintType. 2655 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 2656 SDValue Op, 2657 SelectionDAG *DAG) const { 2658 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 2659 2660 // Single-letter constraints ('r') are very common. 2661 if (OpInfo.Codes.size() == 1) { 2662 OpInfo.ConstraintCode = OpInfo.Codes[0]; 2663 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2664 } else { 2665 ChooseConstraint(OpInfo, *this, Op, DAG); 2666 } 2667 2668 // 'X' matches anything. 2669 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 2670 // Labels and constants are handled elsewhere ('X' is the only thing 2671 // that matches labels). For Functions, the type here is the type of 2672 // the result, which is not what we want to look at; leave them alone. 2673 Value *v = OpInfo.CallOperandVal; 2674 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 2675 OpInfo.CallOperandVal = v; 2676 return; 2677 } 2678 2679 // Otherwise, try to resolve it to something we know about by looking at 2680 // the actual operand type. 2681 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 2682 OpInfo.ConstraintCode = Repl; 2683 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 2684 } 2685 } 2686 } 2687 2688 /// \brief Given an exact SDIV by a constant, create a multiplication 2689 /// with the multiplicative inverse of the constant. 2690 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDValue Op1, APInt d, 2691 SDLoc dl, SelectionDAG &DAG, 2692 std::vector<SDNode *> &Created) { 2693 assert(d != 0 && "Division by zero!"); 2694 2695 // Shift the value upfront if it is even, so the LSB is one. 2696 unsigned ShAmt = d.countTrailingZeros(); 2697 if (ShAmt) { 2698 // TODO: For UDIV use SRL instead of SRA. 2699 SDValue Amt = 2700 DAG.getConstant(ShAmt, dl, TLI.getShiftAmountTy(Op1.getValueType(), 2701 DAG.getDataLayout())); 2702 SDNodeFlags Flags; 2703 Flags.setExact(true); 2704 Op1 = DAG.getNode(ISD::SRA, dl, Op1.getValueType(), Op1, Amt, &Flags); 2705 Created.push_back(Op1.getNode()); 2706 d = d.ashr(ShAmt); 2707 } 2708 2709 // Calculate the multiplicative inverse, using Newton's method. 2710 APInt t, xn = d; 2711 while ((t = d*xn) != 1) 2712 xn *= APInt(d.getBitWidth(), 2) - t; 2713 2714 SDValue Op2 = DAG.getConstant(xn, dl, Op1.getValueType()); 2715 SDValue Mul = DAG.getNode(ISD::MUL, dl, Op1.getValueType(), Op1, Op2); 2716 Created.push_back(Mul.getNode()); 2717 return Mul; 2718 } 2719 2720 /// \brief Given an ISD::SDIV node expressing a divide by constant, 2721 /// return a DAG expression to select that will generate the same value by 2722 /// multiplying by a magic number. 2723 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2724 SDValue TargetLowering::BuildSDIV(SDNode *N, const APInt &Divisor, 2725 SelectionDAG &DAG, bool IsAfterLegalization, 2726 std::vector<SDNode *> *Created) const { 2727 assert(Created && "No vector to hold sdiv ops."); 2728 2729 EVT VT = N->getValueType(0); 2730 SDLoc dl(N); 2731 2732 // Check to see if we can do this. 2733 // FIXME: We should be more aggressive here. 2734 if (!isTypeLegal(VT)) 2735 return SDValue(); 2736 2737 // If the sdiv has an 'exact' bit we can use a simpler lowering. 2738 if (cast<BinaryWithFlagsSDNode>(N)->Flags.hasExact()) 2739 return BuildExactSDIV(*this, N->getOperand(0), Divisor, dl, DAG, *Created); 2740 2741 APInt::ms magics = Divisor.magic(); 2742 2743 // Multiply the numerator (operand 0) by the magic value 2744 // FIXME: We should support doing a MUL in a wider type 2745 SDValue Q; 2746 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) : 2747 isOperationLegalOrCustom(ISD::MULHS, VT)) 2748 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0), 2749 DAG.getConstant(magics.m, dl, VT)); 2750 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) : 2751 isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) 2752 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), 2753 N->getOperand(0), 2754 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2755 else 2756 return SDValue(); // No mulhs or equvialent 2757 // If d > 0 and m < 0, add the numerator 2758 if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 2759 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0)); 2760 Created->push_back(Q.getNode()); 2761 } 2762 // If d < 0 and m > 0, subtract the numerator. 2763 if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 2764 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0)); 2765 Created->push_back(Q.getNode()); 2766 } 2767 auto &DL = DAG.getDataLayout(); 2768 // Shift right algebraic if shift value is nonzero 2769 if (magics.s > 0) { 2770 Q = DAG.getNode( 2771 ISD::SRA, dl, VT, Q, 2772 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2773 Created->push_back(Q.getNode()); 2774 } 2775 // Extract the sign bit and add it to the quotient 2776 SDValue T = 2777 DAG.getNode(ISD::SRL, dl, VT, Q, 2778 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, 2779 getShiftAmountTy(Q.getValueType(), DL))); 2780 Created->push_back(T.getNode()); 2781 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 2782 } 2783 2784 /// \brief Given an ISD::UDIV node expressing a divide by constant, 2785 /// return a DAG expression to select that will generate the same value by 2786 /// multiplying by a magic number. 2787 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 2788 SDValue TargetLowering::BuildUDIV(SDNode *N, const APInt &Divisor, 2789 SelectionDAG &DAG, bool IsAfterLegalization, 2790 std::vector<SDNode *> *Created) const { 2791 assert(Created && "No vector to hold udiv ops."); 2792 2793 EVT VT = N->getValueType(0); 2794 SDLoc dl(N); 2795 auto &DL = DAG.getDataLayout(); 2796 2797 // Check to see if we can do this. 2798 // FIXME: We should be more aggressive here. 2799 if (!isTypeLegal(VT)) 2800 return SDValue(); 2801 2802 // FIXME: We should use a narrower constant when the upper 2803 // bits are known to be zero. 2804 APInt::mu magics = Divisor.magicu(); 2805 2806 SDValue Q = N->getOperand(0); 2807 2808 // If the divisor is even, we can avoid using the expensive fixup by shifting 2809 // the divided value upfront. 2810 if (magics.a != 0 && !Divisor[0]) { 2811 unsigned Shift = Divisor.countTrailingZeros(); 2812 Q = DAG.getNode( 2813 ISD::SRL, dl, VT, Q, 2814 DAG.getConstant(Shift, dl, getShiftAmountTy(Q.getValueType(), DL))); 2815 Created->push_back(Q.getNode()); 2816 2817 // Get magic number for the shifted divisor. 2818 magics = Divisor.lshr(Shift).magicu(Shift); 2819 assert(magics.a == 0 && "Should use cheap fixup now"); 2820 } 2821 2822 // Multiply the numerator (operand 0) by the magic value 2823 // FIXME: We should support doing a MUL in a wider type 2824 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) : 2825 isOperationLegalOrCustom(ISD::MULHU, VT)) 2826 Q = DAG.getNode(ISD::MULHU, dl, VT, Q, DAG.getConstant(magics.m, dl, VT)); 2827 else if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) : 2828 isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) 2829 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), Q, 2830 DAG.getConstant(magics.m, dl, VT)).getNode(), 1); 2831 else 2832 return SDValue(); // No mulhu or equvialent 2833 2834 Created->push_back(Q.getNode()); 2835 2836 if (magics.a == 0) { 2837 assert(magics.s < Divisor.getBitWidth() && 2838 "We shouldn't generate an undefined shift!"); 2839 return DAG.getNode( 2840 ISD::SRL, dl, VT, Q, 2841 DAG.getConstant(magics.s, dl, getShiftAmountTy(Q.getValueType(), DL))); 2842 } else { 2843 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q); 2844 Created->push_back(NPQ.getNode()); 2845 NPQ = DAG.getNode( 2846 ISD::SRL, dl, VT, NPQ, 2847 DAG.getConstant(1, dl, getShiftAmountTy(NPQ.getValueType(), DL))); 2848 Created->push_back(NPQ.getNode()); 2849 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 2850 Created->push_back(NPQ.getNode()); 2851 return DAG.getNode( 2852 ISD::SRL, dl, VT, NPQ, 2853 DAG.getConstant(magics.s - 1, dl, 2854 getShiftAmountTy(NPQ.getValueType(), DL))); 2855 } 2856 } 2857 2858 bool TargetLowering:: 2859 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 2860 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 2861 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 2862 "be a constant integer"); 2863 return true; 2864 } 2865 2866 return false; 2867 } 2868 2869 //===----------------------------------------------------------------------===// 2870 // Legalization Utilities 2871 //===----------------------------------------------------------------------===// 2872 2873 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 2874 SelectionDAG &DAG, SDValue LL, SDValue LH, 2875 SDValue RL, SDValue RH) const { 2876 EVT VT = N->getValueType(0); 2877 SDLoc dl(N); 2878 2879 bool HasMULHS = isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 2880 bool HasMULHU = isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 2881 bool HasSMUL_LOHI = isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 2882 bool HasUMUL_LOHI = isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 2883 if (HasMULHU || HasMULHS || HasUMUL_LOHI || HasSMUL_LOHI) { 2884 unsigned OuterBitSize = VT.getSizeInBits(); 2885 unsigned InnerBitSize = HiLoVT.getSizeInBits(); 2886 unsigned LHSSB = DAG.ComputeNumSignBits(N->getOperand(0)); 2887 unsigned RHSSB = DAG.ComputeNumSignBits(N->getOperand(1)); 2888 2889 // LL, LH, RL, and RH must be either all NULL or all set to a value. 2890 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 2891 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 2892 2893 if (!LL.getNode() && !RL.getNode() && 2894 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2895 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(0)); 2896 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, N->getOperand(1)); 2897 } 2898 2899 if (!LL.getNode()) 2900 return false; 2901 2902 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 2903 if (DAG.MaskedValueIsZero(N->getOperand(0), HighMask) && 2904 DAG.MaskedValueIsZero(N->getOperand(1), HighMask)) { 2905 // The inputs are both zero-extended. 2906 if (HasUMUL_LOHI) { 2907 // We can emit a umul_lohi. 2908 Lo = DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2909 RL); 2910 Hi = SDValue(Lo.getNode(), 1); 2911 return true; 2912 } 2913 if (HasMULHU) { 2914 // We can emit a mulhu+mul. 2915 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2916 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2917 return true; 2918 } 2919 } 2920 if (LHSSB > InnerBitSize && RHSSB > InnerBitSize) { 2921 // The input values are both sign-extended. 2922 if (HasSMUL_LOHI) { 2923 // We can emit a smul_lohi. 2924 Lo = DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(HiLoVT, HiLoVT), LL, 2925 RL); 2926 Hi = SDValue(Lo.getNode(), 1); 2927 return true; 2928 } 2929 if (HasMULHS) { 2930 // We can emit a mulhs+mul. 2931 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2932 Hi = DAG.getNode(ISD::MULHS, dl, HiLoVT, LL, RL); 2933 return true; 2934 } 2935 } 2936 2937 if (!LH.getNode() && !RH.getNode() && 2938 isOperationLegalOrCustom(ISD::SRL, VT) && 2939 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 2940 auto &DL = DAG.getDataLayout(); 2941 unsigned ShiftAmt = VT.getSizeInBits() - HiLoVT.getSizeInBits(); 2942 SDValue Shift = DAG.getConstant(ShiftAmt, dl, getShiftAmountTy(VT, DL)); 2943 LH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(0), Shift); 2944 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 2945 RH = DAG.getNode(ISD::SRL, dl, VT, N->getOperand(1), Shift); 2946 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 2947 } 2948 2949 if (!LH.getNode()) 2950 return false; 2951 2952 if (HasUMUL_LOHI) { 2953 // Lo,Hi = umul LHS, RHS. 2954 SDValue UMulLOHI = DAG.getNode(ISD::UMUL_LOHI, dl, 2955 DAG.getVTList(HiLoVT, HiLoVT), LL, RL); 2956 Lo = UMulLOHI; 2957 Hi = UMulLOHI.getValue(1); 2958 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2959 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2960 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2961 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2962 return true; 2963 } 2964 if (HasMULHU) { 2965 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RL); 2966 Hi = DAG.getNode(ISD::MULHU, dl, HiLoVT, LL, RL); 2967 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 2968 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 2969 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 2970 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 2971 return true; 2972 } 2973 } 2974 return false; 2975 } 2976 2977 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 2978 SelectionDAG &DAG) const { 2979 EVT VT = Node->getOperand(0).getValueType(); 2980 EVT NVT = Node->getValueType(0); 2981 SDLoc dl(SDValue(Node, 0)); 2982 2983 // FIXME: Only f32 to i64 conversions are supported. 2984 if (VT != MVT::f32 || NVT != MVT::i64) 2985 return false; 2986 2987 // Expand f32 -> i64 conversion 2988 // This algorithm comes from compiler-rt's implementation of fixsfdi: 2989 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 2990 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), 2991 VT.getSizeInBits()); 2992 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 2993 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 2994 SDValue Bias = DAG.getConstant(127, dl, IntVT); 2995 SDValue SignMask = DAG.getConstant(APInt::getSignBit(VT.getSizeInBits()), dl, 2996 IntVT); 2997 SDValue SignLowBit = DAG.getConstant(VT.getSizeInBits() - 1, dl, IntVT); 2998 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 2999 3000 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Node->getOperand(0)); 3001 3002 auto &DL = DAG.getDataLayout(); 3003 SDValue ExponentBits = DAG.getNode( 3004 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 3005 DAG.getZExtOrTrunc(ExponentLoBit, dl, getShiftAmountTy(IntVT, DL))); 3006 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 3007 3008 SDValue Sign = DAG.getNode( 3009 ISD::SRA, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 3010 DAG.getZExtOrTrunc(SignLowBit, dl, getShiftAmountTy(IntVT, DL))); 3011 Sign = DAG.getSExtOrTrunc(Sign, dl, NVT); 3012 3013 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 3014 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 3015 DAG.getConstant(0x00800000, dl, IntVT)); 3016 3017 R = DAG.getZExtOrTrunc(R, dl, NVT); 3018 3019 R = DAG.getSelectCC( 3020 dl, Exponent, ExponentLoBit, 3021 DAG.getNode(ISD::SHL, dl, NVT, R, 3022 DAG.getZExtOrTrunc( 3023 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 3024 dl, getShiftAmountTy(IntVT, DL))), 3025 DAG.getNode(ISD::SRL, dl, NVT, R, 3026 DAG.getZExtOrTrunc( 3027 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 3028 dl, getShiftAmountTy(IntVT, DL))), 3029 ISD::SETGT); 3030 3031 SDValue Ret = DAG.getNode(ISD::SUB, dl, NVT, 3032 DAG.getNode(ISD::XOR, dl, NVT, R, Sign), 3033 Sign); 3034 3035 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 3036 DAG.getConstant(0, dl, NVT), Ret, ISD::SETLT); 3037 return true; 3038 } 3039