1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/CodeGenCommonISel.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetMachine.h" 34 #include <cctype> 35 using namespace llvm; 36 37 /// NOTE: The TargetMachine owns TLOF. 38 TargetLowering::TargetLowering(const TargetMachine &tm) 39 : TargetLoweringBase(tm) {} 40 41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 42 return nullptr; 43 } 44 45 bool TargetLowering::isPositionIndependent() const { 46 return getTargetMachine().isPositionIndependent(); 47 } 48 49 /// Check whether a given call node is in tail position within its function. If 50 /// so, it sets Chain to the input chain of the tail call. 51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 52 SDValue &Chain) const { 53 const Function &F = DAG.getMachineFunction().getFunction(); 54 55 // First, check if tail calls have been disabled in this function. 56 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 57 return false; 58 59 // Conservatively require the attributes of the call to match those of 60 // the return. Ignore following attributes because they don't affect the 61 // call sequence. 62 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 63 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 64 Attribute::DereferenceableOrNull, Attribute::NoAlias, 65 Attribute::NonNull, Attribute::NoUndef}) 66 CallerAttrs.removeAttribute(Attr); 67 68 if (CallerAttrs.hasAttributes()) 69 return false; 70 71 // It's not safe to eliminate the sign / zero extension of the return value. 72 if (CallerAttrs.contains(Attribute::ZExt) || 73 CallerAttrs.contains(Attribute::SExt)) 74 return false; 75 76 // Check if the only use is a function return node. 77 return isUsedByReturnOnly(Node, Chain); 78 } 79 80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 81 const uint32_t *CallerPreservedMask, 82 const SmallVectorImpl<CCValAssign> &ArgLocs, 83 const SmallVectorImpl<SDValue> &OutVals) const { 84 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 85 const CCValAssign &ArgLoc = ArgLocs[I]; 86 if (!ArgLoc.isRegLoc()) 87 continue; 88 MCRegister Reg = ArgLoc.getLocReg(); 89 // Only look at callee saved registers. 90 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 91 continue; 92 // Check that we pass the value used for the caller. 93 // (We look for a CopyFromReg reading a virtual register that is used 94 // for the function live-in value of register Reg) 95 SDValue Value = OutVals[I]; 96 if (Value->getOpcode() == ISD::AssertZext) 97 Value = Value.getOperand(0); 98 if (Value->getOpcode() != ISD::CopyFromReg) 99 return false; 100 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 101 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 102 return false; 103 } 104 return true; 105 } 106 107 /// Set CallLoweringInfo attribute flags based on a call instruction 108 /// and called function attributes. 109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 110 unsigned ArgIdx) { 111 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 112 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 113 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 114 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 115 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 116 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 117 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 118 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 119 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 120 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 121 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 122 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 123 Alignment = Call->getParamStackAlign(ArgIdx); 124 IndirectType = nullptr; 125 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 126 "multiple ABI attributes?"); 127 if (IsByVal) { 128 IndirectType = Call->getParamByValType(ArgIdx); 129 if (!Alignment) 130 Alignment = Call->getParamAlign(ArgIdx); 131 } 132 if (IsPreallocated) 133 IndirectType = Call->getParamPreallocatedType(ArgIdx); 134 if (IsInAlloca) 135 IndirectType = Call->getParamInAllocaType(ArgIdx); 136 if (IsSRet) 137 IndirectType = Call->getParamStructRetType(ArgIdx); 138 } 139 140 /// Generate a libcall taking the given operands as arguments and returning a 141 /// result of type RetVT. 142 std::pair<SDValue, SDValue> 143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 144 ArrayRef<SDValue> Ops, 145 MakeLibCallOptions CallOptions, 146 const SDLoc &dl, 147 SDValue InChain) const { 148 if (!InChain) 149 InChain = DAG.getEntryNode(); 150 151 TargetLowering::ArgListTy Args; 152 Args.reserve(Ops.size()); 153 154 TargetLowering::ArgListEntry Entry; 155 for (unsigned i = 0; i < Ops.size(); ++i) { 156 SDValue NewOp = Ops[i]; 157 Entry.Node = NewOp; 158 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 159 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 160 CallOptions.IsSExt); 161 Entry.IsZExt = !Entry.IsSExt; 162 163 if (CallOptions.IsSoften && 164 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 165 Entry.IsSExt = Entry.IsZExt = false; 166 } 167 Args.push_back(Entry); 168 } 169 170 if (LC == RTLIB::UNKNOWN_LIBCALL) 171 report_fatal_error("Unsupported library call operation!"); 172 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 173 getPointerTy(DAG.getDataLayout())); 174 175 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 176 TargetLowering::CallLoweringInfo CLI(DAG); 177 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 178 bool zeroExtend = !signExtend; 179 180 if (CallOptions.IsSoften && 181 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 182 signExtend = zeroExtend = false; 183 } 184 185 CLI.setDebugLoc(dl) 186 .setChain(InChain) 187 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 188 .setNoReturn(CallOptions.DoesNotReturn) 189 .setDiscardResult(!CallOptions.IsReturnValueUsed) 190 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 191 .setSExtResult(signExtend) 192 .setZExtResult(zeroExtend); 193 return LowerCallTo(CLI); 194 } 195 196 bool TargetLowering::findOptimalMemOpLowering( 197 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 198 unsigned SrcAS, const AttributeList &FuncAttributes) const { 199 if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() && 200 Op.getSrcAlign() < Op.getDstAlign()) 201 return false; 202 203 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 204 205 if (VT == MVT::Other) { 206 // Use the largest integer type whose alignment constraints are satisfied. 207 // We only need to check DstAlign here as SrcAlign is always greater or 208 // equal to DstAlign (or zero). 209 VT = MVT::i64; 210 if (Op.isFixedDstAlign()) 211 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 212 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 213 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 214 assert(VT.isInteger()); 215 216 // Find the largest legal integer type. 217 MVT LVT = MVT::i64; 218 while (!isTypeLegal(LVT)) 219 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 220 assert(LVT.isInteger()); 221 222 // If the type we've chosen is larger than the largest legal integer type 223 // then use that instead. 224 if (VT.bitsGT(LVT)) 225 VT = LVT; 226 } 227 228 unsigned NumMemOps = 0; 229 uint64_t Size = Op.size(); 230 while (Size) { 231 unsigned VTSize = VT.getSizeInBits() / 8; 232 while (VTSize > Size) { 233 // For now, only use non-vector load / store's for the left-over pieces. 234 EVT NewVT = VT; 235 unsigned NewVTSize; 236 237 bool Found = false; 238 if (VT.isVector() || VT.isFloatingPoint()) { 239 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 240 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 241 isSafeMemOpType(NewVT.getSimpleVT())) 242 Found = true; 243 else if (NewVT == MVT::i64 && 244 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 245 isSafeMemOpType(MVT::f64)) { 246 // i64 is usually not legal on 32-bit targets, but f64 may be. 247 NewVT = MVT::f64; 248 Found = true; 249 } 250 } 251 252 if (!Found) { 253 do { 254 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 255 if (NewVT == MVT::i8) 256 break; 257 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 258 } 259 NewVTSize = NewVT.getSizeInBits() / 8; 260 261 // If the new VT cannot cover all of the remaining bits, then consider 262 // issuing a (or a pair of) unaligned and overlapping load / store. 263 bool Fast; 264 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 265 allowsMisalignedMemoryAccesses( 266 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 267 MachineMemOperand::MONone, &Fast) && 268 Fast) 269 VTSize = Size; 270 else { 271 VT = NewVT; 272 VTSize = NewVTSize; 273 } 274 } 275 276 if (++NumMemOps > Limit) 277 return false; 278 279 MemOps.push_back(VT); 280 Size -= VTSize; 281 } 282 283 return true; 284 } 285 286 /// Soften the operands of a comparison. This code is shared among BR_CC, 287 /// SELECT_CC, and SETCC handlers. 288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 289 SDValue &NewLHS, SDValue &NewRHS, 290 ISD::CondCode &CCCode, 291 const SDLoc &dl, const SDValue OldLHS, 292 const SDValue OldRHS) const { 293 SDValue Chain; 294 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 295 OldRHS, Chain); 296 } 297 298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 299 SDValue &NewLHS, SDValue &NewRHS, 300 ISD::CondCode &CCCode, 301 const SDLoc &dl, const SDValue OldLHS, 302 const SDValue OldRHS, 303 SDValue &Chain, 304 bool IsSignaling) const { 305 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 306 // not supporting it. We can update this code when libgcc provides such 307 // functions. 308 309 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 310 && "Unsupported setcc type!"); 311 312 // Expand into one or more soft-fp libcall(s). 313 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 314 bool ShouldInvertCC = false; 315 switch (CCCode) { 316 case ISD::SETEQ: 317 case ISD::SETOEQ: 318 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 319 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 320 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 321 break; 322 case ISD::SETNE: 323 case ISD::SETUNE: 324 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 325 (VT == MVT::f64) ? RTLIB::UNE_F64 : 326 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 327 break; 328 case ISD::SETGE: 329 case ISD::SETOGE: 330 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 331 (VT == MVT::f64) ? RTLIB::OGE_F64 : 332 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 333 break; 334 case ISD::SETLT: 335 case ISD::SETOLT: 336 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 337 (VT == MVT::f64) ? RTLIB::OLT_F64 : 338 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 339 break; 340 case ISD::SETLE: 341 case ISD::SETOLE: 342 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 343 (VT == MVT::f64) ? RTLIB::OLE_F64 : 344 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 345 break; 346 case ISD::SETGT: 347 case ISD::SETOGT: 348 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 349 (VT == MVT::f64) ? RTLIB::OGT_F64 : 350 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 351 break; 352 case ISD::SETO: 353 ShouldInvertCC = true; 354 LLVM_FALLTHROUGH; 355 case ISD::SETUO: 356 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 357 (VT == MVT::f64) ? RTLIB::UO_F64 : 358 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 359 break; 360 case ISD::SETONE: 361 // SETONE = O && UNE 362 ShouldInvertCC = true; 363 LLVM_FALLTHROUGH; 364 case ISD::SETUEQ: 365 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 366 (VT == MVT::f64) ? RTLIB::UO_F64 : 367 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 368 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 369 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 370 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 371 break; 372 default: 373 // Invert CC for unordered comparisons 374 ShouldInvertCC = true; 375 switch (CCCode) { 376 case ISD::SETULT: 377 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 378 (VT == MVT::f64) ? RTLIB::OGE_F64 : 379 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 380 break; 381 case ISD::SETULE: 382 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 383 (VT == MVT::f64) ? RTLIB::OGT_F64 : 384 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 385 break; 386 case ISD::SETUGT: 387 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 388 (VT == MVT::f64) ? RTLIB::OLE_F64 : 389 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 390 break; 391 case ISD::SETUGE: 392 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 393 (VT == MVT::f64) ? RTLIB::OLT_F64 : 394 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 395 break; 396 default: llvm_unreachable("Do not know how to soften this setcc!"); 397 } 398 } 399 400 // Use the target specific return value for comparions lib calls. 401 EVT RetVT = getCmpLibcallReturnType(); 402 SDValue Ops[2] = {NewLHS, NewRHS}; 403 TargetLowering::MakeLibCallOptions CallOptions; 404 EVT OpsVT[2] = { OldLHS.getValueType(), 405 OldRHS.getValueType() }; 406 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 407 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 408 NewLHS = Call.first; 409 NewRHS = DAG.getConstant(0, dl, RetVT); 410 411 CCCode = getCmpLibcallCC(LC1); 412 if (ShouldInvertCC) { 413 assert(RetVT.isInteger()); 414 CCCode = getSetCCInverse(CCCode, RetVT); 415 } 416 417 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 418 // Update Chain. 419 Chain = Call.second; 420 } else { 421 EVT SetCCVT = 422 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 423 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 424 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 425 CCCode = getCmpLibcallCC(LC2); 426 if (ShouldInvertCC) 427 CCCode = getSetCCInverse(CCCode, RetVT); 428 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 429 if (Chain) 430 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 431 Call2.second); 432 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 433 Tmp.getValueType(), Tmp, NewLHS); 434 NewRHS = SDValue(); 435 } 436 } 437 438 /// Return the entry encoding for a jump table in the current function. The 439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 440 unsigned TargetLowering::getJumpTableEncoding() const { 441 // In non-pic modes, just use the address of a block. 442 if (!isPositionIndependent()) 443 return MachineJumpTableInfo::EK_BlockAddress; 444 445 // In PIC mode, if the target supports a GPRel32 directive, use it. 446 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 447 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 448 449 // Otherwise, use a label difference. 450 return MachineJumpTableInfo::EK_LabelDifference32; 451 } 452 453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 454 SelectionDAG &DAG) const { 455 // If our PIC model is GP relative, use the global offset table as the base. 456 unsigned JTEncoding = getJumpTableEncoding(); 457 458 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 459 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 460 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 461 462 return Table; 463 } 464 465 /// This returns the relocation base for the given PIC jumptable, the same as 466 /// getPICJumpTableRelocBase, but as an MCExpr. 467 const MCExpr * 468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 469 unsigned JTI,MCContext &Ctx) const{ 470 // The normal PIC reloc base is the label at the start of the jump table. 471 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 472 } 473 474 bool 475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 476 const TargetMachine &TM = getTargetMachine(); 477 const GlobalValue *GV = GA->getGlobal(); 478 479 // If the address is not even local to this DSO we will have to load it from 480 // a got and then add the offset. 481 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 482 return false; 483 484 // If the code is position independent we will have to add a base register. 485 if (isPositionIndependent()) 486 return false; 487 488 // Otherwise we can do it. 489 return true; 490 } 491 492 //===----------------------------------------------------------------------===// 493 // Optimization Methods 494 //===----------------------------------------------------------------------===// 495 496 /// If the specified instruction has a constant integer operand and there are 497 /// bits set in that constant that are not demanded, then clear those bits and 498 /// return true. 499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 500 const APInt &DemandedBits, 501 const APInt &DemandedElts, 502 TargetLoweringOpt &TLO) const { 503 SDLoc DL(Op); 504 unsigned Opcode = Op.getOpcode(); 505 506 // Do target-specific constant optimization. 507 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 508 return TLO.New.getNode(); 509 510 // FIXME: ISD::SELECT, ISD::SELECT_CC 511 switch (Opcode) { 512 default: 513 break; 514 case ISD::XOR: 515 case ISD::AND: 516 case ISD::OR: { 517 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 518 if (!Op1C || Op1C->isOpaque()) 519 return false; 520 521 // If this is a 'not' op, don't touch it because that's a canonical form. 522 const APInt &C = Op1C->getAPIntValue(); 523 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 524 return false; 525 526 if (!C.isSubsetOf(DemandedBits)) { 527 EVT VT = Op.getValueType(); 528 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 529 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 530 return TLO.CombineTo(Op, NewOp); 531 } 532 533 break; 534 } 535 } 536 537 return false; 538 } 539 540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 541 const APInt &DemandedBits, 542 TargetLoweringOpt &TLO) const { 543 EVT VT = Op.getValueType(); 544 APInt DemandedElts = VT.isVector() 545 ? APInt::getAllOnes(VT.getVectorNumElements()) 546 : APInt(1, 1); 547 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 548 } 549 550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 552 /// generalized for targets with other types of implicit widening casts. 553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 554 const APInt &Demanded, 555 TargetLoweringOpt &TLO) const { 556 assert(Op.getNumOperands() == 2 && 557 "ShrinkDemandedOp only supports binary operators!"); 558 assert(Op.getNode()->getNumValues() == 1 && 559 "ShrinkDemandedOp only supports nodes with one result!"); 560 561 SelectionDAG &DAG = TLO.DAG; 562 SDLoc dl(Op); 563 564 // Early return, as this function cannot handle vector types. 565 if (Op.getValueType().isVector()) 566 return false; 567 568 // Don't do this if the node has another user, which may require the 569 // full value. 570 if (!Op.getNode()->hasOneUse()) 571 return false; 572 573 // Search for the smallest integer type with free casts to and from 574 // Op's type. For expedience, just check power-of-2 integer types. 575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 576 unsigned DemandedSize = Demanded.getActiveBits(); 577 unsigned SmallVTBits = DemandedSize; 578 if (!isPowerOf2_32(SmallVTBits)) 579 SmallVTBits = NextPowerOf2(SmallVTBits); 580 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 581 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 582 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 583 TLI.isZExtFree(SmallVT, Op.getValueType())) { 584 // We found a type with free casts. 585 SDValue X = DAG.getNode( 586 Op.getOpcode(), dl, SmallVT, 587 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 588 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 589 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 590 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 591 return TLO.CombineTo(Op, Z); 592 } 593 } 594 return false; 595 } 596 597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 598 DAGCombinerInfo &DCI) const { 599 SelectionDAG &DAG = DCI.DAG; 600 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 601 !DCI.isBeforeLegalizeOps()); 602 KnownBits Known; 603 604 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 605 if (Simplified) { 606 DCI.AddToWorklist(Op.getNode()); 607 DCI.CommitTargetLoweringOpt(TLO); 608 } 609 return Simplified; 610 } 611 612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 613 const APInt &DemandedElts, 614 DAGCombinerInfo &DCI) const { 615 SelectionDAG &DAG = DCI.DAG; 616 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 617 !DCI.isBeforeLegalizeOps()); 618 KnownBits Known; 619 620 bool Simplified = 621 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 622 if (Simplified) { 623 DCI.AddToWorklist(Op.getNode()); 624 DCI.CommitTargetLoweringOpt(TLO); 625 } 626 return Simplified; 627 } 628 629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 630 KnownBits &Known, 631 TargetLoweringOpt &TLO, 632 unsigned Depth, 633 bool AssumeSingleUse) const { 634 EVT VT = Op.getValueType(); 635 636 // TODO: We can probably do more work on calculating the known bits and 637 // simplifying the operations for scalable vectors, but for now we just 638 // bail out. 639 if (VT.isScalableVector()) { 640 // Pretend we don't know anything for now. 641 Known = KnownBits(DemandedBits.getBitWidth()); 642 return false; 643 } 644 645 APInt DemandedElts = VT.isVector() 646 ? APInt::getAllOnes(VT.getVectorNumElements()) 647 : APInt(1, 1); 648 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 649 AssumeSingleUse); 650 } 651 652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 653 // TODO: Under what circumstances can we create nodes? Constant folding? 654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 655 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 656 SelectionDAG &DAG, unsigned Depth) const { 657 // Limit search depth. 658 if (Depth >= SelectionDAG::MaxRecursionDepth) 659 return SDValue(); 660 661 // Ignore UNDEFs. 662 if (Op.isUndef()) 663 return SDValue(); 664 665 // Not demanding any bits/elts from Op. 666 if (DemandedBits == 0 || DemandedElts == 0) 667 return DAG.getUNDEF(Op.getValueType()); 668 669 bool IsLE = DAG.getDataLayout().isLittleEndian(); 670 unsigned NumElts = DemandedElts.getBitWidth(); 671 unsigned BitWidth = DemandedBits.getBitWidth(); 672 KnownBits LHSKnown, RHSKnown; 673 switch (Op.getOpcode()) { 674 case ISD::BITCAST: { 675 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 676 EVT SrcVT = Src.getValueType(); 677 EVT DstVT = Op.getValueType(); 678 if (SrcVT == DstVT) 679 return Src; 680 681 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 682 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 683 if (NumSrcEltBits == NumDstEltBits) 684 if (SDValue V = SimplifyMultipleUseDemandedBits( 685 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 686 return DAG.getBitcast(DstVT, V); 687 688 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 689 unsigned Scale = NumDstEltBits / NumSrcEltBits; 690 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 691 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 692 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 693 for (unsigned i = 0; i != Scale; ++i) { 694 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 695 unsigned BitOffset = EltOffset * NumSrcEltBits; 696 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 697 if (!Sub.isZero()) { 698 DemandedSrcBits |= Sub; 699 for (unsigned j = 0; j != NumElts; ++j) 700 if (DemandedElts[j]) 701 DemandedSrcElts.setBit((j * Scale) + i); 702 } 703 } 704 705 if (SDValue V = SimplifyMultipleUseDemandedBits( 706 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 707 return DAG.getBitcast(DstVT, V); 708 } 709 710 // TODO - bigendian once we have test coverage. 711 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 712 unsigned Scale = NumSrcEltBits / NumDstEltBits; 713 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 714 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 715 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 716 for (unsigned i = 0; i != NumElts; ++i) 717 if (DemandedElts[i]) { 718 unsigned Offset = (i % Scale) * NumDstEltBits; 719 DemandedSrcBits.insertBits(DemandedBits, Offset); 720 DemandedSrcElts.setBit(i / Scale); 721 } 722 723 if (SDValue V = SimplifyMultipleUseDemandedBits( 724 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 725 return DAG.getBitcast(DstVT, V); 726 } 727 728 break; 729 } 730 case ISD::AND: { 731 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 732 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 733 734 // If all of the demanded bits are known 1 on one side, return the other. 735 // These bits cannot contribute to the result of the 'and' in this 736 // context. 737 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 738 return Op.getOperand(0); 739 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 740 return Op.getOperand(1); 741 break; 742 } 743 case ISD::OR: { 744 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 745 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 746 747 // If all of the demanded bits are known zero on one side, return the 748 // other. These bits cannot contribute to the result of the 'or' in this 749 // context. 750 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 751 return Op.getOperand(0); 752 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 753 return Op.getOperand(1); 754 break; 755 } 756 case ISD::XOR: { 757 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 758 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 759 760 // If all of the demanded bits are known zero on one side, return the 761 // other. 762 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 763 return Op.getOperand(0); 764 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 765 return Op.getOperand(1); 766 break; 767 } 768 case ISD::SHL: { 769 // If we are only demanding sign bits then we can use the shift source 770 // directly. 771 if (const APInt *MaxSA = 772 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 773 SDValue Op0 = Op.getOperand(0); 774 unsigned ShAmt = MaxSA->getZExtValue(); 775 unsigned NumSignBits = 776 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 777 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 778 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 779 return Op0; 780 } 781 break; 782 } 783 case ISD::SETCC: { 784 SDValue Op0 = Op.getOperand(0); 785 SDValue Op1 = Op.getOperand(1); 786 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 787 // If (1) we only need the sign-bit, (2) the setcc operands are the same 788 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 789 // -1, we may be able to bypass the setcc. 790 if (DemandedBits.isSignMask() && 791 Op0.getScalarValueSizeInBits() == BitWidth && 792 getBooleanContents(Op0.getValueType()) == 793 BooleanContent::ZeroOrNegativeOneBooleanContent) { 794 // If we're testing X < 0, then this compare isn't needed - just use X! 795 // FIXME: We're limiting to integer types here, but this should also work 796 // if we don't care about FP signed-zero. The use of SETLT with FP means 797 // that we don't care about NaNs. 798 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 799 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 800 return Op0; 801 } 802 break; 803 } 804 case ISD::SIGN_EXTEND_INREG: { 805 // If none of the extended bits are demanded, eliminate the sextinreg. 806 SDValue Op0 = Op.getOperand(0); 807 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 808 unsigned ExBits = ExVT.getScalarSizeInBits(); 809 if (DemandedBits.getActiveBits() <= ExBits) 810 return Op0; 811 // If the input is already sign extended, just drop the extension. 812 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 813 if (NumSignBits >= (BitWidth - ExBits + 1)) 814 return Op0; 815 break; 816 } 817 case ISD::ANY_EXTEND_VECTOR_INREG: 818 case ISD::SIGN_EXTEND_VECTOR_INREG: 819 case ISD::ZERO_EXTEND_VECTOR_INREG: { 820 // If we only want the lowest element and none of extended bits, then we can 821 // return the bitcasted source vector. 822 SDValue Src = Op.getOperand(0); 823 EVT SrcVT = Src.getValueType(); 824 EVT DstVT = Op.getValueType(); 825 if (IsLE && DemandedElts == 1 && 826 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 827 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 828 return DAG.getBitcast(DstVT, Src); 829 } 830 break; 831 } 832 case ISD::INSERT_VECTOR_ELT: { 833 // If we don't demand the inserted element, return the base vector. 834 SDValue Vec = Op.getOperand(0); 835 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 836 EVT VecVT = Vec.getValueType(); 837 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 838 !DemandedElts[CIdx->getZExtValue()]) 839 return Vec; 840 break; 841 } 842 case ISD::INSERT_SUBVECTOR: { 843 SDValue Vec = Op.getOperand(0); 844 SDValue Sub = Op.getOperand(1); 845 uint64_t Idx = Op.getConstantOperandVal(2); 846 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 847 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 848 // If we don't demand the inserted subvector, return the base vector. 849 if (DemandedSubElts == 0) 850 return Vec; 851 // If this simply widens the lowest subvector, see if we can do it earlier. 852 if (Idx == 0 && Vec.isUndef()) { 853 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 854 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 855 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 856 Op.getOperand(0), NewSub, Op.getOperand(2)); 857 } 858 break; 859 } 860 case ISD::VECTOR_SHUFFLE: { 861 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 862 863 // If all the demanded elts are from one operand and are inline, 864 // then we can use the operand directly. 865 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 866 for (unsigned i = 0; i != NumElts; ++i) { 867 int M = ShuffleMask[i]; 868 if (M < 0 || !DemandedElts[i]) 869 continue; 870 AllUndef = false; 871 IdentityLHS &= (M == (int)i); 872 IdentityRHS &= ((M - NumElts) == i); 873 } 874 875 if (AllUndef) 876 return DAG.getUNDEF(Op.getValueType()); 877 if (IdentityLHS) 878 return Op.getOperand(0); 879 if (IdentityRHS) 880 return Op.getOperand(1); 881 break; 882 } 883 default: 884 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 885 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 886 Op, DemandedBits, DemandedElts, DAG, Depth)) 887 return V; 888 break; 889 } 890 return SDValue(); 891 } 892 893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 894 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 895 unsigned Depth) const { 896 EVT VT = Op.getValueType(); 897 APInt DemandedElts = VT.isVector() 898 ? APInt::getAllOnes(VT.getVectorNumElements()) 899 : APInt(1, 1); 900 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 901 Depth); 902 } 903 904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 905 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 906 unsigned Depth) const { 907 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 908 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 909 Depth); 910 } 911 912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 913 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 915 const TargetLowering &TLI, 916 const APInt &DemandedBits, 917 const APInt &DemandedElts, 918 unsigned Depth) { 919 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 920 "SRL or SRA node is required here!"); 921 // Is the right shift using an immediate value of 1? 922 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 923 if (!N1C || !N1C->isOne()) 924 return SDValue(); 925 926 // We are looking for an avgfloor 927 // add(ext, ext) 928 // or one of these as a avgceil 929 // add(add(ext, ext), 1) 930 // add(add(ext, 1), ext) 931 // add(ext, add(ext, 1)) 932 SDValue Add = Op.getOperand(0); 933 if (Add.getOpcode() != ISD::ADD) 934 return SDValue(); 935 936 SDValue ExtOpA = Add.getOperand(0); 937 SDValue ExtOpB = Add.getOperand(1); 938 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 939 ConstantSDNode *ConstOp; 940 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 941 ConstOp->isOne()) { 942 ExtOpA = Op2; 943 ExtOpB = Op3; 944 return true; 945 } 946 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 947 ConstOp->isOne()) { 948 ExtOpA = Op1; 949 ExtOpB = Op3; 950 return true; 951 } 952 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 953 ConstOp->isOne()) { 954 ExtOpA = Op1; 955 ExtOpB = Op2; 956 return true; 957 } 958 return false; 959 }; 960 bool IsCeil = 961 (ExtOpA.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 963 (ExtOpB.getOpcode() == ISD::ADD && 964 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 965 966 // If the shift is signed (sra): 967 // - Needs >= 2 sign bit for both operands. 968 // - Needs >= 2 zero bits. 969 // If the shift is unsigned (srl): 970 // - Needs >= 1 zero bit for both operands. 971 // - Needs 1 demanded bit zero and >= 2 sign bits. 972 unsigned ShiftOpc = Op.getOpcode(); 973 bool IsSigned = false; 974 unsigned KnownBits; 975 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 976 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 977 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 978 unsigned NumZeroA = 979 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZeroB = 981 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 982 unsigned NumZero = std::min(NumZeroA, NumZeroB); 983 984 switch (ShiftOpc) { 985 default: 986 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 987 case ISD::SRA: { 988 if (NumZero >= 2 && NumSigned < NumZero) { 989 IsSigned = false; 990 KnownBits = NumZero; 991 break; 992 } 993 if (NumSigned >= 1) { 994 IsSigned = true; 995 KnownBits = NumSigned; 996 break; 997 } 998 return SDValue(); 999 } 1000 case ISD::SRL: { 1001 if (NumZero >= 1 && NumSigned < NumZero) { 1002 IsSigned = false; 1003 KnownBits = NumZero; 1004 break; 1005 } 1006 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1007 IsSigned = true; 1008 KnownBits = NumSigned; 1009 break; 1010 } 1011 return SDValue(); 1012 } 1013 } 1014 1015 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1016 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1017 1018 // Find the smallest power-2 type that is legal for this vector size and 1019 // operation, given the original type size and the number of known sign/zero 1020 // bits. 1021 EVT VT = Op.getValueType(); 1022 unsigned MinWidth = 1023 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1024 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1025 if (VT.isVector()) 1026 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1027 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1028 return SDValue(); 1029 1030 SDLoc DL(Op); 1031 SDValue ResultAVG = 1032 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1033 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1034 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1035 ResultAVG); 1036 } 1037 1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1039 /// result of Op are ever used downstream. If we can use this information to 1040 /// simplify Op, create a new simplified DAG node and return true, returning the 1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1042 /// return a mask of Known bits for the expression (used to simplify the 1043 /// caller). The Known bits may only be accurate for those bits in the 1044 /// OriginalDemandedBits and OriginalDemandedElts. 1045 bool TargetLowering::SimplifyDemandedBits( 1046 SDValue Op, const APInt &OriginalDemandedBits, 1047 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1048 unsigned Depth, bool AssumeSingleUse) const { 1049 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1050 assert(Op.getScalarValueSizeInBits() == BitWidth && 1051 "Mask size mismatches value type size!"); 1052 1053 // Don't know anything. 1054 Known = KnownBits(BitWidth); 1055 1056 // TODO: We can probably do more work on calculating the known bits and 1057 // simplifying the operations for scalable vectors, but for now we just 1058 // bail out. 1059 if (Op.getValueType().isScalableVector()) 1060 return false; 1061 1062 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1063 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1064 assert((!Op.getValueType().isVector() || 1065 NumElts == Op.getValueType().getVectorNumElements()) && 1066 "Unexpected vector size"); 1067 1068 APInt DemandedBits = OriginalDemandedBits; 1069 APInt DemandedElts = OriginalDemandedElts; 1070 SDLoc dl(Op); 1071 auto &DL = TLO.DAG.getDataLayout(); 1072 1073 // Undef operand. 1074 if (Op.isUndef()) 1075 return false; 1076 1077 if (Op.getOpcode() == ISD::Constant) { 1078 // We know all of the bits for a constant! 1079 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1080 return false; 1081 } 1082 1083 if (Op.getOpcode() == ISD::ConstantFP) { 1084 // We know all of the bits for a floating point constant! 1085 Known = KnownBits::makeConstant( 1086 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1087 return false; 1088 } 1089 1090 // Other users may use these bits. 1091 EVT VT = Op.getValueType(); 1092 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1093 if (Depth != 0) { 1094 // If not at the root, Just compute the Known bits to 1095 // simplify things downstream. 1096 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1097 return false; 1098 } 1099 // If this is the root being simplified, allow it to have multiple uses, 1100 // just set the DemandedBits/Elts to all bits. 1101 DemandedBits = APInt::getAllOnes(BitWidth); 1102 DemandedElts = APInt::getAllOnes(NumElts); 1103 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1104 // Not demanding any bits/elts from Op. 1105 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1106 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1107 // Limit search depth. 1108 return false; 1109 } 1110 1111 KnownBits Known2; 1112 switch (Op.getOpcode()) { 1113 case ISD::TargetConstant: 1114 llvm_unreachable("Can't simplify this node"); 1115 case ISD::SCALAR_TO_VECTOR: { 1116 if (!DemandedElts[0]) 1117 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1118 1119 KnownBits SrcKnown; 1120 SDValue Src = Op.getOperand(0); 1121 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1122 APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth); 1123 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1124 return true; 1125 1126 // Upper elements are undef, so only get the knownbits if we just demand 1127 // the bottom element. 1128 if (DemandedElts == 1) 1129 Known = SrcKnown.anyextOrTrunc(BitWidth); 1130 break; 1131 } 1132 case ISD::BUILD_VECTOR: 1133 // Collect the known bits that are shared by every demanded element. 1134 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1135 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1136 return false; // Don't fall through, will infinitely loop. 1137 case ISD::LOAD: { 1138 auto *LD = cast<LoadSDNode>(Op); 1139 if (getTargetConstantFromLoad(LD)) { 1140 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1141 return false; // Don't fall through, will infinitely loop. 1142 } 1143 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1144 // If this is a ZEXTLoad and we are looking at the loaded value. 1145 EVT MemVT = LD->getMemoryVT(); 1146 unsigned MemBits = MemVT.getScalarSizeInBits(); 1147 Known.Zero.setBitsFrom(MemBits); 1148 return false; // Don't fall through, will infinitely loop. 1149 } 1150 break; 1151 } 1152 case ISD::INSERT_VECTOR_ELT: { 1153 SDValue Vec = Op.getOperand(0); 1154 SDValue Scl = Op.getOperand(1); 1155 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1156 EVT VecVT = Vec.getValueType(); 1157 1158 // If index isn't constant, assume we need all vector elements AND the 1159 // inserted element. 1160 APInt DemandedVecElts(DemandedElts); 1161 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1162 unsigned Idx = CIdx->getZExtValue(); 1163 DemandedVecElts.clearBit(Idx); 1164 1165 // Inserted element is not required. 1166 if (!DemandedElts[Idx]) 1167 return TLO.CombineTo(Op, Vec); 1168 } 1169 1170 KnownBits KnownScl; 1171 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1172 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1173 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1174 return true; 1175 1176 Known = KnownScl.anyextOrTrunc(BitWidth); 1177 1178 KnownBits KnownVec; 1179 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1180 Depth + 1)) 1181 return true; 1182 1183 if (!!DemandedVecElts) 1184 Known = KnownBits::commonBits(Known, KnownVec); 1185 1186 return false; 1187 } 1188 case ISD::INSERT_SUBVECTOR: { 1189 // Demand any elements from the subvector and the remainder from the src its 1190 // inserted into. 1191 SDValue Src = Op.getOperand(0); 1192 SDValue Sub = Op.getOperand(1); 1193 uint64_t Idx = Op.getConstantOperandVal(2); 1194 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1195 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1196 APInt DemandedSrcElts = DemandedElts; 1197 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1198 1199 KnownBits KnownSub, KnownSrc; 1200 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1201 Depth + 1)) 1202 return true; 1203 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1204 Depth + 1)) 1205 return true; 1206 1207 Known.Zero.setAllBits(); 1208 Known.One.setAllBits(); 1209 if (!!DemandedSubElts) 1210 Known = KnownBits::commonBits(Known, KnownSub); 1211 if (!!DemandedSrcElts) 1212 Known = KnownBits::commonBits(Known, KnownSrc); 1213 1214 // Attempt to avoid multi-use src if we don't need anything from it. 1215 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1216 !DemandedSrcElts.isAllOnes()) { 1217 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1218 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1219 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1220 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1221 if (NewSub || NewSrc) { 1222 NewSub = NewSub ? NewSub : Sub; 1223 NewSrc = NewSrc ? NewSrc : Src; 1224 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1225 Op.getOperand(2)); 1226 return TLO.CombineTo(Op, NewOp); 1227 } 1228 } 1229 break; 1230 } 1231 case ISD::EXTRACT_SUBVECTOR: { 1232 // Offset the demanded elts by the subvector index. 1233 SDValue Src = Op.getOperand(0); 1234 if (Src.getValueType().isScalableVector()) 1235 break; 1236 uint64_t Idx = Op.getConstantOperandVal(1); 1237 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1238 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 1239 1240 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1241 Depth + 1)) 1242 return true; 1243 1244 // Attempt to avoid multi-use src if we don't need anything from it. 1245 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1246 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1247 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1248 if (DemandedSrc) { 1249 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1250 Op.getOperand(1)); 1251 return TLO.CombineTo(Op, NewOp); 1252 } 1253 } 1254 break; 1255 } 1256 case ISD::CONCAT_VECTORS: { 1257 Known.Zero.setAllBits(); 1258 Known.One.setAllBits(); 1259 EVT SubVT = Op.getOperand(0).getValueType(); 1260 unsigned NumSubVecs = Op.getNumOperands(); 1261 unsigned NumSubElts = SubVT.getVectorNumElements(); 1262 for (unsigned i = 0; i != NumSubVecs; ++i) { 1263 APInt DemandedSubElts = 1264 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1265 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1266 Known2, TLO, Depth + 1)) 1267 return true; 1268 // Known bits are shared by every demanded subvector element. 1269 if (!!DemandedSubElts) 1270 Known = KnownBits::commonBits(Known, Known2); 1271 } 1272 break; 1273 } 1274 case ISD::VECTOR_SHUFFLE: { 1275 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1276 1277 // Collect demanded elements from shuffle operands.. 1278 APInt DemandedLHS(NumElts, 0); 1279 APInt DemandedRHS(NumElts, 0); 1280 for (unsigned i = 0; i != NumElts; ++i) { 1281 if (!DemandedElts[i]) 1282 continue; 1283 int M = ShuffleMask[i]; 1284 if (M < 0) { 1285 // For UNDEF elements, we don't know anything about the common state of 1286 // the shuffle result. 1287 DemandedLHS.clearAllBits(); 1288 DemandedRHS.clearAllBits(); 1289 break; 1290 } 1291 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1292 if (M < (int)NumElts) 1293 DemandedLHS.setBit(M); 1294 else 1295 DemandedRHS.setBit(M - NumElts); 1296 } 1297 1298 if (!!DemandedLHS || !!DemandedRHS) { 1299 SDValue Op0 = Op.getOperand(0); 1300 SDValue Op1 = Op.getOperand(1); 1301 1302 Known.Zero.setAllBits(); 1303 Known.One.setAllBits(); 1304 if (!!DemandedLHS) { 1305 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1306 Depth + 1)) 1307 return true; 1308 Known = KnownBits::commonBits(Known, Known2); 1309 } 1310 if (!!DemandedRHS) { 1311 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1312 Depth + 1)) 1313 return true; 1314 Known = KnownBits::commonBits(Known, Known2); 1315 } 1316 1317 // Attempt to avoid multi-use ops if we don't need anything from them. 1318 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1319 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1320 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1321 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1322 if (DemandedOp0 || DemandedOp1) { 1323 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1324 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1325 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1326 return TLO.CombineTo(Op, NewOp); 1327 } 1328 } 1329 break; 1330 } 1331 case ISD::AND: { 1332 SDValue Op0 = Op.getOperand(0); 1333 SDValue Op1 = Op.getOperand(1); 1334 1335 // If the RHS is a constant, check to see if the LHS would be zero without 1336 // using the bits from the RHS. Below, we use knowledge about the RHS to 1337 // simplify the LHS, here we're using information from the LHS to simplify 1338 // the RHS. 1339 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1340 // Do not increment Depth here; that can cause an infinite loop. 1341 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1342 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1343 if ((LHSKnown.Zero & DemandedBits) == 1344 (~RHSC->getAPIntValue() & DemandedBits)) 1345 return TLO.CombineTo(Op, Op0); 1346 1347 // If any of the set bits in the RHS are known zero on the LHS, shrink 1348 // the constant. 1349 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1350 DemandedElts, TLO)) 1351 return true; 1352 1353 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1354 // constant, but if this 'and' is only clearing bits that were just set by 1355 // the xor, then this 'and' can be eliminated by shrinking the mask of 1356 // the xor. For example, for a 32-bit X: 1357 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1358 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1359 LHSKnown.One == ~RHSC->getAPIntValue()) { 1360 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1361 return TLO.CombineTo(Op, Xor); 1362 } 1363 } 1364 1365 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1366 Depth + 1)) 1367 return true; 1368 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1369 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1370 Known2, TLO, Depth + 1)) 1371 return true; 1372 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1373 1374 // Attempt to avoid multi-use ops if we don't need anything from them. 1375 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1376 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1377 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1379 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1380 if (DemandedOp0 || DemandedOp1) { 1381 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1382 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1383 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1384 return TLO.CombineTo(Op, NewOp); 1385 } 1386 } 1387 1388 // If all of the demanded bits are known one on one side, return the other. 1389 // These bits cannot contribute to the result of the 'and'. 1390 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1391 return TLO.CombineTo(Op, Op0); 1392 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1393 return TLO.CombineTo(Op, Op1); 1394 // If all of the demanded bits in the inputs are known zeros, return zero. 1395 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1396 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1397 // If the RHS is a constant, see if we can simplify it. 1398 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1399 TLO)) 1400 return true; 1401 // If the operation can be done in a smaller type, do so. 1402 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1403 return true; 1404 1405 Known &= Known2; 1406 break; 1407 } 1408 case ISD::OR: { 1409 SDValue Op0 = Op.getOperand(0); 1410 SDValue Op1 = Op.getOperand(1); 1411 1412 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1413 Depth + 1)) 1414 return true; 1415 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1416 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1417 Known2, TLO, Depth + 1)) 1418 return true; 1419 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1420 1421 // Attempt to avoid multi-use ops if we don't need anything from them. 1422 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1423 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1424 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1426 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1427 if (DemandedOp0 || DemandedOp1) { 1428 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1429 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1430 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1431 return TLO.CombineTo(Op, NewOp); 1432 } 1433 } 1434 1435 // If all of the demanded bits are known zero on one side, return the other. 1436 // These bits cannot contribute to the result of the 'or'. 1437 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1438 return TLO.CombineTo(Op, Op0); 1439 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1440 return TLO.CombineTo(Op, Op1); 1441 // If the RHS is a constant, see if we can simplify it. 1442 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1443 return true; 1444 // If the operation can be done in a smaller type, do so. 1445 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1446 return true; 1447 1448 Known |= Known2; 1449 break; 1450 } 1451 case ISD::XOR: { 1452 SDValue Op0 = Op.getOperand(0); 1453 SDValue Op1 = Op.getOperand(1); 1454 1455 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1456 Depth + 1)) 1457 return true; 1458 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1459 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1460 Depth + 1)) 1461 return true; 1462 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1463 1464 // Attempt to avoid multi-use ops if we don't need anything from them. 1465 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1466 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1467 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1469 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1470 if (DemandedOp0 || DemandedOp1) { 1471 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1472 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1473 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1474 return TLO.CombineTo(Op, NewOp); 1475 } 1476 } 1477 1478 // If all of the demanded bits are known zero on one side, return the other. 1479 // These bits cannot contribute to the result of the 'xor'. 1480 if (DemandedBits.isSubsetOf(Known.Zero)) 1481 return TLO.CombineTo(Op, Op0); 1482 if (DemandedBits.isSubsetOf(Known2.Zero)) 1483 return TLO.CombineTo(Op, Op1); 1484 // If the operation can be done in a smaller type, do so. 1485 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1486 return true; 1487 1488 // If all of the unknown bits are known to be zero on one side or the other 1489 // turn this into an *inclusive* or. 1490 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1491 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1492 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1493 1494 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1495 if (C) { 1496 // If one side is a constant, and all of the set bits in the constant are 1497 // also known set on the other side, turn this into an AND, as we know 1498 // the bits will be cleared. 1499 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1500 // NB: it is okay if more bits are known than are requested 1501 if (C->getAPIntValue() == Known2.One) { 1502 SDValue ANDC = 1503 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1504 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1505 } 1506 1507 // If the RHS is a constant, see if we can change it. Don't alter a -1 1508 // constant because that's a 'not' op, and that is better for combining 1509 // and codegen. 1510 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1511 // We're flipping all demanded bits. Flip the undemanded bits too. 1512 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1513 return TLO.CombineTo(Op, New); 1514 } 1515 } 1516 1517 // If we can't turn this into a 'not', try to shrink the constant. 1518 if (!C || !C->isAllOnes()) 1519 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1520 return true; 1521 1522 Known ^= Known2; 1523 break; 1524 } 1525 case ISD::SELECT: 1526 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1527 Depth + 1)) 1528 return true; 1529 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1530 Depth + 1)) 1531 return true; 1532 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1533 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1534 1535 // If the operands are constants, see if we can simplify them. 1536 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1537 return true; 1538 1539 // Only known if known in both the LHS and RHS. 1540 Known = KnownBits::commonBits(Known, Known2); 1541 break; 1542 case ISD::SELECT_CC: 1543 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1544 Depth + 1)) 1545 return true; 1546 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1547 Depth + 1)) 1548 return true; 1549 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1550 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1551 1552 // If the operands are constants, see if we can simplify them. 1553 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1554 return true; 1555 1556 // Only known if known in both the LHS and RHS. 1557 Known = KnownBits::commonBits(Known, Known2); 1558 break; 1559 case ISD::SETCC: { 1560 SDValue Op0 = Op.getOperand(0); 1561 SDValue Op1 = Op.getOperand(1); 1562 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1563 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1564 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1565 // -1, we may be able to bypass the setcc. 1566 if (DemandedBits.isSignMask() && 1567 Op0.getScalarValueSizeInBits() == BitWidth && 1568 getBooleanContents(Op0.getValueType()) == 1569 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1570 // If we're testing X < 0, then this compare isn't needed - just use X! 1571 // FIXME: We're limiting to integer types here, but this should also work 1572 // if we don't care about FP signed-zero. The use of SETLT with FP means 1573 // that we don't care about NaNs. 1574 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1575 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1576 return TLO.CombineTo(Op, Op0); 1577 1578 // TODO: Should we check for other forms of sign-bit comparisons? 1579 // Examples: X <= -1, X >= 0 1580 } 1581 if (getBooleanContents(Op0.getValueType()) == 1582 TargetLowering::ZeroOrOneBooleanContent && 1583 BitWidth > 1) 1584 Known.Zero.setBitsFrom(1); 1585 break; 1586 } 1587 case ISD::SHL: { 1588 SDValue Op0 = Op.getOperand(0); 1589 SDValue Op1 = Op.getOperand(1); 1590 EVT ShiftVT = Op1.getValueType(); 1591 1592 if (const APInt *SA = 1593 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1594 unsigned ShAmt = SA->getZExtValue(); 1595 if (ShAmt == 0) 1596 return TLO.CombineTo(Op, Op0); 1597 1598 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1599 // single shift. We can do this if the bottom bits (which are shifted 1600 // out) are never demanded. 1601 // TODO - support non-uniform vector amounts. 1602 if (Op0.getOpcode() == ISD::SRL) { 1603 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1604 if (const APInt *SA2 = 1605 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1606 unsigned C1 = SA2->getZExtValue(); 1607 unsigned Opc = ISD::SHL; 1608 int Diff = ShAmt - C1; 1609 if (Diff < 0) { 1610 Diff = -Diff; 1611 Opc = ISD::SRL; 1612 } 1613 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1614 return TLO.CombineTo( 1615 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1616 } 1617 } 1618 } 1619 1620 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1621 // are not demanded. This will likely allow the anyext to be folded away. 1622 // TODO - support non-uniform vector amounts. 1623 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1624 SDValue InnerOp = Op0.getOperand(0); 1625 EVT InnerVT = InnerOp.getValueType(); 1626 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1627 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1628 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1629 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1630 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1631 ShTy = InnerVT; 1632 SDValue NarrowShl = 1633 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1634 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1635 return TLO.CombineTo( 1636 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1637 } 1638 1639 // Repeat the SHL optimization above in cases where an extension 1640 // intervenes: (shl (anyext (shr x, c1)), c2) to 1641 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1642 // aren't demanded (as above) and that the shifted upper c1 bits of 1643 // x aren't demanded. 1644 // TODO - support non-uniform vector amounts. 1645 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1646 InnerOp.hasOneUse()) { 1647 if (const APInt *SA2 = 1648 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1649 unsigned InnerShAmt = SA2->getZExtValue(); 1650 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1651 DemandedBits.getActiveBits() <= 1652 (InnerBits - InnerShAmt + ShAmt) && 1653 DemandedBits.countTrailingZeros() >= ShAmt) { 1654 SDValue NewSA = 1655 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1656 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1657 InnerOp.getOperand(0)); 1658 return TLO.CombineTo( 1659 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1660 } 1661 } 1662 } 1663 } 1664 1665 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1666 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1667 Depth + 1)) 1668 return true; 1669 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1670 Known.Zero <<= ShAmt; 1671 Known.One <<= ShAmt; 1672 // low bits known zero. 1673 Known.Zero.setLowBits(ShAmt); 1674 1675 // Attempt to avoid multi-use ops if we don't need anything from them. 1676 if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) { 1677 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1678 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1679 if (DemandedOp0) { 1680 SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1); 1681 return TLO.CombineTo(Op, NewOp); 1682 } 1683 } 1684 1685 // Try shrinking the operation as long as the shift amount will still be 1686 // in range. 1687 if ((ShAmt < DemandedBits.getActiveBits()) && 1688 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1689 return true; 1690 } 1691 1692 // If we are only demanding sign bits then we can use the shift source 1693 // directly. 1694 if (const APInt *MaxSA = 1695 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1696 unsigned ShAmt = MaxSA->getZExtValue(); 1697 unsigned NumSignBits = 1698 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1699 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1700 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1701 return TLO.CombineTo(Op, Op0); 1702 } 1703 break; 1704 } 1705 case ISD::SRL: { 1706 SDValue Op0 = Op.getOperand(0); 1707 SDValue Op1 = Op.getOperand(1); 1708 EVT ShiftVT = Op1.getValueType(); 1709 1710 // Try to match AVG patterns. 1711 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1712 DemandedElts, Depth + 1)) 1713 return TLO.CombineTo(Op, AVG); 1714 1715 if (const APInt *SA = 1716 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1717 unsigned ShAmt = SA->getZExtValue(); 1718 if (ShAmt == 0) 1719 return TLO.CombineTo(Op, Op0); 1720 1721 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1722 // single shift. We can do this if the top bits (which are shifted out) 1723 // are never demanded. 1724 // TODO - support non-uniform vector amounts. 1725 if (Op0.getOpcode() == ISD::SHL) { 1726 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1727 if (const APInt *SA2 = 1728 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1729 unsigned C1 = SA2->getZExtValue(); 1730 unsigned Opc = ISD::SRL; 1731 int Diff = ShAmt - C1; 1732 if (Diff < 0) { 1733 Diff = -Diff; 1734 Opc = ISD::SHL; 1735 } 1736 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1737 return TLO.CombineTo( 1738 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1739 } 1740 } 1741 } 1742 1743 APInt InDemandedMask = (DemandedBits << ShAmt); 1744 1745 // If the shift is exact, then it does demand the low bits (and knows that 1746 // they are zero). 1747 if (Op->getFlags().hasExact()) 1748 InDemandedMask.setLowBits(ShAmt); 1749 1750 // Compute the new bits that are at the top now. 1751 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1752 Depth + 1)) 1753 return true; 1754 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1755 Known.Zero.lshrInPlace(ShAmt); 1756 Known.One.lshrInPlace(ShAmt); 1757 // High bits known zero. 1758 Known.Zero.setHighBits(ShAmt); 1759 } 1760 break; 1761 } 1762 case ISD::SRA: { 1763 SDValue Op0 = Op.getOperand(0); 1764 SDValue Op1 = Op.getOperand(1); 1765 EVT ShiftVT = Op1.getValueType(); 1766 1767 // If we only want bits that already match the signbit then we don't need 1768 // to shift. 1769 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1770 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1771 NumHiDemandedBits) 1772 return TLO.CombineTo(Op, Op0); 1773 1774 // If this is an arithmetic shift right and only the low-bit is set, we can 1775 // always convert this into a logical shr, even if the shift amount is 1776 // variable. The low bit of the shift cannot be an input sign bit unless 1777 // the shift amount is >= the size of the datatype, which is undefined. 1778 if (DemandedBits.isOne()) 1779 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1780 1781 // Try to match AVG patterns. 1782 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1783 DemandedElts, Depth + 1)) 1784 return TLO.CombineTo(Op, AVG); 1785 1786 if (const APInt *SA = 1787 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1788 unsigned ShAmt = SA->getZExtValue(); 1789 if (ShAmt == 0) 1790 return TLO.CombineTo(Op, Op0); 1791 1792 APInt InDemandedMask = (DemandedBits << ShAmt); 1793 1794 // If the shift is exact, then it does demand the low bits (and knows that 1795 // they are zero). 1796 if (Op->getFlags().hasExact()) 1797 InDemandedMask.setLowBits(ShAmt); 1798 1799 // If any of the demanded bits are produced by the sign extension, we also 1800 // demand the input sign bit. 1801 if (DemandedBits.countLeadingZeros() < ShAmt) 1802 InDemandedMask.setSignBit(); 1803 1804 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1805 Depth + 1)) 1806 return true; 1807 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1808 Known.Zero.lshrInPlace(ShAmt); 1809 Known.One.lshrInPlace(ShAmt); 1810 1811 // If the input sign bit is known to be zero, or if none of the top bits 1812 // are demanded, turn this into an unsigned shift right. 1813 if (Known.Zero[BitWidth - ShAmt - 1] || 1814 DemandedBits.countLeadingZeros() >= ShAmt) { 1815 SDNodeFlags Flags; 1816 Flags.setExact(Op->getFlags().hasExact()); 1817 return TLO.CombineTo( 1818 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1819 } 1820 1821 int Log2 = DemandedBits.exactLogBase2(); 1822 if (Log2 >= 0) { 1823 // The bit must come from the sign. 1824 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1825 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1826 } 1827 1828 if (Known.One[BitWidth - ShAmt - 1]) 1829 // New bits are known one. 1830 Known.One.setHighBits(ShAmt); 1831 1832 // Attempt to avoid multi-use ops if we don't need anything from them. 1833 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1834 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1835 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1836 if (DemandedOp0) { 1837 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1838 return TLO.CombineTo(Op, NewOp); 1839 } 1840 } 1841 } 1842 break; 1843 } 1844 case ISD::FSHL: 1845 case ISD::FSHR: { 1846 SDValue Op0 = Op.getOperand(0); 1847 SDValue Op1 = Op.getOperand(1); 1848 SDValue Op2 = Op.getOperand(2); 1849 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1850 1851 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1852 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1853 1854 // For fshl, 0-shift returns the 1st arg. 1855 // For fshr, 0-shift returns the 2nd arg. 1856 if (Amt == 0) { 1857 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1858 Known, TLO, Depth + 1)) 1859 return true; 1860 break; 1861 } 1862 1863 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1864 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1865 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1866 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1867 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1868 Depth + 1)) 1869 return true; 1870 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1871 Depth + 1)) 1872 return true; 1873 1874 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1875 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1876 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1877 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1878 Known.One |= Known2.One; 1879 Known.Zero |= Known2.Zero; 1880 1881 // Attempt to avoid multi-use ops if we don't need anything from them. 1882 if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() || 1883 !DemandedElts.isAllOnes()) { 1884 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1885 Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1); 1886 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1887 Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1); 1888 if (DemandedOp0 || DemandedOp1) { 1889 DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0; 1890 DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1; 1891 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0, 1892 DemandedOp1, Op2); 1893 return TLO.CombineTo(Op, NewOp); 1894 } 1895 } 1896 } 1897 1898 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1899 if (isPowerOf2_32(BitWidth)) { 1900 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1901 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1902 Known2, TLO, Depth + 1)) 1903 return true; 1904 } 1905 break; 1906 } 1907 case ISD::ROTL: 1908 case ISD::ROTR: { 1909 SDValue Op0 = Op.getOperand(0); 1910 SDValue Op1 = Op.getOperand(1); 1911 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1912 1913 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1914 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1915 return TLO.CombineTo(Op, Op0); 1916 1917 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1918 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1919 unsigned RevAmt = BitWidth - Amt; 1920 1921 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1922 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1923 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1924 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1925 Depth + 1)) 1926 return true; 1927 1928 // rot*(x, 0) --> x 1929 if (Amt == 0) 1930 return TLO.CombineTo(Op, Op0); 1931 1932 // See if we don't demand either half of the rotated bits. 1933 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1934 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1935 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1936 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1937 } 1938 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1939 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1940 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1941 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1942 } 1943 } 1944 1945 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1946 if (isPowerOf2_32(BitWidth)) { 1947 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1948 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1949 Depth + 1)) 1950 return true; 1951 } 1952 break; 1953 } 1954 case ISD::UMIN: { 1955 // Check if one arg is always less than (or equal) to the other arg. 1956 SDValue Op0 = Op.getOperand(0); 1957 SDValue Op1 = Op.getOperand(1); 1958 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1959 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1960 Known = KnownBits::umin(Known0, Known1); 1961 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1962 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1963 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1964 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1965 break; 1966 } 1967 case ISD::UMAX: { 1968 // Check if one arg is always greater than (or equal) to the other arg. 1969 SDValue Op0 = Op.getOperand(0); 1970 SDValue Op1 = Op.getOperand(1); 1971 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1972 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1973 Known = KnownBits::umax(Known0, Known1); 1974 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1975 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1976 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1977 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1978 break; 1979 } 1980 case ISD::BITREVERSE: { 1981 SDValue Src = Op.getOperand(0); 1982 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1983 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1984 Depth + 1)) 1985 return true; 1986 Known.One = Known2.One.reverseBits(); 1987 Known.Zero = Known2.Zero.reverseBits(); 1988 break; 1989 } 1990 case ISD::BSWAP: { 1991 SDValue Src = Op.getOperand(0); 1992 1993 // If the only bits demanded come from one byte of the bswap result, 1994 // just shift the input byte into position to eliminate the bswap. 1995 unsigned NLZ = DemandedBits.countLeadingZeros(); 1996 unsigned NTZ = DemandedBits.countTrailingZeros(); 1997 1998 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1999 // we need all the bits down to bit 8. Likewise, round NLZ. If we 2000 // have 14 leading zeros, round to 8. 2001 NLZ = alignDown(NLZ, 8); 2002 NTZ = alignDown(NTZ, 8); 2003 // If we need exactly one byte, we can do this transformation. 2004 if (BitWidth - NLZ - NTZ == 8) { 2005 // Replace this with either a left or right shift to get the byte into 2006 // the right place. 2007 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 2008 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 2009 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 2010 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 2011 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 2012 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 2013 return TLO.CombineTo(Op, NewOp); 2014 } 2015 } 2016 2017 APInt DemandedSrcBits = DemandedBits.byteSwap(); 2018 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 2019 Depth + 1)) 2020 return true; 2021 Known.One = Known2.One.byteSwap(); 2022 Known.Zero = Known2.Zero.byteSwap(); 2023 break; 2024 } 2025 case ISD::CTPOP: { 2026 // If only 1 bit is demanded, replace with PARITY as long as we're before 2027 // op legalization. 2028 // FIXME: Limit to scalars for now. 2029 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2030 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2031 Op.getOperand(0))); 2032 2033 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2034 break; 2035 } 2036 case ISD::SIGN_EXTEND_INREG: { 2037 SDValue Op0 = Op.getOperand(0); 2038 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2039 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2040 2041 // If we only care about the highest bit, don't bother shifting right. 2042 if (DemandedBits.isSignMask()) { 2043 unsigned MinSignedBits = 2044 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2045 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2046 // However if the input is already sign extended we expect the sign 2047 // extension to be dropped altogether later and do not simplify. 2048 if (!AlreadySignExtended) { 2049 // Compute the correct shift amount type, which must be getShiftAmountTy 2050 // for scalar types after legalization. 2051 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2052 getShiftAmountTy(VT, DL)); 2053 return TLO.CombineTo(Op, 2054 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2055 } 2056 } 2057 2058 // If none of the extended bits are demanded, eliminate the sextinreg. 2059 if (DemandedBits.getActiveBits() <= ExVTBits) 2060 return TLO.CombineTo(Op, Op0); 2061 2062 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2063 2064 // Since the sign extended bits are demanded, we know that the sign 2065 // bit is demanded. 2066 InputDemandedBits.setBit(ExVTBits - 1); 2067 2068 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2069 return true; 2070 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2071 2072 // If the sign bit of the input is known set or clear, then we know the 2073 // top bits of the result. 2074 2075 // If the input sign bit is known zero, convert this into a zero extension. 2076 if (Known.Zero[ExVTBits - 1]) 2077 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2078 2079 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2080 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2081 Known.One.setBitsFrom(ExVTBits); 2082 Known.Zero &= Mask; 2083 } else { // Input sign bit unknown 2084 Known.Zero &= Mask; 2085 Known.One &= Mask; 2086 } 2087 break; 2088 } 2089 case ISD::BUILD_PAIR: { 2090 EVT HalfVT = Op.getOperand(0).getValueType(); 2091 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2092 2093 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2094 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2095 2096 KnownBits KnownLo, KnownHi; 2097 2098 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2099 return true; 2100 2101 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2102 return true; 2103 2104 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2105 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2106 2107 Known.One = KnownLo.One.zext(BitWidth) | 2108 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2109 break; 2110 } 2111 case ISD::ZERO_EXTEND: 2112 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2113 SDValue Src = Op.getOperand(0); 2114 EVT SrcVT = Src.getValueType(); 2115 unsigned InBits = SrcVT.getScalarSizeInBits(); 2116 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2117 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2118 2119 // If none of the top bits are demanded, convert this into an any_extend. 2120 if (DemandedBits.getActiveBits() <= InBits) { 2121 // If we only need the non-extended bits of the bottom element 2122 // then we can just bitcast to the result. 2123 if (IsLE && IsVecInReg && DemandedElts == 1 && 2124 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2125 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2126 2127 unsigned Opc = 2128 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2129 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2130 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2131 } 2132 2133 APInt InDemandedBits = DemandedBits.trunc(InBits); 2134 APInt InDemandedElts = DemandedElts.zext(InElts); 2135 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2136 Depth + 1)) 2137 return true; 2138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2139 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2140 Known = Known.zext(BitWidth); 2141 2142 // Attempt to avoid multi-use ops if we don't need anything from them. 2143 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2144 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2145 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2146 break; 2147 } 2148 case ISD::SIGN_EXTEND: 2149 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2150 SDValue Src = Op.getOperand(0); 2151 EVT SrcVT = Src.getValueType(); 2152 unsigned InBits = SrcVT.getScalarSizeInBits(); 2153 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2154 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2155 2156 // If none of the top bits are demanded, convert this into an any_extend. 2157 if (DemandedBits.getActiveBits() <= InBits) { 2158 // If we only need the non-extended bits of the bottom element 2159 // then we can just bitcast to the result. 2160 if (IsLE && IsVecInReg && DemandedElts == 1 && 2161 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2162 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2163 2164 unsigned Opc = 2165 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2166 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2167 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2168 } 2169 2170 APInt InDemandedBits = DemandedBits.trunc(InBits); 2171 APInt InDemandedElts = DemandedElts.zext(InElts); 2172 2173 // Since some of the sign extended bits are demanded, we know that the sign 2174 // bit is demanded. 2175 InDemandedBits.setBit(InBits - 1); 2176 2177 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2178 Depth + 1)) 2179 return true; 2180 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2181 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2182 2183 // If the sign bit is known one, the top bits match. 2184 Known = Known.sext(BitWidth); 2185 2186 // If the sign bit is known zero, convert this to a zero extend. 2187 if (Known.isNonNegative()) { 2188 unsigned Opc = 2189 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2190 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2191 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2192 } 2193 2194 // Attempt to avoid multi-use ops if we don't need anything from them. 2195 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2196 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2197 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2198 break; 2199 } 2200 case ISD::ANY_EXTEND: 2201 case ISD::ANY_EXTEND_VECTOR_INREG: { 2202 SDValue Src = Op.getOperand(0); 2203 EVT SrcVT = Src.getValueType(); 2204 unsigned InBits = SrcVT.getScalarSizeInBits(); 2205 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2206 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2207 2208 // If we only need the bottom element then we can just bitcast. 2209 // TODO: Handle ANY_EXTEND? 2210 if (IsLE && IsVecInReg && DemandedElts == 1 && 2211 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2212 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2213 2214 APInt InDemandedBits = DemandedBits.trunc(InBits); 2215 APInt InDemandedElts = DemandedElts.zext(InElts); 2216 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2217 Depth + 1)) 2218 return true; 2219 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2220 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2221 Known = Known.anyext(BitWidth); 2222 2223 // Attempt to avoid multi-use ops if we don't need anything from them. 2224 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2225 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2226 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2227 break; 2228 } 2229 case ISD::TRUNCATE: { 2230 SDValue Src = Op.getOperand(0); 2231 2232 // Simplify the input, using demanded bit information, and compute the known 2233 // zero/one bits live out. 2234 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2235 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2236 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2237 Depth + 1)) 2238 return true; 2239 Known = Known.trunc(BitWidth); 2240 2241 // Attempt to avoid multi-use ops if we don't need anything from them. 2242 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2243 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2244 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2245 2246 // If the input is only used by this truncate, see if we can shrink it based 2247 // on the known demanded bits. 2248 if (Src.getNode()->hasOneUse()) { 2249 switch (Src.getOpcode()) { 2250 default: 2251 break; 2252 case ISD::SRL: 2253 // Shrink SRL by a constant if none of the high bits shifted in are 2254 // demanded. 2255 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2256 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2257 // undesirable. 2258 break; 2259 2260 const APInt *ShAmtC = 2261 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2262 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2263 break; 2264 uint64_t ShVal = ShAmtC->getZExtValue(); 2265 2266 APInt HighBits = 2267 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2268 HighBits.lshrInPlace(ShVal); 2269 HighBits = HighBits.trunc(BitWidth); 2270 2271 if (!(HighBits & DemandedBits)) { 2272 // None of the shifted in bits are needed. Add a truncate of the 2273 // shift input, then shift it. 2274 SDValue NewShAmt = TLO.DAG.getConstant( 2275 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2276 SDValue NewTrunc = 2277 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2278 return TLO.CombineTo( 2279 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2280 } 2281 break; 2282 } 2283 } 2284 2285 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2286 break; 2287 } 2288 case ISD::AssertZext: { 2289 // AssertZext demands all of the high bits, plus any of the low bits 2290 // demanded by its users. 2291 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2292 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2293 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2294 TLO, Depth + 1)) 2295 return true; 2296 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2297 2298 Known.Zero |= ~InMask; 2299 break; 2300 } 2301 case ISD::EXTRACT_VECTOR_ELT: { 2302 SDValue Src = Op.getOperand(0); 2303 SDValue Idx = Op.getOperand(1); 2304 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2305 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2306 2307 if (SrcEltCnt.isScalable()) 2308 return false; 2309 2310 // Demand the bits from every vector element without a constant index. 2311 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2312 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2313 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2314 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2315 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2316 2317 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2318 // anything about the extended bits. 2319 APInt DemandedSrcBits = DemandedBits; 2320 if (BitWidth > EltBitWidth) 2321 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2322 2323 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2324 Depth + 1)) 2325 return true; 2326 2327 // Attempt to avoid multi-use ops if we don't need anything from them. 2328 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2329 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2330 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2331 SDValue NewOp = 2332 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2333 return TLO.CombineTo(Op, NewOp); 2334 } 2335 } 2336 2337 Known = Known2; 2338 if (BitWidth > EltBitWidth) 2339 Known = Known.anyext(BitWidth); 2340 break; 2341 } 2342 case ISD::BITCAST: { 2343 SDValue Src = Op.getOperand(0); 2344 EVT SrcVT = Src.getValueType(); 2345 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2346 2347 // If this is an FP->Int bitcast and if the sign bit is the only 2348 // thing demanded, turn this into a FGETSIGN. 2349 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2350 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2351 SrcVT.isFloatingPoint()) { 2352 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2353 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2354 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2355 SrcVT != MVT::f128) { 2356 // Cannot eliminate/lower SHL for f128 yet. 2357 EVT Ty = OpVTLegal ? VT : MVT::i32; 2358 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2359 // place. We expect the SHL to be eliminated by other optimizations. 2360 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2361 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2362 if (!OpVTLegal && OpVTSizeInBits > 32) 2363 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2364 unsigned ShVal = Op.getValueSizeInBits() - 1; 2365 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2366 return TLO.CombineTo(Op, 2367 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2368 } 2369 } 2370 2371 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2372 // Demand the elt/bit if any of the original elts/bits are demanded. 2373 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2374 unsigned Scale = BitWidth / NumSrcEltBits; 2375 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2376 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2377 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2378 for (unsigned i = 0; i != Scale; ++i) { 2379 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2380 unsigned BitOffset = EltOffset * NumSrcEltBits; 2381 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2382 if (!Sub.isZero()) { 2383 DemandedSrcBits |= Sub; 2384 for (unsigned j = 0; j != NumElts; ++j) 2385 if (DemandedElts[j]) 2386 DemandedSrcElts.setBit((j * Scale) + i); 2387 } 2388 } 2389 2390 APInt KnownSrcUndef, KnownSrcZero; 2391 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2392 KnownSrcZero, TLO, Depth + 1)) 2393 return true; 2394 2395 KnownBits KnownSrcBits; 2396 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2397 KnownSrcBits, TLO, Depth + 1)) 2398 return true; 2399 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2400 // TODO - bigendian once we have test coverage. 2401 unsigned Scale = NumSrcEltBits / BitWidth; 2402 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2403 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2404 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2405 for (unsigned i = 0; i != NumElts; ++i) 2406 if (DemandedElts[i]) { 2407 unsigned Offset = (i % Scale) * BitWidth; 2408 DemandedSrcBits.insertBits(DemandedBits, Offset); 2409 DemandedSrcElts.setBit(i / Scale); 2410 } 2411 2412 if (SrcVT.isVector()) { 2413 APInt KnownSrcUndef, KnownSrcZero; 2414 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2415 KnownSrcZero, TLO, Depth + 1)) 2416 return true; 2417 } 2418 2419 KnownBits KnownSrcBits; 2420 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2421 KnownSrcBits, TLO, Depth + 1)) 2422 return true; 2423 } 2424 2425 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2426 // recursive call where Known may be useful to the caller. 2427 if (Depth > 0) { 2428 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2429 return false; 2430 } 2431 break; 2432 } 2433 case ISD::MUL: 2434 if (DemandedBits.isPowerOf2()) { 2435 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2436 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2437 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2438 unsigned CTZ = DemandedBits.countTrailingZeros(); 2439 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2440 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2441 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2442 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2443 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2444 return TLO.CombineTo(Op, Shl); 2445 } 2446 } 2447 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2448 // X * X is odd iff X is odd. 2449 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2450 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2451 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2452 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2453 return TLO.CombineTo(Op, And1); 2454 } 2455 LLVM_FALLTHROUGH; 2456 case ISD::ADD: 2457 case ISD::SUB: { 2458 // Add, Sub, and Mul don't demand any bits in positions beyond that 2459 // of the highest bit demanded of them. 2460 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2461 SDNodeFlags Flags = Op.getNode()->getFlags(); 2462 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2463 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2464 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2465 Depth + 1) || 2466 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2467 Depth + 1) || 2468 // See if the operation should be performed at a smaller bit width. 2469 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2470 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2471 // Disable the nsw and nuw flags. We can no longer guarantee that we 2472 // won't wrap after simplification. 2473 Flags.setNoSignedWrap(false); 2474 Flags.setNoUnsignedWrap(false); 2475 SDValue NewOp = 2476 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2477 return TLO.CombineTo(Op, NewOp); 2478 } 2479 return true; 2480 } 2481 2482 // Attempt to avoid multi-use ops if we don't need anything from them. 2483 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2484 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2485 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2486 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2487 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2488 if (DemandedOp0 || DemandedOp1) { 2489 Flags.setNoSignedWrap(false); 2490 Flags.setNoUnsignedWrap(false); 2491 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2492 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2493 SDValue NewOp = 2494 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2495 return TLO.CombineTo(Op, NewOp); 2496 } 2497 } 2498 2499 // If we have a constant operand, we may be able to turn it into -1 if we 2500 // do not demand the high bits. This can make the constant smaller to 2501 // encode, allow more general folding, or match specialized instruction 2502 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2503 // is probably not useful (and could be detrimental). 2504 ConstantSDNode *C = isConstOrConstSplat(Op1); 2505 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2506 if (C && !C->isAllOnes() && !C->isOne() && 2507 (C->getAPIntValue() | HighMask).isAllOnes()) { 2508 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2509 // Disable the nsw and nuw flags. We can no longer guarantee that we 2510 // won't wrap after simplification. 2511 Flags.setNoSignedWrap(false); 2512 Flags.setNoUnsignedWrap(false); 2513 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2514 return TLO.CombineTo(Op, NewOp); 2515 } 2516 2517 // Match a multiply with a disguised negated-power-of-2 and convert to a 2518 // an equivalent shift-left amount. 2519 // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2520 auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned { 2521 if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse()) 2522 return 0; 2523 2524 // Don't touch opaque constants. Also, ignore zero and power-of-2 2525 // multiplies. Those will get folded later. 2526 ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1)); 2527 if (MulC && !MulC->isOpaque() && !MulC->isZero() && 2528 !MulC->getAPIntValue().isPowerOf2()) { 2529 APInt UnmaskedC = MulC->getAPIntValue() | HighMask; 2530 if (UnmaskedC.isNegatedPowerOf2()) 2531 return (-UnmaskedC).logBase2(); 2532 } 2533 return 0; 2534 }; 2535 2536 auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) { 2537 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2538 SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy); 2539 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC); 2540 SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl); 2541 return TLO.CombineTo(Op, Res); 2542 }; 2543 2544 if (isOperationLegalOrCustom(ISD::SHL, VT)) { 2545 if (Op.getOpcode() == ISD::ADD) { 2546 // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC)) 2547 if (unsigned ShAmt = getShiftLeftAmt(Op0)) 2548 return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt); 2549 // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC)) 2550 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2551 return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt); 2552 } 2553 if (Op.getOpcode() == ISD::SUB) { 2554 // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC)) 2555 if (unsigned ShAmt = getShiftLeftAmt(Op1)) 2556 return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt); 2557 } 2558 } 2559 2560 LLVM_FALLTHROUGH; 2561 } 2562 default: 2563 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2564 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2565 Known, TLO, Depth)) 2566 return true; 2567 break; 2568 } 2569 2570 // Just use computeKnownBits to compute output bits. 2571 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2572 break; 2573 } 2574 2575 // If we know the value of all of the demanded bits, return this as a 2576 // constant. 2577 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2578 // Avoid folding to a constant if any OpaqueConstant is involved. 2579 const SDNode *N = Op.getNode(); 2580 for (SDNode *Op : 2581 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2582 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2583 if (C->isOpaque()) 2584 return false; 2585 } 2586 if (VT.isInteger()) 2587 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2588 if (VT.isFloatingPoint()) 2589 return TLO.CombineTo( 2590 Op, 2591 TLO.DAG.getConstantFP( 2592 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2593 } 2594 2595 return false; 2596 } 2597 2598 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2599 const APInt &DemandedElts, 2600 DAGCombinerInfo &DCI) const { 2601 SelectionDAG &DAG = DCI.DAG; 2602 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2603 !DCI.isBeforeLegalizeOps()); 2604 2605 APInt KnownUndef, KnownZero; 2606 bool Simplified = 2607 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2608 if (Simplified) { 2609 DCI.AddToWorklist(Op.getNode()); 2610 DCI.CommitTargetLoweringOpt(TLO); 2611 } 2612 2613 return Simplified; 2614 } 2615 2616 /// Given a vector binary operation and known undefined elements for each input 2617 /// operand, compute whether each element of the output is undefined. 2618 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2619 const APInt &UndefOp0, 2620 const APInt &UndefOp1) { 2621 EVT VT = BO.getValueType(); 2622 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2623 "Vector binop only"); 2624 2625 EVT EltVT = VT.getVectorElementType(); 2626 unsigned NumElts = VT.getVectorNumElements(); 2627 assert(UndefOp0.getBitWidth() == NumElts && 2628 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2629 2630 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2631 const APInt &UndefVals) { 2632 if (UndefVals[Index]) 2633 return DAG.getUNDEF(EltVT); 2634 2635 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2636 // Try hard to make sure that the getNode() call is not creating temporary 2637 // nodes. Ignore opaque integers because they do not constant fold. 2638 SDValue Elt = BV->getOperand(Index); 2639 auto *C = dyn_cast<ConstantSDNode>(Elt); 2640 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2641 return Elt; 2642 } 2643 2644 return SDValue(); 2645 }; 2646 2647 APInt KnownUndef = APInt::getZero(NumElts); 2648 for (unsigned i = 0; i != NumElts; ++i) { 2649 // If both inputs for this element are either constant or undef and match 2650 // the element type, compute the constant/undef result for this element of 2651 // the vector. 2652 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2653 // not handle FP constants. The code within getNode() should be refactored 2654 // to avoid the danger of creating a bogus temporary node here. 2655 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2656 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2657 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2658 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2659 KnownUndef.setBit(i); 2660 } 2661 return KnownUndef; 2662 } 2663 2664 bool TargetLowering::SimplifyDemandedVectorElts( 2665 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2666 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2667 bool AssumeSingleUse) const { 2668 EVT VT = Op.getValueType(); 2669 unsigned Opcode = Op.getOpcode(); 2670 APInt DemandedElts = OriginalDemandedElts; 2671 unsigned NumElts = DemandedElts.getBitWidth(); 2672 assert(VT.isVector() && "Expected vector op"); 2673 2674 KnownUndef = KnownZero = APInt::getZero(NumElts); 2675 2676 const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo(); 2677 if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO)) 2678 return false; 2679 2680 // TODO: For now we assume we know nothing about scalable vectors. 2681 if (VT.isScalableVector()) 2682 return false; 2683 2684 assert(VT.getVectorNumElements() == NumElts && 2685 "Mask size mismatches value type element count!"); 2686 2687 // Undef operand. 2688 if (Op.isUndef()) { 2689 KnownUndef.setAllBits(); 2690 return false; 2691 } 2692 2693 // If Op has other users, assume that all elements are needed. 2694 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2695 DemandedElts.setAllBits(); 2696 2697 // Not demanding any elements from Op. 2698 if (DemandedElts == 0) { 2699 KnownUndef.setAllBits(); 2700 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2701 } 2702 2703 // Limit search depth. 2704 if (Depth >= SelectionDAG::MaxRecursionDepth) 2705 return false; 2706 2707 SDLoc DL(Op); 2708 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2709 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2710 2711 // Helper for demanding the specified elements and all the bits of both binary 2712 // operands. 2713 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2714 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2715 TLO.DAG, Depth + 1); 2716 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2717 TLO.DAG, Depth + 1); 2718 if (NewOp0 || NewOp1) { 2719 SDValue NewOp = TLO.DAG.getNode( 2720 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2721 return TLO.CombineTo(Op, NewOp); 2722 } 2723 return false; 2724 }; 2725 2726 switch (Opcode) { 2727 case ISD::SCALAR_TO_VECTOR: { 2728 if (!DemandedElts[0]) { 2729 KnownUndef.setAllBits(); 2730 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2731 } 2732 SDValue ScalarSrc = Op.getOperand(0); 2733 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2734 SDValue Src = ScalarSrc.getOperand(0); 2735 SDValue Idx = ScalarSrc.getOperand(1); 2736 EVT SrcVT = Src.getValueType(); 2737 2738 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2739 2740 if (SrcEltCnt.isScalable()) 2741 return false; 2742 2743 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2744 if (isNullConstant(Idx)) { 2745 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2746 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2747 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2748 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2749 TLO, Depth + 1)) 2750 return true; 2751 } 2752 } 2753 KnownUndef.setHighBits(NumElts - 1); 2754 break; 2755 } 2756 case ISD::BITCAST: { 2757 SDValue Src = Op.getOperand(0); 2758 EVT SrcVT = Src.getValueType(); 2759 2760 // We only handle vectors here. 2761 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2762 if (!SrcVT.isVector()) 2763 break; 2764 2765 // Fast handling of 'identity' bitcasts. 2766 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2767 if (NumSrcElts == NumElts) 2768 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2769 KnownZero, TLO, Depth + 1); 2770 2771 APInt SrcDemandedElts, SrcZero, SrcUndef; 2772 2773 // Bitcast from 'large element' src vector to 'small element' vector, we 2774 // must demand a source element if any DemandedElt maps to it. 2775 if ((NumElts % NumSrcElts) == 0) { 2776 unsigned Scale = NumElts / NumSrcElts; 2777 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2778 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2779 TLO, Depth + 1)) 2780 return true; 2781 2782 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2783 // of the large element. 2784 // TODO - bigendian once we have test coverage. 2785 if (IsLE) { 2786 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2787 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2788 for (unsigned i = 0; i != NumElts; ++i) 2789 if (DemandedElts[i]) { 2790 unsigned Ofs = (i % Scale) * EltSizeInBits; 2791 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2792 } 2793 2794 KnownBits Known; 2795 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2796 TLO, Depth + 1)) 2797 return true; 2798 2799 // The bitcast has split each wide element into a number of 2800 // narrow subelements. We have just computed the Known bits 2801 // for wide elements. See if element splitting results in 2802 // some subelements being zero. Only for demanded elements! 2803 for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) { 2804 if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits) 2805 .isAllOnes()) 2806 continue; 2807 for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) { 2808 unsigned Elt = Scale * SrcElt + SubElt; 2809 if (DemandedElts[Elt]) 2810 KnownZero.setBit(Elt); 2811 } 2812 } 2813 } 2814 2815 // If the src element is zero/undef then all the output elements will be - 2816 // only demanded elements are guaranteed to be correct. 2817 for (unsigned i = 0; i != NumSrcElts; ++i) { 2818 if (SrcDemandedElts[i]) { 2819 if (SrcZero[i]) 2820 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2821 if (SrcUndef[i]) 2822 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2823 } 2824 } 2825 } 2826 2827 // Bitcast from 'small element' src vector to 'large element' vector, we 2828 // demand all smaller source elements covered by the larger demanded element 2829 // of this vector. 2830 if ((NumSrcElts % NumElts) == 0) { 2831 unsigned Scale = NumSrcElts / NumElts; 2832 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2833 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2834 TLO, Depth + 1)) 2835 return true; 2836 2837 // If all the src elements covering an output element are zero/undef, then 2838 // the output element will be as well, assuming it was demanded. 2839 for (unsigned i = 0; i != NumElts; ++i) { 2840 if (DemandedElts[i]) { 2841 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2842 KnownZero.setBit(i); 2843 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2844 KnownUndef.setBit(i); 2845 } 2846 } 2847 } 2848 break; 2849 } 2850 case ISD::BUILD_VECTOR: { 2851 // Check all elements and simplify any unused elements with UNDEF. 2852 if (!DemandedElts.isAllOnes()) { 2853 // Don't simplify BROADCASTS. 2854 if (llvm::any_of(Op->op_values(), 2855 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2856 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2857 bool Updated = false; 2858 for (unsigned i = 0; i != NumElts; ++i) { 2859 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2860 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2861 KnownUndef.setBit(i); 2862 Updated = true; 2863 } 2864 } 2865 if (Updated) 2866 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2867 } 2868 } 2869 for (unsigned i = 0; i != NumElts; ++i) { 2870 SDValue SrcOp = Op.getOperand(i); 2871 if (SrcOp.isUndef()) { 2872 KnownUndef.setBit(i); 2873 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2874 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2875 KnownZero.setBit(i); 2876 } 2877 } 2878 break; 2879 } 2880 case ISD::CONCAT_VECTORS: { 2881 EVT SubVT = Op.getOperand(0).getValueType(); 2882 unsigned NumSubVecs = Op.getNumOperands(); 2883 unsigned NumSubElts = SubVT.getVectorNumElements(); 2884 for (unsigned i = 0; i != NumSubVecs; ++i) { 2885 SDValue SubOp = Op.getOperand(i); 2886 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2887 APInt SubUndef, SubZero; 2888 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2889 Depth + 1)) 2890 return true; 2891 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2892 KnownZero.insertBits(SubZero, i * NumSubElts); 2893 } 2894 2895 // Attempt to avoid multi-use ops if we don't need anything from them. 2896 if (!DemandedElts.isAllOnes()) { 2897 bool FoundNewSub = false; 2898 SmallVector<SDValue, 2> DemandedSubOps; 2899 for (unsigned i = 0; i != NumSubVecs; ++i) { 2900 SDValue SubOp = Op.getOperand(i); 2901 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2902 SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts( 2903 SubOp, SubElts, TLO.DAG, Depth + 1); 2904 DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp); 2905 FoundNewSub = NewSubOp ? true : FoundNewSub; 2906 } 2907 if (FoundNewSub) { 2908 SDValue NewOp = 2909 TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps); 2910 return TLO.CombineTo(Op, NewOp); 2911 } 2912 } 2913 break; 2914 } 2915 case ISD::INSERT_SUBVECTOR: { 2916 // Demand any elements from the subvector and the remainder from the src its 2917 // inserted into. 2918 SDValue Src = Op.getOperand(0); 2919 SDValue Sub = Op.getOperand(1); 2920 uint64_t Idx = Op.getConstantOperandVal(2); 2921 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2922 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2923 APInt DemandedSrcElts = DemandedElts; 2924 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2925 2926 APInt SubUndef, SubZero; 2927 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2928 Depth + 1)) 2929 return true; 2930 2931 // If none of the src operand elements are demanded, replace it with undef. 2932 if (!DemandedSrcElts && !Src.isUndef()) 2933 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2934 TLO.DAG.getUNDEF(VT), Sub, 2935 Op.getOperand(2))); 2936 2937 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2938 TLO, Depth + 1)) 2939 return true; 2940 KnownUndef.insertBits(SubUndef, Idx); 2941 KnownZero.insertBits(SubZero, Idx); 2942 2943 // Attempt to avoid multi-use ops if we don't need anything from them. 2944 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2945 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2946 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2947 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2948 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2949 if (NewSrc || NewSub) { 2950 NewSrc = NewSrc ? NewSrc : Src; 2951 NewSub = NewSub ? NewSub : Sub; 2952 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2953 NewSub, Op.getOperand(2)); 2954 return TLO.CombineTo(Op, NewOp); 2955 } 2956 } 2957 break; 2958 } 2959 case ISD::EXTRACT_SUBVECTOR: { 2960 // Offset the demanded elts by the subvector index. 2961 SDValue Src = Op.getOperand(0); 2962 if (Src.getValueType().isScalableVector()) 2963 break; 2964 uint64_t Idx = Op.getConstantOperandVal(1); 2965 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2966 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx); 2967 2968 APInt SrcUndef, SrcZero; 2969 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2970 Depth + 1)) 2971 return true; 2972 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2973 KnownZero = SrcZero.extractBits(NumElts, Idx); 2974 2975 // Attempt to avoid multi-use ops if we don't need anything from them. 2976 if (!DemandedElts.isAllOnes()) { 2977 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2978 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2979 if (NewSrc) { 2980 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2981 Op.getOperand(1)); 2982 return TLO.CombineTo(Op, NewOp); 2983 } 2984 } 2985 break; 2986 } 2987 case ISD::INSERT_VECTOR_ELT: { 2988 SDValue Vec = Op.getOperand(0); 2989 SDValue Scl = Op.getOperand(1); 2990 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2991 2992 // For a legal, constant insertion index, if we don't need this insertion 2993 // then strip it, else remove it from the demanded elts. 2994 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2995 unsigned Idx = CIdx->getZExtValue(); 2996 if (!DemandedElts[Idx]) 2997 return TLO.CombineTo(Op, Vec); 2998 2999 APInt DemandedVecElts(DemandedElts); 3000 DemandedVecElts.clearBit(Idx); 3001 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 3002 KnownZero, TLO, Depth + 1)) 3003 return true; 3004 3005 KnownUndef.setBitVal(Idx, Scl.isUndef()); 3006 3007 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 3008 break; 3009 } 3010 3011 APInt VecUndef, VecZero; 3012 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 3013 Depth + 1)) 3014 return true; 3015 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 3016 break; 3017 } 3018 case ISD::VSELECT: { 3019 // Try to transform the select condition based on the current demanded 3020 // elements. 3021 // TODO: If a condition element is undef, we can choose from one arm of the 3022 // select (and if one arm is undef, then we can propagate that to the 3023 // result). 3024 // TODO - add support for constant vselect masks (see IR version of this). 3025 APInt UnusedUndef, UnusedZero; 3026 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 3027 UnusedZero, TLO, Depth + 1)) 3028 return true; 3029 3030 // See if we can simplify either vselect operand. 3031 APInt DemandedLHS(DemandedElts); 3032 APInt DemandedRHS(DemandedElts); 3033 APInt UndefLHS, ZeroLHS; 3034 APInt UndefRHS, ZeroRHS; 3035 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 3036 ZeroLHS, TLO, Depth + 1)) 3037 return true; 3038 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 3039 ZeroRHS, TLO, Depth + 1)) 3040 return true; 3041 3042 KnownUndef = UndefLHS & UndefRHS; 3043 KnownZero = ZeroLHS & ZeroRHS; 3044 break; 3045 } 3046 case ISD::VECTOR_SHUFFLE: { 3047 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 3048 3049 // Collect demanded elements from shuffle operands.. 3050 APInt DemandedLHS(NumElts, 0); 3051 APInt DemandedRHS(NumElts, 0); 3052 for (unsigned i = 0; i != NumElts; ++i) { 3053 int M = ShuffleMask[i]; 3054 if (M < 0 || !DemandedElts[i]) 3055 continue; 3056 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 3057 if (M < (int)NumElts) 3058 DemandedLHS.setBit(M); 3059 else 3060 DemandedRHS.setBit(M - NumElts); 3061 } 3062 3063 // See if we can simplify either shuffle operand. 3064 APInt UndefLHS, ZeroLHS; 3065 APInt UndefRHS, ZeroRHS; 3066 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 3067 ZeroLHS, TLO, Depth + 1)) 3068 return true; 3069 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 3070 ZeroRHS, TLO, Depth + 1)) 3071 return true; 3072 3073 // Simplify mask using undef elements from LHS/RHS. 3074 bool Updated = false; 3075 bool IdentityLHS = true, IdentityRHS = true; 3076 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 3077 for (unsigned i = 0; i != NumElts; ++i) { 3078 int &M = NewMask[i]; 3079 if (M < 0) 3080 continue; 3081 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 3082 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 3083 Updated = true; 3084 M = -1; 3085 } 3086 IdentityLHS &= (M < 0) || (M == (int)i); 3087 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 3088 } 3089 3090 // Update legal shuffle masks based on demanded elements if it won't reduce 3091 // to Identity which can cause premature removal of the shuffle mask. 3092 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 3093 SDValue LegalShuffle = 3094 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 3095 NewMask, TLO.DAG); 3096 if (LegalShuffle) 3097 return TLO.CombineTo(Op, LegalShuffle); 3098 } 3099 3100 // Propagate undef/zero elements from LHS/RHS. 3101 for (unsigned i = 0; i != NumElts; ++i) { 3102 int M = ShuffleMask[i]; 3103 if (M < 0) { 3104 KnownUndef.setBit(i); 3105 } else if (M < (int)NumElts) { 3106 if (UndefLHS[M]) 3107 KnownUndef.setBit(i); 3108 if (ZeroLHS[M]) 3109 KnownZero.setBit(i); 3110 } else { 3111 if (UndefRHS[M - NumElts]) 3112 KnownUndef.setBit(i); 3113 if (ZeroRHS[M - NumElts]) 3114 KnownZero.setBit(i); 3115 } 3116 } 3117 break; 3118 } 3119 case ISD::ANY_EXTEND_VECTOR_INREG: 3120 case ISD::SIGN_EXTEND_VECTOR_INREG: 3121 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3122 APInt SrcUndef, SrcZero; 3123 SDValue Src = Op.getOperand(0); 3124 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3125 APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts); 3126 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3127 Depth + 1)) 3128 return true; 3129 KnownZero = SrcZero.zextOrTrunc(NumElts); 3130 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3131 3132 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3133 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3134 DemandedSrcElts == 1) { 3135 // aext - if we just need the bottom element then we can bitcast. 3136 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3137 } 3138 3139 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3140 // zext(undef) upper bits are guaranteed to be zero. 3141 if (DemandedElts.isSubsetOf(KnownUndef)) 3142 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3143 KnownUndef.clearAllBits(); 3144 3145 // zext - if we just need the bottom element then we can mask: 3146 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3147 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3148 Op->isOnlyUserOf(Src.getNode()) && 3149 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3150 SDLoc DL(Op); 3151 EVT SrcVT = Src.getValueType(); 3152 EVT SrcSVT = SrcVT.getScalarType(); 3153 SmallVector<SDValue> MaskElts; 3154 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3155 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3156 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3157 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3158 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3159 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3160 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3161 } 3162 } 3163 } 3164 break; 3165 } 3166 3167 // TODO: There are more binop opcodes that could be handled here - MIN, 3168 // MAX, saturated math, etc. 3169 case ISD::ADD: { 3170 SDValue Op0 = Op.getOperand(0); 3171 SDValue Op1 = Op.getOperand(1); 3172 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3173 APInt UndefLHS, ZeroLHS; 3174 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3175 Depth + 1, /*AssumeSingleUse*/ true)) 3176 return true; 3177 } 3178 LLVM_FALLTHROUGH; 3179 } 3180 case ISD::OR: 3181 case ISD::XOR: 3182 case ISD::SUB: 3183 case ISD::FADD: 3184 case ISD::FSUB: 3185 case ISD::FMUL: 3186 case ISD::FDIV: 3187 case ISD::FREM: { 3188 SDValue Op0 = Op.getOperand(0); 3189 SDValue Op1 = Op.getOperand(1); 3190 3191 APInt UndefRHS, ZeroRHS; 3192 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3193 Depth + 1)) 3194 return true; 3195 APInt UndefLHS, ZeroLHS; 3196 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3197 Depth + 1)) 3198 return true; 3199 3200 KnownZero = ZeroLHS & ZeroRHS; 3201 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3202 3203 // Attempt to avoid multi-use ops if we don't need anything from them. 3204 // TODO - use KnownUndef to relax the demandedelts? 3205 if (!DemandedElts.isAllOnes()) 3206 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3207 return true; 3208 break; 3209 } 3210 case ISD::SHL: 3211 case ISD::SRL: 3212 case ISD::SRA: 3213 case ISD::ROTL: 3214 case ISD::ROTR: { 3215 SDValue Op0 = Op.getOperand(0); 3216 SDValue Op1 = Op.getOperand(1); 3217 3218 APInt UndefRHS, ZeroRHS; 3219 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3220 Depth + 1)) 3221 return true; 3222 APInt UndefLHS, ZeroLHS; 3223 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3224 Depth + 1)) 3225 return true; 3226 3227 KnownZero = ZeroLHS; 3228 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3229 3230 // Attempt to avoid multi-use ops if we don't need anything from them. 3231 // TODO - use KnownUndef to relax the demandedelts? 3232 if (!DemandedElts.isAllOnes()) 3233 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3234 return true; 3235 break; 3236 } 3237 case ISD::MUL: 3238 case ISD::AND: { 3239 SDValue Op0 = Op.getOperand(0); 3240 SDValue Op1 = Op.getOperand(1); 3241 3242 APInt SrcUndef, SrcZero; 3243 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3244 Depth + 1)) 3245 return true; 3246 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3247 TLO, Depth + 1)) 3248 return true; 3249 3250 // If either side has a zero element, then the result element is zero, even 3251 // if the other is an UNDEF. 3252 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3253 // and then handle 'and' nodes with the rest of the binop opcodes. 3254 KnownZero |= SrcZero; 3255 KnownUndef &= SrcUndef; 3256 KnownUndef &= ~KnownZero; 3257 3258 // Attempt to avoid multi-use ops if we don't need anything from them. 3259 // TODO - use KnownUndef to relax the demandedelts? 3260 if (!DemandedElts.isAllOnes()) 3261 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3262 return true; 3263 break; 3264 } 3265 case ISD::TRUNCATE: 3266 case ISD::SIGN_EXTEND: 3267 case ISD::ZERO_EXTEND: 3268 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3269 KnownZero, TLO, Depth + 1)) 3270 return true; 3271 3272 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3273 // zext(undef) upper bits are guaranteed to be zero. 3274 if (DemandedElts.isSubsetOf(KnownUndef)) 3275 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3276 KnownUndef.clearAllBits(); 3277 } 3278 break; 3279 default: { 3280 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3281 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3282 KnownZero, TLO, Depth)) 3283 return true; 3284 } else { 3285 KnownBits Known; 3286 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3287 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3288 TLO, Depth, AssumeSingleUse)) 3289 return true; 3290 } 3291 break; 3292 } 3293 } 3294 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3295 3296 // Constant fold all undef cases. 3297 // TODO: Handle zero cases as well. 3298 if (DemandedElts.isSubsetOf(KnownUndef)) 3299 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3300 3301 return false; 3302 } 3303 3304 /// Determine which of the bits specified in Mask are known to be either zero or 3305 /// one and return them in the Known. 3306 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3307 KnownBits &Known, 3308 const APInt &DemandedElts, 3309 const SelectionDAG &DAG, 3310 unsigned Depth) const { 3311 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3312 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3313 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3314 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3315 "Should use MaskedValueIsZero if you don't know whether Op" 3316 " is a target node!"); 3317 Known.resetAll(); 3318 } 3319 3320 void TargetLowering::computeKnownBitsForTargetInstr( 3321 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3322 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3323 unsigned Depth) const { 3324 Known.resetAll(); 3325 } 3326 3327 void TargetLowering::computeKnownBitsForFrameIndex( 3328 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3329 // The low bits are known zero if the pointer is aligned. 3330 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3331 } 3332 3333 Align TargetLowering::computeKnownAlignForTargetInstr( 3334 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3335 unsigned Depth) const { 3336 return Align(1); 3337 } 3338 3339 /// This method can be implemented by targets that want to expose additional 3340 /// information about sign bits to the DAG Combiner. 3341 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3342 const APInt &, 3343 const SelectionDAG &, 3344 unsigned Depth) const { 3345 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3346 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3347 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3348 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3349 "Should use ComputeNumSignBits if you don't know whether Op" 3350 " is a target node!"); 3351 return 1; 3352 } 3353 3354 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3355 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3356 const MachineRegisterInfo &MRI, unsigned Depth) const { 3357 return 1; 3358 } 3359 3360 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3361 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3362 TargetLoweringOpt &TLO, unsigned Depth) const { 3363 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3364 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3365 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3366 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3367 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3368 " is a target node!"); 3369 return false; 3370 } 3371 3372 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3373 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3374 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3375 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3376 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3377 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3378 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3379 "Should use SimplifyDemandedBits if you don't know whether Op" 3380 " is a target node!"); 3381 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3382 return false; 3383 } 3384 3385 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3386 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3387 SelectionDAG &DAG, unsigned Depth) const { 3388 assert( 3389 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3390 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3391 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3392 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3393 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3394 " is a target node!"); 3395 return SDValue(); 3396 } 3397 3398 SDValue 3399 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3400 SDValue N1, MutableArrayRef<int> Mask, 3401 SelectionDAG &DAG) const { 3402 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3403 if (!LegalMask) { 3404 std::swap(N0, N1); 3405 ShuffleVectorSDNode::commuteMask(Mask); 3406 LegalMask = isShuffleMaskLegal(Mask, VT); 3407 } 3408 3409 if (!LegalMask) 3410 return SDValue(); 3411 3412 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3413 } 3414 3415 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3416 return nullptr; 3417 } 3418 3419 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3420 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3421 bool PoisonOnly, unsigned Depth) const { 3422 assert( 3423 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3424 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3425 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3426 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3427 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3428 " is a target node!"); 3429 return false; 3430 } 3431 3432 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3433 const SelectionDAG &DAG, 3434 bool SNaN, 3435 unsigned Depth) const { 3436 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3437 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3438 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3439 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3440 "Should use isKnownNeverNaN if you don't know whether Op" 3441 " is a target node!"); 3442 return false; 3443 } 3444 3445 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3446 const APInt &DemandedElts, 3447 APInt &UndefElts, 3448 unsigned Depth) const { 3449 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3450 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3451 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3452 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3453 "Should use isSplatValue if you don't know whether Op" 3454 " is a target node!"); 3455 return false; 3456 } 3457 3458 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3459 // work with truncating build vectors and vectors with elements of less than 3460 // 8 bits. 3461 bool TargetLowering::isConstTrueVal(SDValue N) const { 3462 if (!N) 3463 return false; 3464 3465 unsigned EltWidth; 3466 APInt CVal; 3467 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3468 /*AllowTruncation=*/true)) { 3469 CVal = CN->getAPIntValue(); 3470 EltWidth = N.getValueType().getScalarSizeInBits(); 3471 } else 3472 return false; 3473 3474 // If this is a truncating splat, truncate the splat value. 3475 // Otherwise, we may fail to match the expected values below. 3476 if (EltWidth < CVal.getBitWidth()) 3477 CVal = CVal.trunc(EltWidth); 3478 3479 switch (getBooleanContents(N.getValueType())) { 3480 case UndefinedBooleanContent: 3481 return CVal[0]; 3482 case ZeroOrOneBooleanContent: 3483 return CVal.isOne(); 3484 case ZeroOrNegativeOneBooleanContent: 3485 return CVal.isAllOnes(); 3486 } 3487 3488 llvm_unreachable("Invalid boolean contents"); 3489 } 3490 3491 bool TargetLowering::isConstFalseVal(SDValue N) const { 3492 if (!N) 3493 return false; 3494 3495 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3496 if (!CN) { 3497 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3498 if (!BV) 3499 return false; 3500 3501 // Only interested in constant splats, we don't care about undef 3502 // elements in identifying boolean constants and getConstantSplatNode 3503 // returns NULL if all ops are undef; 3504 CN = BV->getConstantSplatNode(); 3505 if (!CN) 3506 return false; 3507 } 3508 3509 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3510 return !CN->getAPIntValue()[0]; 3511 3512 return CN->isZero(); 3513 } 3514 3515 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3516 bool SExt) const { 3517 if (VT == MVT::i1) 3518 return N->isOne(); 3519 3520 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3521 switch (Cnt) { 3522 case TargetLowering::ZeroOrOneBooleanContent: 3523 // An extended value of 1 is always true, unless its original type is i1, 3524 // in which case it will be sign extended to -1. 3525 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3526 case TargetLowering::UndefinedBooleanContent: 3527 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3528 return N->isAllOnes() && SExt; 3529 } 3530 llvm_unreachable("Unexpected enumeration."); 3531 } 3532 3533 /// This helper function of SimplifySetCC tries to optimize the comparison when 3534 /// either operand of the SetCC node is a bitwise-and instruction. 3535 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3536 ISD::CondCode Cond, const SDLoc &DL, 3537 DAGCombinerInfo &DCI) const { 3538 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3539 std::swap(N0, N1); 3540 3541 SelectionDAG &DAG = DCI.DAG; 3542 EVT OpVT = N0.getValueType(); 3543 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3544 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3545 return SDValue(); 3546 3547 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3548 // iff everything but LSB is known zero: 3549 if (Cond == ISD::SETNE && isNullConstant(N1) && 3550 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3551 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3552 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3553 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3554 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3555 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3556 } 3557 3558 // Match these patterns in any of their permutations: 3559 // (X & Y) == Y 3560 // (X & Y) != Y 3561 SDValue X, Y; 3562 if (N0.getOperand(0) == N1) { 3563 X = N0.getOperand(1); 3564 Y = N0.getOperand(0); 3565 } else if (N0.getOperand(1) == N1) { 3566 X = N0.getOperand(0); 3567 Y = N0.getOperand(1); 3568 } else { 3569 return SDValue(); 3570 } 3571 3572 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3573 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3574 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3575 // Note that where Y is variable and is known to have at most one bit set 3576 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3577 // equivalent when Y == 0. 3578 assert(OpVT.isInteger()); 3579 Cond = ISD::getSetCCInverse(Cond, OpVT); 3580 if (DCI.isBeforeLegalizeOps() || 3581 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3582 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3583 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3584 // If the target supports an 'and-not' or 'and-complement' logic operation, 3585 // try to use that to make a comparison operation more efficient. 3586 // But don't do this transform if the mask is a single bit because there are 3587 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3588 // 'rlwinm' on PPC). 3589 3590 // Bail out if the compare operand that we want to turn into a zero is 3591 // already a zero (otherwise, infinite loop). 3592 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3593 if (YConst && YConst->isZero()) 3594 return SDValue(); 3595 3596 // Transform this into: ~X & Y == 0. 3597 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3598 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3599 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3600 } 3601 3602 return SDValue(); 3603 } 3604 3605 /// There are multiple IR patterns that could be checking whether certain 3606 /// truncation of a signed number would be lossy or not. The pattern which is 3607 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3608 /// We are looking for the following pattern: (KeptBits is a constant) 3609 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3610 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3611 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3612 /// We will unfold it into the natural trunc+sext pattern: 3613 /// ((%x << C) a>> C) dstcond %x 3614 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3615 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3616 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3617 const SDLoc &DL) const { 3618 // We must be comparing with a constant. 3619 ConstantSDNode *C1; 3620 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3621 return SDValue(); 3622 3623 // N0 should be: add %x, (1 << (KeptBits-1)) 3624 if (N0->getOpcode() != ISD::ADD) 3625 return SDValue(); 3626 3627 // And we must be 'add'ing a constant. 3628 ConstantSDNode *C01; 3629 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3630 return SDValue(); 3631 3632 SDValue X = N0->getOperand(0); 3633 EVT XVT = X.getValueType(); 3634 3635 // Validate constants ... 3636 3637 APInt I1 = C1->getAPIntValue(); 3638 3639 ISD::CondCode NewCond; 3640 if (Cond == ISD::CondCode::SETULT) { 3641 NewCond = ISD::CondCode::SETEQ; 3642 } else if (Cond == ISD::CondCode::SETULE) { 3643 NewCond = ISD::CondCode::SETEQ; 3644 // But need to 'canonicalize' the constant. 3645 I1 += 1; 3646 } else if (Cond == ISD::CondCode::SETUGT) { 3647 NewCond = ISD::CondCode::SETNE; 3648 // But need to 'canonicalize' the constant. 3649 I1 += 1; 3650 } else if (Cond == ISD::CondCode::SETUGE) { 3651 NewCond = ISD::CondCode::SETNE; 3652 } else 3653 return SDValue(); 3654 3655 APInt I01 = C01->getAPIntValue(); 3656 3657 auto checkConstants = [&I1, &I01]() -> bool { 3658 // Both of them must be power-of-two, and the constant from setcc is bigger. 3659 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3660 }; 3661 3662 if (checkConstants()) { 3663 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3664 } else { 3665 // What if we invert constants? (and the target predicate) 3666 I1.negate(); 3667 I01.negate(); 3668 assert(XVT.isInteger()); 3669 NewCond = getSetCCInverse(NewCond, XVT); 3670 if (!checkConstants()) 3671 return SDValue(); 3672 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3673 } 3674 3675 // They are power-of-two, so which bit is set? 3676 const unsigned KeptBits = I1.logBase2(); 3677 const unsigned KeptBitsMinusOne = I01.logBase2(); 3678 3679 // Magic! 3680 if (KeptBits != (KeptBitsMinusOne + 1)) 3681 return SDValue(); 3682 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3683 3684 // We don't want to do this in every single case. 3685 SelectionDAG &DAG = DCI.DAG; 3686 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3687 XVT, KeptBits)) 3688 return SDValue(); 3689 3690 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3691 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3692 3693 // Unfold into: ((%x << C) a>> C) cond %x 3694 // Where 'cond' will be either 'eq' or 'ne'. 3695 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3696 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3697 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3698 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3699 3700 return T2; 3701 } 3702 3703 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3704 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3705 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3706 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3707 assert(isConstOrConstSplat(N1C) && 3708 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3709 "Should be a comparison with 0."); 3710 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3711 "Valid only for [in]equality comparisons."); 3712 3713 unsigned NewShiftOpcode; 3714 SDValue X, C, Y; 3715 3716 SelectionDAG &DAG = DCI.DAG; 3717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3718 3719 // Look for '(C l>>/<< Y)'. 3720 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3721 // The shift should be one-use. 3722 if (!V.hasOneUse()) 3723 return false; 3724 unsigned OldShiftOpcode = V.getOpcode(); 3725 switch (OldShiftOpcode) { 3726 case ISD::SHL: 3727 NewShiftOpcode = ISD::SRL; 3728 break; 3729 case ISD::SRL: 3730 NewShiftOpcode = ISD::SHL; 3731 break; 3732 default: 3733 return false; // must be a logical shift. 3734 } 3735 // We should be shifting a constant. 3736 // FIXME: best to use isConstantOrConstantVector(). 3737 C = V.getOperand(0); 3738 ConstantSDNode *CC = 3739 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3740 if (!CC) 3741 return false; 3742 Y = V.getOperand(1); 3743 3744 ConstantSDNode *XC = 3745 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3746 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3747 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3748 }; 3749 3750 // LHS of comparison should be an one-use 'and'. 3751 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3752 return SDValue(); 3753 3754 X = N0.getOperand(0); 3755 SDValue Mask = N0.getOperand(1); 3756 3757 // 'and' is commutative! 3758 if (!Match(Mask)) { 3759 std::swap(X, Mask); 3760 if (!Match(Mask)) 3761 return SDValue(); 3762 } 3763 3764 EVT VT = X.getValueType(); 3765 3766 // Produce: 3767 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3768 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3769 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3770 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3771 return T2; 3772 } 3773 3774 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3775 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3776 /// handle the commuted versions of these patterns. 3777 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3778 ISD::CondCode Cond, const SDLoc &DL, 3779 DAGCombinerInfo &DCI) const { 3780 unsigned BOpcode = N0.getOpcode(); 3781 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3782 "Unexpected binop"); 3783 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3784 3785 // (X + Y) == X --> Y == 0 3786 // (X - Y) == X --> Y == 0 3787 // (X ^ Y) == X --> Y == 0 3788 SelectionDAG &DAG = DCI.DAG; 3789 EVT OpVT = N0.getValueType(); 3790 SDValue X = N0.getOperand(0); 3791 SDValue Y = N0.getOperand(1); 3792 if (X == N1) 3793 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3794 3795 if (Y != N1) 3796 return SDValue(); 3797 3798 // (X + Y) == Y --> X == 0 3799 // (X ^ Y) == Y --> X == 0 3800 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3801 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3802 3803 // The shift would not be valid if the operands are boolean (i1). 3804 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3805 return SDValue(); 3806 3807 // (X - Y) == Y --> X == Y << 1 3808 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3809 !DCI.isBeforeLegalize()); 3810 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3811 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3812 if (!DCI.isCalledByLegalizer()) 3813 DCI.AddToWorklist(YShl1.getNode()); 3814 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3815 } 3816 3817 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3818 SDValue N0, const APInt &C1, 3819 ISD::CondCode Cond, const SDLoc &dl, 3820 SelectionDAG &DAG) { 3821 // Look through truncs that don't change the value of a ctpop. 3822 // FIXME: Add vector support? Need to be careful with setcc result type below. 3823 SDValue CTPOP = N0; 3824 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3825 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3826 CTPOP = N0.getOperand(0); 3827 3828 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3829 return SDValue(); 3830 3831 EVT CTVT = CTPOP.getValueType(); 3832 SDValue CTOp = CTPOP.getOperand(0); 3833 3834 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3835 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3836 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3837 return SDValue(); 3838 3839 // (ctpop x) u< 2 -> (x & x-1) == 0 3840 // (ctpop x) u> 1 -> (x & x-1) != 0 3841 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3842 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3843 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3844 return SDValue(); 3845 if (C1 == 0 && (Cond == ISD::SETULT)) 3846 return SDValue(); // This is handled elsewhere. 3847 3848 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3849 3850 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3851 SDValue Result = CTOp; 3852 for (unsigned i = 0; i < Passes; i++) { 3853 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3854 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3855 } 3856 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3857 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3858 } 3859 3860 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3861 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3862 // For scalars, keep CTPOP if it is legal or custom. 3863 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3864 return SDValue(); 3865 // This is based on X86's custom lowering for CTPOP which produces more 3866 // instructions than the expansion here. 3867 3868 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3869 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3870 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3871 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3872 assert(CTVT.isInteger()); 3873 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3874 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3875 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3876 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3877 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3878 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3879 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3880 } 3881 3882 return SDValue(); 3883 } 3884 3885 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1, 3886 ISD::CondCode Cond, const SDLoc &dl, 3887 SelectionDAG &DAG) { 3888 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3889 return SDValue(); 3890 3891 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3892 if (!C1 || !(C1->isZero() || C1->isAllOnes())) 3893 return SDValue(); 3894 3895 auto getRotateSource = [](SDValue X) { 3896 if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR) 3897 return X.getOperand(0); 3898 return SDValue(); 3899 }; 3900 3901 // Peek through a rotated value compared against 0 or -1: 3902 // (rot X, Y) == 0/-1 --> X == 0/-1 3903 // (rot X, Y) != 0/-1 --> X != 0/-1 3904 if (SDValue R = getRotateSource(N0)) 3905 return DAG.getSetCC(dl, VT, R, N1, Cond); 3906 3907 // Peek through an 'or' of a rotated value compared against 0: 3908 // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0 3909 // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0 3910 // 3911 // TODO: Add the 'and' with -1 sibling. 3912 // TODO: Recurse through a series of 'or' ops to find the rotate. 3913 EVT OpVT = N0.getValueType(); 3914 if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) { 3915 if (SDValue R = getRotateSource(N0.getOperand(0))) { 3916 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1)); 3917 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3918 } 3919 if (SDValue R = getRotateSource(N0.getOperand(1))) { 3920 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0)); 3921 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3922 } 3923 } 3924 3925 return SDValue(); 3926 } 3927 3928 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1, 3929 ISD::CondCode Cond, const SDLoc &dl, 3930 SelectionDAG &DAG) { 3931 // If we are testing for all-bits-clear, we might be able to do that with 3932 // less shifting since bit-order does not matter. 3933 if (Cond != ISD::SETEQ && Cond != ISD::SETNE) 3934 return SDValue(); 3935 3936 auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true); 3937 if (!C1 || !C1->isZero()) 3938 return SDValue(); 3939 3940 if (!N0.hasOneUse() || 3941 (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR)) 3942 return SDValue(); 3943 3944 unsigned BitWidth = N0.getScalarValueSizeInBits(); 3945 auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2)); 3946 if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth)) 3947 return SDValue(); 3948 3949 // Canonicalize fshr as fshl to reduce pattern-matching. 3950 unsigned ShAmt = ShAmtC->getZExtValue(); 3951 if (N0.getOpcode() == ISD::FSHR) 3952 ShAmt = BitWidth - ShAmt; 3953 3954 // Match an 'or' with a specific operand 'Other' in either commuted variant. 3955 SDValue X, Y; 3956 auto matchOr = [&X, &Y](SDValue Or, SDValue Other) { 3957 if (Or.getOpcode() != ISD::OR || !Or.hasOneUse()) 3958 return false; 3959 if (Or.getOperand(0) == Other) { 3960 X = Or.getOperand(0); 3961 Y = Or.getOperand(1); 3962 return true; 3963 } 3964 if (Or.getOperand(1) == Other) { 3965 X = Or.getOperand(1); 3966 Y = Or.getOperand(0); 3967 return true; 3968 } 3969 return false; 3970 }; 3971 3972 EVT OpVT = N0.getValueType(); 3973 EVT ShAmtVT = N0.getOperand(2).getValueType(); 3974 SDValue F0 = N0.getOperand(0); 3975 SDValue F1 = N0.getOperand(1); 3976 if (matchOr(F0, F1)) { 3977 // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0 3978 SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT); 3979 SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt); 3980 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 3981 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3982 } 3983 if (matchOr(F1, F0)) { 3984 // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0 3985 SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT); 3986 SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt); 3987 SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X); 3988 return DAG.getSetCC(dl, VT, NewOr, N1, Cond); 3989 } 3990 3991 return SDValue(); 3992 } 3993 3994 /// Try to simplify a setcc built with the specified operands and cc. If it is 3995 /// unable to simplify it, return a null SDValue. 3996 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3997 ISD::CondCode Cond, bool foldBooleans, 3998 DAGCombinerInfo &DCI, 3999 const SDLoc &dl) const { 4000 SelectionDAG &DAG = DCI.DAG; 4001 const DataLayout &Layout = DAG.getDataLayout(); 4002 EVT OpVT = N0.getValueType(); 4003 4004 // Constant fold or commute setcc. 4005 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 4006 return Fold; 4007 4008 bool N0ConstOrSplat = 4009 isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4010 bool N1ConstOrSplat = 4011 isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true); 4012 4013 // Ensure that the constant occurs on the RHS and fold constant comparisons. 4014 // TODO: Handle non-splat vector constants. All undef causes trouble. 4015 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 4016 // infinite loop here when we encounter one. 4017 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 4018 if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) && 4019 (DCI.isBeforeLegalizeOps() || 4020 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 4021 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4022 4023 // If we have a subtract with the same 2 non-constant operands as this setcc 4024 // -- but in reverse order -- then try to commute the operands of this setcc 4025 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 4026 // instruction on some targets. 4027 if (!N0ConstOrSplat && !N1ConstOrSplat && 4028 (DCI.isBeforeLegalizeOps() || 4029 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 4030 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 4031 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 4032 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 4033 4034 if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG)) 4035 return V; 4036 4037 if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG)) 4038 return V; 4039 4040 if (auto *N1C = isConstOrConstSplat(N1)) { 4041 const APInt &C1 = N1C->getAPIntValue(); 4042 4043 // Optimize some CTPOP cases. 4044 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 4045 return V; 4046 4047 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 4048 // equality comparison, then we're just comparing whether X itself is 4049 // zero. 4050 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 4051 N0.getOperand(0).getOpcode() == ISD::CTLZ && 4052 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 4053 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 4054 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4055 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 4056 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 4057 // (srl (ctlz x), 5) == 0 -> X != 0 4058 // (srl (ctlz x), 5) != 1 -> X != 0 4059 Cond = ISD::SETNE; 4060 } else { 4061 // (srl (ctlz x), 5) != 0 -> X == 0 4062 // (srl (ctlz x), 5) == 1 -> X == 0 4063 Cond = ISD::SETEQ; 4064 } 4065 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 4066 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 4067 Cond); 4068 } 4069 } 4070 } 4071 } 4072 4073 // FIXME: Support vectors. 4074 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4075 const APInt &C1 = N1C->getAPIntValue(); 4076 4077 // (zext x) == C --> x == (trunc C) 4078 // (sext x) == C --> x == (trunc C) 4079 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4080 DCI.isBeforeLegalize() && N0->hasOneUse()) { 4081 unsigned MinBits = N0.getValueSizeInBits(); 4082 SDValue PreExt; 4083 bool Signed = false; 4084 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 4085 // ZExt 4086 MinBits = N0->getOperand(0).getValueSizeInBits(); 4087 PreExt = N0->getOperand(0); 4088 } else if (N0->getOpcode() == ISD::AND) { 4089 // DAGCombine turns costly ZExts into ANDs 4090 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 4091 if ((C->getAPIntValue()+1).isPowerOf2()) { 4092 MinBits = C->getAPIntValue().countTrailingOnes(); 4093 PreExt = N0->getOperand(0); 4094 } 4095 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 4096 // SExt 4097 MinBits = N0->getOperand(0).getValueSizeInBits(); 4098 PreExt = N0->getOperand(0); 4099 Signed = true; 4100 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 4101 // ZEXTLOAD / SEXTLOAD 4102 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 4103 MinBits = LN0->getMemoryVT().getSizeInBits(); 4104 PreExt = N0; 4105 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 4106 Signed = true; 4107 MinBits = LN0->getMemoryVT().getSizeInBits(); 4108 PreExt = N0; 4109 } 4110 } 4111 4112 // Figure out how many bits we need to preserve this constant. 4113 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 4114 4115 // Make sure we're not losing bits from the constant. 4116 if (MinBits > 0 && 4117 MinBits < C1.getBitWidth() && 4118 MinBits >= ReqdBits) { 4119 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 4120 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 4121 // Will get folded away. 4122 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 4123 if (MinBits == 1 && C1 == 1) 4124 // Invert the condition. 4125 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 4126 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4127 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 4128 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 4129 } 4130 4131 // If truncating the setcc operands is not desirable, we can still 4132 // simplify the expression in some cases: 4133 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 4134 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 4135 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 4136 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 4137 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 4138 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 4139 SDValue TopSetCC = N0->getOperand(0); 4140 unsigned N0Opc = N0->getOpcode(); 4141 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 4142 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 4143 TopSetCC.getOpcode() == ISD::SETCC && 4144 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 4145 (isConstFalseVal(N1) || 4146 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 4147 4148 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 4149 (!N1C->isZero() && Cond == ISD::SETNE); 4150 4151 if (!Inverse) 4152 return TopSetCC; 4153 4154 ISD::CondCode InvCond = ISD::getSetCCInverse( 4155 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 4156 TopSetCC.getOperand(0).getValueType()); 4157 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 4158 TopSetCC.getOperand(1), 4159 InvCond); 4160 } 4161 } 4162 } 4163 4164 // If the LHS is '(and load, const)', the RHS is 0, the test is for 4165 // equality or unsigned, and all 1 bits of the const are in the same 4166 // partial word, see if we can shorten the load. 4167 if (DCI.isBeforeLegalize() && 4168 !ISD::isSignedIntSetCC(Cond) && 4169 N0.getOpcode() == ISD::AND && C1 == 0 && 4170 N0.getNode()->hasOneUse() && 4171 isa<LoadSDNode>(N0.getOperand(0)) && 4172 N0.getOperand(0).getNode()->hasOneUse() && 4173 isa<ConstantSDNode>(N0.getOperand(1))) { 4174 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 4175 APInt bestMask; 4176 unsigned bestWidth = 0, bestOffset = 0; 4177 if (Lod->isSimple() && Lod->isUnindexed()) { 4178 unsigned origWidth = N0.getValueSizeInBits(); 4179 unsigned maskWidth = origWidth; 4180 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 4181 // 8 bits, but have to be careful... 4182 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 4183 origWidth = Lod->getMemoryVT().getSizeInBits(); 4184 const APInt &Mask = N0.getConstantOperandAPInt(1); 4185 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 4186 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 4187 for (unsigned offset=0; offset<origWidth/width; offset++) { 4188 if (Mask.isSubsetOf(newMask)) { 4189 if (Layout.isLittleEndian()) 4190 bestOffset = (uint64_t)offset * (width/8); 4191 else 4192 bestOffset = (origWidth/width - offset - 1) * (width/8); 4193 bestMask = Mask.lshr(offset * (width/8) * 8); 4194 bestWidth = width; 4195 break; 4196 } 4197 newMask <<= width; 4198 } 4199 } 4200 } 4201 if (bestWidth) { 4202 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 4203 if (newVT.isRound() && 4204 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 4205 SDValue Ptr = Lod->getBasePtr(); 4206 if (bestOffset != 0) 4207 Ptr = 4208 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 4209 SDValue NewLoad = 4210 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 4211 Lod->getPointerInfo().getWithOffset(bestOffset), 4212 Lod->getOriginalAlign()); 4213 return DAG.getSetCC(dl, VT, 4214 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 4215 DAG.getConstant(bestMask.trunc(bestWidth), 4216 dl, newVT)), 4217 DAG.getConstant(0LL, dl, newVT), Cond); 4218 } 4219 } 4220 } 4221 4222 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 4223 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 4224 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 4225 4226 // If the comparison constant has bits in the upper part, the 4227 // zero-extended value could never match. 4228 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4229 C1.getBitWidth() - InSize))) { 4230 switch (Cond) { 4231 case ISD::SETUGT: 4232 case ISD::SETUGE: 4233 case ISD::SETEQ: 4234 return DAG.getConstant(0, dl, VT); 4235 case ISD::SETULT: 4236 case ISD::SETULE: 4237 case ISD::SETNE: 4238 return DAG.getConstant(1, dl, VT); 4239 case ISD::SETGT: 4240 case ISD::SETGE: 4241 // True if the sign bit of C1 is set. 4242 return DAG.getConstant(C1.isNegative(), dl, VT); 4243 case ISD::SETLT: 4244 case ISD::SETLE: 4245 // True if the sign bit of C1 isn't set. 4246 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4247 default: 4248 break; 4249 } 4250 } 4251 4252 // Otherwise, we can perform the comparison with the low bits. 4253 switch (Cond) { 4254 case ISD::SETEQ: 4255 case ISD::SETNE: 4256 case ISD::SETUGT: 4257 case ISD::SETUGE: 4258 case ISD::SETULT: 4259 case ISD::SETULE: { 4260 EVT newVT = N0.getOperand(0).getValueType(); 4261 if (DCI.isBeforeLegalizeOps() || 4262 (isOperationLegal(ISD::SETCC, newVT) && 4263 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4264 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4265 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4266 4267 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4268 NewConst, Cond); 4269 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4270 } 4271 break; 4272 } 4273 default: 4274 break; // todo, be more careful with signed comparisons 4275 } 4276 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4277 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4278 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4279 OpVT)) { 4280 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4281 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4282 EVT ExtDstTy = N0.getValueType(); 4283 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4284 4285 // If the constant doesn't fit into the number of bits for the source of 4286 // the sign extension, it is impossible for both sides to be equal. 4287 if (C1.getMinSignedBits() > ExtSrcTyBits) 4288 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4289 4290 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4291 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4292 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4293 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4294 DAG.getConstant(Imm, dl, ExtDstTy)); 4295 if (!DCI.isCalledByLegalizer()) 4296 DCI.AddToWorklist(ZextOp.getNode()); 4297 // Otherwise, make this a use of a zext. 4298 return DAG.getSetCC(dl, VT, ZextOp, 4299 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4300 } else if ((N1C->isZero() || N1C->isOne()) && 4301 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4302 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4303 if (N0.getOpcode() == ISD::SETCC && 4304 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4305 (N0.getValueType() == MVT::i1 || 4306 getBooleanContents(N0.getOperand(0).getValueType()) == 4307 ZeroOrOneBooleanContent)) { 4308 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4309 if (TrueWhenTrue) 4310 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4311 // Invert the condition. 4312 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4313 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4314 if (DCI.isBeforeLegalizeOps() || 4315 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4316 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4317 } 4318 4319 if ((N0.getOpcode() == ISD::XOR || 4320 (N0.getOpcode() == ISD::AND && 4321 N0.getOperand(0).getOpcode() == ISD::XOR && 4322 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4323 isOneConstant(N0.getOperand(1))) { 4324 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4325 // can only do this if the top bits are known zero. 4326 unsigned BitWidth = N0.getValueSizeInBits(); 4327 if (DAG.MaskedValueIsZero(N0, 4328 APInt::getHighBitsSet(BitWidth, 4329 BitWidth-1))) { 4330 // Okay, get the un-inverted input value. 4331 SDValue Val; 4332 if (N0.getOpcode() == ISD::XOR) { 4333 Val = N0.getOperand(0); 4334 } else { 4335 assert(N0.getOpcode() == ISD::AND && 4336 N0.getOperand(0).getOpcode() == ISD::XOR); 4337 // ((X^1)&1)^1 -> X & 1 4338 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4339 N0.getOperand(0).getOperand(0), 4340 N0.getOperand(1)); 4341 } 4342 4343 return DAG.getSetCC(dl, VT, Val, N1, 4344 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4345 } 4346 } else if (N1C->isOne()) { 4347 SDValue Op0 = N0; 4348 if (Op0.getOpcode() == ISD::TRUNCATE) 4349 Op0 = Op0.getOperand(0); 4350 4351 if ((Op0.getOpcode() == ISD::XOR) && 4352 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4353 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4354 SDValue XorLHS = Op0.getOperand(0); 4355 SDValue XorRHS = Op0.getOperand(1); 4356 // Ensure that the input setccs return an i1 type or 0/1 value. 4357 if (Op0.getValueType() == MVT::i1 || 4358 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4359 ZeroOrOneBooleanContent && 4360 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4361 ZeroOrOneBooleanContent)) { 4362 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4363 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4364 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4365 } 4366 } 4367 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4368 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4369 if (Op0.getValueType().bitsGT(VT)) 4370 Op0 = DAG.getNode(ISD::AND, dl, VT, 4371 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4372 DAG.getConstant(1, dl, VT)); 4373 else if (Op0.getValueType().bitsLT(VT)) 4374 Op0 = DAG.getNode(ISD::AND, dl, VT, 4375 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4376 DAG.getConstant(1, dl, VT)); 4377 4378 return DAG.getSetCC(dl, VT, Op0, 4379 DAG.getConstant(0, dl, Op0.getValueType()), 4380 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4381 } 4382 if (Op0.getOpcode() == ISD::AssertZext && 4383 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4384 return DAG.getSetCC(dl, VT, Op0, 4385 DAG.getConstant(0, dl, Op0.getValueType()), 4386 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4387 } 4388 } 4389 4390 // Given: 4391 // icmp eq/ne (urem %x, %y), 0 4392 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4393 // icmp eq/ne %x, 0 4394 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4395 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4396 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4397 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4398 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4399 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4400 } 4401 4402 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4403 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4404 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4405 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4406 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4407 N1C && N1C->isAllOnes()) { 4408 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4409 DAG.getConstant(0, dl, OpVT), 4410 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4411 } 4412 4413 if (SDValue V = 4414 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4415 return V; 4416 } 4417 4418 // These simplifications apply to splat vectors as well. 4419 // TODO: Handle more splat vector cases. 4420 if (auto *N1C = isConstOrConstSplat(N1)) { 4421 const APInt &C1 = N1C->getAPIntValue(); 4422 4423 APInt MinVal, MaxVal; 4424 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4425 if (ISD::isSignedIntSetCC(Cond)) { 4426 MinVal = APInt::getSignedMinValue(OperandBitSize); 4427 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4428 } else { 4429 MinVal = APInt::getMinValue(OperandBitSize); 4430 MaxVal = APInt::getMaxValue(OperandBitSize); 4431 } 4432 4433 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4434 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4435 // X >= MIN --> true 4436 if (C1 == MinVal) 4437 return DAG.getBoolConstant(true, dl, VT, OpVT); 4438 4439 if (!VT.isVector()) { // TODO: Support this for vectors. 4440 // X >= C0 --> X > (C0 - 1) 4441 APInt C = C1 - 1; 4442 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4443 if ((DCI.isBeforeLegalizeOps() || 4444 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4445 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4446 isLegalICmpImmediate(C.getSExtValue())))) { 4447 return DAG.getSetCC(dl, VT, N0, 4448 DAG.getConstant(C, dl, N1.getValueType()), 4449 NewCC); 4450 } 4451 } 4452 } 4453 4454 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4455 // X <= MAX --> true 4456 if (C1 == MaxVal) 4457 return DAG.getBoolConstant(true, dl, VT, OpVT); 4458 4459 // X <= C0 --> X < (C0 + 1) 4460 if (!VT.isVector()) { // TODO: Support this for vectors. 4461 APInt C = C1 + 1; 4462 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4463 if ((DCI.isBeforeLegalizeOps() || 4464 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4465 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4466 isLegalICmpImmediate(C.getSExtValue())))) { 4467 return DAG.getSetCC(dl, VT, N0, 4468 DAG.getConstant(C, dl, N1.getValueType()), 4469 NewCC); 4470 } 4471 } 4472 } 4473 4474 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4475 if (C1 == MinVal) 4476 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4477 4478 // TODO: Support this for vectors after legalize ops. 4479 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4480 // Canonicalize setlt X, Max --> setne X, Max 4481 if (C1 == MaxVal) 4482 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4483 4484 // If we have setult X, 1, turn it into seteq X, 0 4485 if (C1 == MinVal+1) 4486 return DAG.getSetCC(dl, VT, N0, 4487 DAG.getConstant(MinVal, dl, N0.getValueType()), 4488 ISD::SETEQ); 4489 } 4490 } 4491 4492 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4493 if (C1 == MaxVal) 4494 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4495 4496 // TODO: Support this for vectors after legalize ops. 4497 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4498 // Canonicalize setgt X, Min --> setne X, Min 4499 if (C1 == MinVal) 4500 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4501 4502 // If we have setugt X, Max-1, turn it into seteq X, Max 4503 if (C1 == MaxVal-1) 4504 return DAG.getSetCC(dl, VT, N0, 4505 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4506 ISD::SETEQ); 4507 } 4508 } 4509 4510 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4511 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4512 if (C1.isZero()) 4513 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4514 VT, N0, N1, Cond, DCI, dl)) 4515 return CC; 4516 4517 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4518 // For example, when high 32-bits of i64 X are known clear: 4519 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4520 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4521 bool CmpZero = N1C->getAPIntValue().isZero(); 4522 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4523 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4524 // Match or(lo,shl(hi,bw/2)) pattern. 4525 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4526 unsigned EltBits = V.getScalarValueSizeInBits(); 4527 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4528 return false; 4529 SDValue LHS = V.getOperand(0); 4530 SDValue RHS = V.getOperand(1); 4531 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4532 // Unshifted element must have zero upperbits. 4533 if (RHS.getOpcode() == ISD::SHL && 4534 isa<ConstantSDNode>(RHS.getOperand(1)) && 4535 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4536 DAG.MaskedValueIsZero(LHS, HiBits)) { 4537 Lo = LHS; 4538 Hi = RHS.getOperand(0); 4539 return true; 4540 } 4541 if (LHS.getOpcode() == ISD::SHL && 4542 isa<ConstantSDNode>(LHS.getOperand(1)) && 4543 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4544 DAG.MaskedValueIsZero(RHS, HiBits)) { 4545 Lo = RHS; 4546 Hi = LHS.getOperand(0); 4547 return true; 4548 } 4549 return false; 4550 }; 4551 4552 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4553 unsigned EltBits = N0.getScalarValueSizeInBits(); 4554 unsigned HalfBits = EltBits / 2; 4555 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4556 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4557 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4558 SDValue NewN0 = 4559 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4560 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4561 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4562 }; 4563 4564 SDValue Lo, Hi; 4565 if (IsConcat(N0, Lo, Hi)) 4566 return MergeConcat(Lo, Hi); 4567 4568 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4569 SDValue Lo0, Lo1, Hi0, Hi1; 4570 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4571 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4572 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4573 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4574 } 4575 } 4576 } 4577 } 4578 4579 // If we have "setcc X, C0", check to see if we can shrink the immediate 4580 // by changing cc. 4581 // TODO: Support this for vectors after legalize ops. 4582 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4583 // SETUGT X, SINTMAX -> SETLT X, 0 4584 // SETUGE X, SINTMIN -> SETLT X, 0 4585 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4586 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4587 return DAG.getSetCC(dl, VT, N0, 4588 DAG.getConstant(0, dl, N1.getValueType()), 4589 ISD::SETLT); 4590 4591 // SETULT X, SINTMIN -> SETGT X, -1 4592 // SETULE X, SINTMAX -> SETGT X, -1 4593 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4594 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4595 return DAG.getSetCC(dl, VT, N0, 4596 DAG.getAllOnesConstant(dl, N1.getValueType()), 4597 ISD::SETGT); 4598 } 4599 } 4600 4601 // Back to non-vector simplifications. 4602 // TODO: Can we do these for vector splats? 4603 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4604 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4605 const APInt &C1 = N1C->getAPIntValue(); 4606 EVT ShValTy = N0.getValueType(); 4607 4608 // Fold bit comparisons when we can. This will result in an 4609 // incorrect value when boolean false is negative one, unless 4610 // the bitsize is 1 in which case the false value is the same 4611 // in practice regardless of the representation. 4612 if ((VT.getSizeInBits() == 1 || 4613 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4614 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4615 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4616 N0.getOpcode() == ISD::AND) { 4617 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4618 EVT ShiftTy = 4619 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4620 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4621 // Perform the xform if the AND RHS is a single bit. 4622 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4623 if (AndRHS->getAPIntValue().isPowerOf2() && 4624 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4625 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4626 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4627 DAG.getConstant(ShCt, dl, ShiftTy))); 4628 } 4629 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4630 // (X & 8) == 8 --> (X & 8) >> 3 4631 // Perform the xform if C1 is a single bit. 4632 unsigned ShCt = C1.logBase2(); 4633 if (C1.isPowerOf2() && 4634 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4635 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4636 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4637 DAG.getConstant(ShCt, dl, ShiftTy))); 4638 } 4639 } 4640 } 4641 } 4642 4643 if (C1.getMinSignedBits() <= 64 && 4644 !isLegalICmpImmediate(C1.getSExtValue())) { 4645 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4646 // (X & -256) == 256 -> (X >> 8) == 1 4647 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4648 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4649 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4650 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4651 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4652 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4653 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4654 SDValue Shift = 4655 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4656 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4657 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4658 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4659 } 4660 } 4661 } 4662 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4663 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4664 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4665 // X < 0x100000000 -> (X >> 32) < 1 4666 // X >= 0x100000000 -> (X >> 32) >= 1 4667 // X <= 0x0ffffffff -> (X >> 32) < 1 4668 // X > 0x0ffffffff -> (X >> 32) >= 1 4669 unsigned ShiftBits; 4670 APInt NewC = C1; 4671 ISD::CondCode NewCond = Cond; 4672 if (AdjOne) { 4673 ShiftBits = C1.countTrailingOnes(); 4674 NewC = NewC + 1; 4675 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4676 } else { 4677 ShiftBits = C1.countTrailingZeros(); 4678 } 4679 NewC.lshrInPlace(ShiftBits); 4680 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4681 isLegalICmpImmediate(NewC.getSExtValue()) && 4682 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4683 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4684 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4685 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4686 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4687 } 4688 } 4689 } 4690 } 4691 4692 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4693 auto *CFP = cast<ConstantFPSDNode>(N1); 4694 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4695 4696 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4697 // constant if knowing that the operand is non-nan is enough. We prefer to 4698 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4699 // materialize 0.0. 4700 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4701 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4702 4703 // setcc (fneg x), C -> setcc swap(pred) x, -C 4704 if (N0.getOpcode() == ISD::FNEG) { 4705 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4706 if (DCI.isBeforeLegalizeOps() || 4707 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4708 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4709 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4710 } 4711 } 4712 4713 // If the condition is not legal, see if we can find an equivalent one 4714 // which is legal. 4715 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4716 // If the comparison was an awkward floating-point == or != and one of 4717 // the comparison operands is infinity or negative infinity, convert the 4718 // condition to a less-awkward <= or >=. 4719 if (CFP->getValueAPF().isInfinity()) { 4720 bool IsNegInf = CFP->getValueAPF().isNegative(); 4721 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4722 switch (Cond) { 4723 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4724 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4725 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4726 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4727 default: break; 4728 } 4729 if (NewCond != ISD::SETCC_INVALID && 4730 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4731 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4732 } 4733 } 4734 } 4735 4736 if (N0 == N1) { 4737 // The sext(setcc()) => setcc() optimization relies on the appropriate 4738 // constant being emitted. 4739 assert(!N0.getValueType().isInteger() && 4740 "Integer types should be handled by FoldSetCC"); 4741 4742 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4743 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4744 if (UOF == 2) // FP operators that are undefined on NaNs. 4745 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4746 if (UOF == unsigned(EqTrue)) 4747 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4748 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4749 // if it is not already. 4750 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4751 if (NewCond != Cond && 4752 (DCI.isBeforeLegalizeOps() || 4753 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4754 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4755 } 4756 4757 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4758 N0.getValueType().isInteger()) { 4759 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4760 N0.getOpcode() == ISD::XOR) { 4761 // Simplify (X+Y) == (X+Z) --> Y == Z 4762 if (N0.getOpcode() == N1.getOpcode()) { 4763 if (N0.getOperand(0) == N1.getOperand(0)) 4764 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4765 if (N0.getOperand(1) == N1.getOperand(1)) 4766 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4767 if (isCommutativeBinOp(N0.getOpcode())) { 4768 // If X op Y == Y op X, try other combinations. 4769 if (N0.getOperand(0) == N1.getOperand(1)) 4770 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4771 Cond); 4772 if (N0.getOperand(1) == N1.getOperand(0)) 4773 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4774 Cond); 4775 } 4776 } 4777 4778 // If RHS is a legal immediate value for a compare instruction, we need 4779 // to be careful about increasing register pressure needlessly. 4780 bool LegalRHSImm = false; 4781 4782 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4783 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4784 // Turn (X+C1) == C2 --> X == C2-C1 4785 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) 4786 return DAG.getSetCC( 4787 dl, VT, N0.getOperand(0), 4788 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(), 4789 dl, N0.getValueType()), 4790 Cond); 4791 4792 // Turn (X^C1) == C2 --> X == C1^C2 4793 if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse()) 4794 return DAG.getSetCC( 4795 dl, VT, N0.getOperand(0), 4796 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(), 4797 dl, N0.getValueType()), 4798 Cond); 4799 } 4800 4801 // Turn (C1-X) == C2 --> X == C1-C2 4802 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) 4803 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) 4804 return DAG.getSetCC( 4805 dl, VT, N0.getOperand(1), 4806 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(), 4807 dl, N0.getValueType()), 4808 Cond); 4809 4810 // Could RHSC fold directly into a compare? 4811 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4812 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4813 } 4814 4815 // (X+Y) == X --> Y == 0 and similar folds. 4816 // Don't do this if X is an immediate that can fold into a cmp 4817 // instruction and X+Y has other uses. It could be an induction variable 4818 // chain, and the transform would increase register pressure. 4819 if (!LegalRHSImm || N0.hasOneUse()) 4820 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4821 return V; 4822 } 4823 4824 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4825 N1.getOpcode() == ISD::XOR) 4826 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4827 return V; 4828 4829 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4830 return V; 4831 } 4832 4833 // Fold remainder of division by a constant. 4834 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4835 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4836 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4837 4838 // When division is cheap or optimizing for minimum size, 4839 // fall through to DIVREM creation by skipping this fold. 4840 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4841 if (N0.getOpcode() == ISD::UREM) { 4842 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4843 return Folded; 4844 } else if (N0.getOpcode() == ISD::SREM) { 4845 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4846 return Folded; 4847 } 4848 } 4849 } 4850 4851 // Fold away ALL boolean setcc's. 4852 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4853 SDValue Temp; 4854 switch (Cond) { 4855 default: llvm_unreachable("Unknown integer setcc!"); 4856 case ISD::SETEQ: // X == Y -> ~(X^Y) 4857 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4858 N0 = DAG.getNOT(dl, Temp, OpVT); 4859 if (!DCI.isCalledByLegalizer()) 4860 DCI.AddToWorklist(Temp.getNode()); 4861 break; 4862 case ISD::SETNE: // X != Y --> (X^Y) 4863 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4864 break; 4865 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4866 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4867 Temp = DAG.getNOT(dl, N0, OpVT); 4868 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4869 if (!DCI.isCalledByLegalizer()) 4870 DCI.AddToWorklist(Temp.getNode()); 4871 break; 4872 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4873 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4874 Temp = DAG.getNOT(dl, N1, OpVT); 4875 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4876 if (!DCI.isCalledByLegalizer()) 4877 DCI.AddToWorklist(Temp.getNode()); 4878 break; 4879 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4880 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4881 Temp = DAG.getNOT(dl, N0, OpVT); 4882 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4883 if (!DCI.isCalledByLegalizer()) 4884 DCI.AddToWorklist(Temp.getNode()); 4885 break; 4886 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4887 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4888 Temp = DAG.getNOT(dl, N1, OpVT); 4889 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4890 break; 4891 } 4892 if (VT.getScalarType() != MVT::i1) { 4893 if (!DCI.isCalledByLegalizer()) 4894 DCI.AddToWorklist(N0.getNode()); 4895 // FIXME: If running after legalize, we probably can't do this. 4896 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4897 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4898 } 4899 return N0; 4900 } 4901 4902 // Could not fold it. 4903 return SDValue(); 4904 } 4905 4906 /// Returns true (and the GlobalValue and the offset) if the node is a 4907 /// GlobalAddress + offset. 4908 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4909 int64_t &Offset) const { 4910 4911 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4912 4913 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4914 GA = GASD->getGlobal(); 4915 Offset += GASD->getOffset(); 4916 return true; 4917 } 4918 4919 if (N->getOpcode() == ISD::ADD) { 4920 SDValue N1 = N->getOperand(0); 4921 SDValue N2 = N->getOperand(1); 4922 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4923 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4924 Offset += V->getSExtValue(); 4925 return true; 4926 } 4927 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4928 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4929 Offset += V->getSExtValue(); 4930 return true; 4931 } 4932 } 4933 } 4934 4935 return false; 4936 } 4937 4938 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4939 DAGCombinerInfo &DCI) const { 4940 // Default implementation: no optimization. 4941 return SDValue(); 4942 } 4943 4944 //===----------------------------------------------------------------------===// 4945 // Inline Assembler Implementation Methods 4946 //===----------------------------------------------------------------------===// 4947 4948 TargetLowering::ConstraintType 4949 TargetLowering::getConstraintType(StringRef Constraint) const { 4950 unsigned S = Constraint.size(); 4951 4952 if (S == 1) { 4953 switch (Constraint[0]) { 4954 default: break; 4955 case 'r': 4956 return C_RegisterClass; 4957 case 'm': // memory 4958 case 'o': // offsetable 4959 case 'V': // not offsetable 4960 return C_Memory; 4961 case 'p': // Address. 4962 return C_Address; 4963 case 'n': // Simple Integer 4964 case 'E': // Floating Point Constant 4965 case 'F': // Floating Point Constant 4966 return C_Immediate; 4967 case 'i': // Simple Integer or Relocatable Constant 4968 case 's': // Relocatable Constant 4969 case 'X': // Allow ANY value. 4970 case 'I': // Target registers. 4971 case 'J': 4972 case 'K': 4973 case 'L': 4974 case 'M': 4975 case 'N': 4976 case 'O': 4977 case 'P': 4978 case '<': 4979 case '>': 4980 return C_Other; 4981 } 4982 } 4983 4984 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4985 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4986 return C_Memory; 4987 return C_Register; 4988 } 4989 return C_Unknown; 4990 } 4991 4992 /// Try to replace an X constraint, which matches anything, with another that 4993 /// has more specific requirements based on the type of the corresponding 4994 /// operand. 4995 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4996 if (ConstraintVT.isInteger()) 4997 return "r"; 4998 if (ConstraintVT.isFloatingPoint()) 4999 return "f"; // works for many targets 5000 return nullptr; 5001 } 5002 5003 SDValue TargetLowering::LowerAsmOutputForConstraint( 5004 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 5005 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 5006 return SDValue(); 5007 } 5008 5009 /// Lower the specified operand into the Ops vector. 5010 /// If it is invalid, don't add anything to Ops. 5011 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 5012 std::string &Constraint, 5013 std::vector<SDValue> &Ops, 5014 SelectionDAG &DAG) const { 5015 5016 if (Constraint.length() > 1) return; 5017 5018 char ConstraintLetter = Constraint[0]; 5019 switch (ConstraintLetter) { 5020 default: break; 5021 case 'X': // Allows any operand 5022 case 'i': // Simple Integer or Relocatable Constant 5023 case 'n': // Simple Integer 5024 case 's': { // Relocatable Constant 5025 5026 ConstantSDNode *C; 5027 uint64_t Offset = 0; 5028 5029 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 5030 // etc., since getelementpointer is variadic. We can't use 5031 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 5032 // while in this case the GA may be furthest from the root node which is 5033 // likely an ISD::ADD. 5034 while (true) { 5035 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 5036 // gcc prints these as sign extended. Sign extend value to 64 bits 5037 // now; without this it would get ZExt'd later in 5038 // ScheduleDAGSDNodes::EmitNode, which is very generic. 5039 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 5040 BooleanContent BCont = getBooleanContents(MVT::i64); 5041 ISD::NodeType ExtOpc = 5042 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 5043 int64_t ExtVal = 5044 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 5045 Ops.push_back( 5046 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 5047 return; 5048 } 5049 if (ConstraintLetter != 'n') { 5050 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 5051 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 5052 GA->getValueType(0), 5053 Offset + GA->getOffset())); 5054 return; 5055 } 5056 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 5057 Ops.push_back(DAG.getTargetBlockAddress( 5058 BA->getBlockAddress(), BA->getValueType(0), 5059 Offset + BA->getOffset(), BA->getTargetFlags())); 5060 return; 5061 } 5062 if (isa<BasicBlockSDNode>(Op)) { 5063 Ops.push_back(Op); 5064 return; 5065 } 5066 } 5067 const unsigned OpCode = Op.getOpcode(); 5068 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 5069 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 5070 Op = Op.getOperand(1); 5071 // Subtraction is not commutative. 5072 else if (OpCode == ISD::ADD && 5073 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 5074 Op = Op.getOperand(0); 5075 else 5076 return; 5077 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 5078 continue; 5079 } 5080 return; 5081 } 5082 break; 5083 } 5084 } 5085 } 5086 5087 std::pair<unsigned, const TargetRegisterClass *> 5088 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 5089 StringRef Constraint, 5090 MVT VT) const { 5091 if (Constraint.empty() || Constraint[0] != '{') 5092 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 5093 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 5094 5095 // Remove the braces from around the name. 5096 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 5097 5098 std::pair<unsigned, const TargetRegisterClass *> R = 5099 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 5100 5101 // Figure out which register class contains this reg. 5102 for (const TargetRegisterClass *RC : RI->regclasses()) { 5103 // If none of the value types for this register class are valid, we 5104 // can't use it. For example, 64-bit reg classes on 32-bit targets. 5105 if (!isLegalRC(*RI, *RC)) 5106 continue; 5107 5108 for (const MCPhysReg &PR : *RC) { 5109 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 5110 std::pair<unsigned, const TargetRegisterClass *> S = 5111 std::make_pair(PR, RC); 5112 5113 // If this register class has the requested value type, return it, 5114 // otherwise keep searching and return the first class found 5115 // if no other is found which explicitly has the requested type. 5116 if (RI->isTypeLegalForClass(*RC, VT)) 5117 return S; 5118 if (!R.second) 5119 R = S; 5120 } 5121 } 5122 } 5123 5124 return R; 5125 } 5126 5127 //===----------------------------------------------------------------------===// 5128 // Constraint Selection. 5129 5130 /// Return true of this is an input operand that is a matching constraint like 5131 /// "4". 5132 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 5133 assert(!ConstraintCode.empty() && "No known constraint!"); 5134 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 5135 } 5136 5137 /// If this is an input matching constraint, this method returns the output 5138 /// operand it matches. 5139 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 5140 assert(!ConstraintCode.empty() && "No known constraint!"); 5141 return atoi(ConstraintCode.c_str()); 5142 } 5143 5144 /// Split up the constraint string from the inline assembly value into the 5145 /// specific constraints and their prefixes, and also tie in the associated 5146 /// operand values. 5147 /// If this returns an empty vector, and if the constraint string itself 5148 /// isn't empty, there was an error parsing. 5149 TargetLowering::AsmOperandInfoVector 5150 TargetLowering::ParseConstraints(const DataLayout &DL, 5151 const TargetRegisterInfo *TRI, 5152 const CallBase &Call) const { 5153 /// Information about all of the constraints. 5154 AsmOperandInfoVector ConstraintOperands; 5155 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 5156 unsigned maCount = 0; // Largest number of multiple alternative constraints. 5157 5158 // Do a prepass over the constraints, canonicalizing them, and building up the 5159 // ConstraintOperands list. 5160 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5161 unsigned ResNo = 0; // ResNo - The result number of the next output. 5162 5163 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 5164 ConstraintOperands.emplace_back(std::move(CI)); 5165 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 5166 5167 // Update multiple alternative constraint count. 5168 if (OpInfo.multipleAlternatives.size() > maCount) 5169 maCount = OpInfo.multipleAlternatives.size(); 5170 5171 OpInfo.ConstraintVT = MVT::Other; 5172 5173 // Compute the value type for each operand. 5174 switch (OpInfo.Type) { 5175 case InlineAsm::isOutput: 5176 // Indirect outputs just consume an argument. 5177 if (OpInfo.isIndirect) { 5178 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5179 break; 5180 } 5181 5182 // The return value of the call is this value. As such, there is no 5183 // corresponding argument. 5184 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 5185 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 5186 OpInfo.ConstraintVT = 5187 getSimpleValueType(DL, STy->getElementType(ResNo)); 5188 } else { 5189 assert(ResNo == 0 && "Asm only has one result!"); 5190 OpInfo.ConstraintVT = 5191 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 5192 } 5193 ++ResNo; 5194 break; 5195 case InlineAsm::isInput: 5196 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 5197 break; 5198 case InlineAsm::isClobber: 5199 // Nothing to do. 5200 break; 5201 } 5202 5203 if (OpInfo.CallOperandVal) { 5204 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 5205 if (OpInfo.isIndirect) { 5206 OpTy = Call.getParamElementType(ArgNo); 5207 assert(OpTy && "Indirect operand must have elementtype attribute"); 5208 } 5209 5210 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5211 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5212 if (STy->getNumElements() == 1) 5213 OpTy = STy->getElementType(0); 5214 5215 // If OpTy is not a single value, it may be a struct/union that we 5216 // can tile with integers. 5217 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5218 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5219 switch (BitSize) { 5220 default: break; 5221 case 1: 5222 case 8: 5223 case 16: 5224 case 32: 5225 case 64: 5226 case 128: 5227 OpInfo.ConstraintVT = 5228 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5229 break; 5230 } 5231 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5232 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5233 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5234 } else { 5235 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5236 } 5237 5238 ArgNo++; 5239 } 5240 } 5241 5242 // If we have multiple alternative constraints, select the best alternative. 5243 if (!ConstraintOperands.empty()) { 5244 if (maCount) { 5245 unsigned bestMAIndex = 0; 5246 int bestWeight = -1; 5247 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5248 int weight = -1; 5249 unsigned maIndex; 5250 // Compute the sums of the weights for each alternative, keeping track 5251 // of the best (highest weight) one so far. 5252 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5253 int weightSum = 0; 5254 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5255 cIndex != eIndex; ++cIndex) { 5256 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5257 if (OpInfo.Type == InlineAsm::isClobber) 5258 continue; 5259 5260 // If this is an output operand with a matching input operand, 5261 // look up the matching input. If their types mismatch, e.g. one 5262 // is an integer, the other is floating point, or their sizes are 5263 // different, flag it as an maCantMatch. 5264 if (OpInfo.hasMatchingInput()) { 5265 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5266 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5267 if ((OpInfo.ConstraintVT.isInteger() != 5268 Input.ConstraintVT.isInteger()) || 5269 (OpInfo.ConstraintVT.getSizeInBits() != 5270 Input.ConstraintVT.getSizeInBits())) { 5271 weightSum = -1; // Can't match. 5272 break; 5273 } 5274 } 5275 } 5276 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5277 if (weight == -1) { 5278 weightSum = -1; 5279 break; 5280 } 5281 weightSum += weight; 5282 } 5283 // Update best. 5284 if (weightSum > bestWeight) { 5285 bestWeight = weightSum; 5286 bestMAIndex = maIndex; 5287 } 5288 } 5289 5290 // Now select chosen alternative in each constraint. 5291 for (AsmOperandInfo &cInfo : ConstraintOperands) 5292 if (cInfo.Type != InlineAsm::isClobber) 5293 cInfo.selectAlternative(bestMAIndex); 5294 } 5295 } 5296 5297 // Check and hook up tied operands, choose constraint code to use. 5298 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5299 cIndex != eIndex; ++cIndex) { 5300 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5301 5302 // If this is an output operand with a matching input operand, look up the 5303 // matching input. If their types mismatch, e.g. one is an integer, the 5304 // other is floating point, or their sizes are different, flag it as an 5305 // error. 5306 if (OpInfo.hasMatchingInput()) { 5307 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5308 5309 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5310 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5311 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5312 OpInfo.ConstraintVT); 5313 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5314 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5315 Input.ConstraintVT); 5316 if ((OpInfo.ConstraintVT.isInteger() != 5317 Input.ConstraintVT.isInteger()) || 5318 (MatchRC.second != InputRC.second)) { 5319 report_fatal_error("Unsupported asm: input constraint" 5320 " with a matching output constraint of" 5321 " incompatible type!"); 5322 } 5323 } 5324 } 5325 } 5326 5327 return ConstraintOperands; 5328 } 5329 5330 /// Return an integer indicating how general CT is. 5331 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5332 switch (CT) { 5333 case TargetLowering::C_Immediate: 5334 case TargetLowering::C_Other: 5335 case TargetLowering::C_Unknown: 5336 return 0; 5337 case TargetLowering::C_Register: 5338 return 1; 5339 case TargetLowering::C_RegisterClass: 5340 return 2; 5341 case TargetLowering::C_Memory: 5342 case TargetLowering::C_Address: 5343 return 3; 5344 } 5345 llvm_unreachable("Invalid constraint type"); 5346 } 5347 5348 /// Examine constraint type and operand type and determine a weight value. 5349 /// This object must already have been set up with the operand type 5350 /// and the current alternative constraint selected. 5351 TargetLowering::ConstraintWeight 5352 TargetLowering::getMultipleConstraintMatchWeight( 5353 AsmOperandInfo &info, int maIndex) const { 5354 InlineAsm::ConstraintCodeVector *rCodes; 5355 if (maIndex >= (int)info.multipleAlternatives.size()) 5356 rCodes = &info.Codes; 5357 else 5358 rCodes = &info.multipleAlternatives[maIndex].Codes; 5359 ConstraintWeight BestWeight = CW_Invalid; 5360 5361 // Loop over the options, keeping track of the most general one. 5362 for (const std::string &rCode : *rCodes) { 5363 ConstraintWeight weight = 5364 getSingleConstraintMatchWeight(info, rCode.c_str()); 5365 if (weight > BestWeight) 5366 BestWeight = weight; 5367 } 5368 5369 return BestWeight; 5370 } 5371 5372 /// Examine constraint type and operand type and determine a weight value. 5373 /// This object must already have been set up with the operand type 5374 /// and the current alternative constraint selected. 5375 TargetLowering::ConstraintWeight 5376 TargetLowering::getSingleConstraintMatchWeight( 5377 AsmOperandInfo &info, const char *constraint) const { 5378 ConstraintWeight weight = CW_Invalid; 5379 Value *CallOperandVal = info.CallOperandVal; 5380 // If we don't have a value, we can't do a match, 5381 // but allow it at the lowest weight. 5382 if (!CallOperandVal) 5383 return CW_Default; 5384 // Look at the constraint type. 5385 switch (*constraint) { 5386 case 'i': // immediate integer. 5387 case 'n': // immediate integer with a known value. 5388 if (isa<ConstantInt>(CallOperandVal)) 5389 weight = CW_Constant; 5390 break; 5391 case 's': // non-explicit intregal immediate. 5392 if (isa<GlobalValue>(CallOperandVal)) 5393 weight = CW_Constant; 5394 break; 5395 case 'E': // immediate float if host format. 5396 case 'F': // immediate float. 5397 if (isa<ConstantFP>(CallOperandVal)) 5398 weight = CW_Constant; 5399 break; 5400 case '<': // memory operand with autodecrement. 5401 case '>': // memory operand with autoincrement. 5402 case 'm': // memory operand. 5403 case 'o': // offsettable memory operand 5404 case 'V': // non-offsettable memory operand 5405 weight = CW_Memory; 5406 break; 5407 case 'r': // general register. 5408 case 'g': // general register, memory operand or immediate integer. 5409 // note: Clang converts "g" to "imr". 5410 if (CallOperandVal->getType()->isIntegerTy()) 5411 weight = CW_Register; 5412 break; 5413 case 'X': // any operand. 5414 default: 5415 weight = CW_Default; 5416 break; 5417 } 5418 return weight; 5419 } 5420 5421 /// If there are multiple different constraints that we could pick for this 5422 /// operand (e.g. "imr") try to pick the 'best' one. 5423 /// This is somewhat tricky: constraints fall into four classes: 5424 /// Other -> immediates and magic values 5425 /// Register -> one specific register 5426 /// RegisterClass -> a group of regs 5427 /// Memory -> memory 5428 /// Ideally, we would pick the most specific constraint possible: if we have 5429 /// something that fits into a register, we would pick it. The problem here 5430 /// is that if we have something that could either be in a register or in 5431 /// memory that use of the register could cause selection of *other* 5432 /// operands to fail: they might only succeed if we pick memory. Because of 5433 /// this the heuristic we use is: 5434 /// 5435 /// 1) If there is an 'other' constraint, and if the operand is valid for 5436 /// that constraint, use it. This makes us take advantage of 'i' 5437 /// constraints when available. 5438 /// 2) Otherwise, pick the most general constraint present. This prefers 5439 /// 'm' over 'r', for example. 5440 /// 5441 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5442 const TargetLowering &TLI, 5443 SDValue Op, SelectionDAG *DAG) { 5444 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5445 unsigned BestIdx = 0; 5446 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5447 int BestGenerality = -1; 5448 5449 // Loop over the options, keeping track of the most general one. 5450 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5451 TargetLowering::ConstraintType CType = 5452 TLI.getConstraintType(OpInfo.Codes[i]); 5453 5454 // Indirect 'other' or 'immediate' constraints are not allowed. 5455 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5456 CType == TargetLowering::C_Register || 5457 CType == TargetLowering::C_RegisterClass)) 5458 continue; 5459 5460 // If this is an 'other' or 'immediate' constraint, see if the operand is 5461 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5462 // the operand is an integer in the range [0..31] we want to use I (saving a 5463 // load of a register), otherwise we must use 'r'. 5464 if ((CType == TargetLowering::C_Other || 5465 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5466 assert(OpInfo.Codes[i].size() == 1 && 5467 "Unhandled multi-letter 'other' constraint"); 5468 std::vector<SDValue> ResultOps; 5469 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5470 ResultOps, *DAG); 5471 if (!ResultOps.empty()) { 5472 BestType = CType; 5473 BestIdx = i; 5474 break; 5475 } 5476 } 5477 5478 // Things with matching constraints can only be registers, per gcc 5479 // documentation. This mainly affects "g" constraints. 5480 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5481 continue; 5482 5483 // This constraint letter is more general than the previous one, use it. 5484 int Generality = getConstraintGenerality(CType); 5485 if (Generality > BestGenerality) { 5486 BestType = CType; 5487 BestIdx = i; 5488 BestGenerality = Generality; 5489 } 5490 } 5491 5492 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5493 OpInfo.ConstraintType = BestType; 5494 } 5495 5496 /// Determines the constraint code and constraint type to use for the specific 5497 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5498 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5499 SDValue Op, 5500 SelectionDAG *DAG) const { 5501 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5502 5503 // Single-letter constraints ('r') are very common. 5504 if (OpInfo.Codes.size() == 1) { 5505 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5506 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5507 } else { 5508 ChooseConstraint(OpInfo, *this, Op, DAG); 5509 } 5510 5511 // 'X' matches anything. 5512 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5513 // Constants are handled elsewhere. For Functions, the type here is the 5514 // type of the result, which is not what we want to look at; leave them 5515 // alone. 5516 Value *v = OpInfo.CallOperandVal; 5517 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5518 return; 5519 } 5520 5521 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5522 OpInfo.ConstraintCode = "i"; 5523 return; 5524 } 5525 5526 // Otherwise, try to resolve it to something we know about by looking at 5527 // the actual operand type. 5528 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5529 OpInfo.ConstraintCode = Repl; 5530 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5531 } 5532 } 5533 } 5534 5535 /// Given an exact SDIV by a constant, create a multiplication 5536 /// with the multiplicative inverse of the constant. 5537 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5538 const SDLoc &dl, SelectionDAG &DAG, 5539 SmallVectorImpl<SDNode *> &Created) { 5540 SDValue Op0 = N->getOperand(0); 5541 SDValue Op1 = N->getOperand(1); 5542 EVT VT = N->getValueType(0); 5543 EVT SVT = VT.getScalarType(); 5544 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5545 EVT ShSVT = ShVT.getScalarType(); 5546 5547 bool UseSRA = false; 5548 SmallVector<SDValue, 16> Shifts, Factors; 5549 5550 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5551 if (C->isZero()) 5552 return false; 5553 APInt Divisor = C->getAPIntValue(); 5554 unsigned Shift = Divisor.countTrailingZeros(); 5555 if (Shift) { 5556 Divisor.ashrInPlace(Shift); 5557 UseSRA = true; 5558 } 5559 // Calculate the multiplicative inverse, using Newton's method. 5560 APInt t; 5561 APInt Factor = Divisor; 5562 while ((t = Divisor * Factor) != 1) 5563 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5564 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5565 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5566 return true; 5567 }; 5568 5569 // Collect all magic values from the build vector. 5570 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5571 return SDValue(); 5572 5573 SDValue Shift, Factor; 5574 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5575 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5576 Factor = DAG.getBuildVector(VT, dl, Factors); 5577 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5578 assert(Shifts.size() == 1 && Factors.size() == 1 && 5579 "Expected matchUnaryPredicate to return one element for scalable " 5580 "vectors"); 5581 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5582 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5583 } else { 5584 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5585 Shift = Shifts[0]; 5586 Factor = Factors[0]; 5587 } 5588 5589 SDValue Res = Op0; 5590 5591 // Shift the value upfront if it is even, so the LSB is one. 5592 if (UseSRA) { 5593 // TODO: For UDIV use SRL instead of SRA. 5594 SDNodeFlags Flags; 5595 Flags.setExact(true); 5596 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5597 Created.push_back(Res.getNode()); 5598 } 5599 5600 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5601 } 5602 5603 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5604 SelectionDAG &DAG, 5605 SmallVectorImpl<SDNode *> &Created) const { 5606 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5607 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5608 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5609 return SDValue(N, 0); // Lower SDIV as SDIV 5610 return SDValue(); 5611 } 5612 5613 SDValue 5614 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor, 5615 SelectionDAG &DAG, 5616 SmallVectorImpl<SDNode *> &Created) const { 5617 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5618 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5619 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5620 return SDValue(N, 0); // Lower SREM as SREM 5621 return SDValue(); 5622 } 5623 5624 /// Given an ISD::SDIV node expressing a divide by constant, 5625 /// return a DAG expression to select that will generate the same value by 5626 /// multiplying by a magic number. 5627 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5628 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5629 bool IsAfterLegalization, 5630 SmallVectorImpl<SDNode *> &Created) const { 5631 SDLoc dl(N); 5632 EVT VT = N->getValueType(0); 5633 EVT SVT = VT.getScalarType(); 5634 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5635 EVT ShSVT = ShVT.getScalarType(); 5636 unsigned EltBits = VT.getScalarSizeInBits(); 5637 EVT MulVT; 5638 5639 // Check to see if we can do this. 5640 // FIXME: We should be more aggressive here. 5641 if (!isTypeLegal(VT)) { 5642 // Limit this to simple scalars for now. 5643 if (VT.isVector() || !VT.isSimple()) 5644 return SDValue(); 5645 5646 // If this type will be promoted to a large enough type with a legal 5647 // multiply operation, we can go ahead and do this transform. 5648 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5649 return SDValue(); 5650 5651 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5652 if (MulVT.getSizeInBits() < (2 * EltBits) || 5653 !isOperationLegal(ISD::MUL, MulVT)) 5654 return SDValue(); 5655 } 5656 5657 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5658 if (N->getFlags().hasExact()) 5659 return BuildExactSDIV(*this, N, dl, DAG, Created); 5660 5661 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5662 5663 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5664 if (C->isZero()) 5665 return false; 5666 5667 const APInt &Divisor = C->getAPIntValue(); 5668 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5669 int NumeratorFactor = 0; 5670 int ShiftMask = -1; 5671 5672 if (Divisor.isOne() || Divisor.isAllOnes()) { 5673 // If d is +1/-1, we just multiply the numerator by +1/-1. 5674 NumeratorFactor = Divisor.getSExtValue(); 5675 magics.Magic = 0; 5676 magics.ShiftAmount = 0; 5677 ShiftMask = 0; 5678 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5679 // If d > 0 and m < 0, add the numerator. 5680 NumeratorFactor = 1; 5681 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5682 // If d < 0 and m > 0, subtract the numerator. 5683 NumeratorFactor = -1; 5684 } 5685 5686 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5687 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5688 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5689 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5690 return true; 5691 }; 5692 5693 SDValue N0 = N->getOperand(0); 5694 SDValue N1 = N->getOperand(1); 5695 5696 // Collect the shifts / magic values from each element. 5697 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5698 return SDValue(); 5699 5700 SDValue MagicFactor, Factor, Shift, ShiftMask; 5701 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5702 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5703 Factor = DAG.getBuildVector(VT, dl, Factors); 5704 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5705 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5706 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5707 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5708 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5709 "Expected matchUnaryPredicate to return one element for scalable " 5710 "vectors"); 5711 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5712 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5713 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5714 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5715 } else { 5716 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5717 MagicFactor = MagicFactors[0]; 5718 Factor = Factors[0]; 5719 Shift = Shifts[0]; 5720 ShiftMask = ShiftMasks[0]; 5721 } 5722 5723 // Multiply the numerator (operand 0) by the magic value. 5724 // FIXME: We should support doing a MUL in a wider type. 5725 auto GetMULHS = [&](SDValue X, SDValue Y) { 5726 // If the type isn't legal, use a wider mul of the the type calculated 5727 // earlier. 5728 if (!isTypeLegal(VT)) { 5729 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5730 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5731 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5732 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5733 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5734 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5735 } 5736 5737 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5738 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5739 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5740 SDValue LoHi = 5741 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5742 return SDValue(LoHi.getNode(), 1); 5743 } 5744 return SDValue(); 5745 }; 5746 5747 SDValue Q = GetMULHS(N0, MagicFactor); 5748 if (!Q) 5749 return SDValue(); 5750 5751 Created.push_back(Q.getNode()); 5752 5753 // (Optionally) Add/subtract the numerator using Factor. 5754 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5755 Created.push_back(Factor.getNode()); 5756 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5757 Created.push_back(Q.getNode()); 5758 5759 // Shift right algebraic by shift value. 5760 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5761 Created.push_back(Q.getNode()); 5762 5763 // Extract the sign bit, mask it and add it to the quotient. 5764 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5765 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5766 Created.push_back(T.getNode()); 5767 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5768 Created.push_back(T.getNode()); 5769 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5770 } 5771 5772 /// Given an ISD::UDIV node expressing a divide by constant, 5773 /// return a DAG expression to select that will generate the same value by 5774 /// multiplying by a magic number. 5775 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5776 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5777 bool IsAfterLegalization, 5778 SmallVectorImpl<SDNode *> &Created) const { 5779 SDLoc dl(N); 5780 EVT VT = N->getValueType(0); 5781 EVT SVT = VT.getScalarType(); 5782 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5783 EVT ShSVT = ShVT.getScalarType(); 5784 unsigned EltBits = VT.getScalarSizeInBits(); 5785 EVT MulVT; 5786 5787 // Check to see if we can do this. 5788 // FIXME: We should be more aggressive here. 5789 if (!isTypeLegal(VT)) { 5790 // Limit this to simple scalars for now. 5791 if (VT.isVector() || !VT.isSimple()) 5792 return SDValue(); 5793 5794 // If this type will be promoted to a large enough type with a legal 5795 // multiply operation, we can go ahead and do this transform. 5796 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5797 return SDValue(); 5798 5799 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5800 if (MulVT.getSizeInBits() < (2 * EltBits) || 5801 !isOperationLegal(ISD::MUL, MulVT)) 5802 return SDValue(); 5803 } 5804 5805 bool UseNPQ = false; 5806 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5807 5808 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5809 if (C->isZero()) 5810 return false; 5811 // FIXME: We should use a narrower constant when the upper 5812 // bits are known to be zero. 5813 const APInt& Divisor = C->getAPIntValue(); 5814 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5815 unsigned PreShift = 0, PostShift = 0; 5816 5817 // If the divisor is even, we can avoid using the expensive fixup by 5818 // shifting the divided value upfront. 5819 if (magics.IsAdd != 0 && !Divisor[0]) { 5820 PreShift = Divisor.countTrailingZeros(); 5821 // Get magic number for the shifted divisor. 5822 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5823 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5824 } 5825 5826 APInt Magic = magics.Magic; 5827 5828 unsigned SelNPQ; 5829 if (magics.IsAdd == 0 || Divisor.isOne()) { 5830 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5831 "We shouldn't generate an undefined shift!"); 5832 PostShift = magics.ShiftAmount; 5833 SelNPQ = false; 5834 } else { 5835 PostShift = magics.ShiftAmount - 1; 5836 SelNPQ = true; 5837 } 5838 5839 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5840 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5841 NPQFactors.push_back( 5842 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5843 : APInt::getZero(EltBits), 5844 dl, SVT)); 5845 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5846 UseNPQ |= SelNPQ; 5847 return true; 5848 }; 5849 5850 SDValue N0 = N->getOperand(0); 5851 SDValue N1 = N->getOperand(1); 5852 5853 // Collect the shifts/magic values from each element. 5854 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5855 return SDValue(); 5856 5857 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5858 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5859 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5860 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5861 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5862 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5863 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5864 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5865 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5866 "Expected matchUnaryPredicate to return one for scalable vectors"); 5867 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5868 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5869 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5870 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5871 } else { 5872 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5873 PreShift = PreShifts[0]; 5874 MagicFactor = MagicFactors[0]; 5875 PostShift = PostShifts[0]; 5876 } 5877 5878 SDValue Q = N0; 5879 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5880 Created.push_back(Q.getNode()); 5881 5882 // FIXME: We should support doing a MUL in a wider type. 5883 auto GetMULHU = [&](SDValue X, SDValue Y) { 5884 // If the type isn't legal, use a wider mul of the the type calculated 5885 // earlier. 5886 if (!isTypeLegal(VT)) { 5887 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5888 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5889 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5890 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5891 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5892 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5893 } 5894 5895 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5896 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5897 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5898 SDValue LoHi = 5899 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5900 return SDValue(LoHi.getNode(), 1); 5901 } 5902 return SDValue(); // No mulhu or equivalent 5903 }; 5904 5905 // Multiply the numerator (operand 0) by the magic value. 5906 Q = GetMULHU(Q, MagicFactor); 5907 if (!Q) 5908 return SDValue(); 5909 5910 Created.push_back(Q.getNode()); 5911 5912 if (UseNPQ) { 5913 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5914 Created.push_back(NPQ.getNode()); 5915 5916 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5917 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5918 if (VT.isVector()) 5919 NPQ = GetMULHU(NPQ, NPQFactor); 5920 else 5921 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5922 5923 Created.push_back(NPQ.getNode()); 5924 5925 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5926 Created.push_back(Q.getNode()); 5927 } 5928 5929 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5930 Created.push_back(Q.getNode()); 5931 5932 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5933 5934 SDValue One = DAG.getConstant(1, dl, VT); 5935 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5936 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5937 } 5938 5939 /// If all values in Values that *don't* match the predicate are same 'splat' 5940 /// value, then replace all values with that splat value. 5941 /// Else, if AlternativeReplacement was provided, then replace all values that 5942 /// do match predicate with AlternativeReplacement value. 5943 static void 5944 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5945 std::function<bool(SDValue)> Predicate, 5946 SDValue AlternativeReplacement = SDValue()) { 5947 SDValue Replacement; 5948 // Is there a value for which the Predicate does *NOT* match? What is it? 5949 auto SplatValue = llvm::find_if_not(Values, Predicate); 5950 if (SplatValue != Values.end()) { 5951 // Does Values consist only of SplatValue's and values matching Predicate? 5952 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5953 return Value == *SplatValue || Predicate(Value); 5954 })) // Then we shall replace values matching predicate with SplatValue. 5955 Replacement = *SplatValue; 5956 } 5957 if (!Replacement) { 5958 // Oops, we did not find the "baseline" splat value. 5959 if (!AlternativeReplacement) 5960 return; // Nothing to do. 5961 // Let's replace with provided value then. 5962 Replacement = AlternativeReplacement; 5963 } 5964 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5965 } 5966 5967 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5968 /// where the divisor is constant and the comparison target is zero, 5969 /// return a DAG expression that will generate the same comparison result 5970 /// using only multiplications, additions and shifts/rotations. 5971 /// Ref: "Hacker's Delight" 10-17. 5972 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5973 SDValue CompTargetNode, 5974 ISD::CondCode Cond, 5975 DAGCombinerInfo &DCI, 5976 const SDLoc &DL) const { 5977 SmallVector<SDNode *, 5> Built; 5978 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5979 DCI, DL, Built)) { 5980 for (SDNode *N : Built) 5981 DCI.AddToWorklist(N); 5982 return Folded; 5983 } 5984 5985 return SDValue(); 5986 } 5987 5988 SDValue 5989 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5990 SDValue CompTargetNode, ISD::CondCode Cond, 5991 DAGCombinerInfo &DCI, const SDLoc &DL, 5992 SmallVectorImpl<SDNode *> &Created) const { 5993 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5994 // - D must be constant, with D = D0 * 2^K where D0 is odd 5995 // - P is the multiplicative inverse of D0 modulo 2^W 5996 // - Q = floor(((2^W) - 1) / D) 5997 // where W is the width of the common type of N and D. 5998 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5999 "Only applicable for (in)equality comparisons."); 6000 6001 SelectionDAG &DAG = DCI.DAG; 6002 6003 EVT VT = REMNode.getValueType(); 6004 EVT SVT = VT.getScalarType(); 6005 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6006 EVT ShSVT = ShVT.getScalarType(); 6007 6008 // If MUL is unavailable, we cannot proceed in any case. 6009 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6010 return SDValue(); 6011 6012 bool ComparingWithAllZeros = true; 6013 bool AllComparisonsWithNonZerosAreTautological = true; 6014 bool HadTautologicalLanes = false; 6015 bool AllLanesAreTautological = true; 6016 bool HadEvenDivisor = false; 6017 bool AllDivisorsArePowerOfTwo = true; 6018 bool HadTautologicalInvertedLanes = false; 6019 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 6020 6021 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 6022 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6023 if (CDiv->isZero()) 6024 return false; 6025 6026 const APInt &D = CDiv->getAPIntValue(); 6027 const APInt &Cmp = CCmp->getAPIntValue(); 6028 6029 ComparingWithAllZeros &= Cmp.isZero(); 6030 6031 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6032 // if C2 is not less than C1, the comparison is always false. 6033 // But we will only be able to produce the comparison that will give the 6034 // opposive tautological answer. So this lane would need to be fixed up. 6035 bool TautologicalInvertedLane = D.ule(Cmp); 6036 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 6037 6038 // If all lanes are tautological (either all divisors are ones, or divisor 6039 // is not greater than the constant we are comparing with), 6040 // we will prefer to avoid the fold. 6041 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 6042 HadTautologicalLanes |= TautologicalLane; 6043 AllLanesAreTautological &= TautologicalLane; 6044 6045 // If we are comparing with non-zero, we need'll need to subtract said 6046 // comparison value from the LHS. But there is no point in doing that if 6047 // every lane where we are comparing with non-zero is tautological.. 6048 if (!Cmp.isZero()) 6049 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 6050 6051 // Decompose D into D0 * 2^K 6052 unsigned K = D.countTrailingZeros(); 6053 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6054 APInt D0 = D.lshr(K); 6055 6056 // D is even if it has trailing zeros. 6057 HadEvenDivisor |= (K != 0); 6058 // D is a power-of-two if D0 is one. 6059 // If all divisors are power-of-two, we will prefer to avoid the fold. 6060 AllDivisorsArePowerOfTwo &= D0.isOne(); 6061 6062 // P = inv(D0, 2^W) 6063 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6064 unsigned W = D.getBitWidth(); 6065 APInt P = D0.zext(W + 1) 6066 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6067 .trunc(W); 6068 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6069 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6070 6071 // Q = floor((2^W - 1) u/ D) 6072 // R = ((2^W - 1) u% D) 6073 APInt Q, R; 6074 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 6075 6076 // If we are comparing with zero, then that comparison constant is okay, 6077 // else it may need to be one less than that. 6078 if (Cmp.ugt(R)) 6079 Q -= 1; 6080 6081 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6082 "We are expecting that K is always less than all-ones for ShSVT"); 6083 6084 // If the lane is tautological the result can be constant-folded. 6085 if (TautologicalLane) { 6086 // Set P and K amount to a bogus values so we can try to splat them. 6087 P = 0; 6088 K = -1; 6089 // And ensure that comparison constant is tautological, 6090 // it will always compare true/false. 6091 Q = -1; 6092 } 6093 6094 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6095 KAmts.push_back( 6096 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6097 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6098 return true; 6099 }; 6100 6101 SDValue N = REMNode.getOperand(0); 6102 SDValue D = REMNode.getOperand(1); 6103 6104 // Collect the values from each element. 6105 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 6106 return SDValue(); 6107 6108 // If all lanes are tautological, the result can be constant-folded. 6109 if (AllLanesAreTautological) 6110 return SDValue(); 6111 6112 // If this is a urem by a powers-of-two, avoid the fold since it can be 6113 // best implemented as a bit test. 6114 if (AllDivisorsArePowerOfTwo) 6115 return SDValue(); 6116 6117 SDValue PVal, KVal, QVal; 6118 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6119 if (HadTautologicalLanes) { 6120 // Try to turn PAmts into a splat, since we don't care about the values 6121 // that are currently '0'. If we can't, just keep '0'`s. 6122 turnVectorIntoSplatVector(PAmts, isNullConstant); 6123 // Try to turn KAmts into a splat, since we don't care about the values 6124 // that are currently '-1'. If we can't, change them to '0'`s. 6125 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6126 DAG.getConstant(0, DL, ShSVT)); 6127 } 6128 6129 PVal = DAG.getBuildVector(VT, DL, PAmts); 6130 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6131 QVal = DAG.getBuildVector(VT, DL, QAmts); 6132 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6133 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 6134 "Expected matchBinaryPredicate to return one element for " 6135 "SPLAT_VECTORs"); 6136 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6137 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6138 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6139 } else { 6140 PVal = PAmts[0]; 6141 KVal = KAmts[0]; 6142 QVal = QAmts[0]; 6143 } 6144 6145 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 6146 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 6147 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 6148 assert(CompTargetNode.getValueType() == N.getValueType() && 6149 "Expecting that the types on LHS and RHS of comparisons match."); 6150 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 6151 } 6152 6153 // (mul N, P) 6154 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6155 Created.push_back(Op0.getNode()); 6156 6157 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6158 // divisors as a performance improvement, since rotating by 0 is a no-op. 6159 if (HadEvenDivisor) { 6160 // We need ROTR to do this. 6161 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6162 return SDValue(); 6163 // UREM: (rotr (mul N, P), K) 6164 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6165 Created.push_back(Op0.getNode()); 6166 } 6167 6168 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 6169 SDValue NewCC = 6170 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6171 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6172 if (!HadTautologicalInvertedLanes) 6173 return NewCC; 6174 6175 // If any lanes previously compared always-false, the NewCC will give 6176 // always-true result for them, so we need to fixup those lanes. 6177 // Or the other way around for inequality predicate. 6178 assert(VT.isVector() && "Can/should only get here for vectors."); 6179 Created.push_back(NewCC.getNode()); 6180 6181 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 6182 // if C2 is not less than C1, the comparison is always false. 6183 // But we have produced the comparison that will give the 6184 // opposive tautological answer. So these lanes would need to be fixed up. 6185 SDValue TautologicalInvertedChannels = 6186 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 6187 Created.push_back(TautologicalInvertedChannels.getNode()); 6188 6189 // NOTE: we avoid letting illegal types through even if we're before legalize 6190 // ops – legalization has a hard time producing good code for this. 6191 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 6192 // If we have a vector select, let's replace the comparison results in the 6193 // affected lanes with the correct tautological result. 6194 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 6195 DL, SETCCVT, SETCCVT); 6196 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 6197 Replacement, NewCC); 6198 } 6199 6200 // Else, we can just invert the comparison result in the appropriate lanes. 6201 // 6202 // NOTE: see the note above VSELECT above. 6203 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 6204 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 6205 TautologicalInvertedChannels); 6206 6207 return SDValue(); // Don't know how to lower. 6208 } 6209 6210 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 6211 /// where the divisor is constant and the comparison target is zero, 6212 /// return a DAG expression that will generate the same comparison result 6213 /// using only multiplications, additions and shifts/rotations. 6214 /// Ref: "Hacker's Delight" 10-17. 6215 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 6216 SDValue CompTargetNode, 6217 ISD::CondCode Cond, 6218 DAGCombinerInfo &DCI, 6219 const SDLoc &DL) const { 6220 SmallVector<SDNode *, 7> Built; 6221 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 6222 DCI, DL, Built)) { 6223 assert(Built.size() <= 7 && "Max size prediction failed."); 6224 for (SDNode *N : Built) 6225 DCI.AddToWorklist(N); 6226 return Folded; 6227 } 6228 6229 return SDValue(); 6230 } 6231 6232 SDValue 6233 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6234 SDValue CompTargetNode, ISD::CondCode Cond, 6235 DAGCombinerInfo &DCI, const SDLoc &DL, 6236 SmallVectorImpl<SDNode *> &Created) const { 6237 // Fold: 6238 // (seteq/ne (srem N, D), 0) 6239 // To: 6240 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6241 // 6242 // - D must be constant, with D = D0 * 2^K where D0 is odd 6243 // - P is the multiplicative inverse of D0 modulo 2^W 6244 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6245 // - Q = floor((2 * A) / (2^K)) 6246 // where W is the width of the common type of N and D. 6247 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6248 "Only applicable for (in)equality comparisons."); 6249 6250 SelectionDAG &DAG = DCI.DAG; 6251 6252 EVT VT = REMNode.getValueType(); 6253 EVT SVT = VT.getScalarType(); 6254 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6255 EVT ShSVT = ShVT.getScalarType(); 6256 6257 // If we are after ops legalization, and MUL is unavailable, we can not 6258 // proceed. 6259 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6260 return SDValue(); 6261 6262 // TODO: Could support comparing with non-zero too. 6263 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6264 if (!CompTarget || !CompTarget->isZero()) 6265 return SDValue(); 6266 6267 bool HadIntMinDivisor = false; 6268 bool HadOneDivisor = false; 6269 bool AllDivisorsAreOnes = true; 6270 bool HadEvenDivisor = false; 6271 bool NeedToApplyOffset = false; 6272 bool AllDivisorsArePowerOfTwo = true; 6273 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6274 6275 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6276 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6277 if (C->isZero()) 6278 return false; 6279 6280 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6281 6282 // WARNING: this fold is only valid for positive divisors! 6283 APInt D = C->getAPIntValue(); 6284 if (D.isNegative()) 6285 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6286 6287 HadIntMinDivisor |= D.isMinSignedValue(); 6288 6289 // If all divisors are ones, we will prefer to avoid the fold. 6290 HadOneDivisor |= D.isOne(); 6291 AllDivisorsAreOnes &= D.isOne(); 6292 6293 // Decompose D into D0 * 2^K 6294 unsigned K = D.countTrailingZeros(); 6295 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6296 APInt D0 = D.lshr(K); 6297 6298 if (!D.isMinSignedValue()) { 6299 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6300 // we don't care about this lane in this fold, we'll special-handle it. 6301 HadEvenDivisor |= (K != 0); 6302 } 6303 6304 // D is a power-of-two if D0 is one. This includes INT_MIN. 6305 // If all divisors are power-of-two, we will prefer to avoid the fold. 6306 AllDivisorsArePowerOfTwo &= D0.isOne(); 6307 6308 // P = inv(D0, 2^W) 6309 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6310 unsigned W = D.getBitWidth(); 6311 APInt P = D0.zext(W + 1) 6312 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6313 .trunc(W); 6314 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6315 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6316 6317 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6318 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6319 A.clearLowBits(K); 6320 6321 if (!D.isMinSignedValue()) { 6322 // If divisor INT_MIN, then we don't care about this lane in this fold, 6323 // we'll special-handle it. 6324 NeedToApplyOffset |= A != 0; 6325 } 6326 6327 // Q = floor((2 * A) / (2^K)) 6328 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6329 6330 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6331 "We are expecting that A is always less than all-ones for SVT"); 6332 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6333 "We are expecting that K is always less than all-ones for ShSVT"); 6334 6335 // If the divisor is 1 the result can be constant-folded. Likewise, we 6336 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6337 if (D.isOne()) { 6338 // Set P, A and K to a bogus values so we can try to splat them. 6339 P = 0; 6340 A = -1; 6341 K = -1; 6342 6343 // x ?% 1 == 0 <--> true <--> x u<= -1 6344 Q = -1; 6345 } 6346 6347 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6348 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6349 KAmts.push_back( 6350 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6351 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6352 return true; 6353 }; 6354 6355 SDValue N = REMNode.getOperand(0); 6356 SDValue D = REMNode.getOperand(1); 6357 6358 // Collect the values from each element. 6359 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6360 return SDValue(); 6361 6362 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6363 if (AllDivisorsAreOnes) 6364 return SDValue(); 6365 6366 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6367 // since it can be best implemented as a bit test. 6368 if (AllDivisorsArePowerOfTwo) 6369 return SDValue(); 6370 6371 SDValue PVal, AVal, KVal, QVal; 6372 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6373 if (HadOneDivisor) { 6374 // Try to turn PAmts into a splat, since we don't care about the values 6375 // that are currently '0'. If we can't, just keep '0'`s. 6376 turnVectorIntoSplatVector(PAmts, isNullConstant); 6377 // Try to turn AAmts into a splat, since we don't care about the 6378 // values that are currently '-1'. If we can't, change them to '0'`s. 6379 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6380 DAG.getConstant(0, DL, SVT)); 6381 // Try to turn KAmts into a splat, since we don't care about the values 6382 // that are currently '-1'. If we can't, change them to '0'`s. 6383 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6384 DAG.getConstant(0, DL, ShSVT)); 6385 } 6386 6387 PVal = DAG.getBuildVector(VT, DL, PAmts); 6388 AVal = DAG.getBuildVector(VT, DL, AAmts); 6389 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6390 QVal = DAG.getBuildVector(VT, DL, QAmts); 6391 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6392 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6393 QAmts.size() == 1 && 6394 "Expected matchUnaryPredicate to return one element for scalable " 6395 "vectors"); 6396 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6397 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6398 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6399 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6400 } else { 6401 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6402 PVal = PAmts[0]; 6403 AVal = AAmts[0]; 6404 KVal = KAmts[0]; 6405 QVal = QAmts[0]; 6406 } 6407 6408 // (mul N, P) 6409 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6410 Created.push_back(Op0.getNode()); 6411 6412 if (NeedToApplyOffset) { 6413 // We need ADD to do this. 6414 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6415 return SDValue(); 6416 6417 // (add (mul N, P), A) 6418 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6419 Created.push_back(Op0.getNode()); 6420 } 6421 6422 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6423 // divisors as a performance improvement, since rotating by 0 is a no-op. 6424 if (HadEvenDivisor) { 6425 // We need ROTR to do this. 6426 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6427 return SDValue(); 6428 // SREM: (rotr (add (mul N, P), A), K) 6429 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6430 Created.push_back(Op0.getNode()); 6431 } 6432 6433 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6434 SDValue Fold = 6435 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6436 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6437 6438 // If we didn't have lanes with INT_MIN divisor, then we're done. 6439 if (!HadIntMinDivisor) 6440 return Fold; 6441 6442 // That fold is only valid for positive divisors. Which effectively means, 6443 // it is invalid for INT_MIN divisors. So if we have such a lane, 6444 // we must fix-up results for said lanes. 6445 assert(VT.isVector() && "Can/should only get here for vectors."); 6446 6447 // NOTE: we avoid letting illegal types through even if we're before legalize 6448 // ops – legalization has a hard time producing good code for the code that 6449 // follows. 6450 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6451 !isOperationLegalOrCustom(ISD::AND, VT) || 6452 !isOperationLegalOrCustom(Cond, VT) || 6453 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6454 return SDValue(); 6455 6456 Created.push_back(Fold.getNode()); 6457 6458 SDValue IntMin = DAG.getConstant( 6459 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6460 SDValue IntMax = DAG.getConstant( 6461 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6462 SDValue Zero = 6463 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6464 6465 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6466 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6467 Created.push_back(DivisorIsIntMin.getNode()); 6468 6469 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6470 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6471 Created.push_back(Masked.getNode()); 6472 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6473 Created.push_back(MaskedIsZero.getNode()); 6474 6475 // To produce final result we need to blend 2 vectors: 'SetCC' and 6476 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6477 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6478 // constant-folded, select can get lowered to a shuffle with constant mask. 6479 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6480 MaskedIsZero, Fold); 6481 6482 return Blended; 6483 } 6484 6485 bool TargetLowering:: 6486 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6487 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6488 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6489 "be a constant integer"); 6490 return true; 6491 } 6492 6493 return false; 6494 } 6495 6496 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6497 const DenormalMode &Mode) const { 6498 SDLoc DL(Op); 6499 EVT VT = Op.getValueType(); 6500 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6501 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6502 // Testing it with denormal inputs to avoid wrong estimate. 6503 if (Mode.Input == DenormalMode::IEEE) { 6504 // This is specifically a check for the handling of denormal inputs, 6505 // not the result. 6506 6507 // Test = fabs(X) < SmallestNormal 6508 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6509 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6510 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6511 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6512 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6513 } 6514 // Test = X == 0.0 6515 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6516 } 6517 6518 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6519 bool LegalOps, bool OptForSize, 6520 NegatibleCost &Cost, 6521 unsigned Depth) const { 6522 // fneg is removable even if it has multiple uses. 6523 if (Op.getOpcode() == ISD::FNEG) { 6524 Cost = NegatibleCost::Cheaper; 6525 return Op.getOperand(0); 6526 } 6527 6528 // Don't recurse exponentially. 6529 if (Depth > SelectionDAG::MaxRecursionDepth) 6530 return SDValue(); 6531 6532 // Pre-increment recursion depth for use in recursive calls. 6533 ++Depth; 6534 const SDNodeFlags Flags = Op->getFlags(); 6535 const TargetOptions &Options = DAG.getTarget().Options; 6536 EVT VT = Op.getValueType(); 6537 unsigned Opcode = Op.getOpcode(); 6538 6539 // Don't allow anything with multiple uses unless we know it is free. 6540 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6541 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6542 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6543 if (!IsFreeExtend) 6544 return SDValue(); 6545 } 6546 6547 auto RemoveDeadNode = [&](SDValue N) { 6548 if (N && N.getNode()->use_empty()) 6549 DAG.RemoveDeadNode(N.getNode()); 6550 }; 6551 6552 SDLoc DL(Op); 6553 6554 // Because getNegatedExpression can delete nodes we need a handle to keep 6555 // temporary nodes alive in case the recursion manages to create an identical 6556 // node. 6557 std::list<HandleSDNode> Handles; 6558 6559 switch (Opcode) { 6560 case ISD::ConstantFP: { 6561 // Don't invert constant FP values after legalization unless the target says 6562 // the negated constant is legal. 6563 bool IsOpLegal = 6564 isOperationLegal(ISD::ConstantFP, VT) || 6565 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6566 OptForSize); 6567 6568 if (LegalOps && !IsOpLegal) 6569 break; 6570 6571 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6572 V.changeSign(); 6573 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6574 6575 // If we already have the use of the negated floating constant, it is free 6576 // to negate it even it has multiple uses. 6577 if (!Op.hasOneUse() && CFP.use_empty()) 6578 break; 6579 Cost = NegatibleCost::Neutral; 6580 return CFP; 6581 } 6582 case ISD::BUILD_VECTOR: { 6583 // Only permit BUILD_VECTOR of constants. 6584 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6585 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6586 })) 6587 break; 6588 6589 bool IsOpLegal = 6590 (isOperationLegal(ISD::ConstantFP, VT) && 6591 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6592 llvm::all_of(Op->op_values(), [&](SDValue N) { 6593 return N.isUndef() || 6594 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6595 OptForSize); 6596 }); 6597 6598 if (LegalOps && !IsOpLegal) 6599 break; 6600 6601 SmallVector<SDValue, 4> Ops; 6602 for (SDValue C : Op->op_values()) { 6603 if (C.isUndef()) { 6604 Ops.push_back(C); 6605 continue; 6606 } 6607 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6608 V.changeSign(); 6609 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6610 } 6611 Cost = NegatibleCost::Neutral; 6612 return DAG.getBuildVector(VT, DL, Ops); 6613 } 6614 case ISD::FADD: { 6615 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6616 break; 6617 6618 // After operation legalization, it might not be legal to create new FSUBs. 6619 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6620 break; 6621 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6622 6623 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6624 NegatibleCost CostX = NegatibleCost::Expensive; 6625 SDValue NegX = 6626 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6627 // Prevent this node from being deleted by the next call. 6628 if (NegX) 6629 Handles.emplace_back(NegX); 6630 6631 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6632 NegatibleCost CostY = NegatibleCost::Expensive; 6633 SDValue NegY = 6634 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6635 6636 // We're done with the handles. 6637 Handles.clear(); 6638 6639 // Negate the X if its cost is less or equal than Y. 6640 if (NegX && (CostX <= CostY)) { 6641 Cost = CostX; 6642 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6643 if (NegY != N) 6644 RemoveDeadNode(NegY); 6645 return N; 6646 } 6647 6648 // Negate the Y if it is not expensive. 6649 if (NegY) { 6650 Cost = CostY; 6651 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6652 if (NegX != N) 6653 RemoveDeadNode(NegX); 6654 return N; 6655 } 6656 break; 6657 } 6658 case ISD::FSUB: { 6659 // We can't turn -(A-B) into B-A when we honor signed zeros. 6660 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6661 break; 6662 6663 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6664 // fold (fneg (fsub 0, Y)) -> Y 6665 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6666 if (C->isZero()) { 6667 Cost = NegatibleCost::Cheaper; 6668 return Y; 6669 } 6670 6671 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6672 Cost = NegatibleCost::Neutral; 6673 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6674 } 6675 case ISD::FMUL: 6676 case ISD::FDIV: { 6677 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6678 6679 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6680 NegatibleCost CostX = NegatibleCost::Expensive; 6681 SDValue NegX = 6682 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6683 // Prevent this node from being deleted by the next call. 6684 if (NegX) 6685 Handles.emplace_back(NegX); 6686 6687 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6688 NegatibleCost CostY = NegatibleCost::Expensive; 6689 SDValue NegY = 6690 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6691 6692 // We're done with the handles. 6693 Handles.clear(); 6694 6695 // Negate the X if its cost is less or equal than Y. 6696 if (NegX && (CostX <= CostY)) { 6697 Cost = CostX; 6698 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6699 if (NegY != N) 6700 RemoveDeadNode(NegY); 6701 return N; 6702 } 6703 6704 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6705 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6706 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6707 break; 6708 6709 // Negate the Y if it is not expensive. 6710 if (NegY) { 6711 Cost = CostY; 6712 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6713 if (NegX != N) 6714 RemoveDeadNode(NegX); 6715 return N; 6716 } 6717 break; 6718 } 6719 case ISD::FMA: 6720 case ISD::FMAD: { 6721 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6722 break; 6723 6724 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6725 NegatibleCost CostZ = NegatibleCost::Expensive; 6726 SDValue NegZ = 6727 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6728 // Give up if fail to negate the Z. 6729 if (!NegZ) 6730 break; 6731 6732 // Prevent this node from being deleted by the next two calls. 6733 Handles.emplace_back(NegZ); 6734 6735 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6736 NegatibleCost CostX = NegatibleCost::Expensive; 6737 SDValue NegX = 6738 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6739 // Prevent this node from being deleted by the next call. 6740 if (NegX) 6741 Handles.emplace_back(NegX); 6742 6743 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6744 NegatibleCost CostY = NegatibleCost::Expensive; 6745 SDValue NegY = 6746 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6747 6748 // We're done with the handles. 6749 Handles.clear(); 6750 6751 // Negate the X if its cost is less or equal than Y. 6752 if (NegX && (CostX <= CostY)) { 6753 Cost = std::min(CostX, CostZ); 6754 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6755 if (NegY != N) 6756 RemoveDeadNode(NegY); 6757 return N; 6758 } 6759 6760 // Negate the Y if it is not expensive. 6761 if (NegY) { 6762 Cost = std::min(CostY, CostZ); 6763 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6764 if (NegX != N) 6765 RemoveDeadNode(NegX); 6766 return N; 6767 } 6768 break; 6769 } 6770 6771 case ISD::FP_EXTEND: 6772 case ISD::FSIN: 6773 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6774 OptForSize, Cost, Depth)) 6775 return DAG.getNode(Opcode, DL, VT, NegV); 6776 break; 6777 case ISD::FP_ROUND: 6778 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6779 OptForSize, Cost, Depth)) 6780 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6781 break; 6782 } 6783 6784 return SDValue(); 6785 } 6786 6787 //===----------------------------------------------------------------------===// 6788 // Legalization Utilities 6789 //===----------------------------------------------------------------------===// 6790 6791 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6792 SDValue LHS, SDValue RHS, 6793 SmallVectorImpl<SDValue> &Result, 6794 EVT HiLoVT, SelectionDAG &DAG, 6795 MulExpansionKind Kind, SDValue LL, 6796 SDValue LH, SDValue RL, SDValue RH) const { 6797 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6798 Opcode == ISD::SMUL_LOHI); 6799 6800 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6801 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6802 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6803 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6804 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6805 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6806 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6807 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6808 6809 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6810 return false; 6811 6812 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6813 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6814 6815 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6816 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6817 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6818 6819 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6820 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6821 bool Signed) -> bool { 6822 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6823 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6824 Hi = SDValue(Lo.getNode(), 1); 6825 return true; 6826 } 6827 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6828 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6829 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6830 return true; 6831 } 6832 return false; 6833 }; 6834 6835 SDValue Lo, Hi; 6836 6837 if (!LL.getNode() && !RL.getNode() && 6838 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6839 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6840 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6841 } 6842 6843 if (!LL.getNode()) 6844 return false; 6845 6846 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6847 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6848 DAG.MaskedValueIsZero(RHS, HighMask)) { 6849 // The inputs are both zero-extended. 6850 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6851 Result.push_back(Lo); 6852 Result.push_back(Hi); 6853 if (Opcode != ISD::MUL) { 6854 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6855 Result.push_back(Zero); 6856 Result.push_back(Zero); 6857 } 6858 return true; 6859 } 6860 } 6861 6862 if (!VT.isVector() && Opcode == ISD::MUL && 6863 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6864 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6865 // The input values are both sign-extended. 6866 // TODO non-MUL case? 6867 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6868 Result.push_back(Lo); 6869 Result.push_back(Hi); 6870 return true; 6871 } 6872 } 6873 6874 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6875 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6876 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6877 6878 if (!LH.getNode() && !RH.getNode() && 6879 isOperationLegalOrCustom(ISD::SRL, VT) && 6880 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6881 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6882 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6883 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6884 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6885 } 6886 6887 if (!LH.getNode()) 6888 return false; 6889 6890 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6891 return false; 6892 6893 Result.push_back(Lo); 6894 6895 if (Opcode == ISD::MUL) { 6896 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6897 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6898 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6899 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6900 Result.push_back(Hi); 6901 return true; 6902 } 6903 6904 // Compute the full width result. 6905 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6906 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6907 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6908 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6909 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6910 }; 6911 6912 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6913 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6914 return false; 6915 6916 // This is effectively the add part of a multiply-add of half-sized operands, 6917 // so it cannot overflow. 6918 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6919 6920 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6921 return false; 6922 6923 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6924 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6925 6926 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6927 isOperationLegalOrCustom(ISD::ADDE, VT)); 6928 if (UseGlue) 6929 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6930 Merge(Lo, Hi)); 6931 else 6932 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6933 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6934 6935 SDValue Carry = Next.getValue(1); 6936 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6937 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6938 6939 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6940 return false; 6941 6942 if (UseGlue) 6943 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6944 Carry); 6945 else 6946 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6947 Zero, Carry); 6948 6949 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6950 6951 if (Opcode == ISD::SMUL_LOHI) { 6952 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6953 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6954 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6955 6956 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6957 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6958 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6959 } 6960 6961 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6962 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6963 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6964 return true; 6965 } 6966 6967 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6968 SelectionDAG &DAG, MulExpansionKind Kind, 6969 SDValue LL, SDValue LH, SDValue RL, 6970 SDValue RH) const { 6971 SmallVector<SDValue, 2> Result; 6972 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6973 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6974 DAG, Kind, LL, LH, RL, RH); 6975 if (Ok) { 6976 assert(Result.size() == 2); 6977 Lo = Result[0]; 6978 Hi = Result[1]; 6979 } 6980 return Ok; 6981 } 6982 6983 // Check that (every element of) Z is undef or not an exact multiple of BW. 6984 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6985 return ISD::matchUnaryPredicate( 6986 Z, 6987 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6988 true); 6989 } 6990 6991 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6992 SelectionDAG &DAG) const { 6993 EVT VT = Node->getValueType(0); 6994 6995 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6996 !isOperationLegalOrCustom(ISD::SRL, VT) || 6997 !isOperationLegalOrCustom(ISD::SUB, VT) || 6998 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6999 return SDValue(); 7000 7001 SDValue X = Node->getOperand(0); 7002 SDValue Y = Node->getOperand(1); 7003 SDValue Z = Node->getOperand(2); 7004 7005 unsigned BW = VT.getScalarSizeInBits(); 7006 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 7007 SDLoc DL(SDValue(Node, 0)); 7008 7009 EVT ShVT = Z.getValueType(); 7010 7011 // If a funnel shift in the other direction is more supported, use it. 7012 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 7013 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7014 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 7015 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7016 // fshl X, Y, Z -> fshr X, Y, -Z 7017 // fshr X, Y, Z -> fshl X, Y, -Z 7018 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7019 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 7020 } else { 7021 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 7022 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 7023 SDValue One = DAG.getConstant(1, DL, ShVT); 7024 if (IsFSHL) { 7025 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7026 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 7027 } else { 7028 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 7029 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 7030 } 7031 Z = DAG.getNOT(DL, Z, ShVT); 7032 } 7033 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 7034 } 7035 7036 SDValue ShX, ShY; 7037 SDValue ShAmt, InvShAmt; 7038 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 7039 // fshl: X << C | Y >> (BW - C) 7040 // fshr: X << (BW - C) | Y >> C 7041 // where C = Z % BW is not zero 7042 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7043 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7044 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 7045 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 7046 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 7047 } else { 7048 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 7049 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 7050 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 7051 if (isPowerOf2_32(BW)) { 7052 // Z % BW -> Z & (BW - 1) 7053 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 7054 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 7055 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 7056 } else { 7057 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 7058 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 7059 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 7060 } 7061 7062 SDValue One = DAG.getConstant(1, DL, ShVT); 7063 if (IsFSHL) { 7064 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 7065 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 7066 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 7067 } else { 7068 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 7069 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 7070 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 7071 } 7072 } 7073 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 7074 } 7075 7076 // TODO: Merge with expandFunnelShift. 7077 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 7078 SelectionDAG &DAG) const { 7079 EVT VT = Node->getValueType(0); 7080 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 7081 bool IsLeft = Node->getOpcode() == ISD::ROTL; 7082 SDValue Op0 = Node->getOperand(0); 7083 SDValue Op1 = Node->getOperand(1); 7084 SDLoc DL(SDValue(Node, 0)); 7085 7086 EVT ShVT = Op1.getValueType(); 7087 SDValue Zero = DAG.getConstant(0, DL, ShVT); 7088 7089 // If a rotate in the other direction is more supported, use it. 7090 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 7091 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 7092 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 7093 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7094 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 7095 } 7096 7097 if (!AllowVectorOps && VT.isVector() && 7098 (!isOperationLegalOrCustom(ISD::SHL, VT) || 7099 !isOperationLegalOrCustom(ISD::SRL, VT) || 7100 !isOperationLegalOrCustom(ISD::SUB, VT) || 7101 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 7102 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 7103 return SDValue(); 7104 7105 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 7106 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 7107 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 7108 SDValue ShVal; 7109 SDValue HsVal; 7110 if (isPowerOf2_32(EltSizeInBits)) { 7111 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 7112 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 7113 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 7114 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 7115 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7116 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 7117 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 7118 } else { 7119 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 7120 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 7121 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 7122 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 7123 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 7124 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 7125 SDValue One = DAG.getConstant(1, DL, ShVT); 7126 HsVal = 7127 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 7128 } 7129 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 7130 } 7131 7132 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 7133 SelectionDAG &DAG) const { 7134 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 7135 EVT VT = Node->getValueType(0); 7136 unsigned VTBits = VT.getScalarSizeInBits(); 7137 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 7138 7139 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 7140 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 7141 SDValue ShOpLo = Node->getOperand(0); 7142 SDValue ShOpHi = Node->getOperand(1); 7143 SDValue ShAmt = Node->getOperand(2); 7144 EVT ShAmtVT = ShAmt.getValueType(); 7145 EVT ShAmtCCVT = 7146 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 7147 SDLoc dl(Node); 7148 7149 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 7150 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 7151 // away during isel. 7152 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7153 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 7154 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 7155 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 7156 : DAG.getConstant(0, dl, VT); 7157 7158 SDValue Tmp2, Tmp3; 7159 if (IsSHL) { 7160 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 7161 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 7162 } else { 7163 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 7164 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 7165 } 7166 7167 // If the shift amount is larger or equal than the width of a part we don't 7168 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 7169 // values for large shift amounts. 7170 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 7171 DAG.getConstant(VTBits, dl, ShAmtVT)); 7172 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 7173 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 7174 7175 if (IsSHL) { 7176 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7177 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7178 } else { 7179 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 7180 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 7181 } 7182 } 7183 7184 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 7185 SelectionDAG &DAG) const { 7186 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7187 SDValue Src = Node->getOperand(OpNo); 7188 EVT SrcVT = Src.getValueType(); 7189 EVT DstVT = Node->getValueType(0); 7190 SDLoc dl(SDValue(Node, 0)); 7191 7192 // FIXME: Only f32 to i64 conversions are supported. 7193 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 7194 return false; 7195 7196 if (Node->isStrictFPOpcode()) 7197 // When a NaN is converted to an integer a trap is allowed. We can't 7198 // use this expansion here because it would eliminate that trap. Other 7199 // traps are also allowed and cannot be eliminated. See 7200 // IEEE 754-2008 sec 5.8. 7201 return false; 7202 7203 // Expand f32 -> i64 conversion 7204 // This algorithm comes from compiler-rt's implementation of fixsfdi: 7205 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 7206 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 7207 EVT IntVT = SrcVT.changeTypeToInteger(); 7208 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 7209 7210 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 7211 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 7212 SDValue Bias = DAG.getConstant(127, dl, IntVT); 7213 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 7214 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 7215 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 7216 7217 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 7218 7219 SDValue ExponentBits = DAG.getNode( 7220 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 7221 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 7222 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 7223 7224 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 7225 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 7226 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 7227 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 7228 7229 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 7230 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 7231 DAG.getConstant(0x00800000, dl, IntVT)); 7232 7233 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7234 7235 R = DAG.getSelectCC( 7236 dl, Exponent, ExponentLoBit, 7237 DAG.getNode(ISD::SHL, dl, DstVT, R, 7238 DAG.getZExtOrTrunc( 7239 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7240 dl, IntShVT)), 7241 DAG.getNode(ISD::SRL, dl, DstVT, R, 7242 DAG.getZExtOrTrunc( 7243 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7244 dl, IntShVT)), 7245 ISD::SETGT); 7246 7247 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7248 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7249 7250 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7251 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7252 return true; 7253 } 7254 7255 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7256 SDValue &Chain, 7257 SelectionDAG &DAG) const { 7258 SDLoc dl(SDValue(Node, 0)); 7259 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7260 SDValue Src = Node->getOperand(OpNo); 7261 7262 EVT SrcVT = Src.getValueType(); 7263 EVT DstVT = Node->getValueType(0); 7264 EVT SetCCVT = 7265 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7266 EVT DstSetCCVT = 7267 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7268 7269 // Only expand vector types if we have the appropriate vector bit operations. 7270 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7271 ISD::FP_TO_SINT; 7272 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7273 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7274 return false; 7275 7276 // If the maximum float value is smaller then the signed integer range, 7277 // the destination signmask can't be represented by the float, so we can 7278 // just use FP_TO_SINT directly. 7279 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7280 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7281 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7282 if (APFloat::opOverflow & 7283 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7284 if (Node->isStrictFPOpcode()) { 7285 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7286 { Node->getOperand(0), Src }); 7287 Chain = Result.getValue(1); 7288 } else 7289 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7290 return true; 7291 } 7292 7293 // Don't expand it if there isn't cheap fsub instruction. 7294 if (!isOperationLegalOrCustom( 7295 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7296 return false; 7297 7298 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7299 SDValue Sel; 7300 7301 if (Node->isStrictFPOpcode()) { 7302 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7303 Node->getOperand(0), /*IsSignaling*/ true); 7304 Chain = Sel.getValue(1); 7305 } else { 7306 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7307 } 7308 7309 bool Strict = Node->isStrictFPOpcode() || 7310 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7311 7312 if (Strict) { 7313 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7314 // signmask then offset (the result of which should be fully representable). 7315 // Sel = Src < 0x8000000000000000 7316 // FltOfs = select Sel, 0, 0x8000000000000000 7317 // IntOfs = select Sel, 0, 0x8000000000000000 7318 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7319 7320 // TODO: Should any fast-math-flags be set for the FSUB? 7321 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7322 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7323 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7324 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7325 DAG.getConstant(0, dl, DstVT), 7326 DAG.getConstant(SignMask, dl, DstVT)); 7327 SDValue SInt; 7328 if (Node->isStrictFPOpcode()) { 7329 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7330 { Chain, Src, FltOfs }); 7331 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7332 { Val.getValue(1), Val }); 7333 Chain = SInt.getValue(1); 7334 } else { 7335 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7336 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7337 } 7338 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7339 } else { 7340 // Expand based on maximum range of FP_TO_SINT: 7341 // True = fp_to_sint(Src) 7342 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7343 // Result = select (Src < 0x8000000000000000), True, False 7344 7345 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7346 // TODO: Should any fast-math-flags be set for the FSUB? 7347 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7348 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7349 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7350 DAG.getConstant(SignMask, dl, DstVT)); 7351 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7352 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7353 } 7354 return true; 7355 } 7356 7357 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7358 SDValue &Chain, 7359 SelectionDAG &DAG) const { 7360 // This transform is not correct for converting 0 when rounding mode is set 7361 // to round toward negative infinity which will produce -0.0. So disable under 7362 // strictfp. 7363 if (Node->isStrictFPOpcode()) 7364 return false; 7365 7366 SDValue Src = Node->getOperand(0); 7367 EVT SrcVT = Src.getValueType(); 7368 EVT DstVT = Node->getValueType(0); 7369 7370 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7371 return false; 7372 7373 // Only expand vector types if we have the appropriate vector bit operations. 7374 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7375 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7376 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7377 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7378 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7379 return false; 7380 7381 SDLoc dl(SDValue(Node, 0)); 7382 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7383 7384 // Implementation of unsigned i64 to f64 following the algorithm in 7385 // __floatundidf in compiler_rt. This implementation performs rounding 7386 // correctly in all rounding modes with the exception of converting 0 7387 // when rounding toward negative infinity. In that case the fsub will produce 7388 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7389 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7390 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7391 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7392 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7393 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7394 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7395 7396 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7397 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7398 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7399 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7400 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7401 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7402 SDValue HiSub = 7403 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7404 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7405 return true; 7406 } 7407 7408 SDValue 7409 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node, 7410 SelectionDAG &DAG) const { 7411 unsigned Opcode = Node->getOpcode(); 7412 assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM || 7413 Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) && 7414 "Wrong opcode"); 7415 7416 if (Node->getFlags().hasNoNaNs()) { 7417 ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7418 SDValue Op1 = Node->getOperand(0); 7419 SDValue Op2 = Node->getOperand(1); 7420 SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred); 7421 // Copy FMF flags, but always set the no-signed-zeros flag 7422 // as this is implied by the FMINNUM/FMAXNUM semantics. 7423 SDNodeFlags Flags = Node->getFlags(); 7424 Flags.setNoSignedZeros(true); 7425 SelCC->setFlags(Flags); 7426 return SelCC; 7427 } 7428 7429 return SDValue(); 7430 } 7431 7432 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7433 SelectionDAG &DAG) const { 7434 SDLoc dl(Node); 7435 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7436 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7437 EVT VT = Node->getValueType(0); 7438 7439 if (VT.isScalableVector()) 7440 report_fatal_error( 7441 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7442 7443 if (isOperationLegalOrCustom(NewOp, VT)) { 7444 SDValue Quiet0 = Node->getOperand(0); 7445 SDValue Quiet1 = Node->getOperand(1); 7446 7447 if (!Node->getFlags().hasNoNaNs()) { 7448 // Insert canonicalizes if it's possible we need to quiet to get correct 7449 // sNaN behavior. 7450 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7451 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7452 Node->getFlags()); 7453 } 7454 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7455 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7456 Node->getFlags()); 7457 } 7458 } 7459 7460 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7461 } 7462 7463 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7464 // instead if there are no NaNs. 7465 if (Node->getFlags().hasNoNaNs()) { 7466 unsigned IEEE2018Op = 7467 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7468 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7469 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7470 Node->getOperand(1), Node->getFlags()); 7471 } 7472 } 7473 7474 if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG)) 7475 return SelCC; 7476 7477 return SDValue(); 7478 } 7479 7480 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op, 7481 unsigned Test, SDNodeFlags Flags, 7482 const SDLoc &DL, 7483 SelectionDAG &DAG) const { 7484 EVT OperandVT = Op.getValueType(); 7485 assert(OperandVT.isFloatingPoint()); 7486 7487 // Degenerated cases. 7488 if (Test == 0) 7489 return DAG.getBoolConstant(false, DL, ResultVT, OperandVT); 7490 if ((Test & fcAllFlags) == fcAllFlags) 7491 return DAG.getBoolConstant(true, DL, ResultVT, OperandVT); 7492 7493 // PPC double double is a pair of doubles, of which the higher part determines 7494 // the value class. 7495 if (OperandVT == MVT::ppcf128) { 7496 Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op, 7497 DAG.getConstant(1, DL, MVT::i32)); 7498 OperandVT = MVT::f64; 7499 } 7500 7501 // Some checks may be represented as inversion of simpler check, for example 7502 // "inf|normal|subnormal|zero" => !"nan". 7503 bool IsInverted = false; 7504 if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) { 7505 IsInverted = true; 7506 Test = InvertedCheck; 7507 } 7508 7509 // Floating-point type properties. 7510 EVT ScalarFloatVT = OperandVT.getScalarType(); 7511 const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext()); 7512 const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics(); 7513 bool IsF80 = (ScalarFloatVT == MVT::f80); 7514 7515 // Some checks can be implemented using float comparisons, if floating point 7516 // exceptions are ignored. 7517 if (Flags.hasNoFPExcept() && 7518 isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) { 7519 if (Test == fcZero) 7520 return DAG.getSetCC(DL, ResultVT, Op, 7521 DAG.getConstantFP(0.0, DL, OperandVT), 7522 IsInverted ? ISD::SETUNE : ISD::SETOEQ); 7523 if (Test == fcNan) 7524 return DAG.getSetCC(DL, ResultVT, Op, Op, 7525 IsInverted ? ISD::SETO : ISD::SETUO); 7526 } 7527 7528 // In the general case use integer operations. 7529 unsigned BitSize = OperandVT.getScalarSizeInBits(); 7530 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize); 7531 if (OperandVT.isVector()) 7532 IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT, 7533 OperandVT.getVectorElementCount()); 7534 SDValue OpAsInt = DAG.getBitcast(IntVT, Op); 7535 7536 // Various masks. 7537 APInt SignBit = APInt::getSignMask(BitSize); 7538 APInt ValueMask = APInt::getSignedMaxValue(BitSize); // All bits but sign. 7539 APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit. 7540 const unsigned ExplicitIntBitInF80 = 63; 7541 APInt ExpMask = Inf; 7542 if (IsF80) 7543 ExpMask.clearBit(ExplicitIntBitInF80); 7544 APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf; 7545 APInt QNaNBitMask = 7546 APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1); 7547 APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits()); 7548 7549 SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT); 7550 SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT); 7551 SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT); 7552 SDValue ZeroV = DAG.getConstant(0, DL, IntVT); 7553 SDValue InfV = DAG.getConstant(Inf, DL, IntVT); 7554 SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT); 7555 7556 SDValue Res; 7557 const auto appendResult = [&](SDValue PartialRes) { 7558 if (PartialRes) { 7559 if (Res) 7560 Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes); 7561 else 7562 Res = PartialRes; 7563 } 7564 }; 7565 7566 SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set. 7567 const auto getIntBitIsSet = [&]() -> SDValue { 7568 if (!IntBitIsSetV) { 7569 APInt IntBitMask(BitSize, 0); 7570 IntBitMask.setBit(ExplicitIntBitInF80); 7571 SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT); 7572 SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV); 7573 IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE); 7574 } 7575 return IntBitIsSetV; 7576 }; 7577 7578 // Split the value into sign bit and absolute value. 7579 SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV); 7580 SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt, 7581 DAG.getConstant(0.0, DL, IntVT), ISD::SETLT); 7582 7583 // Tests that involve more than one class should be processed first. 7584 SDValue PartialRes; 7585 7586 if (IsF80) 7587 ; // Detect finite numbers of f80 by checking individual classes because 7588 // they have different settings of the explicit integer bit. 7589 else if ((Test & fcFinite) == fcFinite) { 7590 // finite(V) ==> abs(V) < exp_mask 7591 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7592 Test &= ~fcFinite; 7593 } else if ((Test & fcFinite) == fcPosFinite) { 7594 // finite(V) && V > 0 ==> V < exp_mask 7595 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT); 7596 Test &= ~fcPosFinite; 7597 } else if ((Test & fcFinite) == fcNegFinite) { 7598 // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1 7599 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT); 7600 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7601 Test &= ~fcNegFinite; 7602 } 7603 appendResult(PartialRes); 7604 7605 // Check for individual classes. 7606 7607 if (unsigned PartialCheck = Test & fcZero) { 7608 if (PartialCheck == fcPosZero) 7609 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ); 7610 else if (PartialCheck == fcZero) 7611 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ); 7612 else // ISD::fcNegZero 7613 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ); 7614 appendResult(PartialRes); 7615 } 7616 7617 if (unsigned PartialCheck = Test & fcInf) { 7618 if (PartialCheck == fcPosInf) 7619 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ); 7620 else if (PartialCheck == fcInf) 7621 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ); 7622 else { // ISD::fcNegInf 7623 APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt(); 7624 SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT); 7625 PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ); 7626 } 7627 appendResult(PartialRes); 7628 } 7629 7630 if (unsigned PartialCheck = Test & fcNan) { 7631 APInt InfWithQnanBit = Inf | QNaNBitMask; 7632 SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT); 7633 if (PartialCheck == fcNan) { 7634 // isnan(V) ==> abs(V) > int(inf) 7635 PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7636 if (IsF80) { 7637 // Recognize unsupported values as NaNs for compatibility with glibc. 7638 // In them (exp(V)==0) == int_bit. 7639 SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV); 7640 SDValue ExpIsZero = 7641 DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ); 7642 SDValue IsPseudo = 7643 DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ); 7644 PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo); 7645 } 7646 } else if (PartialCheck == fcQNan) { 7647 // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit) 7648 PartialRes = 7649 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE); 7650 } else { // ISD::fcSNan 7651 // issignaling(V) ==> abs(V) > unsigned(Inf) && 7652 // abs(V) < (unsigned(Inf) | quiet_bit) 7653 SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT); 7654 SDValue IsNotQnan = 7655 DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT); 7656 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan); 7657 } 7658 appendResult(PartialRes); 7659 } 7660 7661 if (unsigned PartialCheck = Test & fcSubnormal) { 7662 // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set) 7663 // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set) 7664 SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV; 7665 SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT); 7666 SDValue VMinusOneV = 7667 DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT)); 7668 PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT); 7669 if (PartialCheck == fcNegSubnormal) 7670 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7671 appendResult(PartialRes); 7672 } 7673 7674 if (unsigned PartialCheck = Test & fcNormal) { 7675 // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1)) 7676 APInt ExpLSB = ExpMask & ~(ExpMask.shl(1)); 7677 SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT); 7678 SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV); 7679 APInt ExpLimit = ExpMask - ExpLSB; 7680 SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT); 7681 PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT); 7682 if (PartialCheck == fcNegNormal) 7683 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV); 7684 else if (PartialCheck == fcPosNormal) { 7685 SDValue PosSignV = 7686 DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask); 7687 PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV); 7688 } 7689 if (IsF80) 7690 PartialRes = 7691 DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet()); 7692 appendResult(PartialRes); 7693 } 7694 7695 if (!Res) 7696 return DAG.getConstant(IsInverted, DL, ResultVT); 7697 if (IsInverted) 7698 Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask); 7699 return Res; 7700 } 7701 7702 // Only expand vector types if we have the appropriate vector bit operations. 7703 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7704 assert(VT.isVector() && "Expected vector type"); 7705 unsigned Len = VT.getScalarSizeInBits(); 7706 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7707 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7708 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7709 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7710 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7711 } 7712 7713 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7714 SDLoc dl(Node); 7715 EVT VT = Node->getValueType(0); 7716 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7717 SDValue Op = Node->getOperand(0); 7718 unsigned Len = VT.getScalarSizeInBits(); 7719 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7720 7721 // TODO: Add support for irregular type lengths. 7722 if (!(Len <= 128 && Len % 8 == 0)) 7723 return SDValue(); 7724 7725 // Only expand vector types if we have the appropriate vector bit operations. 7726 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7727 return SDValue(); 7728 7729 // This is the "best" algorithm from 7730 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7731 SDValue Mask55 = 7732 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7733 SDValue Mask33 = 7734 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7735 SDValue Mask0F = 7736 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7737 7738 // v = v - ((v >> 1) & 0x55555555...) 7739 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7740 DAG.getNode(ISD::AND, dl, VT, 7741 DAG.getNode(ISD::SRL, dl, VT, Op, 7742 DAG.getConstant(1, dl, ShVT)), 7743 Mask55)); 7744 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7745 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7746 DAG.getNode(ISD::AND, dl, VT, 7747 DAG.getNode(ISD::SRL, dl, VT, Op, 7748 DAG.getConstant(2, dl, ShVT)), 7749 Mask33)); 7750 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7751 Op = DAG.getNode(ISD::AND, dl, VT, 7752 DAG.getNode(ISD::ADD, dl, VT, Op, 7753 DAG.getNode(ISD::SRL, dl, VT, Op, 7754 DAG.getConstant(4, dl, ShVT))), 7755 Mask0F); 7756 7757 if (Len <= 8) 7758 return Op; 7759 7760 // Avoid the multiply if we only have 2 bytes to add. 7761 // TODO: Only doing this for scalars because vectors weren't as obviously 7762 // improved. 7763 if (Len == 16 && !VT.isVector()) { 7764 // v = (v + (v >> 8)) & 0x00FF; 7765 return DAG.getNode(ISD::AND, dl, VT, 7766 DAG.getNode(ISD::ADD, dl, VT, Op, 7767 DAG.getNode(ISD::SRL, dl, VT, Op, 7768 DAG.getConstant(8, dl, ShVT))), 7769 DAG.getConstant(0xFF, dl, VT)); 7770 } 7771 7772 // v = (v * 0x01010101...) >> (Len - 8) 7773 SDValue Mask01 = 7774 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7775 return DAG.getNode(ISD::SRL, dl, VT, 7776 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7777 DAG.getConstant(Len - 8, dl, ShVT)); 7778 } 7779 7780 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7781 SDLoc dl(Node); 7782 EVT VT = Node->getValueType(0); 7783 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7784 SDValue Op = Node->getOperand(0); 7785 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7786 7787 // If the non-ZERO_UNDEF version is supported we can use that instead. 7788 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7789 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7790 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7791 7792 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7793 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7794 EVT SetCCVT = 7795 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7796 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7797 SDValue Zero = DAG.getConstant(0, dl, VT); 7798 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7799 return DAG.getSelect(dl, VT, SrcIsZero, 7800 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7801 } 7802 7803 // Only expand vector types if we have the appropriate vector bit operations. 7804 // This includes the operations needed to expand CTPOP if it isn't supported. 7805 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7806 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7807 !canExpandVectorCTPOP(*this, VT)) || 7808 !isOperationLegalOrCustom(ISD::SRL, VT) || 7809 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7810 return SDValue(); 7811 7812 // for now, we do this: 7813 // x = x | (x >> 1); 7814 // x = x | (x >> 2); 7815 // ... 7816 // x = x | (x >>16); 7817 // x = x | (x >>32); // for 64-bit input 7818 // return popcount(~x); 7819 // 7820 // Ref: "Hacker's Delight" by Henry Warren 7821 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7822 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7823 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7824 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7825 } 7826 Op = DAG.getNOT(dl, Op, VT); 7827 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7828 } 7829 7830 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7831 SDLoc dl(Node); 7832 EVT VT = Node->getValueType(0); 7833 SDValue Op = Node->getOperand(0); 7834 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7835 7836 // If the non-ZERO_UNDEF version is supported we can use that instead. 7837 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7838 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7839 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7840 7841 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7842 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7843 EVT SetCCVT = 7844 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7845 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7846 SDValue Zero = DAG.getConstant(0, dl, VT); 7847 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7848 return DAG.getSelect(dl, VT, SrcIsZero, 7849 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7850 } 7851 7852 // Only expand vector types if we have the appropriate vector bit operations. 7853 // This includes the operations needed to expand CTPOP if it isn't supported. 7854 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7855 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7856 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7857 !canExpandVectorCTPOP(*this, VT)) || 7858 !isOperationLegalOrCustom(ISD::SUB, VT) || 7859 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7860 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7861 return SDValue(); 7862 7863 // for now, we use: { return popcount(~x & (x - 1)); } 7864 // unless the target has ctlz but not ctpop, in which case we use: 7865 // { return 32 - nlz(~x & (x-1)); } 7866 // Ref: "Hacker's Delight" by Henry Warren 7867 SDValue Tmp = DAG.getNode( 7868 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7869 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7870 7871 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7872 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7873 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7874 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7875 } 7876 7877 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7878 } 7879 7880 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7881 bool IsNegative) const { 7882 SDLoc dl(N); 7883 EVT VT = N->getValueType(0); 7884 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7885 SDValue Op = N->getOperand(0); 7886 7887 // abs(x) -> smax(x,sub(0,x)) 7888 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7889 isOperationLegal(ISD::SMAX, VT)) { 7890 SDValue Zero = DAG.getConstant(0, dl, VT); 7891 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7892 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7893 } 7894 7895 // abs(x) -> umin(x,sub(0,x)) 7896 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7897 isOperationLegal(ISD::UMIN, VT)) { 7898 SDValue Zero = DAG.getConstant(0, dl, VT); 7899 Op = DAG.getFreeze(Op); 7900 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7901 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7902 } 7903 7904 // 0 - abs(x) -> smin(x, sub(0,x)) 7905 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7906 isOperationLegal(ISD::SMIN, VT)) { 7907 Op = DAG.getFreeze(Op); 7908 SDValue Zero = DAG.getConstant(0, dl, VT); 7909 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7910 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7911 } 7912 7913 // Only expand vector types if we have the appropriate vector operations. 7914 if (VT.isVector() && 7915 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7916 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7917 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7918 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7919 return SDValue(); 7920 7921 Op = DAG.getFreeze(Op); 7922 SDValue Shift = 7923 DAG.getNode(ISD::SRA, dl, VT, Op, 7924 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7925 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7926 7927 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7928 if (!IsNegative) 7929 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7930 7931 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7932 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7933 } 7934 7935 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7936 SDLoc dl(N); 7937 EVT VT = N->getValueType(0); 7938 SDValue Op = N->getOperand(0); 7939 7940 if (!VT.isSimple()) 7941 return SDValue(); 7942 7943 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7944 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7945 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7946 default: 7947 return SDValue(); 7948 case MVT::i16: 7949 // Use a rotate by 8. This can be further expanded if necessary. 7950 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7951 case MVT::i32: 7952 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7953 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7954 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7955 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7956 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7957 DAG.getConstant(0xFF0000, dl, VT)); 7958 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7959 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7960 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7961 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7962 case MVT::i64: 7963 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7964 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7965 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7966 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7967 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7968 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7969 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7970 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7971 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7972 DAG.getConstant(255ULL<<48, dl, VT)); 7973 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7974 DAG.getConstant(255ULL<<40, dl, VT)); 7975 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7976 DAG.getConstant(255ULL<<32, dl, VT)); 7977 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7978 DAG.getConstant(255ULL<<24, dl, VT)); 7979 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7980 DAG.getConstant(255ULL<<16, dl, VT)); 7981 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7982 DAG.getConstant(255ULL<<8 , dl, VT)); 7983 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7984 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7985 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7986 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7987 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7988 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7989 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7990 } 7991 } 7992 7993 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7994 SDLoc dl(N); 7995 EVT VT = N->getValueType(0); 7996 SDValue Op = N->getOperand(0); 7997 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7998 unsigned Sz = VT.getScalarSizeInBits(); 7999 8000 SDValue Tmp, Tmp2, Tmp3; 8001 8002 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 8003 // and finally the i1 pairs. 8004 // TODO: We can easily support i4/i2 legal types if any target ever does. 8005 if (Sz >= 8 && isPowerOf2_32(Sz)) { 8006 // Create the masks - repeating the pattern every byte. 8007 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 8008 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 8009 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 8010 8011 // BSWAP if the type is wider than a single byte. 8012 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 8013 8014 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 8015 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 8016 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 8017 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 8018 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 8019 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8020 8021 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 8022 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 8023 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 8024 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 8025 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 8026 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8027 8028 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 8029 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 8030 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 8031 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 8032 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 8033 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 8034 return Tmp; 8035 } 8036 8037 Tmp = DAG.getConstant(0, dl, VT); 8038 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 8039 if (I < J) 8040 Tmp2 = 8041 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 8042 else 8043 Tmp2 = 8044 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 8045 8046 APInt Shift(Sz, 1); 8047 Shift <<= J; 8048 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 8049 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 8050 } 8051 8052 return Tmp; 8053 } 8054 8055 std::pair<SDValue, SDValue> 8056 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 8057 SelectionDAG &DAG) const { 8058 SDLoc SL(LD); 8059 SDValue Chain = LD->getChain(); 8060 SDValue BasePTR = LD->getBasePtr(); 8061 EVT SrcVT = LD->getMemoryVT(); 8062 EVT DstVT = LD->getValueType(0); 8063 ISD::LoadExtType ExtType = LD->getExtensionType(); 8064 8065 if (SrcVT.isScalableVector()) 8066 report_fatal_error("Cannot scalarize scalable vector loads"); 8067 8068 unsigned NumElem = SrcVT.getVectorNumElements(); 8069 8070 EVT SrcEltVT = SrcVT.getScalarType(); 8071 EVT DstEltVT = DstVT.getScalarType(); 8072 8073 // A vector must always be stored in memory as-is, i.e. without any padding 8074 // between the elements, since various code depend on it, e.g. in the 8075 // handling of a bitcast of a vector type to int, which may be done with a 8076 // vector store followed by an integer load. A vector that does not have 8077 // elements that are byte-sized must therefore be stored as an integer 8078 // built out of the extracted vector elements. 8079 if (!SrcEltVT.isByteSized()) { 8080 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 8081 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 8082 8083 unsigned NumSrcBits = SrcVT.getSizeInBits(); 8084 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 8085 8086 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 8087 SDValue SrcEltBitMask = DAG.getConstant( 8088 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 8089 8090 // Load the whole vector and avoid masking off the top bits as it makes 8091 // the codegen worse. 8092 SDValue Load = 8093 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 8094 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 8095 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8096 8097 SmallVector<SDValue, 8> Vals; 8098 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8099 unsigned ShiftIntoIdx = 8100 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8101 SDValue ShiftAmount = 8102 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 8103 LoadVT, SL, /*LegalTypes=*/false); 8104 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 8105 SDValue Elt = 8106 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 8107 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 8108 8109 if (ExtType != ISD::NON_EXTLOAD) { 8110 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 8111 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 8112 } 8113 8114 Vals.push_back(Scalar); 8115 } 8116 8117 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8118 return std::make_pair(Value, Load.getValue(1)); 8119 } 8120 8121 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 8122 assert(SrcEltVT.isByteSized()); 8123 8124 SmallVector<SDValue, 8> Vals; 8125 SmallVector<SDValue, 8> LoadChains; 8126 8127 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8128 SDValue ScalarLoad = 8129 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 8130 LD->getPointerInfo().getWithOffset(Idx * Stride), 8131 SrcEltVT, LD->getOriginalAlign(), 8132 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 8133 8134 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 8135 8136 Vals.push_back(ScalarLoad.getValue(0)); 8137 LoadChains.push_back(ScalarLoad.getValue(1)); 8138 } 8139 8140 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 8141 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 8142 8143 return std::make_pair(Value, NewChain); 8144 } 8145 8146 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 8147 SelectionDAG &DAG) const { 8148 SDLoc SL(ST); 8149 8150 SDValue Chain = ST->getChain(); 8151 SDValue BasePtr = ST->getBasePtr(); 8152 SDValue Value = ST->getValue(); 8153 EVT StVT = ST->getMemoryVT(); 8154 8155 if (StVT.isScalableVector()) 8156 report_fatal_error("Cannot scalarize scalable vector stores"); 8157 8158 // The type of the data we want to save 8159 EVT RegVT = Value.getValueType(); 8160 EVT RegSclVT = RegVT.getScalarType(); 8161 8162 // The type of data as saved in memory. 8163 EVT MemSclVT = StVT.getScalarType(); 8164 8165 unsigned NumElem = StVT.getVectorNumElements(); 8166 8167 // A vector must always be stored in memory as-is, i.e. without any padding 8168 // between the elements, since various code depend on it, e.g. in the 8169 // handling of a bitcast of a vector type to int, which may be done with a 8170 // vector store followed by an integer load. A vector that does not have 8171 // elements that are byte-sized must therefore be stored as an integer 8172 // built out of the extracted vector elements. 8173 if (!MemSclVT.isByteSized()) { 8174 unsigned NumBits = StVT.getSizeInBits(); 8175 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 8176 8177 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 8178 8179 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8180 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8181 DAG.getVectorIdxConstant(Idx, SL)); 8182 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 8183 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 8184 unsigned ShiftIntoIdx = 8185 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 8186 SDValue ShiftAmount = 8187 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 8188 SDValue ShiftedElt = 8189 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 8190 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 8191 } 8192 8193 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 8194 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8195 ST->getAAInfo()); 8196 } 8197 8198 // Store Stride in bytes 8199 unsigned Stride = MemSclVT.getSizeInBits() / 8; 8200 assert(Stride && "Zero stride!"); 8201 // Extract each of the elements from the original vector and save them into 8202 // memory individually. 8203 SmallVector<SDValue, 8> Stores; 8204 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 8205 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 8206 DAG.getVectorIdxConstant(Idx, SL)); 8207 8208 SDValue Ptr = 8209 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 8210 8211 // This scalar TruncStore may be illegal, but we legalize it later. 8212 SDValue Store = DAG.getTruncStore( 8213 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 8214 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 8215 ST->getAAInfo()); 8216 8217 Stores.push_back(Store); 8218 } 8219 8220 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 8221 } 8222 8223 std::pair<SDValue, SDValue> 8224 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 8225 assert(LD->getAddressingMode() == ISD::UNINDEXED && 8226 "unaligned indexed loads not implemented!"); 8227 SDValue Chain = LD->getChain(); 8228 SDValue Ptr = LD->getBasePtr(); 8229 EVT VT = LD->getValueType(0); 8230 EVT LoadedVT = LD->getMemoryVT(); 8231 SDLoc dl(LD); 8232 auto &MF = DAG.getMachineFunction(); 8233 8234 if (VT.isFloatingPoint() || VT.isVector()) { 8235 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 8236 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 8237 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 8238 LoadedVT.isVector()) { 8239 // Scalarize the load and let the individual components be handled. 8240 return scalarizeVectorLoad(LD, DAG); 8241 } 8242 8243 // Expand to a (misaligned) integer load of the same size, 8244 // then bitconvert to floating point or vector. 8245 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 8246 LD->getMemOperand()); 8247 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 8248 if (LoadedVT != VT) 8249 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 8250 ISD::ANY_EXTEND, dl, VT, Result); 8251 8252 return std::make_pair(Result, newLoad.getValue(1)); 8253 } 8254 8255 // Copy the value to a (aligned) stack slot using (unaligned) integer 8256 // loads and stores, then do a (aligned) load from the stack slot. 8257 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 8258 unsigned LoadedBytes = LoadedVT.getStoreSize(); 8259 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8260 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 8261 8262 // Make sure the stack slot is also aligned for the register type. 8263 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 8264 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 8265 SmallVector<SDValue, 8> Stores; 8266 SDValue StackPtr = StackBase; 8267 unsigned Offset = 0; 8268 8269 EVT PtrVT = Ptr.getValueType(); 8270 EVT StackPtrVT = StackPtr.getValueType(); 8271 8272 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8273 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8274 8275 // Do all but one copies using the full register width. 8276 for (unsigned i = 1; i < NumRegs; i++) { 8277 // Load one integer register's worth from the original location. 8278 SDValue Load = DAG.getLoad( 8279 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 8280 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8281 LD->getAAInfo()); 8282 // Follow the load with a store to the stack slot. Remember the store. 8283 Stores.push_back(DAG.getStore( 8284 Load.getValue(1), dl, Load, StackPtr, 8285 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 8286 // Increment the pointers. 8287 Offset += RegBytes; 8288 8289 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8290 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8291 } 8292 8293 // The last copy may be partial. Do an extending load. 8294 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 8295 8 * (LoadedBytes - Offset)); 8296 SDValue Load = 8297 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 8298 LD->getPointerInfo().getWithOffset(Offset), MemVT, 8299 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 8300 LD->getAAInfo()); 8301 // Follow the load with a store to the stack slot. Remember the store. 8302 // On big-endian machines this requires a truncating store to ensure 8303 // that the bits end up in the right place. 8304 Stores.push_back(DAG.getTruncStore( 8305 Load.getValue(1), dl, Load, StackPtr, 8306 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 8307 8308 // The order of the stores doesn't matter - say it with a TokenFactor. 8309 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8310 8311 // Finally, perform the original load only redirected to the stack slot. 8312 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 8313 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 8314 LoadedVT); 8315 8316 // Callers expect a MERGE_VALUES node. 8317 return std::make_pair(Load, TF); 8318 } 8319 8320 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 8321 "Unaligned load of unsupported type."); 8322 8323 // Compute the new VT that is half the size of the old one. This is an 8324 // integer MVT. 8325 unsigned NumBits = LoadedVT.getSizeInBits(); 8326 EVT NewLoadedVT; 8327 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 8328 NumBits >>= 1; 8329 8330 Align Alignment = LD->getOriginalAlign(); 8331 unsigned IncrementSize = NumBits / 8; 8332 ISD::LoadExtType HiExtType = LD->getExtensionType(); 8333 8334 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 8335 if (HiExtType == ISD::NON_EXTLOAD) 8336 HiExtType = ISD::ZEXTLOAD; 8337 8338 // Load the value in two parts 8339 SDValue Lo, Hi; 8340 if (DAG.getDataLayout().isLittleEndian()) { 8341 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8342 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8343 LD->getAAInfo()); 8344 8345 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8346 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 8347 LD->getPointerInfo().getWithOffset(IncrementSize), 8348 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8349 LD->getAAInfo()); 8350 } else { 8351 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 8352 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8353 LD->getAAInfo()); 8354 8355 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8356 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 8357 LD->getPointerInfo().getWithOffset(IncrementSize), 8358 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 8359 LD->getAAInfo()); 8360 } 8361 8362 // aggregate the two parts 8363 SDValue ShiftAmount = 8364 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 8365 DAG.getDataLayout())); 8366 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 8367 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 8368 8369 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 8370 Hi.getValue(1)); 8371 8372 return std::make_pair(Result, TF); 8373 } 8374 8375 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 8376 SelectionDAG &DAG) const { 8377 assert(ST->getAddressingMode() == ISD::UNINDEXED && 8378 "unaligned indexed stores not implemented!"); 8379 SDValue Chain = ST->getChain(); 8380 SDValue Ptr = ST->getBasePtr(); 8381 SDValue Val = ST->getValue(); 8382 EVT VT = Val.getValueType(); 8383 Align Alignment = ST->getOriginalAlign(); 8384 auto &MF = DAG.getMachineFunction(); 8385 EVT StoreMemVT = ST->getMemoryVT(); 8386 8387 SDLoc dl(ST); 8388 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 8389 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 8390 if (isTypeLegal(intVT)) { 8391 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 8392 StoreMemVT.isVector()) { 8393 // Scalarize the store and let the individual components be handled. 8394 SDValue Result = scalarizeVectorStore(ST, DAG); 8395 return Result; 8396 } 8397 // Expand to a bitconvert of the value to the integer type of the 8398 // same size, then a (misaligned) int store. 8399 // FIXME: Does not handle truncating floating point stores! 8400 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 8401 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 8402 Alignment, ST->getMemOperand()->getFlags()); 8403 return Result; 8404 } 8405 // Do a (aligned) store to a stack slot, then copy from the stack slot 8406 // to the final destination using (unaligned) integer loads and stores. 8407 MVT RegVT = getRegisterType( 8408 *DAG.getContext(), 8409 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 8410 EVT PtrVT = Ptr.getValueType(); 8411 unsigned StoredBytes = StoreMemVT.getStoreSize(); 8412 unsigned RegBytes = RegVT.getSizeInBits() / 8; 8413 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 8414 8415 // Make sure the stack slot is also aligned for the register type. 8416 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 8417 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 8418 8419 // Perform the original store, only redirected to the stack slot. 8420 SDValue Store = DAG.getTruncStore( 8421 Chain, dl, Val, StackPtr, 8422 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 8423 8424 EVT StackPtrVT = StackPtr.getValueType(); 8425 8426 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 8427 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 8428 SmallVector<SDValue, 8> Stores; 8429 unsigned Offset = 0; 8430 8431 // Do all but one copies using the full register width. 8432 for (unsigned i = 1; i < NumRegs; i++) { 8433 // Load one integer register's worth from the stack slot. 8434 SDValue Load = DAG.getLoad( 8435 RegVT, dl, Store, StackPtr, 8436 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 8437 // Store it to the final location. Remember the store. 8438 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 8439 ST->getPointerInfo().getWithOffset(Offset), 8440 ST->getOriginalAlign(), 8441 ST->getMemOperand()->getFlags())); 8442 // Increment the pointers. 8443 Offset += RegBytes; 8444 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 8445 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 8446 } 8447 8448 // The last store may be partial. Do a truncating store. On big-endian 8449 // machines this requires an extending load from the stack slot to ensure 8450 // that the bits are in the right place. 8451 EVT LoadMemVT = 8452 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 8453 8454 // Load from the stack slot. 8455 SDValue Load = DAG.getExtLoad( 8456 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 8457 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 8458 8459 Stores.push_back( 8460 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 8461 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 8462 ST->getOriginalAlign(), 8463 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 8464 // The order of the stores doesn't matter - say it with a TokenFactor. 8465 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 8466 return Result; 8467 } 8468 8469 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 8470 "Unaligned store of unknown type."); 8471 // Get the half-size VT 8472 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 8473 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 8474 unsigned IncrementSize = NumBits / 8; 8475 8476 // Divide the stored value in two parts. 8477 SDValue ShiftAmount = DAG.getConstant( 8478 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8479 SDValue Lo = Val; 8480 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8481 8482 // Store the two parts 8483 SDValue Store1, Store2; 8484 Store1 = DAG.getTruncStore(Chain, dl, 8485 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8486 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8487 ST->getMemOperand()->getFlags()); 8488 8489 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8490 Store2 = DAG.getTruncStore( 8491 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8492 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8493 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8494 8495 SDValue Result = 8496 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8497 return Result; 8498 } 8499 8500 SDValue 8501 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8502 const SDLoc &DL, EVT DataVT, 8503 SelectionDAG &DAG, 8504 bool IsCompressedMemory) const { 8505 SDValue Increment; 8506 EVT AddrVT = Addr.getValueType(); 8507 EVT MaskVT = Mask.getValueType(); 8508 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8509 "Incompatible types of Data and Mask"); 8510 if (IsCompressedMemory) { 8511 if (DataVT.isScalableVector()) 8512 report_fatal_error( 8513 "Cannot currently handle compressed memory with scalable vectors"); 8514 // Incrementing the pointer according to number of '1's in the mask. 8515 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8516 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8517 if (MaskIntVT.getSizeInBits() < 32) { 8518 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8519 MaskIntVT = MVT::i32; 8520 } 8521 8522 // Count '1's with POPCNT. 8523 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8524 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8525 // Scale is an element size in bytes. 8526 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8527 AddrVT); 8528 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8529 } else if (DataVT.isScalableVector()) { 8530 Increment = DAG.getVScale(DL, AddrVT, 8531 APInt(AddrVT.getFixedSizeInBits(), 8532 DataVT.getStoreSize().getKnownMinSize())); 8533 } else 8534 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8535 8536 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8537 } 8538 8539 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8540 EVT VecVT, const SDLoc &dl, 8541 ElementCount SubEC) { 8542 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8543 "Cannot index a scalable vector within a fixed-width vector"); 8544 8545 unsigned NElts = VecVT.getVectorMinNumElements(); 8546 unsigned NumSubElts = SubEC.getKnownMinValue(); 8547 EVT IdxVT = Idx.getValueType(); 8548 8549 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8550 // If this is a constant index and we know the value plus the number of the 8551 // elements in the subvector minus one is less than the minimum number of 8552 // elements then it's safe to return Idx. 8553 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8554 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8555 return Idx; 8556 SDValue VS = 8557 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8558 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8559 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8560 DAG.getConstant(NumSubElts, dl, IdxVT)); 8561 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8562 } 8563 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8564 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8565 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8566 DAG.getConstant(Imm, dl, IdxVT)); 8567 } 8568 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8569 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8570 DAG.getConstant(MaxIndex, dl, IdxVT)); 8571 } 8572 8573 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8574 SDValue VecPtr, EVT VecVT, 8575 SDValue Index) const { 8576 return getVectorSubVecPointer( 8577 DAG, VecPtr, VecVT, 8578 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8579 Index); 8580 } 8581 8582 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8583 SDValue VecPtr, EVT VecVT, 8584 EVT SubVecVT, 8585 SDValue Index) const { 8586 SDLoc dl(Index); 8587 // Make sure the index type is big enough to compute in. 8588 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8589 8590 EVT EltVT = VecVT.getVectorElementType(); 8591 8592 // Calculate the element offset and add it to the pointer. 8593 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8594 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8595 "Converting bits to bytes lost precision"); 8596 assert(SubVecVT.getVectorElementType() == EltVT && 8597 "Sub-vector must be a vector with matching element type"); 8598 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8599 SubVecVT.getVectorElementCount()); 8600 8601 EVT IdxVT = Index.getValueType(); 8602 if (SubVecVT.isScalableVector()) 8603 Index = 8604 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8605 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8606 8607 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8608 DAG.getConstant(EltSize, dl, IdxVT)); 8609 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8610 } 8611 8612 //===----------------------------------------------------------------------===// 8613 // Implementation of Emulated TLS Model 8614 //===----------------------------------------------------------------------===// 8615 8616 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8617 SelectionDAG &DAG) const { 8618 // Access to address of TLS varialbe xyz is lowered to a function call: 8619 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8620 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8621 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8622 SDLoc dl(GA); 8623 8624 ArgListTy Args; 8625 ArgListEntry Entry; 8626 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8627 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8628 StringRef EmuTlsVarName(NameString); 8629 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8630 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8631 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8632 Entry.Ty = VoidPtrType; 8633 Args.push_back(Entry); 8634 8635 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8636 8637 TargetLowering::CallLoweringInfo CLI(DAG); 8638 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8639 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8640 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8641 8642 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8643 // At last for X86 targets, maybe good for other targets too? 8644 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8645 MFI.setAdjustsStack(true); // Is this only for X86 target? 8646 MFI.setHasCalls(true); 8647 8648 assert((GA->getOffset() == 0) && 8649 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8650 return CallResult.first; 8651 } 8652 8653 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8654 SelectionDAG &DAG) const { 8655 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8656 if (!isCtlzFast()) 8657 return SDValue(); 8658 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8659 SDLoc dl(Op); 8660 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8661 if (C->isZero() && CC == ISD::SETEQ) { 8662 EVT VT = Op.getOperand(0).getValueType(); 8663 SDValue Zext = Op.getOperand(0); 8664 if (VT.bitsLT(MVT::i32)) { 8665 VT = MVT::i32; 8666 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8667 } 8668 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8669 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8670 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8671 DAG.getConstant(Log2b, dl, MVT::i32)); 8672 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8673 } 8674 } 8675 return SDValue(); 8676 } 8677 8678 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8679 SDValue Op0 = Node->getOperand(0); 8680 SDValue Op1 = Node->getOperand(1); 8681 EVT VT = Op0.getValueType(); 8682 unsigned Opcode = Node->getOpcode(); 8683 SDLoc DL(Node); 8684 8685 // umin(x,y) -> sub(x,usubsat(x,y)) 8686 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8687 isOperationLegal(ISD::USUBSAT, VT)) { 8688 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8689 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8690 } 8691 8692 // umax(x,y) -> add(x,usubsat(y,x)) 8693 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8694 isOperationLegal(ISD::USUBSAT, VT)) { 8695 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8696 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8697 } 8698 8699 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8700 ISD::CondCode CC; 8701 switch (Opcode) { 8702 default: llvm_unreachable("How did we get here?"); 8703 case ISD::SMAX: CC = ISD::SETGT; break; 8704 case ISD::SMIN: CC = ISD::SETLT; break; 8705 case ISD::UMAX: CC = ISD::SETUGT; break; 8706 case ISD::UMIN: CC = ISD::SETULT; break; 8707 } 8708 8709 // FIXME: Should really try to split the vector in case it's legal on a 8710 // subvector. 8711 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8712 return DAG.UnrollVectorOp(Node); 8713 8714 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8715 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8716 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8717 } 8718 8719 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8720 unsigned Opcode = Node->getOpcode(); 8721 SDValue LHS = Node->getOperand(0); 8722 SDValue RHS = Node->getOperand(1); 8723 EVT VT = LHS.getValueType(); 8724 SDLoc dl(Node); 8725 8726 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8727 assert(VT.isInteger() && "Expected operands to be integers"); 8728 8729 // usub.sat(a, b) -> umax(a, b) - b 8730 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8731 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8732 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8733 } 8734 8735 // uadd.sat(a, b) -> umin(a, ~b) + b 8736 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8737 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8738 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8739 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8740 } 8741 8742 unsigned OverflowOp; 8743 switch (Opcode) { 8744 case ISD::SADDSAT: 8745 OverflowOp = ISD::SADDO; 8746 break; 8747 case ISD::UADDSAT: 8748 OverflowOp = ISD::UADDO; 8749 break; 8750 case ISD::SSUBSAT: 8751 OverflowOp = ISD::SSUBO; 8752 break; 8753 case ISD::USUBSAT: 8754 OverflowOp = ISD::USUBO; 8755 break; 8756 default: 8757 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8758 "addition or subtraction node."); 8759 } 8760 8761 // FIXME: Should really try to split the vector in case it's legal on a 8762 // subvector. 8763 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8764 return DAG.UnrollVectorOp(Node); 8765 8766 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8767 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8768 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8769 SDValue SumDiff = Result.getValue(0); 8770 SDValue Overflow = Result.getValue(1); 8771 SDValue Zero = DAG.getConstant(0, dl, VT); 8772 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8773 8774 if (Opcode == ISD::UADDSAT) { 8775 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8776 // (LHS + RHS) | OverflowMask 8777 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8778 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8779 } 8780 // Overflow ? 0xffff.... : (LHS + RHS) 8781 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8782 } 8783 8784 if (Opcode == ISD::USUBSAT) { 8785 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8786 // (LHS - RHS) & ~OverflowMask 8787 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8788 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8789 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8790 } 8791 // Overflow ? 0 : (LHS - RHS) 8792 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8793 } 8794 8795 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8796 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8797 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8798 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8799 DAG.getConstant(BitWidth - 1, dl, VT)); 8800 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8801 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8802 } 8803 8804 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8805 unsigned Opcode = Node->getOpcode(); 8806 bool IsSigned = Opcode == ISD::SSHLSAT; 8807 SDValue LHS = Node->getOperand(0); 8808 SDValue RHS = Node->getOperand(1); 8809 EVT VT = LHS.getValueType(); 8810 SDLoc dl(Node); 8811 8812 assert((Node->getOpcode() == ISD::SSHLSAT || 8813 Node->getOpcode() == ISD::USHLSAT) && 8814 "Expected a SHLSAT opcode"); 8815 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8816 assert(VT.isInteger() && "Expected operands to be integers"); 8817 8818 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8819 8820 unsigned BW = VT.getScalarSizeInBits(); 8821 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8822 SDValue Orig = 8823 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8824 8825 SDValue SatVal; 8826 if (IsSigned) { 8827 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8828 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8829 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8830 SatMin, SatMax, ISD::SETLT); 8831 } else { 8832 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8833 } 8834 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8835 8836 return Result; 8837 } 8838 8839 SDValue 8840 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8841 assert((Node->getOpcode() == ISD::SMULFIX || 8842 Node->getOpcode() == ISD::UMULFIX || 8843 Node->getOpcode() == ISD::SMULFIXSAT || 8844 Node->getOpcode() == ISD::UMULFIXSAT) && 8845 "Expected a fixed point multiplication opcode"); 8846 8847 SDLoc dl(Node); 8848 SDValue LHS = Node->getOperand(0); 8849 SDValue RHS = Node->getOperand(1); 8850 EVT VT = LHS.getValueType(); 8851 unsigned Scale = Node->getConstantOperandVal(2); 8852 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8853 Node->getOpcode() == ISD::UMULFIXSAT); 8854 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8855 Node->getOpcode() == ISD::SMULFIXSAT); 8856 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8857 unsigned VTSize = VT.getScalarSizeInBits(); 8858 8859 if (!Scale) { 8860 // [us]mul.fix(a, b, 0) -> mul(a, b) 8861 if (!Saturating) { 8862 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8863 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8864 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8865 SDValue Result = 8866 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8867 SDValue Product = Result.getValue(0); 8868 SDValue Overflow = Result.getValue(1); 8869 SDValue Zero = DAG.getConstant(0, dl, VT); 8870 8871 APInt MinVal = APInt::getSignedMinValue(VTSize); 8872 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8873 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8874 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8875 // Xor the inputs, if resulting sign bit is 0 the product will be 8876 // positive, else negative. 8877 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8878 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8879 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8880 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8881 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8882 SDValue Result = 8883 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8884 SDValue Product = Result.getValue(0); 8885 SDValue Overflow = Result.getValue(1); 8886 8887 APInt MaxVal = APInt::getMaxValue(VTSize); 8888 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8889 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8890 } 8891 } 8892 8893 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8894 "Expected scale to be less than the number of bits if signed or at " 8895 "most the number of bits if unsigned."); 8896 assert(LHS.getValueType() == RHS.getValueType() && 8897 "Expected both operands to be the same type"); 8898 8899 // Get the upper and lower bits of the result. 8900 SDValue Lo, Hi; 8901 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8902 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8903 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8904 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8905 Lo = Result.getValue(0); 8906 Hi = Result.getValue(1); 8907 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8908 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8909 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8910 } else if (VT.isVector()) { 8911 return SDValue(); 8912 } else { 8913 report_fatal_error("Unable to expand fixed point multiplication."); 8914 } 8915 8916 if (Scale == VTSize) 8917 // Result is just the top half since we'd be shifting by the width of the 8918 // operand. Overflow impossible so this works for both UMULFIX and 8919 // UMULFIXSAT. 8920 return Hi; 8921 8922 // The result will need to be shifted right by the scale since both operands 8923 // are scaled. The result is given to us in 2 halves, so we only want part of 8924 // both in the result. 8925 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8926 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8927 DAG.getConstant(Scale, dl, ShiftTy)); 8928 if (!Saturating) 8929 return Result; 8930 8931 if (!Signed) { 8932 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8933 // widened multiplication) aren't all zeroes. 8934 8935 // Saturate to max if ((Hi >> Scale) != 0), 8936 // which is the same as if (Hi > ((1 << Scale) - 1)) 8937 APInt MaxVal = APInt::getMaxValue(VTSize); 8938 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8939 dl, VT); 8940 Result = DAG.getSelectCC(dl, Hi, LowMask, 8941 DAG.getConstant(MaxVal, dl, VT), Result, 8942 ISD::SETUGT); 8943 8944 return Result; 8945 } 8946 8947 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8948 // widened multiplication) aren't all ones or all zeroes. 8949 8950 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8951 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8952 8953 if (Scale == 0) { 8954 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8955 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8956 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8957 // Saturated to SatMin if wide product is negative, and SatMax if wide 8958 // product is positive ... 8959 SDValue Zero = DAG.getConstant(0, dl, VT); 8960 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8961 ISD::SETLT); 8962 // ... but only if we overflowed. 8963 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8964 } 8965 8966 // We handled Scale==0 above so all the bits to examine is in Hi. 8967 8968 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8969 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8970 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8971 dl, VT); 8972 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8973 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8974 // which is the same as if (HI < (-1 << (Scale - 1)) 8975 SDValue HighMask = 8976 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8977 dl, VT); 8978 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8979 return Result; 8980 } 8981 8982 SDValue 8983 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8984 SDValue LHS, SDValue RHS, 8985 unsigned Scale, SelectionDAG &DAG) const { 8986 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8987 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8988 "Expected a fixed point division opcode"); 8989 8990 EVT VT = LHS.getValueType(); 8991 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8992 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8993 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8994 8995 // If there is enough room in the type to upscale the LHS or downscale the 8996 // RHS before the division, we can perform it in this type without having to 8997 // resize. For signed operations, the LHS headroom is the number of 8998 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8999 // The headroom for the RHS is the number of trailing zeroes. 9000 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 9001 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 9002 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 9003 9004 // For signed saturating operations, we need to be able to detect true integer 9005 // division overflow; that is, when you have MIN / -EPS. However, this 9006 // is undefined behavior and if we emit divisions that could take such 9007 // values it may cause undesired behavior (arithmetic exceptions on x86, for 9008 // example). 9009 // Avoid this by requiring an extra bit so that we never get this case. 9010 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 9011 // signed saturating division, we need to emit a whopping 32-bit division. 9012 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 9013 return SDValue(); 9014 9015 unsigned LHSShift = std::min(LHSLead, Scale); 9016 unsigned RHSShift = Scale - LHSShift; 9017 9018 // At this point, we know that if we shift the LHS up by LHSShift and the 9019 // RHS down by RHSShift, we can emit a regular division with a final scaling 9020 // factor of Scale. 9021 9022 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9023 if (LHSShift) 9024 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 9025 DAG.getConstant(LHSShift, dl, ShiftTy)); 9026 if (RHSShift) 9027 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 9028 DAG.getConstant(RHSShift, dl, ShiftTy)); 9029 9030 SDValue Quot; 9031 if (Signed) { 9032 // For signed operations, if the resulting quotient is negative and the 9033 // remainder is nonzero, subtract 1 from the quotient to round towards 9034 // negative infinity. 9035 SDValue Rem; 9036 // FIXME: Ideally we would always produce an SDIVREM here, but if the 9037 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 9038 // we couldn't just form a libcall, but the type legalizer doesn't do it. 9039 if (isTypeLegal(VT) && 9040 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 9041 Quot = DAG.getNode(ISD::SDIVREM, dl, 9042 DAG.getVTList(VT, VT), 9043 LHS, RHS); 9044 Rem = Quot.getValue(1); 9045 Quot = Quot.getValue(0); 9046 } else { 9047 Quot = DAG.getNode(ISD::SDIV, dl, VT, 9048 LHS, RHS); 9049 Rem = DAG.getNode(ISD::SREM, dl, VT, 9050 LHS, RHS); 9051 } 9052 SDValue Zero = DAG.getConstant(0, dl, VT); 9053 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 9054 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 9055 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 9056 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 9057 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 9058 DAG.getConstant(1, dl, VT)); 9059 Quot = DAG.getSelect(dl, VT, 9060 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 9061 Sub1, Quot); 9062 } else 9063 Quot = DAG.getNode(ISD::UDIV, dl, VT, 9064 LHS, RHS); 9065 9066 return Quot; 9067 } 9068 9069 void TargetLowering::expandUADDSUBO( 9070 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9071 SDLoc dl(Node); 9072 SDValue LHS = Node->getOperand(0); 9073 SDValue RHS = Node->getOperand(1); 9074 bool IsAdd = Node->getOpcode() == ISD::UADDO; 9075 9076 // If ADD/SUBCARRY is legal, use that instead. 9077 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 9078 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 9079 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 9080 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 9081 { LHS, RHS, CarryIn }); 9082 Result = SDValue(NodeCarry.getNode(), 0); 9083 Overflow = SDValue(NodeCarry.getNode(), 1); 9084 return; 9085 } 9086 9087 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9088 LHS.getValueType(), LHS, RHS); 9089 9090 EVT ResultType = Node->getValueType(1); 9091 EVT SetCCType = getSetCCResultType( 9092 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9093 SDValue SetCC; 9094 if (IsAdd && isOneConstant(RHS)) { 9095 // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces 9096 // the live range of X. We assume comparing with 0 is cheap. 9097 // The general case (X + C) < C is not necessarily beneficial. Although we 9098 // reduce the live range of X, we may introduce the materialization of 9099 // constant C. 9100 SetCC = 9101 DAG.getSetCC(dl, SetCCType, Result, 9102 DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ); 9103 } else { 9104 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 9105 SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 9106 } 9107 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9108 } 9109 9110 void TargetLowering::expandSADDSUBO( 9111 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 9112 SDLoc dl(Node); 9113 SDValue LHS = Node->getOperand(0); 9114 SDValue RHS = Node->getOperand(1); 9115 bool IsAdd = Node->getOpcode() == ISD::SADDO; 9116 9117 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 9118 LHS.getValueType(), LHS, RHS); 9119 9120 EVT ResultType = Node->getValueType(1); 9121 EVT OType = getSetCCResultType( 9122 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 9123 9124 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 9125 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 9126 if (isOperationLegal(OpcSat, LHS.getValueType())) { 9127 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 9128 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 9129 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 9130 return; 9131 } 9132 9133 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 9134 9135 // For an addition, the result should be less than one of the operands (LHS) 9136 // if and only if the other operand (RHS) is negative, otherwise there will 9137 // be overflow. 9138 // For a subtraction, the result should be less than one of the operands 9139 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 9140 // otherwise there will be overflow. 9141 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 9142 SDValue ConditionRHS = 9143 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 9144 9145 Overflow = DAG.getBoolExtOrTrunc( 9146 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 9147 ResultType, ResultType); 9148 } 9149 9150 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 9151 SDValue &Overflow, SelectionDAG &DAG) const { 9152 SDLoc dl(Node); 9153 EVT VT = Node->getValueType(0); 9154 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 9155 SDValue LHS = Node->getOperand(0); 9156 SDValue RHS = Node->getOperand(1); 9157 bool isSigned = Node->getOpcode() == ISD::SMULO; 9158 9159 // For power-of-two multiplications we can use a simpler shift expansion. 9160 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 9161 const APInt &C = RHSC->getAPIntValue(); 9162 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 9163 if (C.isPowerOf2()) { 9164 // smulo(x, signed_min) is same as umulo(x, signed_min). 9165 bool UseArithShift = isSigned && !C.isMinSignedValue(); 9166 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 9167 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 9168 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 9169 Overflow = DAG.getSetCC(dl, SetCCVT, 9170 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 9171 dl, VT, Result, ShiftAmt), 9172 LHS, ISD::SETNE); 9173 return true; 9174 } 9175 } 9176 9177 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 9178 if (VT.isVector()) 9179 WideVT = 9180 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 9181 9182 SDValue BottomHalf; 9183 SDValue TopHalf; 9184 static const unsigned Ops[2][3] = 9185 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 9186 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 9187 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 9188 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 9189 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 9190 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 9191 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 9192 RHS); 9193 TopHalf = BottomHalf.getValue(1); 9194 } else if (isTypeLegal(WideVT)) { 9195 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 9196 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 9197 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 9198 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 9199 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 9200 getShiftAmountTy(WideVT, DAG.getDataLayout())); 9201 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 9202 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 9203 } else { 9204 if (VT.isVector()) 9205 return false; 9206 9207 // We can fall back to a libcall with an illegal type for the MUL if we 9208 // have a libcall big enough. 9209 // Also, we can fall back to a division in some cases, but that's a big 9210 // performance hit in the general case. 9211 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 9212 if (WideVT == MVT::i16) 9213 LC = RTLIB::MUL_I16; 9214 else if (WideVT == MVT::i32) 9215 LC = RTLIB::MUL_I32; 9216 else if (WideVT == MVT::i64) 9217 LC = RTLIB::MUL_I64; 9218 else if (WideVT == MVT::i128) 9219 LC = RTLIB::MUL_I128; 9220 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 9221 9222 SDValue HiLHS; 9223 SDValue HiRHS; 9224 if (isSigned) { 9225 // The high part is obtained by SRA'ing all but one of the bits of low 9226 // part. 9227 unsigned LoSize = VT.getFixedSizeInBits(); 9228 HiLHS = 9229 DAG.getNode(ISD::SRA, dl, VT, LHS, 9230 DAG.getConstant(LoSize - 1, dl, 9231 getPointerTy(DAG.getDataLayout()))); 9232 HiRHS = 9233 DAG.getNode(ISD::SRA, dl, VT, RHS, 9234 DAG.getConstant(LoSize - 1, dl, 9235 getPointerTy(DAG.getDataLayout()))); 9236 } else { 9237 HiLHS = DAG.getConstant(0, dl, VT); 9238 HiRHS = DAG.getConstant(0, dl, VT); 9239 } 9240 9241 // Here we're passing the 2 arguments explicitly as 4 arguments that are 9242 // pre-lowered to the correct types. This all depends upon WideVT not 9243 // being a legal type for the architecture and thus has to be split to 9244 // two arguments. 9245 SDValue Ret; 9246 TargetLowering::MakeLibCallOptions CallOptions; 9247 CallOptions.setSExt(isSigned); 9248 CallOptions.setIsPostTypeLegalization(true); 9249 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 9250 // Halves of WideVT are packed into registers in different order 9251 // depending on platform endianness. This is usually handled by 9252 // the C calling convention, but we can't defer to it in 9253 // the legalizer. 9254 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 9255 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9256 } else { 9257 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 9258 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 9259 } 9260 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 9261 "Ret value is a collection of constituent nodes holding result."); 9262 if (DAG.getDataLayout().isLittleEndian()) { 9263 // Same as above. 9264 BottomHalf = Ret.getOperand(0); 9265 TopHalf = Ret.getOperand(1); 9266 } else { 9267 BottomHalf = Ret.getOperand(1); 9268 TopHalf = Ret.getOperand(0); 9269 } 9270 } 9271 9272 Result = BottomHalf; 9273 if (isSigned) { 9274 SDValue ShiftAmt = DAG.getConstant( 9275 VT.getScalarSizeInBits() - 1, dl, 9276 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 9277 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 9278 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 9279 } else { 9280 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 9281 DAG.getConstant(0, dl, VT), ISD::SETNE); 9282 } 9283 9284 // Truncate the result if SetCC returns a larger type than needed. 9285 EVT RType = Node->getValueType(1); 9286 if (RType.bitsLT(Overflow.getValueType())) 9287 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 9288 9289 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 9290 "Unexpected result type for S/UMULO legalization"); 9291 return true; 9292 } 9293 9294 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 9295 SDLoc dl(Node); 9296 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9297 SDValue Op = Node->getOperand(0); 9298 EVT VT = Op.getValueType(); 9299 9300 if (VT.isScalableVector()) 9301 report_fatal_error( 9302 "Expanding reductions for scalable vectors is undefined."); 9303 9304 // Try to use a shuffle reduction for power of two vectors. 9305 if (VT.isPow2VectorType()) { 9306 while (VT.getVectorNumElements() > 1) { 9307 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 9308 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 9309 break; 9310 9311 SDValue Lo, Hi; 9312 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 9313 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 9314 VT = HalfVT; 9315 } 9316 } 9317 9318 EVT EltVT = VT.getVectorElementType(); 9319 unsigned NumElts = VT.getVectorNumElements(); 9320 9321 SmallVector<SDValue, 8> Ops; 9322 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 9323 9324 SDValue Res = Ops[0]; 9325 for (unsigned i = 1; i < NumElts; i++) 9326 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 9327 9328 // Result type may be wider than element type. 9329 if (EltVT != Node->getValueType(0)) 9330 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 9331 return Res; 9332 } 9333 9334 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 9335 SDLoc dl(Node); 9336 SDValue AccOp = Node->getOperand(0); 9337 SDValue VecOp = Node->getOperand(1); 9338 SDNodeFlags Flags = Node->getFlags(); 9339 9340 EVT VT = VecOp.getValueType(); 9341 EVT EltVT = VT.getVectorElementType(); 9342 9343 if (VT.isScalableVector()) 9344 report_fatal_error( 9345 "Expanding reductions for scalable vectors is undefined."); 9346 9347 unsigned NumElts = VT.getVectorNumElements(); 9348 9349 SmallVector<SDValue, 8> Ops; 9350 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 9351 9352 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 9353 9354 SDValue Res = AccOp; 9355 for (unsigned i = 0; i < NumElts; i++) 9356 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 9357 9358 return Res; 9359 } 9360 9361 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 9362 SelectionDAG &DAG) const { 9363 EVT VT = Node->getValueType(0); 9364 SDLoc dl(Node); 9365 bool isSigned = Node->getOpcode() == ISD::SREM; 9366 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 9367 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 9368 SDValue Dividend = Node->getOperand(0); 9369 SDValue Divisor = Node->getOperand(1); 9370 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 9371 SDVTList VTs = DAG.getVTList(VT, VT); 9372 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 9373 return true; 9374 } 9375 if (isOperationLegalOrCustom(DivOpc, VT)) { 9376 // X % Y -> X-X/Y*Y 9377 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 9378 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 9379 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 9380 return true; 9381 } 9382 return false; 9383 } 9384 9385 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 9386 SelectionDAG &DAG) const { 9387 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 9388 SDLoc dl(SDValue(Node, 0)); 9389 SDValue Src = Node->getOperand(0); 9390 9391 // DstVT is the result type, while SatVT is the size to which we saturate 9392 EVT SrcVT = Src.getValueType(); 9393 EVT DstVT = Node->getValueType(0); 9394 9395 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 9396 unsigned SatWidth = SatVT.getScalarSizeInBits(); 9397 unsigned DstWidth = DstVT.getScalarSizeInBits(); 9398 assert(SatWidth <= DstWidth && 9399 "Expected saturation width smaller than result width"); 9400 9401 // Determine minimum and maximum integer values and their corresponding 9402 // floating-point values. 9403 APInt MinInt, MaxInt; 9404 if (IsSigned) { 9405 MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth); 9406 MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth); 9407 } else { 9408 MinInt = APInt::getMinValue(SatWidth).zext(DstWidth); 9409 MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth); 9410 } 9411 9412 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 9413 // libcall emission cannot handle this. Large result types will fail. 9414 if (SrcVT == MVT::f16) { 9415 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 9416 SrcVT = Src.getValueType(); 9417 } 9418 9419 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9420 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 9421 9422 APFloat::opStatus MinStatus = 9423 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 9424 APFloat::opStatus MaxStatus = 9425 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 9426 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 9427 !(MaxStatus & APFloat::opStatus::opInexact); 9428 9429 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 9430 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 9431 9432 // If the integer bounds are exactly representable as floats and min/max are 9433 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 9434 // of comparisons and selects. 9435 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 9436 isOperationLegal(ISD::FMAXNUM, SrcVT); 9437 if (AreExactFloatBounds && MinMaxLegal) { 9438 SDValue Clamped = Src; 9439 9440 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 9441 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 9442 // Clamp by MaxFloat from above. NaN cannot occur. 9443 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 9444 // Convert clamped value to integer. 9445 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 9446 dl, DstVT, Clamped); 9447 9448 // In the unsigned case we're done, because we mapped NaN to MinFloat, 9449 // which will cast to zero. 9450 if (!IsSigned) 9451 return FpToInt; 9452 9453 // Otherwise, select 0 if Src is NaN. 9454 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9455 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 9456 ISD::CondCode::SETUO); 9457 } 9458 9459 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 9460 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 9461 9462 // Result of direct conversion. The assumption here is that the operation is 9463 // non-trapping and it's fine to apply it to an out-of-range value if we 9464 // select it away later. 9465 SDValue FpToInt = 9466 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 9467 9468 SDValue Select = FpToInt; 9469 9470 // If Src ULT MinFloat, select MinInt. In particular, this also selects 9471 // MinInt if Src is NaN. 9472 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 9473 ISD::CondCode::SETULT); 9474 // If Src OGT MaxFloat, select MaxInt. 9475 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9476 ISD::CondCode::SETOGT); 9477 9478 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9479 // is already zero. 9480 if (!IsSigned) 9481 return Select; 9482 9483 // Otherwise, select 0 if Src is NaN. 9484 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9485 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9486 } 9487 9488 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9489 SelectionDAG &DAG) const { 9490 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9491 assert(Node->getValueType(0).isScalableVector() && 9492 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9493 9494 EVT VT = Node->getValueType(0); 9495 SDValue V1 = Node->getOperand(0); 9496 SDValue V2 = Node->getOperand(1); 9497 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9498 SDLoc DL(Node); 9499 9500 // Expand through memory thusly: 9501 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9502 // Store V1, Ptr 9503 // Store V2, Ptr + sizeof(V1) 9504 // If (Imm < 0) 9505 // TrailingElts = -Imm 9506 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9507 // else 9508 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9509 // Res = Load Ptr 9510 9511 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9512 9513 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9514 VT.getVectorElementCount() * 2); 9515 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9516 EVT PtrVT = StackPtr.getValueType(); 9517 auto &MF = DAG.getMachineFunction(); 9518 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9519 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9520 9521 // Store the lo part of CONCAT_VECTORS(V1, V2) 9522 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9523 // Store the hi part of CONCAT_VECTORS(V1, V2) 9524 SDValue OffsetToV2 = DAG.getVScale( 9525 DL, PtrVT, 9526 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9527 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9528 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9529 9530 if (Imm >= 0) { 9531 // Load back the required element. getVectorElementPointer takes care of 9532 // clamping the index if it's out-of-bounds. 9533 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9534 // Load the spliced result 9535 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9536 MachinePointerInfo::getUnknownStack(MF)); 9537 } 9538 9539 uint64_t TrailingElts = -Imm; 9540 9541 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9542 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9543 SDValue TrailingBytes = 9544 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9545 9546 if (TrailingElts > VT.getVectorMinNumElements()) { 9547 SDValue VLBytes = DAG.getVScale( 9548 DL, PtrVT, 9549 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9550 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9551 } 9552 9553 // Calculate the start address of the spliced result. 9554 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9555 9556 // Load the spliced result 9557 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9558 MachinePointerInfo::getUnknownStack(MF)); 9559 } 9560 9561 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9562 SDValue &LHS, SDValue &RHS, 9563 SDValue &CC, SDValue Mask, 9564 SDValue EVL, bool &NeedInvert, 9565 const SDLoc &dl, SDValue &Chain, 9566 bool IsSignaling) const { 9567 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9568 MVT OpVT = LHS.getSimpleValueType(); 9569 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9570 NeedInvert = false; 9571 assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset"); 9572 bool IsNonVP = !EVL; 9573 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9574 default: 9575 llvm_unreachable("Unknown condition code action!"); 9576 case TargetLowering::Legal: 9577 // Nothing to do. 9578 break; 9579 case TargetLowering::Expand: { 9580 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9581 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9582 std::swap(LHS, RHS); 9583 CC = DAG.getCondCode(InvCC); 9584 return true; 9585 } 9586 // Swapping operands didn't work. Try inverting the condition. 9587 bool NeedSwap = false; 9588 InvCC = getSetCCInverse(CCCode, OpVT); 9589 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9590 // If inverting the condition is not enough, try swapping operands 9591 // on top of it. 9592 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9593 NeedSwap = true; 9594 } 9595 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9596 CC = DAG.getCondCode(InvCC); 9597 NeedInvert = true; 9598 if (NeedSwap) 9599 std::swap(LHS, RHS); 9600 return true; 9601 } 9602 9603 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9604 unsigned Opc = 0; 9605 switch (CCCode) { 9606 default: 9607 llvm_unreachable("Don't know how to expand this condition!"); 9608 case ISD::SETUO: 9609 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9610 CC1 = ISD::SETUNE; 9611 CC2 = ISD::SETUNE; 9612 Opc = ISD::OR; 9613 break; 9614 } 9615 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9616 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9617 NeedInvert = true; 9618 LLVM_FALLTHROUGH; 9619 case ISD::SETO: 9620 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9621 "If SETO is expanded, SETOEQ must be legal!"); 9622 CC1 = ISD::SETOEQ; 9623 CC2 = ISD::SETOEQ; 9624 Opc = ISD::AND; 9625 break; 9626 case ISD::SETONE: 9627 case ISD::SETUEQ: 9628 // If the SETUO or SETO CC isn't legal, we might be able to use 9629 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9630 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9631 // the operands. 9632 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9633 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9634 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9635 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9636 CC1 = ISD::SETOGT; 9637 CC2 = ISD::SETOLT; 9638 Opc = ISD::OR; 9639 NeedInvert = ((unsigned)CCCode & 0x8U); 9640 break; 9641 } 9642 LLVM_FALLTHROUGH; 9643 case ISD::SETOEQ: 9644 case ISD::SETOGT: 9645 case ISD::SETOGE: 9646 case ISD::SETOLT: 9647 case ISD::SETOLE: 9648 case ISD::SETUNE: 9649 case ISD::SETUGT: 9650 case ISD::SETUGE: 9651 case ISD::SETULT: 9652 case ISD::SETULE: 9653 // If we are floating point, assign and break, otherwise fall through. 9654 if (!OpVT.isInteger()) { 9655 // We can use the 4th bit to tell if we are the unordered 9656 // or ordered version of the opcode. 9657 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9658 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9659 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9660 break; 9661 } 9662 // Fallthrough if we are unsigned integer. 9663 LLVM_FALLTHROUGH; 9664 case ISD::SETLE: 9665 case ISD::SETGT: 9666 case ISD::SETGE: 9667 case ISD::SETLT: 9668 case ISD::SETNE: 9669 case ISD::SETEQ: 9670 // If all combinations of inverting the condition and swapping operands 9671 // didn't work then we have no means to expand the condition. 9672 llvm_unreachable("Don't know how to expand this condition!"); 9673 } 9674 9675 SDValue SetCC1, SetCC2; 9676 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9677 // If we aren't the ordered or unorder operation, 9678 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9679 if (IsNonVP) { 9680 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9681 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9682 } else { 9683 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL); 9684 SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL); 9685 } 9686 } else { 9687 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9688 if (IsNonVP) { 9689 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9690 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9691 } else { 9692 SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL); 9693 SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL); 9694 } 9695 } 9696 if (Chain) 9697 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9698 SetCC2.getValue(1)); 9699 if (IsNonVP) 9700 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9701 else { 9702 // Transform the binary opcode to the VP equivalent. 9703 assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode"); 9704 Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND; 9705 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL); 9706 } 9707 RHS = SDValue(); 9708 CC = SDValue(); 9709 return true; 9710 } 9711 } 9712 return false; 9713 } 9714