1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/CodeGenCommonISel.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineJumpTableInfo.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/SelectionDAG.h"
22 #include "llvm/CodeGen/TargetRegisterInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore following attributes because they don't affect the
61   // call sequence.
62   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
63   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
64                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
65                            Attribute::NonNull, Attribute::NoUndef})
66     CallerAttrs.removeAttribute(Attr);
67 
68   if (CallerAttrs.hasAttributes())
69     return false;
70 
71   // It's not safe to eliminate the sign / zero extension of the return value.
72   if (CallerAttrs.contains(Attribute::ZExt) ||
73       CallerAttrs.contains(Attribute::SExt))
74     return false;
75 
76   // Check if the only use is a function return node.
77   return isUsedByReturnOnly(Node, Chain);
78 }
79 
80 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
81     const uint32_t *CallerPreservedMask,
82     const SmallVectorImpl<CCValAssign> &ArgLocs,
83     const SmallVectorImpl<SDValue> &OutVals) const {
84   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
85     const CCValAssign &ArgLoc = ArgLocs[I];
86     if (!ArgLoc.isRegLoc())
87       continue;
88     MCRegister Reg = ArgLoc.getLocReg();
89     // Only look at callee saved registers.
90     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
91       continue;
92     // Check that we pass the value used for the caller.
93     // (We look for a CopyFromReg reading a virtual register that is used
94     //  for the function live-in value of register Reg)
95     SDValue Value = OutVals[I];
96     if (Value->getOpcode() == ISD::AssertZext)
97       Value = Value.getOperand(0);
98     if (Value->getOpcode() != ISD::CopyFromReg)
99       return false;
100     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
101     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
102       return false;
103   }
104   return true;
105 }
106 
107 /// Set CallLoweringInfo attribute flags based on a call instruction
108 /// and called function attributes.
109 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
110                                                      unsigned ArgIdx) {
111   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
112   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
113   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
114   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
115   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
116   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
117   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
118   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
119   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
120   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
121   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
122   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
123   Alignment = Call->getParamStackAlign(ArgIdx);
124   IndirectType = nullptr;
125   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
126          "multiple ABI attributes?");
127   if (IsByVal) {
128     IndirectType = Call->getParamByValType(ArgIdx);
129     if (!Alignment)
130       Alignment = Call->getParamAlign(ArgIdx);
131   }
132   if (IsPreallocated)
133     IndirectType = Call->getParamPreallocatedType(ArgIdx);
134   if (IsInAlloca)
135     IndirectType = Call->getParamInAllocaType(ArgIdx);
136   if (IsSRet)
137     IndirectType = Call->getParamStructRetType(ArgIdx);
138 }
139 
140 /// Generate a libcall taking the given operands as arguments and returning a
141 /// result of type RetVT.
142 std::pair<SDValue, SDValue>
143 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
144                             ArrayRef<SDValue> Ops,
145                             MakeLibCallOptions CallOptions,
146                             const SDLoc &dl,
147                             SDValue InChain) const {
148   if (!InChain)
149     InChain = DAG.getEntryNode();
150 
151   TargetLowering::ArgListTy Args;
152   Args.reserve(Ops.size());
153 
154   TargetLowering::ArgListEntry Entry;
155   for (unsigned i = 0; i < Ops.size(); ++i) {
156     SDValue NewOp = Ops[i];
157     Entry.Node = NewOp;
158     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
159     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
160                                                  CallOptions.IsSExt);
161     Entry.IsZExt = !Entry.IsSExt;
162 
163     if (CallOptions.IsSoften &&
164         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
165       Entry.IsSExt = Entry.IsZExt = false;
166     }
167     Args.push_back(Entry);
168   }
169 
170   if (LC == RTLIB::UNKNOWN_LIBCALL)
171     report_fatal_error("Unsupported library call operation!");
172   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
173                                          getPointerTy(DAG.getDataLayout()));
174 
175   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
176   TargetLowering::CallLoweringInfo CLI(DAG);
177   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
178   bool zeroExtend = !signExtend;
179 
180   if (CallOptions.IsSoften &&
181       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
182     signExtend = zeroExtend = false;
183   }
184 
185   CLI.setDebugLoc(dl)
186       .setChain(InChain)
187       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
188       .setNoReturn(CallOptions.DoesNotReturn)
189       .setDiscardResult(!CallOptions.IsReturnValueUsed)
190       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
191       .setSExtResult(signExtend)
192       .setZExtResult(zeroExtend);
193   return LowerCallTo(CLI);
194 }
195 
196 bool TargetLowering::findOptimalMemOpLowering(
197     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
198     unsigned SrcAS, const AttributeList &FuncAttributes) const {
199   if (Limit != ~unsigned(0) && Op.isMemcpyWithFixedDstAlign() &&
200       Op.getSrcAlign() < Op.getDstAlign())
201     return false;
202 
203   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
204 
205   if (VT == MVT::Other) {
206     // Use the largest integer type whose alignment constraints are satisfied.
207     // We only need to check DstAlign here as SrcAlign is always greater or
208     // equal to DstAlign (or zero).
209     VT = MVT::i64;
210     if (Op.isFixedDstAlign())
211       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
212              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
213         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
214     assert(VT.isInteger());
215 
216     // Find the largest legal integer type.
217     MVT LVT = MVT::i64;
218     while (!isTypeLegal(LVT))
219       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
220     assert(LVT.isInteger());
221 
222     // If the type we've chosen is larger than the largest legal integer type
223     // then use that instead.
224     if (VT.bitsGT(LVT))
225       VT = LVT;
226   }
227 
228   unsigned NumMemOps = 0;
229   uint64_t Size = Op.size();
230   while (Size) {
231     unsigned VTSize = VT.getSizeInBits() / 8;
232     while (VTSize > Size) {
233       // For now, only use non-vector load / store's for the left-over pieces.
234       EVT NewVT = VT;
235       unsigned NewVTSize;
236 
237       bool Found = false;
238       if (VT.isVector() || VT.isFloatingPoint()) {
239         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
240         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
241             isSafeMemOpType(NewVT.getSimpleVT()))
242           Found = true;
243         else if (NewVT == MVT::i64 &&
244                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
245                  isSafeMemOpType(MVT::f64)) {
246           // i64 is usually not legal on 32-bit targets, but f64 may be.
247           NewVT = MVT::f64;
248           Found = true;
249         }
250       }
251 
252       if (!Found) {
253         do {
254           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
255           if (NewVT == MVT::i8)
256             break;
257         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
258       }
259       NewVTSize = NewVT.getSizeInBits() / 8;
260 
261       // If the new VT cannot cover all of the remaining bits, then consider
262       // issuing a (or a pair of) unaligned and overlapping load / store.
263       bool Fast;
264       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
265           allowsMisalignedMemoryAccesses(
266               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
267               MachineMemOperand::MONone, &Fast) &&
268           Fast)
269         VTSize = Size;
270       else {
271         VT = NewVT;
272         VTSize = NewVTSize;
273       }
274     }
275 
276     if (++NumMemOps > Limit)
277       return false;
278 
279     MemOps.push_back(VT);
280     Size -= VTSize;
281   }
282 
283   return true;
284 }
285 
286 /// Soften the operands of a comparison. This code is shared among BR_CC,
287 /// SELECT_CC, and SETCC handlers.
288 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
289                                          SDValue &NewLHS, SDValue &NewRHS,
290                                          ISD::CondCode &CCCode,
291                                          const SDLoc &dl, const SDValue OldLHS,
292                                          const SDValue OldRHS) const {
293   SDValue Chain;
294   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
295                              OldRHS, Chain);
296 }
297 
298 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
299                                          SDValue &NewLHS, SDValue &NewRHS,
300                                          ISD::CondCode &CCCode,
301                                          const SDLoc &dl, const SDValue OldLHS,
302                                          const SDValue OldRHS,
303                                          SDValue &Chain,
304                                          bool IsSignaling) const {
305   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
306   // not supporting it. We can update this code when libgcc provides such
307   // functions.
308 
309   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
310          && "Unsupported setcc type!");
311 
312   // Expand into one or more soft-fp libcall(s).
313   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
314   bool ShouldInvertCC = false;
315   switch (CCCode) {
316   case ISD::SETEQ:
317   case ISD::SETOEQ:
318     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
319           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
320           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
321     break;
322   case ISD::SETNE:
323   case ISD::SETUNE:
324     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
325           (VT == MVT::f64) ? RTLIB::UNE_F64 :
326           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
327     break;
328   case ISD::SETGE:
329   case ISD::SETOGE:
330     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
331           (VT == MVT::f64) ? RTLIB::OGE_F64 :
332           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
333     break;
334   case ISD::SETLT:
335   case ISD::SETOLT:
336     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
337           (VT == MVT::f64) ? RTLIB::OLT_F64 :
338           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
339     break;
340   case ISD::SETLE:
341   case ISD::SETOLE:
342     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
343           (VT == MVT::f64) ? RTLIB::OLE_F64 :
344           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
345     break;
346   case ISD::SETGT:
347   case ISD::SETOGT:
348     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
349           (VT == MVT::f64) ? RTLIB::OGT_F64 :
350           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
351     break;
352   case ISD::SETO:
353     ShouldInvertCC = true;
354     LLVM_FALLTHROUGH;
355   case ISD::SETUO:
356     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
357           (VT == MVT::f64) ? RTLIB::UO_F64 :
358           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
359     break;
360   case ISD::SETONE:
361     // SETONE = O && UNE
362     ShouldInvertCC = true;
363     LLVM_FALLTHROUGH;
364   case ISD::SETUEQ:
365     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
366           (VT == MVT::f64) ? RTLIB::UO_F64 :
367           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
368     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
369           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
370           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
371     break;
372   default:
373     // Invert CC for unordered comparisons
374     ShouldInvertCC = true;
375     switch (CCCode) {
376     case ISD::SETULT:
377       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
378             (VT == MVT::f64) ? RTLIB::OGE_F64 :
379             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
380       break;
381     case ISD::SETULE:
382       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
383             (VT == MVT::f64) ? RTLIB::OGT_F64 :
384             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
385       break;
386     case ISD::SETUGT:
387       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
388             (VT == MVT::f64) ? RTLIB::OLE_F64 :
389             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
390       break;
391     case ISD::SETUGE:
392       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
393             (VT == MVT::f64) ? RTLIB::OLT_F64 :
394             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
395       break;
396     default: llvm_unreachable("Do not know how to soften this setcc!");
397     }
398   }
399 
400   // Use the target specific return value for comparions lib calls.
401   EVT RetVT = getCmpLibcallReturnType();
402   SDValue Ops[2] = {NewLHS, NewRHS};
403   TargetLowering::MakeLibCallOptions CallOptions;
404   EVT OpsVT[2] = { OldLHS.getValueType(),
405                    OldRHS.getValueType() };
406   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
407   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
408   NewLHS = Call.first;
409   NewRHS = DAG.getConstant(0, dl, RetVT);
410 
411   CCCode = getCmpLibcallCC(LC1);
412   if (ShouldInvertCC) {
413     assert(RetVT.isInteger());
414     CCCode = getSetCCInverse(CCCode, RetVT);
415   }
416 
417   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
418     // Update Chain.
419     Chain = Call.second;
420   } else {
421     EVT SetCCVT =
422         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
423     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
424     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
425     CCCode = getCmpLibcallCC(LC2);
426     if (ShouldInvertCC)
427       CCCode = getSetCCInverse(CCCode, RetVT);
428     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
429     if (Chain)
430       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
431                           Call2.second);
432     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
433                          Tmp.getValueType(), Tmp, NewLHS);
434     NewRHS = SDValue();
435   }
436 }
437 
438 /// Return the entry encoding for a jump table in the current function. The
439 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
440 unsigned TargetLowering::getJumpTableEncoding() const {
441   // In non-pic modes, just use the address of a block.
442   if (!isPositionIndependent())
443     return MachineJumpTableInfo::EK_BlockAddress;
444 
445   // In PIC mode, if the target supports a GPRel32 directive, use it.
446   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
447     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
448 
449   // Otherwise, use a label difference.
450   return MachineJumpTableInfo::EK_LabelDifference32;
451 }
452 
453 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
454                                                  SelectionDAG &DAG) const {
455   // If our PIC model is GP relative, use the global offset table as the base.
456   unsigned JTEncoding = getJumpTableEncoding();
457 
458   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
459       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
460     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
461 
462   return Table;
463 }
464 
465 /// This returns the relocation base for the given PIC jumptable, the same as
466 /// getPICJumpTableRelocBase, but as an MCExpr.
467 const MCExpr *
468 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
469                                              unsigned JTI,MCContext &Ctx) const{
470   // The normal PIC reloc base is the label at the start of the jump table.
471   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
472 }
473 
474 bool
475 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
476   const TargetMachine &TM = getTargetMachine();
477   const GlobalValue *GV = GA->getGlobal();
478 
479   // If the address is not even local to this DSO we will have to load it from
480   // a got and then add the offset.
481   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
482     return false;
483 
484   // If the code is position independent we will have to add a base register.
485   if (isPositionIndependent())
486     return false;
487 
488   // Otherwise we can do it.
489   return true;
490 }
491 
492 //===----------------------------------------------------------------------===//
493 //  Optimization Methods
494 //===----------------------------------------------------------------------===//
495 
496 /// If the specified instruction has a constant integer operand and there are
497 /// bits set in that constant that are not demanded, then clear those bits and
498 /// return true.
499 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
500                                             const APInt &DemandedBits,
501                                             const APInt &DemandedElts,
502                                             TargetLoweringOpt &TLO) const {
503   SDLoc DL(Op);
504   unsigned Opcode = Op.getOpcode();
505 
506   // Do target-specific constant optimization.
507   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
508     return TLO.New.getNode();
509 
510   // FIXME: ISD::SELECT, ISD::SELECT_CC
511   switch (Opcode) {
512   default:
513     break;
514   case ISD::XOR:
515   case ISD::AND:
516   case ISD::OR: {
517     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
518     if (!Op1C || Op1C->isOpaque())
519       return false;
520 
521     // If this is a 'not' op, don't touch it because that's a canonical form.
522     const APInt &C = Op1C->getAPIntValue();
523     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
524       return false;
525 
526     if (!C.isSubsetOf(DemandedBits)) {
527       EVT VT = Op.getValueType();
528       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
529       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
530       return TLO.CombineTo(Op, NewOp);
531     }
532 
533     break;
534   }
535   }
536 
537   return false;
538 }
539 
540 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
541                                             const APInt &DemandedBits,
542                                             TargetLoweringOpt &TLO) const {
543   EVT VT = Op.getValueType();
544   APInt DemandedElts = VT.isVector()
545                            ? APInt::getAllOnes(VT.getVectorNumElements())
546                            : APInt(1, 1);
547   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
548 }
549 
550 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
551 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
552 /// generalized for targets with other types of implicit widening casts.
553 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
554                                       const APInt &Demanded,
555                                       TargetLoweringOpt &TLO) const {
556   assert(Op.getNumOperands() == 2 &&
557          "ShrinkDemandedOp only supports binary operators!");
558   assert(Op.getNode()->getNumValues() == 1 &&
559          "ShrinkDemandedOp only supports nodes with one result!");
560 
561   SelectionDAG &DAG = TLO.DAG;
562   SDLoc dl(Op);
563 
564   // Early return, as this function cannot handle vector types.
565   if (Op.getValueType().isVector())
566     return false;
567 
568   // Don't do this if the node has another user, which may require the
569   // full value.
570   if (!Op.getNode()->hasOneUse())
571     return false;
572 
573   // Search for the smallest integer type with free casts to and from
574   // Op's type. For expedience, just check power-of-2 integer types.
575   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
576   unsigned DemandedSize = Demanded.getActiveBits();
577   unsigned SmallVTBits = DemandedSize;
578   if (!isPowerOf2_32(SmallVTBits))
579     SmallVTBits = NextPowerOf2(SmallVTBits);
580   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
581     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
582     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
583         TLI.isZExtFree(SmallVT, Op.getValueType())) {
584       // We found a type with free casts.
585       SDValue X = DAG.getNode(
586           Op.getOpcode(), dl, SmallVT,
587           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
588           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
589       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
590       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
591       return TLO.CombineTo(Op, Z);
592     }
593   }
594   return false;
595 }
596 
597 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
598                                           DAGCombinerInfo &DCI) const {
599   SelectionDAG &DAG = DCI.DAG;
600   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
601                         !DCI.isBeforeLegalizeOps());
602   KnownBits Known;
603 
604   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
605   if (Simplified) {
606     DCI.AddToWorklist(Op.getNode());
607     DCI.CommitTargetLoweringOpt(TLO);
608   }
609   return Simplified;
610 }
611 
612 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
613                                           const APInt &DemandedElts,
614                                           DAGCombinerInfo &DCI) const {
615   SelectionDAG &DAG = DCI.DAG;
616   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
617                         !DCI.isBeforeLegalizeOps());
618   KnownBits Known;
619 
620   bool Simplified =
621       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
622   if (Simplified) {
623     DCI.AddToWorklist(Op.getNode());
624     DCI.CommitTargetLoweringOpt(TLO);
625   }
626   return Simplified;
627 }
628 
629 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
630                                           KnownBits &Known,
631                                           TargetLoweringOpt &TLO,
632                                           unsigned Depth,
633                                           bool AssumeSingleUse) const {
634   EVT VT = Op.getValueType();
635 
636   // TODO: We can probably do more work on calculating the known bits and
637   // simplifying the operations for scalable vectors, but for now we just
638   // bail out.
639   if (VT.isScalableVector()) {
640     // Pretend we don't know anything for now.
641     Known = KnownBits(DemandedBits.getBitWidth());
642     return false;
643   }
644 
645   APInt DemandedElts = VT.isVector()
646                            ? APInt::getAllOnes(VT.getVectorNumElements())
647                            : APInt(1, 1);
648   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
649                               AssumeSingleUse);
650 }
651 
652 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
653 // TODO: Under what circumstances can we create nodes? Constant folding?
654 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
655     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
656     SelectionDAG &DAG, unsigned Depth) const {
657   // Limit search depth.
658   if (Depth >= SelectionDAG::MaxRecursionDepth)
659     return SDValue();
660 
661   // Ignore UNDEFs.
662   if (Op.isUndef())
663     return SDValue();
664 
665   // Not demanding any bits/elts from Op.
666   if (DemandedBits == 0 || DemandedElts == 0)
667     return DAG.getUNDEF(Op.getValueType());
668 
669   bool IsLE = DAG.getDataLayout().isLittleEndian();
670   unsigned NumElts = DemandedElts.getBitWidth();
671   unsigned BitWidth = DemandedBits.getBitWidth();
672   KnownBits LHSKnown, RHSKnown;
673   switch (Op.getOpcode()) {
674   case ISD::BITCAST: {
675     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
676     EVT SrcVT = Src.getValueType();
677     EVT DstVT = Op.getValueType();
678     if (SrcVT == DstVT)
679       return Src;
680 
681     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
682     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
683     if (NumSrcEltBits == NumDstEltBits)
684       if (SDValue V = SimplifyMultipleUseDemandedBits(
685               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
686         return DAG.getBitcast(DstVT, V);
687 
688     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
689       unsigned Scale = NumDstEltBits / NumSrcEltBits;
690       unsigned NumSrcElts = SrcVT.getVectorNumElements();
691       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
692       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
693       for (unsigned i = 0; i != Scale; ++i) {
694         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
695         unsigned BitOffset = EltOffset * NumSrcEltBits;
696         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
697         if (!Sub.isZero()) {
698           DemandedSrcBits |= Sub;
699           for (unsigned j = 0; j != NumElts; ++j)
700             if (DemandedElts[j])
701               DemandedSrcElts.setBit((j * Scale) + i);
702         }
703       }
704 
705       if (SDValue V = SimplifyMultipleUseDemandedBits(
706               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
707         return DAG.getBitcast(DstVT, V);
708     }
709 
710     // TODO - bigendian once we have test coverage.
711     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
712       unsigned Scale = NumSrcEltBits / NumDstEltBits;
713       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
714       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
715       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
716       for (unsigned i = 0; i != NumElts; ++i)
717         if (DemandedElts[i]) {
718           unsigned Offset = (i % Scale) * NumDstEltBits;
719           DemandedSrcBits.insertBits(DemandedBits, Offset);
720           DemandedSrcElts.setBit(i / Scale);
721         }
722 
723       if (SDValue V = SimplifyMultipleUseDemandedBits(
724               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
725         return DAG.getBitcast(DstVT, V);
726     }
727 
728     break;
729   }
730   case ISD::AND: {
731     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
732     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
733 
734     // If all of the demanded bits are known 1 on one side, return the other.
735     // These bits cannot contribute to the result of the 'and' in this
736     // context.
737     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
738       return Op.getOperand(0);
739     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
740       return Op.getOperand(1);
741     break;
742   }
743   case ISD::OR: {
744     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
745     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
746 
747     // If all of the demanded bits are known zero on one side, return the
748     // other.  These bits cannot contribute to the result of the 'or' in this
749     // context.
750     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
751       return Op.getOperand(0);
752     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
753       return Op.getOperand(1);
754     break;
755   }
756   case ISD::XOR: {
757     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
758     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
759 
760     // If all of the demanded bits are known zero on one side, return the
761     // other.
762     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
763       return Op.getOperand(0);
764     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
765       return Op.getOperand(1);
766     break;
767   }
768   case ISD::SHL: {
769     // If we are only demanding sign bits then we can use the shift source
770     // directly.
771     if (const APInt *MaxSA =
772             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
773       SDValue Op0 = Op.getOperand(0);
774       unsigned ShAmt = MaxSA->getZExtValue();
775       unsigned NumSignBits =
776           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
777       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
778       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
779         return Op0;
780     }
781     break;
782   }
783   case ISD::SETCC: {
784     SDValue Op0 = Op.getOperand(0);
785     SDValue Op1 = Op.getOperand(1);
786     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
787     // If (1) we only need the sign-bit, (2) the setcc operands are the same
788     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
789     // -1, we may be able to bypass the setcc.
790     if (DemandedBits.isSignMask() &&
791         Op0.getScalarValueSizeInBits() == BitWidth &&
792         getBooleanContents(Op0.getValueType()) ==
793             BooleanContent::ZeroOrNegativeOneBooleanContent) {
794       // If we're testing X < 0, then this compare isn't needed - just use X!
795       // FIXME: We're limiting to integer types here, but this should also work
796       // if we don't care about FP signed-zero. The use of SETLT with FP means
797       // that we don't care about NaNs.
798       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
799           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
800         return Op0;
801     }
802     break;
803   }
804   case ISD::SIGN_EXTEND_INREG: {
805     // If none of the extended bits are demanded, eliminate the sextinreg.
806     SDValue Op0 = Op.getOperand(0);
807     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
808     unsigned ExBits = ExVT.getScalarSizeInBits();
809     if (DemandedBits.getActiveBits() <= ExBits)
810       return Op0;
811     // If the input is already sign extended, just drop the extension.
812     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
813     if (NumSignBits >= (BitWidth - ExBits + 1))
814       return Op0;
815     break;
816   }
817   case ISD::ANY_EXTEND_VECTOR_INREG:
818   case ISD::SIGN_EXTEND_VECTOR_INREG:
819   case ISD::ZERO_EXTEND_VECTOR_INREG: {
820     // If we only want the lowest element and none of extended bits, then we can
821     // return the bitcasted source vector.
822     SDValue Src = Op.getOperand(0);
823     EVT SrcVT = Src.getValueType();
824     EVT DstVT = Op.getValueType();
825     if (IsLE && DemandedElts == 1 &&
826         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
827         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
828       return DAG.getBitcast(DstVT, Src);
829     }
830     break;
831   }
832   case ISD::INSERT_VECTOR_ELT: {
833     // If we don't demand the inserted element, return the base vector.
834     SDValue Vec = Op.getOperand(0);
835     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
836     EVT VecVT = Vec.getValueType();
837     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
838         !DemandedElts[CIdx->getZExtValue()])
839       return Vec;
840     break;
841   }
842   case ISD::INSERT_SUBVECTOR: {
843     SDValue Vec = Op.getOperand(0);
844     SDValue Sub = Op.getOperand(1);
845     uint64_t Idx = Op.getConstantOperandVal(2);
846     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
847     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
848     // If we don't demand the inserted subvector, return the base vector.
849     if (DemandedSubElts == 0)
850       return Vec;
851     // If this simply widens the lowest subvector, see if we can do it earlier.
852     if (Idx == 0 && Vec.isUndef()) {
853       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
854               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
855         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
856                            Op.getOperand(0), NewSub, Op.getOperand(2));
857     }
858     break;
859   }
860   case ISD::VECTOR_SHUFFLE: {
861     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
862 
863     // If all the demanded elts are from one operand and are inline,
864     // then we can use the operand directly.
865     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
866     for (unsigned i = 0; i != NumElts; ++i) {
867       int M = ShuffleMask[i];
868       if (M < 0 || !DemandedElts[i])
869         continue;
870       AllUndef = false;
871       IdentityLHS &= (M == (int)i);
872       IdentityRHS &= ((M - NumElts) == i);
873     }
874 
875     if (AllUndef)
876       return DAG.getUNDEF(Op.getValueType());
877     if (IdentityLHS)
878       return Op.getOperand(0);
879     if (IdentityRHS)
880       return Op.getOperand(1);
881     break;
882   }
883   default:
884     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
885       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
886               Op, DemandedBits, DemandedElts, DAG, Depth))
887         return V;
888     break;
889   }
890   return SDValue();
891 }
892 
893 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
894     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
895     unsigned Depth) const {
896   EVT VT = Op.getValueType();
897   APInt DemandedElts = VT.isVector()
898                            ? APInt::getAllOnes(VT.getVectorNumElements())
899                            : APInt(1, 1);
900   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
901                                          Depth);
902 }
903 
904 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
905     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
906     unsigned Depth) const {
907   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
908   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
909                                          Depth);
910 }
911 
912 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
913 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
914 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
915                                  const TargetLowering &TLI,
916                                  const APInt &DemandedBits,
917                                  const APInt &DemandedElts,
918                                  unsigned Depth) {
919   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
920          "SRL or SRA node is required here!");
921   // Is the right shift using an immediate value of 1?
922   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
923   if (!N1C || !N1C->isOne())
924     return SDValue();
925 
926   // We are looking for an avgfloor
927   // add(ext, ext)
928   // or one of these as a avgceil
929   // add(add(ext, ext), 1)
930   // add(add(ext, 1), ext)
931   // add(ext, add(ext, 1))
932   SDValue Add = Op.getOperand(0);
933   if (Add.getOpcode() != ISD::ADD)
934     return SDValue();
935 
936   SDValue ExtOpA = Add.getOperand(0);
937   SDValue ExtOpB = Add.getOperand(1);
938   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
939     ConstantSDNode *ConstOp;
940     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
941         ConstOp->isOne()) {
942       ExtOpA = Op2;
943       ExtOpB = Op3;
944       return true;
945     }
946     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
947         ConstOp->isOne()) {
948       ExtOpA = Op1;
949       ExtOpB = Op3;
950       return true;
951     }
952     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
953         ConstOp->isOne()) {
954       ExtOpA = Op1;
955       ExtOpB = Op2;
956       return true;
957     }
958     return false;
959   };
960   bool IsCeil =
961       (ExtOpA.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
963       (ExtOpB.getOpcode() == ISD::ADD &&
964        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
965 
966   // If the shift is signed (sra):
967   //  - Needs >= 2 sign bit for both operands.
968   //  - Needs >= 2 zero bits.
969   // If the shift is unsigned (srl):
970   //  - Needs >= 1 zero bit for both operands.
971   //  - Needs 1 demanded bit zero and >= 2 sign bits.
972   unsigned ShiftOpc = Op.getOpcode();
973   bool IsSigned = false;
974   unsigned KnownBits;
975   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
976   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
977   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
978   unsigned NumZeroA =
979       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZeroB =
981       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
982   unsigned NumZero = std::min(NumZeroA, NumZeroB);
983 
984   switch (ShiftOpc) {
985   default:
986     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
987   case ISD::SRA: {
988     if (NumZero >= 2 && NumSigned < NumZero) {
989       IsSigned = false;
990       KnownBits = NumZero;
991       break;
992     }
993     if (NumSigned >= 1) {
994       IsSigned = true;
995       KnownBits = NumSigned;
996       break;
997     }
998     return SDValue();
999   }
1000   case ISD::SRL: {
1001     if (NumZero >= 1 && NumSigned < NumZero) {
1002       IsSigned = false;
1003       KnownBits = NumZero;
1004       break;
1005     }
1006     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1007       IsSigned = true;
1008       KnownBits = NumSigned;
1009       break;
1010     }
1011     return SDValue();
1012   }
1013   }
1014 
1015   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1016                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1017 
1018   // Find the smallest power-2 type that is legal for this vector size and
1019   // operation, given the original type size and the number of known sign/zero
1020   // bits.
1021   EVT VT = Op.getValueType();
1022   unsigned MinWidth =
1023       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1024   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1025   if (VT.isVector())
1026     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1027   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1028     return SDValue();
1029 
1030   SDLoc DL(Op);
1031   SDValue ResultAVG =
1032       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1033                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1034   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1035                      ResultAVG);
1036 }
1037 
1038 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1039 /// result of Op are ever used downstream. If we can use this information to
1040 /// simplify Op, create a new simplified DAG node and return true, returning the
1041 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1042 /// return a mask of Known bits for the expression (used to simplify the
1043 /// caller).  The Known bits may only be accurate for those bits in the
1044 /// OriginalDemandedBits and OriginalDemandedElts.
1045 bool TargetLowering::SimplifyDemandedBits(
1046     SDValue Op, const APInt &OriginalDemandedBits,
1047     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1048     unsigned Depth, bool AssumeSingleUse) const {
1049   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1050   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1051          "Mask size mismatches value type size!");
1052 
1053   // Don't know anything.
1054   Known = KnownBits(BitWidth);
1055 
1056   // TODO: We can probably do more work on calculating the known bits and
1057   // simplifying the operations for scalable vectors, but for now we just
1058   // bail out.
1059   if (Op.getValueType().isScalableVector())
1060     return false;
1061 
1062   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1063   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1064   assert((!Op.getValueType().isVector() ||
1065           NumElts == Op.getValueType().getVectorNumElements()) &&
1066          "Unexpected vector size");
1067 
1068   APInt DemandedBits = OriginalDemandedBits;
1069   APInt DemandedElts = OriginalDemandedElts;
1070   SDLoc dl(Op);
1071   auto &DL = TLO.DAG.getDataLayout();
1072 
1073   // Undef operand.
1074   if (Op.isUndef())
1075     return false;
1076 
1077   if (Op.getOpcode() == ISD::Constant) {
1078     // We know all of the bits for a constant!
1079     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1080     return false;
1081   }
1082 
1083   if (Op.getOpcode() == ISD::ConstantFP) {
1084     // We know all of the bits for a floating point constant!
1085     Known = KnownBits::makeConstant(
1086         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1087     return false;
1088   }
1089 
1090   // Other users may use these bits.
1091   EVT VT = Op.getValueType();
1092   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1093     if (Depth != 0) {
1094       // If not at the root, Just compute the Known bits to
1095       // simplify things downstream.
1096       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1097       return false;
1098     }
1099     // If this is the root being simplified, allow it to have multiple uses,
1100     // just set the DemandedBits/Elts to all bits.
1101     DemandedBits = APInt::getAllOnes(BitWidth);
1102     DemandedElts = APInt::getAllOnes(NumElts);
1103   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1104     // Not demanding any bits/elts from Op.
1105     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1106   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1107     // Limit search depth.
1108     return false;
1109   }
1110 
1111   KnownBits Known2;
1112   switch (Op.getOpcode()) {
1113   case ISD::TargetConstant:
1114     llvm_unreachable("Can't simplify this node");
1115   case ISD::SCALAR_TO_VECTOR: {
1116     if (!DemandedElts[0])
1117       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1118 
1119     KnownBits SrcKnown;
1120     SDValue Src = Op.getOperand(0);
1121     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1122     APInt SrcDemandedBits = DemandedBits.zext(SrcBitWidth);
1123     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1124       return true;
1125 
1126     // Upper elements are undef, so only get the knownbits if we just demand
1127     // the bottom element.
1128     if (DemandedElts == 1)
1129       Known = SrcKnown.anyextOrTrunc(BitWidth);
1130     break;
1131   }
1132   case ISD::BUILD_VECTOR:
1133     // Collect the known bits that are shared by every demanded element.
1134     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1135     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1136     return false; // Don't fall through, will infinitely loop.
1137   case ISD::LOAD: {
1138     auto *LD = cast<LoadSDNode>(Op);
1139     if (getTargetConstantFromLoad(LD)) {
1140       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1141       return false; // Don't fall through, will infinitely loop.
1142     }
1143     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1144       // If this is a ZEXTLoad and we are looking at the loaded value.
1145       EVT MemVT = LD->getMemoryVT();
1146       unsigned MemBits = MemVT.getScalarSizeInBits();
1147       Known.Zero.setBitsFrom(MemBits);
1148       return false; // Don't fall through, will infinitely loop.
1149     }
1150     break;
1151   }
1152   case ISD::INSERT_VECTOR_ELT: {
1153     SDValue Vec = Op.getOperand(0);
1154     SDValue Scl = Op.getOperand(1);
1155     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1156     EVT VecVT = Vec.getValueType();
1157 
1158     // If index isn't constant, assume we need all vector elements AND the
1159     // inserted element.
1160     APInt DemandedVecElts(DemandedElts);
1161     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1162       unsigned Idx = CIdx->getZExtValue();
1163       DemandedVecElts.clearBit(Idx);
1164 
1165       // Inserted element is not required.
1166       if (!DemandedElts[Idx])
1167         return TLO.CombineTo(Op, Vec);
1168     }
1169 
1170     KnownBits KnownScl;
1171     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1172     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1173     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1174       return true;
1175 
1176     Known = KnownScl.anyextOrTrunc(BitWidth);
1177 
1178     KnownBits KnownVec;
1179     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1180                              Depth + 1))
1181       return true;
1182 
1183     if (!!DemandedVecElts)
1184       Known = KnownBits::commonBits(Known, KnownVec);
1185 
1186     return false;
1187   }
1188   case ISD::INSERT_SUBVECTOR: {
1189     // Demand any elements from the subvector and the remainder from the src its
1190     // inserted into.
1191     SDValue Src = Op.getOperand(0);
1192     SDValue Sub = Op.getOperand(1);
1193     uint64_t Idx = Op.getConstantOperandVal(2);
1194     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1195     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1196     APInt DemandedSrcElts = DemandedElts;
1197     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1198 
1199     KnownBits KnownSub, KnownSrc;
1200     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1201                              Depth + 1))
1202       return true;
1203     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1204                              Depth + 1))
1205       return true;
1206 
1207     Known.Zero.setAllBits();
1208     Known.One.setAllBits();
1209     if (!!DemandedSubElts)
1210       Known = KnownBits::commonBits(Known, KnownSub);
1211     if (!!DemandedSrcElts)
1212       Known = KnownBits::commonBits(Known, KnownSrc);
1213 
1214     // Attempt to avoid multi-use src if we don't need anything from it.
1215     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1216         !DemandedSrcElts.isAllOnes()) {
1217       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1218           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1219       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1220           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1221       if (NewSub || NewSrc) {
1222         NewSub = NewSub ? NewSub : Sub;
1223         NewSrc = NewSrc ? NewSrc : Src;
1224         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1225                                         Op.getOperand(2));
1226         return TLO.CombineTo(Op, NewOp);
1227       }
1228     }
1229     break;
1230   }
1231   case ISD::EXTRACT_SUBVECTOR: {
1232     // Offset the demanded elts by the subvector index.
1233     SDValue Src = Op.getOperand(0);
1234     if (Src.getValueType().isScalableVector())
1235       break;
1236     uint64_t Idx = Op.getConstantOperandVal(1);
1237     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1238     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
1239 
1240     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1241                              Depth + 1))
1242       return true;
1243 
1244     // Attempt to avoid multi-use src if we don't need anything from it.
1245     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1246       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1247           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1248       if (DemandedSrc) {
1249         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1250                                         Op.getOperand(1));
1251         return TLO.CombineTo(Op, NewOp);
1252       }
1253     }
1254     break;
1255   }
1256   case ISD::CONCAT_VECTORS: {
1257     Known.Zero.setAllBits();
1258     Known.One.setAllBits();
1259     EVT SubVT = Op.getOperand(0).getValueType();
1260     unsigned NumSubVecs = Op.getNumOperands();
1261     unsigned NumSubElts = SubVT.getVectorNumElements();
1262     for (unsigned i = 0; i != NumSubVecs; ++i) {
1263       APInt DemandedSubElts =
1264           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1265       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1266                                Known2, TLO, Depth + 1))
1267         return true;
1268       // Known bits are shared by every demanded subvector element.
1269       if (!!DemandedSubElts)
1270         Known = KnownBits::commonBits(Known, Known2);
1271     }
1272     break;
1273   }
1274   case ISD::VECTOR_SHUFFLE: {
1275     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1276 
1277     // Collect demanded elements from shuffle operands..
1278     APInt DemandedLHS(NumElts, 0);
1279     APInt DemandedRHS(NumElts, 0);
1280     for (unsigned i = 0; i != NumElts; ++i) {
1281       if (!DemandedElts[i])
1282         continue;
1283       int M = ShuffleMask[i];
1284       if (M < 0) {
1285         // For UNDEF elements, we don't know anything about the common state of
1286         // the shuffle result.
1287         DemandedLHS.clearAllBits();
1288         DemandedRHS.clearAllBits();
1289         break;
1290       }
1291       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1292       if (M < (int)NumElts)
1293         DemandedLHS.setBit(M);
1294       else
1295         DemandedRHS.setBit(M - NumElts);
1296     }
1297 
1298     if (!!DemandedLHS || !!DemandedRHS) {
1299       SDValue Op0 = Op.getOperand(0);
1300       SDValue Op1 = Op.getOperand(1);
1301 
1302       Known.Zero.setAllBits();
1303       Known.One.setAllBits();
1304       if (!!DemandedLHS) {
1305         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1306                                  Depth + 1))
1307           return true;
1308         Known = KnownBits::commonBits(Known, Known2);
1309       }
1310       if (!!DemandedRHS) {
1311         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1312                                  Depth + 1))
1313           return true;
1314         Known = KnownBits::commonBits(Known, Known2);
1315       }
1316 
1317       // Attempt to avoid multi-use ops if we don't need anything from them.
1318       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1319           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1320       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1321           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1322       if (DemandedOp0 || DemandedOp1) {
1323         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1324         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1325         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1326         return TLO.CombineTo(Op, NewOp);
1327       }
1328     }
1329     break;
1330   }
1331   case ISD::AND: {
1332     SDValue Op0 = Op.getOperand(0);
1333     SDValue Op1 = Op.getOperand(1);
1334 
1335     // If the RHS is a constant, check to see if the LHS would be zero without
1336     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1337     // simplify the LHS, here we're using information from the LHS to simplify
1338     // the RHS.
1339     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1340       // Do not increment Depth here; that can cause an infinite loop.
1341       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1342       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1343       if ((LHSKnown.Zero & DemandedBits) ==
1344           (~RHSC->getAPIntValue() & DemandedBits))
1345         return TLO.CombineTo(Op, Op0);
1346 
1347       // If any of the set bits in the RHS are known zero on the LHS, shrink
1348       // the constant.
1349       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1350                                  DemandedElts, TLO))
1351         return true;
1352 
1353       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1354       // constant, but if this 'and' is only clearing bits that were just set by
1355       // the xor, then this 'and' can be eliminated by shrinking the mask of
1356       // the xor. For example, for a 32-bit X:
1357       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1358       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1359           LHSKnown.One == ~RHSC->getAPIntValue()) {
1360         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1361         return TLO.CombineTo(Op, Xor);
1362       }
1363     }
1364 
1365     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1366                              Depth + 1))
1367       return true;
1368     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1369     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1370                              Known2, TLO, Depth + 1))
1371       return true;
1372     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1373 
1374     // Attempt to avoid multi-use ops if we don't need anything from them.
1375     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1376       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1377           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1379           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1380       if (DemandedOp0 || DemandedOp1) {
1381         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1382         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1383         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1384         return TLO.CombineTo(Op, NewOp);
1385       }
1386     }
1387 
1388     // If all of the demanded bits are known one on one side, return the other.
1389     // These bits cannot contribute to the result of the 'and'.
1390     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1391       return TLO.CombineTo(Op, Op0);
1392     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1393       return TLO.CombineTo(Op, Op1);
1394     // If all of the demanded bits in the inputs are known zeros, return zero.
1395     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1396       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1397     // If the RHS is a constant, see if we can simplify it.
1398     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1399                                TLO))
1400       return true;
1401     // If the operation can be done in a smaller type, do so.
1402     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1403       return true;
1404 
1405     Known &= Known2;
1406     break;
1407   }
1408   case ISD::OR: {
1409     SDValue Op0 = Op.getOperand(0);
1410     SDValue Op1 = Op.getOperand(1);
1411 
1412     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1413                              Depth + 1))
1414       return true;
1415     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1416     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1417                              Known2, TLO, Depth + 1))
1418       return true;
1419     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1420 
1421     // Attempt to avoid multi-use ops if we don't need anything from them.
1422     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1423       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1424           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1426           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1427       if (DemandedOp0 || DemandedOp1) {
1428         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1429         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1430         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1431         return TLO.CombineTo(Op, NewOp);
1432       }
1433     }
1434 
1435     // If all of the demanded bits are known zero on one side, return the other.
1436     // These bits cannot contribute to the result of the 'or'.
1437     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1438       return TLO.CombineTo(Op, Op0);
1439     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1440       return TLO.CombineTo(Op, Op1);
1441     // If the RHS is a constant, see if we can simplify it.
1442     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1443       return true;
1444     // If the operation can be done in a smaller type, do so.
1445     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1446       return true;
1447 
1448     Known |= Known2;
1449     break;
1450   }
1451   case ISD::XOR: {
1452     SDValue Op0 = Op.getOperand(0);
1453     SDValue Op1 = Op.getOperand(1);
1454 
1455     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1456                              Depth + 1))
1457       return true;
1458     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1459     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1460                              Depth + 1))
1461       return true;
1462     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1463 
1464     // Attempt to avoid multi-use ops if we don't need anything from them.
1465     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1466       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1467           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1469           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1470       if (DemandedOp0 || DemandedOp1) {
1471         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1472         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1473         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1474         return TLO.CombineTo(Op, NewOp);
1475       }
1476     }
1477 
1478     // If all of the demanded bits are known zero on one side, return the other.
1479     // These bits cannot contribute to the result of the 'xor'.
1480     if (DemandedBits.isSubsetOf(Known.Zero))
1481       return TLO.CombineTo(Op, Op0);
1482     if (DemandedBits.isSubsetOf(Known2.Zero))
1483       return TLO.CombineTo(Op, Op1);
1484     // If the operation can be done in a smaller type, do so.
1485     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1486       return true;
1487 
1488     // If all of the unknown bits are known to be zero on one side or the other
1489     // turn this into an *inclusive* or.
1490     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1491     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1492       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1493 
1494     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1495     if (C) {
1496       // If one side is a constant, and all of the set bits in the constant are
1497       // also known set on the other side, turn this into an AND, as we know
1498       // the bits will be cleared.
1499       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1500       // NB: it is okay if more bits are known than are requested
1501       if (C->getAPIntValue() == Known2.One) {
1502         SDValue ANDC =
1503             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1504         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1505       }
1506 
1507       // If the RHS is a constant, see if we can change it. Don't alter a -1
1508       // constant because that's a 'not' op, and that is better for combining
1509       // and codegen.
1510       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1511         // We're flipping all demanded bits. Flip the undemanded bits too.
1512         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1513         return TLO.CombineTo(Op, New);
1514       }
1515     }
1516 
1517     // If we can't turn this into a 'not', try to shrink the constant.
1518     if (!C || !C->isAllOnes())
1519       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1520         return true;
1521 
1522     Known ^= Known2;
1523     break;
1524   }
1525   case ISD::SELECT:
1526     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1527                              Depth + 1))
1528       return true;
1529     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1530                              Depth + 1))
1531       return true;
1532     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1533     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1534 
1535     // If the operands are constants, see if we can simplify them.
1536     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1537       return true;
1538 
1539     // Only known if known in both the LHS and RHS.
1540     Known = KnownBits::commonBits(Known, Known2);
1541     break;
1542   case ISD::SELECT_CC:
1543     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1544                              Depth + 1))
1545       return true;
1546     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1547                              Depth + 1))
1548       return true;
1549     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1550     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1551 
1552     // If the operands are constants, see if we can simplify them.
1553     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1554       return true;
1555 
1556     // Only known if known in both the LHS and RHS.
1557     Known = KnownBits::commonBits(Known, Known2);
1558     break;
1559   case ISD::SETCC: {
1560     SDValue Op0 = Op.getOperand(0);
1561     SDValue Op1 = Op.getOperand(1);
1562     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1563     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1564     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1565     // -1, we may be able to bypass the setcc.
1566     if (DemandedBits.isSignMask() &&
1567         Op0.getScalarValueSizeInBits() == BitWidth &&
1568         getBooleanContents(Op0.getValueType()) ==
1569             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1570       // If we're testing X < 0, then this compare isn't needed - just use X!
1571       // FIXME: We're limiting to integer types here, but this should also work
1572       // if we don't care about FP signed-zero. The use of SETLT with FP means
1573       // that we don't care about NaNs.
1574       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1575           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1576         return TLO.CombineTo(Op, Op0);
1577 
1578       // TODO: Should we check for other forms of sign-bit comparisons?
1579       // Examples: X <= -1, X >= 0
1580     }
1581     if (getBooleanContents(Op0.getValueType()) ==
1582             TargetLowering::ZeroOrOneBooleanContent &&
1583         BitWidth > 1)
1584       Known.Zero.setBitsFrom(1);
1585     break;
1586   }
1587   case ISD::SHL: {
1588     SDValue Op0 = Op.getOperand(0);
1589     SDValue Op1 = Op.getOperand(1);
1590     EVT ShiftVT = Op1.getValueType();
1591 
1592     if (const APInt *SA =
1593             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1594       unsigned ShAmt = SA->getZExtValue();
1595       if (ShAmt == 0)
1596         return TLO.CombineTo(Op, Op0);
1597 
1598       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1599       // single shift.  We can do this if the bottom bits (which are shifted
1600       // out) are never demanded.
1601       // TODO - support non-uniform vector amounts.
1602       if (Op0.getOpcode() == ISD::SRL) {
1603         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1604           if (const APInt *SA2 =
1605                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1606             unsigned C1 = SA2->getZExtValue();
1607             unsigned Opc = ISD::SHL;
1608             int Diff = ShAmt - C1;
1609             if (Diff < 0) {
1610               Diff = -Diff;
1611               Opc = ISD::SRL;
1612             }
1613             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1614             return TLO.CombineTo(
1615                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1616           }
1617         }
1618       }
1619 
1620       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1621       // are not demanded. This will likely allow the anyext to be folded away.
1622       // TODO - support non-uniform vector amounts.
1623       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1624         SDValue InnerOp = Op0.getOperand(0);
1625         EVT InnerVT = InnerOp.getValueType();
1626         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1627         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1628             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1629           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1630           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1631             ShTy = InnerVT;
1632           SDValue NarrowShl =
1633               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1634                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1635           return TLO.CombineTo(
1636               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1637         }
1638 
1639         // Repeat the SHL optimization above in cases where an extension
1640         // intervenes: (shl (anyext (shr x, c1)), c2) to
1641         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1642         // aren't demanded (as above) and that the shifted upper c1 bits of
1643         // x aren't demanded.
1644         // TODO - support non-uniform vector amounts.
1645         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1646             InnerOp.hasOneUse()) {
1647           if (const APInt *SA2 =
1648                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1649             unsigned InnerShAmt = SA2->getZExtValue();
1650             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1651                 DemandedBits.getActiveBits() <=
1652                     (InnerBits - InnerShAmt + ShAmt) &&
1653                 DemandedBits.countTrailingZeros() >= ShAmt) {
1654               SDValue NewSA =
1655                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1656               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1657                                                InnerOp.getOperand(0));
1658               return TLO.CombineTo(
1659                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1660             }
1661           }
1662         }
1663       }
1664 
1665       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1666       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1667                                Depth + 1))
1668         return true;
1669       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1670       Known.Zero <<= ShAmt;
1671       Known.One <<= ShAmt;
1672       // low bits known zero.
1673       Known.Zero.setLowBits(ShAmt);
1674 
1675       // Attempt to avoid multi-use ops if we don't need anything from them.
1676       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1677         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1678             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1679         if (DemandedOp0) {
1680           SDValue NewOp = TLO.DAG.getNode(ISD::SHL, dl, VT, DemandedOp0, Op1);
1681           return TLO.CombineTo(Op, NewOp);
1682         }
1683       }
1684 
1685       // Try shrinking the operation as long as the shift amount will still be
1686       // in range.
1687       if ((ShAmt < DemandedBits.getActiveBits()) &&
1688           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1689         return true;
1690     }
1691 
1692     // If we are only demanding sign bits then we can use the shift source
1693     // directly.
1694     if (const APInt *MaxSA =
1695             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1696       unsigned ShAmt = MaxSA->getZExtValue();
1697       unsigned NumSignBits =
1698           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1699       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1700       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1701         return TLO.CombineTo(Op, Op0);
1702     }
1703     break;
1704   }
1705   case ISD::SRL: {
1706     SDValue Op0 = Op.getOperand(0);
1707     SDValue Op1 = Op.getOperand(1);
1708     EVT ShiftVT = Op1.getValueType();
1709 
1710     // Try to match AVG patterns.
1711     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1712                                         DemandedElts, Depth + 1))
1713       return TLO.CombineTo(Op, AVG);
1714 
1715     if (const APInt *SA =
1716             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1717       unsigned ShAmt = SA->getZExtValue();
1718       if (ShAmt == 0)
1719         return TLO.CombineTo(Op, Op0);
1720 
1721       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1722       // single shift.  We can do this if the top bits (which are shifted out)
1723       // are never demanded.
1724       // TODO - support non-uniform vector amounts.
1725       if (Op0.getOpcode() == ISD::SHL) {
1726         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1727           if (const APInt *SA2 =
1728                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1729             unsigned C1 = SA2->getZExtValue();
1730             unsigned Opc = ISD::SRL;
1731             int Diff = ShAmt - C1;
1732             if (Diff < 0) {
1733               Diff = -Diff;
1734               Opc = ISD::SHL;
1735             }
1736             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1737             return TLO.CombineTo(
1738                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1739           }
1740         }
1741       }
1742 
1743       APInt InDemandedMask = (DemandedBits << ShAmt);
1744 
1745       // If the shift is exact, then it does demand the low bits (and knows that
1746       // they are zero).
1747       if (Op->getFlags().hasExact())
1748         InDemandedMask.setLowBits(ShAmt);
1749 
1750       // Compute the new bits that are at the top now.
1751       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1752                                Depth + 1))
1753         return true;
1754       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1755       Known.Zero.lshrInPlace(ShAmt);
1756       Known.One.lshrInPlace(ShAmt);
1757       // High bits known zero.
1758       Known.Zero.setHighBits(ShAmt);
1759     }
1760     break;
1761   }
1762   case ISD::SRA: {
1763     SDValue Op0 = Op.getOperand(0);
1764     SDValue Op1 = Op.getOperand(1);
1765     EVT ShiftVT = Op1.getValueType();
1766 
1767     // If we only want bits that already match the signbit then we don't need
1768     // to shift.
1769     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1770     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1771         NumHiDemandedBits)
1772       return TLO.CombineTo(Op, Op0);
1773 
1774     // If this is an arithmetic shift right and only the low-bit is set, we can
1775     // always convert this into a logical shr, even if the shift amount is
1776     // variable.  The low bit of the shift cannot be an input sign bit unless
1777     // the shift amount is >= the size of the datatype, which is undefined.
1778     if (DemandedBits.isOne())
1779       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1780 
1781     // Try to match AVG patterns.
1782     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1783                                         DemandedElts, Depth + 1))
1784       return TLO.CombineTo(Op, AVG);
1785 
1786     if (const APInt *SA =
1787             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1788       unsigned ShAmt = SA->getZExtValue();
1789       if (ShAmt == 0)
1790         return TLO.CombineTo(Op, Op0);
1791 
1792       APInt InDemandedMask = (DemandedBits << ShAmt);
1793 
1794       // If the shift is exact, then it does demand the low bits (and knows that
1795       // they are zero).
1796       if (Op->getFlags().hasExact())
1797         InDemandedMask.setLowBits(ShAmt);
1798 
1799       // If any of the demanded bits are produced by the sign extension, we also
1800       // demand the input sign bit.
1801       if (DemandedBits.countLeadingZeros() < ShAmt)
1802         InDemandedMask.setSignBit();
1803 
1804       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1805                                Depth + 1))
1806         return true;
1807       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1808       Known.Zero.lshrInPlace(ShAmt);
1809       Known.One.lshrInPlace(ShAmt);
1810 
1811       // If the input sign bit is known to be zero, or if none of the top bits
1812       // are demanded, turn this into an unsigned shift right.
1813       if (Known.Zero[BitWidth - ShAmt - 1] ||
1814           DemandedBits.countLeadingZeros() >= ShAmt) {
1815         SDNodeFlags Flags;
1816         Flags.setExact(Op->getFlags().hasExact());
1817         return TLO.CombineTo(
1818             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1819       }
1820 
1821       int Log2 = DemandedBits.exactLogBase2();
1822       if (Log2 >= 0) {
1823         // The bit must come from the sign.
1824         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1825         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1826       }
1827 
1828       if (Known.One[BitWidth - ShAmt - 1])
1829         // New bits are known one.
1830         Known.One.setHighBits(ShAmt);
1831 
1832       // Attempt to avoid multi-use ops if we don't need anything from them.
1833       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1834         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1835             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1836         if (DemandedOp0) {
1837           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1838           return TLO.CombineTo(Op, NewOp);
1839         }
1840       }
1841     }
1842     break;
1843   }
1844   case ISD::FSHL:
1845   case ISD::FSHR: {
1846     SDValue Op0 = Op.getOperand(0);
1847     SDValue Op1 = Op.getOperand(1);
1848     SDValue Op2 = Op.getOperand(2);
1849     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1850 
1851     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1852       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1853 
1854       // For fshl, 0-shift returns the 1st arg.
1855       // For fshr, 0-shift returns the 2nd arg.
1856       if (Amt == 0) {
1857         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1858                                  Known, TLO, Depth + 1))
1859           return true;
1860         break;
1861       }
1862 
1863       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1864       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1865       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1866       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1867       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1868                                Depth + 1))
1869         return true;
1870       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1871                                Depth + 1))
1872         return true;
1873 
1874       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1875       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1876       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1877       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1878       Known.One |= Known2.One;
1879       Known.Zero |= Known2.Zero;
1880 
1881       // Attempt to avoid multi-use ops if we don't need anything from them.
1882       if (!Demanded0.isAllOnes() || !Demanded1.isAllOnes() ||
1883           !DemandedElts.isAllOnes()) {
1884         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1885             Op0, Demanded0, DemandedElts, TLO.DAG, Depth + 1);
1886         SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1887             Op1, Demanded1, DemandedElts, TLO.DAG, Depth + 1);
1888         if (DemandedOp0 || DemandedOp1) {
1889           DemandedOp0 = DemandedOp0 ? DemandedOp0 : Op0;
1890           DemandedOp1 = DemandedOp1 ? DemandedOp1 : Op1;
1891           SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedOp0,
1892                                           DemandedOp1, Op2);
1893           return TLO.CombineTo(Op, NewOp);
1894         }
1895       }
1896     }
1897 
1898     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1899     if (isPowerOf2_32(BitWidth)) {
1900       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1901       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1902                                Known2, TLO, Depth + 1))
1903         return true;
1904     }
1905     break;
1906   }
1907   case ISD::ROTL:
1908   case ISD::ROTR: {
1909     SDValue Op0 = Op.getOperand(0);
1910     SDValue Op1 = Op.getOperand(1);
1911     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1912 
1913     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1914     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1915       return TLO.CombineTo(Op, Op0);
1916 
1917     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1918       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1919       unsigned RevAmt = BitWidth - Amt;
1920 
1921       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1922       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1923       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1924       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1925                                Depth + 1))
1926         return true;
1927 
1928       // rot*(x, 0) --> x
1929       if (Amt == 0)
1930         return TLO.CombineTo(Op, Op0);
1931 
1932       // See if we don't demand either half of the rotated bits.
1933       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1934           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1935         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1936         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1937       }
1938       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1939           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1940         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1941         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1942       }
1943     }
1944 
1945     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1946     if (isPowerOf2_32(BitWidth)) {
1947       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1948       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1949                                Depth + 1))
1950         return true;
1951     }
1952     break;
1953   }
1954   case ISD::UMIN: {
1955     // Check if one arg is always less than (or equal) to the other arg.
1956     SDValue Op0 = Op.getOperand(0);
1957     SDValue Op1 = Op.getOperand(1);
1958     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1959     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1960     Known = KnownBits::umin(Known0, Known1);
1961     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1962       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1963     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1964       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1965     break;
1966   }
1967   case ISD::UMAX: {
1968     // Check if one arg is always greater than (or equal) to the other arg.
1969     SDValue Op0 = Op.getOperand(0);
1970     SDValue Op1 = Op.getOperand(1);
1971     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1972     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1973     Known = KnownBits::umax(Known0, Known1);
1974     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1975       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1976     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1977       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1978     break;
1979   }
1980   case ISD::BITREVERSE: {
1981     SDValue Src = Op.getOperand(0);
1982     APInt DemandedSrcBits = DemandedBits.reverseBits();
1983     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1984                              Depth + 1))
1985       return true;
1986     Known.One = Known2.One.reverseBits();
1987     Known.Zero = Known2.Zero.reverseBits();
1988     break;
1989   }
1990   case ISD::BSWAP: {
1991     SDValue Src = Op.getOperand(0);
1992 
1993     // If the only bits demanded come from one byte of the bswap result,
1994     // just shift the input byte into position to eliminate the bswap.
1995     unsigned NLZ = DemandedBits.countLeadingZeros();
1996     unsigned NTZ = DemandedBits.countTrailingZeros();
1997 
1998     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1999     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
2000     // have 14 leading zeros, round to 8.
2001     NLZ = alignDown(NLZ, 8);
2002     NTZ = alignDown(NTZ, 8);
2003     // If we need exactly one byte, we can do this transformation.
2004     if (BitWidth - NLZ - NTZ == 8) {
2005       // Replace this with either a left or right shift to get the byte into
2006       // the right place.
2007       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
2008       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
2009         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
2010         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
2011         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
2012         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
2013         return TLO.CombineTo(Op, NewOp);
2014       }
2015     }
2016 
2017     APInt DemandedSrcBits = DemandedBits.byteSwap();
2018     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
2019                              Depth + 1))
2020       return true;
2021     Known.One = Known2.One.byteSwap();
2022     Known.Zero = Known2.Zero.byteSwap();
2023     break;
2024   }
2025   case ISD::CTPOP: {
2026     // If only 1 bit is demanded, replace with PARITY as long as we're before
2027     // op legalization.
2028     // FIXME: Limit to scalars for now.
2029     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2030       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2031                                                Op.getOperand(0)));
2032 
2033     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2034     break;
2035   }
2036   case ISD::SIGN_EXTEND_INREG: {
2037     SDValue Op0 = Op.getOperand(0);
2038     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2039     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2040 
2041     // If we only care about the highest bit, don't bother shifting right.
2042     if (DemandedBits.isSignMask()) {
2043       unsigned MinSignedBits =
2044           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2045       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2046       // However if the input is already sign extended we expect the sign
2047       // extension to be dropped altogether later and do not simplify.
2048       if (!AlreadySignExtended) {
2049         // Compute the correct shift amount type, which must be getShiftAmountTy
2050         // for scalar types after legalization.
2051         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2052                                                getShiftAmountTy(VT, DL));
2053         return TLO.CombineTo(Op,
2054                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2055       }
2056     }
2057 
2058     // If none of the extended bits are demanded, eliminate the sextinreg.
2059     if (DemandedBits.getActiveBits() <= ExVTBits)
2060       return TLO.CombineTo(Op, Op0);
2061 
2062     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2063 
2064     // Since the sign extended bits are demanded, we know that the sign
2065     // bit is demanded.
2066     InputDemandedBits.setBit(ExVTBits - 1);
2067 
2068     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2069       return true;
2070     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2071 
2072     // If the sign bit of the input is known set or clear, then we know the
2073     // top bits of the result.
2074 
2075     // If the input sign bit is known zero, convert this into a zero extension.
2076     if (Known.Zero[ExVTBits - 1])
2077       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2078 
2079     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2080     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2081       Known.One.setBitsFrom(ExVTBits);
2082       Known.Zero &= Mask;
2083     } else { // Input sign bit unknown
2084       Known.Zero &= Mask;
2085       Known.One &= Mask;
2086     }
2087     break;
2088   }
2089   case ISD::BUILD_PAIR: {
2090     EVT HalfVT = Op.getOperand(0).getValueType();
2091     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2092 
2093     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2094     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2095 
2096     KnownBits KnownLo, KnownHi;
2097 
2098     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2099       return true;
2100 
2101     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2102       return true;
2103 
2104     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2105                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2106 
2107     Known.One = KnownLo.One.zext(BitWidth) |
2108                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2109     break;
2110   }
2111   case ISD::ZERO_EXTEND:
2112   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2113     SDValue Src = Op.getOperand(0);
2114     EVT SrcVT = Src.getValueType();
2115     unsigned InBits = SrcVT.getScalarSizeInBits();
2116     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2117     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2118 
2119     // If none of the top bits are demanded, convert this into an any_extend.
2120     if (DemandedBits.getActiveBits() <= InBits) {
2121       // If we only need the non-extended bits of the bottom element
2122       // then we can just bitcast to the result.
2123       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2124           VT.getSizeInBits() == SrcVT.getSizeInBits())
2125         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2126 
2127       unsigned Opc =
2128           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2129       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2130         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2131     }
2132 
2133     APInt InDemandedBits = DemandedBits.trunc(InBits);
2134     APInt InDemandedElts = DemandedElts.zext(InElts);
2135     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2136                              Depth + 1))
2137       return true;
2138     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2139     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2140     Known = Known.zext(BitWidth);
2141 
2142     // Attempt to avoid multi-use ops if we don't need anything from them.
2143     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2144             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2145       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2146     break;
2147   }
2148   case ISD::SIGN_EXTEND:
2149   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2150     SDValue Src = Op.getOperand(0);
2151     EVT SrcVT = Src.getValueType();
2152     unsigned InBits = SrcVT.getScalarSizeInBits();
2153     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2154     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2155 
2156     // If none of the top bits are demanded, convert this into an any_extend.
2157     if (DemandedBits.getActiveBits() <= InBits) {
2158       // If we only need the non-extended bits of the bottom element
2159       // then we can just bitcast to the result.
2160       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2161           VT.getSizeInBits() == SrcVT.getSizeInBits())
2162         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2163 
2164       unsigned Opc =
2165           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2166       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2167         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2168     }
2169 
2170     APInt InDemandedBits = DemandedBits.trunc(InBits);
2171     APInt InDemandedElts = DemandedElts.zext(InElts);
2172 
2173     // Since some of the sign extended bits are demanded, we know that the sign
2174     // bit is demanded.
2175     InDemandedBits.setBit(InBits - 1);
2176 
2177     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2178                              Depth + 1))
2179       return true;
2180     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2181     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2182 
2183     // If the sign bit is known one, the top bits match.
2184     Known = Known.sext(BitWidth);
2185 
2186     // If the sign bit is known zero, convert this to a zero extend.
2187     if (Known.isNonNegative()) {
2188       unsigned Opc =
2189           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2190       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2191         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2192     }
2193 
2194     // Attempt to avoid multi-use ops if we don't need anything from them.
2195     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2196             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2197       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2198     break;
2199   }
2200   case ISD::ANY_EXTEND:
2201   case ISD::ANY_EXTEND_VECTOR_INREG: {
2202     SDValue Src = Op.getOperand(0);
2203     EVT SrcVT = Src.getValueType();
2204     unsigned InBits = SrcVT.getScalarSizeInBits();
2205     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2206     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2207 
2208     // If we only need the bottom element then we can just bitcast.
2209     // TODO: Handle ANY_EXTEND?
2210     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2211         VT.getSizeInBits() == SrcVT.getSizeInBits())
2212       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2213 
2214     APInt InDemandedBits = DemandedBits.trunc(InBits);
2215     APInt InDemandedElts = DemandedElts.zext(InElts);
2216     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2217                              Depth + 1))
2218       return true;
2219     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2220     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2221     Known = Known.anyext(BitWidth);
2222 
2223     // Attempt to avoid multi-use ops if we don't need anything from them.
2224     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2225             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2226       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2227     break;
2228   }
2229   case ISD::TRUNCATE: {
2230     SDValue Src = Op.getOperand(0);
2231 
2232     // Simplify the input, using demanded bit information, and compute the known
2233     // zero/one bits live out.
2234     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2235     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2236     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2237                              Depth + 1))
2238       return true;
2239     Known = Known.trunc(BitWidth);
2240 
2241     // Attempt to avoid multi-use ops if we don't need anything from them.
2242     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2243             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2244       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2245 
2246     // If the input is only used by this truncate, see if we can shrink it based
2247     // on the known demanded bits.
2248     if (Src.getNode()->hasOneUse()) {
2249       switch (Src.getOpcode()) {
2250       default:
2251         break;
2252       case ISD::SRL:
2253         // Shrink SRL by a constant if none of the high bits shifted in are
2254         // demanded.
2255         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2256           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2257           // undesirable.
2258           break;
2259 
2260         const APInt *ShAmtC =
2261             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2262         if (!ShAmtC || ShAmtC->uge(BitWidth))
2263           break;
2264         uint64_t ShVal = ShAmtC->getZExtValue();
2265 
2266         APInt HighBits =
2267             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2268         HighBits.lshrInPlace(ShVal);
2269         HighBits = HighBits.trunc(BitWidth);
2270 
2271         if (!(HighBits & DemandedBits)) {
2272           // None of the shifted in bits are needed.  Add a truncate of the
2273           // shift input, then shift it.
2274           SDValue NewShAmt = TLO.DAG.getConstant(
2275               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2276           SDValue NewTrunc =
2277               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2278           return TLO.CombineTo(
2279               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2280         }
2281         break;
2282       }
2283     }
2284 
2285     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2286     break;
2287   }
2288   case ISD::AssertZext: {
2289     // AssertZext demands all of the high bits, plus any of the low bits
2290     // demanded by its users.
2291     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2292     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2293     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2294                              TLO, Depth + 1))
2295       return true;
2296     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2297 
2298     Known.Zero |= ~InMask;
2299     break;
2300   }
2301   case ISD::EXTRACT_VECTOR_ELT: {
2302     SDValue Src = Op.getOperand(0);
2303     SDValue Idx = Op.getOperand(1);
2304     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2305     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2306 
2307     if (SrcEltCnt.isScalable())
2308       return false;
2309 
2310     // Demand the bits from every vector element without a constant index.
2311     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2312     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2313     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2314       if (CIdx->getAPIntValue().ult(NumSrcElts))
2315         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2316 
2317     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2318     // anything about the extended bits.
2319     APInt DemandedSrcBits = DemandedBits;
2320     if (BitWidth > EltBitWidth)
2321       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2322 
2323     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2324                              Depth + 1))
2325       return true;
2326 
2327     // Attempt to avoid multi-use ops if we don't need anything from them.
2328     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2329       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2330               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2331         SDValue NewOp =
2332             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2333         return TLO.CombineTo(Op, NewOp);
2334       }
2335     }
2336 
2337     Known = Known2;
2338     if (BitWidth > EltBitWidth)
2339       Known = Known.anyext(BitWidth);
2340     break;
2341   }
2342   case ISD::BITCAST: {
2343     SDValue Src = Op.getOperand(0);
2344     EVT SrcVT = Src.getValueType();
2345     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2346 
2347     // If this is an FP->Int bitcast and if the sign bit is the only
2348     // thing demanded, turn this into a FGETSIGN.
2349     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2350         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2351         SrcVT.isFloatingPoint()) {
2352       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2353       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2354       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2355           SrcVT != MVT::f128) {
2356         // Cannot eliminate/lower SHL for f128 yet.
2357         EVT Ty = OpVTLegal ? VT : MVT::i32;
2358         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2359         // place.  We expect the SHL to be eliminated by other optimizations.
2360         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2361         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2362         if (!OpVTLegal && OpVTSizeInBits > 32)
2363           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2364         unsigned ShVal = Op.getValueSizeInBits() - 1;
2365         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2366         return TLO.CombineTo(Op,
2367                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2368       }
2369     }
2370 
2371     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2372     // Demand the elt/bit if any of the original elts/bits are demanded.
2373     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2374       unsigned Scale = BitWidth / NumSrcEltBits;
2375       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2376       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2377       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2378       for (unsigned i = 0; i != Scale; ++i) {
2379         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2380         unsigned BitOffset = EltOffset * NumSrcEltBits;
2381         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2382         if (!Sub.isZero()) {
2383           DemandedSrcBits |= Sub;
2384           for (unsigned j = 0; j != NumElts; ++j)
2385             if (DemandedElts[j])
2386               DemandedSrcElts.setBit((j * Scale) + i);
2387         }
2388       }
2389 
2390       APInt KnownSrcUndef, KnownSrcZero;
2391       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2392                                      KnownSrcZero, TLO, Depth + 1))
2393         return true;
2394 
2395       KnownBits KnownSrcBits;
2396       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2397                                KnownSrcBits, TLO, Depth + 1))
2398         return true;
2399     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2400       // TODO - bigendian once we have test coverage.
2401       unsigned Scale = NumSrcEltBits / BitWidth;
2402       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2403       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2404       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2405       for (unsigned i = 0; i != NumElts; ++i)
2406         if (DemandedElts[i]) {
2407           unsigned Offset = (i % Scale) * BitWidth;
2408           DemandedSrcBits.insertBits(DemandedBits, Offset);
2409           DemandedSrcElts.setBit(i / Scale);
2410         }
2411 
2412       if (SrcVT.isVector()) {
2413         APInt KnownSrcUndef, KnownSrcZero;
2414         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2415                                        KnownSrcZero, TLO, Depth + 1))
2416           return true;
2417       }
2418 
2419       KnownBits KnownSrcBits;
2420       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2421                                KnownSrcBits, TLO, Depth + 1))
2422         return true;
2423     }
2424 
2425     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2426     // recursive call where Known may be useful to the caller.
2427     if (Depth > 0) {
2428       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2429       return false;
2430     }
2431     break;
2432   }
2433   case ISD::MUL:
2434     if (DemandedBits.isPowerOf2()) {
2435       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2436       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2437       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2438       unsigned CTZ = DemandedBits.countTrailingZeros();
2439       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2440       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2441         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2442         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2443         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2444         return TLO.CombineTo(Op, Shl);
2445       }
2446     }
2447     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2448     // X * X is odd iff X is odd.
2449     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2450     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2451       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2452       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2453       return TLO.CombineTo(Op, And1);
2454     }
2455     LLVM_FALLTHROUGH;
2456   case ISD::ADD:
2457   case ISD::SUB: {
2458     // Add, Sub, and Mul don't demand any bits in positions beyond that
2459     // of the highest bit demanded of them.
2460     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2461     SDNodeFlags Flags = Op.getNode()->getFlags();
2462     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2463     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2464     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2465                              Depth + 1) ||
2466         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2467                              Depth + 1) ||
2468         // See if the operation should be performed at a smaller bit width.
2469         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2470       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2471         // Disable the nsw and nuw flags. We can no longer guarantee that we
2472         // won't wrap after simplification.
2473         Flags.setNoSignedWrap(false);
2474         Flags.setNoUnsignedWrap(false);
2475         SDValue NewOp =
2476             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2477         return TLO.CombineTo(Op, NewOp);
2478       }
2479       return true;
2480     }
2481 
2482     // Attempt to avoid multi-use ops if we don't need anything from them.
2483     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2484       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2485           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2486       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2487           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2488       if (DemandedOp0 || DemandedOp1) {
2489         Flags.setNoSignedWrap(false);
2490         Flags.setNoUnsignedWrap(false);
2491         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2492         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2493         SDValue NewOp =
2494             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2495         return TLO.CombineTo(Op, NewOp);
2496       }
2497     }
2498 
2499     // If we have a constant operand, we may be able to turn it into -1 if we
2500     // do not demand the high bits. This can make the constant smaller to
2501     // encode, allow more general folding, or match specialized instruction
2502     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2503     // is probably not useful (and could be detrimental).
2504     ConstantSDNode *C = isConstOrConstSplat(Op1);
2505     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2506     if (C && !C->isAllOnes() && !C->isOne() &&
2507         (C->getAPIntValue() | HighMask).isAllOnes()) {
2508       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2509       // Disable the nsw and nuw flags. We can no longer guarantee that we
2510       // won't wrap after simplification.
2511       Flags.setNoSignedWrap(false);
2512       Flags.setNoUnsignedWrap(false);
2513       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2514       return TLO.CombineTo(Op, NewOp);
2515     }
2516 
2517     // Match a multiply with a disguised negated-power-of-2 and convert to a
2518     // an equivalent shift-left amount.
2519     // Example: (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2520     auto getShiftLeftAmt = [&HighMask](SDValue Mul) -> unsigned {
2521       if (Mul.getOpcode() != ISD::MUL || !Mul.hasOneUse())
2522         return 0;
2523 
2524       // Don't touch opaque constants. Also, ignore zero and power-of-2
2525       // multiplies. Those will get folded later.
2526       ConstantSDNode *MulC = isConstOrConstSplat(Mul.getOperand(1));
2527       if (MulC && !MulC->isOpaque() && !MulC->isZero() &&
2528           !MulC->getAPIntValue().isPowerOf2()) {
2529         APInt UnmaskedC = MulC->getAPIntValue() | HighMask;
2530         if (UnmaskedC.isNegatedPowerOf2())
2531           return (-UnmaskedC).logBase2();
2532       }
2533       return 0;
2534     };
2535 
2536     auto foldMul = [&](ISD::NodeType NT, SDValue X, SDValue Y, unsigned ShlAmt) {
2537       EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2538       SDValue ShlAmtC = TLO.DAG.getConstant(ShlAmt, dl, ShiftAmtTy);
2539       SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, X, ShlAmtC);
2540       SDValue Res = TLO.DAG.getNode(NT, dl, VT, Y, Shl);
2541       return TLO.CombineTo(Op, Res);
2542     };
2543 
2544     if (isOperationLegalOrCustom(ISD::SHL, VT)) {
2545       if (Op.getOpcode() == ISD::ADD) {
2546         // (X * MulC) + Op1 --> Op1 - (X << log2(-MulC))
2547         if (unsigned ShAmt = getShiftLeftAmt(Op0))
2548           return foldMul(ISD::SUB, Op0.getOperand(0), Op1, ShAmt);
2549         // Op0 + (X * MulC) --> Op0 - (X << log2(-MulC))
2550         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2551           return foldMul(ISD::SUB, Op1.getOperand(0), Op0, ShAmt);
2552       }
2553       if (Op.getOpcode() == ISD::SUB) {
2554         // Op0 - (X * MulC) --> Op0 + (X << log2(-MulC))
2555         if (unsigned ShAmt = getShiftLeftAmt(Op1))
2556           return foldMul(ISD::ADD, Op1.getOperand(0), Op0, ShAmt);
2557       }
2558     }
2559 
2560     LLVM_FALLTHROUGH;
2561   }
2562   default:
2563     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2564       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2565                                             Known, TLO, Depth))
2566         return true;
2567       break;
2568     }
2569 
2570     // Just use computeKnownBits to compute output bits.
2571     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2572     break;
2573   }
2574 
2575   // If we know the value of all of the demanded bits, return this as a
2576   // constant.
2577   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2578     // Avoid folding to a constant if any OpaqueConstant is involved.
2579     const SDNode *N = Op.getNode();
2580     for (SDNode *Op :
2581          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2582       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2583         if (C->isOpaque())
2584           return false;
2585     }
2586     if (VT.isInteger())
2587       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2588     if (VT.isFloatingPoint())
2589       return TLO.CombineTo(
2590           Op,
2591           TLO.DAG.getConstantFP(
2592               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2593   }
2594 
2595   return false;
2596 }
2597 
2598 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2599                                                 const APInt &DemandedElts,
2600                                                 DAGCombinerInfo &DCI) const {
2601   SelectionDAG &DAG = DCI.DAG;
2602   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2603                         !DCI.isBeforeLegalizeOps());
2604 
2605   APInt KnownUndef, KnownZero;
2606   bool Simplified =
2607       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2608   if (Simplified) {
2609     DCI.AddToWorklist(Op.getNode());
2610     DCI.CommitTargetLoweringOpt(TLO);
2611   }
2612 
2613   return Simplified;
2614 }
2615 
2616 /// Given a vector binary operation and known undefined elements for each input
2617 /// operand, compute whether each element of the output is undefined.
2618 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2619                                          const APInt &UndefOp0,
2620                                          const APInt &UndefOp1) {
2621   EVT VT = BO.getValueType();
2622   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2623          "Vector binop only");
2624 
2625   EVT EltVT = VT.getVectorElementType();
2626   unsigned NumElts = VT.getVectorNumElements();
2627   assert(UndefOp0.getBitWidth() == NumElts &&
2628          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2629 
2630   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2631                                    const APInt &UndefVals) {
2632     if (UndefVals[Index])
2633       return DAG.getUNDEF(EltVT);
2634 
2635     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2636       // Try hard to make sure that the getNode() call is not creating temporary
2637       // nodes. Ignore opaque integers because they do not constant fold.
2638       SDValue Elt = BV->getOperand(Index);
2639       auto *C = dyn_cast<ConstantSDNode>(Elt);
2640       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2641         return Elt;
2642     }
2643 
2644     return SDValue();
2645   };
2646 
2647   APInt KnownUndef = APInt::getZero(NumElts);
2648   for (unsigned i = 0; i != NumElts; ++i) {
2649     // If both inputs for this element are either constant or undef and match
2650     // the element type, compute the constant/undef result for this element of
2651     // the vector.
2652     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2653     // not handle FP constants. The code within getNode() should be refactored
2654     // to avoid the danger of creating a bogus temporary node here.
2655     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2656     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2657     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2658       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2659         KnownUndef.setBit(i);
2660   }
2661   return KnownUndef;
2662 }
2663 
2664 bool TargetLowering::SimplifyDemandedVectorElts(
2665     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2666     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2667     bool AssumeSingleUse) const {
2668   EVT VT = Op.getValueType();
2669   unsigned Opcode = Op.getOpcode();
2670   APInt DemandedElts = OriginalDemandedElts;
2671   unsigned NumElts = DemandedElts.getBitWidth();
2672   assert(VT.isVector() && "Expected vector op");
2673 
2674   KnownUndef = KnownZero = APInt::getZero(NumElts);
2675 
2676   const TargetLowering &TLI = TLO.DAG.getTargetLoweringInfo();
2677   if (!TLI.shouldSimplifyDemandedVectorElts(Op, TLO))
2678     return false;
2679 
2680   // TODO: For now we assume we know nothing about scalable vectors.
2681   if (VT.isScalableVector())
2682     return false;
2683 
2684   assert(VT.getVectorNumElements() == NumElts &&
2685          "Mask size mismatches value type element count!");
2686 
2687   // Undef operand.
2688   if (Op.isUndef()) {
2689     KnownUndef.setAllBits();
2690     return false;
2691   }
2692 
2693   // If Op has other users, assume that all elements are needed.
2694   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2695     DemandedElts.setAllBits();
2696 
2697   // Not demanding any elements from Op.
2698   if (DemandedElts == 0) {
2699     KnownUndef.setAllBits();
2700     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2701   }
2702 
2703   // Limit search depth.
2704   if (Depth >= SelectionDAG::MaxRecursionDepth)
2705     return false;
2706 
2707   SDLoc DL(Op);
2708   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2709   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2710 
2711   // Helper for demanding the specified elements and all the bits of both binary
2712   // operands.
2713   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2714     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2715                                                            TLO.DAG, Depth + 1);
2716     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2717                                                            TLO.DAG, Depth + 1);
2718     if (NewOp0 || NewOp1) {
2719       SDValue NewOp = TLO.DAG.getNode(
2720           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2721       return TLO.CombineTo(Op, NewOp);
2722     }
2723     return false;
2724   };
2725 
2726   switch (Opcode) {
2727   case ISD::SCALAR_TO_VECTOR: {
2728     if (!DemandedElts[0]) {
2729       KnownUndef.setAllBits();
2730       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2731     }
2732     SDValue ScalarSrc = Op.getOperand(0);
2733     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2734       SDValue Src = ScalarSrc.getOperand(0);
2735       SDValue Idx = ScalarSrc.getOperand(1);
2736       EVT SrcVT = Src.getValueType();
2737 
2738       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2739 
2740       if (SrcEltCnt.isScalable())
2741         return false;
2742 
2743       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2744       if (isNullConstant(Idx)) {
2745         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2746         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2747         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2748         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2749                                        TLO, Depth + 1))
2750           return true;
2751       }
2752     }
2753     KnownUndef.setHighBits(NumElts - 1);
2754     break;
2755   }
2756   case ISD::BITCAST: {
2757     SDValue Src = Op.getOperand(0);
2758     EVT SrcVT = Src.getValueType();
2759 
2760     // We only handle vectors here.
2761     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2762     if (!SrcVT.isVector())
2763       break;
2764 
2765     // Fast handling of 'identity' bitcasts.
2766     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2767     if (NumSrcElts == NumElts)
2768       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2769                                         KnownZero, TLO, Depth + 1);
2770 
2771     APInt SrcDemandedElts, SrcZero, SrcUndef;
2772 
2773     // Bitcast from 'large element' src vector to 'small element' vector, we
2774     // must demand a source element if any DemandedElt maps to it.
2775     if ((NumElts % NumSrcElts) == 0) {
2776       unsigned Scale = NumElts / NumSrcElts;
2777       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2778       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2779                                      TLO, Depth + 1))
2780         return true;
2781 
2782       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2783       // of the large element.
2784       // TODO - bigendian once we have test coverage.
2785       if (IsLE) {
2786         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2787         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2788         for (unsigned i = 0; i != NumElts; ++i)
2789           if (DemandedElts[i]) {
2790             unsigned Ofs = (i % Scale) * EltSizeInBits;
2791             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2792           }
2793 
2794         KnownBits Known;
2795         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2796                                  TLO, Depth + 1))
2797           return true;
2798 
2799         // The bitcast has split each wide element into a number of
2800         // narrow subelements. We have just computed the Known bits
2801         // for wide elements. See if element splitting results in
2802         // some subelements being zero. Only for demanded elements!
2803         for (unsigned SubElt = 0; SubElt != Scale; ++SubElt) {
2804           if (!Known.Zero.extractBits(EltSizeInBits, SubElt * EltSizeInBits)
2805                    .isAllOnes())
2806             continue;
2807           for (unsigned SrcElt = 0; SrcElt != NumSrcElts; ++SrcElt) {
2808             unsigned Elt = Scale * SrcElt + SubElt;
2809             if (DemandedElts[Elt])
2810               KnownZero.setBit(Elt);
2811           }
2812         }
2813       }
2814 
2815       // If the src element is zero/undef then all the output elements will be -
2816       // only demanded elements are guaranteed to be correct.
2817       for (unsigned i = 0; i != NumSrcElts; ++i) {
2818         if (SrcDemandedElts[i]) {
2819           if (SrcZero[i])
2820             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2821           if (SrcUndef[i])
2822             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2823         }
2824       }
2825     }
2826 
2827     // Bitcast from 'small element' src vector to 'large element' vector, we
2828     // demand all smaller source elements covered by the larger demanded element
2829     // of this vector.
2830     if ((NumSrcElts % NumElts) == 0) {
2831       unsigned Scale = NumSrcElts / NumElts;
2832       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2833       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2834                                      TLO, Depth + 1))
2835         return true;
2836 
2837       // If all the src elements covering an output element are zero/undef, then
2838       // the output element will be as well, assuming it was demanded.
2839       for (unsigned i = 0; i != NumElts; ++i) {
2840         if (DemandedElts[i]) {
2841           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2842             KnownZero.setBit(i);
2843           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2844             KnownUndef.setBit(i);
2845         }
2846       }
2847     }
2848     break;
2849   }
2850   case ISD::BUILD_VECTOR: {
2851     // Check all elements and simplify any unused elements with UNDEF.
2852     if (!DemandedElts.isAllOnes()) {
2853       // Don't simplify BROADCASTS.
2854       if (llvm::any_of(Op->op_values(),
2855                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2856         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2857         bool Updated = false;
2858         for (unsigned i = 0; i != NumElts; ++i) {
2859           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2860             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2861             KnownUndef.setBit(i);
2862             Updated = true;
2863           }
2864         }
2865         if (Updated)
2866           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2867       }
2868     }
2869     for (unsigned i = 0; i != NumElts; ++i) {
2870       SDValue SrcOp = Op.getOperand(i);
2871       if (SrcOp.isUndef()) {
2872         KnownUndef.setBit(i);
2873       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2874                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2875         KnownZero.setBit(i);
2876       }
2877     }
2878     break;
2879   }
2880   case ISD::CONCAT_VECTORS: {
2881     EVT SubVT = Op.getOperand(0).getValueType();
2882     unsigned NumSubVecs = Op.getNumOperands();
2883     unsigned NumSubElts = SubVT.getVectorNumElements();
2884     for (unsigned i = 0; i != NumSubVecs; ++i) {
2885       SDValue SubOp = Op.getOperand(i);
2886       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2887       APInt SubUndef, SubZero;
2888       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2889                                      Depth + 1))
2890         return true;
2891       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2892       KnownZero.insertBits(SubZero, i * NumSubElts);
2893     }
2894 
2895     // Attempt to avoid multi-use ops if we don't need anything from them.
2896     if (!DemandedElts.isAllOnes()) {
2897       bool FoundNewSub = false;
2898       SmallVector<SDValue, 2> DemandedSubOps;
2899       for (unsigned i = 0; i != NumSubVecs; ++i) {
2900         SDValue SubOp = Op.getOperand(i);
2901         APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2902         SDValue NewSubOp = SimplifyMultipleUseDemandedVectorElts(
2903             SubOp, SubElts, TLO.DAG, Depth + 1);
2904         DemandedSubOps.push_back(NewSubOp ? NewSubOp : SubOp);
2905         FoundNewSub = NewSubOp ? true : FoundNewSub;
2906       }
2907       if (FoundNewSub) {
2908         SDValue NewOp =
2909             TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, DemandedSubOps);
2910         return TLO.CombineTo(Op, NewOp);
2911       }
2912     }
2913     break;
2914   }
2915   case ISD::INSERT_SUBVECTOR: {
2916     // Demand any elements from the subvector and the remainder from the src its
2917     // inserted into.
2918     SDValue Src = Op.getOperand(0);
2919     SDValue Sub = Op.getOperand(1);
2920     uint64_t Idx = Op.getConstantOperandVal(2);
2921     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2922     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2923     APInt DemandedSrcElts = DemandedElts;
2924     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2925 
2926     APInt SubUndef, SubZero;
2927     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2928                                    Depth + 1))
2929       return true;
2930 
2931     // If none of the src operand elements are demanded, replace it with undef.
2932     if (!DemandedSrcElts && !Src.isUndef())
2933       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2934                                                TLO.DAG.getUNDEF(VT), Sub,
2935                                                Op.getOperand(2)));
2936 
2937     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2938                                    TLO, Depth + 1))
2939       return true;
2940     KnownUndef.insertBits(SubUndef, Idx);
2941     KnownZero.insertBits(SubZero, Idx);
2942 
2943     // Attempt to avoid multi-use ops if we don't need anything from them.
2944     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2945       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2946           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2947       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2948           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2949       if (NewSrc || NewSub) {
2950         NewSrc = NewSrc ? NewSrc : Src;
2951         NewSub = NewSub ? NewSub : Sub;
2952         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2953                                         NewSub, Op.getOperand(2));
2954         return TLO.CombineTo(Op, NewOp);
2955       }
2956     }
2957     break;
2958   }
2959   case ISD::EXTRACT_SUBVECTOR: {
2960     // Offset the demanded elts by the subvector index.
2961     SDValue Src = Op.getOperand(0);
2962     if (Src.getValueType().isScalableVector())
2963       break;
2964     uint64_t Idx = Op.getConstantOperandVal(1);
2965     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2966     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts).shl(Idx);
2967 
2968     APInt SrcUndef, SrcZero;
2969     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2970                                    Depth + 1))
2971       return true;
2972     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2973     KnownZero = SrcZero.extractBits(NumElts, Idx);
2974 
2975     // Attempt to avoid multi-use ops if we don't need anything from them.
2976     if (!DemandedElts.isAllOnes()) {
2977       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2978           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2979       if (NewSrc) {
2980         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2981                                         Op.getOperand(1));
2982         return TLO.CombineTo(Op, NewOp);
2983       }
2984     }
2985     break;
2986   }
2987   case ISD::INSERT_VECTOR_ELT: {
2988     SDValue Vec = Op.getOperand(0);
2989     SDValue Scl = Op.getOperand(1);
2990     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2991 
2992     // For a legal, constant insertion index, if we don't need this insertion
2993     // then strip it, else remove it from the demanded elts.
2994     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2995       unsigned Idx = CIdx->getZExtValue();
2996       if (!DemandedElts[Idx])
2997         return TLO.CombineTo(Op, Vec);
2998 
2999       APInt DemandedVecElts(DemandedElts);
3000       DemandedVecElts.clearBit(Idx);
3001       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
3002                                      KnownZero, TLO, Depth + 1))
3003         return true;
3004 
3005       KnownUndef.setBitVal(Idx, Scl.isUndef());
3006 
3007       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
3008       break;
3009     }
3010 
3011     APInt VecUndef, VecZero;
3012     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
3013                                    Depth + 1))
3014       return true;
3015     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
3016     break;
3017   }
3018   case ISD::VSELECT: {
3019     // Try to transform the select condition based on the current demanded
3020     // elements.
3021     // TODO: If a condition element is undef, we can choose from one arm of the
3022     //       select (and if one arm is undef, then we can propagate that to the
3023     //       result).
3024     // TODO - add support for constant vselect masks (see IR version of this).
3025     APInt UnusedUndef, UnusedZero;
3026     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
3027                                    UnusedZero, TLO, Depth + 1))
3028       return true;
3029 
3030     // See if we can simplify either vselect operand.
3031     APInt DemandedLHS(DemandedElts);
3032     APInt DemandedRHS(DemandedElts);
3033     APInt UndefLHS, ZeroLHS;
3034     APInt UndefRHS, ZeroRHS;
3035     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
3036                                    ZeroLHS, TLO, Depth + 1))
3037       return true;
3038     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
3039                                    ZeroRHS, TLO, Depth + 1))
3040       return true;
3041 
3042     KnownUndef = UndefLHS & UndefRHS;
3043     KnownZero = ZeroLHS & ZeroRHS;
3044     break;
3045   }
3046   case ISD::VECTOR_SHUFFLE: {
3047     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
3048 
3049     // Collect demanded elements from shuffle operands..
3050     APInt DemandedLHS(NumElts, 0);
3051     APInt DemandedRHS(NumElts, 0);
3052     for (unsigned i = 0; i != NumElts; ++i) {
3053       int M = ShuffleMask[i];
3054       if (M < 0 || !DemandedElts[i])
3055         continue;
3056       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
3057       if (M < (int)NumElts)
3058         DemandedLHS.setBit(M);
3059       else
3060         DemandedRHS.setBit(M - NumElts);
3061     }
3062 
3063     // See if we can simplify either shuffle operand.
3064     APInt UndefLHS, ZeroLHS;
3065     APInt UndefRHS, ZeroRHS;
3066     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
3067                                    ZeroLHS, TLO, Depth + 1))
3068       return true;
3069     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
3070                                    ZeroRHS, TLO, Depth + 1))
3071       return true;
3072 
3073     // Simplify mask using undef elements from LHS/RHS.
3074     bool Updated = false;
3075     bool IdentityLHS = true, IdentityRHS = true;
3076     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
3077     for (unsigned i = 0; i != NumElts; ++i) {
3078       int &M = NewMask[i];
3079       if (M < 0)
3080         continue;
3081       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
3082           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
3083         Updated = true;
3084         M = -1;
3085       }
3086       IdentityLHS &= (M < 0) || (M == (int)i);
3087       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
3088     }
3089 
3090     // Update legal shuffle masks based on demanded elements if it won't reduce
3091     // to Identity which can cause premature removal of the shuffle mask.
3092     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
3093       SDValue LegalShuffle =
3094           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
3095                                   NewMask, TLO.DAG);
3096       if (LegalShuffle)
3097         return TLO.CombineTo(Op, LegalShuffle);
3098     }
3099 
3100     // Propagate undef/zero elements from LHS/RHS.
3101     for (unsigned i = 0; i != NumElts; ++i) {
3102       int M = ShuffleMask[i];
3103       if (M < 0) {
3104         KnownUndef.setBit(i);
3105       } else if (M < (int)NumElts) {
3106         if (UndefLHS[M])
3107           KnownUndef.setBit(i);
3108         if (ZeroLHS[M])
3109           KnownZero.setBit(i);
3110       } else {
3111         if (UndefRHS[M - NumElts])
3112           KnownUndef.setBit(i);
3113         if (ZeroRHS[M - NumElts])
3114           KnownZero.setBit(i);
3115       }
3116     }
3117     break;
3118   }
3119   case ISD::ANY_EXTEND_VECTOR_INREG:
3120   case ISD::SIGN_EXTEND_VECTOR_INREG:
3121   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3122     APInt SrcUndef, SrcZero;
3123     SDValue Src = Op.getOperand(0);
3124     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3125     APInt DemandedSrcElts = DemandedElts.zext(NumSrcElts);
3126     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3127                                    Depth + 1))
3128       return true;
3129     KnownZero = SrcZero.zextOrTrunc(NumElts);
3130     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3131 
3132     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3133         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3134         DemandedSrcElts == 1) {
3135       // aext - if we just need the bottom element then we can bitcast.
3136       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3137     }
3138 
3139     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3140       // zext(undef) upper bits are guaranteed to be zero.
3141       if (DemandedElts.isSubsetOf(KnownUndef))
3142         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3143       KnownUndef.clearAllBits();
3144 
3145       // zext - if we just need the bottom element then we can mask:
3146       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3147       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3148           Op->isOnlyUserOf(Src.getNode()) &&
3149           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3150         SDLoc DL(Op);
3151         EVT SrcVT = Src.getValueType();
3152         EVT SrcSVT = SrcVT.getScalarType();
3153         SmallVector<SDValue> MaskElts;
3154         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3155         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3156         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3157         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3158                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3159           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3160           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3161         }
3162       }
3163     }
3164     break;
3165   }
3166 
3167   // TODO: There are more binop opcodes that could be handled here - MIN,
3168   // MAX, saturated math, etc.
3169   case ISD::ADD: {
3170     SDValue Op0 = Op.getOperand(0);
3171     SDValue Op1 = Op.getOperand(1);
3172     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3173       APInt UndefLHS, ZeroLHS;
3174       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3175                                      Depth + 1, /*AssumeSingleUse*/ true))
3176         return true;
3177     }
3178     LLVM_FALLTHROUGH;
3179   }
3180   case ISD::OR:
3181   case ISD::XOR:
3182   case ISD::SUB:
3183   case ISD::FADD:
3184   case ISD::FSUB:
3185   case ISD::FMUL:
3186   case ISD::FDIV:
3187   case ISD::FREM: {
3188     SDValue Op0 = Op.getOperand(0);
3189     SDValue Op1 = Op.getOperand(1);
3190 
3191     APInt UndefRHS, ZeroRHS;
3192     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3193                                    Depth + 1))
3194       return true;
3195     APInt UndefLHS, ZeroLHS;
3196     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3197                                    Depth + 1))
3198       return true;
3199 
3200     KnownZero = ZeroLHS & ZeroRHS;
3201     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3202 
3203     // Attempt to avoid multi-use ops if we don't need anything from them.
3204     // TODO - use KnownUndef to relax the demandedelts?
3205     if (!DemandedElts.isAllOnes())
3206       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3207         return true;
3208     break;
3209   }
3210   case ISD::SHL:
3211   case ISD::SRL:
3212   case ISD::SRA:
3213   case ISD::ROTL:
3214   case ISD::ROTR: {
3215     SDValue Op0 = Op.getOperand(0);
3216     SDValue Op1 = Op.getOperand(1);
3217 
3218     APInt UndefRHS, ZeroRHS;
3219     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3220                                    Depth + 1))
3221       return true;
3222     APInt UndefLHS, ZeroLHS;
3223     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3224                                    Depth + 1))
3225       return true;
3226 
3227     KnownZero = ZeroLHS;
3228     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3229 
3230     // Attempt to avoid multi-use ops if we don't need anything from them.
3231     // TODO - use KnownUndef to relax the demandedelts?
3232     if (!DemandedElts.isAllOnes())
3233       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3234         return true;
3235     break;
3236   }
3237   case ISD::MUL:
3238   case ISD::AND: {
3239     SDValue Op0 = Op.getOperand(0);
3240     SDValue Op1 = Op.getOperand(1);
3241 
3242     APInt SrcUndef, SrcZero;
3243     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3244                                    Depth + 1))
3245       return true;
3246     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3247                                    TLO, Depth + 1))
3248       return true;
3249 
3250     // If either side has a zero element, then the result element is zero, even
3251     // if the other is an UNDEF.
3252     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3253     // and then handle 'and' nodes with the rest of the binop opcodes.
3254     KnownZero |= SrcZero;
3255     KnownUndef &= SrcUndef;
3256     KnownUndef &= ~KnownZero;
3257 
3258     // Attempt to avoid multi-use ops if we don't need anything from them.
3259     // TODO - use KnownUndef to relax the demandedelts?
3260     if (!DemandedElts.isAllOnes())
3261       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3262         return true;
3263     break;
3264   }
3265   case ISD::TRUNCATE:
3266   case ISD::SIGN_EXTEND:
3267   case ISD::ZERO_EXTEND:
3268     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3269                                    KnownZero, TLO, Depth + 1))
3270       return true;
3271 
3272     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3273       // zext(undef) upper bits are guaranteed to be zero.
3274       if (DemandedElts.isSubsetOf(KnownUndef))
3275         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3276       KnownUndef.clearAllBits();
3277     }
3278     break;
3279   default: {
3280     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3281       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3282                                                   KnownZero, TLO, Depth))
3283         return true;
3284     } else {
3285       KnownBits Known;
3286       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3287       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3288                                TLO, Depth, AssumeSingleUse))
3289         return true;
3290     }
3291     break;
3292   }
3293   }
3294   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3295 
3296   // Constant fold all undef cases.
3297   // TODO: Handle zero cases as well.
3298   if (DemandedElts.isSubsetOf(KnownUndef))
3299     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3300 
3301   return false;
3302 }
3303 
3304 /// Determine which of the bits specified in Mask are known to be either zero or
3305 /// one and return them in the Known.
3306 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3307                                                    KnownBits &Known,
3308                                                    const APInt &DemandedElts,
3309                                                    const SelectionDAG &DAG,
3310                                                    unsigned Depth) const {
3311   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3312           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3313           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3314           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3315          "Should use MaskedValueIsZero if you don't know whether Op"
3316          " is a target node!");
3317   Known.resetAll();
3318 }
3319 
3320 void TargetLowering::computeKnownBitsForTargetInstr(
3321     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3322     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3323     unsigned Depth) const {
3324   Known.resetAll();
3325 }
3326 
3327 void TargetLowering::computeKnownBitsForFrameIndex(
3328   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3329   // The low bits are known zero if the pointer is aligned.
3330   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3331 }
3332 
3333 Align TargetLowering::computeKnownAlignForTargetInstr(
3334   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3335   unsigned Depth) const {
3336   return Align(1);
3337 }
3338 
3339 /// This method can be implemented by targets that want to expose additional
3340 /// information about sign bits to the DAG Combiner.
3341 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3342                                                          const APInt &,
3343                                                          const SelectionDAG &,
3344                                                          unsigned Depth) const {
3345   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3346           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3347           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3348           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3349          "Should use ComputeNumSignBits if you don't know whether Op"
3350          " is a target node!");
3351   return 1;
3352 }
3353 
3354 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3355   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3356   const MachineRegisterInfo &MRI, unsigned Depth) const {
3357   return 1;
3358 }
3359 
3360 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3361     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3362     TargetLoweringOpt &TLO, unsigned Depth) const {
3363   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3364           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3365           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3366           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3367          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3368          " is a target node!");
3369   return false;
3370 }
3371 
3372 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3373     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3374     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3375   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3376           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3377           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3378           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3379          "Should use SimplifyDemandedBits if you don't know whether Op"
3380          " is a target node!");
3381   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3382   return false;
3383 }
3384 
3385 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3386     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3387     SelectionDAG &DAG, unsigned Depth) const {
3388   assert(
3389       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3390        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3391        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3392        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3393       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3394       " is a target node!");
3395   return SDValue();
3396 }
3397 
3398 SDValue
3399 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3400                                         SDValue N1, MutableArrayRef<int> Mask,
3401                                         SelectionDAG &DAG) const {
3402   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3403   if (!LegalMask) {
3404     std::swap(N0, N1);
3405     ShuffleVectorSDNode::commuteMask(Mask);
3406     LegalMask = isShuffleMaskLegal(Mask, VT);
3407   }
3408 
3409   if (!LegalMask)
3410     return SDValue();
3411 
3412   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3413 }
3414 
3415 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3416   return nullptr;
3417 }
3418 
3419 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3420     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3421     bool PoisonOnly, unsigned Depth) const {
3422   assert(
3423       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3424        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3425        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3426        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3427       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3428       " is a target node!");
3429   return false;
3430 }
3431 
3432 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3433                                                   const SelectionDAG &DAG,
3434                                                   bool SNaN,
3435                                                   unsigned Depth) const {
3436   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3437           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3438           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3439           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3440          "Should use isKnownNeverNaN if you don't know whether Op"
3441          " is a target node!");
3442   return false;
3443 }
3444 
3445 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3446                                                const APInt &DemandedElts,
3447                                                APInt &UndefElts,
3448                                                unsigned Depth) const {
3449   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3450           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3451           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3452           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3453          "Should use isSplatValue if you don't know whether Op"
3454          " is a target node!");
3455   return false;
3456 }
3457 
3458 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3459 // work with truncating build vectors and vectors with elements of less than
3460 // 8 bits.
3461 bool TargetLowering::isConstTrueVal(SDValue N) const {
3462   if (!N)
3463     return false;
3464 
3465   unsigned EltWidth;
3466   APInt CVal;
3467   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3468                                                /*AllowTruncation=*/true)) {
3469     CVal = CN->getAPIntValue();
3470     EltWidth = N.getValueType().getScalarSizeInBits();
3471   } else
3472     return false;
3473 
3474   // If this is a truncating splat, truncate the splat value.
3475   // Otherwise, we may fail to match the expected values below.
3476   if (EltWidth < CVal.getBitWidth())
3477     CVal = CVal.trunc(EltWidth);
3478 
3479   switch (getBooleanContents(N.getValueType())) {
3480   case UndefinedBooleanContent:
3481     return CVal[0];
3482   case ZeroOrOneBooleanContent:
3483     return CVal.isOne();
3484   case ZeroOrNegativeOneBooleanContent:
3485     return CVal.isAllOnes();
3486   }
3487 
3488   llvm_unreachable("Invalid boolean contents");
3489 }
3490 
3491 bool TargetLowering::isConstFalseVal(SDValue N) const {
3492   if (!N)
3493     return false;
3494 
3495   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3496   if (!CN) {
3497     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3498     if (!BV)
3499       return false;
3500 
3501     // Only interested in constant splats, we don't care about undef
3502     // elements in identifying boolean constants and getConstantSplatNode
3503     // returns NULL if all ops are undef;
3504     CN = BV->getConstantSplatNode();
3505     if (!CN)
3506       return false;
3507   }
3508 
3509   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3510     return !CN->getAPIntValue()[0];
3511 
3512   return CN->isZero();
3513 }
3514 
3515 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3516                                        bool SExt) const {
3517   if (VT == MVT::i1)
3518     return N->isOne();
3519 
3520   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3521   switch (Cnt) {
3522   case TargetLowering::ZeroOrOneBooleanContent:
3523     // An extended value of 1 is always true, unless its original type is i1,
3524     // in which case it will be sign extended to -1.
3525     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3526   case TargetLowering::UndefinedBooleanContent:
3527   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3528     return N->isAllOnes() && SExt;
3529   }
3530   llvm_unreachable("Unexpected enumeration.");
3531 }
3532 
3533 /// This helper function of SimplifySetCC tries to optimize the comparison when
3534 /// either operand of the SetCC node is a bitwise-and instruction.
3535 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3536                                          ISD::CondCode Cond, const SDLoc &DL,
3537                                          DAGCombinerInfo &DCI) const {
3538   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3539     std::swap(N0, N1);
3540 
3541   SelectionDAG &DAG = DCI.DAG;
3542   EVT OpVT = N0.getValueType();
3543   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3544       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3545     return SDValue();
3546 
3547   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3548   // iff everything but LSB is known zero:
3549   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3550       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3551        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3552     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3553     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3554     if (DAG.MaskedValueIsZero(N0, UpperBits))
3555       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3556   }
3557 
3558   // Match these patterns in any of their permutations:
3559   // (X & Y) == Y
3560   // (X & Y) != Y
3561   SDValue X, Y;
3562   if (N0.getOperand(0) == N1) {
3563     X = N0.getOperand(1);
3564     Y = N0.getOperand(0);
3565   } else if (N0.getOperand(1) == N1) {
3566     X = N0.getOperand(0);
3567     Y = N0.getOperand(1);
3568   } else {
3569     return SDValue();
3570   }
3571 
3572   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3573   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3574     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3575     // Note that where Y is variable and is known to have at most one bit set
3576     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3577     // equivalent when Y == 0.
3578     assert(OpVT.isInteger());
3579     Cond = ISD::getSetCCInverse(Cond, OpVT);
3580     if (DCI.isBeforeLegalizeOps() ||
3581         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3582       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3583   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3584     // If the target supports an 'and-not' or 'and-complement' logic operation,
3585     // try to use that to make a comparison operation more efficient.
3586     // But don't do this transform if the mask is a single bit because there are
3587     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3588     // 'rlwinm' on PPC).
3589 
3590     // Bail out if the compare operand that we want to turn into a zero is
3591     // already a zero (otherwise, infinite loop).
3592     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3593     if (YConst && YConst->isZero())
3594       return SDValue();
3595 
3596     // Transform this into: ~X & Y == 0.
3597     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3598     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3599     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3600   }
3601 
3602   return SDValue();
3603 }
3604 
3605 /// There are multiple IR patterns that could be checking whether certain
3606 /// truncation of a signed number would be lossy or not. The pattern which is
3607 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3608 /// We are looking for the following pattern: (KeptBits is a constant)
3609 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3610 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3611 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3612 /// We will unfold it into the natural trunc+sext pattern:
3613 ///   ((%x << C) a>> C) dstcond %x
3614 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3615 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3616     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3617     const SDLoc &DL) const {
3618   // We must be comparing with a constant.
3619   ConstantSDNode *C1;
3620   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3621     return SDValue();
3622 
3623   // N0 should be:  add %x, (1 << (KeptBits-1))
3624   if (N0->getOpcode() != ISD::ADD)
3625     return SDValue();
3626 
3627   // And we must be 'add'ing a constant.
3628   ConstantSDNode *C01;
3629   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3630     return SDValue();
3631 
3632   SDValue X = N0->getOperand(0);
3633   EVT XVT = X.getValueType();
3634 
3635   // Validate constants ...
3636 
3637   APInt I1 = C1->getAPIntValue();
3638 
3639   ISD::CondCode NewCond;
3640   if (Cond == ISD::CondCode::SETULT) {
3641     NewCond = ISD::CondCode::SETEQ;
3642   } else if (Cond == ISD::CondCode::SETULE) {
3643     NewCond = ISD::CondCode::SETEQ;
3644     // But need to 'canonicalize' the constant.
3645     I1 += 1;
3646   } else if (Cond == ISD::CondCode::SETUGT) {
3647     NewCond = ISD::CondCode::SETNE;
3648     // But need to 'canonicalize' the constant.
3649     I1 += 1;
3650   } else if (Cond == ISD::CondCode::SETUGE) {
3651     NewCond = ISD::CondCode::SETNE;
3652   } else
3653     return SDValue();
3654 
3655   APInt I01 = C01->getAPIntValue();
3656 
3657   auto checkConstants = [&I1, &I01]() -> bool {
3658     // Both of them must be power-of-two, and the constant from setcc is bigger.
3659     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3660   };
3661 
3662   if (checkConstants()) {
3663     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3664   } else {
3665     // What if we invert constants? (and the target predicate)
3666     I1.negate();
3667     I01.negate();
3668     assert(XVT.isInteger());
3669     NewCond = getSetCCInverse(NewCond, XVT);
3670     if (!checkConstants())
3671       return SDValue();
3672     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3673   }
3674 
3675   // They are power-of-two, so which bit is set?
3676   const unsigned KeptBits = I1.logBase2();
3677   const unsigned KeptBitsMinusOne = I01.logBase2();
3678 
3679   // Magic!
3680   if (KeptBits != (KeptBitsMinusOne + 1))
3681     return SDValue();
3682   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3683 
3684   // We don't want to do this in every single case.
3685   SelectionDAG &DAG = DCI.DAG;
3686   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3687           XVT, KeptBits))
3688     return SDValue();
3689 
3690   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3691   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3692 
3693   // Unfold into:  ((%x << C) a>> C) cond %x
3694   // Where 'cond' will be either 'eq' or 'ne'.
3695   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3696   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3697   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3698   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3699 
3700   return T2;
3701 }
3702 
3703 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3704 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3705     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3706     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3707   assert(isConstOrConstSplat(N1C) &&
3708          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3709          "Should be a comparison with 0.");
3710   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3711          "Valid only for [in]equality comparisons.");
3712 
3713   unsigned NewShiftOpcode;
3714   SDValue X, C, Y;
3715 
3716   SelectionDAG &DAG = DCI.DAG;
3717   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3718 
3719   // Look for '(C l>>/<< Y)'.
3720   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3721     // The shift should be one-use.
3722     if (!V.hasOneUse())
3723       return false;
3724     unsigned OldShiftOpcode = V.getOpcode();
3725     switch (OldShiftOpcode) {
3726     case ISD::SHL:
3727       NewShiftOpcode = ISD::SRL;
3728       break;
3729     case ISD::SRL:
3730       NewShiftOpcode = ISD::SHL;
3731       break;
3732     default:
3733       return false; // must be a logical shift.
3734     }
3735     // We should be shifting a constant.
3736     // FIXME: best to use isConstantOrConstantVector().
3737     C = V.getOperand(0);
3738     ConstantSDNode *CC =
3739         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3740     if (!CC)
3741       return false;
3742     Y = V.getOperand(1);
3743 
3744     ConstantSDNode *XC =
3745         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3746     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3747         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3748   };
3749 
3750   // LHS of comparison should be an one-use 'and'.
3751   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3752     return SDValue();
3753 
3754   X = N0.getOperand(0);
3755   SDValue Mask = N0.getOperand(1);
3756 
3757   // 'and' is commutative!
3758   if (!Match(Mask)) {
3759     std::swap(X, Mask);
3760     if (!Match(Mask))
3761       return SDValue();
3762   }
3763 
3764   EVT VT = X.getValueType();
3765 
3766   // Produce:
3767   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3768   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3769   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3770   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3771   return T2;
3772 }
3773 
3774 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3775 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3776 /// handle the commuted versions of these patterns.
3777 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3778                                            ISD::CondCode Cond, const SDLoc &DL,
3779                                            DAGCombinerInfo &DCI) const {
3780   unsigned BOpcode = N0.getOpcode();
3781   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3782          "Unexpected binop");
3783   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3784 
3785   // (X + Y) == X --> Y == 0
3786   // (X - Y) == X --> Y == 0
3787   // (X ^ Y) == X --> Y == 0
3788   SelectionDAG &DAG = DCI.DAG;
3789   EVT OpVT = N0.getValueType();
3790   SDValue X = N0.getOperand(0);
3791   SDValue Y = N0.getOperand(1);
3792   if (X == N1)
3793     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3794 
3795   if (Y != N1)
3796     return SDValue();
3797 
3798   // (X + Y) == Y --> X == 0
3799   // (X ^ Y) == Y --> X == 0
3800   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3801     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3802 
3803   // The shift would not be valid if the operands are boolean (i1).
3804   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3805     return SDValue();
3806 
3807   // (X - Y) == Y --> X == Y << 1
3808   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3809                                  !DCI.isBeforeLegalize());
3810   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3811   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3812   if (!DCI.isCalledByLegalizer())
3813     DCI.AddToWorklist(YShl1.getNode());
3814   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3815 }
3816 
3817 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3818                                       SDValue N0, const APInt &C1,
3819                                       ISD::CondCode Cond, const SDLoc &dl,
3820                                       SelectionDAG &DAG) {
3821   // Look through truncs that don't change the value of a ctpop.
3822   // FIXME: Add vector support? Need to be careful with setcc result type below.
3823   SDValue CTPOP = N0;
3824   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3825       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3826     CTPOP = N0.getOperand(0);
3827 
3828   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3829     return SDValue();
3830 
3831   EVT CTVT = CTPOP.getValueType();
3832   SDValue CTOp = CTPOP.getOperand(0);
3833 
3834   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3835   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3836   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3837     return SDValue();
3838 
3839   // (ctpop x) u< 2 -> (x & x-1) == 0
3840   // (ctpop x) u> 1 -> (x & x-1) != 0
3841   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3842     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3843     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3844       return SDValue();
3845     if (C1 == 0 && (Cond == ISD::SETULT))
3846       return SDValue(); // This is handled elsewhere.
3847 
3848     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3849 
3850     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3851     SDValue Result = CTOp;
3852     for (unsigned i = 0; i < Passes; i++) {
3853       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3854       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3855     }
3856     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3857     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3858   }
3859 
3860   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3861   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3862     // For scalars, keep CTPOP if it is legal or custom.
3863     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3864       return SDValue();
3865     // This is based on X86's custom lowering for CTPOP which produces more
3866     // instructions than the expansion here.
3867 
3868     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3869     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3870     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3871     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3872     assert(CTVT.isInteger());
3873     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3874     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3875     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3876     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3877     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3878     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3879     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3880   }
3881 
3882   return SDValue();
3883 }
3884 
3885 static SDValue foldSetCCWithRotate(EVT VT, SDValue N0, SDValue N1,
3886                                    ISD::CondCode Cond, const SDLoc &dl,
3887                                    SelectionDAG &DAG) {
3888   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3889     return SDValue();
3890 
3891   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3892   if (!C1 || !(C1->isZero() || C1->isAllOnes()))
3893     return SDValue();
3894 
3895   auto getRotateSource = [](SDValue X) {
3896     if (X.getOpcode() == ISD::ROTL || X.getOpcode() == ISD::ROTR)
3897       return X.getOperand(0);
3898     return SDValue();
3899   };
3900 
3901   // Peek through a rotated value compared against 0 or -1:
3902   // (rot X, Y) == 0/-1 --> X == 0/-1
3903   // (rot X, Y) != 0/-1 --> X != 0/-1
3904   if (SDValue R = getRotateSource(N0))
3905     return DAG.getSetCC(dl, VT, R, N1, Cond);
3906 
3907   // Peek through an 'or' of a rotated value compared against 0:
3908   // or (rot X, Y), Z ==/!= 0 --> (or X, Z) ==/!= 0
3909   // or Z, (rot X, Y) ==/!= 0 --> (or X, Z) ==/!= 0
3910   //
3911   // TODO: Add the 'and' with -1 sibling.
3912   // TODO: Recurse through a series of 'or' ops to find the rotate.
3913   EVT OpVT = N0.getValueType();
3914   if (N0.hasOneUse() && N0.getOpcode() == ISD::OR && C1->isZero()) {
3915     if (SDValue R = getRotateSource(N0.getOperand(0))) {
3916       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(1));
3917       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3918     }
3919     if (SDValue R = getRotateSource(N0.getOperand(1))) {
3920       SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, R, N0.getOperand(0));
3921       return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3922     }
3923   }
3924 
3925   return SDValue();
3926 }
3927 
3928 static SDValue foldSetCCWithFunnelShift(EVT VT, SDValue N0, SDValue N1,
3929                                         ISD::CondCode Cond, const SDLoc &dl,
3930                                         SelectionDAG &DAG) {
3931   // If we are testing for all-bits-clear, we might be able to do that with
3932   // less shifting since bit-order does not matter.
3933   if (Cond != ISD::SETEQ && Cond != ISD::SETNE)
3934     return SDValue();
3935 
3936   auto *C1 = isConstOrConstSplat(N1, /* AllowUndefs */ true);
3937   if (!C1 || !C1->isZero())
3938     return SDValue();
3939 
3940   if (!N0.hasOneUse() ||
3941       (N0.getOpcode() != ISD::FSHL && N0.getOpcode() != ISD::FSHR))
3942     return SDValue();
3943 
3944   unsigned BitWidth = N0.getScalarValueSizeInBits();
3945   auto *ShAmtC = isConstOrConstSplat(N0.getOperand(2));
3946   if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
3947     return SDValue();
3948 
3949   // Canonicalize fshr as fshl to reduce pattern-matching.
3950   unsigned ShAmt = ShAmtC->getZExtValue();
3951   if (N0.getOpcode() == ISD::FSHR)
3952     ShAmt = BitWidth - ShAmt;
3953 
3954   // Match an 'or' with a specific operand 'Other' in either commuted variant.
3955   SDValue X, Y;
3956   auto matchOr = [&X, &Y](SDValue Or, SDValue Other) {
3957     if (Or.getOpcode() != ISD::OR || !Or.hasOneUse())
3958       return false;
3959     if (Or.getOperand(0) == Other) {
3960       X = Or.getOperand(0);
3961       Y = Or.getOperand(1);
3962       return true;
3963     }
3964     if (Or.getOperand(1) == Other) {
3965       X = Or.getOperand(1);
3966       Y = Or.getOperand(0);
3967       return true;
3968     }
3969     return false;
3970   };
3971 
3972   EVT OpVT = N0.getValueType();
3973   EVT ShAmtVT = N0.getOperand(2).getValueType();
3974   SDValue F0 = N0.getOperand(0);
3975   SDValue F1 = N0.getOperand(1);
3976   if (matchOr(F0, F1)) {
3977     // fshl (or X, Y), X, C ==/!= 0 --> or (shl Y, C), X ==/!= 0
3978     SDValue NewShAmt = DAG.getConstant(ShAmt, dl, ShAmtVT);
3979     SDValue Shift = DAG.getNode(ISD::SHL, dl, OpVT, Y, NewShAmt);
3980     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3981     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3982   }
3983   if (matchOr(F1, F0)) {
3984     // fshl X, (or X, Y), C ==/!= 0 --> or (srl Y, BW-C), X ==/!= 0
3985     SDValue NewShAmt = DAG.getConstant(BitWidth - ShAmt, dl, ShAmtVT);
3986     SDValue Shift = DAG.getNode(ISD::SRL, dl, OpVT, Y, NewShAmt);
3987     SDValue NewOr = DAG.getNode(ISD::OR, dl, OpVT, Shift, X);
3988     return DAG.getSetCC(dl, VT, NewOr, N1, Cond);
3989   }
3990 
3991   return SDValue();
3992 }
3993 
3994 /// Try to simplify a setcc built with the specified operands and cc. If it is
3995 /// unable to simplify it, return a null SDValue.
3996 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3997                                       ISD::CondCode Cond, bool foldBooleans,
3998                                       DAGCombinerInfo &DCI,
3999                                       const SDLoc &dl) const {
4000   SelectionDAG &DAG = DCI.DAG;
4001   const DataLayout &Layout = DAG.getDataLayout();
4002   EVT OpVT = N0.getValueType();
4003 
4004   // Constant fold or commute setcc.
4005   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
4006     return Fold;
4007 
4008   bool N0ConstOrSplat =
4009       isConstOrConstSplat(N0, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4010   bool N1ConstOrSplat =
4011       isConstOrConstSplat(N1, /*AllowUndefs*/ false, /*AllowTruncate*/ true);
4012 
4013   // Ensure that the constant occurs on the RHS and fold constant comparisons.
4014   // TODO: Handle non-splat vector constants. All undef causes trouble.
4015   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
4016   // infinite loop here when we encounter one.
4017   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
4018   if (N0ConstOrSplat && (!OpVT.isScalableVector() || !N1ConstOrSplat) &&
4019       (DCI.isBeforeLegalizeOps() ||
4020        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
4021     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4022 
4023   // If we have a subtract with the same 2 non-constant operands as this setcc
4024   // -- but in reverse order -- then try to commute the operands of this setcc
4025   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
4026   // instruction on some targets.
4027   if (!N0ConstOrSplat && !N1ConstOrSplat &&
4028       (DCI.isBeforeLegalizeOps() ||
4029        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
4030       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
4031       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
4032     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
4033 
4034   if (SDValue V = foldSetCCWithRotate(VT, N0, N1, Cond, dl, DAG))
4035     return V;
4036 
4037   if (SDValue V = foldSetCCWithFunnelShift(VT, N0, N1, Cond, dl, DAG))
4038     return V;
4039 
4040   if (auto *N1C = isConstOrConstSplat(N1)) {
4041     const APInt &C1 = N1C->getAPIntValue();
4042 
4043     // Optimize some CTPOP cases.
4044     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
4045       return V;
4046 
4047     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
4048     // equality comparison, then we're just comparing whether X itself is
4049     // zero.
4050     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
4051         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
4052         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
4053       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
4054         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4055             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
4056           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
4057             // (srl (ctlz x), 5) == 0  -> X != 0
4058             // (srl (ctlz x), 5) != 1  -> X != 0
4059             Cond = ISD::SETNE;
4060           } else {
4061             // (srl (ctlz x), 5) != 0  -> X == 0
4062             // (srl (ctlz x), 5) == 1  -> X == 0
4063             Cond = ISD::SETEQ;
4064           }
4065           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
4066           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
4067                               Cond);
4068         }
4069       }
4070     }
4071   }
4072 
4073   // FIXME: Support vectors.
4074   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4075     const APInt &C1 = N1C->getAPIntValue();
4076 
4077     // (zext x) == C --> x == (trunc C)
4078     // (sext x) == C --> x == (trunc C)
4079     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4080         DCI.isBeforeLegalize() && N0->hasOneUse()) {
4081       unsigned MinBits = N0.getValueSizeInBits();
4082       SDValue PreExt;
4083       bool Signed = false;
4084       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
4085         // ZExt
4086         MinBits = N0->getOperand(0).getValueSizeInBits();
4087         PreExt = N0->getOperand(0);
4088       } else if (N0->getOpcode() == ISD::AND) {
4089         // DAGCombine turns costly ZExts into ANDs
4090         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
4091           if ((C->getAPIntValue()+1).isPowerOf2()) {
4092             MinBits = C->getAPIntValue().countTrailingOnes();
4093             PreExt = N0->getOperand(0);
4094           }
4095       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
4096         // SExt
4097         MinBits = N0->getOperand(0).getValueSizeInBits();
4098         PreExt = N0->getOperand(0);
4099         Signed = true;
4100       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
4101         // ZEXTLOAD / SEXTLOAD
4102         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
4103           MinBits = LN0->getMemoryVT().getSizeInBits();
4104           PreExt = N0;
4105         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
4106           Signed = true;
4107           MinBits = LN0->getMemoryVT().getSizeInBits();
4108           PreExt = N0;
4109         }
4110       }
4111 
4112       // Figure out how many bits we need to preserve this constant.
4113       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
4114 
4115       // Make sure we're not losing bits from the constant.
4116       if (MinBits > 0 &&
4117           MinBits < C1.getBitWidth() &&
4118           MinBits >= ReqdBits) {
4119         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
4120         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
4121           // Will get folded away.
4122           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
4123           if (MinBits == 1 && C1 == 1)
4124             // Invert the condition.
4125             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
4126                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4127           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
4128           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
4129         }
4130 
4131         // If truncating the setcc operands is not desirable, we can still
4132         // simplify the expression in some cases:
4133         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
4134         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
4135         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
4136         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
4137         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
4138         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
4139         SDValue TopSetCC = N0->getOperand(0);
4140         unsigned N0Opc = N0->getOpcode();
4141         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
4142         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
4143             TopSetCC.getOpcode() == ISD::SETCC &&
4144             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
4145             (isConstFalseVal(N1) ||
4146              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
4147 
4148           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
4149                          (!N1C->isZero() && Cond == ISD::SETNE);
4150 
4151           if (!Inverse)
4152             return TopSetCC;
4153 
4154           ISD::CondCode InvCond = ISD::getSetCCInverse(
4155               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
4156               TopSetCC.getOperand(0).getValueType());
4157           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
4158                                       TopSetCC.getOperand(1),
4159                                       InvCond);
4160         }
4161       }
4162     }
4163 
4164     // If the LHS is '(and load, const)', the RHS is 0, the test is for
4165     // equality or unsigned, and all 1 bits of the const are in the same
4166     // partial word, see if we can shorten the load.
4167     if (DCI.isBeforeLegalize() &&
4168         !ISD::isSignedIntSetCC(Cond) &&
4169         N0.getOpcode() == ISD::AND && C1 == 0 &&
4170         N0.getNode()->hasOneUse() &&
4171         isa<LoadSDNode>(N0.getOperand(0)) &&
4172         N0.getOperand(0).getNode()->hasOneUse() &&
4173         isa<ConstantSDNode>(N0.getOperand(1))) {
4174       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
4175       APInt bestMask;
4176       unsigned bestWidth = 0, bestOffset = 0;
4177       if (Lod->isSimple() && Lod->isUnindexed()) {
4178         unsigned origWidth = N0.getValueSizeInBits();
4179         unsigned maskWidth = origWidth;
4180         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
4181         // 8 bits, but have to be careful...
4182         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
4183           origWidth = Lod->getMemoryVT().getSizeInBits();
4184         const APInt &Mask = N0.getConstantOperandAPInt(1);
4185         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
4186           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
4187           for (unsigned offset=0; offset<origWidth/width; offset++) {
4188             if (Mask.isSubsetOf(newMask)) {
4189               if (Layout.isLittleEndian())
4190                 bestOffset = (uint64_t)offset * (width/8);
4191               else
4192                 bestOffset = (origWidth/width - offset - 1) * (width/8);
4193               bestMask = Mask.lshr(offset * (width/8) * 8);
4194               bestWidth = width;
4195               break;
4196             }
4197             newMask <<= width;
4198           }
4199         }
4200       }
4201       if (bestWidth) {
4202         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
4203         if (newVT.isRound() &&
4204             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
4205           SDValue Ptr = Lod->getBasePtr();
4206           if (bestOffset != 0)
4207             Ptr =
4208                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
4209           SDValue NewLoad =
4210               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
4211                           Lod->getPointerInfo().getWithOffset(bestOffset),
4212                           Lod->getOriginalAlign());
4213           return DAG.getSetCC(dl, VT,
4214                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
4215                                       DAG.getConstant(bestMask.trunc(bestWidth),
4216                                                       dl, newVT)),
4217                               DAG.getConstant(0LL, dl, newVT), Cond);
4218         }
4219       }
4220     }
4221 
4222     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
4223     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
4224       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
4225 
4226       // If the comparison constant has bits in the upper part, the
4227       // zero-extended value could never match.
4228       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4229                                               C1.getBitWidth() - InSize))) {
4230         switch (Cond) {
4231         case ISD::SETUGT:
4232         case ISD::SETUGE:
4233         case ISD::SETEQ:
4234           return DAG.getConstant(0, dl, VT);
4235         case ISD::SETULT:
4236         case ISD::SETULE:
4237         case ISD::SETNE:
4238           return DAG.getConstant(1, dl, VT);
4239         case ISD::SETGT:
4240         case ISD::SETGE:
4241           // True if the sign bit of C1 is set.
4242           return DAG.getConstant(C1.isNegative(), dl, VT);
4243         case ISD::SETLT:
4244         case ISD::SETLE:
4245           // True if the sign bit of C1 isn't set.
4246           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4247         default:
4248           break;
4249         }
4250       }
4251 
4252       // Otherwise, we can perform the comparison with the low bits.
4253       switch (Cond) {
4254       case ISD::SETEQ:
4255       case ISD::SETNE:
4256       case ISD::SETUGT:
4257       case ISD::SETUGE:
4258       case ISD::SETULT:
4259       case ISD::SETULE: {
4260         EVT newVT = N0.getOperand(0).getValueType();
4261         if (DCI.isBeforeLegalizeOps() ||
4262             (isOperationLegal(ISD::SETCC, newVT) &&
4263              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4264           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4265           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4266 
4267           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4268                                           NewConst, Cond);
4269           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4270         }
4271         break;
4272       }
4273       default:
4274         break; // todo, be more careful with signed comparisons
4275       }
4276     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4277                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4278                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4279                                       OpVT)) {
4280       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4281       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4282       EVT ExtDstTy = N0.getValueType();
4283       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4284 
4285       // If the constant doesn't fit into the number of bits for the source of
4286       // the sign extension, it is impossible for both sides to be equal.
4287       if (C1.getMinSignedBits() > ExtSrcTyBits)
4288         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4289 
4290       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4291              ExtDstTy != ExtSrcTy && "Unexpected types!");
4292       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4293       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4294                                    DAG.getConstant(Imm, dl, ExtDstTy));
4295       if (!DCI.isCalledByLegalizer())
4296         DCI.AddToWorklist(ZextOp.getNode());
4297       // Otherwise, make this a use of a zext.
4298       return DAG.getSetCC(dl, VT, ZextOp,
4299                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4300     } else if ((N1C->isZero() || N1C->isOne()) &&
4301                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4302       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4303       if (N0.getOpcode() == ISD::SETCC &&
4304           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4305           (N0.getValueType() == MVT::i1 ||
4306            getBooleanContents(N0.getOperand(0).getValueType()) ==
4307                        ZeroOrOneBooleanContent)) {
4308         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4309         if (TrueWhenTrue)
4310           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4311         // Invert the condition.
4312         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4313         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4314         if (DCI.isBeforeLegalizeOps() ||
4315             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4316           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4317       }
4318 
4319       if ((N0.getOpcode() == ISD::XOR ||
4320            (N0.getOpcode() == ISD::AND &&
4321             N0.getOperand(0).getOpcode() == ISD::XOR &&
4322             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4323           isOneConstant(N0.getOperand(1))) {
4324         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4325         // can only do this if the top bits are known zero.
4326         unsigned BitWidth = N0.getValueSizeInBits();
4327         if (DAG.MaskedValueIsZero(N0,
4328                                   APInt::getHighBitsSet(BitWidth,
4329                                                         BitWidth-1))) {
4330           // Okay, get the un-inverted input value.
4331           SDValue Val;
4332           if (N0.getOpcode() == ISD::XOR) {
4333             Val = N0.getOperand(0);
4334           } else {
4335             assert(N0.getOpcode() == ISD::AND &&
4336                     N0.getOperand(0).getOpcode() == ISD::XOR);
4337             // ((X^1)&1)^1 -> X & 1
4338             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4339                               N0.getOperand(0).getOperand(0),
4340                               N0.getOperand(1));
4341           }
4342 
4343           return DAG.getSetCC(dl, VT, Val, N1,
4344                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4345         }
4346       } else if (N1C->isOne()) {
4347         SDValue Op0 = N0;
4348         if (Op0.getOpcode() == ISD::TRUNCATE)
4349           Op0 = Op0.getOperand(0);
4350 
4351         if ((Op0.getOpcode() == ISD::XOR) &&
4352             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4353             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4354           SDValue XorLHS = Op0.getOperand(0);
4355           SDValue XorRHS = Op0.getOperand(1);
4356           // Ensure that the input setccs return an i1 type or 0/1 value.
4357           if (Op0.getValueType() == MVT::i1 ||
4358               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4359                       ZeroOrOneBooleanContent &&
4360                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4361                         ZeroOrOneBooleanContent)) {
4362             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4363             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4364             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4365           }
4366         }
4367         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4368           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4369           if (Op0.getValueType().bitsGT(VT))
4370             Op0 = DAG.getNode(ISD::AND, dl, VT,
4371                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4372                           DAG.getConstant(1, dl, VT));
4373           else if (Op0.getValueType().bitsLT(VT))
4374             Op0 = DAG.getNode(ISD::AND, dl, VT,
4375                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4376                         DAG.getConstant(1, dl, VT));
4377 
4378           return DAG.getSetCC(dl, VT, Op0,
4379                               DAG.getConstant(0, dl, Op0.getValueType()),
4380                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4381         }
4382         if (Op0.getOpcode() == ISD::AssertZext &&
4383             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4384           return DAG.getSetCC(dl, VT, Op0,
4385                               DAG.getConstant(0, dl, Op0.getValueType()),
4386                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4387       }
4388     }
4389 
4390     // Given:
4391     //   icmp eq/ne (urem %x, %y), 0
4392     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4393     //   icmp eq/ne %x, 0
4394     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4395         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4396       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4397       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4398       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4399         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4400     }
4401 
4402     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4403     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4404     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4405         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4406         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4407         N1C && N1C->isAllOnes()) {
4408       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4409                           DAG.getConstant(0, dl, OpVT),
4410                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4411     }
4412 
4413     if (SDValue V =
4414             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4415       return V;
4416   }
4417 
4418   // These simplifications apply to splat vectors as well.
4419   // TODO: Handle more splat vector cases.
4420   if (auto *N1C = isConstOrConstSplat(N1)) {
4421     const APInt &C1 = N1C->getAPIntValue();
4422 
4423     APInt MinVal, MaxVal;
4424     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4425     if (ISD::isSignedIntSetCC(Cond)) {
4426       MinVal = APInt::getSignedMinValue(OperandBitSize);
4427       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4428     } else {
4429       MinVal = APInt::getMinValue(OperandBitSize);
4430       MaxVal = APInt::getMaxValue(OperandBitSize);
4431     }
4432 
4433     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4434     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4435       // X >= MIN --> true
4436       if (C1 == MinVal)
4437         return DAG.getBoolConstant(true, dl, VT, OpVT);
4438 
4439       if (!VT.isVector()) { // TODO: Support this for vectors.
4440         // X >= C0 --> X > (C0 - 1)
4441         APInt C = C1 - 1;
4442         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4443         if ((DCI.isBeforeLegalizeOps() ||
4444              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4445             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4446                                   isLegalICmpImmediate(C.getSExtValue())))) {
4447           return DAG.getSetCC(dl, VT, N0,
4448                               DAG.getConstant(C, dl, N1.getValueType()),
4449                               NewCC);
4450         }
4451       }
4452     }
4453 
4454     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4455       // X <= MAX --> true
4456       if (C1 == MaxVal)
4457         return DAG.getBoolConstant(true, dl, VT, OpVT);
4458 
4459       // X <= C0 --> X < (C0 + 1)
4460       if (!VT.isVector()) { // TODO: Support this for vectors.
4461         APInt C = C1 + 1;
4462         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4463         if ((DCI.isBeforeLegalizeOps() ||
4464              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4465             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4466                                   isLegalICmpImmediate(C.getSExtValue())))) {
4467           return DAG.getSetCC(dl, VT, N0,
4468                               DAG.getConstant(C, dl, N1.getValueType()),
4469                               NewCC);
4470         }
4471       }
4472     }
4473 
4474     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4475       if (C1 == MinVal)
4476         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4477 
4478       // TODO: Support this for vectors after legalize ops.
4479       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4480         // Canonicalize setlt X, Max --> setne X, Max
4481         if (C1 == MaxVal)
4482           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4483 
4484         // If we have setult X, 1, turn it into seteq X, 0
4485         if (C1 == MinVal+1)
4486           return DAG.getSetCC(dl, VT, N0,
4487                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4488                               ISD::SETEQ);
4489       }
4490     }
4491 
4492     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4493       if (C1 == MaxVal)
4494         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4495 
4496       // TODO: Support this for vectors after legalize ops.
4497       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4498         // Canonicalize setgt X, Min --> setne X, Min
4499         if (C1 == MinVal)
4500           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4501 
4502         // If we have setugt X, Max-1, turn it into seteq X, Max
4503         if (C1 == MaxVal-1)
4504           return DAG.getSetCC(dl, VT, N0,
4505                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4506                               ISD::SETEQ);
4507       }
4508     }
4509 
4510     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4511       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4512       if (C1.isZero())
4513         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4514                 VT, N0, N1, Cond, DCI, dl))
4515           return CC;
4516 
4517       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4518       // For example, when high 32-bits of i64 X are known clear:
4519       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4520       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4521       bool CmpZero = N1C->getAPIntValue().isZero();
4522       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4523       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4524         // Match or(lo,shl(hi,bw/2)) pattern.
4525         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4526           unsigned EltBits = V.getScalarValueSizeInBits();
4527           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4528             return false;
4529           SDValue LHS = V.getOperand(0);
4530           SDValue RHS = V.getOperand(1);
4531           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4532           // Unshifted element must have zero upperbits.
4533           if (RHS.getOpcode() == ISD::SHL &&
4534               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4535               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4536               DAG.MaskedValueIsZero(LHS, HiBits)) {
4537             Lo = LHS;
4538             Hi = RHS.getOperand(0);
4539             return true;
4540           }
4541           if (LHS.getOpcode() == ISD::SHL &&
4542               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4543               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4544               DAG.MaskedValueIsZero(RHS, HiBits)) {
4545             Lo = RHS;
4546             Hi = LHS.getOperand(0);
4547             return true;
4548           }
4549           return false;
4550         };
4551 
4552         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4553           unsigned EltBits = N0.getScalarValueSizeInBits();
4554           unsigned HalfBits = EltBits / 2;
4555           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4556           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4557           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4558           SDValue NewN0 =
4559               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4560           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4561           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4562         };
4563 
4564         SDValue Lo, Hi;
4565         if (IsConcat(N0, Lo, Hi))
4566           return MergeConcat(Lo, Hi);
4567 
4568         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4569           SDValue Lo0, Lo1, Hi0, Hi1;
4570           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4571               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4572             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4573                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4574           }
4575         }
4576       }
4577     }
4578 
4579     // If we have "setcc X, C0", check to see if we can shrink the immediate
4580     // by changing cc.
4581     // TODO: Support this for vectors after legalize ops.
4582     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4583       // SETUGT X, SINTMAX  -> SETLT X, 0
4584       // SETUGE X, SINTMIN -> SETLT X, 0
4585       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4586           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4587         return DAG.getSetCC(dl, VT, N0,
4588                             DAG.getConstant(0, dl, N1.getValueType()),
4589                             ISD::SETLT);
4590 
4591       // SETULT X, SINTMIN  -> SETGT X, -1
4592       // SETULE X, SINTMAX  -> SETGT X, -1
4593       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4594           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4595         return DAG.getSetCC(dl, VT, N0,
4596                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4597                             ISD::SETGT);
4598     }
4599   }
4600 
4601   // Back to non-vector simplifications.
4602   // TODO: Can we do these for vector splats?
4603   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4604     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4605     const APInt &C1 = N1C->getAPIntValue();
4606     EVT ShValTy = N0.getValueType();
4607 
4608     // Fold bit comparisons when we can. This will result in an
4609     // incorrect value when boolean false is negative one, unless
4610     // the bitsize is 1 in which case the false value is the same
4611     // in practice regardless of the representation.
4612     if ((VT.getSizeInBits() == 1 ||
4613          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4614         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4615         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4616         N0.getOpcode() == ISD::AND) {
4617       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4618         EVT ShiftTy =
4619             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4620         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4621           // Perform the xform if the AND RHS is a single bit.
4622           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4623           if (AndRHS->getAPIntValue().isPowerOf2() &&
4624               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4625             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4626                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4627                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4628           }
4629         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4630           // (X & 8) == 8  -->  (X & 8) >> 3
4631           // Perform the xform if C1 is a single bit.
4632           unsigned ShCt = C1.logBase2();
4633           if (C1.isPowerOf2() &&
4634               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4635             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4636                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4637                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4638           }
4639         }
4640       }
4641     }
4642 
4643     if (C1.getMinSignedBits() <= 64 &&
4644         !isLegalICmpImmediate(C1.getSExtValue())) {
4645       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4646       // (X & -256) == 256 -> (X >> 8) == 1
4647       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4648           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4649         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4650           const APInt &AndRHSC = AndRHS->getAPIntValue();
4651           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4652             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4653             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4654               SDValue Shift =
4655                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4656                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4657               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4658               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4659             }
4660           }
4661         }
4662       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4663                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4664         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4665         // X <  0x100000000 -> (X >> 32) <  1
4666         // X >= 0x100000000 -> (X >> 32) >= 1
4667         // X <= 0x0ffffffff -> (X >> 32) <  1
4668         // X >  0x0ffffffff -> (X >> 32) >= 1
4669         unsigned ShiftBits;
4670         APInt NewC = C1;
4671         ISD::CondCode NewCond = Cond;
4672         if (AdjOne) {
4673           ShiftBits = C1.countTrailingOnes();
4674           NewC = NewC + 1;
4675           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4676         } else {
4677           ShiftBits = C1.countTrailingZeros();
4678         }
4679         NewC.lshrInPlace(ShiftBits);
4680         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4681             isLegalICmpImmediate(NewC.getSExtValue()) &&
4682             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4683           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4684                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4685           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4686           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4687         }
4688       }
4689     }
4690   }
4691 
4692   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4693     auto *CFP = cast<ConstantFPSDNode>(N1);
4694     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4695 
4696     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4697     // constant if knowing that the operand is non-nan is enough.  We prefer to
4698     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4699     // materialize 0.0.
4700     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4701       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4702 
4703     // setcc (fneg x), C -> setcc swap(pred) x, -C
4704     if (N0.getOpcode() == ISD::FNEG) {
4705       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4706       if (DCI.isBeforeLegalizeOps() ||
4707           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4708         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4709         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4710       }
4711     }
4712 
4713     // If the condition is not legal, see if we can find an equivalent one
4714     // which is legal.
4715     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4716       // If the comparison was an awkward floating-point == or != and one of
4717       // the comparison operands is infinity or negative infinity, convert the
4718       // condition to a less-awkward <= or >=.
4719       if (CFP->getValueAPF().isInfinity()) {
4720         bool IsNegInf = CFP->getValueAPF().isNegative();
4721         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4722         switch (Cond) {
4723         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4724         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4725         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4726         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4727         default: break;
4728         }
4729         if (NewCond != ISD::SETCC_INVALID &&
4730             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4731           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4732       }
4733     }
4734   }
4735 
4736   if (N0 == N1) {
4737     // The sext(setcc()) => setcc() optimization relies on the appropriate
4738     // constant being emitted.
4739     assert(!N0.getValueType().isInteger() &&
4740            "Integer types should be handled by FoldSetCC");
4741 
4742     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4743     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4744     if (UOF == 2) // FP operators that are undefined on NaNs.
4745       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4746     if (UOF == unsigned(EqTrue))
4747       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4748     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4749     // if it is not already.
4750     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4751     if (NewCond != Cond &&
4752         (DCI.isBeforeLegalizeOps() ||
4753                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4754       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4755   }
4756 
4757   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4758       N0.getValueType().isInteger()) {
4759     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4760         N0.getOpcode() == ISD::XOR) {
4761       // Simplify (X+Y) == (X+Z) -->  Y == Z
4762       if (N0.getOpcode() == N1.getOpcode()) {
4763         if (N0.getOperand(0) == N1.getOperand(0))
4764           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4765         if (N0.getOperand(1) == N1.getOperand(1))
4766           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4767         if (isCommutativeBinOp(N0.getOpcode())) {
4768           // If X op Y == Y op X, try other combinations.
4769           if (N0.getOperand(0) == N1.getOperand(1))
4770             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4771                                 Cond);
4772           if (N0.getOperand(1) == N1.getOperand(0))
4773             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4774                                 Cond);
4775         }
4776       }
4777 
4778       // If RHS is a legal immediate value for a compare instruction, we need
4779       // to be careful about increasing register pressure needlessly.
4780       bool LegalRHSImm = false;
4781 
4782       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4783         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4784           // Turn (X+C1) == C2 --> X == C2-C1
4785           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse())
4786             return DAG.getSetCC(
4787                 dl, VT, N0.getOperand(0),
4788                 DAG.getConstant(RHSC->getAPIntValue() - LHSR->getAPIntValue(),
4789                                 dl, N0.getValueType()),
4790                 Cond);
4791 
4792           // Turn (X^C1) == C2 --> X == C1^C2
4793           if (N0.getOpcode() == ISD::XOR && N0.getNode()->hasOneUse())
4794             return DAG.getSetCC(
4795                 dl, VT, N0.getOperand(0),
4796                 DAG.getConstant(LHSR->getAPIntValue() ^ RHSC->getAPIntValue(),
4797                                 dl, N0.getValueType()),
4798                 Cond);
4799         }
4800 
4801         // Turn (C1-X) == C2 --> X == C1-C2
4802         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0)))
4803           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse())
4804             return DAG.getSetCC(
4805                 dl, VT, N0.getOperand(1),
4806                 DAG.getConstant(SUBC->getAPIntValue() - RHSC->getAPIntValue(),
4807                                 dl, N0.getValueType()),
4808                 Cond);
4809 
4810         // Could RHSC fold directly into a compare?
4811         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4812           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4813       }
4814 
4815       // (X+Y) == X --> Y == 0 and similar folds.
4816       // Don't do this if X is an immediate that can fold into a cmp
4817       // instruction and X+Y has other uses. It could be an induction variable
4818       // chain, and the transform would increase register pressure.
4819       if (!LegalRHSImm || N0.hasOneUse())
4820         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4821           return V;
4822     }
4823 
4824     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4825         N1.getOpcode() == ISD::XOR)
4826       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4827         return V;
4828 
4829     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4830       return V;
4831   }
4832 
4833   // Fold remainder of division by a constant.
4834   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4835       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4836     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4837 
4838     // When division is cheap or optimizing for minimum size,
4839     // fall through to DIVREM creation by skipping this fold.
4840     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4841       if (N0.getOpcode() == ISD::UREM) {
4842         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4843           return Folded;
4844       } else if (N0.getOpcode() == ISD::SREM) {
4845         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4846           return Folded;
4847       }
4848     }
4849   }
4850 
4851   // Fold away ALL boolean setcc's.
4852   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4853     SDValue Temp;
4854     switch (Cond) {
4855     default: llvm_unreachable("Unknown integer setcc!");
4856     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4857       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4858       N0 = DAG.getNOT(dl, Temp, OpVT);
4859       if (!DCI.isCalledByLegalizer())
4860         DCI.AddToWorklist(Temp.getNode());
4861       break;
4862     case ISD::SETNE:  // X != Y   -->  (X^Y)
4863       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4864       break;
4865     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4866     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4867       Temp = DAG.getNOT(dl, N0, OpVT);
4868       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4869       if (!DCI.isCalledByLegalizer())
4870         DCI.AddToWorklist(Temp.getNode());
4871       break;
4872     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4873     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4874       Temp = DAG.getNOT(dl, N1, OpVT);
4875       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4876       if (!DCI.isCalledByLegalizer())
4877         DCI.AddToWorklist(Temp.getNode());
4878       break;
4879     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4880     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4881       Temp = DAG.getNOT(dl, N0, OpVT);
4882       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4883       if (!DCI.isCalledByLegalizer())
4884         DCI.AddToWorklist(Temp.getNode());
4885       break;
4886     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4887     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4888       Temp = DAG.getNOT(dl, N1, OpVT);
4889       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4890       break;
4891     }
4892     if (VT.getScalarType() != MVT::i1) {
4893       if (!DCI.isCalledByLegalizer())
4894         DCI.AddToWorklist(N0.getNode());
4895       // FIXME: If running after legalize, we probably can't do this.
4896       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4897       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4898     }
4899     return N0;
4900   }
4901 
4902   // Could not fold it.
4903   return SDValue();
4904 }
4905 
4906 /// Returns true (and the GlobalValue and the offset) if the node is a
4907 /// GlobalAddress + offset.
4908 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4909                                     int64_t &Offset) const {
4910 
4911   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4912 
4913   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4914     GA = GASD->getGlobal();
4915     Offset += GASD->getOffset();
4916     return true;
4917   }
4918 
4919   if (N->getOpcode() == ISD::ADD) {
4920     SDValue N1 = N->getOperand(0);
4921     SDValue N2 = N->getOperand(1);
4922     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4923       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4924         Offset += V->getSExtValue();
4925         return true;
4926       }
4927     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4928       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4929         Offset += V->getSExtValue();
4930         return true;
4931       }
4932     }
4933   }
4934 
4935   return false;
4936 }
4937 
4938 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4939                                           DAGCombinerInfo &DCI) const {
4940   // Default implementation: no optimization.
4941   return SDValue();
4942 }
4943 
4944 //===----------------------------------------------------------------------===//
4945 //  Inline Assembler Implementation Methods
4946 //===----------------------------------------------------------------------===//
4947 
4948 TargetLowering::ConstraintType
4949 TargetLowering::getConstraintType(StringRef Constraint) const {
4950   unsigned S = Constraint.size();
4951 
4952   if (S == 1) {
4953     switch (Constraint[0]) {
4954     default: break;
4955     case 'r':
4956       return C_RegisterClass;
4957     case 'm': // memory
4958     case 'o': // offsetable
4959     case 'V': // not offsetable
4960       return C_Memory;
4961     case 'p': // Address.
4962       return C_Address;
4963     case 'n': // Simple Integer
4964     case 'E': // Floating Point Constant
4965     case 'F': // Floating Point Constant
4966       return C_Immediate;
4967     case 'i': // Simple Integer or Relocatable Constant
4968     case 's': // Relocatable Constant
4969     case 'X': // Allow ANY value.
4970     case 'I': // Target registers.
4971     case 'J':
4972     case 'K':
4973     case 'L':
4974     case 'M':
4975     case 'N':
4976     case 'O':
4977     case 'P':
4978     case '<':
4979     case '>':
4980       return C_Other;
4981     }
4982   }
4983 
4984   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4985     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4986       return C_Memory;
4987     return C_Register;
4988   }
4989   return C_Unknown;
4990 }
4991 
4992 /// Try to replace an X constraint, which matches anything, with another that
4993 /// has more specific requirements based on the type of the corresponding
4994 /// operand.
4995 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4996   if (ConstraintVT.isInteger())
4997     return "r";
4998   if (ConstraintVT.isFloatingPoint())
4999     return "f"; // works for many targets
5000   return nullptr;
5001 }
5002 
5003 SDValue TargetLowering::LowerAsmOutputForConstraint(
5004     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
5005     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
5006   return SDValue();
5007 }
5008 
5009 /// Lower the specified operand into the Ops vector.
5010 /// If it is invalid, don't add anything to Ops.
5011 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5012                                                   std::string &Constraint,
5013                                                   std::vector<SDValue> &Ops,
5014                                                   SelectionDAG &DAG) const {
5015 
5016   if (Constraint.length() > 1) return;
5017 
5018   char ConstraintLetter = Constraint[0];
5019   switch (ConstraintLetter) {
5020   default: break;
5021   case 'X':    // Allows any operand
5022   case 'i':    // Simple Integer or Relocatable Constant
5023   case 'n':    // Simple Integer
5024   case 's': {  // Relocatable Constant
5025 
5026     ConstantSDNode *C;
5027     uint64_t Offset = 0;
5028 
5029     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
5030     // etc., since getelementpointer is variadic. We can't use
5031     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
5032     // while in this case the GA may be furthest from the root node which is
5033     // likely an ISD::ADD.
5034     while (true) {
5035       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
5036         // gcc prints these as sign extended.  Sign extend value to 64 bits
5037         // now; without this it would get ZExt'd later in
5038         // ScheduleDAGSDNodes::EmitNode, which is very generic.
5039         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
5040         BooleanContent BCont = getBooleanContents(MVT::i64);
5041         ISD::NodeType ExtOpc =
5042             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
5043         int64_t ExtVal =
5044             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
5045         Ops.push_back(
5046             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
5047         return;
5048       }
5049       if (ConstraintLetter != 'n') {
5050         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
5051           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
5052                                                    GA->getValueType(0),
5053                                                    Offset + GA->getOffset()));
5054           return;
5055         }
5056         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
5057           Ops.push_back(DAG.getTargetBlockAddress(
5058               BA->getBlockAddress(), BA->getValueType(0),
5059               Offset + BA->getOffset(), BA->getTargetFlags()));
5060           return;
5061         }
5062         if (isa<BasicBlockSDNode>(Op)) {
5063           Ops.push_back(Op);
5064           return;
5065         }
5066       }
5067       const unsigned OpCode = Op.getOpcode();
5068       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
5069         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
5070           Op = Op.getOperand(1);
5071         // Subtraction is not commutative.
5072         else if (OpCode == ISD::ADD &&
5073                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
5074           Op = Op.getOperand(0);
5075         else
5076           return;
5077         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
5078         continue;
5079       }
5080       return;
5081     }
5082     break;
5083   }
5084   }
5085 }
5086 
5087 std::pair<unsigned, const TargetRegisterClass *>
5088 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
5089                                              StringRef Constraint,
5090                                              MVT VT) const {
5091   if (Constraint.empty() || Constraint[0] != '{')
5092     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
5093   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
5094 
5095   // Remove the braces from around the name.
5096   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
5097 
5098   std::pair<unsigned, const TargetRegisterClass *> R =
5099       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
5100 
5101   // Figure out which register class contains this reg.
5102   for (const TargetRegisterClass *RC : RI->regclasses()) {
5103     // If none of the value types for this register class are valid, we
5104     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
5105     if (!isLegalRC(*RI, *RC))
5106       continue;
5107 
5108     for (const MCPhysReg &PR : *RC) {
5109       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
5110         std::pair<unsigned, const TargetRegisterClass *> S =
5111             std::make_pair(PR, RC);
5112 
5113         // If this register class has the requested value type, return it,
5114         // otherwise keep searching and return the first class found
5115         // if no other is found which explicitly has the requested type.
5116         if (RI->isTypeLegalForClass(*RC, VT))
5117           return S;
5118         if (!R.second)
5119           R = S;
5120       }
5121     }
5122   }
5123 
5124   return R;
5125 }
5126 
5127 //===----------------------------------------------------------------------===//
5128 // Constraint Selection.
5129 
5130 /// Return true of this is an input operand that is a matching constraint like
5131 /// "4".
5132 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
5133   assert(!ConstraintCode.empty() && "No known constraint!");
5134   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
5135 }
5136 
5137 /// If this is an input matching constraint, this method returns the output
5138 /// operand it matches.
5139 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
5140   assert(!ConstraintCode.empty() && "No known constraint!");
5141   return atoi(ConstraintCode.c_str());
5142 }
5143 
5144 /// Split up the constraint string from the inline assembly value into the
5145 /// specific constraints and their prefixes, and also tie in the associated
5146 /// operand values.
5147 /// If this returns an empty vector, and if the constraint string itself
5148 /// isn't empty, there was an error parsing.
5149 TargetLowering::AsmOperandInfoVector
5150 TargetLowering::ParseConstraints(const DataLayout &DL,
5151                                  const TargetRegisterInfo *TRI,
5152                                  const CallBase &Call) const {
5153   /// Information about all of the constraints.
5154   AsmOperandInfoVector ConstraintOperands;
5155   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
5156   unsigned maCount = 0; // Largest number of multiple alternative constraints.
5157 
5158   // Do a prepass over the constraints, canonicalizing them, and building up the
5159   // ConstraintOperands list.
5160   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
5161   unsigned ResNo = 0; // ResNo - The result number of the next output.
5162 
5163   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
5164     ConstraintOperands.emplace_back(std::move(CI));
5165     AsmOperandInfo &OpInfo = ConstraintOperands.back();
5166 
5167     // Update multiple alternative constraint count.
5168     if (OpInfo.multipleAlternatives.size() > maCount)
5169       maCount = OpInfo.multipleAlternatives.size();
5170 
5171     OpInfo.ConstraintVT = MVT::Other;
5172 
5173     // Compute the value type for each operand.
5174     switch (OpInfo.Type) {
5175     case InlineAsm::isOutput:
5176       // Indirect outputs just consume an argument.
5177       if (OpInfo.isIndirect) {
5178         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5179         break;
5180       }
5181 
5182       // The return value of the call is this value.  As such, there is no
5183       // corresponding argument.
5184       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
5185       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
5186         OpInfo.ConstraintVT =
5187             getSimpleValueType(DL, STy->getElementType(ResNo));
5188       } else {
5189         assert(ResNo == 0 && "Asm only has one result!");
5190         OpInfo.ConstraintVT =
5191             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
5192       }
5193       ++ResNo;
5194       break;
5195     case InlineAsm::isInput:
5196       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
5197       break;
5198     case InlineAsm::isClobber:
5199       // Nothing to do.
5200       break;
5201     }
5202 
5203     if (OpInfo.CallOperandVal) {
5204       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
5205       if (OpInfo.isIndirect) {
5206         OpTy = Call.getParamElementType(ArgNo);
5207         assert(OpTy && "Indirect operand must have elementtype attribute");
5208       }
5209 
5210       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
5211       if (StructType *STy = dyn_cast<StructType>(OpTy))
5212         if (STy->getNumElements() == 1)
5213           OpTy = STy->getElementType(0);
5214 
5215       // If OpTy is not a single value, it may be a struct/union that we
5216       // can tile with integers.
5217       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
5218         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
5219         switch (BitSize) {
5220         default: break;
5221         case 1:
5222         case 8:
5223         case 16:
5224         case 32:
5225         case 64:
5226         case 128:
5227           OpInfo.ConstraintVT =
5228               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5229           break;
5230         }
5231       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5232         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5233         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5234       } else {
5235         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5236       }
5237 
5238       ArgNo++;
5239     }
5240   }
5241 
5242   // If we have multiple alternative constraints, select the best alternative.
5243   if (!ConstraintOperands.empty()) {
5244     if (maCount) {
5245       unsigned bestMAIndex = 0;
5246       int bestWeight = -1;
5247       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5248       int weight = -1;
5249       unsigned maIndex;
5250       // Compute the sums of the weights for each alternative, keeping track
5251       // of the best (highest weight) one so far.
5252       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5253         int weightSum = 0;
5254         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5255              cIndex != eIndex; ++cIndex) {
5256           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5257           if (OpInfo.Type == InlineAsm::isClobber)
5258             continue;
5259 
5260           // If this is an output operand with a matching input operand,
5261           // look up the matching input. If their types mismatch, e.g. one
5262           // is an integer, the other is floating point, or their sizes are
5263           // different, flag it as an maCantMatch.
5264           if (OpInfo.hasMatchingInput()) {
5265             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5266             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5267               if ((OpInfo.ConstraintVT.isInteger() !=
5268                    Input.ConstraintVT.isInteger()) ||
5269                   (OpInfo.ConstraintVT.getSizeInBits() !=
5270                    Input.ConstraintVT.getSizeInBits())) {
5271                 weightSum = -1; // Can't match.
5272                 break;
5273               }
5274             }
5275           }
5276           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5277           if (weight == -1) {
5278             weightSum = -1;
5279             break;
5280           }
5281           weightSum += weight;
5282         }
5283         // Update best.
5284         if (weightSum > bestWeight) {
5285           bestWeight = weightSum;
5286           bestMAIndex = maIndex;
5287         }
5288       }
5289 
5290       // Now select chosen alternative in each constraint.
5291       for (AsmOperandInfo &cInfo : ConstraintOperands)
5292         if (cInfo.Type != InlineAsm::isClobber)
5293           cInfo.selectAlternative(bestMAIndex);
5294     }
5295   }
5296 
5297   // Check and hook up tied operands, choose constraint code to use.
5298   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5299        cIndex != eIndex; ++cIndex) {
5300     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5301 
5302     // If this is an output operand with a matching input operand, look up the
5303     // matching input. If their types mismatch, e.g. one is an integer, the
5304     // other is floating point, or their sizes are different, flag it as an
5305     // error.
5306     if (OpInfo.hasMatchingInput()) {
5307       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5308 
5309       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5310         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5311             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5312                                          OpInfo.ConstraintVT);
5313         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5314             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5315                                          Input.ConstraintVT);
5316         if ((OpInfo.ConstraintVT.isInteger() !=
5317              Input.ConstraintVT.isInteger()) ||
5318             (MatchRC.second != InputRC.second)) {
5319           report_fatal_error("Unsupported asm: input constraint"
5320                              " with a matching output constraint of"
5321                              " incompatible type!");
5322         }
5323       }
5324     }
5325   }
5326 
5327   return ConstraintOperands;
5328 }
5329 
5330 /// Return an integer indicating how general CT is.
5331 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5332   switch (CT) {
5333   case TargetLowering::C_Immediate:
5334   case TargetLowering::C_Other:
5335   case TargetLowering::C_Unknown:
5336     return 0;
5337   case TargetLowering::C_Register:
5338     return 1;
5339   case TargetLowering::C_RegisterClass:
5340     return 2;
5341   case TargetLowering::C_Memory:
5342   case TargetLowering::C_Address:
5343     return 3;
5344   }
5345   llvm_unreachable("Invalid constraint type");
5346 }
5347 
5348 /// Examine constraint type and operand type and determine a weight value.
5349 /// This object must already have been set up with the operand type
5350 /// and the current alternative constraint selected.
5351 TargetLowering::ConstraintWeight
5352   TargetLowering::getMultipleConstraintMatchWeight(
5353     AsmOperandInfo &info, int maIndex) const {
5354   InlineAsm::ConstraintCodeVector *rCodes;
5355   if (maIndex >= (int)info.multipleAlternatives.size())
5356     rCodes = &info.Codes;
5357   else
5358     rCodes = &info.multipleAlternatives[maIndex].Codes;
5359   ConstraintWeight BestWeight = CW_Invalid;
5360 
5361   // Loop over the options, keeping track of the most general one.
5362   for (const std::string &rCode : *rCodes) {
5363     ConstraintWeight weight =
5364         getSingleConstraintMatchWeight(info, rCode.c_str());
5365     if (weight > BestWeight)
5366       BestWeight = weight;
5367   }
5368 
5369   return BestWeight;
5370 }
5371 
5372 /// Examine constraint type and operand type and determine a weight value.
5373 /// This object must already have been set up with the operand type
5374 /// and the current alternative constraint selected.
5375 TargetLowering::ConstraintWeight
5376   TargetLowering::getSingleConstraintMatchWeight(
5377     AsmOperandInfo &info, const char *constraint) const {
5378   ConstraintWeight weight = CW_Invalid;
5379   Value *CallOperandVal = info.CallOperandVal;
5380     // If we don't have a value, we can't do a match,
5381     // but allow it at the lowest weight.
5382   if (!CallOperandVal)
5383     return CW_Default;
5384   // Look at the constraint type.
5385   switch (*constraint) {
5386     case 'i': // immediate integer.
5387     case 'n': // immediate integer with a known value.
5388       if (isa<ConstantInt>(CallOperandVal))
5389         weight = CW_Constant;
5390       break;
5391     case 's': // non-explicit intregal immediate.
5392       if (isa<GlobalValue>(CallOperandVal))
5393         weight = CW_Constant;
5394       break;
5395     case 'E': // immediate float if host format.
5396     case 'F': // immediate float.
5397       if (isa<ConstantFP>(CallOperandVal))
5398         weight = CW_Constant;
5399       break;
5400     case '<': // memory operand with autodecrement.
5401     case '>': // memory operand with autoincrement.
5402     case 'm': // memory operand.
5403     case 'o': // offsettable memory operand
5404     case 'V': // non-offsettable memory operand
5405       weight = CW_Memory;
5406       break;
5407     case 'r': // general register.
5408     case 'g': // general register, memory operand or immediate integer.
5409               // note: Clang converts "g" to "imr".
5410       if (CallOperandVal->getType()->isIntegerTy())
5411         weight = CW_Register;
5412       break;
5413     case 'X': // any operand.
5414   default:
5415     weight = CW_Default;
5416     break;
5417   }
5418   return weight;
5419 }
5420 
5421 /// If there are multiple different constraints that we could pick for this
5422 /// operand (e.g. "imr") try to pick the 'best' one.
5423 /// This is somewhat tricky: constraints fall into four classes:
5424 ///    Other         -> immediates and magic values
5425 ///    Register      -> one specific register
5426 ///    RegisterClass -> a group of regs
5427 ///    Memory        -> memory
5428 /// Ideally, we would pick the most specific constraint possible: if we have
5429 /// something that fits into a register, we would pick it.  The problem here
5430 /// is that if we have something that could either be in a register or in
5431 /// memory that use of the register could cause selection of *other*
5432 /// operands to fail: they might only succeed if we pick memory.  Because of
5433 /// this the heuristic we use is:
5434 ///
5435 ///  1) If there is an 'other' constraint, and if the operand is valid for
5436 ///     that constraint, use it.  This makes us take advantage of 'i'
5437 ///     constraints when available.
5438 ///  2) Otherwise, pick the most general constraint present.  This prefers
5439 ///     'm' over 'r', for example.
5440 ///
5441 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5442                              const TargetLowering &TLI,
5443                              SDValue Op, SelectionDAG *DAG) {
5444   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5445   unsigned BestIdx = 0;
5446   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5447   int BestGenerality = -1;
5448 
5449   // Loop over the options, keeping track of the most general one.
5450   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5451     TargetLowering::ConstraintType CType =
5452       TLI.getConstraintType(OpInfo.Codes[i]);
5453 
5454     // Indirect 'other' or 'immediate' constraints are not allowed.
5455     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5456                                CType == TargetLowering::C_Register ||
5457                                CType == TargetLowering::C_RegisterClass))
5458       continue;
5459 
5460     // If this is an 'other' or 'immediate' constraint, see if the operand is
5461     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5462     // the operand is an integer in the range [0..31] we want to use I (saving a
5463     // load of a register), otherwise we must use 'r'.
5464     if ((CType == TargetLowering::C_Other ||
5465          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5466       assert(OpInfo.Codes[i].size() == 1 &&
5467              "Unhandled multi-letter 'other' constraint");
5468       std::vector<SDValue> ResultOps;
5469       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5470                                        ResultOps, *DAG);
5471       if (!ResultOps.empty()) {
5472         BestType = CType;
5473         BestIdx = i;
5474         break;
5475       }
5476     }
5477 
5478     // Things with matching constraints can only be registers, per gcc
5479     // documentation.  This mainly affects "g" constraints.
5480     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5481       continue;
5482 
5483     // This constraint letter is more general than the previous one, use it.
5484     int Generality = getConstraintGenerality(CType);
5485     if (Generality > BestGenerality) {
5486       BestType = CType;
5487       BestIdx = i;
5488       BestGenerality = Generality;
5489     }
5490   }
5491 
5492   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5493   OpInfo.ConstraintType = BestType;
5494 }
5495 
5496 /// Determines the constraint code and constraint type to use for the specific
5497 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5498 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5499                                             SDValue Op,
5500                                             SelectionDAG *DAG) const {
5501   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5502 
5503   // Single-letter constraints ('r') are very common.
5504   if (OpInfo.Codes.size() == 1) {
5505     OpInfo.ConstraintCode = OpInfo.Codes[0];
5506     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5507   } else {
5508     ChooseConstraint(OpInfo, *this, Op, DAG);
5509   }
5510 
5511   // 'X' matches anything.
5512   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5513     // Constants are handled elsewhere.  For Functions, the type here is the
5514     // type of the result, which is not what we want to look at; leave them
5515     // alone.
5516     Value *v = OpInfo.CallOperandVal;
5517     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5518       return;
5519     }
5520 
5521     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5522       OpInfo.ConstraintCode = "i";
5523       return;
5524     }
5525 
5526     // Otherwise, try to resolve it to something we know about by looking at
5527     // the actual operand type.
5528     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5529       OpInfo.ConstraintCode = Repl;
5530       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5531     }
5532   }
5533 }
5534 
5535 /// Given an exact SDIV by a constant, create a multiplication
5536 /// with the multiplicative inverse of the constant.
5537 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5538                               const SDLoc &dl, SelectionDAG &DAG,
5539                               SmallVectorImpl<SDNode *> &Created) {
5540   SDValue Op0 = N->getOperand(0);
5541   SDValue Op1 = N->getOperand(1);
5542   EVT VT = N->getValueType(0);
5543   EVT SVT = VT.getScalarType();
5544   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5545   EVT ShSVT = ShVT.getScalarType();
5546 
5547   bool UseSRA = false;
5548   SmallVector<SDValue, 16> Shifts, Factors;
5549 
5550   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5551     if (C->isZero())
5552       return false;
5553     APInt Divisor = C->getAPIntValue();
5554     unsigned Shift = Divisor.countTrailingZeros();
5555     if (Shift) {
5556       Divisor.ashrInPlace(Shift);
5557       UseSRA = true;
5558     }
5559     // Calculate the multiplicative inverse, using Newton's method.
5560     APInt t;
5561     APInt Factor = Divisor;
5562     while ((t = Divisor * Factor) != 1)
5563       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5564     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5565     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5566     return true;
5567   };
5568 
5569   // Collect all magic values from the build vector.
5570   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5571     return SDValue();
5572 
5573   SDValue Shift, Factor;
5574   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5575     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5576     Factor = DAG.getBuildVector(VT, dl, Factors);
5577   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5578     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5579            "Expected matchUnaryPredicate to return one element for scalable "
5580            "vectors");
5581     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5582     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5583   } else {
5584     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5585     Shift = Shifts[0];
5586     Factor = Factors[0];
5587   }
5588 
5589   SDValue Res = Op0;
5590 
5591   // Shift the value upfront if it is even, so the LSB is one.
5592   if (UseSRA) {
5593     // TODO: For UDIV use SRL instead of SRA.
5594     SDNodeFlags Flags;
5595     Flags.setExact(true);
5596     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5597     Created.push_back(Res.getNode());
5598   }
5599 
5600   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5601 }
5602 
5603 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5604                               SelectionDAG &DAG,
5605                               SmallVectorImpl<SDNode *> &Created) const {
5606   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5607   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5608   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5609     return SDValue(N, 0); // Lower SDIV as SDIV
5610   return SDValue();
5611 }
5612 
5613 SDValue
5614 TargetLowering::BuildSREMPow2(SDNode *N, const APInt &Divisor,
5615                               SelectionDAG &DAG,
5616                               SmallVectorImpl<SDNode *> &Created) const {
5617   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5618   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5619   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5620     return SDValue(N, 0); // Lower SREM as SREM
5621   return SDValue();
5622 }
5623 
5624 /// Given an ISD::SDIV node expressing a divide by constant,
5625 /// return a DAG expression to select that will generate the same value by
5626 /// multiplying by a magic number.
5627 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5628 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5629                                   bool IsAfterLegalization,
5630                                   SmallVectorImpl<SDNode *> &Created) const {
5631   SDLoc dl(N);
5632   EVT VT = N->getValueType(0);
5633   EVT SVT = VT.getScalarType();
5634   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5635   EVT ShSVT = ShVT.getScalarType();
5636   unsigned EltBits = VT.getScalarSizeInBits();
5637   EVT MulVT;
5638 
5639   // Check to see if we can do this.
5640   // FIXME: We should be more aggressive here.
5641   if (!isTypeLegal(VT)) {
5642     // Limit this to simple scalars for now.
5643     if (VT.isVector() || !VT.isSimple())
5644       return SDValue();
5645 
5646     // If this type will be promoted to a large enough type with a legal
5647     // multiply operation, we can go ahead and do this transform.
5648     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5649       return SDValue();
5650 
5651     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5652     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5653         !isOperationLegal(ISD::MUL, MulVT))
5654       return SDValue();
5655   }
5656 
5657   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5658   if (N->getFlags().hasExact())
5659     return BuildExactSDIV(*this, N, dl, DAG, Created);
5660 
5661   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5662 
5663   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5664     if (C->isZero())
5665       return false;
5666 
5667     const APInt &Divisor = C->getAPIntValue();
5668     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5669     int NumeratorFactor = 0;
5670     int ShiftMask = -1;
5671 
5672     if (Divisor.isOne() || Divisor.isAllOnes()) {
5673       // If d is +1/-1, we just multiply the numerator by +1/-1.
5674       NumeratorFactor = Divisor.getSExtValue();
5675       magics.Magic = 0;
5676       magics.ShiftAmount = 0;
5677       ShiftMask = 0;
5678     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5679       // If d > 0 and m < 0, add the numerator.
5680       NumeratorFactor = 1;
5681     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5682       // If d < 0 and m > 0, subtract the numerator.
5683       NumeratorFactor = -1;
5684     }
5685 
5686     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5687     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5688     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5689     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5690     return true;
5691   };
5692 
5693   SDValue N0 = N->getOperand(0);
5694   SDValue N1 = N->getOperand(1);
5695 
5696   // Collect the shifts / magic values from each element.
5697   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5698     return SDValue();
5699 
5700   SDValue MagicFactor, Factor, Shift, ShiftMask;
5701   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5702     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5703     Factor = DAG.getBuildVector(VT, dl, Factors);
5704     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5705     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5706   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5707     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5708            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5709            "Expected matchUnaryPredicate to return one element for scalable "
5710            "vectors");
5711     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5712     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5713     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5714     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5715   } else {
5716     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5717     MagicFactor = MagicFactors[0];
5718     Factor = Factors[0];
5719     Shift = Shifts[0];
5720     ShiftMask = ShiftMasks[0];
5721   }
5722 
5723   // Multiply the numerator (operand 0) by the magic value.
5724   // FIXME: We should support doing a MUL in a wider type.
5725   auto GetMULHS = [&](SDValue X, SDValue Y) {
5726     // If the type isn't legal, use a wider mul of the the type calculated
5727     // earlier.
5728     if (!isTypeLegal(VT)) {
5729       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5730       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5731       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5732       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5733                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5734       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5735     }
5736 
5737     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5738       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5739     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5740       SDValue LoHi =
5741           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5742       return SDValue(LoHi.getNode(), 1);
5743     }
5744     return SDValue();
5745   };
5746 
5747   SDValue Q = GetMULHS(N0, MagicFactor);
5748   if (!Q)
5749     return SDValue();
5750 
5751   Created.push_back(Q.getNode());
5752 
5753   // (Optionally) Add/subtract the numerator using Factor.
5754   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5755   Created.push_back(Factor.getNode());
5756   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5757   Created.push_back(Q.getNode());
5758 
5759   // Shift right algebraic by shift value.
5760   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5761   Created.push_back(Q.getNode());
5762 
5763   // Extract the sign bit, mask it and add it to the quotient.
5764   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5765   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5766   Created.push_back(T.getNode());
5767   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5768   Created.push_back(T.getNode());
5769   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5770 }
5771 
5772 /// Given an ISD::UDIV node expressing a divide by constant,
5773 /// return a DAG expression to select that will generate the same value by
5774 /// multiplying by a magic number.
5775 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5776 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5777                                   bool IsAfterLegalization,
5778                                   SmallVectorImpl<SDNode *> &Created) const {
5779   SDLoc dl(N);
5780   EVT VT = N->getValueType(0);
5781   EVT SVT = VT.getScalarType();
5782   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5783   EVT ShSVT = ShVT.getScalarType();
5784   unsigned EltBits = VT.getScalarSizeInBits();
5785   EVT MulVT;
5786 
5787   // Check to see if we can do this.
5788   // FIXME: We should be more aggressive here.
5789   if (!isTypeLegal(VT)) {
5790     // Limit this to simple scalars for now.
5791     if (VT.isVector() || !VT.isSimple())
5792       return SDValue();
5793 
5794     // If this type will be promoted to a large enough type with a legal
5795     // multiply operation, we can go ahead and do this transform.
5796     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5797       return SDValue();
5798 
5799     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5800     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5801         !isOperationLegal(ISD::MUL, MulVT))
5802       return SDValue();
5803   }
5804 
5805   bool UseNPQ = false;
5806   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5807 
5808   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5809     if (C->isZero())
5810       return false;
5811     // FIXME: We should use a narrower constant when the upper
5812     // bits are known to be zero.
5813     const APInt& Divisor = C->getAPIntValue();
5814     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5815     unsigned PreShift = 0, PostShift = 0;
5816 
5817     // If the divisor is even, we can avoid using the expensive fixup by
5818     // shifting the divided value upfront.
5819     if (magics.IsAdd != 0 && !Divisor[0]) {
5820       PreShift = Divisor.countTrailingZeros();
5821       // Get magic number for the shifted divisor.
5822       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5823       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5824     }
5825 
5826     APInt Magic = magics.Magic;
5827 
5828     unsigned SelNPQ;
5829     if (magics.IsAdd == 0 || Divisor.isOne()) {
5830       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5831              "We shouldn't generate an undefined shift!");
5832       PostShift = magics.ShiftAmount;
5833       SelNPQ = false;
5834     } else {
5835       PostShift = magics.ShiftAmount - 1;
5836       SelNPQ = true;
5837     }
5838 
5839     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5840     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5841     NPQFactors.push_back(
5842         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5843                                : APInt::getZero(EltBits),
5844                         dl, SVT));
5845     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5846     UseNPQ |= SelNPQ;
5847     return true;
5848   };
5849 
5850   SDValue N0 = N->getOperand(0);
5851   SDValue N1 = N->getOperand(1);
5852 
5853   // Collect the shifts/magic values from each element.
5854   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5855     return SDValue();
5856 
5857   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5858   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5859     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5860     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5861     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5862     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5863   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5864     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5865            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5866            "Expected matchUnaryPredicate to return one for scalable vectors");
5867     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5868     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5869     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5870     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5871   } else {
5872     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5873     PreShift = PreShifts[0];
5874     MagicFactor = MagicFactors[0];
5875     PostShift = PostShifts[0];
5876   }
5877 
5878   SDValue Q = N0;
5879   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5880   Created.push_back(Q.getNode());
5881 
5882   // FIXME: We should support doing a MUL in a wider type.
5883   auto GetMULHU = [&](SDValue X, SDValue Y) {
5884     // If the type isn't legal, use a wider mul of the the type calculated
5885     // earlier.
5886     if (!isTypeLegal(VT)) {
5887       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5888       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5889       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5890       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5891                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5892       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5893     }
5894 
5895     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5896       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5897     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5898       SDValue LoHi =
5899           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5900       return SDValue(LoHi.getNode(), 1);
5901     }
5902     return SDValue(); // No mulhu or equivalent
5903   };
5904 
5905   // Multiply the numerator (operand 0) by the magic value.
5906   Q = GetMULHU(Q, MagicFactor);
5907   if (!Q)
5908     return SDValue();
5909 
5910   Created.push_back(Q.getNode());
5911 
5912   if (UseNPQ) {
5913     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5914     Created.push_back(NPQ.getNode());
5915 
5916     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5917     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5918     if (VT.isVector())
5919       NPQ = GetMULHU(NPQ, NPQFactor);
5920     else
5921       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5922 
5923     Created.push_back(NPQ.getNode());
5924 
5925     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5926     Created.push_back(Q.getNode());
5927   }
5928 
5929   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5930   Created.push_back(Q.getNode());
5931 
5932   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5933 
5934   SDValue One = DAG.getConstant(1, dl, VT);
5935   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5936   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5937 }
5938 
5939 /// If all values in Values that *don't* match the predicate are same 'splat'
5940 /// value, then replace all values with that splat value.
5941 /// Else, if AlternativeReplacement was provided, then replace all values that
5942 /// do match predicate with AlternativeReplacement value.
5943 static void
5944 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5945                           std::function<bool(SDValue)> Predicate,
5946                           SDValue AlternativeReplacement = SDValue()) {
5947   SDValue Replacement;
5948   // Is there a value for which the Predicate does *NOT* match? What is it?
5949   auto SplatValue = llvm::find_if_not(Values, Predicate);
5950   if (SplatValue != Values.end()) {
5951     // Does Values consist only of SplatValue's and values matching Predicate?
5952     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5953           return Value == *SplatValue || Predicate(Value);
5954         })) // Then we shall replace values matching predicate with SplatValue.
5955       Replacement = *SplatValue;
5956   }
5957   if (!Replacement) {
5958     // Oops, we did not find the "baseline" splat value.
5959     if (!AlternativeReplacement)
5960       return; // Nothing to do.
5961     // Let's replace with provided value then.
5962     Replacement = AlternativeReplacement;
5963   }
5964   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5965 }
5966 
5967 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5968 /// where the divisor is constant and the comparison target is zero,
5969 /// return a DAG expression that will generate the same comparison result
5970 /// using only multiplications, additions and shifts/rotations.
5971 /// Ref: "Hacker's Delight" 10-17.
5972 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5973                                         SDValue CompTargetNode,
5974                                         ISD::CondCode Cond,
5975                                         DAGCombinerInfo &DCI,
5976                                         const SDLoc &DL) const {
5977   SmallVector<SDNode *, 5> Built;
5978   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5979                                          DCI, DL, Built)) {
5980     for (SDNode *N : Built)
5981       DCI.AddToWorklist(N);
5982     return Folded;
5983   }
5984 
5985   return SDValue();
5986 }
5987 
5988 SDValue
5989 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5990                                   SDValue CompTargetNode, ISD::CondCode Cond,
5991                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5992                                   SmallVectorImpl<SDNode *> &Created) const {
5993   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5994   // - D must be constant, with D = D0 * 2^K where D0 is odd
5995   // - P is the multiplicative inverse of D0 modulo 2^W
5996   // - Q = floor(((2^W) - 1) / D)
5997   // where W is the width of the common type of N and D.
5998   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5999          "Only applicable for (in)equality comparisons.");
6000 
6001   SelectionDAG &DAG = DCI.DAG;
6002 
6003   EVT VT = REMNode.getValueType();
6004   EVT SVT = VT.getScalarType();
6005   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6006   EVT ShSVT = ShVT.getScalarType();
6007 
6008   // If MUL is unavailable, we cannot proceed in any case.
6009   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6010     return SDValue();
6011 
6012   bool ComparingWithAllZeros = true;
6013   bool AllComparisonsWithNonZerosAreTautological = true;
6014   bool HadTautologicalLanes = false;
6015   bool AllLanesAreTautological = true;
6016   bool HadEvenDivisor = false;
6017   bool AllDivisorsArePowerOfTwo = true;
6018   bool HadTautologicalInvertedLanes = false;
6019   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
6020 
6021   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
6022     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6023     if (CDiv->isZero())
6024       return false;
6025 
6026     const APInt &D = CDiv->getAPIntValue();
6027     const APInt &Cmp = CCmp->getAPIntValue();
6028 
6029     ComparingWithAllZeros &= Cmp.isZero();
6030 
6031     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6032     // if C2 is not less than C1, the comparison is always false.
6033     // But we will only be able to produce the comparison that will give the
6034     // opposive tautological answer. So this lane would need to be fixed up.
6035     bool TautologicalInvertedLane = D.ule(Cmp);
6036     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
6037 
6038     // If all lanes are tautological (either all divisors are ones, or divisor
6039     // is not greater than the constant we are comparing with),
6040     // we will prefer to avoid the fold.
6041     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
6042     HadTautologicalLanes |= TautologicalLane;
6043     AllLanesAreTautological &= TautologicalLane;
6044 
6045     // If we are comparing with non-zero, we need'll need  to subtract said
6046     // comparison value from the LHS. But there is no point in doing that if
6047     // every lane where we are comparing with non-zero is tautological..
6048     if (!Cmp.isZero())
6049       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
6050 
6051     // Decompose D into D0 * 2^K
6052     unsigned K = D.countTrailingZeros();
6053     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6054     APInt D0 = D.lshr(K);
6055 
6056     // D is even if it has trailing zeros.
6057     HadEvenDivisor |= (K != 0);
6058     // D is a power-of-two if D0 is one.
6059     // If all divisors are power-of-two, we will prefer to avoid the fold.
6060     AllDivisorsArePowerOfTwo &= D0.isOne();
6061 
6062     // P = inv(D0, 2^W)
6063     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6064     unsigned W = D.getBitWidth();
6065     APInt P = D0.zext(W + 1)
6066                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6067                   .trunc(W);
6068     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6069     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6070 
6071     // Q = floor((2^W - 1) u/ D)
6072     // R = ((2^W - 1) u% D)
6073     APInt Q, R;
6074     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
6075 
6076     // If we are comparing with zero, then that comparison constant is okay,
6077     // else it may need to be one less than that.
6078     if (Cmp.ugt(R))
6079       Q -= 1;
6080 
6081     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6082            "We are expecting that K is always less than all-ones for ShSVT");
6083 
6084     // If the lane is tautological the result can be constant-folded.
6085     if (TautologicalLane) {
6086       // Set P and K amount to a bogus values so we can try to splat them.
6087       P = 0;
6088       K = -1;
6089       // And ensure that comparison constant is tautological,
6090       // it will always compare true/false.
6091       Q = -1;
6092     }
6093 
6094     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6095     KAmts.push_back(
6096         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6097     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6098     return true;
6099   };
6100 
6101   SDValue N = REMNode.getOperand(0);
6102   SDValue D = REMNode.getOperand(1);
6103 
6104   // Collect the values from each element.
6105   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
6106     return SDValue();
6107 
6108   // If all lanes are tautological, the result can be constant-folded.
6109   if (AllLanesAreTautological)
6110     return SDValue();
6111 
6112   // If this is a urem by a powers-of-two, avoid the fold since it can be
6113   // best implemented as a bit test.
6114   if (AllDivisorsArePowerOfTwo)
6115     return SDValue();
6116 
6117   SDValue PVal, KVal, QVal;
6118   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6119     if (HadTautologicalLanes) {
6120       // Try to turn PAmts into a splat, since we don't care about the values
6121       // that are currently '0'. If we can't, just keep '0'`s.
6122       turnVectorIntoSplatVector(PAmts, isNullConstant);
6123       // Try to turn KAmts into a splat, since we don't care about the values
6124       // that are currently '-1'. If we can't, change them to '0'`s.
6125       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6126                                 DAG.getConstant(0, DL, ShSVT));
6127     }
6128 
6129     PVal = DAG.getBuildVector(VT, DL, PAmts);
6130     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6131     QVal = DAG.getBuildVector(VT, DL, QAmts);
6132   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6133     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
6134            "Expected matchBinaryPredicate to return one element for "
6135            "SPLAT_VECTORs");
6136     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6137     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6138     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6139   } else {
6140     PVal = PAmts[0];
6141     KVal = KAmts[0];
6142     QVal = QAmts[0];
6143   }
6144 
6145   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
6146     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
6147       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
6148     assert(CompTargetNode.getValueType() == N.getValueType() &&
6149            "Expecting that the types on LHS and RHS of comparisons match.");
6150     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
6151   }
6152 
6153   // (mul N, P)
6154   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6155   Created.push_back(Op0.getNode());
6156 
6157   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6158   // divisors as a performance improvement, since rotating by 0 is a no-op.
6159   if (HadEvenDivisor) {
6160     // We need ROTR to do this.
6161     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6162       return SDValue();
6163     // UREM: (rotr (mul N, P), K)
6164     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6165     Created.push_back(Op0.getNode());
6166   }
6167 
6168   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
6169   SDValue NewCC =
6170       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6171                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6172   if (!HadTautologicalInvertedLanes)
6173     return NewCC;
6174 
6175   // If any lanes previously compared always-false, the NewCC will give
6176   // always-true result for them, so we need to fixup those lanes.
6177   // Or the other way around for inequality predicate.
6178   assert(VT.isVector() && "Can/should only get here for vectors.");
6179   Created.push_back(NewCC.getNode());
6180 
6181   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
6182   // if C2 is not less than C1, the comparison is always false.
6183   // But we have produced the comparison that will give the
6184   // opposive tautological answer. So these lanes would need to be fixed up.
6185   SDValue TautologicalInvertedChannels =
6186       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
6187   Created.push_back(TautologicalInvertedChannels.getNode());
6188 
6189   // NOTE: we avoid letting illegal types through even if we're before legalize
6190   // ops – legalization has a hard time producing good code for this.
6191   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
6192     // If we have a vector select, let's replace the comparison results in the
6193     // affected lanes with the correct tautological result.
6194     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
6195                                               DL, SETCCVT, SETCCVT);
6196     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
6197                        Replacement, NewCC);
6198   }
6199 
6200   // Else, we can just invert the comparison result in the appropriate lanes.
6201   //
6202   // NOTE: see the note above VSELECT above.
6203   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
6204     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
6205                        TautologicalInvertedChannels);
6206 
6207   return SDValue(); // Don't know how to lower.
6208 }
6209 
6210 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
6211 /// where the divisor is constant and the comparison target is zero,
6212 /// return a DAG expression that will generate the same comparison result
6213 /// using only multiplications, additions and shifts/rotations.
6214 /// Ref: "Hacker's Delight" 10-17.
6215 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
6216                                         SDValue CompTargetNode,
6217                                         ISD::CondCode Cond,
6218                                         DAGCombinerInfo &DCI,
6219                                         const SDLoc &DL) const {
6220   SmallVector<SDNode *, 7> Built;
6221   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
6222                                          DCI, DL, Built)) {
6223     assert(Built.size() <= 7 && "Max size prediction failed.");
6224     for (SDNode *N : Built)
6225       DCI.AddToWorklist(N);
6226     return Folded;
6227   }
6228 
6229   return SDValue();
6230 }
6231 
6232 SDValue
6233 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6234                                   SDValue CompTargetNode, ISD::CondCode Cond,
6235                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6236                                   SmallVectorImpl<SDNode *> &Created) const {
6237   // Fold:
6238   //   (seteq/ne (srem N, D), 0)
6239   // To:
6240   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6241   //
6242   // - D must be constant, with D = D0 * 2^K where D0 is odd
6243   // - P is the multiplicative inverse of D0 modulo 2^W
6244   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6245   // - Q = floor((2 * A) / (2^K))
6246   // where W is the width of the common type of N and D.
6247   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6248          "Only applicable for (in)equality comparisons.");
6249 
6250   SelectionDAG &DAG = DCI.DAG;
6251 
6252   EVT VT = REMNode.getValueType();
6253   EVT SVT = VT.getScalarType();
6254   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6255   EVT ShSVT = ShVT.getScalarType();
6256 
6257   // If we are after ops legalization, and MUL is unavailable, we can not
6258   // proceed.
6259   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6260     return SDValue();
6261 
6262   // TODO: Could support comparing with non-zero too.
6263   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6264   if (!CompTarget || !CompTarget->isZero())
6265     return SDValue();
6266 
6267   bool HadIntMinDivisor = false;
6268   bool HadOneDivisor = false;
6269   bool AllDivisorsAreOnes = true;
6270   bool HadEvenDivisor = false;
6271   bool NeedToApplyOffset = false;
6272   bool AllDivisorsArePowerOfTwo = true;
6273   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6274 
6275   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6276     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6277     if (C->isZero())
6278       return false;
6279 
6280     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6281 
6282     // WARNING: this fold is only valid for positive divisors!
6283     APInt D = C->getAPIntValue();
6284     if (D.isNegative())
6285       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6286 
6287     HadIntMinDivisor |= D.isMinSignedValue();
6288 
6289     // If all divisors are ones, we will prefer to avoid the fold.
6290     HadOneDivisor |= D.isOne();
6291     AllDivisorsAreOnes &= D.isOne();
6292 
6293     // Decompose D into D0 * 2^K
6294     unsigned K = D.countTrailingZeros();
6295     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6296     APInt D0 = D.lshr(K);
6297 
6298     if (!D.isMinSignedValue()) {
6299       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6300       // we don't care about this lane in this fold, we'll special-handle it.
6301       HadEvenDivisor |= (K != 0);
6302     }
6303 
6304     // D is a power-of-two if D0 is one. This includes INT_MIN.
6305     // If all divisors are power-of-two, we will prefer to avoid the fold.
6306     AllDivisorsArePowerOfTwo &= D0.isOne();
6307 
6308     // P = inv(D0, 2^W)
6309     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6310     unsigned W = D.getBitWidth();
6311     APInt P = D0.zext(W + 1)
6312                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6313                   .trunc(W);
6314     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6315     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6316 
6317     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6318     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6319     A.clearLowBits(K);
6320 
6321     if (!D.isMinSignedValue()) {
6322       // If divisor INT_MIN, then we don't care about this lane in this fold,
6323       // we'll special-handle it.
6324       NeedToApplyOffset |= A != 0;
6325     }
6326 
6327     // Q = floor((2 * A) / (2^K))
6328     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6329 
6330     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6331            "We are expecting that A is always less than all-ones for SVT");
6332     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6333            "We are expecting that K is always less than all-ones for ShSVT");
6334 
6335     // If the divisor is 1 the result can be constant-folded. Likewise, we
6336     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6337     if (D.isOne()) {
6338       // Set P, A and K to a bogus values so we can try to splat them.
6339       P = 0;
6340       A = -1;
6341       K = -1;
6342 
6343       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6344       Q = -1;
6345     }
6346 
6347     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6348     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6349     KAmts.push_back(
6350         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6351     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6352     return true;
6353   };
6354 
6355   SDValue N = REMNode.getOperand(0);
6356   SDValue D = REMNode.getOperand(1);
6357 
6358   // Collect the values from each element.
6359   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6360     return SDValue();
6361 
6362   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6363   if (AllDivisorsAreOnes)
6364     return SDValue();
6365 
6366   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6367   // since it can be best implemented as a bit test.
6368   if (AllDivisorsArePowerOfTwo)
6369     return SDValue();
6370 
6371   SDValue PVal, AVal, KVal, QVal;
6372   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6373     if (HadOneDivisor) {
6374       // Try to turn PAmts into a splat, since we don't care about the values
6375       // that are currently '0'. If we can't, just keep '0'`s.
6376       turnVectorIntoSplatVector(PAmts, isNullConstant);
6377       // Try to turn AAmts into a splat, since we don't care about the
6378       // values that are currently '-1'. If we can't, change them to '0'`s.
6379       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6380                                 DAG.getConstant(0, DL, SVT));
6381       // Try to turn KAmts into a splat, since we don't care about the values
6382       // that are currently '-1'. If we can't, change them to '0'`s.
6383       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6384                                 DAG.getConstant(0, DL, ShSVT));
6385     }
6386 
6387     PVal = DAG.getBuildVector(VT, DL, PAmts);
6388     AVal = DAG.getBuildVector(VT, DL, AAmts);
6389     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6390     QVal = DAG.getBuildVector(VT, DL, QAmts);
6391   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6392     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6393            QAmts.size() == 1 &&
6394            "Expected matchUnaryPredicate to return one element for scalable "
6395            "vectors");
6396     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6397     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6398     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6399     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6400   } else {
6401     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6402     PVal = PAmts[0];
6403     AVal = AAmts[0];
6404     KVal = KAmts[0];
6405     QVal = QAmts[0];
6406   }
6407 
6408   // (mul N, P)
6409   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6410   Created.push_back(Op0.getNode());
6411 
6412   if (NeedToApplyOffset) {
6413     // We need ADD to do this.
6414     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6415       return SDValue();
6416 
6417     // (add (mul N, P), A)
6418     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6419     Created.push_back(Op0.getNode());
6420   }
6421 
6422   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6423   // divisors as a performance improvement, since rotating by 0 is a no-op.
6424   if (HadEvenDivisor) {
6425     // We need ROTR to do this.
6426     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6427       return SDValue();
6428     // SREM: (rotr (add (mul N, P), A), K)
6429     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6430     Created.push_back(Op0.getNode());
6431   }
6432 
6433   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6434   SDValue Fold =
6435       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6436                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6437 
6438   // If we didn't have lanes with INT_MIN divisor, then we're done.
6439   if (!HadIntMinDivisor)
6440     return Fold;
6441 
6442   // That fold is only valid for positive divisors. Which effectively means,
6443   // it is invalid for INT_MIN divisors. So if we have such a lane,
6444   // we must fix-up results for said lanes.
6445   assert(VT.isVector() && "Can/should only get here for vectors.");
6446 
6447   // NOTE: we avoid letting illegal types through even if we're before legalize
6448   // ops – legalization has a hard time producing good code for the code that
6449   // follows.
6450   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6451       !isOperationLegalOrCustom(ISD::AND, VT) ||
6452       !isOperationLegalOrCustom(Cond, VT) ||
6453       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6454     return SDValue();
6455 
6456   Created.push_back(Fold.getNode());
6457 
6458   SDValue IntMin = DAG.getConstant(
6459       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6460   SDValue IntMax = DAG.getConstant(
6461       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6462   SDValue Zero =
6463       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6464 
6465   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6466   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6467   Created.push_back(DivisorIsIntMin.getNode());
6468 
6469   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6470   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6471   Created.push_back(Masked.getNode());
6472   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6473   Created.push_back(MaskedIsZero.getNode());
6474 
6475   // To produce final result we need to blend 2 vectors: 'SetCC' and
6476   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6477   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6478   // constant-folded, select can get lowered to a shuffle with constant mask.
6479   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6480                                 MaskedIsZero, Fold);
6481 
6482   return Blended;
6483 }
6484 
6485 bool TargetLowering::
6486 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6487   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6488     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6489                                 "be a constant integer");
6490     return true;
6491   }
6492 
6493   return false;
6494 }
6495 
6496 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6497                                          const DenormalMode &Mode) const {
6498   SDLoc DL(Op);
6499   EVT VT = Op.getValueType();
6500   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6501   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6502   // Testing it with denormal inputs to avoid wrong estimate.
6503   if (Mode.Input == DenormalMode::IEEE) {
6504     // This is specifically a check for the handling of denormal inputs,
6505     // not the result.
6506 
6507     // Test = fabs(X) < SmallestNormal
6508     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6509     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6510     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6511     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6512     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6513   }
6514   // Test = X == 0.0
6515   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6516 }
6517 
6518 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6519                                              bool LegalOps, bool OptForSize,
6520                                              NegatibleCost &Cost,
6521                                              unsigned Depth) const {
6522   // fneg is removable even if it has multiple uses.
6523   if (Op.getOpcode() == ISD::FNEG) {
6524     Cost = NegatibleCost::Cheaper;
6525     return Op.getOperand(0);
6526   }
6527 
6528   // Don't recurse exponentially.
6529   if (Depth > SelectionDAG::MaxRecursionDepth)
6530     return SDValue();
6531 
6532   // Pre-increment recursion depth for use in recursive calls.
6533   ++Depth;
6534   const SDNodeFlags Flags = Op->getFlags();
6535   const TargetOptions &Options = DAG.getTarget().Options;
6536   EVT VT = Op.getValueType();
6537   unsigned Opcode = Op.getOpcode();
6538 
6539   // Don't allow anything with multiple uses unless we know it is free.
6540   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6541     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6542                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6543     if (!IsFreeExtend)
6544       return SDValue();
6545   }
6546 
6547   auto RemoveDeadNode = [&](SDValue N) {
6548     if (N && N.getNode()->use_empty())
6549       DAG.RemoveDeadNode(N.getNode());
6550   };
6551 
6552   SDLoc DL(Op);
6553 
6554   // Because getNegatedExpression can delete nodes we need a handle to keep
6555   // temporary nodes alive in case the recursion manages to create an identical
6556   // node.
6557   std::list<HandleSDNode> Handles;
6558 
6559   switch (Opcode) {
6560   case ISD::ConstantFP: {
6561     // Don't invert constant FP values after legalization unless the target says
6562     // the negated constant is legal.
6563     bool IsOpLegal =
6564         isOperationLegal(ISD::ConstantFP, VT) ||
6565         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6566                      OptForSize);
6567 
6568     if (LegalOps && !IsOpLegal)
6569       break;
6570 
6571     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6572     V.changeSign();
6573     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6574 
6575     // If we already have the use of the negated floating constant, it is free
6576     // to negate it even it has multiple uses.
6577     if (!Op.hasOneUse() && CFP.use_empty())
6578       break;
6579     Cost = NegatibleCost::Neutral;
6580     return CFP;
6581   }
6582   case ISD::BUILD_VECTOR: {
6583     // Only permit BUILD_VECTOR of constants.
6584     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6585           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6586         }))
6587       break;
6588 
6589     bool IsOpLegal =
6590         (isOperationLegal(ISD::ConstantFP, VT) &&
6591          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6592         llvm::all_of(Op->op_values(), [&](SDValue N) {
6593           return N.isUndef() ||
6594                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6595                               OptForSize);
6596         });
6597 
6598     if (LegalOps && !IsOpLegal)
6599       break;
6600 
6601     SmallVector<SDValue, 4> Ops;
6602     for (SDValue C : Op->op_values()) {
6603       if (C.isUndef()) {
6604         Ops.push_back(C);
6605         continue;
6606       }
6607       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6608       V.changeSign();
6609       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6610     }
6611     Cost = NegatibleCost::Neutral;
6612     return DAG.getBuildVector(VT, DL, Ops);
6613   }
6614   case ISD::FADD: {
6615     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6616       break;
6617 
6618     // After operation legalization, it might not be legal to create new FSUBs.
6619     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6620       break;
6621     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6622 
6623     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6624     NegatibleCost CostX = NegatibleCost::Expensive;
6625     SDValue NegX =
6626         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6627     // Prevent this node from being deleted by the next call.
6628     if (NegX)
6629       Handles.emplace_back(NegX);
6630 
6631     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6632     NegatibleCost CostY = NegatibleCost::Expensive;
6633     SDValue NegY =
6634         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6635 
6636     // We're done with the handles.
6637     Handles.clear();
6638 
6639     // Negate the X if its cost is less or equal than Y.
6640     if (NegX && (CostX <= CostY)) {
6641       Cost = CostX;
6642       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6643       if (NegY != N)
6644         RemoveDeadNode(NegY);
6645       return N;
6646     }
6647 
6648     // Negate the Y if it is not expensive.
6649     if (NegY) {
6650       Cost = CostY;
6651       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6652       if (NegX != N)
6653         RemoveDeadNode(NegX);
6654       return N;
6655     }
6656     break;
6657   }
6658   case ISD::FSUB: {
6659     // We can't turn -(A-B) into B-A when we honor signed zeros.
6660     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6661       break;
6662 
6663     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6664     // fold (fneg (fsub 0, Y)) -> Y
6665     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6666       if (C->isZero()) {
6667         Cost = NegatibleCost::Cheaper;
6668         return Y;
6669       }
6670 
6671     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6672     Cost = NegatibleCost::Neutral;
6673     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6674   }
6675   case ISD::FMUL:
6676   case ISD::FDIV: {
6677     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6678 
6679     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6680     NegatibleCost CostX = NegatibleCost::Expensive;
6681     SDValue NegX =
6682         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6683     // Prevent this node from being deleted by the next call.
6684     if (NegX)
6685       Handles.emplace_back(NegX);
6686 
6687     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6688     NegatibleCost CostY = NegatibleCost::Expensive;
6689     SDValue NegY =
6690         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6691 
6692     // We're done with the handles.
6693     Handles.clear();
6694 
6695     // Negate the X if its cost is less or equal than Y.
6696     if (NegX && (CostX <= CostY)) {
6697       Cost = CostX;
6698       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6699       if (NegY != N)
6700         RemoveDeadNode(NegY);
6701       return N;
6702     }
6703 
6704     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6705     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6706       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6707         break;
6708 
6709     // Negate the Y if it is not expensive.
6710     if (NegY) {
6711       Cost = CostY;
6712       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6713       if (NegX != N)
6714         RemoveDeadNode(NegX);
6715       return N;
6716     }
6717     break;
6718   }
6719   case ISD::FMA:
6720   case ISD::FMAD: {
6721     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6722       break;
6723 
6724     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6725     NegatibleCost CostZ = NegatibleCost::Expensive;
6726     SDValue NegZ =
6727         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6728     // Give up if fail to negate the Z.
6729     if (!NegZ)
6730       break;
6731 
6732     // Prevent this node from being deleted by the next two calls.
6733     Handles.emplace_back(NegZ);
6734 
6735     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6736     NegatibleCost CostX = NegatibleCost::Expensive;
6737     SDValue NegX =
6738         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6739     // Prevent this node from being deleted by the next call.
6740     if (NegX)
6741       Handles.emplace_back(NegX);
6742 
6743     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6744     NegatibleCost CostY = NegatibleCost::Expensive;
6745     SDValue NegY =
6746         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6747 
6748     // We're done with the handles.
6749     Handles.clear();
6750 
6751     // Negate the X if its cost is less or equal than Y.
6752     if (NegX && (CostX <= CostY)) {
6753       Cost = std::min(CostX, CostZ);
6754       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6755       if (NegY != N)
6756         RemoveDeadNode(NegY);
6757       return N;
6758     }
6759 
6760     // Negate the Y if it is not expensive.
6761     if (NegY) {
6762       Cost = std::min(CostY, CostZ);
6763       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6764       if (NegX != N)
6765         RemoveDeadNode(NegX);
6766       return N;
6767     }
6768     break;
6769   }
6770 
6771   case ISD::FP_EXTEND:
6772   case ISD::FSIN:
6773     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6774                                             OptForSize, Cost, Depth))
6775       return DAG.getNode(Opcode, DL, VT, NegV);
6776     break;
6777   case ISD::FP_ROUND:
6778     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6779                                             OptForSize, Cost, Depth))
6780       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6781     break;
6782   }
6783 
6784   return SDValue();
6785 }
6786 
6787 //===----------------------------------------------------------------------===//
6788 // Legalization Utilities
6789 //===----------------------------------------------------------------------===//
6790 
6791 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6792                                     SDValue LHS, SDValue RHS,
6793                                     SmallVectorImpl<SDValue> &Result,
6794                                     EVT HiLoVT, SelectionDAG &DAG,
6795                                     MulExpansionKind Kind, SDValue LL,
6796                                     SDValue LH, SDValue RL, SDValue RH) const {
6797   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6798          Opcode == ISD::SMUL_LOHI);
6799 
6800   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6801                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6802   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6803                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6804   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6805                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6806   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6807                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6808 
6809   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6810     return false;
6811 
6812   unsigned OuterBitSize = VT.getScalarSizeInBits();
6813   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6814 
6815   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6816   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6817          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6818 
6819   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6820   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6821                           bool Signed) -> bool {
6822     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6823       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6824       Hi = SDValue(Lo.getNode(), 1);
6825       return true;
6826     }
6827     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6828       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6829       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6830       return true;
6831     }
6832     return false;
6833   };
6834 
6835   SDValue Lo, Hi;
6836 
6837   if (!LL.getNode() && !RL.getNode() &&
6838       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6839     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6840     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6841   }
6842 
6843   if (!LL.getNode())
6844     return false;
6845 
6846   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6847   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6848       DAG.MaskedValueIsZero(RHS, HighMask)) {
6849     // The inputs are both zero-extended.
6850     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6851       Result.push_back(Lo);
6852       Result.push_back(Hi);
6853       if (Opcode != ISD::MUL) {
6854         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6855         Result.push_back(Zero);
6856         Result.push_back(Zero);
6857       }
6858       return true;
6859     }
6860   }
6861 
6862   if (!VT.isVector() && Opcode == ISD::MUL &&
6863       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6864       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6865     // The input values are both sign-extended.
6866     // TODO non-MUL case?
6867     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6868       Result.push_back(Lo);
6869       Result.push_back(Hi);
6870       return true;
6871     }
6872   }
6873 
6874   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6875   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6876   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6877 
6878   if (!LH.getNode() && !RH.getNode() &&
6879       isOperationLegalOrCustom(ISD::SRL, VT) &&
6880       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6881     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6882     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6883     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6884     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6885   }
6886 
6887   if (!LH.getNode())
6888     return false;
6889 
6890   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6891     return false;
6892 
6893   Result.push_back(Lo);
6894 
6895   if (Opcode == ISD::MUL) {
6896     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6897     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6898     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6899     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6900     Result.push_back(Hi);
6901     return true;
6902   }
6903 
6904   // Compute the full width result.
6905   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6906     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6907     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6908     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6909     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6910   };
6911 
6912   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6913   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6914     return false;
6915 
6916   // This is effectively the add part of a multiply-add of half-sized operands,
6917   // so it cannot overflow.
6918   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6919 
6920   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6921     return false;
6922 
6923   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6924   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6925 
6926   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6927                   isOperationLegalOrCustom(ISD::ADDE, VT));
6928   if (UseGlue)
6929     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6930                        Merge(Lo, Hi));
6931   else
6932     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6933                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6934 
6935   SDValue Carry = Next.getValue(1);
6936   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6937   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6938 
6939   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6940     return false;
6941 
6942   if (UseGlue)
6943     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6944                      Carry);
6945   else
6946     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6947                      Zero, Carry);
6948 
6949   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6950 
6951   if (Opcode == ISD::SMUL_LOHI) {
6952     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6953                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6954     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6955 
6956     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6957                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6958     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6959   }
6960 
6961   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6962   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6963   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6964   return true;
6965 }
6966 
6967 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6968                                SelectionDAG &DAG, MulExpansionKind Kind,
6969                                SDValue LL, SDValue LH, SDValue RL,
6970                                SDValue RH) const {
6971   SmallVector<SDValue, 2> Result;
6972   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6973                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6974                            DAG, Kind, LL, LH, RL, RH);
6975   if (Ok) {
6976     assert(Result.size() == 2);
6977     Lo = Result[0];
6978     Hi = Result[1];
6979   }
6980   return Ok;
6981 }
6982 
6983 // Check that (every element of) Z is undef or not an exact multiple of BW.
6984 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6985   return ISD::matchUnaryPredicate(
6986       Z,
6987       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6988       true);
6989 }
6990 
6991 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6992                                           SelectionDAG &DAG) const {
6993   EVT VT = Node->getValueType(0);
6994 
6995   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6996                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6997                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6998                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6999     return SDValue();
7000 
7001   SDValue X = Node->getOperand(0);
7002   SDValue Y = Node->getOperand(1);
7003   SDValue Z = Node->getOperand(2);
7004 
7005   unsigned BW = VT.getScalarSizeInBits();
7006   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
7007   SDLoc DL(SDValue(Node, 0));
7008 
7009   EVT ShVT = Z.getValueType();
7010 
7011   // If a funnel shift in the other direction is more supported, use it.
7012   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
7013   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7014       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
7015     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7016       // fshl X, Y, Z -> fshr X, Y, -Z
7017       // fshr X, Y, Z -> fshl X, Y, -Z
7018       SDValue Zero = DAG.getConstant(0, DL, ShVT);
7019       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
7020     } else {
7021       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
7022       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
7023       SDValue One = DAG.getConstant(1, DL, ShVT);
7024       if (IsFSHL) {
7025         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7026         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
7027       } else {
7028         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
7029         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
7030       }
7031       Z = DAG.getNOT(DL, Z, ShVT);
7032     }
7033     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
7034   }
7035 
7036   SDValue ShX, ShY;
7037   SDValue ShAmt, InvShAmt;
7038   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
7039     // fshl: X << C | Y >> (BW - C)
7040     // fshr: X << (BW - C) | Y >> C
7041     // where C = Z % BW is not zero
7042     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7043     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7044     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
7045     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
7046     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
7047   } else {
7048     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
7049     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
7050     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
7051     if (isPowerOf2_32(BW)) {
7052       // Z % BW -> Z & (BW - 1)
7053       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
7054       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
7055       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
7056     } else {
7057       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
7058       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
7059       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
7060     }
7061 
7062     SDValue One = DAG.getConstant(1, DL, ShVT);
7063     if (IsFSHL) {
7064       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
7065       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
7066       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
7067     } else {
7068       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
7069       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
7070       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
7071     }
7072   }
7073   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
7074 }
7075 
7076 // TODO: Merge with expandFunnelShift.
7077 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
7078                                   SelectionDAG &DAG) const {
7079   EVT VT = Node->getValueType(0);
7080   unsigned EltSizeInBits = VT.getScalarSizeInBits();
7081   bool IsLeft = Node->getOpcode() == ISD::ROTL;
7082   SDValue Op0 = Node->getOperand(0);
7083   SDValue Op1 = Node->getOperand(1);
7084   SDLoc DL(SDValue(Node, 0));
7085 
7086   EVT ShVT = Op1.getValueType();
7087   SDValue Zero = DAG.getConstant(0, DL, ShVT);
7088 
7089   // If a rotate in the other direction is more supported, use it.
7090   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
7091   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
7092       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
7093     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7094     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
7095   }
7096 
7097   if (!AllowVectorOps && VT.isVector() &&
7098       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
7099        !isOperationLegalOrCustom(ISD::SRL, VT) ||
7100        !isOperationLegalOrCustom(ISD::SUB, VT) ||
7101        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
7102        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
7103     return SDValue();
7104 
7105   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
7106   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
7107   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
7108   SDValue ShVal;
7109   SDValue HsVal;
7110   if (isPowerOf2_32(EltSizeInBits)) {
7111     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
7112     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
7113     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
7114     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
7115     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7116     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
7117     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
7118   } else {
7119     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
7120     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
7121     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
7122     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
7123     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
7124     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
7125     SDValue One = DAG.getConstant(1, DL, ShVT);
7126     HsVal =
7127         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
7128   }
7129   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
7130 }
7131 
7132 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
7133                                       SelectionDAG &DAG) const {
7134   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
7135   EVT VT = Node->getValueType(0);
7136   unsigned VTBits = VT.getScalarSizeInBits();
7137   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
7138 
7139   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
7140   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
7141   SDValue ShOpLo = Node->getOperand(0);
7142   SDValue ShOpHi = Node->getOperand(1);
7143   SDValue ShAmt = Node->getOperand(2);
7144   EVT ShAmtVT = ShAmt.getValueType();
7145   EVT ShAmtCCVT =
7146       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
7147   SDLoc dl(Node);
7148 
7149   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
7150   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
7151   // away during isel.
7152   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7153                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
7154   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7155                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
7156                        : DAG.getConstant(0, dl, VT);
7157 
7158   SDValue Tmp2, Tmp3;
7159   if (IsSHL) {
7160     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
7161     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
7162   } else {
7163     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
7164     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
7165   }
7166 
7167   // If the shift amount is larger or equal than the width of a part we don't
7168   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
7169   // values for large shift amounts.
7170   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
7171                                 DAG.getConstant(VTBits, dl, ShAmtVT));
7172   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
7173                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
7174 
7175   if (IsSHL) {
7176     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7177     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7178   } else {
7179     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
7180     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
7181   }
7182 }
7183 
7184 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
7185                                       SelectionDAG &DAG) const {
7186   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7187   SDValue Src = Node->getOperand(OpNo);
7188   EVT SrcVT = Src.getValueType();
7189   EVT DstVT = Node->getValueType(0);
7190   SDLoc dl(SDValue(Node, 0));
7191 
7192   // FIXME: Only f32 to i64 conversions are supported.
7193   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
7194     return false;
7195 
7196   if (Node->isStrictFPOpcode())
7197     // When a NaN is converted to an integer a trap is allowed. We can't
7198     // use this expansion here because it would eliminate that trap. Other
7199     // traps are also allowed and cannot be eliminated. See
7200     // IEEE 754-2008 sec 5.8.
7201     return false;
7202 
7203   // Expand f32 -> i64 conversion
7204   // This algorithm comes from compiler-rt's implementation of fixsfdi:
7205   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
7206   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
7207   EVT IntVT = SrcVT.changeTypeToInteger();
7208   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
7209 
7210   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
7211   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
7212   SDValue Bias = DAG.getConstant(127, dl, IntVT);
7213   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
7214   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
7215   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
7216 
7217   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
7218 
7219   SDValue ExponentBits = DAG.getNode(
7220       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
7221       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
7222   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
7223 
7224   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
7225                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
7226                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
7227   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
7228 
7229   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
7230                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
7231                           DAG.getConstant(0x00800000, dl, IntVT));
7232 
7233   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7234 
7235   R = DAG.getSelectCC(
7236       dl, Exponent, ExponentLoBit,
7237       DAG.getNode(ISD::SHL, dl, DstVT, R,
7238                   DAG.getZExtOrTrunc(
7239                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7240                       dl, IntShVT)),
7241       DAG.getNode(ISD::SRL, dl, DstVT, R,
7242                   DAG.getZExtOrTrunc(
7243                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7244                       dl, IntShVT)),
7245       ISD::SETGT);
7246 
7247   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7248                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7249 
7250   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7251                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7252   return true;
7253 }
7254 
7255 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7256                                       SDValue &Chain,
7257                                       SelectionDAG &DAG) const {
7258   SDLoc dl(SDValue(Node, 0));
7259   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7260   SDValue Src = Node->getOperand(OpNo);
7261 
7262   EVT SrcVT = Src.getValueType();
7263   EVT DstVT = Node->getValueType(0);
7264   EVT SetCCVT =
7265       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7266   EVT DstSetCCVT =
7267       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7268 
7269   // Only expand vector types if we have the appropriate vector bit operations.
7270   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7271                                                    ISD::FP_TO_SINT;
7272   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7273                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7274     return false;
7275 
7276   // If the maximum float value is smaller then the signed integer range,
7277   // the destination signmask can't be represented by the float, so we can
7278   // just use FP_TO_SINT directly.
7279   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7280   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7281   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7282   if (APFloat::opOverflow &
7283       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7284     if (Node->isStrictFPOpcode()) {
7285       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7286                            { Node->getOperand(0), Src });
7287       Chain = Result.getValue(1);
7288     } else
7289       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7290     return true;
7291   }
7292 
7293   // Don't expand it if there isn't cheap fsub instruction.
7294   if (!isOperationLegalOrCustom(
7295           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7296     return false;
7297 
7298   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7299   SDValue Sel;
7300 
7301   if (Node->isStrictFPOpcode()) {
7302     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7303                        Node->getOperand(0), /*IsSignaling*/ true);
7304     Chain = Sel.getValue(1);
7305   } else {
7306     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7307   }
7308 
7309   bool Strict = Node->isStrictFPOpcode() ||
7310                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7311 
7312   if (Strict) {
7313     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7314     // signmask then offset (the result of which should be fully representable).
7315     // Sel = Src < 0x8000000000000000
7316     // FltOfs = select Sel, 0, 0x8000000000000000
7317     // IntOfs = select Sel, 0, 0x8000000000000000
7318     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7319 
7320     // TODO: Should any fast-math-flags be set for the FSUB?
7321     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7322                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7323     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7324     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7325                                    DAG.getConstant(0, dl, DstVT),
7326                                    DAG.getConstant(SignMask, dl, DstVT));
7327     SDValue SInt;
7328     if (Node->isStrictFPOpcode()) {
7329       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7330                                 { Chain, Src, FltOfs });
7331       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7332                          { Val.getValue(1), Val });
7333       Chain = SInt.getValue(1);
7334     } else {
7335       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7336       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7337     }
7338     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7339   } else {
7340     // Expand based on maximum range of FP_TO_SINT:
7341     // True = fp_to_sint(Src)
7342     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7343     // Result = select (Src < 0x8000000000000000), True, False
7344 
7345     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7346     // TODO: Should any fast-math-flags be set for the FSUB?
7347     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7348                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7349     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7350                         DAG.getConstant(SignMask, dl, DstVT));
7351     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7352     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7353   }
7354   return true;
7355 }
7356 
7357 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7358                                       SDValue &Chain,
7359                                       SelectionDAG &DAG) const {
7360   // This transform is not correct for converting 0 when rounding mode is set
7361   // to round toward negative infinity which will produce -0.0. So disable under
7362   // strictfp.
7363   if (Node->isStrictFPOpcode())
7364     return false;
7365 
7366   SDValue Src = Node->getOperand(0);
7367   EVT SrcVT = Src.getValueType();
7368   EVT DstVT = Node->getValueType(0);
7369 
7370   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7371     return false;
7372 
7373   // Only expand vector types if we have the appropriate vector bit operations.
7374   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7375                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7376                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7377                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7378                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7379     return false;
7380 
7381   SDLoc dl(SDValue(Node, 0));
7382   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7383 
7384   // Implementation of unsigned i64 to f64 following the algorithm in
7385   // __floatundidf in compiler_rt.  This implementation performs rounding
7386   // correctly in all rounding modes with the exception of converting 0
7387   // when rounding toward negative infinity. In that case the fsub will produce
7388   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7389   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7390   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7391       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7392   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7393   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7394   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7395 
7396   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7397   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7398   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7399   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7400   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7401   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7402   SDValue HiSub =
7403       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7404   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7405   return true;
7406 }
7407 
7408 SDValue
7409 TargetLowering::createSelectForFMINNUM_FMAXNUM(SDNode *Node,
7410                                                SelectionDAG &DAG) const {
7411   unsigned Opcode = Node->getOpcode();
7412   assert((Opcode == ISD::FMINNUM || Opcode == ISD::FMAXNUM ||
7413           Opcode == ISD::STRICT_FMINNUM || Opcode == ISD::STRICT_FMAXNUM) &&
7414          "Wrong opcode");
7415 
7416   if (Node->getFlags().hasNoNaNs()) {
7417     ISD::CondCode Pred = Opcode == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7418     SDValue Op1 = Node->getOperand(0);
7419     SDValue Op2 = Node->getOperand(1);
7420     SDValue SelCC = DAG.getSelectCC(SDLoc(Node), Op1, Op2, Op1, Op2, Pred);
7421     // Copy FMF flags, but always set the no-signed-zeros flag
7422     // as this is implied by the FMINNUM/FMAXNUM semantics.
7423     SDNodeFlags Flags = Node->getFlags();
7424     Flags.setNoSignedZeros(true);
7425     SelCC->setFlags(Flags);
7426     return SelCC;
7427   }
7428 
7429   return SDValue();
7430 }
7431 
7432 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7433                                               SelectionDAG &DAG) const {
7434   SDLoc dl(Node);
7435   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7436     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7437   EVT VT = Node->getValueType(0);
7438 
7439   if (VT.isScalableVector())
7440     report_fatal_error(
7441         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7442 
7443   if (isOperationLegalOrCustom(NewOp, VT)) {
7444     SDValue Quiet0 = Node->getOperand(0);
7445     SDValue Quiet1 = Node->getOperand(1);
7446 
7447     if (!Node->getFlags().hasNoNaNs()) {
7448       // Insert canonicalizes if it's possible we need to quiet to get correct
7449       // sNaN behavior.
7450       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7451         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7452                              Node->getFlags());
7453       }
7454       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7455         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7456                              Node->getFlags());
7457       }
7458     }
7459 
7460     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7461   }
7462 
7463   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7464   // instead if there are no NaNs.
7465   if (Node->getFlags().hasNoNaNs()) {
7466     unsigned IEEE2018Op =
7467         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7468     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7469       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7470                          Node->getOperand(1), Node->getFlags());
7471     }
7472   }
7473 
7474   if (SDValue SelCC = createSelectForFMINNUM_FMAXNUM(Node, DAG))
7475     return SelCC;
7476 
7477   return SDValue();
7478 }
7479 
7480 SDValue TargetLowering::expandIS_FPCLASS(EVT ResultVT, SDValue Op,
7481                                          unsigned Test, SDNodeFlags Flags,
7482                                          const SDLoc &DL,
7483                                          SelectionDAG &DAG) const {
7484   EVT OperandVT = Op.getValueType();
7485   assert(OperandVT.isFloatingPoint());
7486 
7487   // Degenerated cases.
7488   if (Test == 0)
7489     return DAG.getBoolConstant(false, DL, ResultVT, OperandVT);
7490   if ((Test & fcAllFlags) == fcAllFlags)
7491     return DAG.getBoolConstant(true, DL, ResultVT, OperandVT);
7492 
7493   // PPC double double is a pair of doubles, of which the higher part determines
7494   // the value class.
7495   if (OperandVT == MVT::ppcf128) {
7496     Op = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::f64, Op,
7497                      DAG.getConstant(1, DL, MVT::i32));
7498     OperandVT = MVT::f64;
7499   }
7500 
7501   // Some checks may be represented as inversion of simpler check, for example
7502   // "inf|normal|subnormal|zero" => !"nan".
7503   bool IsInverted = false;
7504   if (unsigned InvertedCheck = getInvertedFPClassTest(Test)) {
7505     IsInverted = true;
7506     Test = InvertedCheck;
7507   }
7508 
7509   // Floating-point type properties.
7510   EVT ScalarFloatVT = OperandVT.getScalarType();
7511   const Type *FloatTy = ScalarFloatVT.getTypeForEVT(*DAG.getContext());
7512   const llvm::fltSemantics &Semantics = FloatTy->getFltSemantics();
7513   bool IsF80 = (ScalarFloatVT == MVT::f80);
7514 
7515   // Some checks can be implemented using float comparisons, if floating point
7516   // exceptions are ignored.
7517   if (Flags.hasNoFPExcept() &&
7518       isOperationLegalOrCustom(ISD::SETCC, OperandVT.getScalarType())) {
7519     if (Test == fcZero)
7520       return DAG.getSetCC(DL, ResultVT, Op,
7521                           DAG.getConstantFP(0.0, DL, OperandVT),
7522                           IsInverted ? ISD::SETUNE : ISD::SETOEQ);
7523     if (Test == fcNan)
7524       return DAG.getSetCC(DL, ResultVT, Op, Op,
7525                           IsInverted ? ISD::SETO : ISD::SETUO);
7526   }
7527 
7528   // In the general case use integer operations.
7529   unsigned BitSize = OperandVT.getScalarSizeInBits();
7530   EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), BitSize);
7531   if (OperandVT.isVector())
7532     IntVT = EVT::getVectorVT(*DAG.getContext(), IntVT,
7533                              OperandVT.getVectorElementCount());
7534   SDValue OpAsInt = DAG.getBitcast(IntVT, Op);
7535 
7536   // Various masks.
7537   APInt SignBit = APInt::getSignMask(BitSize);
7538   APInt ValueMask = APInt::getSignedMaxValue(BitSize);     // All bits but sign.
7539   APInt Inf = APFloat::getInf(Semantics).bitcastToAPInt(); // Exp and int bit.
7540   const unsigned ExplicitIntBitInF80 = 63;
7541   APInt ExpMask = Inf;
7542   if (IsF80)
7543     ExpMask.clearBit(ExplicitIntBitInF80);
7544   APInt AllOneMantissa = APFloat::getLargest(Semantics).bitcastToAPInt() & ~Inf;
7545   APInt QNaNBitMask =
7546       APInt::getOneBitSet(BitSize, AllOneMantissa.getActiveBits() - 1);
7547   APInt InvertionMask = APInt::getAllOnesValue(ResultVT.getScalarSizeInBits());
7548 
7549   SDValue ValueMaskV = DAG.getConstant(ValueMask, DL, IntVT);
7550   SDValue SignBitV = DAG.getConstant(SignBit, DL, IntVT);
7551   SDValue ExpMaskV = DAG.getConstant(ExpMask, DL, IntVT);
7552   SDValue ZeroV = DAG.getConstant(0, DL, IntVT);
7553   SDValue InfV = DAG.getConstant(Inf, DL, IntVT);
7554   SDValue ResultInvertionMask = DAG.getConstant(InvertionMask, DL, ResultVT);
7555 
7556   SDValue Res;
7557   const auto appendResult = [&](SDValue PartialRes) {
7558     if (PartialRes) {
7559       if (Res)
7560         Res = DAG.getNode(ISD::OR, DL, ResultVT, Res, PartialRes);
7561       else
7562         Res = PartialRes;
7563     }
7564   };
7565 
7566   SDValue IntBitIsSetV; // Explicit integer bit in f80 mantissa is set.
7567   const auto getIntBitIsSet = [&]() -> SDValue {
7568     if (!IntBitIsSetV) {
7569       APInt IntBitMask(BitSize, 0);
7570       IntBitMask.setBit(ExplicitIntBitInF80);
7571       SDValue IntBitMaskV = DAG.getConstant(IntBitMask, DL, IntVT);
7572       SDValue IntBitV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, IntBitMaskV);
7573       IntBitIsSetV = DAG.getSetCC(DL, ResultVT, IntBitV, ZeroV, ISD::SETNE);
7574     }
7575     return IntBitIsSetV;
7576   };
7577 
7578   // Split the value into sign bit and absolute value.
7579   SDValue AbsV = DAG.getNode(ISD::AND, DL, IntVT, OpAsInt, ValueMaskV);
7580   SDValue SignV = DAG.getSetCC(DL, ResultVT, OpAsInt,
7581                                DAG.getConstant(0.0, DL, IntVT), ISD::SETLT);
7582 
7583   // Tests that involve more than one class should be processed first.
7584   SDValue PartialRes;
7585 
7586   if (IsF80)
7587     ; // Detect finite numbers of f80 by checking individual classes because
7588       // they have different settings of the explicit integer bit.
7589   else if ((Test & fcFinite) == fcFinite) {
7590     // finite(V) ==> abs(V) < exp_mask
7591     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7592     Test &= ~fcFinite;
7593   } else if ((Test & fcFinite) == fcPosFinite) {
7594     // finite(V) && V > 0 ==> V < exp_mask
7595     PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ExpMaskV, ISD::SETULT);
7596     Test &= ~fcPosFinite;
7597   } else if ((Test & fcFinite) == fcNegFinite) {
7598     // finite(V) && V < 0 ==> abs(V) < exp_mask && signbit == 1
7599     PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ExpMaskV, ISD::SETLT);
7600     PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7601     Test &= ~fcNegFinite;
7602   }
7603   appendResult(PartialRes);
7604 
7605   // Check for individual classes.
7606 
7607   if (unsigned PartialCheck = Test & fcZero) {
7608     if (PartialCheck == fcPosZero)
7609       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, ZeroV, ISD::SETEQ);
7610     else if (PartialCheck == fcZero)
7611       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, ZeroV, ISD::SETEQ);
7612     else // ISD::fcNegZero
7613       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, SignBitV, ISD::SETEQ);
7614     appendResult(PartialRes);
7615   }
7616 
7617   if (unsigned PartialCheck = Test & fcInf) {
7618     if (PartialCheck == fcPosInf)
7619       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, InfV, ISD::SETEQ);
7620     else if (PartialCheck == fcInf)
7621       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETEQ);
7622     else { // ISD::fcNegInf
7623       APInt NegInf = APFloat::getInf(Semantics, true).bitcastToAPInt();
7624       SDValue NegInfV = DAG.getConstant(NegInf, DL, IntVT);
7625       PartialRes = DAG.getSetCC(DL, ResultVT, OpAsInt, NegInfV, ISD::SETEQ);
7626     }
7627     appendResult(PartialRes);
7628   }
7629 
7630   if (unsigned PartialCheck = Test & fcNan) {
7631     APInt InfWithQnanBit = Inf | QNaNBitMask;
7632     SDValue InfWithQnanBitV = DAG.getConstant(InfWithQnanBit, DL, IntVT);
7633     if (PartialCheck == fcNan) {
7634       // isnan(V) ==> abs(V) > int(inf)
7635       PartialRes = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7636       if (IsF80) {
7637         // Recognize unsupported values as NaNs for compatibility with glibc.
7638         // In them (exp(V)==0) == int_bit.
7639         SDValue ExpBits = DAG.getNode(ISD::AND, DL, IntVT, AbsV, ExpMaskV);
7640         SDValue ExpIsZero =
7641             DAG.getSetCC(DL, ResultVT, ExpBits, ZeroV, ISD::SETEQ);
7642         SDValue IsPseudo =
7643             DAG.getSetCC(DL, ResultVT, getIntBitIsSet(), ExpIsZero, ISD::SETEQ);
7644         PartialRes = DAG.getNode(ISD::OR, DL, ResultVT, PartialRes, IsPseudo);
7645       }
7646     } else if (PartialCheck == fcQNan) {
7647       // isquiet(V) ==> abs(V) >= (unsigned(Inf) | quiet_bit)
7648       PartialRes =
7649           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETGE);
7650     } else { // ISD::fcSNan
7651       // issignaling(V) ==> abs(V) > unsigned(Inf) &&
7652       //                    abs(V) < (unsigned(Inf) | quiet_bit)
7653       SDValue IsNan = DAG.getSetCC(DL, ResultVT, AbsV, InfV, ISD::SETGT);
7654       SDValue IsNotQnan =
7655           DAG.getSetCC(DL, ResultVT, AbsV, InfWithQnanBitV, ISD::SETLT);
7656       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, IsNan, IsNotQnan);
7657     }
7658     appendResult(PartialRes);
7659   }
7660 
7661   if (unsigned PartialCheck = Test & fcSubnormal) {
7662     // issubnormal(V) ==> unsigned(abs(V) - 1) < (all mantissa bits set)
7663     // issubnormal(V) && V>0 ==> unsigned(V - 1) < (all mantissa bits set)
7664     SDValue V = (PartialCheck == fcPosSubnormal) ? OpAsInt : AbsV;
7665     SDValue MantissaV = DAG.getConstant(AllOneMantissa, DL, IntVT);
7666     SDValue VMinusOneV =
7667         DAG.getNode(ISD::SUB, DL, IntVT, V, DAG.getConstant(1, DL, IntVT));
7668     PartialRes = DAG.getSetCC(DL, ResultVT, VMinusOneV, MantissaV, ISD::SETULT);
7669     if (PartialCheck == fcNegSubnormal)
7670       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7671     appendResult(PartialRes);
7672   }
7673 
7674   if (unsigned PartialCheck = Test & fcNormal) {
7675     // isnormal(V) ==> (0 < exp < max_exp) ==> (unsigned(exp-1) < (max_exp-1))
7676     APInt ExpLSB = ExpMask & ~(ExpMask.shl(1));
7677     SDValue ExpLSBV = DAG.getConstant(ExpLSB, DL, IntVT);
7678     SDValue ExpMinus1 = DAG.getNode(ISD::SUB, DL, IntVT, AbsV, ExpLSBV);
7679     APInt ExpLimit = ExpMask - ExpLSB;
7680     SDValue ExpLimitV = DAG.getConstant(ExpLimit, DL, IntVT);
7681     PartialRes = DAG.getSetCC(DL, ResultVT, ExpMinus1, ExpLimitV, ISD::SETULT);
7682     if (PartialCheck == fcNegNormal)
7683       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, SignV);
7684     else if (PartialCheck == fcPosNormal) {
7685       SDValue PosSignV =
7686           DAG.getNode(ISD::XOR, DL, ResultVT, SignV, ResultInvertionMask);
7687       PartialRes = DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, PosSignV);
7688     }
7689     if (IsF80)
7690       PartialRes =
7691           DAG.getNode(ISD::AND, DL, ResultVT, PartialRes, getIntBitIsSet());
7692     appendResult(PartialRes);
7693   }
7694 
7695   if (!Res)
7696     return DAG.getConstant(IsInverted, DL, ResultVT);
7697   if (IsInverted)
7698     Res = DAG.getNode(ISD::XOR, DL, ResultVT, Res, ResultInvertionMask);
7699   return Res;
7700 }
7701 
7702 // Only expand vector types if we have the appropriate vector bit operations.
7703 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7704   assert(VT.isVector() && "Expected vector type");
7705   unsigned Len = VT.getScalarSizeInBits();
7706   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7707          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7708          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7709          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7710          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7711 }
7712 
7713 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7714   SDLoc dl(Node);
7715   EVT VT = Node->getValueType(0);
7716   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7717   SDValue Op = Node->getOperand(0);
7718   unsigned Len = VT.getScalarSizeInBits();
7719   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7720 
7721   // TODO: Add support for irregular type lengths.
7722   if (!(Len <= 128 && Len % 8 == 0))
7723     return SDValue();
7724 
7725   // Only expand vector types if we have the appropriate vector bit operations.
7726   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7727     return SDValue();
7728 
7729   // This is the "best" algorithm from
7730   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7731   SDValue Mask55 =
7732       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7733   SDValue Mask33 =
7734       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7735   SDValue Mask0F =
7736       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7737 
7738   // v = v - ((v >> 1) & 0x55555555...)
7739   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7740                    DAG.getNode(ISD::AND, dl, VT,
7741                                DAG.getNode(ISD::SRL, dl, VT, Op,
7742                                            DAG.getConstant(1, dl, ShVT)),
7743                                Mask55));
7744   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7745   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7746                    DAG.getNode(ISD::AND, dl, VT,
7747                                DAG.getNode(ISD::SRL, dl, VT, Op,
7748                                            DAG.getConstant(2, dl, ShVT)),
7749                                Mask33));
7750   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7751   Op = DAG.getNode(ISD::AND, dl, VT,
7752                    DAG.getNode(ISD::ADD, dl, VT, Op,
7753                                DAG.getNode(ISD::SRL, dl, VT, Op,
7754                                            DAG.getConstant(4, dl, ShVT))),
7755                    Mask0F);
7756 
7757   if (Len <= 8)
7758     return Op;
7759 
7760   // Avoid the multiply if we only have 2 bytes to add.
7761   // TODO: Only doing this for scalars because vectors weren't as obviously
7762   // improved.
7763   if (Len == 16 && !VT.isVector()) {
7764     // v = (v + (v >> 8)) & 0x00FF;
7765     return DAG.getNode(ISD::AND, dl, VT,
7766                      DAG.getNode(ISD::ADD, dl, VT, Op,
7767                                  DAG.getNode(ISD::SRL, dl, VT, Op,
7768                                              DAG.getConstant(8, dl, ShVT))),
7769                      DAG.getConstant(0xFF, dl, VT));
7770   }
7771 
7772   // v = (v * 0x01010101...) >> (Len - 8)
7773   SDValue Mask01 =
7774       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7775   return DAG.getNode(ISD::SRL, dl, VT,
7776                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7777                      DAG.getConstant(Len - 8, dl, ShVT));
7778 }
7779 
7780 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7781   SDLoc dl(Node);
7782   EVT VT = Node->getValueType(0);
7783   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7784   SDValue Op = Node->getOperand(0);
7785   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7786 
7787   // If the non-ZERO_UNDEF version is supported we can use that instead.
7788   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7789       isOperationLegalOrCustom(ISD::CTLZ, VT))
7790     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7791 
7792   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7793   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7794     EVT SetCCVT =
7795         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7796     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7797     SDValue Zero = DAG.getConstant(0, dl, VT);
7798     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7799     return DAG.getSelect(dl, VT, SrcIsZero,
7800                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7801   }
7802 
7803   // Only expand vector types if we have the appropriate vector bit operations.
7804   // This includes the operations needed to expand CTPOP if it isn't supported.
7805   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7806                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7807                          !canExpandVectorCTPOP(*this, VT)) ||
7808                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7809                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7810     return SDValue();
7811 
7812   // for now, we do this:
7813   // x = x | (x >> 1);
7814   // x = x | (x >> 2);
7815   // ...
7816   // x = x | (x >>16);
7817   // x = x | (x >>32); // for 64-bit input
7818   // return popcount(~x);
7819   //
7820   // Ref: "Hacker's Delight" by Henry Warren
7821   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7822     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7823     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7824                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7825   }
7826   Op = DAG.getNOT(dl, Op, VT);
7827   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7828 }
7829 
7830 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7831   SDLoc dl(Node);
7832   EVT VT = Node->getValueType(0);
7833   SDValue Op = Node->getOperand(0);
7834   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7835 
7836   // If the non-ZERO_UNDEF version is supported we can use that instead.
7837   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7838       isOperationLegalOrCustom(ISD::CTTZ, VT))
7839     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7840 
7841   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7842   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7843     EVT SetCCVT =
7844         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7845     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7846     SDValue Zero = DAG.getConstant(0, dl, VT);
7847     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7848     return DAG.getSelect(dl, VT, SrcIsZero,
7849                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7850   }
7851 
7852   // Only expand vector types if we have the appropriate vector bit operations.
7853   // This includes the operations needed to expand CTPOP if it isn't supported.
7854   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7855                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7856                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7857                          !canExpandVectorCTPOP(*this, VT)) ||
7858                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7859                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7860                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7861     return SDValue();
7862 
7863   // for now, we use: { return popcount(~x & (x - 1)); }
7864   // unless the target has ctlz but not ctpop, in which case we use:
7865   // { return 32 - nlz(~x & (x-1)); }
7866   // Ref: "Hacker's Delight" by Henry Warren
7867   SDValue Tmp = DAG.getNode(
7868       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7869       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7870 
7871   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7872   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7873     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7874                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7875   }
7876 
7877   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7878 }
7879 
7880 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7881                                   bool IsNegative) const {
7882   SDLoc dl(N);
7883   EVT VT = N->getValueType(0);
7884   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7885   SDValue Op = N->getOperand(0);
7886 
7887   // abs(x) -> smax(x,sub(0,x))
7888   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7889       isOperationLegal(ISD::SMAX, VT)) {
7890     SDValue Zero = DAG.getConstant(0, dl, VT);
7891     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7892                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7893   }
7894 
7895   // abs(x) -> umin(x,sub(0,x))
7896   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7897       isOperationLegal(ISD::UMIN, VT)) {
7898     SDValue Zero = DAG.getConstant(0, dl, VT);
7899     Op = DAG.getFreeze(Op);
7900     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7901                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7902   }
7903 
7904   // 0 - abs(x) -> smin(x, sub(0,x))
7905   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7906       isOperationLegal(ISD::SMIN, VT)) {
7907     Op = DAG.getFreeze(Op);
7908     SDValue Zero = DAG.getConstant(0, dl, VT);
7909     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7910                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7911   }
7912 
7913   // Only expand vector types if we have the appropriate vector operations.
7914   if (VT.isVector() &&
7915       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7916        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7917        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7918        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7919     return SDValue();
7920 
7921   Op = DAG.getFreeze(Op);
7922   SDValue Shift =
7923       DAG.getNode(ISD::SRA, dl, VT, Op,
7924                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7925   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7926 
7927   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7928   if (!IsNegative)
7929     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7930 
7931   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7932   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7933 }
7934 
7935 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7936   SDLoc dl(N);
7937   EVT VT = N->getValueType(0);
7938   SDValue Op = N->getOperand(0);
7939 
7940   if (!VT.isSimple())
7941     return SDValue();
7942 
7943   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7944   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7945   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7946   default:
7947     return SDValue();
7948   case MVT::i16:
7949     // Use a rotate by 8. This can be further expanded if necessary.
7950     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7951   case MVT::i32:
7952     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7953     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7954     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7955     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7956     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7957                        DAG.getConstant(0xFF0000, dl, VT));
7958     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7959     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7960     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7961     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7962   case MVT::i64:
7963     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7964     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7965     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7966     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7967     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7968     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7969     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7970     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7971     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7972                        DAG.getConstant(255ULL<<48, dl, VT));
7973     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7974                        DAG.getConstant(255ULL<<40, dl, VT));
7975     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7976                        DAG.getConstant(255ULL<<32, dl, VT));
7977     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7978                        DAG.getConstant(255ULL<<24, dl, VT));
7979     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7980                        DAG.getConstant(255ULL<<16, dl, VT));
7981     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7982                        DAG.getConstant(255ULL<<8 , dl, VT));
7983     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7984     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7985     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7986     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7987     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7988     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7989     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7990   }
7991 }
7992 
7993 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7994   SDLoc dl(N);
7995   EVT VT = N->getValueType(0);
7996   SDValue Op = N->getOperand(0);
7997   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7998   unsigned Sz = VT.getScalarSizeInBits();
7999 
8000   SDValue Tmp, Tmp2, Tmp3;
8001 
8002   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
8003   // and finally the i1 pairs.
8004   // TODO: We can easily support i4/i2 legal types if any target ever does.
8005   if (Sz >= 8 && isPowerOf2_32(Sz)) {
8006     // Create the masks - repeating the pattern every byte.
8007     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
8008     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
8009     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
8010 
8011     // BSWAP if the type is wider than a single byte.
8012     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
8013 
8014     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
8015     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
8016     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
8017     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
8018     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
8019     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8020 
8021     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
8022     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
8023     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
8024     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
8025     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
8026     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8027 
8028     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
8029     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
8030     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
8031     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
8032     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
8033     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
8034     return Tmp;
8035   }
8036 
8037   Tmp = DAG.getConstant(0, dl, VT);
8038   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
8039     if (I < J)
8040       Tmp2 =
8041           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
8042     else
8043       Tmp2 =
8044           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
8045 
8046     APInt Shift(Sz, 1);
8047     Shift <<= J;
8048     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
8049     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
8050   }
8051 
8052   return Tmp;
8053 }
8054 
8055 std::pair<SDValue, SDValue>
8056 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
8057                                     SelectionDAG &DAG) const {
8058   SDLoc SL(LD);
8059   SDValue Chain = LD->getChain();
8060   SDValue BasePTR = LD->getBasePtr();
8061   EVT SrcVT = LD->getMemoryVT();
8062   EVT DstVT = LD->getValueType(0);
8063   ISD::LoadExtType ExtType = LD->getExtensionType();
8064 
8065   if (SrcVT.isScalableVector())
8066     report_fatal_error("Cannot scalarize scalable vector loads");
8067 
8068   unsigned NumElem = SrcVT.getVectorNumElements();
8069 
8070   EVT SrcEltVT = SrcVT.getScalarType();
8071   EVT DstEltVT = DstVT.getScalarType();
8072 
8073   // A vector must always be stored in memory as-is, i.e. without any padding
8074   // between the elements, since various code depend on it, e.g. in the
8075   // handling of a bitcast of a vector type to int, which may be done with a
8076   // vector store followed by an integer load. A vector that does not have
8077   // elements that are byte-sized must therefore be stored as an integer
8078   // built out of the extracted vector elements.
8079   if (!SrcEltVT.isByteSized()) {
8080     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
8081     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
8082 
8083     unsigned NumSrcBits = SrcVT.getSizeInBits();
8084     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
8085 
8086     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
8087     SDValue SrcEltBitMask = DAG.getConstant(
8088         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
8089 
8090     // Load the whole vector and avoid masking off the top bits as it makes
8091     // the codegen worse.
8092     SDValue Load =
8093         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
8094                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
8095                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8096 
8097     SmallVector<SDValue, 8> Vals;
8098     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8099       unsigned ShiftIntoIdx =
8100           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8101       SDValue ShiftAmount =
8102           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
8103                                      LoadVT, SL, /*LegalTypes=*/false);
8104       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
8105       SDValue Elt =
8106           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
8107       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
8108 
8109       if (ExtType != ISD::NON_EXTLOAD) {
8110         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
8111         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
8112       }
8113 
8114       Vals.push_back(Scalar);
8115     }
8116 
8117     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8118     return std::make_pair(Value, Load.getValue(1));
8119   }
8120 
8121   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
8122   assert(SrcEltVT.isByteSized());
8123 
8124   SmallVector<SDValue, 8> Vals;
8125   SmallVector<SDValue, 8> LoadChains;
8126 
8127   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8128     SDValue ScalarLoad =
8129         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
8130                        LD->getPointerInfo().getWithOffset(Idx * Stride),
8131                        SrcEltVT, LD->getOriginalAlign(),
8132                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
8133 
8134     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
8135 
8136     Vals.push_back(ScalarLoad.getValue(0));
8137     LoadChains.push_back(ScalarLoad.getValue(1));
8138   }
8139 
8140   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
8141   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
8142 
8143   return std::make_pair(Value, NewChain);
8144 }
8145 
8146 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
8147                                              SelectionDAG &DAG) const {
8148   SDLoc SL(ST);
8149 
8150   SDValue Chain = ST->getChain();
8151   SDValue BasePtr = ST->getBasePtr();
8152   SDValue Value = ST->getValue();
8153   EVT StVT = ST->getMemoryVT();
8154 
8155   if (StVT.isScalableVector())
8156     report_fatal_error("Cannot scalarize scalable vector stores");
8157 
8158   // The type of the data we want to save
8159   EVT RegVT = Value.getValueType();
8160   EVT RegSclVT = RegVT.getScalarType();
8161 
8162   // The type of data as saved in memory.
8163   EVT MemSclVT = StVT.getScalarType();
8164 
8165   unsigned NumElem = StVT.getVectorNumElements();
8166 
8167   // A vector must always be stored in memory as-is, i.e. without any padding
8168   // between the elements, since various code depend on it, e.g. in the
8169   // handling of a bitcast of a vector type to int, which may be done with a
8170   // vector store followed by an integer load. A vector that does not have
8171   // elements that are byte-sized must therefore be stored as an integer
8172   // built out of the extracted vector elements.
8173   if (!MemSclVT.isByteSized()) {
8174     unsigned NumBits = StVT.getSizeInBits();
8175     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
8176 
8177     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
8178 
8179     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8180       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8181                                 DAG.getVectorIdxConstant(Idx, SL));
8182       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
8183       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
8184       unsigned ShiftIntoIdx =
8185           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
8186       SDValue ShiftAmount =
8187           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
8188       SDValue ShiftedElt =
8189           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
8190       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
8191     }
8192 
8193     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
8194                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8195                         ST->getAAInfo());
8196   }
8197 
8198   // Store Stride in bytes
8199   unsigned Stride = MemSclVT.getSizeInBits() / 8;
8200   assert(Stride && "Zero stride!");
8201   // Extract each of the elements from the original vector and save them into
8202   // memory individually.
8203   SmallVector<SDValue, 8> Stores;
8204   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
8205     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
8206                               DAG.getVectorIdxConstant(Idx, SL));
8207 
8208     SDValue Ptr =
8209         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
8210 
8211     // This scalar TruncStore may be illegal, but we legalize it later.
8212     SDValue Store = DAG.getTruncStore(
8213         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
8214         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
8215         ST->getAAInfo());
8216 
8217     Stores.push_back(Store);
8218   }
8219 
8220   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
8221 }
8222 
8223 std::pair<SDValue, SDValue>
8224 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
8225   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
8226          "unaligned indexed loads not implemented!");
8227   SDValue Chain = LD->getChain();
8228   SDValue Ptr = LD->getBasePtr();
8229   EVT VT = LD->getValueType(0);
8230   EVT LoadedVT = LD->getMemoryVT();
8231   SDLoc dl(LD);
8232   auto &MF = DAG.getMachineFunction();
8233 
8234   if (VT.isFloatingPoint() || VT.isVector()) {
8235     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
8236     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
8237       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
8238           LoadedVT.isVector()) {
8239         // Scalarize the load and let the individual components be handled.
8240         return scalarizeVectorLoad(LD, DAG);
8241       }
8242 
8243       // Expand to a (misaligned) integer load of the same size,
8244       // then bitconvert to floating point or vector.
8245       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
8246                                     LD->getMemOperand());
8247       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
8248       if (LoadedVT != VT)
8249         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
8250                              ISD::ANY_EXTEND, dl, VT, Result);
8251 
8252       return std::make_pair(Result, newLoad.getValue(1));
8253     }
8254 
8255     // Copy the value to a (aligned) stack slot using (unaligned) integer
8256     // loads and stores, then do a (aligned) load from the stack slot.
8257     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
8258     unsigned LoadedBytes = LoadedVT.getStoreSize();
8259     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8260     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
8261 
8262     // Make sure the stack slot is also aligned for the register type.
8263     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
8264     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
8265     SmallVector<SDValue, 8> Stores;
8266     SDValue StackPtr = StackBase;
8267     unsigned Offset = 0;
8268 
8269     EVT PtrVT = Ptr.getValueType();
8270     EVT StackPtrVT = StackPtr.getValueType();
8271 
8272     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8273     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8274 
8275     // Do all but one copies using the full register width.
8276     for (unsigned i = 1; i < NumRegs; i++) {
8277       // Load one integer register's worth from the original location.
8278       SDValue Load = DAG.getLoad(
8279           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
8280           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8281           LD->getAAInfo());
8282       // Follow the load with a store to the stack slot.  Remember the store.
8283       Stores.push_back(DAG.getStore(
8284           Load.getValue(1), dl, Load, StackPtr,
8285           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
8286       // Increment the pointers.
8287       Offset += RegBytes;
8288 
8289       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8290       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8291     }
8292 
8293     // The last copy may be partial.  Do an extending load.
8294     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
8295                                   8 * (LoadedBytes - Offset));
8296     SDValue Load =
8297         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
8298                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
8299                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
8300                        LD->getAAInfo());
8301     // Follow the load with a store to the stack slot.  Remember the store.
8302     // On big-endian machines this requires a truncating store to ensure
8303     // that the bits end up in the right place.
8304     Stores.push_back(DAG.getTruncStore(
8305         Load.getValue(1), dl, Load, StackPtr,
8306         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
8307 
8308     // The order of the stores doesn't matter - say it with a TokenFactor.
8309     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8310 
8311     // Finally, perform the original load only redirected to the stack slot.
8312     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
8313                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
8314                           LoadedVT);
8315 
8316     // Callers expect a MERGE_VALUES node.
8317     return std::make_pair(Load, TF);
8318   }
8319 
8320   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
8321          "Unaligned load of unsupported type.");
8322 
8323   // Compute the new VT that is half the size of the old one.  This is an
8324   // integer MVT.
8325   unsigned NumBits = LoadedVT.getSizeInBits();
8326   EVT NewLoadedVT;
8327   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
8328   NumBits >>= 1;
8329 
8330   Align Alignment = LD->getOriginalAlign();
8331   unsigned IncrementSize = NumBits / 8;
8332   ISD::LoadExtType HiExtType = LD->getExtensionType();
8333 
8334   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
8335   if (HiExtType == ISD::NON_EXTLOAD)
8336     HiExtType = ISD::ZEXTLOAD;
8337 
8338   // Load the value in two parts
8339   SDValue Lo, Hi;
8340   if (DAG.getDataLayout().isLittleEndian()) {
8341     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8342                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8343                         LD->getAAInfo());
8344 
8345     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8346     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
8347                         LD->getPointerInfo().getWithOffset(IncrementSize),
8348                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8349                         LD->getAAInfo());
8350   } else {
8351     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
8352                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8353                         LD->getAAInfo());
8354 
8355     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8356     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
8357                         LD->getPointerInfo().getWithOffset(IncrementSize),
8358                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
8359                         LD->getAAInfo());
8360   }
8361 
8362   // aggregate the two parts
8363   SDValue ShiftAmount =
8364       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
8365                                                     DAG.getDataLayout()));
8366   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
8367   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
8368 
8369   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
8370                              Hi.getValue(1));
8371 
8372   return std::make_pair(Result, TF);
8373 }
8374 
8375 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
8376                                              SelectionDAG &DAG) const {
8377   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
8378          "unaligned indexed stores not implemented!");
8379   SDValue Chain = ST->getChain();
8380   SDValue Ptr = ST->getBasePtr();
8381   SDValue Val = ST->getValue();
8382   EVT VT = Val.getValueType();
8383   Align Alignment = ST->getOriginalAlign();
8384   auto &MF = DAG.getMachineFunction();
8385   EVT StoreMemVT = ST->getMemoryVT();
8386 
8387   SDLoc dl(ST);
8388   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
8389     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
8390     if (isTypeLegal(intVT)) {
8391       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
8392           StoreMemVT.isVector()) {
8393         // Scalarize the store and let the individual components be handled.
8394         SDValue Result = scalarizeVectorStore(ST, DAG);
8395         return Result;
8396       }
8397       // Expand to a bitconvert of the value to the integer type of the
8398       // same size, then a (misaligned) int store.
8399       // FIXME: Does not handle truncating floating point stores!
8400       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
8401       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
8402                             Alignment, ST->getMemOperand()->getFlags());
8403       return Result;
8404     }
8405     // Do a (aligned) store to a stack slot, then copy from the stack slot
8406     // to the final destination using (unaligned) integer loads and stores.
8407     MVT RegVT = getRegisterType(
8408         *DAG.getContext(),
8409         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
8410     EVT PtrVT = Ptr.getValueType();
8411     unsigned StoredBytes = StoreMemVT.getStoreSize();
8412     unsigned RegBytes = RegVT.getSizeInBits() / 8;
8413     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
8414 
8415     // Make sure the stack slot is also aligned for the register type.
8416     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
8417     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
8418 
8419     // Perform the original store, only redirected to the stack slot.
8420     SDValue Store = DAG.getTruncStore(
8421         Chain, dl, Val, StackPtr,
8422         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
8423 
8424     EVT StackPtrVT = StackPtr.getValueType();
8425 
8426     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
8427     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
8428     SmallVector<SDValue, 8> Stores;
8429     unsigned Offset = 0;
8430 
8431     // Do all but one copies using the full register width.
8432     for (unsigned i = 1; i < NumRegs; i++) {
8433       // Load one integer register's worth from the stack slot.
8434       SDValue Load = DAG.getLoad(
8435           RegVT, dl, Store, StackPtr,
8436           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
8437       // Store it to the final location.  Remember the store.
8438       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
8439                                     ST->getPointerInfo().getWithOffset(Offset),
8440                                     ST->getOriginalAlign(),
8441                                     ST->getMemOperand()->getFlags()));
8442       // Increment the pointers.
8443       Offset += RegBytes;
8444       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
8445       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
8446     }
8447 
8448     // The last store may be partial.  Do a truncating store.  On big-endian
8449     // machines this requires an extending load from the stack slot to ensure
8450     // that the bits are in the right place.
8451     EVT LoadMemVT =
8452         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
8453 
8454     // Load from the stack slot.
8455     SDValue Load = DAG.getExtLoad(
8456         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
8457         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
8458 
8459     Stores.push_back(
8460         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
8461                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
8462                           ST->getOriginalAlign(),
8463                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
8464     // The order of the stores doesn't matter - say it with a TokenFactor.
8465     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
8466     return Result;
8467   }
8468 
8469   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
8470          "Unaligned store of unknown type.");
8471   // Get the half-size VT
8472   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
8473   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
8474   unsigned IncrementSize = NumBits / 8;
8475 
8476   // Divide the stored value in two parts.
8477   SDValue ShiftAmount = DAG.getConstant(
8478       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8479   SDValue Lo = Val;
8480   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8481 
8482   // Store the two parts
8483   SDValue Store1, Store2;
8484   Store1 = DAG.getTruncStore(Chain, dl,
8485                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8486                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8487                              ST->getMemOperand()->getFlags());
8488 
8489   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8490   Store2 = DAG.getTruncStore(
8491       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8492       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8493       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8494 
8495   SDValue Result =
8496       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8497   return Result;
8498 }
8499 
8500 SDValue
8501 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8502                                        const SDLoc &DL, EVT DataVT,
8503                                        SelectionDAG &DAG,
8504                                        bool IsCompressedMemory) const {
8505   SDValue Increment;
8506   EVT AddrVT = Addr.getValueType();
8507   EVT MaskVT = Mask.getValueType();
8508   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8509          "Incompatible types of Data and Mask");
8510   if (IsCompressedMemory) {
8511     if (DataVT.isScalableVector())
8512       report_fatal_error(
8513           "Cannot currently handle compressed memory with scalable vectors");
8514     // Incrementing the pointer according to number of '1's in the mask.
8515     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8516     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8517     if (MaskIntVT.getSizeInBits() < 32) {
8518       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8519       MaskIntVT = MVT::i32;
8520     }
8521 
8522     // Count '1's with POPCNT.
8523     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8524     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8525     // Scale is an element size in bytes.
8526     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8527                                     AddrVT);
8528     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8529   } else if (DataVT.isScalableVector()) {
8530     Increment = DAG.getVScale(DL, AddrVT,
8531                               APInt(AddrVT.getFixedSizeInBits(),
8532                                     DataVT.getStoreSize().getKnownMinSize()));
8533   } else
8534     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8535 
8536   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8537 }
8538 
8539 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8540                                        EVT VecVT, const SDLoc &dl,
8541                                        ElementCount SubEC) {
8542   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8543          "Cannot index a scalable vector within a fixed-width vector");
8544 
8545   unsigned NElts = VecVT.getVectorMinNumElements();
8546   unsigned NumSubElts = SubEC.getKnownMinValue();
8547   EVT IdxVT = Idx.getValueType();
8548 
8549   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8550     // If this is a constant index and we know the value plus the number of the
8551     // elements in the subvector minus one is less than the minimum number of
8552     // elements then it's safe to return Idx.
8553     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8554       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8555         return Idx;
8556     SDValue VS =
8557         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8558     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8559     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8560                               DAG.getConstant(NumSubElts, dl, IdxVT));
8561     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8562   }
8563   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8564     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8565     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8566                        DAG.getConstant(Imm, dl, IdxVT));
8567   }
8568   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8569   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8570                      DAG.getConstant(MaxIndex, dl, IdxVT));
8571 }
8572 
8573 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8574                                                 SDValue VecPtr, EVT VecVT,
8575                                                 SDValue Index) const {
8576   return getVectorSubVecPointer(
8577       DAG, VecPtr, VecVT,
8578       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8579       Index);
8580 }
8581 
8582 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8583                                                SDValue VecPtr, EVT VecVT,
8584                                                EVT SubVecVT,
8585                                                SDValue Index) const {
8586   SDLoc dl(Index);
8587   // Make sure the index type is big enough to compute in.
8588   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8589 
8590   EVT EltVT = VecVT.getVectorElementType();
8591 
8592   // Calculate the element offset and add it to the pointer.
8593   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8594   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8595          "Converting bits to bytes lost precision");
8596   assert(SubVecVT.getVectorElementType() == EltVT &&
8597          "Sub-vector must be a vector with matching element type");
8598   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8599                                   SubVecVT.getVectorElementCount());
8600 
8601   EVT IdxVT = Index.getValueType();
8602   if (SubVecVT.isScalableVector())
8603     Index =
8604         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8605                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8606 
8607   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8608                       DAG.getConstant(EltSize, dl, IdxVT));
8609   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8610 }
8611 
8612 //===----------------------------------------------------------------------===//
8613 // Implementation of Emulated TLS Model
8614 //===----------------------------------------------------------------------===//
8615 
8616 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8617                                                 SelectionDAG &DAG) const {
8618   // Access to address of TLS varialbe xyz is lowered to a function call:
8619   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8620   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8621   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8622   SDLoc dl(GA);
8623 
8624   ArgListTy Args;
8625   ArgListEntry Entry;
8626   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8627   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8628   StringRef EmuTlsVarName(NameString);
8629   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8630   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8631   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8632   Entry.Ty = VoidPtrType;
8633   Args.push_back(Entry);
8634 
8635   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8636 
8637   TargetLowering::CallLoweringInfo CLI(DAG);
8638   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8639   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8640   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8641 
8642   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8643   // At last for X86 targets, maybe good for other targets too?
8644   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8645   MFI.setAdjustsStack(true); // Is this only for X86 target?
8646   MFI.setHasCalls(true);
8647 
8648   assert((GA->getOffset() == 0) &&
8649          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8650   return CallResult.first;
8651 }
8652 
8653 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8654                                                 SelectionDAG &DAG) const {
8655   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8656   if (!isCtlzFast())
8657     return SDValue();
8658   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8659   SDLoc dl(Op);
8660   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8661     if (C->isZero() && CC == ISD::SETEQ) {
8662       EVT VT = Op.getOperand(0).getValueType();
8663       SDValue Zext = Op.getOperand(0);
8664       if (VT.bitsLT(MVT::i32)) {
8665         VT = MVT::i32;
8666         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8667       }
8668       unsigned Log2b = Log2_32(VT.getSizeInBits());
8669       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8670       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8671                                 DAG.getConstant(Log2b, dl, MVT::i32));
8672       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8673     }
8674   }
8675   return SDValue();
8676 }
8677 
8678 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8679   SDValue Op0 = Node->getOperand(0);
8680   SDValue Op1 = Node->getOperand(1);
8681   EVT VT = Op0.getValueType();
8682   unsigned Opcode = Node->getOpcode();
8683   SDLoc DL(Node);
8684 
8685   // umin(x,y) -> sub(x,usubsat(x,y))
8686   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8687       isOperationLegal(ISD::USUBSAT, VT)) {
8688     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8689                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8690   }
8691 
8692   // umax(x,y) -> add(x,usubsat(y,x))
8693   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8694       isOperationLegal(ISD::USUBSAT, VT)) {
8695     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8696                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8697   }
8698 
8699   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8700   ISD::CondCode CC;
8701   switch (Opcode) {
8702   default: llvm_unreachable("How did we get here?");
8703   case ISD::SMAX: CC = ISD::SETGT; break;
8704   case ISD::SMIN: CC = ISD::SETLT; break;
8705   case ISD::UMAX: CC = ISD::SETUGT; break;
8706   case ISD::UMIN: CC = ISD::SETULT; break;
8707   }
8708 
8709   // FIXME: Should really try to split the vector in case it's legal on a
8710   // subvector.
8711   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8712     return DAG.UnrollVectorOp(Node);
8713 
8714   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8715   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8716   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8717 }
8718 
8719 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8720   unsigned Opcode = Node->getOpcode();
8721   SDValue LHS = Node->getOperand(0);
8722   SDValue RHS = Node->getOperand(1);
8723   EVT VT = LHS.getValueType();
8724   SDLoc dl(Node);
8725 
8726   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8727   assert(VT.isInteger() && "Expected operands to be integers");
8728 
8729   // usub.sat(a, b) -> umax(a, b) - b
8730   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8731     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8732     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8733   }
8734 
8735   // uadd.sat(a, b) -> umin(a, ~b) + b
8736   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8737     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8738     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8739     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8740   }
8741 
8742   unsigned OverflowOp;
8743   switch (Opcode) {
8744   case ISD::SADDSAT:
8745     OverflowOp = ISD::SADDO;
8746     break;
8747   case ISD::UADDSAT:
8748     OverflowOp = ISD::UADDO;
8749     break;
8750   case ISD::SSUBSAT:
8751     OverflowOp = ISD::SSUBO;
8752     break;
8753   case ISD::USUBSAT:
8754     OverflowOp = ISD::USUBO;
8755     break;
8756   default:
8757     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8758                      "addition or subtraction node.");
8759   }
8760 
8761   // FIXME: Should really try to split the vector in case it's legal on a
8762   // subvector.
8763   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8764     return DAG.UnrollVectorOp(Node);
8765 
8766   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8767   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8768   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8769   SDValue SumDiff = Result.getValue(0);
8770   SDValue Overflow = Result.getValue(1);
8771   SDValue Zero = DAG.getConstant(0, dl, VT);
8772   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8773 
8774   if (Opcode == ISD::UADDSAT) {
8775     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8776       // (LHS + RHS) | OverflowMask
8777       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8778       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8779     }
8780     // Overflow ? 0xffff.... : (LHS + RHS)
8781     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8782   }
8783 
8784   if (Opcode == ISD::USUBSAT) {
8785     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8786       // (LHS - RHS) & ~OverflowMask
8787       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8788       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8789       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8790     }
8791     // Overflow ? 0 : (LHS - RHS)
8792     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8793   }
8794 
8795   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8796   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8797   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8798   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8799                               DAG.getConstant(BitWidth - 1, dl, VT));
8800   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8801   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8802 }
8803 
8804 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8805   unsigned Opcode = Node->getOpcode();
8806   bool IsSigned = Opcode == ISD::SSHLSAT;
8807   SDValue LHS = Node->getOperand(0);
8808   SDValue RHS = Node->getOperand(1);
8809   EVT VT = LHS.getValueType();
8810   SDLoc dl(Node);
8811 
8812   assert((Node->getOpcode() == ISD::SSHLSAT ||
8813           Node->getOpcode() == ISD::USHLSAT) &&
8814           "Expected a SHLSAT opcode");
8815   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8816   assert(VT.isInteger() && "Expected operands to be integers");
8817 
8818   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8819 
8820   unsigned BW = VT.getScalarSizeInBits();
8821   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8822   SDValue Orig =
8823       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8824 
8825   SDValue SatVal;
8826   if (IsSigned) {
8827     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8828     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8829     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8830                              SatMin, SatMax, ISD::SETLT);
8831   } else {
8832     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8833   }
8834   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8835 
8836   return Result;
8837 }
8838 
8839 SDValue
8840 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8841   assert((Node->getOpcode() == ISD::SMULFIX ||
8842           Node->getOpcode() == ISD::UMULFIX ||
8843           Node->getOpcode() == ISD::SMULFIXSAT ||
8844           Node->getOpcode() == ISD::UMULFIXSAT) &&
8845          "Expected a fixed point multiplication opcode");
8846 
8847   SDLoc dl(Node);
8848   SDValue LHS = Node->getOperand(0);
8849   SDValue RHS = Node->getOperand(1);
8850   EVT VT = LHS.getValueType();
8851   unsigned Scale = Node->getConstantOperandVal(2);
8852   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8853                      Node->getOpcode() == ISD::UMULFIXSAT);
8854   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8855                  Node->getOpcode() == ISD::SMULFIXSAT);
8856   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8857   unsigned VTSize = VT.getScalarSizeInBits();
8858 
8859   if (!Scale) {
8860     // [us]mul.fix(a, b, 0) -> mul(a, b)
8861     if (!Saturating) {
8862       if (isOperationLegalOrCustom(ISD::MUL, VT))
8863         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8864     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8865       SDValue Result =
8866           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8867       SDValue Product = Result.getValue(0);
8868       SDValue Overflow = Result.getValue(1);
8869       SDValue Zero = DAG.getConstant(0, dl, VT);
8870 
8871       APInt MinVal = APInt::getSignedMinValue(VTSize);
8872       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8873       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8874       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8875       // Xor the inputs, if resulting sign bit is 0 the product will be
8876       // positive, else negative.
8877       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8878       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8879       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8880       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8881     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8882       SDValue Result =
8883           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8884       SDValue Product = Result.getValue(0);
8885       SDValue Overflow = Result.getValue(1);
8886 
8887       APInt MaxVal = APInt::getMaxValue(VTSize);
8888       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8889       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8890     }
8891   }
8892 
8893   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8894          "Expected scale to be less than the number of bits if signed or at "
8895          "most the number of bits if unsigned.");
8896   assert(LHS.getValueType() == RHS.getValueType() &&
8897          "Expected both operands to be the same type");
8898 
8899   // Get the upper and lower bits of the result.
8900   SDValue Lo, Hi;
8901   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8902   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8903   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8904     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8905     Lo = Result.getValue(0);
8906     Hi = Result.getValue(1);
8907   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8908     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8909     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8910   } else if (VT.isVector()) {
8911     return SDValue();
8912   } else {
8913     report_fatal_error("Unable to expand fixed point multiplication.");
8914   }
8915 
8916   if (Scale == VTSize)
8917     // Result is just the top half since we'd be shifting by the width of the
8918     // operand. Overflow impossible so this works for both UMULFIX and
8919     // UMULFIXSAT.
8920     return Hi;
8921 
8922   // The result will need to be shifted right by the scale since both operands
8923   // are scaled. The result is given to us in 2 halves, so we only want part of
8924   // both in the result.
8925   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8926   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8927                                DAG.getConstant(Scale, dl, ShiftTy));
8928   if (!Saturating)
8929     return Result;
8930 
8931   if (!Signed) {
8932     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8933     // widened multiplication) aren't all zeroes.
8934 
8935     // Saturate to max if ((Hi >> Scale) != 0),
8936     // which is the same as if (Hi > ((1 << Scale) - 1))
8937     APInt MaxVal = APInt::getMaxValue(VTSize);
8938     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8939                                       dl, VT);
8940     Result = DAG.getSelectCC(dl, Hi, LowMask,
8941                              DAG.getConstant(MaxVal, dl, VT), Result,
8942                              ISD::SETUGT);
8943 
8944     return Result;
8945   }
8946 
8947   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8948   // widened multiplication) aren't all ones or all zeroes.
8949 
8950   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8951   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8952 
8953   if (Scale == 0) {
8954     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8955                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8956     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8957     // Saturated to SatMin if wide product is negative, and SatMax if wide
8958     // product is positive ...
8959     SDValue Zero = DAG.getConstant(0, dl, VT);
8960     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8961                                                ISD::SETLT);
8962     // ... but only if we overflowed.
8963     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8964   }
8965 
8966   //  We handled Scale==0 above so all the bits to examine is in Hi.
8967 
8968   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8969   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8970   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8971                                     dl, VT);
8972   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8973   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8974   // which is the same as if (HI < (-1 << (Scale - 1))
8975   SDValue HighMask =
8976       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8977                       dl, VT);
8978   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8979   return Result;
8980 }
8981 
8982 SDValue
8983 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8984                                     SDValue LHS, SDValue RHS,
8985                                     unsigned Scale, SelectionDAG &DAG) const {
8986   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8987           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8988          "Expected a fixed point division opcode");
8989 
8990   EVT VT = LHS.getValueType();
8991   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8992   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8993   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8994 
8995   // If there is enough room in the type to upscale the LHS or downscale the
8996   // RHS before the division, we can perform it in this type without having to
8997   // resize. For signed operations, the LHS headroom is the number of
8998   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8999   // The headroom for the RHS is the number of trailing zeroes.
9000   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
9001                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
9002   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
9003 
9004   // For signed saturating operations, we need to be able to detect true integer
9005   // division overflow; that is, when you have MIN / -EPS. However, this
9006   // is undefined behavior and if we emit divisions that could take such
9007   // values it may cause undesired behavior (arithmetic exceptions on x86, for
9008   // example).
9009   // Avoid this by requiring an extra bit so that we never get this case.
9010   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
9011   // signed saturating division, we need to emit a whopping 32-bit division.
9012   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
9013     return SDValue();
9014 
9015   unsigned LHSShift = std::min(LHSLead, Scale);
9016   unsigned RHSShift = Scale - LHSShift;
9017 
9018   // At this point, we know that if we shift the LHS up by LHSShift and the
9019   // RHS down by RHSShift, we can emit a regular division with a final scaling
9020   // factor of Scale.
9021 
9022   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
9023   if (LHSShift)
9024     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
9025                       DAG.getConstant(LHSShift, dl, ShiftTy));
9026   if (RHSShift)
9027     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
9028                       DAG.getConstant(RHSShift, dl, ShiftTy));
9029 
9030   SDValue Quot;
9031   if (Signed) {
9032     // For signed operations, if the resulting quotient is negative and the
9033     // remainder is nonzero, subtract 1 from the quotient to round towards
9034     // negative infinity.
9035     SDValue Rem;
9036     // FIXME: Ideally we would always produce an SDIVREM here, but if the
9037     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
9038     // we couldn't just form a libcall, but the type legalizer doesn't do it.
9039     if (isTypeLegal(VT) &&
9040         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
9041       Quot = DAG.getNode(ISD::SDIVREM, dl,
9042                          DAG.getVTList(VT, VT),
9043                          LHS, RHS);
9044       Rem = Quot.getValue(1);
9045       Quot = Quot.getValue(0);
9046     } else {
9047       Quot = DAG.getNode(ISD::SDIV, dl, VT,
9048                          LHS, RHS);
9049       Rem = DAG.getNode(ISD::SREM, dl, VT,
9050                         LHS, RHS);
9051     }
9052     SDValue Zero = DAG.getConstant(0, dl, VT);
9053     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
9054     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
9055     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
9056     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
9057     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
9058                                DAG.getConstant(1, dl, VT));
9059     Quot = DAG.getSelect(dl, VT,
9060                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
9061                          Sub1, Quot);
9062   } else
9063     Quot = DAG.getNode(ISD::UDIV, dl, VT,
9064                        LHS, RHS);
9065 
9066   return Quot;
9067 }
9068 
9069 void TargetLowering::expandUADDSUBO(
9070     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9071   SDLoc dl(Node);
9072   SDValue LHS = Node->getOperand(0);
9073   SDValue RHS = Node->getOperand(1);
9074   bool IsAdd = Node->getOpcode() == ISD::UADDO;
9075 
9076   // If ADD/SUBCARRY is legal, use that instead.
9077   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
9078   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
9079     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
9080     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
9081                                     { LHS, RHS, CarryIn });
9082     Result = SDValue(NodeCarry.getNode(), 0);
9083     Overflow = SDValue(NodeCarry.getNode(), 1);
9084     return;
9085   }
9086 
9087   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9088                             LHS.getValueType(), LHS, RHS);
9089 
9090   EVT ResultType = Node->getValueType(1);
9091   EVT SetCCType = getSetCCResultType(
9092       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9093   SDValue SetCC;
9094   if (IsAdd && isOneConstant(RHS)) {
9095     // Special case: uaddo X, 1 overflowed if X+1 is 0. This potential reduces
9096     // the live range of X. We assume comparing with 0 is cheap.
9097     // The general case (X + C) < C is not necessarily beneficial. Although we
9098     // reduce the live range of X, we may introduce the materialization of
9099     // constant C.
9100     SetCC =
9101         DAG.getSetCC(dl, SetCCType, Result,
9102                      DAG.getConstant(0, dl, Node->getValueType(0)), ISD::SETEQ);
9103   } else {
9104     ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
9105     SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
9106   }
9107   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9108 }
9109 
9110 void TargetLowering::expandSADDSUBO(
9111     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
9112   SDLoc dl(Node);
9113   SDValue LHS = Node->getOperand(0);
9114   SDValue RHS = Node->getOperand(1);
9115   bool IsAdd = Node->getOpcode() == ISD::SADDO;
9116 
9117   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
9118                             LHS.getValueType(), LHS, RHS);
9119 
9120   EVT ResultType = Node->getValueType(1);
9121   EVT OType = getSetCCResultType(
9122       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
9123 
9124   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
9125   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
9126   if (isOperationLegal(OpcSat, LHS.getValueType())) {
9127     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
9128     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
9129     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
9130     return;
9131   }
9132 
9133   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
9134 
9135   // For an addition, the result should be less than one of the operands (LHS)
9136   // if and only if the other operand (RHS) is negative, otherwise there will
9137   // be overflow.
9138   // For a subtraction, the result should be less than one of the operands
9139   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
9140   // otherwise there will be overflow.
9141   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
9142   SDValue ConditionRHS =
9143       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
9144 
9145   Overflow = DAG.getBoolExtOrTrunc(
9146       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
9147       ResultType, ResultType);
9148 }
9149 
9150 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
9151                                 SDValue &Overflow, SelectionDAG &DAG) const {
9152   SDLoc dl(Node);
9153   EVT VT = Node->getValueType(0);
9154   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
9155   SDValue LHS = Node->getOperand(0);
9156   SDValue RHS = Node->getOperand(1);
9157   bool isSigned = Node->getOpcode() == ISD::SMULO;
9158 
9159   // For power-of-two multiplications we can use a simpler shift expansion.
9160   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
9161     const APInt &C = RHSC->getAPIntValue();
9162     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
9163     if (C.isPowerOf2()) {
9164       // smulo(x, signed_min) is same as umulo(x, signed_min).
9165       bool UseArithShift = isSigned && !C.isMinSignedValue();
9166       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
9167       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
9168       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
9169       Overflow = DAG.getSetCC(dl, SetCCVT,
9170           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
9171                       dl, VT, Result, ShiftAmt),
9172           LHS, ISD::SETNE);
9173       return true;
9174     }
9175   }
9176 
9177   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
9178   if (VT.isVector())
9179     WideVT =
9180         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
9181 
9182   SDValue BottomHalf;
9183   SDValue TopHalf;
9184   static const unsigned Ops[2][3] =
9185       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
9186         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
9187   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
9188     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
9189     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
9190   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
9191     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
9192                              RHS);
9193     TopHalf = BottomHalf.getValue(1);
9194   } else if (isTypeLegal(WideVT)) {
9195     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
9196     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
9197     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
9198     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
9199     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
9200         getShiftAmountTy(WideVT, DAG.getDataLayout()));
9201     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
9202                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
9203   } else {
9204     if (VT.isVector())
9205       return false;
9206 
9207     // We can fall back to a libcall with an illegal type for the MUL if we
9208     // have a libcall big enough.
9209     // Also, we can fall back to a division in some cases, but that's a big
9210     // performance hit in the general case.
9211     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
9212     if (WideVT == MVT::i16)
9213       LC = RTLIB::MUL_I16;
9214     else if (WideVT == MVT::i32)
9215       LC = RTLIB::MUL_I32;
9216     else if (WideVT == MVT::i64)
9217       LC = RTLIB::MUL_I64;
9218     else if (WideVT == MVT::i128)
9219       LC = RTLIB::MUL_I128;
9220     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
9221 
9222     SDValue HiLHS;
9223     SDValue HiRHS;
9224     if (isSigned) {
9225       // The high part is obtained by SRA'ing all but one of the bits of low
9226       // part.
9227       unsigned LoSize = VT.getFixedSizeInBits();
9228       HiLHS =
9229           DAG.getNode(ISD::SRA, dl, VT, LHS,
9230                       DAG.getConstant(LoSize - 1, dl,
9231                                       getPointerTy(DAG.getDataLayout())));
9232       HiRHS =
9233           DAG.getNode(ISD::SRA, dl, VT, RHS,
9234                       DAG.getConstant(LoSize - 1, dl,
9235                                       getPointerTy(DAG.getDataLayout())));
9236     } else {
9237         HiLHS = DAG.getConstant(0, dl, VT);
9238         HiRHS = DAG.getConstant(0, dl, VT);
9239     }
9240 
9241     // Here we're passing the 2 arguments explicitly as 4 arguments that are
9242     // pre-lowered to the correct types. This all depends upon WideVT not
9243     // being a legal type for the architecture and thus has to be split to
9244     // two arguments.
9245     SDValue Ret;
9246     TargetLowering::MakeLibCallOptions CallOptions;
9247     CallOptions.setSExt(isSigned);
9248     CallOptions.setIsPostTypeLegalization(true);
9249     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
9250       // Halves of WideVT are packed into registers in different order
9251       // depending on platform endianness. This is usually handled by
9252       // the C calling convention, but we can't defer to it in
9253       // the legalizer.
9254       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
9255       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9256     } else {
9257       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
9258       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
9259     }
9260     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
9261            "Ret value is a collection of constituent nodes holding result.");
9262     if (DAG.getDataLayout().isLittleEndian()) {
9263       // Same as above.
9264       BottomHalf = Ret.getOperand(0);
9265       TopHalf = Ret.getOperand(1);
9266     } else {
9267       BottomHalf = Ret.getOperand(1);
9268       TopHalf = Ret.getOperand(0);
9269     }
9270   }
9271 
9272   Result = BottomHalf;
9273   if (isSigned) {
9274     SDValue ShiftAmt = DAG.getConstant(
9275         VT.getScalarSizeInBits() - 1, dl,
9276         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
9277     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
9278     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
9279   } else {
9280     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
9281                             DAG.getConstant(0, dl, VT), ISD::SETNE);
9282   }
9283 
9284   // Truncate the result if SetCC returns a larger type than needed.
9285   EVT RType = Node->getValueType(1);
9286   if (RType.bitsLT(Overflow.getValueType()))
9287     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
9288 
9289   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
9290          "Unexpected result type for S/UMULO legalization");
9291   return true;
9292 }
9293 
9294 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
9295   SDLoc dl(Node);
9296   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9297   SDValue Op = Node->getOperand(0);
9298   EVT VT = Op.getValueType();
9299 
9300   if (VT.isScalableVector())
9301     report_fatal_error(
9302         "Expanding reductions for scalable vectors is undefined.");
9303 
9304   // Try to use a shuffle reduction for power of two vectors.
9305   if (VT.isPow2VectorType()) {
9306     while (VT.getVectorNumElements() > 1) {
9307       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
9308       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
9309         break;
9310 
9311       SDValue Lo, Hi;
9312       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
9313       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
9314       VT = HalfVT;
9315     }
9316   }
9317 
9318   EVT EltVT = VT.getVectorElementType();
9319   unsigned NumElts = VT.getVectorNumElements();
9320 
9321   SmallVector<SDValue, 8> Ops;
9322   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
9323 
9324   SDValue Res = Ops[0];
9325   for (unsigned i = 1; i < NumElts; i++)
9326     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
9327 
9328   // Result type may be wider than element type.
9329   if (EltVT != Node->getValueType(0))
9330     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
9331   return Res;
9332 }
9333 
9334 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
9335   SDLoc dl(Node);
9336   SDValue AccOp = Node->getOperand(0);
9337   SDValue VecOp = Node->getOperand(1);
9338   SDNodeFlags Flags = Node->getFlags();
9339 
9340   EVT VT = VecOp.getValueType();
9341   EVT EltVT = VT.getVectorElementType();
9342 
9343   if (VT.isScalableVector())
9344     report_fatal_error(
9345         "Expanding reductions for scalable vectors is undefined.");
9346 
9347   unsigned NumElts = VT.getVectorNumElements();
9348 
9349   SmallVector<SDValue, 8> Ops;
9350   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
9351 
9352   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
9353 
9354   SDValue Res = AccOp;
9355   for (unsigned i = 0; i < NumElts; i++)
9356     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
9357 
9358   return Res;
9359 }
9360 
9361 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
9362                                SelectionDAG &DAG) const {
9363   EVT VT = Node->getValueType(0);
9364   SDLoc dl(Node);
9365   bool isSigned = Node->getOpcode() == ISD::SREM;
9366   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
9367   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
9368   SDValue Dividend = Node->getOperand(0);
9369   SDValue Divisor = Node->getOperand(1);
9370   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
9371     SDVTList VTs = DAG.getVTList(VT, VT);
9372     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
9373     return true;
9374   }
9375   if (isOperationLegalOrCustom(DivOpc, VT)) {
9376     // X % Y -> X-X/Y*Y
9377     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
9378     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
9379     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
9380     return true;
9381   }
9382   return false;
9383 }
9384 
9385 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
9386                                             SelectionDAG &DAG) const {
9387   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
9388   SDLoc dl(SDValue(Node, 0));
9389   SDValue Src = Node->getOperand(0);
9390 
9391   // DstVT is the result type, while SatVT is the size to which we saturate
9392   EVT SrcVT = Src.getValueType();
9393   EVT DstVT = Node->getValueType(0);
9394 
9395   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
9396   unsigned SatWidth = SatVT.getScalarSizeInBits();
9397   unsigned DstWidth = DstVT.getScalarSizeInBits();
9398   assert(SatWidth <= DstWidth &&
9399          "Expected saturation width smaller than result width");
9400 
9401   // Determine minimum and maximum integer values and their corresponding
9402   // floating-point values.
9403   APInt MinInt, MaxInt;
9404   if (IsSigned) {
9405     MinInt = APInt::getSignedMinValue(SatWidth).sext(DstWidth);
9406     MaxInt = APInt::getSignedMaxValue(SatWidth).sext(DstWidth);
9407   } else {
9408     MinInt = APInt::getMinValue(SatWidth).zext(DstWidth);
9409     MaxInt = APInt::getMaxValue(SatWidth).zext(DstWidth);
9410   }
9411 
9412   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
9413   // libcall emission cannot handle this. Large result types will fail.
9414   if (SrcVT == MVT::f16) {
9415     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
9416     SrcVT = Src.getValueType();
9417   }
9418 
9419   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9420   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
9421 
9422   APFloat::opStatus MinStatus =
9423       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
9424   APFloat::opStatus MaxStatus =
9425       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
9426   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
9427                              !(MaxStatus & APFloat::opStatus::opInexact);
9428 
9429   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
9430   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
9431 
9432   // If the integer bounds are exactly representable as floats and min/max are
9433   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
9434   // of comparisons and selects.
9435   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
9436                      isOperationLegal(ISD::FMAXNUM, SrcVT);
9437   if (AreExactFloatBounds && MinMaxLegal) {
9438     SDValue Clamped = Src;
9439 
9440     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
9441     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
9442     // Clamp by MaxFloat from above. NaN cannot occur.
9443     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
9444     // Convert clamped value to integer.
9445     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
9446                                   dl, DstVT, Clamped);
9447 
9448     // In the unsigned case we're done, because we mapped NaN to MinFloat,
9449     // which will cast to zero.
9450     if (!IsSigned)
9451       return FpToInt;
9452 
9453     // Otherwise, select 0 if Src is NaN.
9454     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9455     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
9456                            ISD::CondCode::SETUO);
9457   }
9458 
9459   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
9460   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
9461 
9462   // Result of direct conversion. The assumption here is that the operation is
9463   // non-trapping and it's fine to apply it to an out-of-range value if we
9464   // select it away later.
9465   SDValue FpToInt =
9466       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
9467 
9468   SDValue Select = FpToInt;
9469 
9470   // If Src ULT MinFloat, select MinInt. In particular, this also selects
9471   // MinInt if Src is NaN.
9472   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
9473                            ISD::CondCode::SETULT);
9474   // If Src OGT MaxFloat, select MaxInt.
9475   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9476                            ISD::CondCode::SETOGT);
9477 
9478   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9479   // is already zero.
9480   if (!IsSigned)
9481     return Select;
9482 
9483   // Otherwise, select 0 if Src is NaN.
9484   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9485   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9486 }
9487 
9488 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9489                                            SelectionDAG &DAG) const {
9490   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9491   assert(Node->getValueType(0).isScalableVector() &&
9492          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9493 
9494   EVT VT = Node->getValueType(0);
9495   SDValue V1 = Node->getOperand(0);
9496   SDValue V2 = Node->getOperand(1);
9497   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9498   SDLoc DL(Node);
9499 
9500   // Expand through memory thusly:
9501   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9502   //  Store V1, Ptr
9503   //  Store V2, Ptr + sizeof(V1)
9504   //  If (Imm < 0)
9505   //    TrailingElts = -Imm
9506   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9507   //  else
9508   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9509   //  Res = Load Ptr
9510 
9511   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9512 
9513   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9514                                VT.getVectorElementCount() * 2);
9515   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9516   EVT PtrVT = StackPtr.getValueType();
9517   auto &MF = DAG.getMachineFunction();
9518   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9519   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9520 
9521   // Store the lo part of CONCAT_VECTORS(V1, V2)
9522   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9523   // Store the hi part of CONCAT_VECTORS(V1, V2)
9524   SDValue OffsetToV2 = DAG.getVScale(
9525       DL, PtrVT,
9526       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9527   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9528   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9529 
9530   if (Imm >= 0) {
9531     // Load back the required element. getVectorElementPointer takes care of
9532     // clamping the index if it's out-of-bounds.
9533     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9534     // Load the spliced result
9535     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9536                        MachinePointerInfo::getUnknownStack(MF));
9537   }
9538 
9539   uint64_t TrailingElts = -Imm;
9540 
9541   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9542   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9543   SDValue TrailingBytes =
9544       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9545 
9546   if (TrailingElts > VT.getVectorMinNumElements()) {
9547     SDValue VLBytes = DAG.getVScale(
9548         DL, PtrVT,
9549         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9550     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9551   }
9552 
9553   // Calculate the start address of the spliced result.
9554   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9555 
9556   // Load the spliced result
9557   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9558                      MachinePointerInfo::getUnknownStack(MF));
9559 }
9560 
9561 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9562                                            SDValue &LHS, SDValue &RHS,
9563                                            SDValue &CC, SDValue Mask,
9564                                            SDValue EVL, bool &NeedInvert,
9565                                            const SDLoc &dl, SDValue &Chain,
9566                                            bool IsSignaling) const {
9567   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9568   MVT OpVT = LHS.getSimpleValueType();
9569   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9570   NeedInvert = false;
9571   assert(!EVL == !Mask && "VP Mask and EVL must either both be set or unset");
9572   bool IsNonVP = !EVL;
9573   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9574   default:
9575     llvm_unreachable("Unknown condition code action!");
9576   case TargetLowering::Legal:
9577     // Nothing to do.
9578     break;
9579   case TargetLowering::Expand: {
9580     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9581     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9582       std::swap(LHS, RHS);
9583       CC = DAG.getCondCode(InvCC);
9584       return true;
9585     }
9586     // Swapping operands didn't work. Try inverting the condition.
9587     bool NeedSwap = false;
9588     InvCC = getSetCCInverse(CCCode, OpVT);
9589     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9590       // If inverting the condition is not enough, try swapping operands
9591       // on top of it.
9592       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9593       NeedSwap = true;
9594     }
9595     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9596       CC = DAG.getCondCode(InvCC);
9597       NeedInvert = true;
9598       if (NeedSwap)
9599         std::swap(LHS, RHS);
9600       return true;
9601     }
9602 
9603     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9604     unsigned Opc = 0;
9605     switch (CCCode) {
9606     default:
9607       llvm_unreachable("Don't know how to expand this condition!");
9608     case ISD::SETUO:
9609       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9610         CC1 = ISD::SETUNE;
9611         CC2 = ISD::SETUNE;
9612         Opc = ISD::OR;
9613         break;
9614       }
9615       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9616              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9617       NeedInvert = true;
9618       LLVM_FALLTHROUGH;
9619     case ISD::SETO:
9620       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9621              "If SETO is expanded, SETOEQ must be legal!");
9622       CC1 = ISD::SETOEQ;
9623       CC2 = ISD::SETOEQ;
9624       Opc = ISD::AND;
9625       break;
9626     case ISD::SETONE:
9627     case ISD::SETUEQ:
9628       // If the SETUO or SETO CC isn't legal, we might be able to use
9629       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9630       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9631       // the operands.
9632       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9633       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9634           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9635            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9636         CC1 = ISD::SETOGT;
9637         CC2 = ISD::SETOLT;
9638         Opc = ISD::OR;
9639         NeedInvert = ((unsigned)CCCode & 0x8U);
9640         break;
9641       }
9642       LLVM_FALLTHROUGH;
9643     case ISD::SETOEQ:
9644     case ISD::SETOGT:
9645     case ISD::SETOGE:
9646     case ISD::SETOLT:
9647     case ISD::SETOLE:
9648     case ISD::SETUNE:
9649     case ISD::SETUGT:
9650     case ISD::SETUGE:
9651     case ISD::SETULT:
9652     case ISD::SETULE:
9653       // If we are floating point, assign and break, otherwise fall through.
9654       if (!OpVT.isInteger()) {
9655         // We can use the 4th bit to tell if we are the unordered
9656         // or ordered version of the opcode.
9657         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9658         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9659         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9660         break;
9661       }
9662       // Fallthrough if we are unsigned integer.
9663       LLVM_FALLTHROUGH;
9664     case ISD::SETLE:
9665     case ISD::SETGT:
9666     case ISD::SETGE:
9667     case ISD::SETLT:
9668     case ISD::SETNE:
9669     case ISD::SETEQ:
9670       // If all combinations of inverting the condition and swapping operands
9671       // didn't work then we have no means to expand the condition.
9672       llvm_unreachable("Don't know how to expand this condition!");
9673     }
9674 
9675     SDValue SetCC1, SetCC2;
9676     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9677       // If we aren't the ordered or unorder operation,
9678       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9679       if (IsNonVP) {
9680         SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9681         SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9682       } else {
9683         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC1, Mask, EVL);
9684         SetCC2 = DAG.getSetCCVP(dl, VT, LHS, RHS, CC2, Mask, EVL);
9685       }
9686     } else {
9687       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9688       if (IsNonVP) {
9689         SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9690         SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9691       } else {
9692         SetCC1 = DAG.getSetCCVP(dl, VT, LHS, LHS, CC1, Mask, EVL);
9693         SetCC2 = DAG.getSetCCVP(dl, VT, RHS, RHS, CC2, Mask, EVL);
9694       }
9695     }
9696     if (Chain)
9697       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9698                           SetCC2.getValue(1));
9699     if (IsNonVP)
9700       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9701     else {
9702       // Transform the binary opcode to the VP equivalent.
9703       assert((Opc == ISD::OR || Opc == ISD::AND) && "Unexpected opcode");
9704       Opc = Opc == ISD::OR ? ISD::VP_OR : ISD::VP_AND;
9705       LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2, Mask, EVL);
9706     }
9707     RHS = SDValue();
9708     CC = SDValue();
9709     return true;
9710   }
9711   }
9712   return false;
9713 }
9714