1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/BitVector.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/CodeGen/CallingConvLower.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/CodeGen/TargetSubtargetInfo.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCExpr.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40   : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // Conservatively require the attributes of the call to match those of
57   // the return. Ignore NoAlias and NonNull because they don't affect the
58   // call sequence.
59   AttributeList CallerAttrs = F.getAttributes();
60   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
61           .removeAttribute(Attribute::NoAlias)
62           .removeAttribute(Attribute::NonNull)
63           .hasAttributes())
64     return false;
65 
66   // It's not safe to eliminate the sign / zero extension of the return value.
67   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
68       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
69     return false;
70 
71   // Check if the only use is a function return node.
72   return isUsedByReturnOnly(Node, Chain);
73 }
74 
75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
76     const uint32_t *CallerPreservedMask,
77     const SmallVectorImpl<CCValAssign> &ArgLocs,
78     const SmallVectorImpl<SDValue> &OutVals) const {
79   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
80     const CCValAssign &ArgLoc = ArgLocs[I];
81     if (!ArgLoc.isRegLoc())
82       continue;
83     unsigned Reg = ArgLoc.getLocReg();
84     // Only look at callee saved registers.
85     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
86       continue;
87     // Check that we pass the value used for the caller.
88     // (We look for a CopyFromReg reading a virtual register that is used
89     //  for the function live-in value of register Reg)
90     SDValue Value = OutVals[I];
91     if (Value->getOpcode() != ISD::CopyFromReg)
92       return false;
93     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
94     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
95       return false;
96   }
97   return true;
98 }
99 
100 /// Set CallLoweringInfo attribute flags based on a call instruction
101 /// and called function attributes.
102 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
103                                                      unsigned ArgIdx) {
104   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
105   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
106   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
107   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
108   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
109   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
110   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
111   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
112   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
113   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
114   Alignment  = CS->getParamAlignment(ArgIdx);
115 }
116 
117 /// Generate a libcall taking the given operands as arguments and returning a
118 /// result of type RetVT.
119 std::pair<SDValue, SDValue>
120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
121                             ArrayRef<SDValue> Ops, bool isSigned,
122                             const SDLoc &dl, bool doesNotReturn,
123                             bool isReturnValueUsed) const {
124   TargetLowering::ArgListTy Args;
125   Args.reserve(Ops.size());
126 
127   TargetLowering::ArgListEntry Entry;
128   for (SDValue Op : Ops) {
129     Entry.Node = Op;
130     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
131     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
132     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Args.push_back(Entry);
134   }
135 
136   if (LC == RTLIB::UNKNOWN_LIBCALL)
137     report_fatal_error("Unsupported library call operation!");
138   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
139                                          getPointerTy(DAG.getDataLayout()));
140 
141   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
142   TargetLowering::CallLoweringInfo CLI(DAG);
143   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
144   CLI.setDebugLoc(dl)
145       .setChain(DAG.getEntryNode())
146       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
147       .setNoReturn(doesNotReturn)
148       .setDiscardResult(!isReturnValueUsed)
149       .setSExtResult(signExtend)
150       .setZExtResult(!signExtend);
151   return LowerCallTo(CLI);
152 }
153 
154 /// Soften the operands of a comparison. This code is shared among BR_CC,
155 /// SELECT_CC, and SETCC handlers.
156 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
157                                          SDValue &NewLHS, SDValue &NewRHS,
158                                          ISD::CondCode &CCCode,
159                                          const SDLoc &dl) const {
160   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
161          && "Unsupported setcc type!");
162 
163   // Expand into one or more soft-fp libcall(s).
164   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
165   bool ShouldInvertCC = false;
166   switch (CCCode) {
167   case ISD::SETEQ:
168   case ISD::SETOEQ:
169     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
170           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
171           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
172     break;
173   case ISD::SETNE:
174   case ISD::SETUNE:
175     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
176           (VT == MVT::f64) ? RTLIB::UNE_F64 :
177           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
178     break;
179   case ISD::SETGE:
180   case ISD::SETOGE:
181     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
182           (VT == MVT::f64) ? RTLIB::OGE_F64 :
183           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
184     break;
185   case ISD::SETLT:
186   case ISD::SETOLT:
187     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
188           (VT == MVT::f64) ? RTLIB::OLT_F64 :
189           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
190     break;
191   case ISD::SETLE:
192   case ISD::SETOLE:
193     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
194           (VT == MVT::f64) ? RTLIB::OLE_F64 :
195           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
196     break;
197   case ISD::SETGT:
198   case ISD::SETOGT:
199     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
200           (VT == MVT::f64) ? RTLIB::OGT_F64 :
201           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
202     break;
203   case ISD::SETUO:
204     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
205           (VT == MVT::f64) ? RTLIB::UO_F64 :
206           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
207     break;
208   case ISD::SETO:
209     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
210           (VT == MVT::f64) ? RTLIB::O_F64 :
211           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
212     break;
213   case ISD::SETONE:
214     // SETONE = SETOLT | SETOGT
215     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
216           (VT == MVT::f64) ? RTLIB::OLT_F64 :
217           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
218     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
219           (VT == MVT::f64) ? RTLIB::OGT_F64 :
220           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
221     break;
222   case ISD::SETUEQ:
223     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
224           (VT == MVT::f64) ? RTLIB::UO_F64 :
225           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
226     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
227           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
228           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
229     break;
230   default:
231     // Invert CC for unordered comparisons
232     ShouldInvertCC = true;
233     switch (CCCode) {
234     case ISD::SETULT:
235       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
236             (VT == MVT::f64) ? RTLIB::OGE_F64 :
237             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
238       break;
239     case ISD::SETULE:
240       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
241             (VT == MVT::f64) ? RTLIB::OGT_F64 :
242             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
243       break;
244     case ISD::SETUGT:
245       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
246             (VT == MVT::f64) ? RTLIB::OLE_F64 :
247             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
248       break;
249     case ISD::SETUGE:
250       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
251             (VT == MVT::f64) ? RTLIB::OLT_F64 :
252             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
253       break;
254     default: llvm_unreachable("Do not know how to soften this setcc!");
255     }
256   }
257 
258   // Use the target specific return value for comparions lib calls.
259   EVT RetVT = getCmpLibcallReturnType();
260   SDValue Ops[2] = {NewLHS, NewRHS};
261   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
262                        dl).first;
263   NewRHS = DAG.getConstant(0, dl, RetVT);
264 
265   CCCode = getCmpLibcallCC(LC1);
266   if (ShouldInvertCC)
267     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
268 
269   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
270     SDValue Tmp = DAG.getNode(
271         ISD::SETCC, dl,
272         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
273         NewLHS, NewRHS, DAG.getCondCode(CCCode));
274     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
275                          dl).first;
276     NewLHS = DAG.getNode(
277         ISD::SETCC, dl,
278         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
279         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
280     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
281     NewRHS = SDValue();
282   }
283 }
284 
285 /// Return the entry encoding for a jump table in the current function. The
286 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
287 unsigned TargetLowering::getJumpTableEncoding() const {
288   // In non-pic modes, just use the address of a block.
289   if (!isPositionIndependent())
290     return MachineJumpTableInfo::EK_BlockAddress;
291 
292   // In PIC mode, if the target supports a GPRel32 directive, use it.
293   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
294     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
295 
296   // Otherwise, use a label difference.
297   return MachineJumpTableInfo::EK_LabelDifference32;
298 }
299 
300 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
301                                                  SelectionDAG &DAG) const {
302   // If our PIC model is GP relative, use the global offset table as the base.
303   unsigned JTEncoding = getJumpTableEncoding();
304 
305   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
306       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
307     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
308 
309   return Table;
310 }
311 
312 /// This returns the relocation base for the given PIC jumptable, the same as
313 /// getPICJumpTableRelocBase, but as an MCExpr.
314 const MCExpr *
315 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
316                                              unsigned JTI,MCContext &Ctx) const{
317   // The normal PIC reloc base is the label at the start of the jump table.
318   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
319 }
320 
321 bool
322 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
323   const TargetMachine &TM = getTargetMachine();
324   const GlobalValue *GV = GA->getGlobal();
325 
326   // If the address is not even local to this DSO we will have to load it from
327   // a got and then add the offset.
328   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
329     return false;
330 
331   // If the code is position independent we will have to add a base register.
332   if (isPositionIndependent())
333     return false;
334 
335   // Otherwise we can do it.
336   return true;
337 }
338 
339 //===----------------------------------------------------------------------===//
340 //  Optimization Methods
341 //===----------------------------------------------------------------------===//
342 
343 /// If the specified instruction has a constant integer operand and there are
344 /// bits set in that constant that are not demanded, then clear those bits and
345 /// return true.
346 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
347                                             TargetLoweringOpt &TLO) const {
348   SelectionDAG &DAG = TLO.DAG;
349   SDLoc DL(Op);
350   unsigned Opcode = Op.getOpcode();
351 
352   // Do target-specific constant optimization.
353   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
354     return TLO.New.getNode();
355 
356   // FIXME: ISD::SELECT, ISD::SELECT_CC
357   switch (Opcode) {
358   default:
359     break;
360   case ISD::XOR:
361   case ISD::AND:
362   case ISD::OR: {
363     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
364     if (!Op1C)
365       return false;
366 
367     // If this is a 'not' op, don't touch it because that's a canonical form.
368     const APInt &C = Op1C->getAPIntValue();
369     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
370       return false;
371 
372     if (!C.isSubsetOf(Demanded)) {
373       EVT VT = Op.getValueType();
374       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
375       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
376       return TLO.CombineTo(Op, NewOp);
377     }
378 
379     break;
380   }
381   }
382 
383   return false;
384 }
385 
386 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
387 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
388 /// generalized for targets with other types of implicit widening casts.
389 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
390                                       const APInt &Demanded,
391                                       TargetLoweringOpt &TLO) const {
392   assert(Op.getNumOperands() == 2 &&
393          "ShrinkDemandedOp only supports binary operators!");
394   assert(Op.getNode()->getNumValues() == 1 &&
395          "ShrinkDemandedOp only supports nodes with one result!");
396 
397   SelectionDAG &DAG = TLO.DAG;
398   SDLoc dl(Op);
399 
400   // Early return, as this function cannot handle vector types.
401   if (Op.getValueType().isVector())
402     return false;
403 
404   // Don't do this if the node has another user, which may require the
405   // full value.
406   if (!Op.getNode()->hasOneUse())
407     return false;
408 
409   // Search for the smallest integer type with free casts to and from
410   // Op's type. For expedience, just check power-of-2 integer types.
411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
412   unsigned DemandedSize = Demanded.getActiveBits();
413   unsigned SmallVTBits = DemandedSize;
414   if (!isPowerOf2_32(SmallVTBits))
415     SmallVTBits = NextPowerOf2(SmallVTBits);
416   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
417     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
418     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
419         TLI.isZExtFree(SmallVT, Op.getValueType())) {
420       // We found a type with free casts.
421       SDValue X = DAG.getNode(
422           Op.getOpcode(), dl, SmallVT,
423           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
425       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
426       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
427       return TLO.CombineTo(Op, Z);
428     }
429   }
430   return false;
431 }
432 
433 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
434                                           DAGCombinerInfo &DCI) const {
435   SelectionDAG &DAG = DCI.DAG;
436   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
437                         !DCI.isBeforeLegalizeOps());
438   KnownBits Known;
439 
440   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
441   if (Simplified) {
442     DCI.AddToWorklist(Op.getNode());
443     DCI.CommitTargetLoweringOpt(TLO);
444   }
445   return Simplified;
446 }
447 
448 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
449                                           KnownBits &Known,
450                                           TargetLoweringOpt &TLO,
451                                           unsigned Depth,
452                                           bool AssumeSingleUse) const {
453   EVT VT = Op.getValueType();
454   APInt DemandedElts = VT.isVector()
455                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
456                            : APInt(1, 1);
457   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
458                               AssumeSingleUse);
459 }
460 
461 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
462 /// result of Op are ever used downstream. If we can use this information to
463 /// simplify Op, create a new simplified DAG node and return true, returning the
464 /// original and new nodes in Old and New. Otherwise, analyze the expression and
465 /// return a mask of Known bits for the expression (used to simplify the
466 /// caller).  The Known bits may only be accurate for those bits in the
467 /// OriginalDemandedBits and OriginalDemandedElts.
468 bool TargetLowering::SimplifyDemandedBits(
469     SDValue Op, const APInt &OriginalDemandedBits,
470     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
471     unsigned Depth, bool AssumeSingleUse) const {
472   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
473   assert(Op.getScalarValueSizeInBits() == BitWidth &&
474          "Mask size mismatches value type size!");
475 
476   unsigned NumElts = OriginalDemandedElts.getBitWidth();
477   assert((!Op.getValueType().isVector() ||
478           NumElts == Op.getValueType().getVectorNumElements()) &&
479          "Unexpected vector size");
480 
481   APInt DemandedBits = OriginalDemandedBits;
482   APInt DemandedElts = OriginalDemandedElts;
483   SDLoc dl(Op);
484   auto &DL = TLO.DAG.getDataLayout();
485 
486   // Don't know anything.
487   Known = KnownBits(BitWidth);
488 
489   if (Op.getOpcode() == ISD::Constant) {
490     // We know all of the bits for a constant!
491     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
492     Known.Zero = ~Known.One;
493     return false;
494   }
495 
496   // Other users may use these bits.
497   EVT VT = Op.getValueType();
498   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
499     if (Depth != 0) {
500       // If not at the root, Just compute the Known bits to
501       // simplify things downstream.
502       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
503       return false;
504     }
505     // If this is the root being simplified, allow it to have multiple uses,
506     // just set the DemandedBits/Elts to all bits.
507     DemandedBits = APInt::getAllOnesValue(BitWidth);
508     DemandedElts = APInt::getAllOnesValue(NumElts);
509   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
510     // Not demanding any bits/elts from Op.
511     if (!Op.isUndef())
512       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
513     return false;
514   } else if (Depth == 6) { // Limit search depth.
515     return false;
516   }
517 
518   KnownBits Known2, KnownOut;
519   switch (Op.getOpcode()) {
520   case ISD::BUILD_VECTOR:
521     // Collect the known bits that are shared by every constant vector element.
522     Known.Zero.setAllBits(); Known.One.setAllBits();
523     for (SDValue SrcOp : Op->ops()) {
524       if (!isa<ConstantSDNode>(SrcOp)) {
525         // We can only handle all constant values - bail out with no known bits.
526         Known = KnownBits(BitWidth);
527         return false;
528       }
529       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
530       Known2.Zero = ~Known2.One;
531 
532       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
533       if (Known2.One.getBitWidth() != BitWidth) {
534         assert(Known2.getBitWidth() > BitWidth &&
535                "Expected BUILD_VECTOR implicit truncation");
536         Known2 = Known2.trunc(BitWidth);
537       }
538 
539       // Known bits are the values that are shared by every element.
540       // TODO: support per-element known bits.
541       Known.One &= Known2.One;
542       Known.Zero &= Known2.Zero;
543     }
544     return false; // Don't fall through, will infinitely loop.
545   case ISD::CONCAT_VECTORS: {
546     Known.Zero.setAllBits();
547     Known.One.setAllBits();
548     EVT SubVT = Op.getOperand(0).getValueType();
549     unsigned NumSubVecs = Op.getNumOperands();
550     unsigned NumSubElts = SubVT.getVectorNumElements();
551     for (unsigned i = 0; i != NumSubVecs; ++i) {
552       APInt DemandedSubElts =
553           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
554       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
555                                Known2, TLO, Depth + 1))
556         return true;
557       // Known bits are shared by every demanded subvector element.
558       if (!!DemandedSubElts) {
559         Known.One &= Known2.One;
560         Known.Zero &= Known2.Zero;
561       }
562     }
563     break;
564   }
565   case ISD::VECTOR_SHUFFLE: {
566     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
567 
568     // Collect demanded elements from shuffle operands..
569     APInt DemandedLHS(NumElts, 0);
570     APInt DemandedRHS(NumElts, 0);
571     for (unsigned i = 0; i != NumElts; ++i) {
572       if (!DemandedElts[i])
573         continue;
574       int M = ShuffleMask[i];
575       if (M < 0) {
576         // For UNDEF elements, we don't know anything about the common state of
577         // the shuffle result.
578         DemandedLHS.clearAllBits();
579         DemandedRHS.clearAllBits();
580         break;
581       }
582       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
583       if (M < (int)NumElts)
584         DemandedLHS.setBit(M);
585       else
586         DemandedRHS.setBit(M - NumElts);
587     }
588 
589     if (!!DemandedLHS || !!DemandedRHS) {
590       Known.Zero.setAllBits();
591       Known.One.setAllBits();
592       if (!!DemandedLHS) {
593         if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS,
594                                  Known2, TLO, Depth + 1))
595           return true;
596         Known.One &= Known2.One;
597         Known.Zero &= Known2.Zero;
598       }
599       if (!!DemandedRHS) {
600         if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS,
601                                  Known2, TLO, Depth + 1))
602           return true;
603         Known.One &= Known2.One;
604         Known.Zero &= Known2.Zero;
605       }
606     }
607     break;
608   }
609   case ISD::AND: {
610     SDValue Op0 = Op.getOperand(0);
611     SDValue Op1 = Op.getOperand(1);
612 
613     // If the RHS is a constant, check to see if the LHS would be zero without
614     // using the bits from the RHS.  Below, we use knowledge about the RHS to
615     // simplify the LHS, here we're using information from the LHS to simplify
616     // the RHS.
617     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
618       // Do not increment Depth here; that can cause an infinite loop.
619       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
620       // If the LHS already has zeros where RHSC does, this 'and' is dead.
621       if ((LHSKnown.Zero & DemandedBits) ==
622           (~RHSC->getAPIntValue() & DemandedBits))
623         return TLO.CombineTo(Op, Op0);
624 
625       // If any of the set bits in the RHS are known zero on the LHS, shrink
626       // the constant.
627       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
628         return true;
629 
630       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
631       // constant, but if this 'and' is only clearing bits that were just set by
632       // the xor, then this 'and' can be eliminated by shrinking the mask of
633       // the xor. For example, for a 32-bit X:
634       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
635       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
636           LHSKnown.One == ~RHSC->getAPIntValue()) {
637         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
638         return TLO.CombineTo(Op, Xor);
639       }
640     }
641 
642     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
643       return true;
644     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
645     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO,
646                              Depth + 1))
647       return true;
648     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
649 
650     // If all of the demanded bits are known one on one side, return the other.
651     // These bits cannot contribute to the result of the 'and'.
652     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
653       return TLO.CombineTo(Op, Op0);
654     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
655       return TLO.CombineTo(Op, Op1);
656     // If all of the demanded bits in the inputs are known zeros, return zero.
657     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
658       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
659     // If the RHS is a constant, see if we can simplify it.
660     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
661       return true;
662     // If the operation can be done in a smaller type, do so.
663     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
664       return true;
665 
666     // Output known-1 bits are only known if set in both the LHS & RHS.
667     Known.One &= Known2.One;
668     // Output known-0 are known to be clear if zero in either the LHS | RHS.
669     Known.Zero |= Known2.Zero;
670     break;
671   }
672   case ISD::OR: {
673     SDValue Op0 = Op.getOperand(0);
674     SDValue Op1 = Op.getOperand(1);
675 
676     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
677       return true;
678     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
679     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO,
680                              Depth + 1))
681       return true;
682     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
683 
684     // If all of the demanded bits are known zero on one side, return the other.
685     // These bits cannot contribute to the result of the 'or'.
686     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
687       return TLO.CombineTo(Op, Op0);
688     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
689       return TLO.CombineTo(Op, Op1);
690     // If the RHS is a constant, see if we can simplify it.
691     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
692       return true;
693     // If the operation can be done in a smaller type, do so.
694     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
695       return true;
696 
697     // Output known-0 bits are only known if clear in both the LHS & RHS.
698     Known.Zero &= Known2.Zero;
699     // Output known-1 are known to be set if set in either the LHS | RHS.
700     Known.One |= Known2.One;
701     break;
702   }
703   case ISD::XOR: {
704     SDValue Op0 = Op.getOperand(0);
705     SDValue Op1 = Op.getOperand(1);
706 
707     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1))
708       return true;
709     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
710     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1))
711       return true;
712     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
713 
714     // If all of the demanded bits are known zero on one side, return the other.
715     // These bits cannot contribute to the result of the 'xor'.
716     if (DemandedBits.isSubsetOf(Known.Zero))
717       return TLO.CombineTo(Op, Op0);
718     if (DemandedBits.isSubsetOf(Known2.Zero))
719       return TLO.CombineTo(Op, Op1);
720     // If the operation can be done in a smaller type, do so.
721     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
722       return true;
723 
724     // If all of the unknown bits are known to be zero on one side or the other
725     // (but not both) turn this into an *inclusive* or.
726     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
727     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
728       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
729 
730     // Output known-0 bits are known if clear or set in both the LHS & RHS.
731     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
732     // Output known-1 are known to be set if set in only one of the LHS, RHS.
733     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
734 
735     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
736       // If one side is a constant, and all of the known set bits on the other
737       // side are also set in the constant, turn this into an AND, as we know
738       // the bits will be cleared.
739       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
740       // NB: it is okay if more bits are known than are requested
741       if (C->getAPIntValue() == Known2.One) {
742         SDValue ANDC =
743             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
744         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
745       }
746 
747       // If the RHS is a constant, see if we can change it. Don't alter a -1
748       // constant because that's a 'not' op, and that is better for combining
749       // and codegen.
750       if (!C->isAllOnesValue()) {
751         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
752           // We're flipping all demanded bits. Flip the undemanded bits too.
753           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
754           return TLO.CombineTo(Op, New);
755         }
756         // If we can't turn this into a 'not', try to shrink the constant.
757         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
758           return true;
759       }
760     }
761 
762     Known = std::move(KnownOut);
763     break;
764   }
765   case ISD::SELECT:
766     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
767                              Depth + 1))
768       return true;
769     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
770                              Depth + 1))
771       return true;
772     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
773     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
774 
775     // If the operands are constants, see if we can simplify them.
776     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
777       return true;
778 
779     // Only known if known in both the LHS and RHS.
780     Known.One &= Known2.One;
781     Known.Zero &= Known2.Zero;
782     break;
783   case ISD::SELECT_CC:
784     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
785                              Depth + 1))
786       return true;
787     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
788                              Depth + 1))
789       return true;
790     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
791     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
792 
793     // If the operands are constants, see if we can simplify them.
794     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
795       return true;
796 
797     // Only known if known in both the LHS and RHS.
798     Known.One &= Known2.One;
799     Known.Zero &= Known2.Zero;
800     break;
801   case ISD::SETCC: {
802     SDValue Op0 = Op.getOperand(0);
803     SDValue Op1 = Op.getOperand(1);
804     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
805     // If (1) we only need the sign-bit, (2) the setcc operands are the same
806     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
807     // -1, we may be able to bypass the setcc.
808     if (DemandedBits.isSignMask() &&
809         Op0.getScalarValueSizeInBits() == BitWidth &&
810         getBooleanContents(VT) ==
811             BooleanContent::ZeroOrNegativeOneBooleanContent) {
812       // If we're testing X < 0, then this compare isn't needed - just use X!
813       // FIXME: We're limiting to integer types here, but this should also work
814       // if we don't care about FP signed-zero. The use of SETLT with FP means
815       // that we don't care about NaNs.
816       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
817           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
818         return TLO.CombineTo(Op, Op0);
819 
820       // TODO: Should we check for other forms of sign-bit comparisons?
821       // Examples: X <= -1, X >= 0
822     }
823     if (getBooleanContents(Op0.getValueType()) ==
824             TargetLowering::ZeroOrOneBooleanContent &&
825         BitWidth > 1)
826       Known.Zero.setBitsFrom(1);
827     break;
828   }
829   case ISD::SHL: {
830     SDValue Op0 = Op.getOperand(0);
831     SDValue Op1 = Op.getOperand(1);
832 
833     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
834       // If the shift count is an invalid immediate, don't do anything.
835       if (SA->getAPIntValue().uge(BitWidth))
836         break;
837 
838       unsigned ShAmt = SA->getZExtValue();
839 
840       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
841       // single shift.  We can do this if the bottom bits (which are shifted
842       // out) are never demanded.
843       if (Op0.getOpcode() == ISD::SRL) {
844         if (ShAmt &&
845             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
846           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
847             if (SA2->getAPIntValue().ult(BitWidth)) {
848               unsigned C1 = SA2->getZExtValue();
849               unsigned Opc = ISD::SHL;
850               int Diff = ShAmt - C1;
851               if (Diff < 0) {
852                 Diff = -Diff;
853                 Opc = ISD::SRL;
854               }
855 
856               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
857               return TLO.CombineTo(
858                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
859             }
860           }
861         }
862       }
863 
864       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO,
865                                Depth + 1))
866         return true;
867 
868       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
869       // are not demanded. This will likely allow the anyext to be folded away.
870       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
871         SDValue InnerOp = Op0.getOperand(0);
872         EVT InnerVT = InnerOp.getValueType();
873         unsigned InnerBits = InnerVT.getScalarSizeInBits();
874         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
875             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
876           EVT ShTy = getShiftAmountTy(InnerVT, DL);
877           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
878             ShTy = InnerVT;
879           SDValue NarrowShl =
880               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
881                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
882           return TLO.CombineTo(
883               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
884         }
885         // Repeat the SHL optimization above in cases where an extension
886         // intervenes: (shl (anyext (shr x, c1)), c2) to
887         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
888         // aren't demanded (as above) and that the shifted upper c1 bits of
889         // x aren't demanded.
890         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
891             InnerOp.hasOneUse()) {
892           if (ConstantSDNode *SA2 =
893                   isConstOrConstSplat(InnerOp.getOperand(1))) {
894             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
895             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
896                 DemandedBits.getActiveBits() <=
897                     (InnerBits - InnerShAmt + ShAmt) &&
898                 DemandedBits.countTrailingZeros() >= ShAmt) {
899               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
900                                                   Op1.getValueType());
901               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
902                                                InnerOp.getOperand(0));
903               return TLO.CombineTo(
904                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
905             }
906           }
907         }
908       }
909 
910       Known.Zero <<= ShAmt;
911       Known.One <<= ShAmt;
912       // low bits known zero.
913       Known.Zero.setLowBits(ShAmt);
914     }
915     break;
916   }
917   case ISD::SRL: {
918     SDValue Op0 = Op.getOperand(0);
919     SDValue Op1 = Op.getOperand(1);
920 
921     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
922       // If the shift count is an invalid immediate, don't do anything.
923       if (SA->getAPIntValue().uge(BitWidth))
924         break;
925 
926       unsigned ShAmt = SA->getZExtValue();
927       APInt InDemandedMask = (DemandedBits << ShAmt);
928 
929       // If the shift is exact, then it does demand the low bits (and knows that
930       // they are zero).
931       if (Op->getFlags().hasExact())
932         InDemandedMask.setLowBits(ShAmt);
933 
934       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
935       // single shift.  We can do this if the top bits (which are shifted out)
936       // are never demanded.
937       if (Op0.getOpcode() == ISD::SHL) {
938         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
939           if (ShAmt &&
940               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
941             if (SA2->getAPIntValue().ult(BitWidth)) {
942               unsigned C1 = SA2->getZExtValue();
943               unsigned Opc = ISD::SRL;
944               int Diff = ShAmt - C1;
945               if (Diff < 0) {
946                 Diff = -Diff;
947                 Opc = ISD::SHL;
948               }
949 
950               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
951               return TLO.CombineTo(
952                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
953             }
954           }
955         }
956       }
957 
958       // Compute the new bits that are at the top now.
959       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
960         return true;
961       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
962       Known.Zero.lshrInPlace(ShAmt);
963       Known.One.lshrInPlace(ShAmt);
964 
965       Known.Zero.setHighBits(ShAmt); // High bits known zero.
966     }
967     break;
968   }
969   case ISD::SRA: {
970     SDValue Op0 = Op.getOperand(0);
971     SDValue Op1 = Op.getOperand(1);
972 
973     // If this is an arithmetic shift right and only the low-bit is set, we can
974     // always convert this into a logical shr, even if the shift amount is
975     // variable.  The low bit of the shift cannot be an input sign bit unless
976     // the shift amount is >= the size of the datatype, which is undefined.
977     if (DemandedBits.isOneValue())
978       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
979 
980     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
981       // If the shift count is an invalid immediate, don't do anything.
982       if (SA->getAPIntValue().uge(BitWidth))
983         break;
984 
985       unsigned ShAmt = SA->getZExtValue();
986       APInt InDemandedMask = (DemandedBits << ShAmt);
987 
988       // If the shift is exact, then it does demand the low bits (and knows that
989       // they are zero).
990       if (Op->getFlags().hasExact())
991         InDemandedMask.setLowBits(ShAmt);
992 
993       // If any of the demanded bits are produced by the sign extension, we also
994       // demand the input sign bit.
995       if (DemandedBits.countLeadingZeros() < ShAmt)
996         InDemandedMask.setSignBit();
997 
998       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1))
999         return true;
1000       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1001       Known.Zero.lshrInPlace(ShAmt);
1002       Known.One.lshrInPlace(ShAmt);
1003 
1004       // If the input sign bit is known to be zero, or if none of the top bits
1005       // are demanded, turn this into an unsigned shift right.
1006       if (Known.Zero[BitWidth - ShAmt - 1] ||
1007           DemandedBits.countLeadingZeros() >= ShAmt) {
1008         SDNodeFlags Flags;
1009         Flags.setExact(Op->getFlags().hasExact());
1010         return TLO.CombineTo(
1011             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1012       }
1013 
1014       int Log2 = DemandedBits.exactLogBase2();
1015       if (Log2 >= 0) {
1016         // The bit must come from the sign.
1017         SDValue NewSA =
1018             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1019         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1020       }
1021 
1022       if (Known.One[BitWidth - ShAmt - 1])
1023         // New bits are known one.
1024         Known.One.setHighBits(ShAmt);
1025     }
1026     break;
1027   }
1028   case ISD::SIGN_EXTEND_INREG: {
1029     SDValue Op0 = Op.getOperand(0);
1030     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1031     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1032 
1033     // If we only care about the highest bit, don't bother shifting right.
1034     if (DemandedBits.isSignMask()) {
1035       bool AlreadySignExtended =
1036           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1037       // However if the input is already sign extended we expect the sign
1038       // extension to be dropped altogether later and do not simplify.
1039       if (!AlreadySignExtended) {
1040         // Compute the correct shift amount type, which must be getShiftAmountTy
1041         // for scalar types after legalization.
1042         EVT ShiftAmtTy = VT;
1043         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1044           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1045 
1046         SDValue ShiftAmt =
1047             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1048         return TLO.CombineTo(Op,
1049                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1050       }
1051     }
1052 
1053     // If none of the extended bits are demanded, eliminate the sextinreg.
1054     if (DemandedBits.getActiveBits() <= ExVTBits)
1055       return TLO.CombineTo(Op, Op0);
1056 
1057     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1058 
1059     // Since the sign extended bits are demanded, we know that the sign
1060     // bit is demanded.
1061     InputDemandedBits.setBit(ExVTBits - 1);
1062 
1063     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1064       return true;
1065     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1066 
1067     // If the sign bit of the input is known set or clear, then we know the
1068     // top bits of the result.
1069 
1070     // If the input sign bit is known zero, convert this into a zero extension.
1071     if (Known.Zero[ExVTBits - 1])
1072       return TLO.CombineTo(
1073           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1074 
1075     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1076     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1077       Known.One.setBitsFrom(ExVTBits);
1078       Known.Zero &= Mask;
1079     } else { // Input sign bit unknown
1080       Known.Zero &= Mask;
1081       Known.One &= Mask;
1082     }
1083     break;
1084   }
1085   case ISD::BUILD_PAIR: {
1086     EVT HalfVT = Op.getOperand(0).getValueType();
1087     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1088 
1089     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1090     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1091 
1092     KnownBits KnownLo, KnownHi;
1093 
1094     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1095       return true;
1096 
1097     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1098       return true;
1099 
1100     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1101                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1102 
1103     Known.One = KnownLo.One.zext(BitWidth) |
1104                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1105     break;
1106   }
1107   case ISD::ZERO_EXTEND: {
1108     SDValue Src = Op.getOperand(0);
1109     unsigned InBits = Src.getScalarValueSizeInBits();
1110 
1111     // If none of the top bits are demanded, convert this into an any_extend.
1112     if (DemandedBits.getActiveBits() <= InBits)
1113       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1114 
1115     APInt InDemandedBits = DemandedBits.trunc(InBits);
1116     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1117       return true;
1118     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1119     Known = Known.zext(BitWidth);
1120     Known.Zero.setBitsFrom(InBits);
1121     break;
1122   }
1123   case ISD::SIGN_EXTEND: {
1124     SDValue Src = Op.getOperand(0);
1125     unsigned InBits = Src.getScalarValueSizeInBits();
1126 
1127     // If none of the top bits are demanded, convert this into an any_extend.
1128     if (DemandedBits.getActiveBits() <= InBits)
1129       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1130 
1131     // Since some of the sign extended bits are demanded, we know that the sign
1132     // bit is demanded.
1133     APInt InDemandedBits = DemandedBits.trunc(InBits);
1134     InDemandedBits.setBit(InBits - 1);
1135 
1136     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1137       return true;
1138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1139     // If the sign bit is known one, the top bits match.
1140     Known = Known.sext(BitWidth);
1141 
1142     // If the sign bit is known zero, convert this to a zero extend.
1143     if (Known.isNonNegative())
1144       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1145     break;
1146   }
1147   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1148     // TODO - merge this with SIGN_EXTEND above?
1149     SDValue Src = Op.getOperand(0);
1150     unsigned InBits = Src.getScalarValueSizeInBits();
1151 
1152     APInt InDemandedBits = DemandedBits.trunc(InBits);
1153 
1154     // If some of the sign extended bits are demanded, we know that the sign
1155     // bit is demanded.
1156     if (InBits < DemandedBits.getActiveBits())
1157       InDemandedBits.setBit(InBits - 1);
1158 
1159     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1160       return true;
1161     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1162     // If the sign bit is known one, the top bits match.
1163     Known = Known.sext(BitWidth);
1164     break;
1165   }
1166   case ISD::ANY_EXTEND: {
1167     SDValue Src = Op.getOperand(0);
1168     unsigned InBits = Src.getScalarValueSizeInBits();
1169     APInt InDemandedBits = DemandedBits.trunc(InBits);
1170     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1171       return true;
1172     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1173     Known = Known.zext(BitWidth);
1174     break;
1175   }
1176   case ISD::TRUNCATE: {
1177     SDValue Src = Op.getOperand(0);
1178 
1179     // Simplify the input, using demanded bit information, and compute the known
1180     // zero/one bits live out.
1181     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1182     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1183     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1184       return true;
1185     Known = Known.trunc(BitWidth);
1186 
1187     // If the input is only used by this truncate, see if we can shrink it based
1188     // on the known demanded bits.
1189     if (Src.getNode()->hasOneUse()) {
1190       switch (Src.getOpcode()) {
1191       default:
1192         break;
1193       case ISD::SRL:
1194         // Shrink SRL by a constant if none of the high bits shifted in are
1195         // demanded.
1196         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1197           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1198           // undesirable.
1199           break;
1200         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1201         if (!ShAmt)
1202           break;
1203         SDValue Shift = Src.getOperand(1);
1204         if (TLO.LegalTypes()) {
1205           uint64_t ShVal = ShAmt->getZExtValue();
1206           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1207         }
1208 
1209         if (ShAmt->getZExtValue() < BitWidth) {
1210           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1211                                                  OperandBitWidth - BitWidth);
1212           HighBits.lshrInPlace(ShAmt->getZExtValue());
1213           HighBits = HighBits.trunc(BitWidth);
1214 
1215           if (!(HighBits & DemandedBits)) {
1216             // None of the shifted in bits are needed.  Add a truncate of the
1217             // shift input, then shift it.
1218             SDValue NewTrunc =
1219                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1220             return TLO.CombineTo(
1221                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1222           }
1223         }
1224         break;
1225       }
1226     }
1227 
1228     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1229     break;
1230   }
1231   case ISD::AssertZext: {
1232     // AssertZext demands all of the high bits, plus any of the low bits
1233     // demanded by its users.
1234     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1235     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1236     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1237                              Known, TLO, Depth+1))
1238       return true;
1239     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1240 
1241     Known.Zero |= ~InMask;
1242     break;
1243   }
1244   case ISD::EXTRACT_VECTOR_ELT: {
1245     SDValue Src = Op.getOperand(0);
1246     SDValue Idx = Op.getOperand(1);
1247     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1248     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1249 
1250     // Demand the bits from every vector element without a constant index.
1251     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1252     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1253       if (CIdx->getAPIntValue().ult(NumSrcElts))
1254         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1255 
1256     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1257     // anything about the extended bits.
1258     APInt DemandedSrcBits = DemandedBits;
1259     if (BitWidth > EltBitWidth)
1260       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1261 
1262     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1263                              Depth + 1))
1264       return true;
1265 
1266     Known = Known2;
1267     if (BitWidth > EltBitWidth)
1268       Known = Known.zext(BitWidth);
1269     break;
1270   }
1271   case ISD::BITCAST: {
1272     SDValue Src = Op.getOperand(0);
1273     EVT SrcVT = Src.getValueType();
1274     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1275 
1276     // If this is an FP->Int bitcast and if the sign bit is the only
1277     // thing demanded, turn this into a FGETSIGN.
1278     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1279         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1280         SrcVT.isFloatingPoint()) {
1281       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1282       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1283       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1284           SrcVT != MVT::f128) {
1285         // Cannot eliminate/lower SHL for f128 yet.
1286         EVT Ty = OpVTLegal ? VT : MVT::i32;
1287         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1288         // place.  We expect the SHL to be eliminated by other optimizations.
1289         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1290         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1291         if (!OpVTLegal && OpVTSizeInBits > 32)
1292           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1293         unsigned ShVal = Op.getValueSizeInBits() - 1;
1294         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1295         return TLO.CombineTo(Op,
1296                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1297       }
1298     }
1299     // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by
1300     // demanding the element if any bits from it are demanded.
1301     // TODO - bigendian once we have test coverage.
1302     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1303     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1304         (BitWidth % NumSrcEltBits) == 0 &&
1305         TLO.DAG.getDataLayout().isLittleEndian()) {
1306       unsigned Scale = BitWidth / NumSrcEltBits;
1307       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1308         DemandedSubElts = APInt::getNullValue(Scale);
1309         for (unsigned i = 0; i != Scale; ++i) {
1310           unsigned Offset = i * NumSrcEltBits;
1311           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1312           if (!Sub.isNullValue())
1313             DemandedSubElts.setBit(i);
1314         }
1315         return true;
1316       };
1317 
1318       APInt DemandedSubElts;
1319       if (GetDemandedSubMask(DemandedSubElts)) {
1320         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1321         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1322 
1323         APInt KnownUndef, KnownZero;
1324         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1325                                        TLO, Depth + 1))
1326           return true;
1327       }
1328     }
1329     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1330     // recursive call where Known may be useful to the caller.
1331     if (Depth > 0) {
1332       Known = TLO.DAG.computeKnownBits(Op, Depth);
1333       return false;
1334     }
1335     break;
1336   }
1337   case ISD::ADD:
1338   case ISD::MUL:
1339   case ISD::SUB: {
1340     // Add, Sub, and Mul don't demand any bits in positions beyond that
1341     // of the highest bit demanded of them.
1342     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1343     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1344     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1345     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1346         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) ||
1347         // See if the operation should be performed at a smaller bit width.
1348         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1349       SDNodeFlags Flags = Op.getNode()->getFlags();
1350       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1351         // Disable the nsw and nuw flags. We can no longer guarantee that we
1352         // won't wrap after simplification.
1353         Flags.setNoSignedWrap(false);
1354         Flags.setNoUnsignedWrap(false);
1355         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1356                                         Flags);
1357         return TLO.CombineTo(Op, NewOp);
1358       }
1359       return true;
1360     }
1361 
1362     // If we have a constant operand, we may be able to turn it into -1 if we
1363     // do not demand the high bits. This can make the constant smaller to
1364     // encode, allow more general folding, or match specialized instruction
1365     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1366     // is probably not useful (and could be detrimental).
1367     ConstantSDNode *C = isConstOrConstSplat(Op1);
1368     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1369     if (C && !C->isAllOnesValue() && !C->isOne() &&
1370         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1371       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1372       // We can't guarantee that the new math op doesn't wrap, so explicitly
1373       // clear those flags to prevent folding with a potential existing node
1374       // that has those flags set.
1375       SDNodeFlags Flags;
1376       Flags.setNoSignedWrap(false);
1377       Flags.setNoUnsignedWrap(false);
1378       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1379       return TLO.CombineTo(Op, NewOp);
1380     }
1381 
1382     LLVM_FALLTHROUGH;
1383   }
1384   default:
1385     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1386       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1387                                             Known, TLO, Depth))
1388         return true;
1389       break;
1390     }
1391 
1392     // Just use computeKnownBits to compute output bits.
1393     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1394     break;
1395   }
1396 
1397   // If we know the value of all of the demanded bits, return this as a
1398   // constant.
1399   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1400     // Avoid folding to a constant if any OpaqueConstant is involved.
1401     const SDNode *N = Op.getNode();
1402     for (SDNodeIterator I = SDNodeIterator::begin(N),
1403                         E = SDNodeIterator::end(N);
1404          I != E; ++I) {
1405       SDNode *Op = *I;
1406       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1407         if (C->isOpaque())
1408           return false;
1409     }
1410     // TODO: Handle float bits as well.
1411     if (VT.isInteger())
1412       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1413   }
1414 
1415   return false;
1416 }
1417 
1418 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1419                                                 const APInt &DemandedElts,
1420                                                 APInt &KnownUndef,
1421                                                 APInt &KnownZero,
1422                                                 DAGCombinerInfo &DCI) const {
1423   SelectionDAG &DAG = DCI.DAG;
1424   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1425                         !DCI.isBeforeLegalizeOps());
1426 
1427   bool Simplified =
1428       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1429   if (Simplified) {
1430     DCI.AddToWorklist(Op.getNode());
1431     DCI.CommitTargetLoweringOpt(TLO);
1432   }
1433   return Simplified;
1434 }
1435 
1436 /// Given a vector binary operation and known undefined elements for each input
1437 /// operand, compute whether each element of the output is undefined.
1438 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
1439                                          const APInt &UndefOp0,
1440                                          const APInt &UndefOp1) {
1441   EVT VT = BO.getValueType();
1442   assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only");
1443 
1444   EVT EltVT = VT.getVectorElementType();
1445   unsigned NumElts = VT.getVectorNumElements();
1446   assert(UndefOp0.getBitWidth() == NumElts &&
1447          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
1448 
1449   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
1450                                    const APInt &UndefVals) {
1451     if (UndefVals[Index])
1452       return DAG.getUNDEF(EltVT);
1453 
1454     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
1455       // Try hard to make sure that the getNode() call is not creating temporary
1456       // nodes. Ignore opaque integers because they do not constant fold.
1457       SDValue Elt = BV->getOperand(Index);
1458       auto *C = dyn_cast<ConstantSDNode>(Elt);
1459       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
1460         return Elt;
1461     }
1462 
1463     return SDValue();
1464   };
1465 
1466   APInt KnownUndef = APInt::getNullValue(NumElts);
1467   for (unsigned i = 0; i != NumElts; ++i) {
1468     // If both inputs for this element are either constant or undef and match
1469     // the element type, compute the constant/undef result for this element of
1470     // the vector.
1471     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
1472     // not handle FP constants. The code within getNode() should be refactored
1473     // to avoid the danger of creating a bogus temporary node here.
1474     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
1475     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
1476     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
1477       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
1478         KnownUndef.setBit(i);
1479   }
1480   return KnownUndef;
1481 }
1482 
1483 bool TargetLowering::SimplifyDemandedVectorElts(
1484     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1485     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1486     bool AssumeSingleUse) const {
1487   EVT VT = Op.getValueType();
1488   APInt DemandedElts = DemandedEltMask;
1489   unsigned NumElts = DemandedElts.getBitWidth();
1490   assert(VT.isVector() && "Expected vector op");
1491   assert(VT.getVectorNumElements() == NumElts &&
1492          "Mask size mismatches value type element count!");
1493 
1494   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1495 
1496   // Undef operand.
1497   if (Op.isUndef()) {
1498     KnownUndef.setAllBits();
1499     return false;
1500   }
1501 
1502   // If Op has other users, assume that all elements are needed.
1503   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1504     DemandedElts.setAllBits();
1505 
1506   // Not demanding any elements from Op.
1507   if (DemandedElts == 0) {
1508     KnownUndef.setAllBits();
1509     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1510   }
1511 
1512   // Limit search depth.
1513   if (Depth >= 6)
1514     return false;
1515 
1516   SDLoc DL(Op);
1517   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1518 
1519   switch (Op.getOpcode()) {
1520   case ISD::SCALAR_TO_VECTOR: {
1521     if (!DemandedElts[0]) {
1522       KnownUndef.setAllBits();
1523       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1524     }
1525     KnownUndef.setHighBits(NumElts - 1);
1526     break;
1527   }
1528   case ISD::BITCAST: {
1529     SDValue Src = Op.getOperand(0);
1530     EVT SrcVT = Src.getValueType();
1531 
1532     // We only handle vectors here.
1533     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1534     if (!SrcVT.isVector())
1535       break;
1536 
1537     // Fast handling of 'identity' bitcasts.
1538     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1539     if (NumSrcElts == NumElts)
1540       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1541                                         KnownZero, TLO, Depth + 1);
1542 
1543     APInt SrcZero, SrcUndef;
1544     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1545 
1546     // Bitcast from 'large element' src vector to 'small element' vector, we
1547     // must demand a source element if any DemandedElt maps to it.
1548     if ((NumElts % NumSrcElts) == 0) {
1549       unsigned Scale = NumElts / NumSrcElts;
1550       for (unsigned i = 0; i != NumElts; ++i)
1551         if (DemandedElts[i])
1552           SrcDemandedElts.setBit(i / Scale);
1553 
1554       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1555                                      TLO, Depth + 1))
1556         return true;
1557 
1558       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1559       // of the large element.
1560       // TODO - bigendian once we have test coverage.
1561       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1562         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1563         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1564         for (unsigned i = 0; i != NumElts; ++i)
1565           if (DemandedElts[i]) {
1566             unsigned Ofs = (i % Scale) * EltSizeInBits;
1567             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1568           }
1569 
1570         KnownBits Known;
1571         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1572           return true;
1573       }
1574 
1575       // If the src element is zero/undef then all the output elements will be -
1576       // only demanded elements are guaranteed to be correct.
1577       for (unsigned i = 0; i != NumSrcElts; ++i) {
1578         if (SrcDemandedElts[i]) {
1579           if (SrcZero[i])
1580             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1581           if (SrcUndef[i])
1582             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1583         }
1584       }
1585     }
1586 
1587     // Bitcast from 'small element' src vector to 'large element' vector, we
1588     // demand all smaller source elements covered by the larger demanded element
1589     // of this vector.
1590     if ((NumSrcElts % NumElts) == 0) {
1591       unsigned Scale = NumSrcElts / NumElts;
1592       for (unsigned i = 0; i != NumElts; ++i)
1593         if (DemandedElts[i])
1594           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1595 
1596       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1597                                      TLO, Depth + 1))
1598         return true;
1599 
1600       // If all the src elements covering an output element are zero/undef, then
1601       // the output element will be as well, assuming it was demanded.
1602       for (unsigned i = 0; i != NumElts; ++i) {
1603         if (DemandedElts[i]) {
1604           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1605             KnownZero.setBit(i);
1606           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1607             KnownUndef.setBit(i);
1608         }
1609       }
1610     }
1611     break;
1612   }
1613   case ISD::BUILD_VECTOR: {
1614     // Check all elements and simplify any unused elements with UNDEF.
1615     if (!DemandedElts.isAllOnesValue()) {
1616       // Don't simplify BROADCASTS.
1617       if (llvm::any_of(Op->op_values(),
1618                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1619         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1620         bool Updated = false;
1621         for (unsigned i = 0; i != NumElts; ++i) {
1622           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1623             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1624             KnownUndef.setBit(i);
1625             Updated = true;
1626           }
1627         }
1628         if (Updated)
1629           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1630       }
1631     }
1632     for (unsigned i = 0; i != NumElts; ++i) {
1633       SDValue SrcOp = Op.getOperand(i);
1634       if (SrcOp.isUndef()) {
1635         KnownUndef.setBit(i);
1636       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1637                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1638         KnownZero.setBit(i);
1639       }
1640     }
1641     break;
1642   }
1643   case ISD::CONCAT_VECTORS: {
1644     EVT SubVT = Op.getOperand(0).getValueType();
1645     unsigned NumSubVecs = Op.getNumOperands();
1646     unsigned NumSubElts = SubVT.getVectorNumElements();
1647     for (unsigned i = 0; i != NumSubVecs; ++i) {
1648       SDValue SubOp = Op.getOperand(i);
1649       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1650       APInt SubUndef, SubZero;
1651       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1652                                      Depth + 1))
1653         return true;
1654       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1655       KnownZero.insertBits(SubZero, i * NumSubElts);
1656     }
1657     break;
1658   }
1659   case ISD::INSERT_SUBVECTOR: {
1660     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1661       break;
1662     SDValue Base = Op.getOperand(0);
1663     SDValue Sub = Op.getOperand(1);
1664     EVT SubVT = Sub.getValueType();
1665     unsigned NumSubElts = SubVT.getVectorNumElements();
1666     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1667     if (Idx.ugt(NumElts - NumSubElts))
1668       break;
1669     unsigned SubIdx = Idx.getZExtValue();
1670     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1671     APInt SubUndef, SubZero;
1672     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1673                                    Depth + 1))
1674       return true;
1675     APInt BaseElts = DemandedElts;
1676     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1677     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1678                                    Depth + 1))
1679       return true;
1680     KnownUndef.insertBits(SubUndef, SubIdx);
1681     KnownZero.insertBits(SubZero, SubIdx);
1682     break;
1683   }
1684   case ISD::EXTRACT_SUBVECTOR: {
1685     SDValue Src = Op.getOperand(0);
1686     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1687     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1688     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1689       // Offset the demanded elts by the subvector index.
1690       uint64_t Idx = SubIdx->getZExtValue();
1691       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1692       APInt SrcUndef, SrcZero;
1693       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1694                                      Depth + 1))
1695         return true;
1696       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1697       KnownZero = SrcZero.extractBits(NumElts, Idx);
1698     }
1699     break;
1700   }
1701   case ISD::INSERT_VECTOR_ELT: {
1702     SDValue Vec = Op.getOperand(0);
1703     SDValue Scl = Op.getOperand(1);
1704     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1705 
1706     // For a legal, constant insertion index, if we don't need this insertion
1707     // then strip it, else remove it from the demanded elts.
1708     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1709       unsigned Idx = CIdx->getZExtValue();
1710       if (!DemandedElts[Idx])
1711         return TLO.CombineTo(Op, Vec);
1712 
1713       APInt DemandedVecElts(DemandedElts);
1714       DemandedVecElts.clearBit(Idx);
1715       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
1716                                      KnownZero, TLO, Depth + 1))
1717         return true;
1718 
1719       KnownUndef.clearBit(Idx);
1720       if (Scl.isUndef())
1721         KnownUndef.setBit(Idx);
1722 
1723       KnownZero.clearBit(Idx);
1724       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1725         KnownZero.setBit(Idx);
1726       break;
1727     }
1728 
1729     APInt VecUndef, VecZero;
1730     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1731                                    Depth + 1))
1732       return true;
1733     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1734     break;
1735   }
1736   case ISD::VSELECT: {
1737     // Try to transform the select condition based on the current demanded
1738     // elements.
1739     // TODO: If a condition element is undef, we can choose from one arm of the
1740     //       select (and if one arm is undef, then we can propagate that to the
1741     //       result).
1742     // TODO - add support for constant vselect masks (see IR version of this).
1743     APInt UnusedUndef, UnusedZero;
1744     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1745                                    UnusedZero, TLO, Depth + 1))
1746       return true;
1747 
1748     // See if we can simplify either vselect operand.
1749     APInt DemandedLHS(DemandedElts);
1750     APInt DemandedRHS(DemandedElts);
1751     APInt UndefLHS, ZeroLHS;
1752     APInt UndefRHS, ZeroRHS;
1753     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1754                                    ZeroLHS, TLO, Depth + 1))
1755       return true;
1756     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1757                                    ZeroRHS, TLO, Depth + 1))
1758       return true;
1759 
1760     KnownUndef = UndefLHS & UndefRHS;
1761     KnownZero = ZeroLHS & ZeroRHS;
1762     break;
1763   }
1764   case ISD::VECTOR_SHUFFLE: {
1765     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1766 
1767     // Collect demanded elements from shuffle operands..
1768     APInt DemandedLHS(NumElts, 0);
1769     APInt DemandedRHS(NumElts, 0);
1770     for (unsigned i = 0; i != NumElts; ++i) {
1771       int M = ShuffleMask[i];
1772       if (M < 0 || !DemandedElts[i])
1773         continue;
1774       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1775       if (M < (int)NumElts)
1776         DemandedLHS.setBit(M);
1777       else
1778         DemandedRHS.setBit(M - NumElts);
1779     }
1780 
1781     // See if we can simplify either shuffle operand.
1782     APInt UndefLHS, ZeroLHS;
1783     APInt UndefRHS, ZeroRHS;
1784     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1785                                    ZeroLHS, TLO, Depth + 1))
1786       return true;
1787     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1788                                    ZeroRHS, TLO, Depth + 1))
1789       return true;
1790 
1791     // Simplify mask using undef elements from LHS/RHS.
1792     bool Updated = false;
1793     bool IdentityLHS = true, IdentityRHS = true;
1794     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1795     for (unsigned i = 0; i != NumElts; ++i) {
1796       int &M = NewMask[i];
1797       if (M < 0)
1798         continue;
1799       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1800           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1801         Updated = true;
1802         M = -1;
1803       }
1804       IdentityLHS &= (M < 0) || (M == (int)i);
1805       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1806     }
1807 
1808     // Update legal shuffle masks based on demanded elements if it won't reduce
1809     // to Identity which can cause premature removal of the shuffle mask.
1810     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1811         isShuffleMaskLegal(NewMask, VT))
1812       return TLO.CombineTo(Op,
1813                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1814                                                     Op.getOperand(1), NewMask));
1815 
1816     // Propagate undef/zero elements from LHS/RHS.
1817     for (unsigned i = 0; i != NumElts; ++i) {
1818       int M = ShuffleMask[i];
1819       if (M < 0) {
1820         KnownUndef.setBit(i);
1821       } else if (M < (int)NumElts) {
1822         if (UndefLHS[M])
1823           KnownUndef.setBit(i);
1824         if (ZeroLHS[M])
1825           KnownZero.setBit(i);
1826       } else {
1827         if (UndefRHS[M - NumElts])
1828           KnownUndef.setBit(i);
1829         if (ZeroRHS[M - NumElts])
1830           KnownZero.setBit(i);
1831       }
1832     }
1833     break;
1834   }
1835   case ISD::SIGN_EXTEND_VECTOR_INREG:
1836   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1837     APInt SrcUndef, SrcZero;
1838     SDValue Src = Op.getOperand(0);
1839     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1840     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
1841     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef,
1842                                    SrcZero, TLO, Depth + 1))
1843       return true;
1844     KnownZero = SrcZero.zextOrTrunc(NumElts);
1845     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
1846 
1847     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
1848       // zext(undef) upper bits are guaranteed to be zero.
1849       if (DemandedElts.isSubsetOf(KnownUndef))
1850         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1851       KnownUndef.clearAllBits();
1852     }
1853     break;
1854   }
1855 
1856   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
1857   // MAX, saturated math, etc.
1858   case ISD::OR:
1859   case ISD::XOR:
1860   case ISD::ADD:
1861   case ISD::SUB:
1862   case ISD::FADD:
1863   case ISD::FSUB:
1864   case ISD::FMUL:
1865   case ISD::FDIV:
1866   case ISD::FREM: {
1867     APInt UndefRHS, ZeroRHS;
1868     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
1869                                    ZeroRHS, TLO, Depth + 1))
1870       return true;
1871     APInt UndefLHS, ZeroLHS;
1872     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
1873                                    ZeroLHS, TLO, Depth + 1))
1874       return true;
1875 
1876     KnownZero = ZeroLHS & ZeroRHS;
1877     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
1878     break;
1879   }
1880   case ISD::AND: {
1881     APInt SrcUndef, SrcZero;
1882     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1883                                    SrcZero, TLO, Depth + 1))
1884       return true;
1885     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1886                                    KnownZero, TLO, Depth + 1))
1887       return true;
1888 
1889     // If either side has a zero element, then the result element is zero, even
1890     // if the other is an UNDEF.
1891     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
1892     // and then handle 'and' nodes with the rest of the binop opcodes.
1893     KnownZero |= SrcZero;
1894     KnownUndef &= SrcUndef;
1895     KnownUndef &= ~KnownZero;
1896     break;
1897   }
1898   case ISD::TRUNCATE:
1899   case ISD::SIGN_EXTEND:
1900   case ISD::ZERO_EXTEND:
1901     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1902                                    KnownZero, TLO, Depth + 1))
1903       return true;
1904 
1905     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
1906       // zext(undef) upper bits are guaranteed to be zero.
1907       if (DemandedElts.isSubsetOf(KnownUndef))
1908         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
1909       KnownUndef.clearAllBits();
1910     }
1911     break;
1912   default: {
1913     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1914       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1915                                                   KnownZero, TLO, Depth))
1916         return true;
1917     } else {
1918       KnownBits Known;
1919       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
1920       if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO,
1921                                Depth, AssumeSingleUse))
1922         return true;
1923     }
1924     break;
1925   }
1926   }
1927   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1928 
1929   // Constant fold all undef cases.
1930   // TODO: Handle zero cases as well.
1931   if (DemandedElts.isSubsetOf(KnownUndef))
1932     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1933 
1934   return false;
1935 }
1936 
1937 /// Determine which of the bits specified in Mask are known to be either zero or
1938 /// one and return them in the Known.
1939 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1940                                                    KnownBits &Known,
1941                                                    const APInt &DemandedElts,
1942                                                    const SelectionDAG &DAG,
1943                                                    unsigned Depth) const {
1944   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1945           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1946           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1947           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1948          "Should use MaskedValueIsZero if you don't know whether Op"
1949          " is a target node!");
1950   Known.resetAll();
1951 }
1952 
1953 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1954                                                    KnownBits &Known,
1955                                                    const APInt &DemandedElts,
1956                                                    const SelectionDAG &DAG,
1957                                                    unsigned Depth) const {
1958   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1959 
1960   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1961     // The low bits are known zero if the pointer is aligned.
1962     Known.Zero.setLowBits(Log2_32(Align));
1963   }
1964 }
1965 
1966 /// This method can be implemented by targets that want to expose additional
1967 /// information about sign bits to the DAG Combiner.
1968 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1969                                                          const APInt &,
1970                                                          const SelectionDAG &,
1971                                                          unsigned Depth) const {
1972   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1973           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1974           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1975           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1976          "Should use ComputeNumSignBits if you don't know whether Op"
1977          " is a target node!");
1978   return 1;
1979 }
1980 
1981 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1982     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1983     TargetLoweringOpt &TLO, unsigned Depth) const {
1984   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1985           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1986           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1987           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1988          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1989          " is a target node!");
1990   return false;
1991 }
1992 
1993 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1994     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
1995     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
1996   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1997           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1998           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1999           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2000          "Should use SimplifyDemandedBits if you don't know whether Op"
2001          " is a target node!");
2002   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2003   return false;
2004 }
2005 
2006 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2007                                                   const SelectionDAG &DAG,
2008                                                   bool SNaN,
2009                                                   unsigned Depth) const {
2010   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2011           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2012           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2013           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2014          "Should use isKnownNeverNaN if you don't know whether Op"
2015          " is a target node!");
2016   return false;
2017 }
2018 
2019 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2020 // work with truncating build vectors and vectors with elements of less than
2021 // 8 bits.
2022 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2023   if (!N)
2024     return false;
2025 
2026   APInt CVal;
2027   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2028     CVal = CN->getAPIntValue();
2029   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2030     auto *CN = BV->getConstantSplatNode();
2031     if (!CN)
2032       return false;
2033 
2034     // If this is a truncating build vector, truncate the splat value.
2035     // Otherwise, we may fail to match the expected values below.
2036     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2037     CVal = CN->getAPIntValue();
2038     if (BVEltWidth < CVal.getBitWidth())
2039       CVal = CVal.trunc(BVEltWidth);
2040   } else {
2041     return false;
2042   }
2043 
2044   switch (getBooleanContents(N->getValueType(0))) {
2045   case UndefinedBooleanContent:
2046     return CVal[0];
2047   case ZeroOrOneBooleanContent:
2048     return CVal.isOneValue();
2049   case ZeroOrNegativeOneBooleanContent:
2050     return CVal.isAllOnesValue();
2051   }
2052 
2053   llvm_unreachable("Invalid boolean contents");
2054 }
2055 
2056 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2057   if (!N)
2058     return false;
2059 
2060   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2061   if (!CN) {
2062     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2063     if (!BV)
2064       return false;
2065 
2066     // Only interested in constant splats, we don't care about undef
2067     // elements in identifying boolean constants and getConstantSplatNode
2068     // returns NULL if all ops are undef;
2069     CN = BV->getConstantSplatNode();
2070     if (!CN)
2071       return false;
2072   }
2073 
2074   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2075     return !CN->getAPIntValue()[0];
2076 
2077   return CN->isNullValue();
2078 }
2079 
2080 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2081                                        bool SExt) const {
2082   if (VT == MVT::i1)
2083     return N->isOne();
2084 
2085   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2086   switch (Cnt) {
2087   case TargetLowering::ZeroOrOneBooleanContent:
2088     // An extended value of 1 is always true, unless its original type is i1,
2089     // in which case it will be sign extended to -1.
2090     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2091   case TargetLowering::UndefinedBooleanContent:
2092   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2093     return N->isAllOnesValue() && SExt;
2094   }
2095   llvm_unreachable("Unexpected enumeration.");
2096 }
2097 
2098 /// This helper function of SimplifySetCC tries to optimize the comparison when
2099 /// either operand of the SetCC node is a bitwise-and instruction.
2100 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2101                                              ISD::CondCode Cond,
2102                                              DAGCombinerInfo &DCI,
2103                                              const SDLoc &DL) const {
2104   // Match these patterns in any of their permutations:
2105   // (X & Y) == Y
2106   // (X & Y) != Y
2107   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2108     std::swap(N0, N1);
2109 
2110   EVT OpVT = N0.getValueType();
2111   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2112       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2113     return SDValue();
2114 
2115   SDValue X, Y;
2116   if (N0.getOperand(0) == N1) {
2117     X = N0.getOperand(1);
2118     Y = N0.getOperand(0);
2119   } else if (N0.getOperand(1) == N1) {
2120     X = N0.getOperand(0);
2121     Y = N0.getOperand(1);
2122   } else {
2123     return SDValue();
2124   }
2125 
2126   SelectionDAG &DAG = DCI.DAG;
2127   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2128   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2129     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2130     // Note that where Y is variable and is known to have at most one bit set
2131     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2132     // equivalent when Y == 0.
2133     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2134     if (DCI.isBeforeLegalizeOps() ||
2135         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2136       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2137   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2138     // If the target supports an 'and-not' or 'and-complement' logic operation,
2139     // try to use that to make a comparison operation more efficient.
2140     // But don't do this transform if the mask is a single bit because there are
2141     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2142     // 'rlwinm' on PPC).
2143 
2144     // Bail out if the compare operand that we want to turn into a zero is
2145     // already a zero (otherwise, infinite loop).
2146     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2147     if (YConst && YConst->isNullValue())
2148       return SDValue();
2149 
2150     // Transform this into: ~X & Y == 0.
2151     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2152     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2153     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2154   }
2155 
2156   return SDValue();
2157 }
2158 
2159 /// There are multiple IR patterns that could be checking whether certain
2160 /// truncation of a signed number would be lossy or not. The pattern which is
2161 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2162 /// We are looking for the following pattern: (KeptBits is a constant)
2163 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2164 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2165 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2166 /// We will unfold it into the natural trunc+sext pattern:
2167 ///   ((%x << C) a>> C) dstcond %x
2168 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2169 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2170     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2171     const SDLoc &DL) const {
2172   // We must be comparing with a constant.
2173   ConstantSDNode *C1;
2174   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2175     return SDValue();
2176 
2177   // N0 should be:  add %x, (1 << (KeptBits-1))
2178   if (N0->getOpcode() != ISD::ADD)
2179     return SDValue();
2180 
2181   // And we must be 'add'ing a constant.
2182   ConstantSDNode *C01;
2183   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2184     return SDValue();
2185 
2186   SDValue X = N0->getOperand(0);
2187   EVT XVT = X.getValueType();
2188 
2189   // Validate constants ...
2190 
2191   APInt I1 = C1->getAPIntValue();
2192 
2193   ISD::CondCode NewCond;
2194   if (Cond == ISD::CondCode::SETULT) {
2195     NewCond = ISD::CondCode::SETEQ;
2196   } else if (Cond == ISD::CondCode::SETULE) {
2197     NewCond = ISD::CondCode::SETEQ;
2198     // But need to 'canonicalize' the constant.
2199     I1 += 1;
2200   } else if (Cond == ISD::CondCode::SETUGT) {
2201     NewCond = ISD::CondCode::SETNE;
2202     // But need to 'canonicalize' the constant.
2203     I1 += 1;
2204   } else if (Cond == ISD::CondCode::SETUGE) {
2205     NewCond = ISD::CondCode::SETNE;
2206   } else
2207     return SDValue();
2208 
2209   APInt I01 = C01->getAPIntValue();
2210 
2211   auto checkConstants = [&I1, &I01]() -> bool {
2212     // Both of them must be power-of-two, and the constant from setcc is bigger.
2213     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2214   };
2215 
2216   if (checkConstants()) {
2217     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2218   } else {
2219     // What if we invert constants? (and the target predicate)
2220     I1.negate();
2221     I01.negate();
2222     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2223     if (!checkConstants())
2224       return SDValue();
2225     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2226   }
2227 
2228   // They are power-of-two, so which bit is set?
2229   const unsigned KeptBits = I1.logBase2();
2230   const unsigned KeptBitsMinusOne = I01.logBase2();
2231 
2232   // Magic!
2233   if (KeptBits != (KeptBitsMinusOne + 1))
2234     return SDValue();
2235   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2236 
2237   // We don't want to do this in every single case.
2238   SelectionDAG &DAG = DCI.DAG;
2239   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2240           XVT, KeptBits))
2241     return SDValue();
2242 
2243   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2244   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2245 
2246   // Unfold into:  ((%x << C) a>> C) cond %x
2247   // Where 'cond' will be either 'eq' or 'ne'.
2248   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2249   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2250   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2251   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2252 
2253   return T2;
2254 }
2255 
2256 /// Try to simplify a setcc built with the specified operands and cc. If it is
2257 /// unable to simplify it, return a null SDValue.
2258 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2259                                       ISD::CondCode Cond, bool foldBooleans,
2260                                       DAGCombinerInfo &DCI,
2261                                       const SDLoc &dl) const {
2262   SelectionDAG &DAG = DCI.DAG;
2263   EVT OpVT = N0.getValueType();
2264 
2265   // These setcc operations always fold.
2266   switch (Cond) {
2267   default: break;
2268   case ISD::SETFALSE:
2269   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2270   case ISD::SETTRUE:
2271   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2272   }
2273 
2274   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2275   // TODO: Handle non-splat vector constants. All undef causes trouble.
2276   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2277   if (isConstOrConstSplat(N0) &&
2278       (DCI.isBeforeLegalizeOps() ||
2279        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2280     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2281 
2282   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2283     const APInt &C1 = N1C->getAPIntValue();
2284 
2285     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2286     // equality comparison, then we're just comparing whether X itself is
2287     // zero.
2288     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2289         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2290         N0.getOperand(1).getOpcode() == ISD::Constant) {
2291       const APInt &ShAmt
2292         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2293       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2294           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2295         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2296           // (srl (ctlz x), 5) == 0  -> X != 0
2297           // (srl (ctlz x), 5) != 1  -> X != 0
2298           Cond = ISD::SETNE;
2299         } else {
2300           // (srl (ctlz x), 5) != 0  -> X == 0
2301           // (srl (ctlz x), 5) == 1  -> X == 0
2302           Cond = ISD::SETEQ;
2303         }
2304         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2305         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2306                             Zero, Cond);
2307       }
2308     }
2309 
2310     SDValue CTPOP = N0;
2311     // Look through truncs that don't change the value of a ctpop.
2312     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2313       CTPOP = N0.getOperand(0);
2314 
2315     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2316         (N0 == CTPOP ||
2317          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2318       EVT CTVT = CTPOP.getValueType();
2319       SDValue CTOp = CTPOP.getOperand(0);
2320 
2321       // (ctpop x) u< 2 -> (x & x-1) == 0
2322       // (ctpop x) u> 1 -> (x & x-1) != 0
2323       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2324         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2325                                   DAG.getConstant(1, dl, CTVT));
2326         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2327         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2328         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2329       }
2330 
2331       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2332     }
2333 
2334     // (zext x) == C --> x == (trunc C)
2335     // (sext x) == C --> x == (trunc C)
2336     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2337         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2338       unsigned MinBits = N0.getValueSizeInBits();
2339       SDValue PreExt;
2340       bool Signed = false;
2341       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2342         // ZExt
2343         MinBits = N0->getOperand(0).getValueSizeInBits();
2344         PreExt = N0->getOperand(0);
2345       } else if (N0->getOpcode() == ISD::AND) {
2346         // DAGCombine turns costly ZExts into ANDs
2347         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2348           if ((C->getAPIntValue()+1).isPowerOf2()) {
2349             MinBits = C->getAPIntValue().countTrailingOnes();
2350             PreExt = N0->getOperand(0);
2351           }
2352       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2353         // SExt
2354         MinBits = N0->getOperand(0).getValueSizeInBits();
2355         PreExt = N0->getOperand(0);
2356         Signed = true;
2357       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2358         // ZEXTLOAD / SEXTLOAD
2359         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2360           MinBits = LN0->getMemoryVT().getSizeInBits();
2361           PreExt = N0;
2362         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2363           Signed = true;
2364           MinBits = LN0->getMemoryVT().getSizeInBits();
2365           PreExt = N0;
2366         }
2367       }
2368 
2369       // Figure out how many bits we need to preserve this constant.
2370       unsigned ReqdBits = Signed ?
2371         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2372         C1.getActiveBits();
2373 
2374       // Make sure we're not losing bits from the constant.
2375       if (MinBits > 0 &&
2376           MinBits < C1.getBitWidth() &&
2377           MinBits >= ReqdBits) {
2378         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2379         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2380           // Will get folded away.
2381           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2382           if (MinBits == 1 && C1 == 1)
2383             // Invert the condition.
2384             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2385                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2386           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2387           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2388         }
2389 
2390         // If truncating the setcc operands is not desirable, we can still
2391         // simplify the expression in some cases:
2392         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2393         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2394         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2395         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2396         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2397         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2398         SDValue TopSetCC = N0->getOperand(0);
2399         unsigned N0Opc = N0->getOpcode();
2400         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2401         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2402             TopSetCC.getOpcode() == ISD::SETCC &&
2403             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2404             (isConstFalseVal(N1C) ||
2405              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2406 
2407           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2408                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2409 
2410           if (!Inverse)
2411             return TopSetCC;
2412 
2413           ISD::CondCode InvCond = ISD::getSetCCInverse(
2414               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2415               TopSetCC.getOperand(0).getValueType().isInteger());
2416           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2417                                       TopSetCC.getOperand(1),
2418                                       InvCond);
2419         }
2420       }
2421     }
2422 
2423     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2424     // equality or unsigned, and all 1 bits of the const are in the same
2425     // partial word, see if we can shorten the load.
2426     if (DCI.isBeforeLegalize() &&
2427         !ISD::isSignedIntSetCC(Cond) &&
2428         N0.getOpcode() == ISD::AND && C1 == 0 &&
2429         N0.getNode()->hasOneUse() &&
2430         isa<LoadSDNode>(N0.getOperand(0)) &&
2431         N0.getOperand(0).getNode()->hasOneUse() &&
2432         isa<ConstantSDNode>(N0.getOperand(1))) {
2433       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2434       APInt bestMask;
2435       unsigned bestWidth = 0, bestOffset = 0;
2436       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2437         unsigned origWidth = N0.getValueSizeInBits();
2438         unsigned maskWidth = origWidth;
2439         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2440         // 8 bits, but have to be careful...
2441         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2442           origWidth = Lod->getMemoryVT().getSizeInBits();
2443         const APInt &Mask =
2444           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2445         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2446           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2447           for (unsigned offset=0; offset<origWidth/width; offset++) {
2448             if (Mask.isSubsetOf(newMask)) {
2449               if (DAG.getDataLayout().isLittleEndian())
2450                 bestOffset = (uint64_t)offset * (width/8);
2451               else
2452                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2453               bestMask = Mask.lshr(offset * (width/8) * 8);
2454               bestWidth = width;
2455               break;
2456             }
2457             newMask <<= width;
2458           }
2459         }
2460       }
2461       if (bestWidth) {
2462         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2463         if (newVT.isRound() &&
2464             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2465           EVT PtrType = Lod->getOperand(1).getValueType();
2466           SDValue Ptr = Lod->getBasePtr();
2467           if (bestOffset != 0)
2468             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2469                               DAG.getConstant(bestOffset, dl, PtrType));
2470           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2471           SDValue NewLoad = DAG.getLoad(
2472               newVT, dl, Lod->getChain(), Ptr,
2473               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2474           return DAG.getSetCC(dl, VT,
2475                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2476                                       DAG.getConstant(bestMask.trunc(bestWidth),
2477                                                       dl, newVT)),
2478                               DAG.getConstant(0LL, dl, newVT), Cond);
2479         }
2480       }
2481     }
2482 
2483     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2484     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2485       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2486 
2487       // If the comparison constant has bits in the upper part, the
2488       // zero-extended value could never match.
2489       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2490                                               C1.getBitWidth() - InSize))) {
2491         switch (Cond) {
2492         case ISD::SETUGT:
2493         case ISD::SETUGE:
2494         case ISD::SETEQ:
2495           return DAG.getConstant(0, dl, VT);
2496         case ISD::SETULT:
2497         case ISD::SETULE:
2498         case ISD::SETNE:
2499           return DAG.getConstant(1, dl, VT);
2500         case ISD::SETGT:
2501         case ISD::SETGE:
2502           // True if the sign bit of C1 is set.
2503           return DAG.getConstant(C1.isNegative(), dl, VT);
2504         case ISD::SETLT:
2505         case ISD::SETLE:
2506           // True if the sign bit of C1 isn't set.
2507           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2508         default:
2509           break;
2510         }
2511       }
2512 
2513       // Otherwise, we can perform the comparison with the low bits.
2514       switch (Cond) {
2515       case ISD::SETEQ:
2516       case ISD::SETNE:
2517       case ISD::SETUGT:
2518       case ISD::SETUGE:
2519       case ISD::SETULT:
2520       case ISD::SETULE: {
2521         EVT newVT = N0.getOperand(0).getValueType();
2522         if (DCI.isBeforeLegalizeOps() ||
2523             (isOperationLegal(ISD::SETCC, newVT) &&
2524              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2525           EVT NewSetCCVT =
2526               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2527           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2528 
2529           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2530                                           NewConst, Cond);
2531           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2532         }
2533         break;
2534       }
2535       default:
2536         break;   // todo, be more careful with signed comparisons
2537       }
2538     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2539                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2540       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2541       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2542       EVT ExtDstTy = N0.getValueType();
2543       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2544 
2545       // If the constant doesn't fit into the number of bits for the source of
2546       // the sign extension, it is impossible for both sides to be equal.
2547       if (C1.getMinSignedBits() > ExtSrcTyBits)
2548         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2549 
2550       SDValue ZextOp;
2551       EVT Op0Ty = N0.getOperand(0).getValueType();
2552       if (Op0Ty == ExtSrcTy) {
2553         ZextOp = N0.getOperand(0);
2554       } else {
2555         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2556         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2557                               DAG.getConstant(Imm, dl, Op0Ty));
2558       }
2559       if (!DCI.isCalledByLegalizer())
2560         DCI.AddToWorklist(ZextOp.getNode());
2561       // Otherwise, make this a use of a zext.
2562       return DAG.getSetCC(dl, VT, ZextOp,
2563                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2564                                                               ExtDstTyBits,
2565                                                               ExtSrcTyBits),
2566                                           dl, ExtDstTy),
2567                           Cond);
2568     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2569                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2570       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2571       if (N0.getOpcode() == ISD::SETCC &&
2572           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2573         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2574         if (TrueWhenTrue)
2575           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2576         // Invert the condition.
2577         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2578         CC = ISD::getSetCCInverse(CC,
2579                                   N0.getOperand(0).getValueType().isInteger());
2580         if (DCI.isBeforeLegalizeOps() ||
2581             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2582           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2583       }
2584 
2585       if ((N0.getOpcode() == ISD::XOR ||
2586            (N0.getOpcode() == ISD::AND &&
2587             N0.getOperand(0).getOpcode() == ISD::XOR &&
2588             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2589           isa<ConstantSDNode>(N0.getOperand(1)) &&
2590           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2591         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2592         // can only do this if the top bits are known zero.
2593         unsigned BitWidth = N0.getValueSizeInBits();
2594         if (DAG.MaskedValueIsZero(N0,
2595                                   APInt::getHighBitsSet(BitWidth,
2596                                                         BitWidth-1))) {
2597           // Okay, get the un-inverted input value.
2598           SDValue Val;
2599           if (N0.getOpcode() == ISD::XOR) {
2600             Val = N0.getOperand(0);
2601           } else {
2602             assert(N0.getOpcode() == ISD::AND &&
2603                     N0.getOperand(0).getOpcode() == ISD::XOR);
2604             // ((X^1)&1)^1 -> X & 1
2605             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2606                               N0.getOperand(0).getOperand(0),
2607                               N0.getOperand(1));
2608           }
2609 
2610           return DAG.getSetCC(dl, VT, Val, N1,
2611                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2612         }
2613       } else if (N1C->isOne() &&
2614                  (VT == MVT::i1 ||
2615                   getBooleanContents(N0->getValueType(0)) ==
2616                       ZeroOrOneBooleanContent)) {
2617         SDValue Op0 = N0;
2618         if (Op0.getOpcode() == ISD::TRUNCATE)
2619           Op0 = Op0.getOperand(0);
2620 
2621         if ((Op0.getOpcode() == ISD::XOR) &&
2622             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2623             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2624           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2625           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2626           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2627                               Cond);
2628         }
2629         if (Op0.getOpcode() == ISD::AND &&
2630             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2631             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2632           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2633           if (Op0.getValueType().bitsGT(VT))
2634             Op0 = DAG.getNode(ISD::AND, dl, VT,
2635                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2636                           DAG.getConstant(1, dl, VT));
2637           else if (Op0.getValueType().bitsLT(VT))
2638             Op0 = DAG.getNode(ISD::AND, dl, VT,
2639                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2640                         DAG.getConstant(1, dl, VT));
2641 
2642           return DAG.getSetCC(dl, VT, Op0,
2643                               DAG.getConstant(0, dl, Op0.getValueType()),
2644                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2645         }
2646         if (Op0.getOpcode() == ISD::AssertZext &&
2647             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2648           return DAG.getSetCC(dl, VT, Op0,
2649                               DAG.getConstant(0, dl, Op0.getValueType()),
2650                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2651       }
2652     }
2653 
2654     if (SDValue V =
2655             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2656       return V;
2657   }
2658 
2659   // These simplifications apply to splat vectors as well.
2660   // TODO: Handle more splat vector cases.
2661   if (auto *N1C = isConstOrConstSplat(N1)) {
2662     const APInt &C1 = N1C->getAPIntValue();
2663 
2664     APInt MinVal, MaxVal;
2665     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2666     if (ISD::isSignedIntSetCC(Cond)) {
2667       MinVal = APInt::getSignedMinValue(OperandBitSize);
2668       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2669     } else {
2670       MinVal = APInt::getMinValue(OperandBitSize);
2671       MaxVal = APInt::getMaxValue(OperandBitSize);
2672     }
2673 
2674     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2675     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2676       // X >= MIN --> true
2677       if (C1 == MinVal)
2678         return DAG.getBoolConstant(true, dl, VT, OpVT);
2679 
2680       if (!VT.isVector()) { // TODO: Support this for vectors.
2681         // X >= C0 --> X > (C0 - 1)
2682         APInt C = C1 - 1;
2683         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2684         if ((DCI.isBeforeLegalizeOps() ||
2685              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2686             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2687                                   isLegalICmpImmediate(C.getSExtValue())))) {
2688           return DAG.getSetCC(dl, VT, N0,
2689                               DAG.getConstant(C, dl, N1.getValueType()),
2690                               NewCC);
2691         }
2692       }
2693     }
2694 
2695     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2696       // X <= MAX --> true
2697       if (C1 == MaxVal)
2698         return DAG.getBoolConstant(true, dl, VT, OpVT);
2699 
2700       // X <= C0 --> X < (C0 + 1)
2701       if (!VT.isVector()) { // TODO: Support this for vectors.
2702         APInt C = C1 + 1;
2703         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2704         if ((DCI.isBeforeLegalizeOps() ||
2705              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2706             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2707                                   isLegalICmpImmediate(C.getSExtValue())))) {
2708           return DAG.getSetCC(dl, VT, N0,
2709                               DAG.getConstant(C, dl, N1.getValueType()),
2710                               NewCC);
2711         }
2712       }
2713     }
2714 
2715     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2716       if (C1 == MinVal)
2717         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2718 
2719       // TODO: Support this for vectors after legalize ops.
2720       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2721         // Canonicalize setlt X, Max --> setne X, Max
2722         if (C1 == MaxVal)
2723           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2724 
2725         // If we have setult X, 1, turn it into seteq X, 0
2726         if (C1 == MinVal+1)
2727           return DAG.getSetCC(dl, VT, N0,
2728                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2729                               ISD::SETEQ);
2730       }
2731     }
2732 
2733     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2734       if (C1 == MaxVal)
2735         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2736 
2737       // TODO: Support this for vectors after legalize ops.
2738       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2739         // Canonicalize setgt X, Min --> setne X, Min
2740         if (C1 == MinVal)
2741           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2742 
2743         // If we have setugt X, Max-1, turn it into seteq X, Max
2744         if (C1 == MaxVal-1)
2745           return DAG.getSetCC(dl, VT, N0,
2746                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2747                               ISD::SETEQ);
2748       }
2749     }
2750 
2751     // If we have "setcc X, C0", check to see if we can shrink the immediate
2752     // by changing cc.
2753     // TODO: Support this for vectors after legalize ops.
2754     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2755       // SETUGT X, SINTMAX  -> SETLT X, 0
2756       if (Cond == ISD::SETUGT &&
2757           C1 == APInt::getSignedMaxValue(OperandBitSize))
2758         return DAG.getSetCC(dl, VT, N0,
2759                             DAG.getConstant(0, dl, N1.getValueType()),
2760                             ISD::SETLT);
2761 
2762       // SETULT X, SINTMIN  -> SETGT X, -1
2763       if (Cond == ISD::SETULT &&
2764           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2765         SDValue ConstMinusOne =
2766             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2767                             N1.getValueType());
2768         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2769       }
2770     }
2771   }
2772 
2773   // Back to non-vector simplifications.
2774   // TODO: Can we do these for vector splats?
2775   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2776     const APInt &C1 = N1C->getAPIntValue();
2777 
2778     // Fold bit comparisons when we can.
2779     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2780         (VT == N0.getValueType() ||
2781          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2782         N0.getOpcode() == ISD::AND) {
2783       auto &DL = DAG.getDataLayout();
2784       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2785         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2786                                        !DCI.isBeforeLegalize());
2787         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2788           // Perform the xform if the AND RHS is a single bit.
2789           if (AndRHS->getAPIntValue().isPowerOf2()) {
2790             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2791                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2792                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2793                                    ShiftTy)));
2794           }
2795         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2796           // (X & 8) == 8  -->  (X & 8) >> 3
2797           // Perform the xform if C1 is a single bit.
2798           if (C1.isPowerOf2()) {
2799             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2800                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2801                                       DAG.getConstant(C1.logBase2(), dl,
2802                                                       ShiftTy)));
2803           }
2804         }
2805       }
2806     }
2807 
2808     if (C1.getMinSignedBits() <= 64 &&
2809         !isLegalICmpImmediate(C1.getSExtValue())) {
2810       // (X & -256) == 256 -> (X >> 8) == 1
2811       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2812           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2813         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2814           const APInt &AndRHSC = AndRHS->getAPIntValue();
2815           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2816             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2817             auto &DL = DAG.getDataLayout();
2818             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2819                                            !DCI.isBeforeLegalize());
2820             EVT CmpTy = N0.getValueType();
2821             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2822                                         DAG.getConstant(ShiftBits, dl,
2823                                                         ShiftTy));
2824             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2825             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2826           }
2827         }
2828       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2829                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2830         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2831         // X <  0x100000000 -> (X >> 32) <  1
2832         // X >= 0x100000000 -> (X >> 32) >= 1
2833         // X <= 0x0ffffffff -> (X >> 32) <  1
2834         // X >  0x0ffffffff -> (X >> 32) >= 1
2835         unsigned ShiftBits;
2836         APInt NewC = C1;
2837         ISD::CondCode NewCond = Cond;
2838         if (AdjOne) {
2839           ShiftBits = C1.countTrailingOnes();
2840           NewC = NewC + 1;
2841           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2842         } else {
2843           ShiftBits = C1.countTrailingZeros();
2844         }
2845         NewC.lshrInPlace(ShiftBits);
2846         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2847           isLegalICmpImmediate(NewC.getSExtValue())) {
2848           auto &DL = DAG.getDataLayout();
2849           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2850                                          !DCI.isBeforeLegalize());
2851           EVT CmpTy = N0.getValueType();
2852           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2853                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2854           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2855           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2856         }
2857       }
2858     }
2859   }
2860 
2861   if (isa<ConstantFPSDNode>(N0.getNode())) {
2862     // Constant fold or commute setcc.
2863     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2864     if (O.getNode()) return O;
2865   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2866     // If the RHS of an FP comparison is a constant, simplify it away in
2867     // some cases.
2868     if (CFP->getValueAPF().isNaN()) {
2869       // If an operand is known to be a nan, we can fold it.
2870       switch (ISD::getUnorderedFlavor(Cond)) {
2871       default: llvm_unreachable("Unknown flavor!");
2872       case 0:  // Known false.
2873         return DAG.getBoolConstant(false, dl, VT, OpVT);
2874       case 1:  // Known true.
2875         return DAG.getBoolConstant(true, dl, VT, OpVT);
2876       case 2:  // Undefined.
2877         return DAG.getUNDEF(VT);
2878       }
2879     }
2880 
2881     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2882     // constant if knowing that the operand is non-nan is enough.  We prefer to
2883     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2884     // materialize 0.0.
2885     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2886       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2887 
2888     // setcc (fneg x), C -> setcc swap(pred) x, -C
2889     if (N0.getOpcode() == ISD::FNEG) {
2890       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2891       if (DCI.isBeforeLegalizeOps() ||
2892           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2893         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2894         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2895       }
2896     }
2897 
2898     // If the condition is not legal, see if we can find an equivalent one
2899     // which is legal.
2900     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2901       // If the comparison was an awkward floating-point == or != and one of
2902       // the comparison operands is infinity or negative infinity, convert the
2903       // condition to a less-awkward <= or >=.
2904       if (CFP->getValueAPF().isInfinity()) {
2905         if (CFP->getValueAPF().isNegative()) {
2906           if (Cond == ISD::SETOEQ &&
2907               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2908             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2909           if (Cond == ISD::SETUEQ &&
2910               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2911             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2912           if (Cond == ISD::SETUNE &&
2913               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2914             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2915           if (Cond == ISD::SETONE &&
2916               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2917             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2918         } else {
2919           if (Cond == ISD::SETOEQ &&
2920               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2921             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2922           if (Cond == ISD::SETUEQ &&
2923               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2924             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2925           if (Cond == ISD::SETUNE &&
2926               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2927             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2928           if (Cond == ISD::SETONE &&
2929               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2930             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2931         }
2932       }
2933     }
2934   }
2935 
2936   if (N0 == N1) {
2937     // The sext(setcc()) => setcc() optimization relies on the appropriate
2938     // constant being emitted.
2939 
2940     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2941 
2942     // We can always fold X == X for integer setcc's.
2943     if (N0.getValueType().isInteger())
2944       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2945 
2946     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2947     if (UOF == 2)   // FP operators that are undefined on NaNs.
2948       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2949     if (UOF == unsigned(EqTrue))
2950       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2951     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2952     // if it is not already.
2953     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2954     if (NewCond != Cond &&
2955         (DCI.isBeforeLegalizeOps() ||
2956          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2957       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2958   }
2959 
2960   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2961       N0.getValueType().isInteger()) {
2962     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2963         N0.getOpcode() == ISD::XOR) {
2964       // Simplify (X+Y) == (X+Z) -->  Y == Z
2965       if (N0.getOpcode() == N1.getOpcode()) {
2966         if (N0.getOperand(0) == N1.getOperand(0))
2967           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2968         if (N0.getOperand(1) == N1.getOperand(1))
2969           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2970         if (isCommutativeBinOp(N0.getOpcode())) {
2971           // If X op Y == Y op X, try other combinations.
2972           if (N0.getOperand(0) == N1.getOperand(1))
2973             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2974                                 Cond);
2975           if (N0.getOperand(1) == N1.getOperand(0))
2976             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2977                                 Cond);
2978         }
2979       }
2980 
2981       // If RHS is a legal immediate value for a compare instruction, we need
2982       // to be careful about increasing register pressure needlessly.
2983       bool LegalRHSImm = false;
2984 
2985       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2986         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2987           // Turn (X+C1) == C2 --> X == C2-C1
2988           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2989             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2990                                 DAG.getConstant(RHSC->getAPIntValue()-
2991                                                 LHSR->getAPIntValue(),
2992                                 dl, N0.getValueType()), Cond);
2993           }
2994 
2995           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2996           if (N0.getOpcode() == ISD::XOR)
2997             // If we know that all of the inverted bits are zero, don't bother
2998             // performing the inversion.
2999             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3000               return
3001                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3002                              DAG.getConstant(LHSR->getAPIntValue() ^
3003                                                RHSC->getAPIntValue(),
3004                                              dl, N0.getValueType()),
3005                              Cond);
3006         }
3007 
3008         // Turn (C1-X) == C2 --> X == C1-C2
3009         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3010           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3011             return
3012               DAG.getSetCC(dl, VT, N0.getOperand(1),
3013                            DAG.getConstant(SUBC->getAPIntValue() -
3014                                              RHSC->getAPIntValue(),
3015                                            dl, N0.getValueType()),
3016                            Cond);
3017           }
3018         }
3019 
3020         // Could RHSC fold directly into a compare?
3021         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3022           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3023       }
3024 
3025       // Simplify (X+Z) == X -->  Z == 0
3026       // Don't do this if X is an immediate that can fold into a cmp
3027       // instruction and X+Z has other uses. It could be an induction variable
3028       // chain, and the transform would increase register pressure.
3029       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
3030         if (N0.getOperand(0) == N1)
3031           return DAG.getSetCC(dl, VT, N0.getOperand(1),
3032                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
3033         if (N0.getOperand(1) == N1) {
3034           if (isCommutativeBinOp(N0.getOpcode()))
3035             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3036                                 DAG.getConstant(0, dl, N0.getValueType()),
3037                                 Cond);
3038           if (N0.getNode()->hasOneUse()) {
3039             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
3040             auto &DL = DAG.getDataLayout();
3041             // (Z-X) == X  --> Z == X<<1
3042             SDValue SH = DAG.getNode(
3043                 ISD::SHL, dl, N1.getValueType(), N1,
3044                 DAG.getConstant(1, dl,
3045                                 getShiftAmountTy(N1.getValueType(), DL,
3046                                                  !DCI.isBeforeLegalize())));
3047             if (!DCI.isCalledByLegalizer())
3048               DCI.AddToWorklist(SH.getNode());
3049             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
3050           }
3051         }
3052       }
3053     }
3054 
3055     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3056         N1.getOpcode() == ISD::XOR) {
3057       // Simplify  X == (X+Z) -->  Z == 0
3058       if (N1.getOperand(0) == N0)
3059         return DAG.getSetCC(dl, VT, N1.getOperand(1),
3060                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
3061       if (N1.getOperand(1) == N0) {
3062         if (isCommutativeBinOp(N1.getOpcode()))
3063           return DAG.getSetCC(dl, VT, N1.getOperand(0),
3064                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
3065         if (N1.getNode()->hasOneUse()) {
3066           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
3067           auto &DL = DAG.getDataLayout();
3068           // X == (Z-X)  --> X<<1 == Z
3069           SDValue SH = DAG.getNode(
3070               ISD::SHL, dl, N1.getValueType(), N0,
3071               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
3072                                                       !DCI.isBeforeLegalize())));
3073           if (!DCI.isCalledByLegalizer())
3074             DCI.AddToWorklist(SH.getNode());
3075           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
3076         }
3077       }
3078     }
3079 
3080     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
3081       return V;
3082   }
3083 
3084   // Fold away ALL boolean setcc's.
3085   SDValue Temp;
3086   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3087     EVT OpVT = N0.getValueType();
3088     switch (Cond) {
3089     default: llvm_unreachable("Unknown integer setcc!");
3090     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
3091       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3092       N0 = DAG.getNOT(dl, Temp, OpVT);
3093       if (!DCI.isCalledByLegalizer())
3094         DCI.AddToWorklist(Temp.getNode());
3095       break;
3096     case ISD::SETNE:  // X != Y   -->  (X^Y)
3097       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3098       break;
3099     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
3100     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
3101       Temp = DAG.getNOT(dl, N0, OpVT);
3102       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3103       if (!DCI.isCalledByLegalizer())
3104         DCI.AddToWorklist(Temp.getNode());
3105       break;
3106     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
3107     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
3108       Temp = DAG.getNOT(dl, N1, OpVT);
3109       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3110       if (!DCI.isCalledByLegalizer())
3111         DCI.AddToWorklist(Temp.getNode());
3112       break;
3113     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
3114     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
3115       Temp = DAG.getNOT(dl, N0, OpVT);
3116       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3117       if (!DCI.isCalledByLegalizer())
3118         DCI.AddToWorklist(Temp.getNode());
3119       break;
3120     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
3121     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
3122       Temp = DAG.getNOT(dl, N1, OpVT);
3123       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3124       break;
3125     }
3126     if (VT.getScalarType() != MVT::i1) {
3127       if (!DCI.isCalledByLegalizer())
3128         DCI.AddToWorklist(N0.getNode());
3129       // FIXME: If running after legalize, we probably can't do this.
3130       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3131       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3132     }
3133     return N0;
3134   }
3135 
3136   // Could not fold it.
3137   return SDValue();
3138 }
3139 
3140 /// Returns true (and the GlobalValue and the offset) if the node is a
3141 /// GlobalAddress + offset.
3142 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3143                                     int64_t &Offset) const {
3144 
3145   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3146 
3147   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3148     GA = GASD->getGlobal();
3149     Offset += GASD->getOffset();
3150     return true;
3151   }
3152 
3153   if (N->getOpcode() == ISD::ADD) {
3154     SDValue N1 = N->getOperand(0);
3155     SDValue N2 = N->getOperand(1);
3156     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3157       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3158         Offset += V->getSExtValue();
3159         return true;
3160       }
3161     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3162       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3163         Offset += V->getSExtValue();
3164         return true;
3165       }
3166     }
3167   }
3168 
3169   return false;
3170 }
3171 
3172 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3173                                           DAGCombinerInfo &DCI) const {
3174   // Default implementation: no optimization.
3175   return SDValue();
3176 }
3177 
3178 //===----------------------------------------------------------------------===//
3179 //  Inline Assembler Implementation Methods
3180 //===----------------------------------------------------------------------===//
3181 
3182 TargetLowering::ConstraintType
3183 TargetLowering::getConstraintType(StringRef Constraint) const {
3184   unsigned S = Constraint.size();
3185 
3186   if (S == 1) {
3187     switch (Constraint[0]) {
3188     default: break;
3189     case 'r': return C_RegisterClass;
3190     case 'm':    // memory
3191     case 'o':    // offsetable
3192     case 'V':    // not offsetable
3193       return C_Memory;
3194     case 'i':    // Simple Integer or Relocatable Constant
3195     case 'n':    // Simple Integer
3196     case 'E':    // Floating Point Constant
3197     case 'F':    // Floating Point Constant
3198     case 's':    // Relocatable Constant
3199     case 'p':    // Address.
3200     case 'X':    // Allow ANY value.
3201     case 'I':    // Target registers.
3202     case 'J':
3203     case 'K':
3204     case 'L':
3205     case 'M':
3206     case 'N':
3207     case 'O':
3208     case 'P':
3209     case '<':
3210     case '>':
3211       return C_Other;
3212     }
3213   }
3214 
3215   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3216     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3217       return C_Memory;
3218     return C_Register;
3219   }
3220   return C_Unknown;
3221 }
3222 
3223 /// Try to replace an X constraint, which matches anything, with another that
3224 /// has more specific requirements based on the type of the corresponding
3225 /// operand.
3226 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3227   if (ConstraintVT.isInteger())
3228     return "r";
3229   if (ConstraintVT.isFloatingPoint())
3230     return "f";      // works for many targets
3231   return nullptr;
3232 }
3233 
3234 /// Lower the specified operand into the Ops vector.
3235 /// If it is invalid, don't add anything to Ops.
3236 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3237                                                   std::string &Constraint,
3238                                                   std::vector<SDValue> &Ops,
3239                                                   SelectionDAG &DAG) const {
3240 
3241   if (Constraint.length() > 1) return;
3242 
3243   char ConstraintLetter = Constraint[0];
3244   switch (ConstraintLetter) {
3245   default: break;
3246   case 'X':     // Allows any operand; labels (basic block) use this.
3247     if (Op.getOpcode() == ISD::BasicBlock) {
3248       Ops.push_back(Op);
3249       return;
3250     }
3251     LLVM_FALLTHROUGH;
3252   case 'i':    // Simple Integer or Relocatable Constant
3253   case 'n':    // Simple Integer
3254   case 's': {  // Relocatable Constant
3255     // These operands are interested in values of the form (GV+C), where C may
3256     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3257     // is possible and fine if either GV or C are missing.
3258     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3259     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3260 
3261     // If we have "(add GV, C)", pull out GV/C
3262     if (Op.getOpcode() == ISD::ADD) {
3263       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3264       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3265       if (!C || !GA) {
3266         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3267         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3268       }
3269       if (!C || !GA) {
3270         C = nullptr;
3271         GA = nullptr;
3272       }
3273     }
3274 
3275     // If we find a valid operand, map to the TargetXXX version so that the
3276     // value itself doesn't get selected.
3277     if (GA) {   // Either &GV   or   &GV+C
3278       if (ConstraintLetter != 'n') {
3279         int64_t Offs = GA->getOffset();
3280         if (C) Offs += C->getZExtValue();
3281         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3282                                                  C ? SDLoc(C) : SDLoc(),
3283                                                  Op.getValueType(), Offs));
3284       }
3285       return;
3286     }
3287     if (C) {   // just C, no GV.
3288       // Simple constants are not allowed for 's'.
3289       if (ConstraintLetter != 's') {
3290         // gcc prints these as sign extended.  Sign extend value to 64 bits
3291         // now; without this it would get ZExt'd later in
3292         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3293         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3294                                             SDLoc(C), MVT::i64));
3295       }
3296       return;
3297     }
3298     break;
3299   }
3300   }
3301 }
3302 
3303 std::pair<unsigned, const TargetRegisterClass *>
3304 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3305                                              StringRef Constraint,
3306                                              MVT VT) const {
3307   if (Constraint.empty() || Constraint[0] != '{')
3308     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3309   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3310 
3311   // Remove the braces from around the name.
3312   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3313 
3314   std::pair<unsigned, const TargetRegisterClass*> R =
3315     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3316 
3317   // Figure out which register class contains this reg.
3318   for (const TargetRegisterClass *RC : RI->regclasses()) {
3319     // If none of the value types for this register class are valid, we
3320     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3321     if (!isLegalRC(*RI, *RC))
3322       continue;
3323 
3324     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3325          I != E; ++I) {
3326       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3327         std::pair<unsigned, const TargetRegisterClass*> S =
3328           std::make_pair(*I, RC);
3329 
3330         // If this register class has the requested value type, return it,
3331         // otherwise keep searching and return the first class found
3332         // if no other is found which explicitly has the requested type.
3333         if (RI->isTypeLegalForClass(*RC, VT))
3334           return S;
3335         if (!R.second)
3336           R = S;
3337       }
3338     }
3339   }
3340 
3341   return R;
3342 }
3343 
3344 //===----------------------------------------------------------------------===//
3345 // Constraint Selection.
3346 
3347 /// Return true of this is an input operand that is a matching constraint like
3348 /// "4".
3349 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3350   assert(!ConstraintCode.empty() && "No known constraint!");
3351   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3352 }
3353 
3354 /// If this is an input matching constraint, this method returns the output
3355 /// operand it matches.
3356 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3357   assert(!ConstraintCode.empty() && "No known constraint!");
3358   return atoi(ConstraintCode.c_str());
3359 }
3360 
3361 /// Split up the constraint string from the inline assembly value into the
3362 /// specific constraints and their prefixes, and also tie in the associated
3363 /// operand values.
3364 /// If this returns an empty vector, and if the constraint string itself
3365 /// isn't empty, there was an error parsing.
3366 TargetLowering::AsmOperandInfoVector
3367 TargetLowering::ParseConstraints(const DataLayout &DL,
3368                                  const TargetRegisterInfo *TRI,
3369                                  ImmutableCallSite CS) const {
3370   /// Information about all of the constraints.
3371   AsmOperandInfoVector ConstraintOperands;
3372   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3373   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3374 
3375   // Do a prepass over the constraints, canonicalizing them, and building up the
3376   // ConstraintOperands list.
3377   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3378   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3379 
3380   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3381     ConstraintOperands.emplace_back(std::move(CI));
3382     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3383 
3384     // Update multiple alternative constraint count.
3385     if (OpInfo.multipleAlternatives.size() > maCount)
3386       maCount = OpInfo.multipleAlternatives.size();
3387 
3388     OpInfo.ConstraintVT = MVT::Other;
3389 
3390     // Compute the value type for each operand.
3391     switch (OpInfo.Type) {
3392     case InlineAsm::isOutput:
3393       // Indirect outputs just consume an argument.
3394       if (OpInfo.isIndirect) {
3395         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3396         break;
3397       }
3398 
3399       // The return value of the call is this value.  As such, there is no
3400       // corresponding argument.
3401       assert(!CS.getType()->isVoidTy() &&
3402              "Bad inline asm!");
3403       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3404         OpInfo.ConstraintVT =
3405             getSimpleValueType(DL, STy->getElementType(ResNo));
3406       } else {
3407         assert(ResNo == 0 && "Asm only has one result!");
3408         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3409       }
3410       ++ResNo;
3411       break;
3412     case InlineAsm::isInput:
3413       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3414       break;
3415     case InlineAsm::isClobber:
3416       // Nothing to do.
3417       break;
3418     }
3419 
3420     if (OpInfo.CallOperandVal) {
3421       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3422       if (OpInfo.isIndirect) {
3423         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3424         if (!PtrTy)
3425           report_fatal_error("Indirect operand for inline asm not a pointer!");
3426         OpTy = PtrTy->getElementType();
3427       }
3428 
3429       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3430       if (StructType *STy = dyn_cast<StructType>(OpTy))
3431         if (STy->getNumElements() == 1)
3432           OpTy = STy->getElementType(0);
3433 
3434       // If OpTy is not a single value, it may be a struct/union that we
3435       // can tile with integers.
3436       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3437         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3438         switch (BitSize) {
3439         default: break;
3440         case 1:
3441         case 8:
3442         case 16:
3443         case 32:
3444         case 64:
3445         case 128:
3446           OpInfo.ConstraintVT =
3447             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3448           break;
3449         }
3450       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3451         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3452         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3453       } else {
3454         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3455       }
3456     }
3457   }
3458 
3459   // If we have multiple alternative constraints, select the best alternative.
3460   if (!ConstraintOperands.empty()) {
3461     if (maCount) {
3462       unsigned bestMAIndex = 0;
3463       int bestWeight = -1;
3464       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3465       int weight = -1;
3466       unsigned maIndex;
3467       // Compute the sums of the weights for each alternative, keeping track
3468       // of the best (highest weight) one so far.
3469       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3470         int weightSum = 0;
3471         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3472             cIndex != eIndex; ++cIndex) {
3473           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3474           if (OpInfo.Type == InlineAsm::isClobber)
3475             continue;
3476 
3477           // If this is an output operand with a matching input operand,
3478           // look up the matching input. If their types mismatch, e.g. one
3479           // is an integer, the other is floating point, or their sizes are
3480           // different, flag it as an maCantMatch.
3481           if (OpInfo.hasMatchingInput()) {
3482             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3483             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3484               if ((OpInfo.ConstraintVT.isInteger() !=
3485                    Input.ConstraintVT.isInteger()) ||
3486                   (OpInfo.ConstraintVT.getSizeInBits() !=
3487                    Input.ConstraintVT.getSizeInBits())) {
3488                 weightSum = -1;  // Can't match.
3489                 break;
3490               }
3491             }
3492           }
3493           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3494           if (weight == -1) {
3495             weightSum = -1;
3496             break;
3497           }
3498           weightSum += weight;
3499         }
3500         // Update best.
3501         if (weightSum > bestWeight) {
3502           bestWeight = weightSum;
3503           bestMAIndex = maIndex;
3504         }
3505       }
3506 
3507       // Now select chosen alternative in each constraint.
3508       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3509           cIndex != eIndex; ++cIndex) {
3510         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3511         if (cInfo.Type == InlineAsm::isClobber)
3512           continue;
3513         cInfo.selectAlternative(bestMAIndex);
3514       }
3515     }
3516   }
3517 
3518   // Check and hook up tied operands, choose constraint code to use.
3519   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3520       cIndex != eIndex; ++cIndex) {
3521     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3522 
3523     // If this is an output operand with a matching input operand, look up the
3524     // matching input. If their types mismatch, e.g. one is an integer, the
3525     // other is floating point, or their sizes are different, flag it as an
3526     // error.
3527     if (OpInfo.hasMatchingInput()) {
3528       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3529 
3530       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3531         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3532             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3533                                          OpInfo.ConstraintVT);
3534         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3535             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3536                                          Input.ConstraintVT);
3537         if ((OpInfo.ConstraintVT.isInteger() !=
3538              Input.ConstraintVT.isInteger()) ||
3539             (MatchRC.second != InputRC.second)) {
3540           report_fatal_error("Unsupported asm: input constraint"
3541                              " with a matching output constraint of"
3542                              " incompatible type!");
3543         }
3544       }
3545     }
3546   }
3547 
3548   return ConstraintOperands;
3549 }
3550 
3551 /// Return an integer indicating how general CT is.
3552 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3553   switch (CT) {
3554   case TargetLowering::C_Other:
3555   case TargetLowering::C_Unknown:
3556     return 0;
3557   case TargetLowering::C_Register:
3558     return 1;
3559   case TargetLowering::C_RegisterClass:
3560     return 2;
3561   case TargetLowering::C_Memory:
3562     return 3;
3563   }
3564   llvm_unreachable("Invalid constraint type");
3565 }
3566 
3567 /// Examine constraint type and operand type and determine a weight value.
3568 /// This object must already have been set up with the operand type
3569 /// and the current alternative constraint selected.
3570 TargetLowering::ConstraintWeight
3571   TargetLowering::getMultipleConstraintMatchWeight(
3572     AsmOperandInfo &info, int maIndex) const {
3573   InlineAsm::ConstraintCodeVector *rCodes;
3574   if (maIndex >= (int)info.multipleAlternatives.size())
3575     rCodes = &info.Codes;
3576   else
3577     rCodes = &info.multipleAlternatives[maIndex].Codes;
3578   ConstraintWeight BestWeight = CW_Invalid;
3579 
3580   // Loop over the options, keeping track of the most general one.
3581   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3582     ConstraintWeight weight =
3583       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3584     if (weight > BestWeight)
3585       BestWeight = weight;
3586   }
3587 
3588   return BestWeight;
3589 }
3590 
3591 /// Examine constraint type and operand type and determine a weight value.
3592 /// This object must already have been set up with the operand type
3593 /// and the current alternative constraint selected.
3594 TargetLowering::ConstraintWeight
3595   TargetLowering::getSingleConstraintMatchWeight(
3596     AsmOperandInfo &info, const char *constraint) const {
3597   ConstraintWeight weight = CW_Invalid;
3598   Value *CallOperandVal = info.CallOperandVal;
3599     // If we don't have a value, we can't do a match,
3600     // but allow it at the lowest weight.
3601   if (!CallOperandVal)
3602     return CW_Default;
3603   // Look at the constraint type.
3604   switch (*constraint) {
3605     case 'i': // immediate integer.
3606     case 'n': // immediate integer with a known value.
3607       if (isa<ConstantInt>(CallOperandVal))
3608         weight = CW_Constant;
3609       break;
3610     case 's': // non-explicit intregal immediate.
3611       if (isa<GlobalValue>(CallOperandVal))
3612         weight = CW_Constant;
3613       break;
3614     case 'E': // immediate float if host format.
3615     case 'F': // immediate float.
3616       if (isa<ConstantFP>(CallOperandVal))
3617         weight = CW_Constant;
3618       break;
3619     case '<': // memory operand with autodecrement.
3620     case '>': // memory operand with autoincrement.
3621     case 'm': // memory operand.
3622     case 'o': // offsettable memory operand
3623     case 'V': // non-offsettable memory operand
3624       weight = CW_Memory;
3625       break;
3626     case 'r': // general register.
3627     case 'g': // general register, memory operand or immediate integer.
3628               // note: Clang converts "g" to "imr".
3629       if (CallOperandVal->getType()->isIntegerTy())
3630         weight = CW_Register;
3631       break;
3632     case 'X': // any operand.
3633     default:
3634       weight = CW_Default;
3635       break;
3636   }
3637   return weight;
3638 }
3639 
3640 /// If there are multiple different constraints that we could pick for this
3641 /// operand (e.g. "imr") try to pick the 'best' one.
3642 /// This is somewhat tricky: constraints fall into four classes:
3643 ///    Other         -> immediates and magic values
3644 ///    Register      -> one specific register
3645 ///    RegisterClass -> a group of regs
3646 ///    Memory        -> memory
3647 /// Ideally, we would pick the most specific constraint possible: if we have
3648 /// something that fits into a register, we would pick it.  The problem here
3649 /// is that if we have something that could either be in a register or in
3650 /// memory that use of the register could cause selection of *other*
3651 /// operands to fail: they might only succeed if we pick memory.  Because of
3652 /// this the heuristic we use is:
3653 ///
3654 ///  1) If there is an 'other' constraint, and if the operand is valid for
3655 ///     that constraint, use it.  This makes us take advantage of 'i'
3656 ///     constraints when available.
3657 ///  2) Otherwise, pick the most general constraint present.  This prefers
3658 ///     'm' over 'r', for example.
3659 ///
3660 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3661                              const TargetLowering &TLI,
3662                              SDValue Op, SelectionDAG *DAG) {
3663   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3664   unsigned BestIdx = 0;
3665   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3666   int BestGenerality = -1;
3667 
3668   // Loop over the options, keeping track of the most general one.
3669   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3670     TargetLowering::ConstraintType CType =
3671       TLI.getConstraintType(OpInfo.Codes[i]);
3672 
3673     // If this is an 'other' constraint, see if the operand is valid for it.
3674     // For example, on X86 we might have an 'rI' constraint.  If the operand
3675     // is an integer in the range [0..31] we want to use I (saving a load
3676     // of a register), otherwise we must use 'r'.
3677     if (CType == TargetLowering::C_Other && Op.getNode()) {
3678       assert(OpInfo.Codes[i].size() == 1 &&
3679              "Unhandled multi-letter 'other' constraint");
3680       std::vector<SDValue> ResultOps;
3681       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3682                                        ResultOps, *DAG);
3683       if (!ResultOps.empty()) {
3684         BestType = CType;
3685         BestIdx = i;
3686         break;
3687       }
3688     }
3689 
3690     // Things with matching constraints can only be registers, per gcc
3691     // documentation.  This mainly affects "g" constraints.
3692     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3693       continue;
3694 
3695     // This constraint letter is more general than the previous one, use it.
3696     int Generality = getConstraintGenerality(CType);
3697     if (Generality > BestGenerality) {
3698       BestType = CType;
3699       BestIdx = i;
3700       BestGenerality = Generality;
3701     }
3702   }
3703 
3704   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3705   OpInfo.ConstraintType = BestType;
3706 }
3707 
3708 /// Determines the constraint code and constraint type to use for the specific
3709 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3710 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3711                                             SDValue Op,
3712                                             SelectionDAG *DAG) const {
3713   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3714 
3715   // Single-letter constraints ('r') are very common.
3716   if (OpInfo.Codes.size() == 1) {
3717     OpInfo.ConstraintCode = OpInfo.Codes[0];
3718     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3719   } else {
3720     ChooseConstraint(OpInfo, *this, Op, DAG);
3721   }
3722 
3723   // 'X' matches anything.
3724   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3725     // Labels and constants are handled elsewhere ('X' is the only thing
3726     // that matches labels).  For Functions, the type here is the type of
3727     // the result, which is not what we want to look at; leave them alone.
3728     Value *v = OpInfo.CallOperandVal;
3729     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3730       OpInfo.CallOperandVal = v;
3731       return;
3732     }
3733 
3734     // Otherwise, try to resolve it to something we know about by looking at
3735     // the actual operand type.
3736     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3737       OpInfo.ConstraintCode = Repl;
3738       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3739     }
3740   }
3741 }
3742 
3743 /// Given an exact SDIV by a constant, create a multiplication
3744 /// with the multiplicative inverse of the constant.
3745 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3746                               const SDLoc &dl, SelectionDAG &DAG,
3747                               SmallVectorImpl<SDNode *> &Created) {
3748   SDValue Op0 = N->getOperand(0);
3749   SDValue Op1 = N->getOperand(1);
3750   EVT VT = N->getValueType(0);
3751   EVT SVT = VT.getScalarType();
3752   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3753   EVT ShSVT = ShVT.getScalarType();
3754 
3755   bool UseSRA = false;
3756   SmallVector<SDValue, 16> Shifts, Factors;
3757 
3758   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3759     if (C->isNullValue())
3760       return false;
3761     APInt Divisor = C->getAPIntValue();
3762     unsigned Shift = Divisor.countTrailingZeros();
3763     if (Shift) {
3764       Divisor.ashrInPlace(Shift);
3765       UseSRA = true;
3766     }
3767     // Calculate the multiplicative inverse, using Newton's method.
3768     APInt t;
3769     APInt Factor = Divisor;
3770     while ((t = Divisor * Factor) != 1)
3771       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3772     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3773     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3774     return true;
3775   };
3776 
3777   // Collect all magic values from the build vector.
3778   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3779     return SDValue();
3780 
3781   SDValue Shift, Factor;
3782   if (VT.isVector()) {
3783     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3784     Factor = DAG.getBuildVector(VT, dl, Factors);
3785   } else {
3786     Shift = Shifts[0];
3787     Factor = Factors[0];
3788   }
3789 
3790   SDValue Res = Op0;
3791 
3792   // Shift the value upfront if it is even, so the LSB is one.
3793   if (UseSRA) {
3794     // TODO: For UDIV use SRL instead of SRA.
3795     SDNodeFlags Flags;
3796     Flags.setExact(true);
3797     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3798     Created.push_back(Res.getNode());
3799   }
3800 
3801   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3802 }
3803 
3804 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3805                                      SelectionDAG &DAG,
3806                                      SmallVectorImpl<SDNode *> &Created) const {
3807   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3808   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3809   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3810     return SDValue(N,0); // Lower SDIV as SDIV
3811   return SDValue();
3812 }
3813 
3814 /// Given an ISD::SDIV node expressing a divide by constant,
3815 /// return a DAG expression to select that will generate the same value by
3816 /// multiplying by a magic number.
3817 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3818 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3819                                   bool IsAfterLegalization,
3820                                   SmallVectorImpl<SDNode *> &Created) const {
3821   SDLoc dl(N);
3822   EVT VT = N->getValueType(0);
3823   EVT SVT = VT.getScalarType();
3824   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3825   EVT ShSVT = ShVT.getScalarType();
3826   unsigned EltBits = VT.getScalarSizeInBits();
3827 
3828   // Check to see if we can do this.
3829   // FIXME: We should be more aggressive here.
3830   if (!isTypeLegal(VT))
3831     return SDValue();
3832 
3833   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3834   if (N->getFlags().hasExact())
3835     return BuildExactSDIV(*this, N, dl, DAG, Created);
3836 
3837   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3838 
3839   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3840     if (C->isNullValue())
3841       return false;
3842 
3843     const APInt &Divisor = C->getAPIntValue();
3844     APInt::ms magics = Divisor.magic();
3845     int NumeratorFactor = 0;
3846     int ShiftMask = -1;
3847 
3848     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3849       // If d is +1/-1, we just multiply the numerator by +1/-1.
3850       NumeratorFactor = Divisor.getSExtValue();
3851       magics.m = 0;
3852       magics.s = 0;
3853       ShiftMask = 0;
3854     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3855       // If d > 0 and m < 0, add the numerator.
3856       NumeratorFactor = 1;
3857     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3858       // If d < 0 and m > 0, subtract the numerator.
3859       NumeratorFactor = -1;
3860     }
3861 
3862     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3863     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3864     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3865     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3866     return true;
3867   };
3868 
3869   SDValue N0 = N->getOperand(0);
3870   SDValue N1 = N->getOperand(1);
3871 
3872   // Collect the shifts / magic values from each element.
3873   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3874     return SDValue();
3875 
3876   SDValue MagicFactor, Factor, Shift, ShiftMask;
3877   if (VT.isVector()) {
3878     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3879     Factor = DAG.getBuildVector(VT, dl, Factors);
3880     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3881     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3882   } else {
3883     MagicFactor = MagicFactors[0];
3884     Factor = Factors[0];
3885     Shift = Shifts[0];
3886     ShiftMask = ShiftMasks[0];
3887   }
3888 
3889   // Multiply the numerator (operand 0) by the magic value.
3890   // FIXME: We should support doing a MUL in a wider type.
3891   SDValue Q;
3892   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3893                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3894     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3895   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3896                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3897     SDValue LoHi =
3898         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3899     Q = SDValue(LoHi.getNode(), 1);
3900   } else
3901     return SDValue(); // No mulhs or equivalent.
3902   Created.push_back(Q.getNode());
3903 
3904   // (Optionally) Add/subtract the numerator using Factor.
3905   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3906   Created.push_back(Factor.getNode());
3907   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3908   Created.push_back(Q.getNode());
3909 
3910   // Shift right algebraic by shift value.
3911   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3912   Created.push_back(Q.getNode());
3913 
3914   // Extract the sign bit, mask it and add it to the quotient.
3915   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3916   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3917   Created.push_back(T.getNode());
3918   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3919   Created.push_back(T.getNode());
3920   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3921 }
3922 
3923 /// Given an ISD::UDIV node expressing a divide by constant,
3924 /// return a DAG expression to select that will generate the same value by
3925 /// multiplying by a magic number.
3926 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3927 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3928                                   bool IsAfterLegalization,
3929                                   SmallVectorImpl<SDNode *> &Created) const {
3930   SDLoc dl(N);
3931   EVT VT = N->getValueType(0);
3932   EVT SVT = VT.getScalarType();
3933   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3934   EVT ShSVT = ShVT.getScalarType();
3935   unsigned EltBits = VT.getScalarSizeInBits();
3936 
3937   // Check to see if we can do this.
3938   // FIXME: We should be more aggressive here.
3939   if (!isTypeLegal(VT))
3940     return SDValue();
3941 
3942   bool UseNPQ = false;
3943   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3944 
3945   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3946     if (C->isNullValue())
3947       return false;
3948     // FIXME: We should use a narrower constant when the upper
3949     // bits are known to be zero.
3950     APInt Divisor = C->getAPIntValue();
3951     APInt::mu magics = Divisor.magicu();
3952     unsigned PreShift = 0, PostShift = 0;
3953 
3954     // If the divisor is even, we can avoid using the expensive fixup by
3955     // shifting the divided value upfront.
3956     if (magics.a != 0 && !Divisor[0]) {
3957       PreShift = Divisor.countTrailingZeros();
3958       // Get magic number for the shifted divisor.
3959       magics = Divisor.lshr(PreShift).magicu(PreShift);
3960       assert(magics.a == 0 && "Should use cheap fixup now");
3961     }
3962 
3963     APInt Magic = magics.m;
3964 
3965     unsigned SelNPQ;
3966     if (magics.a == 0 || Divisor.isOneValue()) {
3967       assert(magics.s < Divisor.getBitWidth() &&
3968              "We shouldn't generate an undefined shift!");
3969       PostShift = magics.s;
3970       SelNPQ = false;
3971     } else {
3972       PostShift = magics.s - 1;
3973       SelNPQ = true;
3974     }
3975 
3976     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3977     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3978     NPQFactors.push_back(
3979         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3980                                : APInt::getNullValue(EltBits),
3981                         dl, SVT));
3982     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3983     UseNPQ |= SelNPQ;
3984     return true;
3985   };
3986 
3987   SDValue N0 = N->getOperand(0);
3988   SDValue N1 = N->getOperand(1);
3989 
3990   // Collect the shifts/magic values from each element.
3991   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3992     return SDValue();
3993 
3994   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3995   if (VT.isVector()) {
3996     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3997     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3998     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3999     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4000   } else {
4001     PreShift = PreShifts[0];
4002     MagicFactor = MagicFactors[0];
4003     PostShift = PostShifts[0];
4004   }
4005 
4006   SDValue Q = N0;
4007   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4008   Created.push_back(Q.getNode());
4009 
4010   // FIXME: We should support doing a MUL in a wider type.
4011   auto GetMULHU = [&](SDValue X, SDValue Y) {
4012     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4013                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4014       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4015     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4016                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4017       SDValue LoHi =
4018           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4019       return SDValue(LoHi.getNode(), 1);
4020     }
4021     return SDValue(); // No mulhu or equivalent
4022   };
4023 
4024   // Multiply the numerator (operand 0) by the magic value.
4025   Q = GetMULHU(Q, MagicFactor);
4026   if (!Q)
4027     return SDValue();
4028 
4029   Created.push_back(Q.getNode());
4030 
4031   if (UseNPQ) {
4032     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4033     Created.push_back(NPQ.getNode());
4034 
4035     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4036     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4037     if (VT.isVector())
4038       NPQ = GetMULHU(NPQ, NPQFactor);
4039     else
4040       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4041 
4042     Created.push_back(NPQ.getNode());
4043 
4044     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4045     Created.push_back(Q.getNode());
4046   }
4047 
4048   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4049   Created.push_back(Q.getNode());
4050 
4051   SDValue One = DAG.getConstant(1, dl, VT);
4052   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4053   return DAG.getSelect(dl, VT, IsOne, N0, Q);
4054 }
4055 
4056 bool TargetLowering::
4057 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
4058   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
4059     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
4060                                 "be a constant integer");
4061     return true;
4062   }
4063 
4064   return false;
4065 }
4066 
4067 //===----------------------------------------------------------------------===//
4068 // Legalization Utilities
4069 //===----------------------------------------------------------------------===//
4070 
4071 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
4072                                     SDValue LHS, SDValue RHS,
4073                                     SmallVectorImpl<SDValue> &Result,
4074                                     EVT HiLoVT, SelectionDAG &DAG,
4075                                     MulExpansionKind Kind, SDValue LL,
4076                                     SDValue LH, SDValue RL, SDValue RH) const {
4077   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
4078          Opcode == ISD::SMUL_LOHI);
4079 
4080   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
4081                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
4082   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
4083                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
4084   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4085                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
4086   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
4087                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
4088 
4089   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
4090     return false;
4091 
4092   unsigned OuterBitSize = VT.getScalarSizeInBits();
4093   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
4094   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
4095   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
4096 
4097   // LL, LH, RL, and RH must be either all NULL or all set to a value.
4098   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
4099          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
4100 
4101   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
4102   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
4103                           bool Signed) -> bool {
4104     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
4105       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
4106       Hi = SDValue(Lo.getNode(), 1);
4107       return true;
4108     }
4109     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
4110       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
4111       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
4112       return true;
4113     }
4114     return false;
4115   };
4116 
4117   SDValue Lo, Hi;
4118 
4119   if (!LL.getNode() && !RL.getNode() &&
4120       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4121     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
4122     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
4123   }
4124 
4125   if (!LL.getNode())
4126     return false;
4127 
4128   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
4129   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
4130       DAG.MaskedValueIsZero(RHS, HighMask)) {
4131     // The inputs are both zero-extended.
4132     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
4133       Result.push_back(Lo);
4134       Result.push_back(Hi);
4135       if (Opcode != ISD::MUL) {
4136         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4137         Result.push_back(Zero);
4138         Result.push_back(Zero);
4139       }
4140       return true;
4141     }
4142   }
4143 
4144   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
4145       RHSSB > InnerBitSize) {
4146     // The input values are both sign-extended.
4147     // TODO non-MUL case?
4148     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
4149       Result.push_back(Lo);
4150       Result.push_back(Hi);
4151       return true;
4152     }
4153   }
4154 
4155   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
4156   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
4157   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
4158     // FIXME getShiftAmountTy does not always return a sensible result when VT
4159     // is an illegal type, and so the type may be too small to fit the shift
4160     // amount. Override it with i32. The shift will have to be legalized.
4161     ShiftAmountTy = MVT::i32;
4162   }
4163   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4164 
4165   if (!LH.getNode() && !RH.getNode() &&
4166       isOperationLegalOrCustom(ISD::SRL, VT) &&
4167       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4168     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4169     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4170     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4171     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4172   }
4173 
4174   if (!LH.getNode())
4175     return false;
4176 
4177   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4178     return false;
4179 
4180   Result.push_back(Lo);
4181 
4182   if (Opcode == ISD::MUL) {
4183     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4184     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4185     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4186     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4187     Result.push_back(Hi);
4188     return true;
4189   }
4190 
4191   // Compute the full width result.
4192   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4193     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4194     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4195     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4196     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4197   };
4198 
4199   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4200   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4201     return false;
4202 
4203   // This is effectively the add part of a multiply-add of half-sized operands,
4204   // so it cannot overflow.
4205   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4206 
4207   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4208     return false;
4209 
4210   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4211   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4212 
4213   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
4214                   isOperationLegalOrCustom(ISD::ADDE, VT));
4215   if (UseGlue)
4216     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4217                        Merge(Lo, Hi));
4218   else
4219     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
4220                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
4221 
4222   SDValue Carry = Next.getValue(1);
4223   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4224   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4225 
4226   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4227     return false;
4228 
4229   if (UseGlue)
4230     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4231                      Carry);
4232   else
4233     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
4234                      Zero, Carry);
4235 
4236   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4237 
4238   if (Opcode == ISD::SMUL_LOHI) {
4239     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4240                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4241     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4242 
4243     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4244                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4245     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4246   }
4247 
4248   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4249   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4250   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4251   return true;
4252 }
4253 
4254 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4255                                SelectionDAG &DAG, MulExpansionKind Kind,
4256                                SDValue LL, SDValue LH, SDValue RL,
4257                                SDValue RH) const {
4258   SmallVector<SDValue, 2> Result;
4259   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4260                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4261                            DAG, Kind, LL, LH, RL, RH);
4262   if (Ok) {
4263     assert(Result.size() == 2);
4264     Lo = Result[0];
4265     Hi = Result[1];
4266   }
4267   return Ok;
4268 }
4269 
4270 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
4271                                        SelectionDAG &DAG) const {
4272   EVT VT = Node->getValueType(0);
4273 
4274   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4275                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4276                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4277                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4278     return false;
4279 
4280   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
4281   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
4282   SDValue X = Node->getOperand(0);
4283   SDValue Y = Node->getOperand(1);
4284   SDValue Z = Node->getOperand(2);
4285 
4286   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4287   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
4288   SDLoc DL(SDValue(Node, 0));
4289 
4290   EVT ShVT = Z.getValueType();
4291   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4292   SDValue Zero = DAG.getConstant(0, DL, ShVT);
4293 
4294   SDValue ShAmt;
4295   if (isPowerOf2_32(EltSizeInBits)) {
4296     SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4297     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
4298   } else {
4299     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
4300   }
4301 
4302   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
4303   SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
4304   SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
4305   SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
4306 
4307   // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
4308   // and that is undefined. We must compare and select to avoid UB.
4309   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
4310 
4311   // For fshl, 0-shift returns the 1st arg (X).
4312   // For fshr, 0-shift returns the 2nd arg (Y).
4313   SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
4314   Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
4315   return true;
4316 }
4317 
4318 // TODO: Merge with expandFunnelShift.
4319 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
4320                                SelectionDAG &DAG) const {
4321   EVT VT = Node->getValueType(0);
4322   unsigned EltSizeInBits = VT.getScalarSizeInBits();
4323   bool IsLeft = Node->getOpcode() == ISD::ROTL;
4324   SDValue Op0 = Node->getOperand(0);
4325   SDValue Op1 = Node->getOperand(1);
4326   SDLoc DL(SDValue(Node, 0));
4327 
4328   EVT ShVT = Op1.getValueType();
4329   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
4330 
4331   // If a rotate in the other direction is legal, use it.
4332   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
4333   if (isOperationLegal(RevRot, VT)) {
4334     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4335     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
4336     return true;
4337   }
4338 
4339   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
4340                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4341                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4342                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
4343                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4344     return false;
4345 
4346   // Otherwise,
4347   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
4348   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
4349   //
4350   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
4351          "Expecting the type bitwidth to be a power of 2");
4352   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
4353   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
4354   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
4355   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
4356   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
4357   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
4358   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
4359                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
4360   return true;
4361 }
4362 
4363 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4364                                SelectionDAG &DAG) const {
4365   SDValue Src = Node->getOperand(0);
4366   EVT SrcVT = Src.getValueType();
4367   EVT DstVT = Node->getValueType(0);
4368   SDLoc dl(SDValue(Node, 0));
4369 
4370   // FIXME: Only f32 to i64 conversions are supported.
4371   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4372     return false;
4373 
4374   // Expand f32 -> i64 conversion
4375   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4376   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
4377   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4378   EVT IntVT = SrcVT.changeTypeToInteger();
4379   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4380 
4381   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4382   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4383   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4384   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4385   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4386   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4387 
4388   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4389 
4390   SDValue ExponentBits = DAG.getNode(
4391       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4392       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4393   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4394 
4395   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4396                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4397                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4398   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4399 
4400   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4401                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4402                           DAG.getConstant(0x00800000, dl, IntVT));
4403 
4404   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4405 
4406   R = DAG.getSelectCC(
4407       dl, Exponent, ExponentLoBit,
4408       DAG.getNode(ISD::SHL, dl, DstVT, R,
4409                   DAG.getZExtOrTrunc(
4410                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4411                       dl, IntShVT)),
4412       DAG.getNode(ISD::SRL, dl, DstVT, R,
4413                   DAG.getZExtOrTrunc(
4414                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4415                       dl, IntShVT)),
4416       ISD::SETGT);
4417 
4418   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4419                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4420 
4421   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4422                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4423   return true;
4424 }
4425 
4426 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4427                                       SelectionDAG &DAG) const {
4428   SDLoc dl(SDValue(Node, 0));
4429   SDValue Src = Node->getOperand(0);
4430 
4431   EVT SrcVT = Src.getValueType();
4432   EVT DstVT = Node->getValueType(0);
4433   EVT SetCCVT =
4434       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4435 
4436   // Only expand vector types if we have the appropriate vector bit operations.
4437   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4438                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4439     return false;
4440 
4441   // If the maximum float value is smaller then the signed integer range,
4442   // the destination signmask can't be represented by the float, so we can
4443   // just use FP_TO_SINT directly.
4444   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4445   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4446   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4447   if (APFloat::opOverflow &
4448       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4449     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4450     return true;
4451   }
4452 
4453   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4454   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4455 
4456   bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
4457   if (Strict) {
4458     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
4459     // signmask then offset (the result of which should be fully representable).
4460     // Sel = Src < 0x8000000000000000
4461     // Val = select Sel, Src, Src - 0x8000000000000000
4462     // Ofs = select Sel, 0, 0x8000000000000000
4463     // Result = fp_to_sint(Val) ^ Ofs
4464 
4465     // TODO: Should any fast-math-flags be set for the FSUB?
4466     SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src,
4467                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4468     SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
4469                                 DAG.getConstant(SignMask, dl, DstVT));
4470     Result = DAG.getNode(ISD::XOR, dl, DstVT,
4471                          DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs);
4472   } else {
4473     // Expand based on maximum range of FP_TO_SINT:
4474     // True = fp_to_sint(Src)
4475     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4476     // Result = select (Src < 0x8000000000000000), True, False
4477 
4478     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4479     // TODO: Should any fast-math-flags be set for the FSUB?
4480     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4481                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4482     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4483                         DAG.getConstant(SignMask, dl, DstVT));
4484     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4485   }
4486   return true;
4487 }
4488 
4489 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4490                                       SelectionDAG &DAG) const {
4491   SDValue Src = Node->getOperand(0);
4492   EVT SrcVT = Src.getValueType();
4493   EVT DstVT = Node->getValueType(0);
4494 
4495   if (SrcVT.getScalarType() != MVT::i64)
4496     return false;
4497 
4498   SDLoc dl(SDValue(Node, 0));
4499   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4500 
4501   if (DstVT.getScalarType() == MVT::f32) {
4502     // Only expand vector types if we have the appropriate vector bit
4503     // operations.
4504     if (SrcVT.isVector() &&
4505         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4506          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4507          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4508          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4509          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4510       return false;
4511 
4512     // For unsigned conversions, convert them to signed conversions using the
4513     // algorithm from the x86_64 __floatundidf in compiler_rt.
4514     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4515 
4516     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4517     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4518     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4519     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4520     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4521 
4522     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4523     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4524 
4525     // TODO: This really should be implemented using a branch rather than a
4526     // select.  We happen to get lucky and machinesink does the right
4527     // thing most of the time.  This would be a good candidate for a
4528     // pseudo-op, or, even better, for whole-function isel.
4529     EVT SetCCVT =
4530         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4531 
4532     SDValue SignBitTest = DAG.getSetCC(
4533         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4534     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4535     return true;
4536   }
4537 
4538   if (DstVT.getScalarType() == MVT::f64) {
4539     // Only expand vector types if we have the appropriate vector bit
4540     // operations.
4541     if (SrcVT.isVector() &&
4542         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4543          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4544          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4545          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4546          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4547       return false;
4548 
4549     // Implementation of unsigned i64 to f64 following the algorithm in
4550     // __floatundidf in compiler_rt. This implementation has the advantage
4551     // of performing rounding correctly, both in the default rounding mode
4552     // and in all alternate rounding modes.
4553     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4554     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4555         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4556     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4557     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4558     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4559 
4560     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4561     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4562     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4563     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4564     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4565     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4566     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4567     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4568     return true;
4569   }
4570 
4571   return false;
4572 }
4573 
4574 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4575                                               SelectionDAG &DAG) const {
4576   SDLoc dl(Node);
4577   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4578     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4579   EVT VT = Node->getValueType(0);
4580   if (isOperationLegalOrCustom(NewOp, VT)) {
4581     SDValue Quiet0 = Node->getOperand(0);
4582     SDValue Quiet1 = Node->getOperand(1);
4583 
4584     if (!Node->getFlags().hasNoNaNs()) {
4585       // Insert canonicalizes if it's possible we need to quiet to get correct
4586       // sNaN behavior.
4587       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4588         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4589                              Node->getFlags());
4590       }
4591       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4592         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4593                              Node->getFlags());
4594       }
4595     }
4596 
4597     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4598   }
4599 
4600   return SDValue();
4601 }
4602 
4603 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4604                                  SelectionDAG &DAG) const {
4605   SDLoc dl(Node);
4606   EVT VT = Node->getValueType(0);
4607   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4608   SDValue Op = Node->getOperand(0);
4609   unsigned Len = VT.getScalarSizeInBits();
4610   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4611 
4612   // TODO: Add support for irregular type lengths.
4613   if (!(Len <= 128 && Len % 8 == 0))
4614     return false;
4615 
4616   // Only expand vector types if we have the appropriate vector bit operations.
4617   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4618                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4619                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4620                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4621                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4622     return false;
4623 
4624   // This is the "best" algorithm from
4625   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4626   SDValue Mask55 =
4627       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4628   SDValue Mask33 =
4629       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4630   SDValue Mask0F =
4631       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4632   SDValue Mask01 =
4633       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4634 
4635   // v = v - ((v >> 1) & 0x55555555...)
4636   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4637                    DAG.getNode(ISD::AND, dl, VT,
4638                                DAG.getNode(ISD::SRL, dl, VT, Op,
4639                                            DAG.getConstant(1, dl, ShVT)),
4640                                Mask55));
4641   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4642   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4643                    DAG.getNode(ISD::AND, dl, VT,
4644                                DAG.getNode(ISD::SRL, dl, VT, Op,
4645                                            DAG.getConstant(2, dl, ShVT)),
4646                                Mask33));
4647   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4648   Op = DAG.getNode(ISD::AND, dl, VT,
4649                    DAG.getNode(ISD::ADD, dl, VT, Op,
4650                                DAG.getNode(ISD::SRL, dl, VT, Op,
4651                                            DAG.getConstant(4, dl, ShVT))),
4652                    Mask0F);
4653   // v = (v * 0x01010101...) >> (Len - 8)
4654   if (Len > 8)
4655     Op =
4656         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4657                     DAG.getConstant(Len - 8, dl, ShVT));
4658 
4659   Result = Op;
4660   return true;
4661 }
4662 
4663 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4664                                 SelectionDAG &DAG) const {
4665   SDLoc dl(Node);
4666   EVT VT = Node->getValueType(0);
4667   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4668   SDValue Op = Node->getOperand(0);
4669   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4670 
4671   // If the non-ZERO_UNDEF version is supported we can use that instead.
4672   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4673       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4674     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4675     return true;
4676   }
4677 
4678   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4679   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4680     EVT SetCCVT =
4681         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4682     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4683     SDValue Zero = DAG.getConstant(0, dl, VT);
4684     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4685     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4686                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4687     return true;
4688   }
4689 
4690   // Only expand vector types if we have the appropriate vector bit operations.
4691   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4692                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4693                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4694                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4695     return false;
4696 
4697   // for now, we do this:
4698   // x = x | (x >> 1);
4699   // x = x | (x >> 2);
4700   // ...
4701   // x = x | (x >>16);
4702   // x = x | (x >>32); // for 64-bit input
4703   // return popcount(~x);
4704   //
4705   // Ref: "Hacker's Delight" by Henry Warren
4706   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4707     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4708     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4709                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4710   }
4711   Op = DAG.getNOT(dl, Op, VT);
4712   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4713   return true;
4714 }
4715 
4716 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4717                                 SelectionDAG &DAG) const {
4718   SDLoc dl(Node);
4719   EVT VT = Node->getValueType(0);
4720   SDValue Op = Node->getOperand(0);
4721   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4722 
4723   // If the non-ZERO_UNDEF version is supported we can use that instead.
4724   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4725       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4726     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4727     return true;
4728   }
4729 
4730   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4731   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4732     EVT SetCCVT =
4733         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4734     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4735     SDValue Zero = DAG.getConstant(0, dl, VT);
4736     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4737     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4738                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4739     return true;
4740   }
4741 
4742   // Only expand vector types if we have the appropriate vector bit operations.
4743   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4744                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4745                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4746                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4747                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4748                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4749     return false;
4750 
4751   // for now, we use: { return popcount(~x & (x - 1)); }
4752   // unless the target has ctlz but not ctpop, in which case we use:
4753   // { return 32 - nlz(~x & (x-1)); }
4754   // Ref: "Hacker's Delight" by Henry Warren
4755   SDValue Tmp = DAG.getNode(
4756       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4757       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4758 
4759   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4760   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4761     Result =
4762         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4763                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4764     return true;
4765   }
4766 
4767   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4768   return true;
4769 }
4770 
4771 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
4772                                SelectionDAG &DAG) const {
4773   SDLoc dl(N);
4774   EVT VT = N->getValueType(0);
4775   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4776   SDValue Op = N->getOperand(0);
4777 
4778   // Only expand vector types if we have the appropriate vector operations.
4779   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
4780                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
4781                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4782     return false;
4783 
4784   SDValue Shift =
4785       DAG.getNode(ISD::SRA, dl, VT, Op,
4786                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
4787   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
4788   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
4789   return true;
4790 }
4791 
4792 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4793                                             SelectionDAG &DAG) const {
4794   SDLoc SL(LD);
4795   SDValue Chain = LD->getChain();
4796   SDValue BasePTR = LD->getBasePtr();
4797   EVT SrcVT = LD->getMemoryVT();
4798   ISD::LoadExtType ExtType = LD->getExtensionType();
4799 
4800   unsigned NumElem = SrcVT.getVectorNumElements();
4801 
4802   EVT SrcEltVT = SrcVT.getScalarType();
4803   EVT DstEltVT = LD->getValueType(0).getScalarType();
4804 
4805   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4806   assert(SrcEltVT.isByteSized());
4807 
4808   SmallVector<SDValue, 8> Vals;
4809   SmallVector<SDValue, 8> LoadChains;
4810 
4811   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4812     SDValue ScalarLoad =
4813         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4814                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4815                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4816                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4817 
4818     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4819 
4820     Vals.push_back(ScalarLoad.getValue(0));
4821     LoadChains.push_back(ScalarLoad.getValue(1));
4822   }
4823 
4824   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4825   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4826 
4827   return DAG.getMergeValues({ Value, NewChain }, SL);
4828 }
4829 
4830 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4831                                              SelectionDAG &DAG) const {
4832   SDLoc SL(ST);
4833 
4834   SDValue Chain = ST->getChain();
4835   SDValue BasePtr = ST->getBasePtr();
4836   SDValue Value = ST->getValue();
4837   EVT StVT = ST->getMemoryVT();
4838 
4839   // The type of the data we want to save
4840   EVT RegVT = Value.getValueType();
4841   EVT RegSclVT = RegVT.getScalarType();
4842 
4843   // The type of data as saved in memory.
4844   EVT MemSclVT = StVT.getScalarType();
4845 
4846   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4847   unsigned NumElem = StVT.getVectorNumElements();
4848 
4849   // A vector must always be stored in memory as-is, i.e. without any padding
4850   // between the elements, since various code depend on it, e.g. in the
4851   // handling of a bitcast of a vector type to int, which may be done with a
4852   // vector store followed by an integer load. A vector that does not have
4853   // elements that are byte-sized must therefore be stored as an integer
4854   // built out of the extracted vector elements.
4855   if (!MemSclVT.isByteSized()) {
4856     unsigned NumBits = StVT.getSizeInBits();
4857     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4858 
4859     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4860 
4861     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4862       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4863                                 DAG.getConstant(Idx, SL, IdxVT));
4864       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4865       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4866       unsigned ShiftIntoIdx =
4867           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4868       SDValue ShiftAmount =
4869           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4870       SDValue ShiftedElt =
4871           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4872       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4873     }
4874 
4875     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4876                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4877                         ST->getAAInfo());
4878   }
4879 
4880   // Store Stride in bytes
4881   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4882   assert (Stride && "Zero stride!");
4883   // Extract each of the elements from the original vector and save them into
4884   // memory individually.
4885   SmallVector<SDValue, 8> Stores;
4886   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4887     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4888                               DAG.getConstant(Idx, SL, IdxVT));
4889 
4890     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4891 
4892     // This scalar TruncStore may be illegal, but we legalize it later.
4893     SDValue Store = DAG.getTruncStore(
4894         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4895         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4896         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4897 
4898     Stores.push_back(Store);
4899   }
4900 
4901   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4902 }
4903 
4904 std::pair<SDValue, SDValue>
4905 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4906   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4907          "unaligned indexed loads not implemented!");
4908   SDValue Chain = LD->getChain();
4909   SDValue Ptr = LD->getBasePtr();
4910   EVT VT = LD->getValueType(0);
4911   EVT LoadedVT = LD->getMemoryVT();
4912   SDLoc dl(LD);
4913   auto &MF = DAG.getMachineFunction();
4914 
4915   if (VT.isFloatingPoint() || VT.isVector()) {
4916     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4917     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4918       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4919           LoadedVT.isVector()) {
4920         // Scalarize the load and let the individual components be handled.
4921         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4922         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4923           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4924         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4925       }
4926 
4927       // Expand to a (misaligned) integer load of the same size,
4928       // then bitconvert to floating point or vector.
4929       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4930                                     LD->getMemOperand());
4931       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4932       if (LoadedVT != VT)
4933         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4934                              ISD::ANY_EXTEND, dl, VT, Result);
4935 
4936       return std::make_pair(Result, newLoad.getValue(1));
4937     }
4938 
4939     // Copy the value to a (aligned) stack slot using (unaligned) integer
4940     // loads and stores, then do a (aligned) load from the stack slot.
4941     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4942     unsigned LoadedBytes = LoadedVT.getStoreSize();
4943     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4944     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4945 
4946     // Make sure the stack slot is also aligned for the register type.
4947     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4948     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4949     SmallVector<SDValue, 8> Stores;
4950     SDValue StackPtr = StackBase;
4951     unsigned Offset = 0;
4952 
4953     EVT PtrVT = Ptr.getValueType();
4954     EVT StackPtrVT = StackPtr.getValueType();
4955 
4956     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4957     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4958 
4959     // Do all but one copies using the full register width.
4960     for (unsigned i = 1; i < NumRegs; i++) {
4961       // Load one integer register's worth from the original location.
4962       SDValue Load = DAG.getLoad(
4963           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4964           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4965           LD->getAAInfo());
4966       // Follow the load with a store to the stack slot.  Remember the store.
4967       Stores.push_back(DAG.getStore(
4968           Load.getValue(1), dl, Load, StackPtr,
4969           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4970       // Increment the pointers.
4971       Offset += RegBytes;
4972 
4973       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4974       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4975     }
4976 
4977     // The last copy may be partial.  Do an extending load.
4978     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4979                                   8 * (LoadedBytes - Offset));
4980     SDValue Load =
4981         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4982                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4983                        MinAlign(LD->getAlignment(), Offset),
4984                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4985     // Follow the load with a store to the stack slot.  Remember the store.
4986     // On big-endian machines this requires a truncating store to ensure
4987     // that the bits end up in the right place.
4988     Stores.push_back(DAG.getTruncStore(
4989         Load.getValue(1), dl, Load, StackPtr,
4990         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4991 
4992     // The order of the stores doesn't matter - say it with a TokenFactor.
4993     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4994 
4995     // Finally, perform the original load only redirected to the stack slot.
4996     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4997                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4998                           LoadedVT);
4999 
5000     // Callers expect a MERGE_VALUES node.
5001     return std::make_pair(Load, TF);
5002   }
5003 
5004   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
5005          "Unaligned load of unsupported type.");
5006 
5007   // Compute the new VT that is half the size of the old one.  This is an
5008   // integer MVT.
5009   unsigned NumBits = LoadedVT.getSizeInBits();
5010   EVT NewLoadedVT;
5011   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
5012   NumBits >>= 1;
5013 
5014   unsigned Alignment = LD->getAlignment();
5015   unsigned IncrementSize = NumBits / 8;
5016   ISD::LoadExtType HiExtType = LD->getExtensionType();
5017 
5018   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
5019   if (HiExtType == ISD::NON_EXTLOAD)
5020     HiExtType = ISD::ZEXTLOAD;
5021 
5022   // Load the value in two parts
5023   SDValue Lo, Hi;
5024   if (DAG.getDataLayout().isLittleEndian()) {
5025     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5026                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5027                         LD->getAAInfo());
5028 
5029     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5030     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
5031                         LD->getPointerInfo().getWithOffset(IncrementSize),
5032                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5033                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5034   } else {
5035     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
5036                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
5037                         LD->getAAInfo());
5038 
5039     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5040     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
5041                         LD->getPointerInfo().getWithOffset(IncrementSize),
5042                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
5043                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
5044   }
5045 
5046   // aggregate the two parts
5047   SDValue ShiftAmount =
5048       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
5049                                                     DAG.getDataLayout()));
5050   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
5051   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
5052 
5053   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
5054                              Hi.getValue(1));
5055 
5056   return std::make_pair(Result, TF);
5057 }
5058 
5059 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
5060                                              SelectionDAG &DAG) const {
5061   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
5062          "unaligned indexed stores not implemented!");
5063   SDValue Chain = ST->getChain();
5064   SDValue Ptr = ST->getBasePtr();
5065   SDValue Val = ST->getValue();
5066   EVT VT = Val.getValueType();
5067   int Alignment = ST->getAlignment();
5068   auto &MF = DAG.getMachineFunction();
5069   EVT MemVT = ST->getMemoryVT();
5070 
5071   SDLoc dl(ST);
5072   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
5073     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
5074     if (isTypeLegal(intVT)) {
5075       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
5076           MemVT.isVector()) {
5077         // Scalarize the store and let the individual components be handled.
5078         SDValue Result = scalarizeVectorStore(ST, DAG);
5079 
5080         return Result;
5081       }
5082       // Expand to a bitconvert of the value to the integer type of the
5083       // same size, then a (misaligned) int store.
5084       // FIXME: Does not handle truncating floating point stores!
5085       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
5086       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
5087                             Alignment, ST->getMemOperand()->getFlags());
5088       return Result;
5089     }
5090     // Do a (aligned) store to a stack slot, then copy from the stack slot
5091     // to the final destination using (unaligned) integer loads and stores.
5092     EVT StoredVT = ST->getMemoryVT();
5093     MVT RegVT =
5094       getRegisterType(*DAG.getContext(),
5095                       EVT::getIntegerVT(*DAG.getContext(),
5096                                         StoredVT.getSizeInBits()));
5097     EVT PtrVT = Ptr.getValueType();
5098     unsigned StoredBytes = StoredVT.getStoreSize();
5099     unsigned RegBytes = RegVT.getSizeInBits() / 8;
5100     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
5101 
5102     // Make sure the stack slot is also aligned for the register type.
5103     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
5104     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
5105 
5106     // Perform the original store, only redirected to the stack slot.
5107     SDValue Store = DAG.getTruncStore(
5108         Chain, dl, Val, StackPtr,
5109         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
5110 
5111     EVT StackPtrVT = StackPtr.getValueType();
5112 
5113     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
5114     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
5115     SmallVector<SDValue, 8> Stores;
5116     unsigned Offset = 0;
5117 
5118     // Do all but one copies using the full register width.
5119     for (unsigned i = 1; i < NumRegs; i++) {
5120       // Load one integer register's worth from the stack slot.
5121       SDValue Load = DAG.getLoad(
5122           RegVT, dl, Store, StackPtr,
5123           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
5124       // Store it to the final location.  Remember the store.
5125       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
5126                                     ST->getPointerInfo().getWithOffset(Offset),
5127                                     MinAlign(ST->getAlignment(), Offset),
5128                                     ST->getMemOperand()->getFlags()));
5129       // Increment the pointers.
5130       Offset += RegBytes;
5131       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
5132       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
5133     }
5134 
5135     // The last store may be partial.  Do a truncating store.  On big-endian
5136     // machines this requires an extending load from the stack slot to ensure
5137     // that the bits are in the right place.
5138     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
5139                                   8 * (StoredBytes - Offset));
5140 
5141     // Load from the stack slot.
5142     SDValue Load = DAG.getExtLoad(
5143         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
5144         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
5145 
5146     Stores.push_back(
5147         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
5148                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
5149                           MinAlign(ST->getAlignment(), Offset),
5150                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
5151     // The order of the stores doesn't matter - say it with a TokenFactor.
5152     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
5153     return Result;
5154   }
5155 
5156   assert(ST->getMemoryVT().isInteger() &&
5157          !ST->getMemoryVT().isVector() &&
5158          "Unaligned store of unknown type.");
5159   // Get the half-size VT
5160   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
5161   int NumBits = NewStoredVT.getSizeInBits();
5162   int IncrementSize = NumBits / 8;
5163 
5164   // Divide the stored value in two parts.
5165   SDValue ShiftAmount =
5166       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
5167                                                     DAG.getDataLayout()));
5168   SDValue Lo = Val;
5169   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
5170 
5171   // Store the two parts
5172   SDValue Store1, Store2;
5173   Store1 = DAG.getTruncStore(Chain, dl,
5174                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
5175                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
5176                              ST->getMemOperand()->getFlags());
5177 
5178   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
5179   Alignment = MinAlign(Alignment, IncrementSize);
5180   Store2 = DAG.getTruncStore(
5181       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
5182       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
5183       ST->getMemOperand()->getFlags(), ST->getAAInfo());
5184 
5185   SDValue Result =
5186     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
5187   return Result;
5188 }
5189 
5190 SDValue
5191 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
5192                                        const SDLoc &DL, EVT DataVT,
5193                                        SelectionDAG &DAG,
5194                                        bool IsCompressedMemory) const {
5195   SDValue Increment;
5196   EVT AddrVT = Addr.getValueType();
5197   EVT MaskVT = Mask.getValueType();
5198   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
5199          "Incompatible types of Data and Mask");
5200   if (IsCompressedMemory) {
5201     // Incrementing the pointer according to number of '1's in the mask.
5202     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
5203     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
5204     if (MaskIntVT.getSizeInBits() < 32) {
5205       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
5206       MaskIntVT = MVT::i32;
5207     }
5208 
5209     // Count '1's with POPCNT.
5210     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
5211     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
5212     // Scale is an element size in bytes.
5213     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
5214                                     AddrVT);
5215     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
5216   } else
5217     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
5218 
5219   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
5220 }
5221 
5222 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
5223                                        SDValue Idx,
5224                                        EVT VecVT,
5225                                        const SDLoc &dl) {
5226   if (isa<ConstantSDNode>(Idx))
5227     return Idx;
5228 
5229   EVT IdxVT = Idx.getValueType();
5230   unsigned NElts = VecVT.getVectorNumElements();
5231   if (isPowerOf2_32(NElts)) {
5232     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
5233                                      Log2_32(NElts));
5234     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
5235                        DAG.getConstant(Imm, dl, IdxVT));
5236   }
5237 
5238   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
5239                      DAG.getConstant(NElts - 1, dl, IdxVT));
5240 }
5241 
5242 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
5243                                                 SDValue VecPtr, EVT VecVT,
5244                                                 SDValue Index) const {
5245   SDLoc dl(Index);
5246   // Make sure the index type is big enough to compute in.
5247   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
5248 
5249   EVT EltVT = VecVT.getVectorElementType();
5250 
5251   // Calculate the element offset and add it to the pointer.
5252   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
5253   assert(EltSize * 8 == EltVT.getSizeInBits() &&
5254          "Converting bits to bytes lost precision");
5255 
5256   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
5257 
5258   EVT IdxVT = Index.getValueType();
5259 
5260   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
5261                       DAG.getConstant(EltSize, dl, IdxVT));
5262   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
5263 }
5264 
5265 //===----------------------------------------------------------------------===//
5266 // Implementation of Emulated TLS Model
5267 //===----------------------------------------------------------------------===//
5268 
5269 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
5270                                                 SelectionDAG &DAG) const {
5271   // Access to address of TLS varialbe xyz is lowered to a function call:
5272   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
5273   EVT PtrVT = getPointerTy(DAG.getDataLayout());
5274   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
5275   SDLoc dl(GA);
5276 
5277   ArgListTy Args;
5278   ArgListEntry Entry;
5279   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
5280   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
5281   StringRef EmuTlsVarName(NameString);
5282   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
5283   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
5284   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
5285   Entry.Ty = VoidPtrType;
5286   Args.push_back(Entry);
5287 
5288   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
5289 
5290   TargetLowering::CallLoweringInfo CLI(DAG);
5291   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
5292   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
5293   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
5294 
5295   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
5296   // At last for X86 targets, maybe good for other targets too?
5297   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5298   MFI.setAdjustsStack(true);  // Is this only for X86 target?
5299   MFI.setHasCalls(true);
5300 
5301   assert((GA->getOffset() == 0) &&
5302          "Emulated TLS must have zero offset in GlobalAddressSDNode");
5303   return CallResult.first;
5304 }
5305 
5306 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5307                                                 SelectionDAG &DAG) const {
5308   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5309   if (!isCtlzFast())
5310     return SDValue();
5311   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5312   SDLoc dl(Op);
5313   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5314     if (C->isNullValue() && CC == ISD::SETEQ) {
5315       EVT VT = Op.getOperand(0).getValueType();
5316       SDValue Zext = Op.getOperand(0);
5317       if (VT.bitsLT(MVT::i32)) {
5318         VT = MVT::i32;
5319         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5320       }
5321       unsigned Log2b = Log2_32(VT.getSizeInBits());
5322       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5323       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5324                                 DAG.getConstant(Log2b, dl, MVT::i32));
5325       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5326     }
5327   }
5328   return SDValue();
5329 }
5330 
5331 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
5332   unsigned Opcode = Node->getOpcode();
5333   SDValue LHS = Node->getOperand(0);
5334   SDValue RHS = Node->getOperand(1);
5335   EVT VT = LHS.getValueType();
5336   SDLoc dl(Node);
5337 
5338   // usub.sat(a, b) -> umax(a, b) - b
5339   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
5340     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
5341     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
5342   }
5343 
5344   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
5345     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
5346     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
5347     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
5348   }
5349 
5350   if (VT.isVector()) {
5351     // TODO: Consider not scalarizing here.
5352     return SDValue();
5353   }
5354 
5355   unsigned OverflowOp;
5356   switch (Opcode) {
5357   case ISD::SADDSAT:
5358     OverflowOp = ISD::SADDO;
5359     break;
5360   case ISD::UADDSAT:
5361     OverflowOp = ISD::UADDO;
5362     break;
5363   case ISD::SSUBSAT:
5364     OverflowOp = ISD::SSUBO;
5365     break;
5366   case ISD::USUBSAT:
5367     OverflowOp = ISD::USUBO;
5368     break;
5369   default:
5370     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5371                      "addition or subtraction node.");
5372   }
5373 
5374   assert(LHS.getValueType().isScalarInteger() &&
5375          "Expected operands to be integers. Vector of int arguments should "
5376          "already be unrolled.");
5377   assert(RHS.getValueType().isScalarInteger() &&
5378          "Expected operands to be integers. Vector of int arguments should "
5379          "already be unrolled.");
5380   assert(LHS.getValueType() == RHS.getValueType() &&
5381          "Expected both operands to be the same type");
5382 
5383   unsigned BitWidth = LHS.getValueSizeInBits();
5384   EVT ResultType = LHS.getValueType();
5385   EVT BoolVT =
5386       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5387   SDValue Result =
5388       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5389   SDValue SumDiff = Result.getValue(0);
5390   SDValue Overflow = Result.getValue(1);
5391   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5392 
5393   if (Opcode == ISD::UADDSAT) {
5394     // Just need to check overflow for SatMax.
5395     APInt MaxVal = APInt::getMaxValue(BitWidth);
5396     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5397     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5398   } else if (Opcode == ISD::USUBSAT) {
5399     // Just need to check overflow for SatMin.
5400     APInt MinVal = APInt::getMinValue(BitWidth);
5401     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5402     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5403   } else {
5404     // SatMax -> Overflow && SumDiff < 0
5405     // SatMin -> Overflow && SumDiff >= 0
5406     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5407     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5408     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5409     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5410     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5411     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5412     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5413   }
5414 }
5415 
5416 SDValue
5417 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
5418   assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX.");
5419 
5420   SDLoc dl(Node);
5421   SDValue LHS = Node->getOperand(0);
5422   SDValue RHS = Node->getOperand(1);
5423   EVT VT = LHS.getValueType();
5424   unsigned Scale = Node->getConstantOperandVal(2);
5425 
5426   // [us]mul.fix(a, b, 0) -> mul(a, b)
5427   if (!Scale) {
5428     if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT))
5429       return SDValue();
5430     return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5431   }
5432 
5433   assert(LHS.getValueType() == RHS.getValueType() &&
5434          "Expected both operands to be the same type");
5435   assert(Scale < VT.getScalarSizeInBits() &&
5436          "Expected scale to be less than the number of bits.");
5437 
5438   // Get the upper and lower bits of the result.
5439   SDValue Lo, Hi;
5440   if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
5441     SDValue Result =
5442         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS);
5443     Lo = Result.getValue(0);
5444     Hi = Result.getValue(1);
5445   } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) {
5446     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
5447     Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS);
5448   } else if (VT.isVector()) {
5449     return SDValue();
5450   } else {
5451     report_fatal_error("Unable to expand signed fixed point multiplication.");
5452   }
5453 
5454   // The result will need to be shifted right by the scale since both operands
5455   // are scaled. The result is given to us in 2 halves, so we only want part of
5456   // both in the result.
5457   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
5458   Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy));
5459   Hi = DAG.getNode(
5460       ISD::SHL, dl, VT, Hi,
5461       DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy));
5462   return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5463 }
5464