1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 103 unsigned ArgIdx) { 104 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = Call->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed, 124 bool isPostTypeLegalization) const { 125 TargetLowering::ArgListTy Args; 126 Args.reserve(Ops.size()); 127 128 TargetLowering::ArgListEntry Entry; 129 for (SDValue Op : Ops) { 130 Entry.Node = Op; 131 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 132 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 134 Args.push_back(Entry); 135 } 136 137 if (LC == RTLIB::UNKNOWN_LIBCALL) 138 report_fatal_error("Unsupported library call operation!"); 139 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 140 getPointerTy(DAG.getDataLayout())); 141 142 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 143 TargetLowering::CallLoweringInfo CLI(DAG); 144 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 145 CLI.setDebugLoc(dl) 146 .setChain(DAG.getEntryNode()) 147 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 148 .setNoReturn(doesNotReturn) 149 .setDiscardResult(!isReturnValueUsed) 150 .setIsPostTypeLegalization(isPostTypeLegalization) 151 .setSExtResult(signExtend) 152 .setZExtResult(!signExtend); 153 return LowerCallTo(CLI); 154 } 155 156 /// Soften the operands of a comparison. This code is shared among BR_CC, 157 /// SELECT_CC, and SETCC handlers. 158 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 159 SDValue &NewLHS, SDValue &NewRHS, 160 ISD::CondCode &CCCode, 161 const SDLoc &dl) const { 162 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 163 && "Unsupported setcc type!"); 164 165 // Expand into one or more soft-fp libcall(s). 166 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 167 bool ShouldInvertCC = false; 168 switch (CCCode) { 169 case ISD::SETEQ: 170 case ISD::SETOEQ: 171 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 172 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 173 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 174 break; 175 case ISD::SETNE: 176 case ISD::SETUNE: 177 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 178 (VT == MVT::f64) ? RTLIB::UNE_F64 : 179 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 180 break; 181 case ISD::SETGE: 182 case ISD::SETOGE: 183 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 184 (VT == MVT::f64) ? RTLIB::OGE_F64 : 185 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 186 break; 187 case ISD::SETLT: 188 case ISD::SETOLT: 189 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 190 (VT == MVT::f64) ? RTLIB::OLT_F64 : 191 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 192 break; 193 case ISD::SETLE: 194 case ISD::SETOLE: 195 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 196 (VT == MVT::f64) ? RTLIB::OLE_F64 : 197 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 198 break; 199 case ISD::SETGT: 200 case ISD::SETOGT: 201 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 202 (VT == MVT::f64) ? RTLIB::OGT_F64 : 203 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 204 break; 205 case ISD::SETUO: 206 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 207 (VT == MVT::f64) ? RTLIB::UO_F64 : 208 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 209 break; 210 case ISD::SETO: 211 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 212 (VT == MVT::f64) ? RTLIB::O_F64 : 213 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 214 break; 215 case ISD::SETONE: 216 // SETONE = SETOLT | SETOGT 217 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 218 (VT == MVT::f64) ? RTLIB::OLT_F64 : 219 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 220 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 221 (VT == MVT::f64) ? RTLIB::OGT_F64 : 222 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 223 break; 224 case ISD::SETUEQ: 225 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 226 (VT == MVT::f64) ? RTLIB::UO_F64 : 227 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 228 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 229 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 230 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 231 break; 232 default: 233 // Invert CC for unordered comparisons 234 ShouldInvertCC = true; 235 switch (CCCode) { 236 case ISD::SETULT: 237 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 238 (VT == MVT::f64) ? RTLIB::OGE_F64 : 239 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 240 break; 241 case ISD::SETULE: 242 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 243 (VT == MVT::f64) ? RTLIB::OGT_F64 : 244 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 245 break; 246 case ISD::SETUGT: 247 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 248 (VT == MVT::f64) ? RTLIB::OLE_F64 : 249 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 250 break; 251 case ISD::SETUGE: 252 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 253 (VT == MVT::f64) ? RTLIB::OLT_F64 : 254 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 255 break; 256 default: llvm_unreachable("Do not know how to soften this setcc!"); 257 } 258 } 259 260 // Use the target specific return value for comparions lib calls. 261 EVT RetVT = getCmpLibcallReturnType(); 262 SDValue Ops[2] = {NewLHS, NewRHS}; 263 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 264 dl).first; 265 NewRHS = DAG.getConstant(0, dl, RetVT); 266 267 CCCode = getCmpLibcallCC(LC1); 268 if (ShouldInvertCC) 269 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 270 271 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 272 SDValue Tmp = DAG.getNode( 273 ISD::SETCC, dl, 274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 275 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 276 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 277 dl).first; 278 NewLHS = DAG.getNode( 279 ISD::SETCC, dl, 280 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 281 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 282 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 283 NewRHS = SDValue(); 284 } 285 } 286 287 /// Return the entry encoding for a jump table in the current function. The 288 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 289 unsigned TargetLowering::getJumpTableEncoding() const { 290 // In non-pic modes, just use the address of a block. 291 if (!isPositionIndependent()) 292 return MachineJumpTableInfo::EK_BlockAddress; 293 294 // In PIC mode, if the target supports a GPRel32 directive, use it. 295 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 296 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 297 298 // Otherwise, use a label difference. 299 return MachineJumpTableInfo::EK_LabelDifference32; 300 } 301 302 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 303 SelectionDAG &DAG) const { 304 // If our PIC model is GP relative, use the global offset table as the base. 305 unsigned JTEncoding = getJumpTableEncoding(); 306 307 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 308 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 309 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 310 311 return Table; 312 } 313 314 /// This returns the relocation base for the given PIC jumptable, the same as 315 /// getPICJumpTableRelocBase, but as an MCExpr. 316 const MCExpr * 317 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 318 unsigned JTI,MCContext &Ctx) const{ 319 // The normal PIC reloc base is the label at the start of the jump table. 320 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 321 } 322 323 bool 324 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 325 const TargetMachine &TM = getTargetMachine(); 326 const GlobalValue *GV = GA->getGlobal(); 327 328 // If the address is not even local to this DSO we will have to load it from 329 // a got and then add the offset. 330 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 331 return false; 332 333 // If the code is position independent we will have to add a base register. 334 if (isPositionIndependent()) 335 return false; 336 337 // Otherwise we can do it. 338 return true; 339 } 340 341 //===----------------------------------------------------------------------===// 342 // Optimization Methods 343 //===----------------------------------------------------------------------===// 344 345 /// If the specified instruction has a constant integer operand and there are 346 /// bits set in that constant that are not demanded, then clear those bits and 347 /// return true. 348 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 349 TargetLoweringOpt &TLO) const { 350 SelectionDAG &DAG = TLO.DAG; 351 SDLoc DL(Op); 352 unsigned Opcode = Op.getOpcode(); 353 354 // Do target-specific constant optimization. 355 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 356 return TLO.New.getNode(); 357 358 // FIXME: ISD::SELECT, ISD::SELECT_CC 359 switch (Opcode) { 360 default: 361 break; 362 case ISD::XOR: 363 case ISD::AND: 364 case ISD::OR: { 365 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 366 if (!Op1C) 367 return false; 368 369 // If this is a 'not' op, don't touch it because that's a canonical form. 370 const APInt &C = Op1C->getAPIntValue(); 371 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 372 return false; 373 374 if (!C.isSubsetOf(Demanded)) { 375 EVT VT = Op.getValueType(); 376 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 377 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 378 return TLO.CombineTo(Op, NewOp); 379 } 380 381 break; 382 } 383 } 384 385 return false; 386 } 387 388 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 389 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 390 /// generalized for targets with other types of implicit widening casts. 391 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 392 const APInt &Demanded, 393 TargetLoweringOpt &TLO) const { 394 assert(Op.getNumOperands() == 2 && 395 "ShrinkDemandedOp only supports binary operators!"); 396 assert(Op.getNode()->getNumValues() == 1 && 397 "ShrinkDemandedOp only supports nodes with one result!"); 398 399 SelectionDAG &DAG = TLO.DAG; 400 SDLoc dl(Op); 401 402 // Early return, as this function cannot handle vector types. 403 if (Op.getValueType().isVector()) 404 return false; 405 406 // Don't do this if the node has another user, which may require the 407 // full value. 408 if (!Op.getNode()->hasOneUse()) 409 return false; 410 411 // Search for the smallest integer type with free casts to and from 412 // Op's type. For expedience, just check power-of-2 integer types. 413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 414 unsigned DemandedSize = Demanded.getActiveBits(); 415 unsigned SmallVTBits = DemandedSize; 416 if (!isPowerOf2_32(SmallVTBits)) 417 SmallVTBits = NextPowerOf2(SmallVTBits); 418 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 419 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 420 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 421 TLI.isZExtFree(SmallVT, Op.getValueType())) { 422 // We found a type with free casts. 423 SDValue X = DAG.getNode( 424 Op.getOpcode(), dl, SmallVT, 425 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 426 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 427 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 428 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 429 return TLO.CombineTo(Op, Z); 430 } 431 } 432 return false; 433 } 434 435 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 436 DAGCombinerInfo &DCI) const { 437 SelectionDAG &DAG = DCI.DAG; 438 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 439 !DCI.isBeforeLegalizeOps()); 440 KnownBits Known; 441 442 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 443 if (Simplified) { 444 DCI.AddToWorklist(Op.getNode()); 445 DCI.CommitTargetLoweringOpt(TLO); 446 } 447 return Simplified; 448 } 449 450 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 451 KnownBits &Known, 452 TargetLoweringOpt &TLO, 453 unsigned Depth, 454 bool AssumeSingleUse) const { 455 EVT VT = Op.getValueType(); 456 APInt DemandedElts = VT.isVector() 457 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 458 : APInt(1, 1); 459 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 460 AssumeSingleUse); 461 } 462 463 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 464 /// result of Op are ever used downstream. If we can use this information to 465 /// simplify Op, create a new simplified DAG node and return true, returning the 466 /// original and new nodes in Old and New. Otherwise, analyze the expression and 467 /// return a mask of Known bits for the expression (used to simplify the 468 /// caller). The Known bits may only be accurate for those bits in the 469 /// OriginalDemandedBits and OriginalDemandedElts. 470 bool TargetLowering::SimplifyDemandedBits( 471 SDValue Op, const APInt &OriginalDemandedBits, 472 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 473 unsigned Depth, bool AssumeSingleUse) const { 474 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 475 assert(Op.getScalarValueSizeInBits() == BitWidth && 476 "Mask size mismatches value type size!"); 477 478 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 479 assert((!Op.getValueType().isVector() || 480 NumElts == Op.getValueType().getVectorNumElements()) && 481 "Unexpected vector size"); 482 483 APInt DemandedBits = OriginalDemandedBits; 484 APInt DemandedElts = OriginalDemandedElts; 485 SDLoc dl(Op); 486 auto &DL = TLO.DAG.getDataLayout(); 487 488 // Don't know anything. 489 Known = KnownBits(BitWidth); 490 491 if (Op.getOpcode() == ISD::Constant) { 492 // We know all of the bits for a constant! 493 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 494 Known.Zero = ~Known.One; 495 return false; 496 } 497 498 // Other users may use these bits. 499 EVT VT = Op.getValueType(); 500 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 501 if (Depth != 0) { 502 // If not at the root, Just compute the Known bits to 503 // simplify things downstream. 504 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 505 return false; 506 } 507 // If this is the root being simplified, allow it to have multiple uses, 508 // just set the DemandedBits/Elts to all bits. 509 DemandedBits = APInt::getAllOnesValue(BitWidth); 510 DemandedElts = APInt::getAllOnesValue(NumElts); 511 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 512 // Not demanding any bits/elts from Op. 513 if (!Op.isUndef()) 514 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 515 return false; 516 } else if (Depth == 6) { // Limit search depth. 517 return false; 518 } 519 520 KnownBits Known2, KnownOut; 521 switch (Op.getOpcode()) { 522 case ISD::BUILD_VECTOR: 523 // Collect the known bits that are shared by every constant vector element. 524 Known.Zero.setAllBits(); Known.One.setAllBits(); 525 for (SDValue SrcOp : Op->ops()) { 526 if (!isa<ConstantSDNode>(SrcOp)) { 527 // We can only handle all constant values - bail out with no known bits. 528 Known = KnownBits(BitWidth); 529 return false; 530 } 531 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 532 Known2.Zero = ~Known2.One; 533 534 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 535 if (Known2.One.getBitWidth() != BitWidth) { 536 assert(Known2.getBitWidth() > BitWidth && 537 "Expected BUILD_VECTOR implicit truncation"); 538 Known2 = Known2.trunc(BitWidth); 539 } 540 541 // Known bits are the values that are shared by every element. 542 // TODO: support per-element known bits. 543 Known.One &= Known2.One; 544 Known.Zero &= Known2.Zero; 545 } 546 return false; // Don't fall through, will infinitely loop. 547 case ISD::CONCAT_VECTORS: { 548 Known.Zero.setAllBits(); 549 Known.One.setAllBits(); 550 EVT SubVT = Op.getOperand(0).getValueType(); 551 unsigned NumSubVecs = Op.getNumOperands(); 552 unsigned NumSubElts = SubVT.getVectorNumElements(); 553 for (unsigned i = 0; i != NumSubVecs; ++i) { 554 APInt DemandedSubElts = 555 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 556 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 557 Known2, TLO, Depth + 1)) 558 return true; 559 // Known bits are shared by every demanded subvector element. 560 if (!!DemandedSubElts) { 561 Known.One &= Known2.One; 562 Known.Zero &= Known2.Zero; 563 } 564 } 565 break; 566 } 567 case ISD::VECTOR_SHUFFLE: { 568 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 569 570 // Collect demanded elements from shuffle operands.. 571 APInt DemandedLHS(NumElts, 0); 572 APInt DemandedRHS(NumElts, 0); 573 for (unsigned i = 0; i != NumElts; ++i) { 574 if (!DemandedElts[i]) 575 continue; 576 int M = ShuffleMask[i]; 577 if (M < 0) { 578 // For UNDEF elements, we don't know anything about the common state of 579 // the shuffle result. 580 DemandedLHS.clearAllBits(); 581 DemandedRHS.clearAllBits(); 582 break; 583 } 584 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 585 if (M < (int)NumElts) 586 DemandedLHS.setBit(M); 587 else 588 DemandedRHS.setBit(M - NumElts); 589 } 590 591 if (!!DemandedLHS || !!DemandedRHS) { 592 Known.Zero.setAllBits(); 593 Known.One.setAllBits(); 594 if (!!DemandedLHS) { 595 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 596 Known2, TLO, Depth + 1)) 597 return true; 598 Known.One &= Known2.One; 599 Known.Zero &= Known2.Zero; 600 } 601 if (!!DemandedRHS) { 602 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 603 Known2, TLO, Depth + 1)) 604 return true; 605 Known.One &= Known2.One; 606 Known.Zero &= Known2.Zero; 607 } 608 } 609 break; 610 } 611 case ISD::AND: { 612 SDValue Op0 = Op.getOperand(0); 613 SDValue Op1 = Op.getOperand(1); 614 615 // If the RHS is a constant, check to see if the LHS would be zero without 616 // using the bits from the RHS. Below, we use knowledge about the RHS to 617 // simplify the LHS, here we're using information from the LHS to simplify 618 // the RHS. 619 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 620 // Do not increment Depth here; that can cause an infinite loop. 621 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 622 // If the LHS already has zeros where RHSC does, this 'and' is dead. 623 if ((LHSKnown.Zero & DemandedBits) == 624 (~RHSC->getAPIntValue() & DemandedBits)) 625 return TLO.CombineTo(Op, Op0); 626 627 // If any of the set bits in the RHS are known zero on the LHS, shrink 628 // the constant. 629 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 630 return true; 631 632 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 633 // constant, but if this 'and' is only clearing bits that were just set by 634 // the xor, then this 'and' can be eliminated by shrinking the mask of 635 // the xor. For example, for a 32-bit X: 636 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 637 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 638 LHSKnown.One == ~RHSC->getAPIntValue()) { 639 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 640 return TLO.CombineTo(Op, Xor); 641 } 642 } 643 644 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 645 Depth + 1)) 646 return true; 647 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 648 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 649 Known2, TLO, Depth + 1)) 650 return true; 651 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 652 653 // If all of the demanded bits are known one on one side, return the other. 654 // These bits cannot contribute to the result of the 'and'. 655 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 656 return TLO.CombineTo(Op, Op0); 657 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 658 return TLO.CombineTo(Op, Op1); 659 // If all of the demanded bits in the inputs are known zeros, return zero. 660 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 661 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 662 // If the RHS is a constant, see if we can simplify it. 663 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 664 return true; 665 // If the operation can be done in a smaller type, do so. 666 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 667 return true; 668 669 // Output known-1 bits are only known if set in both the LHS & RHS. 670 Known.One &= Known2.One; 671 // Output known-0 are known to be clear if zero in either the LHS | RHS. 672 Known.Zero |= Known2.Zero; 673 break; 674 } 675 case ISD::OR: { 676 SDValue Op0 = Op.getOperand(0); 677 SDValue Op1 = Op.getOperand(1); 678 679 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 680 Depth + 1)) 681 return true; 682 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 683 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 684 Known2, TLO, Depth + 1)) 685 return true; 686 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 687 688 // If all of the demanded bits are known zero on one side, return the other. 689 // These bits cannot contribute to the result of the 'or'. 690 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 691 return TLO.CombineTo(Op, Op0); 692 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 693 return TLO.CombineTo(Op, Op1); 694 // If the RHS is a constant, see if we can simplify it. 695 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 696 return true; 697 // If the operation can be done in a smaller type, do so. 698 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 699 return true; 700 701 // Output known-0 bits are only known if clear in both the LHS & RHS. 702 Known.Zero &= Known2.Zero; 703 // Output known-1 are known to be set if set in either the LHS | RHS. 704 Known.One |= Known2.One; 705 break; 706 } 707 case ISD::XOR: { 708 SDValue Op0 = Op.getOperand(0); 709 SDValue Op1 = Op.getOperand(1); 710 711 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 712 Depth + 1)) 713 return true; 714 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 715 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 716 Depth + 1)) 717 return true; 718 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 719 720 // If all of the demanded bits are known zero on one side, return the other. 721 // These bits cannot contribute to the result of the 'xor'. 722 if (DemandedBits.isSubsetOf(Known.Zero)) 723 return TLO.CombineTo(Op, Op0); 724 if (DemandedBits.isSubsetOf(Known2.Zero)) 725 return TLO.CombineTo(Op, Op1); 726 // If the operation can be done in a smaller type, do so. 727 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 728 return true; 729 730 // If all of the unknown bits are known to be zero on one side or the other 731 // (but not both) turn this into an *inclusive* or. 732 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 733 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 734 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 735 736 // Output known-0 bits are known if clear or set in both the LHS & RHS. 737 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 738 // Output known-1 are known to be set if set in only one of the LHS, RHS. 739 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 740 741 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 742 // If one side is a constant, and all of the known set bits on the other 743 // side are also set in the constant, turn this into an AND, as we know 744 // the bits will be cleared. 745 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 746 // NB: it is okay if more bits are known than are requested 747 if (C->getAPIntValue() == Known2.One) { 748 SDValue ANDC = 749 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 750 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 751 } 752 753 // If the RHS is a constant, see if we can change it. Don't alter a -1 754 // constant because that's a 'not' op, and that is better for combining 755 // and codegen. 756 if (!C->isAllOnesValue()) { 757 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 758 // We're flipping all demanded bits. Flip the undemanded bits too. 759 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 760 return TLO.CombineTo(Op, New); 761 } 762 // If we can't turn this into a 'not', try to shrink the constant. 763 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 764 return true; 765 } 766 } 767 768 Known = std::move(KnownOut); 769 break; 770 } 771 case ISD::SELECT: 772 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 773 Depth + 1)) 774 return true; 775 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 776 Depth + 1)) 777 return true; 778 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 779 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 780 781 // If the operands are constants, see if we can simplify them. 782 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 783 return true; 784 785 // Only known if known in both the LHS and RHS. 786 Known.One &= Known2.One; 787 Known.Zero &= Known2.Zero; 788 break; 789 case ISD::SELECT_CC: 790 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 791 Depth + 1)) 792 return true; 793 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 794 Depth + 1)) 795 return true; 796 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 797 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 798 799 // If the operands are constants, see if we can simplify them. 800 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 801 return true; 802 803 // Only known if known in both the LHS and RHS. 804 Known.One &= Known2.One; 805 Known.Zero &= Known2.Zero; 806 break; 807 case ISD::SETCC: { 808 SDValue Op0 = Op.getOperand(0); 809 SDValue Op1 = Op.getOperand(1); 810 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 811 // If (1) we only need the sign-bit, (2) the setcc operands are the same 812 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 813 // -1, we may be able to bypass the setcc. 814 if (DemandedBits.isSignMask() && 815 Op0.getScalarValueSizeInBits() == BitWidth && 816 getBooleanContents(VT) == 817 BooleanContent::ZeroOrNegativeOneBooleanContent) { 818 // If we're testing X < 0, then this compare isn't needed - just use X! 819 // FIXME: We're limiting to integer types here, but this should also work 820 // if we don't care about FP signed-zero. The use of SETLT with FP means 821 // that we don't care about NaNs. 822 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 823 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 824 return TLO.CombineTo(Op, Op0); 825 826 // TODO: Should we check for other forms of sign-bit comparisons? 827 // Examples: X <= -1, X >= 0 828 } 829 if (getBooleanContents(Op0.getValueType()) == 830 TargetLowering::ZeroOrOneBooleanContent && 831 BitWidth > 1) 832 Known.Zero.setBitsFrom(1); 833 break; 834 } 835 case ISD::SHL: { 836 SDValue Op0 = Op.getOperand(0); 837 SDValue Op1 = Op.getOperand(1); 838 839 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 840 // If the shift count is an invalid immediate, don't do anything. 841 if (SA->getAPIntValue().uge(BitWidth)) 842 break; 843 844 unsigned ShAmt = SA->getZExtValue(); 845 846 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 847 // single shift. We can do this if the bottom bits (which are shifted 848 // out) are never demanded. 849 if (Op0.getOpcode() == ISD::SRL) { 850 if (ShAmt && 851 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 852 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 853 if (SA2->getAPIntValue().ult(BitWidth)) { 854 unsigned C1 = SA2->getZExtValue(); 855 unsigned Opc = ISD::SHL; 856 int Diff = ShAmt - C1; 857 if (Diff < 0) { 858 Diff = -Diff; 859 Opc = ISD::SRL; 860 } 861 862 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 863 return TLO.CombineTo( 864 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 865 } 866 } 867 } 868 } 869 870 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, 871 Known, TLO, Depth + 1)) 872 return true; 873 874 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 875 // are not demanded. This will likely allow the anyext to be folded away. 876 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 877 SDValue InnerOp = Op0.getOperand(0); 878 EVT InnerVT = InnerOp.getValueType(); 879 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 880 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 881 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 882 EVT ShTy = getShiftAmountTy(InnerVT, DL); 883 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 884 ShTy = InnerVT; 885 SDValue NarrowShl = 886 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 887 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 888 return TLO.CombineTo( 889 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 890 } 891 // Repeat the SHL optimization above in cases where an extension 892 // intervenes: (shl (anyext (shr x, c1)), c2) to 893 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 894 // aren't demanded (as above) and that the shifted upper c1 bits of 895 // x aren't demanded. 896 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 897 InnerOp.hasOneUse()) { 898 if (ConstantSDNode *SA2 = 899 isConstOrConstSplat(InnerOp.getOperand(1))) { 900 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 901 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 902 DemandedBits.getActiveBits() <= 903 (InnerBits - InnerShAmt + ShAmt) && 904 DemandedBits.countTrailingZeros() >= ShAmt) { 905 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 906 Op1.getValueType()); 907 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 908 InnerOp.getOperand(0)); 909 return TLO.CombineTo( 910 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 911 } 912 } 913 } 914 } 915 916 Known.Zero <<= ShAmt; 917 Known.One <<= ShAmt; 918 // low bits known zero. 919 Known.Zero.setLowBits(ShAmt); 920 } 921 break; 922 } 923 case ISD::SRL: { 924 SDValue Op0 = Op.getOperand(0); 925 SDValue Op1 = Op.getOperand(1); 926 927 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 928 // If the shift count is an invalid immediate, don't do anything. 929 if (SA->getAPIntValue().uge(BitWidth)) 930 break; 931 932 unsigned ShAmt = SA->getZExtValue(); 933 APInt InDemandedMask = (DemandedBits << ShAmt); 934 935 // If the shift is exact, then it does demand the low bits (and knows that 936 // they are zero). 937 if (Op->getFlags().hasExact()) 938 InDemandedMask.setLowBits(ShAmt); 939 940 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 941 // single shift. We can do this if the top bits (which are shifted out) 942 // are never demanded. 943 if (Op0.getOpcode() == ISD::SHL) { 944 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 945 if (ShAmt && 946 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 947 if (SA2->getAPIntValue().ult(BitWidth)) { 948 unsigned C1 = SA2->getZExtValue(); 949 unsigned Opc = ISD::SRL; 950 int Diff = ShAmt - C1; 951 if (Diff < 0) { 952 Diff = -Diff; 953 Opc = ISD::SHL; 954 } 955 956 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 957 return TLO.CombineTo( 958 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 959 } 960 } 961 } 962 } 963 964 // Compute the new bits that are at the top now. 965 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 966 Depth + 1)) 967 return true; 968 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 969 Known.Zero.lshrInPlace(ShAmt); 970 Known.One.lshrInPlace(ShAmt); 971 972 Known.Zero.setHighBits(ShAmt); // High bits known zero. 973 } 974 break; 975 } 976 case ISD::SRA: { 977 SDValue Op0 = Op.getOperand(0); 978 SDValue Op1 = Op.getOperand(1); 979 980 // If this is an arithmetic shift right and only the low-bit is set, we can 981 // always convert this into a logical shr, even if the shift amount is 982 // variable. The low bit of the shift cannot be an input sign bit unless 983 // the shift amount is >= the size of the datatype, which is undefined. 984 if (DemandedBits.isOneValue()) 985 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 986 987 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 988 // If the shift count is an invalid immediate, don't do anything. 989 if (SA->getAPIntValue().uge(BitWidth)) 990 break; 991 992 unsigned ShAmt = SA->getZExtValue(); 993 APInt InDemandedMask = (DemandedBits << ShAmt); 994 995 // If the shift is exact, then it does demand the low bits (and knows that 996 // they are zero). 997 if (Op->getFlags().hasExact()) 998 InDemandedMask.setLowBits(ShAmt); 999 1000 // If any of the demanded bits are produced by the sign extension, we also 1001 // demand the input sign bit. 1002 if (DemandedBits.countLeadingZeros() < ShAmt) 1003 InDemandedMask.setSignBit(); 1004 1005 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1006 Depth + 1)) 1007 return true; 1008 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1009 Known.Zero.lshrInPlace(ShAmt); 1010 Known.One.lshrInPlace(ShAmt); 1011 1012 // If the input sign bit is known to be zero, or if none of the top bits 1013 // are demanded, turn this into an unsigned shift right. 1014 if (Known.Zero[BitWidth - ShAmt - 1] || 1015 DemandedBits.countLeadingZeros() >= ShAmt) { 1016 SDNodeFlags Flags; 1017 Flags.setExact(Op->getFlags().hasExact()); 1018 return TLO.CombineTo( 1019 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1020 } 1021 1022 int Log2 = DemandedBits.exactLogBase2(); 1023 if (Log2 >= 0) { 1024 // The bit must come from the sign. 1025 SDValue NewSA = 1026 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1027 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1028 } 1029 1030 if (Known.One[BitWidth - ShAmt - 1]) 1031 // New bits are known one. 1032 Known.One.setHighBits(ShAmt); 1033 } 1034 break; 1035 } 1036 case ISD::FSHL: 1037 case ISD::FSHR: { 1038 SDValue Op0 = Op.getOperand(0); 1039 SDValue Op1 = Op.getOperand(1); 1040 SDValue Op2 = Op.getOperand(2); 1041 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1042 1043 if (ConstantSDNode *SA = isConstOrConstSplat(Op2)) { 1044 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1045 1046 // For fshl, 0-shift returns the 1st arg. 1047 // For fshr, 0-shift returns the 2nd arg. 1048 if (Amt == 0) { 1049 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1050 Known, TLO, Depth + 1)) 1051 return true; 1052 break; 1053 } 1054 1055 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1056 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1057 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1058 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1059 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1060 Depth + 1)) 1061 return true; 1062 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1063 Depth + 1)) 1064 return true; 1065 1066 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1067 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1068 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1069 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1070 Known.One |= Known2.One; 1071 Known.Zero |= Known2.Zero; 1072 } 1073 break; 1074 } 1075 case ISD::SIGN_EXTEND_INREG: { 1076 SDValue Op0 = Op.getOperand(0); 1077 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1078 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1079 1080 // If we only care about the highest bit, don't bother shifting right. 1081 if (DemandedBits.isSignMask()) { 1082 bool AlreadySignExtended = 1083 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1084 // However if the input is already sign extended we expect the sign 1085 // extension to be dropped altogether later and do not simplify. 1086 if (!AlreadySignExtended) { 1087 // Compute the correct shift amount type, which must be getShiftAmountTy 1088 // for scalar types after legalization. 1089 EVT ShiftAmtTy = VT; 1090 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1091 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1092 1093 SDValue ShiftAmt = 1094 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1095 return TLO.CombineTo(Op, 1096 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1097 } 1098 } 1099 1100 // If none of the extended bits are demanded, eliminate the sextinreg. 1101 if (DemandedBits.getActiveBits() <= ExVTBits) 1102 return TLO.CombineTo(Op, Op0); 1103 1104 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1105 1106 // Since the sign extended bits are demanded, we know that the sign 1107 // bit is demanded. 1108 InputDemandedBits.setBit(ExVTBits - 1); 1109 1110 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1111 return true; 1112 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1113 1114 // If the sign bit of the input is known set or clear, then we know the 1115 // top bits of the result. 1116 1117 // If the input sign bit is known zero, convert this into a zero extension. 1118 if (Known.Zero[ExVTBits - 1]) 1119 return TLO.CombineTo( 1120 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1121 1122 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1123 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1124 Known.One.setBitsFrom(ExVTBits); 1125 Known.Zero &= Mask; 1126 } else { // Input sign bit unknown 1127 Known.Zero &= Mask; 1128 Known.One &= Mask; 1129 } 1130 break; 1131 } 1132 case ISD::BUILD_PAIR: { 1133 EVT HalfVT = Op.getOperand(0).getValueType(); 1134 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1135 1136 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1137 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1138 1139 KnownBits KnownLo, KnownHi; 1140 1141 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1142 return true; 1143 1144 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1145 return true; 1146 1147 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1148 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1149 1150 Known.One = KnownLo.One.zext(BitWidth) | 1151 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1152 break; 1153 } 1154 case ISD::ZERO_EXTEND: { 1155 SDValue Src = Op.getOperand(0); 1156 unsigned InBits = Src.getScalarValueSizeInBits(); 1157 1158 // If none of the top bits are demanded, convert this into an any_extend. 1159 if (DemandedBits.getActiveBits() <= InBits) 1160 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1161 1162 APInt InDemandedBits = DemandedBits.trunc(InBits); 1163 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1164 return true; 1165 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1166 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 1167 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */); 1168 break; 1169 } 1170 case ISD::SIGN_EXTEND: { 1171 SDValue Src = Op.getOperand(0); 1172 unsigned InBits = Src.getScalarValueSizeInBits(); 1173 1174 // If none of the top bits are demanded, convert this into an any_extend. 1175 if (DemandedBits.getActiveBits() <= InBits) 1176 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1177 1178 // Since some of the sign extended bits are demanded, we know that the sign 1179 // bit is demanded. 1180 APInt InDemandedBits = DemandedBits.trunc(InBits); 1181 InDemandedBits.setBit(InBits - 1); 1182 1183 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1184 return true; 1185 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1186 // If the sign bit is known one, the top bits match. 1187 Known = Known.sext(BitWidth); 1188 1189 // If the sign bit is known zero, convert this to a zero extend. 1190 if (Known.isNonNegative()) 1191 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1192 break; 1193 } 1194 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1195 // TODO - merge this with SIGN_EXTEND above? 1196 SDValue Src = Op.getOperand(0); 1197 unsigned InBits = Src.getScalarValueSizeInBits(); 1198 1199 APInt InDemandedBits = DemandedBits.trunc(InBits); 1200 1201 // If some of the sign extended bits are demanded, we know that the sign 1202 // bit is demanded. 1203 if (InBits < DemandedBits.getActiveBits()) 1204 InDemandedBits.setBit(InBits - 1); 1205 1206 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1207 return true; 1208 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1209 // If the sign bit is known one, the top bits match. 1210 Known = Known.sext(BitWidth); 1211 break; 1212 } 1213 case ISD::ANY_EXTEND: { 1214 SDValue Src = Op.getOperand(0); 1215 unsigned InBits = Src.getScalarValueSizeInBits(); 1216 APInt InDemandedBits = DemandedBits.trunc(InBits); 1217 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1218 return true; 1219 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1220 Known = Known.zext(BitWidth, false /* => any extend */); 1221 break; 1222 } 1223 case ISD::TRUNCATE: { 1224 SDValue Src = Op.getOperand(0); 1225 1226 // Simplify the input, using demanded bit information, and compute the known 1227 // zero/one bits live out. 1228 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1229 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1230 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1231 return true; 1232 Known = Known.trunc(BitWidth); 1233 1234 // If the input is only used by this truncate, see if we can shrink it based 1235 // on the known demanded bits. 1236 if (Src.getNode()->hasOneUse()) { 1237 switch (Src.getOpcode()) { 1238 default: 1239 break; 1240 case ISD::SRL: 1241 // Shrink SRL by a constant if none of the high bits shifted in are 1242 // demanded. 1243 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1244 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1245 // undesirable. 1246 break; 1247 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1248 if (!ShAmt) 1249 break; 1250 SDValue Shift = Src.getOperand(1); 1251 if (TLO.LegalTypes()) { 1252 uint64_t ShVal = ShAmt->getZExtValue(); 1253 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1254 } 1255 1256 if (ShAmt->getZExtValue() < BitWidth) { 1257 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1258 OperandBitWidth - BitWidth); 1259 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1260 HighBits = HighBits.trunc(BitWidth); 1261 1262 if (!(HighBits & DemandedBits)) { 1263 // None of the shifted in bits are needed. Add a truncate of the 1264 // shift input, then shift it. 1265 SDValue NewTrunc = 1266 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1267 return TLO.CombineTo( 1268 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1269 } 1270 } 1271 break; 1272 } 1273 } 1274 1275 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1276 break; 1277 } 1278 case ISD::AssertZext: { 1279 // AssertZext demands all of the high bits, plus any of the low bits 1280 // demanded by its users. 1281 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1282 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1283 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 1284 TLO, Depth + 1)) 1285 return true; 1286 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1287 1288 Known.Zero |= ~InMask; 1289 break; 1290 } 1291 case ISD::EXTRACT_VECTOR_ELT: { 1292 SDValue Src = Op.getOperand(0); 1293 SDValue Idx = Op.getOperand(1); 1294 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1295 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1296 1297 // Demand the bits from every vector element without a constant index. 1298 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1299 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1300 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1301 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1302 1303 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1304 // anything about the extended bits. 1305 APInt DemandedSrcBits = DemandedBits; 1306 if (BitWidth > EltBitWidth) 1307 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1308 1309 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1310 Depth + 1)) 1311 return true; 1312 1313 Known = Known2; 1314 if (BitWidth > EltBitWidth) 1315 Known = Known.zext(BitWidth, false /* => any extend */); 1316 break; 1317 } 1318 case ISD::BITCAST: { 1319 SDValue Src = Op.getOperand(0); 1320 EVT SrcVT = Src.getValueType(); 1321 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1322 1323 // If this is an FP->Int bitcast and if the sign bit is the only 1324 // thing demanded, turn this into a FGETSIGN. 1325 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1326 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1327 SrcVT.isFloatingPoint()) { 1328 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1329 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1330 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1331 SrcVT != MVT::f128) { 1332 // Cannot eliminate/lower SHL for f128 yet. 1333 EVT Ty = OpVTLegal ? VT : MVT::i32; 1334 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1335 // place. We expect the SHL to be eliminated by other optimizations. 1336 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1337 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1338 if (!OpVTLegal && OpVTSizeInBits > 32) 1339 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1340 unsigned ShVal = Op.getValueSizeInBits() - 1; 1341 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1342 return TLO.CombineTo(Op, 1343 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1344 } 1345 } 1346 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1347 // demanding the element if any bits from it are demanded. 1348 // TODO - bigendian once we have test coverage. 1349 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1350 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1351 (BitWidth % NumSrcEltBits) == 0 && 1352 TLO.DAG.getDataLayout().isLittleEndian()) { 1353 unsigned Scale = BitWidth / NumSrcEltBits; 1354 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1355 DemandedSubElts = APInt::getNullValue(Scale); 1356 for (unsigned i = 0; i != Scale; ++i) { 1357 unsigned Offset = i * NumSrcEltBits; 1358 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1359 if (!Sub.isNullValue()) 1360 DemandedSubElts.setBit(i); 1361 } 1362 return true; 1363 }; 1364 1365 APInt DemandedSubElts; 1366 if (GetDemandedSubMask(DemandedSubElts)) { 1367 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1368 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1369 1370 APInt KnownUndef, KnownZero; 1371 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1372 TLO, Depth + 1)) 1373 return true; 1374 } 1375 } 1376 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1377 // recursive call where Known may be useful to the caller. 1378 if (Depth > 0) { 1379 Known = TLO.DAG.computeKnownBits(Op, Depth); 1380 return false; 1381 } 1382 break; 1383 } 1384 case ISD::ADD: 1385 case ISD::MUL: 1386 case ISD::SUB: { 1387 // Add, Sub, and Mul don't demand any bits in positions beyond that 1388 // of the highest bit demanded of them. 1389 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1390 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1391 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1392 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 1393 Depth + 1) || 1394 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 1395 Depth + 1) || 1396 // See if the operation should be performed at a smaller bit width. 1397 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1398 SDNodeFlags Flags = Op.getNode()->getFlags(); 1399 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1400 // Disable the nsw and nuw flags. We can no longer guarantee that we 1401 // won't wrap after simplification. 1402 Flags.setNoSignedWrap(false); 1403 Flags.setNoUnsignedWrap(false); 1404 SDValue NewOp = 1405 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 1406 return TLO.CombineTo(Op, NewOp); 1407 } 1408 return true; 1409 } 1410 1411 // If we have a constant operand, we may be able to turn it into -1 if we 1412 // do not demand the high bits. This can make the constant smaller to 1413 // encode, allow more general folding, or match specialized instruction 1414 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1415 // is probably not useful (and could be detrimental). 1416 ConstantSDNode *C = isConstOrConstSplat(Op1); 1417 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1418 if (C && !C->isAllOnesValue() && !C->isOne() && 1419 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1420 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1421 // We can't guarantee that the new math op doesn't wrap, so explicitly 1422 // clear those flags to prevent folding with a potential existing node 1423 // that has those flags set. 1424 SDNodeFlags Flags; 1425 Flags.setNoSignedWrap(false); 1426 Flags.setNoUnsignedWrap(false); 1427 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1428 return TLO.CombineTo(Op, NewOp); 1429 } 1430 1431 LLVM_FALLTHROUGH; 1432 } 1433 default: 1434 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1435 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1436 Known, TLO, Depth)) 1437 return true; 1438 break; 1439 } 1440 1441 // Just use computeKnownBits to compute output bits. 1442 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1443 break; 1444 } 1445 1446 // If we know the value of all of the demanded bits, return this as a 1447 // constant. 1448 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1449 // Avoid folding to a constant if any OpaqueConstant is involved. 1450 const SDNode *N = Op.getNode(); 1451 for (SDNodeIterator I = SDNodeIterator::begin(N), 1452 E = SDNodeIterator::end(N); 1453 I != E; ++I) { 1454 SDNode *Op = *I; 1455 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1456 if (C->isOpaque()) 1457 return false; 1458 } 1459 // TODO: Handle float bits as well. 1460 if (VT.isInteger()) 1461 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1462 } 1463 1464 return false; 1465 } 1466 1467 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1468 const APInt &DemandedElts, 1469 APInt &KnownUndef, 1470 APInt &KnownZero, 1471 DAGCombinerInfo &DCI) const { 1472 SelectionDAG &DAG = DCI.DAG; 1473 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1474 !DCI.isBeforeLegalizeOps()); 1475 1476 bool Simplified = 1477 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1478 if (Simplified) { 1479 DCI.AddToWorklist(Op.getNode()); 1480 DCI.CommitTargetLoweringOpt(TLO); 1481 } 1482 return Simplified; 1483 } 1484 1485 /// Given a vector binary operation and known undefined elements for each input 1486 /// operand, compute whether each element of the output is undefined. 1487 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 1488 const APInt &UndefOp0, 1489 const APInt &UndefOp1) { 1490 EVT VT = BO.getValueType(); 1491 assert(ISD::isBinaryOp(BO.getNode()) && VT.isVector() && "Vector binop only"); 1492 1493 EVT EltVT = VT.getVectorElementType(); 1494 unsigned NumElts = VT.getVectorNumElements(); 1495 assert(UndefOp0.getBitWidth() == NumElts && 1496 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 1497 1498 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 1499 const APInt &UndefVals) { 1500 if (UndefVals[Index]) 1501 return DAG.getUNDEF(EltVT); 1502 1503 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 1504 // Try hard to make sure that the getNode() call is not creating temporary 1505 // nodes. Ignore opaque integers because they do not constant fold. 1506 SDValue Elt = BV->getOperand(Index); 1507 auto *C = dyn_cast<ConstantSDNode>(Elt); 1508 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 1509 return Elt; 1510 } 1511 1512 return SDValue(); 1513 }; 1514 1515 APInt KnownUndef = APInt::getNullValue(NumElts); 1516 for (unsigned i = 0; i != NumElts; ++i) { 1517 // If both inputs for this element are either constant or undef and match 1518 // the element type, compute the constant/undef result for this element of 1519 // the vector. 1520 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 1521 // not handle FP constants. The code within getNode() should be refactored 1522 // to avoid the danger of creating a bogus temporary node here. 1523 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 1524 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 1525 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 1526 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 1527 KnownUndef.setBit(i); 1528 } 1529 return KnownUndef; 1530 } 1531 1532 bool TargetLowering::SimplifyDemandedVectorElts( 1533 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1534 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1535 bool AssumeSingleUse) const { 1536 EVT VT = Op.getValueType(); 1537 APInt DemandedElts = DemandedEltMask; 1538 unsigned NumElts = DemandedElts.getBitWidth(); 1539 assert(VT.isVector() && "Expected vector op"); 1540 assert(VT.getVectorNumElements() == NumElts && 1541 "Mask size mismatches value type element count!"); 1542 1543 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1544 1545 // Undef operand. 1546 if (Op.isUndef()) { 1547 KnownUndef.setAllBits(); 1548 return false; 1549 } 1550 1551 // If Op has other users, assume that all elements are needed. 1552 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1553 DemandedElts.setAllBits(); 1554 1555 // Not demanding any elements from Op. 1556 if (DemandedElts == 0) { 1557 KnownUndef.setAllBits(); 1558 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1559 } 1560 1561 // Limit search depth. 1562 if (Depth >= 6) 1563 return false; 1564 1565 SDLoc DL(Op); 1566 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1567 1568 switch (Op.getOpcode()) { 1569 case ISD::SCALAR_TO_VECTOR: { 1570 if (!DemandedElts[0]) { 1571 KnownUndef.setAllBits(); 1572 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1573 } 1574 KnownUndef.setHighBits(NumElts - 1); 1575 break; 1576 } 1577 case ISD::BITCAST: { 1578 SDValue Src = Op.getOperand(0); 1579 EVT SrcVT = Src.getValueType(); 1580 1581 // We only handle vectors here. 1582 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1583 if (!SrcVT.isVector()) 1584 break; 1585 1586 // Fast handling of 'identity' bitcasts. 1587 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1588 if (NumSrcElts == NumElts) 1589 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1590 KnownZero, TLO, Depth + 1); 1591 1592 APInt SrcZero, SrcUndef; 1593 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1594 1595 // Bitcast from 'large element' src vector to 'small element' vector, we 1596 // must demand a source element if any DemandedElt maps to it. 1597 if ((NumElts % NumSrcElts) == 0) { 1598 unsigned Scale = NumElts / NumSrcElts; 1599 for (unsigned i = 0; i != NumElts; ++i) 1600 if (DemandedElts[i]) 1601 SrcDemandedElts.setBit(i / Scale); 1602 1603 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1604 TLO, Depth + 1)) 1605 return true; 1606 1607 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1608 // of the large element. 1609 // TODO - bigendian once we have test coverage. 1610 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1611 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1612 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1613 for (unsigned i = 0; i != NumElts; ++i) 1614 if (DemandedElts[i]) { 1615 unsigned Ofs = (i % Scale) * EltSizeInBits; 1616 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1617 } 1618 1619 KnownBits Known; 1620 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1621 return true; 1622 } 1623 1624 // If the src element is zero/undef then all the output elements will be - 1625 // only demanded elements are guaranteed to be correct. 1626 for (unsigned i = 0; i != NumSrcElts; ++i) { 1627 if (SrcDemandedElts[i]) { 1628 if (SrcZero[i]) 1629 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1630 if (SrcUndef[i]) 1631 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1632 } 1633 } 1634 } 1635 1636 // Bitcast from 'small element' src vector to 'large element' vector, we 1637 // demand all smaller source elements covered by the larger demanded element 1638 // of this vector. 1639 if ((NumSrcElts % NumElts) == 0) { 1640 unsigned Scale = NumSrcElts / NumElts; 1641 for (unsigned i = 0; i != NumElts; ++i) 1642 if (DemandedElts[i]) 1643 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1644 1645 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1646 TLO, Depth + 1)) 1647 return true; 1648 1649 // If all the src elements covering an output element are zero/undef, then 1650 // the output element will be as well, assuming it was demanded. 1651 for (unsigned i = 0; i != NumElts; ++i) { 1652 if (DemandedElts[i]) { 1653 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1654 KnownZero.setBit(i); 1655 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1656 KnownUndef.setBit(i); 1657 } 1658 } 1659 } 1660 break; 1661 } 1662 case ISD::BUILD_VECTOR: { 1663 // Check all elements and simplify any unused elements with UNDEF. 1664 if (!DemandedElts.isAllOnesValue()) { 1665 // Don't simplify BROADCASTS. 1666 if (llvm::any_of(Op->op_values(), 1667 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1668 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1669 bool Updated = false; 1670 for (unsigned i = 0; i != NumElts; ++i) { 1671 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1672 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1673 KnownUndef.setBit(i); 1674 Updated = true; 1675 } 1676 } 1677 if (Updated) 1678 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1679 } 1680 } 1681 for (unsigned i = 0; i != NumElts; ++i) { 1682 SDValue SrcOp = Op.getOperand(i); 1683 if (SrcOp.isUndef()) { 1684 KnownUndef.setBit(i); 1685 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1686 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1687 KnownZero.setBit(i); 1688 } 1689 } 1690 break; 1691 } 1692 case ISD::CONCAT_VECTORS: { 1693 EVT SubVT = Op.getOperand(0).getValueType(); 1694 unsigned NumSubVecs = Op.getNumOperands(); 1695 unsigned NumSubElts = SubVT.getVectorNumElements(); 1696 for (unsigned i = 0; i != NumSubVecs; ++i) { 1697 SDValue SubOp = Op.getOperand(i); 1698 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1699 APInt SubUndef, SubZero; 1700 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1701 Depth + 1)) 1702 return true; 1703 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1704 KnownZero.insertBits(SubZero, i * NumSubElts); 1705 } 1706 break; 1707 } 1708 case ISD::INSERT_SUBVECTOR: { 1709 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1710 break; 1711 SDValue Base = Op.getOperand(0); 1712 SDValue Sub = Op.getOperand(1); 1713 EVT SubVT = Sub.getValueType(); 1714 unsigned NumSubElts = SubVT.getVectorNumElements(); 1715 const APInt &Idx = Op.getConstantOperandAPInt(2); 1716 if (Idx.ugt(NumElts - NumSubElts)) 1717 break; 1718 unsigned SubIdx = Idx.getZExtValue(); 1719 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1720 APInt SubUndef, SubZero; 1721 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1722 Depth + 1)) 1723 return true; 1724 APInt BaseElts = DemandedElts; 1725 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1726 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1727 Depth + 1)) 1728 return true; 1729 KnownUndef.insertBits(SubUndef, SubIdx); 1730 KnownZero.insertBits(SubZero, SubIdx); 1731 break; 1732 } 1733 case ISD::EXTRACT_SUBVECTOR: { 1734 SDValue Src = Op.getOperand(0); 1735 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1736 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1737 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1738 // Offset the demanded elts by the subvector index. 1739 uint64_t Idx = SubIdx->getZExtValue(); 1740 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1741 APInt SrcUndef, SrcZero; 1742 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1743 Depth + 1)) 1744 return true; 1745 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1746 KnownZero = SrcZero.extractBits(NumElts, Idx); 1747 } 1748 break; 1749 } 1750 case ISD::INSERT_VECTOR_ELT: { 1751 SDValue Vec = Op.getOperand(0); 1752 SDValue Scl = Op.getOperand(1); 1753 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1754 1755 // For a legal, constant insertion index, if we don't need this insertion 1756 // then strip it, else remove it from the demanded elts. 1757 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1758 unsigned Idx = CIdx->getZExtValue(); 1759 if (!DemandedElts[Idx]) 1760 return TLO.CombineTo(Op, Vec); 1761 1762 APInt DemandedVecElts(DemandedElts); 1763 DemandedVecElts.clearBit(Idx); 1764 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1765 KnownZero, TLO, Depth + 1)) 1766 return true; 1767 1768 KnownUndef.clearBit(Idx); 1769 if (Scl.isUndef()) 1770 KnownUndef.setBit(Idx); 1771 1772 KnownZero.clearBit(Idx); 1773 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1774 KnownZero.setBit(Idx); 1775 break; 1776 } 1777 1778 APInt VecUndef, VecZero; 1779 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1780 Depth + 1)) 1781 return true; 1782 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1783 break; 1784 } 1785 case ISD::VSELECT: { 1786 // Try to transform the select condition based on the current demanded 1787 // elements. 1788 // TODO: If a condition element is undef, we can choose from one arm of the 1789 // select (and if one arm is undef, then we can propagate that to the 1790 // result). 1791 // TODO - add support for constant vselect masks (see IR version of this). 1792 APInt UnusedUndef, UnusedZero; 1793 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1794 UnusedZero, TLO, Depth + 1)) 1795 return true; 1796 1797 // See if we can simplify either vselect operand. 1798 APInt DemandedLHS(DemandedElts); 1799 APInt DemandedRHS(DemandedElts); 1800 APInt UndefLHS, ZeroLHS; 1801 APInt UndefRHS, ZeroRHS; 1802 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1803 ZeroLHS, TLO, Depth + 1)) 1804 return true; 1805 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1806 ZeroRHS, TLO, Depth + 1)) 1807 return true; 1808 1809 KnownUndef = UndefLHS & UndefRHS; 1810 KnownZero = ZeroLHS & ZeroRHS; 1811 break; 1812 } 1813 case ISD::VECTOR_SHUFFLE: { 1814 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1815 1816 // Collect demanded elements from shuffle operands.. 1817 APInt DemandedLHS(NumElts, 0); 1818 APInt DemandedRHS(NumElts, 0); 1819 for (unsigned i = 0; i != NumElts; ++i) { 1820 int M = ShuffleMask[i]; 1821 if (M < 0 || !DemandedElts[i]) 1822 continue; 1823 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1824 if (M < (int)NumElts) 1825 DemandedLHS.setBit(M); 1826 else 1827 DemandedRHS.setBit(M - NumElts); 1828 } 1829 1830 // See if we can simplify either shuffle operand. 1831 APInt UndefLHS, ZeroLHS; 1832 APInt UndefRHS, ZeroRHS; 1833 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1834 ZeroLHS, TLO, Depth + 1)) 1835 return true; 1836 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1837 ZeroRHS, TLO, Depth + 1)) 1838 return true; 1839 1840 // Simplify mask using undef elements from LHS/RHS. 1841 bool Updated = false; 1842 bool IdentityLHS = true, IdentityRHS = true; 1843 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1844 for (unsigned i = 0; i != NumElts; ++i) { 1845 int &M = NewMask[i]; 1846 if (M < 0) 1847 continue; 1848 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1849 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1850 Updated = true; 1851 M = -1; 1852 } 1853 IdentityLHS &= (M < 0) || (M == (int)i); 1854 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1855 } 1856 1857 // Update legal shuffle masks based on demanded elements if it won't reduce 1858 // to Identity which can cause premature removal of the shuffle mask. 1859 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1860 isShuffleMaskLegal(NewMask, VT)) 1861 return TLO.CombineTo(Op, 1862 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1863 Op.getOperand(1), NewMask)); 1864 1865 // Propagate undef/zero elements from LHS/RHS. 1866 for (unsigned i = 0; i != NumElts; ++i) { 1867 int M = ShuffleMask[i]; 1868 if (M < 0) { 1869 KnownUndef.setBit(i); 1870 } else if (M < (int)NumElts) { 1871 if (UndefLHS[M]) 1872 KnownUndef.setBit(i); 1873 if (ZeroLHS[M]) 1874 KnownZero.setBit(i); 1875 } else { 1876 if (UndefRHS[M - NumElts]) 1877 KnownUndef.setBit(i); 1878 if (ZeroRHS[M - NumElts]) 1879 KnownZero.setBit(i); 1880 } 1881 } 1882 break; 1883 } 1884 case ISD::SIGN_EXTEND_VECTOR_INREG: 1885 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1886 APInt SrcUndef, SrcZero; 1887 SDValue Src = Op.getOperand(0); 1888 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1889 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1890 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 1891 Depth + 1)) 1892 return true; 1893 KnownZero = SrcZero.zextOrTrunc(NumElts); 1894 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1895 1896 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1897 // zext(undef) upper bits are guaranteed to be zero. 1898 if (DemandedElts.isSubsetOf(KnownUndef)) 1899 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1900 KnownUndef.clearAllBits(); 1901 } 1902 break; 1903 } 1904 1905 // TODO: There are more binop opcodes that could be handled here - MUL, MIN, 1906 // MAX, saturated math, etc. 1907 case ISD::OR: 1908 case ISD::XOR: 1909 case ISD::ADD: 1910 case ISD::SUB: 1911 case ISD::FADD: 1912 case ISD::FSUB: 1913 case ISD::FMUL: 1914 case ISD::FDIV: 1915 case ISD::FREM: { 1916 APInt UndefRHS, ZeroRHS; 1917 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS, 1918 ZeroRHS, TLO, Depth + 1)) 1919 return true; 1920 APInt UndefLHS, ZeroLHS; 1921 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS, 1922 ZeroLHS, TLO, Depth + 1)) 1923 return true; 1924 1925 KnownZero = ZeroLHS & ZeroRHS; 1926 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 1927 break; 1928 } 1929 case ISD::AND: { 1930 APInt SrcUndef, SrcZero; 1931 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1932 SrcZero, TLO, Depth + 1)) 1933 return true; 1934 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1935 KnownZero, TLO, Depth + 1)) 1936 return true; 1937 1938 // If either side has a zero element, then the result element is zero, even 1939 // if the other is an UNDEF. 1940 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 1941 // and then handle 'and' nodes with the rest of the binop opcodes. 1942 KnownZero |= SrcZero; 1943 KnownUndef &= SrcUndef; 1944 KnownUndef &= ~KnownZero; 1945 break; 1946 } 1947 case ISD::TRUNCATE: 1948 case ISD::SIGN_EXTEND: 1949 case ISD::ZERO_EXTEND: 1950 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1951 KnownZero, TLO, Depth + 1)) 1952 return true; 1953 1954 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 1955 // zext(undef) upper bits are guaranteed to be zero. 1956 if (DemandedElts.isSubsetOf(KnownUndef)) 1957 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1958 KnownUndef.clearAllBits(); 1959 } 1960 break; 1961 default: { 1962 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1963 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1964 KnownZero, TLO, Depth)) 1965 return true; 1966 } else { 1967 KnownBits Known; 1968 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 1969 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 1970 Depth, AssumeSingleUse)) 1971 return true; 1972 } 1973 break; 1974 } 1975 } 1976 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1977 1978 // Constant fold all undef cases. 1979 // TODO: Handle zero cases as well. 1980 if (DemandedElts.isSubsetOf(KnownUndef)) 1981 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1982 1983 return false; 1984 } 1985 1986 /// Determine which of the bits specified in Mask are known to be either zero or 1987 /// one and return them in the Known. 1988 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1989 KnownBits &Known, 1990 const APInt &DemandedElts, 1991 const SelectionDAG &DAG, 1992 unsigned Depth) const { 1993 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1994 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1995 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1996 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1997 "Should use MaskedValueIsZero if you don't know whether Op" 1998 " is a target node!"); 1999 Known.resetAll(); 2000 } 2001 2002 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 2003 KnownBits &Known, 2004 const APInt &DemandedElts, 2005 const SelectionDAG &DAG, 2006 unsigned Depth) const { 2007 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 2008 2009 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 2010 // The low bits are known zero if the pointer is aligned. 2011 Known.Zero.setLowBits(Log2_32(Align)); 2012 } 2013 } 2014 2015 /// This method can be implemented by targets that want to expose additional 2016 /// information about sign bits to the DAG Combiner. 2017 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 2018 const APInt &, 2019 const SelectionDAG &, 2020 unsigned Depth) const { 2021 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2022 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2023 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2024 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2025 "Should use ComputeNumSignBits if you don't know whether Op" 2026 " is a target node!"); 2027 return 1; 2028 } 2029 2030 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 2031 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 2032 TargetLoweringOpt &TLO, unsigned Depth) const { 2033 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2034 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2035 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2036 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2037 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 2038 " is a target node!"); 2039 return false; 2040 } 2041 2042 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 2043 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 2044 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 2045 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2046 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2047 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2048 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2049 "Should use SimplifyDemandedBits if you don't know whether Op" 2050 " is a target node!"); 2051 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 2052 return false; 2053 } 2054 2055 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 2056 const SelectionDAG &DAG, 2057 bool SNaN, 2058 unsigned Depth) const { 2059 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 2060 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 2061 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 2062 Op.getOpcode() == ISD::INTRINSIC_VOID) && 2063 "Should use isKnownNeverNaN if you don't know whether Op" 2064 " is a target node!"); 2065 return false; 2066 } 2067 2068 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 2069 // work with truncating build vectors and vectors with elements of less than 2070 // 8 bits. 2071 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 2072 if (!N) 2073 return false; 2074 2075 APInt CVal; 2076 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 2077 CVal = CN->getAPIntValue(); 2078 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 2079 auto *CN = BV->getConstantSplatNode(); 2080 if (!CN) 2081 return false; 2082 2083 // If this is a truncating build vector, truncate the splat value. 2084 // Otherwise, we may fail to match the expected values below. 2085 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 2086 CVal = CN->getAPIntValue(); 2087 if (BVEltWidth < CVal.getBitWidth()) 2088 CVal = CVal.trunc(BVEltWidth); 2089 } else { 2090 return false; 2091 } 2092 2093 switch (getBooleanContents(N->getValueType(0))) { 2094 case UndefinedBooleanContent: 2095 return CVal[0]; 2096 case ZeroOrOneBooleanContent: 2097 return CVal.isOneValue(); 2098 case ZeroOrNegativeOneBooleanContent: 2099 return CVal.isAllOnesValue(); 2100 } 2101 2102 llvm_unreachable("Invalid boolean contents"); 2103 } 2104 2105 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2106 if (!N) 2107 return false; 2108 2109 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2110 if (!CN) { 2111 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2112 if (!BV) 2113 return false; 2114 2115 // Only interested in constant splats, we don't care about undef 2116 // elements in identifying boolean constants and getConstantSplatNode 2117 // returns NULL if all ops are undef; 2118 CN = BV->getConstantSplatNode(); 2119 if (!CN) 2120 return false; 2121 } 2122 2123 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2124 return !CN->getAPIntValue()[0]; 2125 2126 return CN->isNullValue(); 2127 } 2128 2129 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2130 bool SExt) const { 2131 if (VT == MVT::i1) 2132 return N->isOne(); 2133 2134 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2135 switch (Cnt) { 2136 case TargetLowering::ZeroOrOneBooleanContent: 2137 // An extended value of 1 is always true, unless its original type is i1, 2138 // in which case it will be sign extended to -1. 2139 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2140 case TargetLowering::UndefinedBooleanContent: 2141 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2142 return N->isAllOnesValue() && SExt; 2143 } 2144 llvm_unreachable("Unexpected enumeration."); 2145 } 2146 2147 /// This helper function of SimplifySetCC tries to optimize the comparison when 2148 /// either operand of the SetCC node is a bitwise-and instruction. 2149 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2150 ISD::CondCode Cond, const SDLoc &DL, 2151 DAGCombinerInfo &DCI) const { 2152 // Match these patterns in any of their permutations: 2153 // (X & Y) == Y 2154 // (X & Y) != Y 2155 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2156 std::swap(N0, N1); 2157 2158 EVT OpVT = N0.getValueType(); 2159 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2160 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2161 return SDValue(); 2162 2163 SDValue X, Y; 2164 if (N0.getOperand(0) == N1) { 2165 X = N0.getOperand(1); 2166 Y = N0.getOperand(0); 2167 } else if (N0.getOperand(1) == N1) { 2168 X = N0.getOperand(0); 2169 Y = N0.getOperand(1); 2170 } else { 2171 return SDValue(); 2172 } 2173 2174 SelectionDAG &DAG = DCI.DAG; 2175 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2176 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2177 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2178 // Note that where Y is variable and is known to have at most one bit set 2179 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2180 // equivalent when Y == 0. 2181 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2182 if (DCI.isBeforeLegalizeOps() || 2183 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2184 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2185 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2186 // If the target supports an 'and-not' or 'and-complement' logic operation, 2187 // try to use that to make a comparison operation more efficient. 2188 // But don't do this transform if the mask is a single bit because there are 2189 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2190 // 'rlwinm' on PPC). 2191 2192 // Bail out if the compare operand that we want to turn into a zero is 2193 // already a zero (otherwise, infinite loop). 2194 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2195 if (YConst && YConst->isNullValue()) 2196 return SDValue(); 2197 2198 // Transform this into: ~X & Y == 0. 2199 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2200 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2201 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2202 } 2203 2204 return SDValue(); 2205 } 2206 2207 /// There are multiple IR patterns that could be checking whether certain 2208 /// truncation of a signed number would be lossy or not. The pattern which is 2209 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2210 /// We are looking for the following pattern: (KeptBits is a constant) 2211 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2212 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2213 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2214 /// We will unfold it into the natural trunc+sext pattern: 2215 /// ((%x << C) a>> C) dstcond %x 2216 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2217 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2218 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2219 const SDLoc &DL) const { 2220 // We must be comparing with a constant. 2221 ConstantSDNode *C1; 2222 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2223 return SDValue(); 2224 2225 // N0 should be: add %x, (1 << (KeptBits-1)) 2226 if (N0->getOpcode() != ISD::ADD) 2227 return SDValue(); 2228 2229 // And we must be 'add'ing a constant. 2230 ConstantSDNode *C01; 2231 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2232 return SDValue(); 2233 2234 SDValue X = N0->getOperand(0); 2235 EVT XVT = X.getValueType(); 2236 2237 // Validate constants ... 2238 2239 APInt I1 = C1->getAPIntValue(); 2240 2241 ISD::CondCode NewCond; 2242 if (Cond == ISD::CondCode::SETULT) { 2243 NewCond = ISD::CondCode::SETEQ; 2244 } else if (Cond == ISD::CondCode::SETULE) { 2245 NewCond = ISD::CondCode::SETEQ; 2246 // But need to 'canonicalize' the constant. 2247 I1 += 1; 2248 } else if (Cond == ISD::CondCode::SETUGT) { 2249 NewCond = ISD::CondCode::SETNE; 2250 // But need to 'canonicalize' the constant. 2251 I1 += 1; 2252 } else if (Cond == ISD::CondCode::SETUGE) { 2253 NewCond = ISD::CondCode::SETNE; 2254 } else 2255 return SDValue(); 2256 2257 APInt I01 = C01->getAPIntValue(); 2258 2259 auto checkConstants = [&I1, &I01]() -> bool { 2260 // Both of them must be power-of-two, and the constant from setcc is bigger. 2261 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2262 }; 2263 2264 if (checkConstants()) { 2265 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2266 } else { 2267 // What if we invert constants? (and the target predicate) 2268 I1.negate(); 2269 I01.negate(); 2270 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2271 if (!checkConstants()) 2272 return SDValue(); 2273 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2274 } 2275 2276 // They are power-of-two, so which bit is set? 2277 const unsigned KeptBits = I1.logBase2(); 2278 const unsigned KeptBitsMinusOne = I01.logBase2(); 2279 2280 // Magic! 2281 if (KeptBits != (KeptBitsMinusOne + 1)) 2282 return SDValue(); 2283 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2284 2285 // We don't want to do this in every single case. 2286 SelectionDAG &DAG = DCI.DAG; 2287 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2288 XVT, KeptBits)) 2289 return SDValue(); 2290 2291 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2292 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2293 2294 // Unfold into: ((%x << C) a>> C) cond %x 2295 // Where 'cond' will be either 'eq' or 'ne'. 2296 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2297 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2298 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2299 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2300 2301 return T2; 2302 } 2303 2304 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 2305 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 2306 /// handle the commuted versions of these patterns. 2307 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 2308 ISD::CondCode Cond, const SDLoc &DL, 2309 DAGCombinerInfo &DCI) const { 2310 unsigned BOpcode = N0.getOpcode(); 2311 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 2312 "Unexpected binop"); 2313 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 2314 2315 // (X + Y) == X --> Y == 0 2316 // (X - Y) == X --> Y == 0 2317 // (X ^ Y) == X --> Y == 0 2318 SelectionDAG &DAG = DCI.DAG; 2319 EVT OpVT = N0.getValueType(); 2320 SDValue X = N0.getOperand(0); 2321 SDValue Y = N0.getOperand(1); 2322 if (X == N1) 2323 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 2324 2325 if (Y != N1) 2326 return SDValue(); 2327 2328 // (X + Y) == Y --> X == 0 2329 // (X ^ Y) == Y --> X == 0 2330 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 2331 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 2332 2333 // The shift would not be valid if the operands are boolean (i1). 2334 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 2335 return SDValue(); 2336 2337 // (X - Y) == Y --> X == Y << 1 2338 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 2339 !DCI.isBeforeLegalize()); 2340 SDValue One = DAG.getConstant(1, DL, ShiftVT); 2341 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 2342 if (!DCI.isCalledByLegalizer()) 2343 DCI.AddToWorklist(YShl1.getNode()); 2344 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 2345 } 2346 2347 /// Try to simplify a setcc built with the specified operands and cc. If it is 2348 /// unable to simplify it, return a null SDValue. 2349 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2350 ISD::CondCode Cond, bool foldBooleans, 2351 DAGCombinerInfo &DCI, 2352 const SDLoc &dl) const { 2353 SelectionDAG &DAG = DCI.DAG; 2354 EVT OpVT = N0.getValueType(); 2355 2356 // These setcc operations always fold. 2357 switch (Cond) { 2358 default: break; 2359 case ISD::SETFALSE: 2360 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 2361 case ISD::SETTRUE: 2362 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 2363 } 2364 2365 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2366 // TODO: Handle non-splat vector constants. All undef causes trouble. 2367 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2368 if (isConstOrConstSplat(N0) && 2369 (DCI.isBeforeLegalizeOps() || 2370 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2371 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2372 2373 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2374 const APInt &C1 = N1C->getAPIntValue(); 2375 2376 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2377 // equality comparison, then we're just comparing whether X itself is 2378 // zero. 2379 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2380 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2381 N0.getOperand(1).getOpcode() == ISD::Constant) { 2382 const APInt &ShAmt = N0.getConstantOperandAPInt(1); 2383 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2384 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2385 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2386 // (srl (ctlz x), 5) == 0 -> X != 0 2387 // (srl (ctlz x), 5) != 1 -> X != 0 2388 Cond = ISD::SETNE; 2389 } else { 2390 // (srl (ctlz x), 5) != 0 -> X == 0 2391 // (srl (ctlz x), 5) == 1 -> X == 0 2392 Cond = ISD::SETEQ; 2393 } 2394 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2395 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2396 Zero, Cond); 2397 } 2398 } 2399 2400 SDValue CTPOP = N0; 2401 // Look through truncs that don't change the value of a ctpop. 2402 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2403 CTPOP = N0.getOperand(0); 2404 2405 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2406 (N0 == CTPOP || 2407 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2408 EVT CTVT = CTPOP.getValueType(); 2409 SDValue CTOp = CTPOP.getOperand(0); 2410 2411 // (ctpop x) u< 2 -> (x & x-1) == 0 2412 // (ctpop x) u> 1 -> (x & x-1) != 0 2413 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2414 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2415 DAG.getConstant(1, dl, CTVT)); 2416 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2417 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2418 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2419 } 2420 2421 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2422 } 2423 2424 // (zext x) == C --> x == (trunc C) 2425 // (sext x) == C --> x == (trunc C) 2426 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2427 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2428 unsigned MinBits = N0.getValueSizeInBits(); 2429 SDValue PreExt; 2430 bool Signed = false; 2431 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2432 // ZExt 2433 MinBits = N0->getOperand(0).getValueSizeInBits(); 2434 PreExt = N0->getOperand(0); 2435 } else if (N0->getOpcode() == ISD::AND) { 2436 // DAGCombine turns costly ZExts into ANDs 2437 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2438 if ((C->getAPIntValue()+1).isPowerOf2()) { 2439 MinBits = C->getAPIntValue().countTrailingOnes(); 2440 PreExt = N0->getOperand(0); 2441 } 2442 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2443 // SExt 2444 MinBits = N0->getOperand(0).getValueSizeInBits(); 2445 PreExt = N0->getOperand(0); 2446 Signed = true; 2447 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2448 // ZEXTLOAD / SEXTLOAD 2449 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2450 MinBits = LN0->getMemoryVT().getSizeInBits(); 2451 PreExt = N0; 2452 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2453 Signed = true; 2454 MinBits = LN0->getMemoryVT().getSizeInBits(); 2455 PreExt = N0; 2456 } 2457 } 2458 2459 // Figure out how many bits we need to preserve this constant. 2460 unsigned ReqdBits = Signed ? 2461 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2462 C1.getActiveBits(); 2463 2464 // Make sure we're not losing bits from the constant. 2465 if (MinBits > 0 && 2466 MinBits < C1.getBitWidth() && 2467 MinBits >= ReqdBits) { 2468 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2469 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2470 // Will get folded away. 2471 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2472 if (MinBits == 1 && C1 == 1) 2473 // Invert the condition. 2474 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2475 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2476 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2477 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2478 } 2479 2480 // If truncating the setcc operands is not desirable, we can still 2481 // simplify the expression in some cases: 2482 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2483 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2484 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2485 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2486 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2487 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2488 SDValue TopSetCC = N0->getOperand(0); 2489 unsigned N0Opc = N0->getOpcode(); 2490 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2491 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2492 TopSetCC.getOpcode() == ISD::SETCC && 2493 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2494 (isConstFalseVal(N1C) || 2495 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2496 2497 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2498 (!N1C->isNullValue() && Cond == ISD::SETNE); 2499 2500 if (!Inverse) 2501 return TopSetCC; 2502 2503 ISD::CondCode InvCond = ISD::getSetCCInverse( 2504 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2505 TopSetCC.getOperand(0).getValueType().isInteger()); 2506 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2507 TopSetCC.getOperand(1), 2508 InvCond); 2509 } 2510 } 2511 } 2512 2513 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2514 // equality or unsigned, and all 1 bits of the const are in the same 2515 // partial word, see if we can shorten the load. 2516 if (DCI.isBeforeLegalize() && 2517 !ISD::isSignedIntSetCC(Cond) && 2518 N0.getOpcode() == ISD::AND && C1 == 0 && 2519 N0.getNode()->hasOneUse() && 2520 isa<LoadSDNode>(N0.getOperand(0)) && 2521 N0.getOperand(0).getNode()->hasOneUse() && 2522 isa<ConstantSDNode>(N0.getOperand(1))) { 2523 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2524 APInt bestMask; 2525 unsigned bestWidth = 0, bestOffset = 0; 2526 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2527 unsigned origWidth = N0.getValueSizeInBits(); 2528 unsigned maskWidth = origWidth; 2529 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2530 // 8 bits, but have to be careful... 2531 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2532 origWidth = Lod->getMemoryVT().getSizeInBits(); 2533 const APInt &Mask = N0.getConstantOperandAPInt(1); 2534 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2535 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2536 for (unsigned offset=0; offset<origWidth/width; offset++) { 2537 if (Mask.isSubsetOf(newMask)) { 2538 if (DAG.getDataLayout().isLittleEndian()) 2539 bestOffset = (uint64_t)offset * (width/8); 2540 else 2541 bestOffset = (origWidth/width - offset - 1) * (width/8); 2542 bestMask = Mask.lshr(offset * (width/8) * 8); 2543 bestWidth = width; 2544 break; 2545 } 2546 newMask <<= width; 2547 } 2548 } 2549 } 2550 if (bestWidth) { 2551 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2552 if (newVT.isRound() && 2553 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2554 EVT PtrType = Lod->getOperand(1).getValueType(); 2555 SDValue Ptr = Lod->getBasePtr(); 2556 if (bestOffset != 0) 2557 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2558 DAG.getConstant(bestOffset, dl, PtrType)); 2559 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2560 SDValue NewLoad = DAG.getLoad( 2561 newVT, dl, Lod->getChain(), Ptr, 2562 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2563 return DAG.getSetCC(dl, VT, 2564 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2565 DAG.getConstant(bestMask.trunc(bestWidth), 2566 dl, newVT)), 2567 DAG.getConstant(0LL, dl, newVT), Cond); 2568 } 2569 } 2570 } 2571 2572 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2573 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2574 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2575 2576 // If the comparison constant has bits in the upper part, the 2577 // zero-extended value could never match. 2578 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2579 C1.getBitWidth() - InSize))) { 2580 switch (Cond) { 2581 case ISD::SETUGT: 2582 case ISD::SETUGE: 2583 case ISD::SETEQ: 2584 return DAG.getConstant(0, dl, VT); 2585 case ISD::SETULT: 2586 case ISD::SETULE: 2587 case ISD::SETNE: 2588 return DAG.getConstant(1, dl, VT); 2589 case ISD::SETGT: 2590 case ISD::SETGE: 2591 // True if the sign bit of C1 is set. 2592 return DAG.getConstant(C1.isNegative(), dl, VT); 2593 case ISD::SETLT: 2594 case ISD::SETLE: 2595 // True if the sign bit of C1 isn't set. 2596 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2597 default: 2598 break; 2599 } 2600 } 2601 2602 // Otherwise, we can perform the comparison with the low bits. 2603 switch (Cond) { 2604 case ISD::SETEQ: 2605 case ISD::SETNE: 2606 case ISD::SETUGT: 2607 case ISD::SETUGE: 2608 case ISD::SETULT: 2609 case ISD::SETULE: { 2610 EVT newVT = N0.getOperand(0).getValueType(); 2611 if (DCI.isBeforeLegalizeOps() || 2612 (isOperationLegal(ISD::SETCC, newVT) && 2613 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2614 EVT NewSetCCVT = 2615 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2616 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2617 2618 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2619 NewConst, Cond); 2620 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2621 } 2622 break; 2623 } 2624 default: 2625 break; // todo, be more careful with signed comparisons 2626 } 2627 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2628 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2629 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2630 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2631 EVT ExtDstTy = N0.getValueType(); 2632 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2633 2634 // If the constant doesn't fit into the number of bits for the source of 2635 // the sign extension, it is impossible for both sides to be equal. 2636 if (C1.getMinSignedBits() > ExtSrcTyBits) 2637 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2638 2639 SDValue ZextOp; 2640 EVT Op0Ty = N0.getOperand(0).getValueType(); 2641 if (Op0Ty == ExtSrcTy) { 2642 ZextOp = N0.getOperand(0); 2643 } else { 2644 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2645 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2646 DAG.getConstant(Imm, dl, Op0Ty)); 2647 } 2648 if (!DCI.isCalledByLegalizer()) 2649 DCI.AddToWorklist(ZextOp.getNode()); 2650 // Otherwise, make this a use of a zext. 2651 return DAG.getSetCC(dl, VT, ZextOp, 2652 DAG.getConstant(C1 & APInt::getLowBitsSet( 2653 ExtDstTyBits, 2654 ExtSrcTyBits), 2655 dl, ExtDstTy), 2656 Cond); 2657 } else if ((N1C->isNullValue() || N1C->isOne()) && 2658 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2659 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2660 if (N0.getOpcode() == ISD::SETCC && 2661 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2662 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2663 if (TrueWhenTrue) 2664 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2665 // Invert the condition. 2666 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2667 CC = ISD::getSetCCInverse(CC, 2668 N0.getOperand(0).getValueType().isInteger()); 2669 if (DCI.isBeforeLegalizeOps() || 2670 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2671 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2672 } 2673 2674 if ((N0.getOpcode() == ISD::XOR || 2675 (N0.getOpcode() == ISD::AND && 2676 N0.getOperand(0).getOpcode() == ISD::XOR && 2677 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2678 isa<ConstantSDNode>(N0.getOperand(1)) && 2679 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2680 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2681 // can only do this if the top bits are known zero. 2682 unsigned BitWidth = N0.getValueSizeInBits(); 2683 if (DAG.MaskedValueIsZero(N0, 2684 APInt::getHighBitsSet(BitWidth, 2685 BitWidth-1))) { 2686 // Okay, get the un-inverted input value. 2687 SDValue Val; 2688 if (N0.getOpcode() == ISD::XOR) { 2689 Val = N0.getOperand(0); 2690 } else { 2691 assert(N0.getOpcode() == ISD::AND && 2692 N0.getOperand(0).getOpcode() == ISD::XOR); 2693 // ((X^1)&1)^1 -> X & 1 2694 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2695 N0.getOperand(0).getOperand(0), 2696 N0.getOperand(1)); 2697 } 2698 2699 return DAG.getSetCC(dl, VT, Val, N1, 2700 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2701 } 2702 } else if (N1C->isOne() && 2703 (VT == MVT::i1 || 2704 getBooleanContents(N0->getValueType(0)) == 2705 ZeroOrOneBooleanContent)) { 2706 SDValue Op0 = N0; 2707 if (Op0.getOpcode() == ISD::TRUNCATE) 2708 Op0 = Op0.getOperand(0); 2709 2710 if ((Op0.getOpcode() == ISD::XOR) && 2711 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2712 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2713 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2714 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2715 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2716 Cond); 2717 } 2718 if (Op0.getOpcode() == ISD::AND && 2719 isa<ConstantSDNode>(Op0.getOperand(1)) && 2720 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2721 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2722 if (Op0.getValueType().bitsGT(VT)) 2723 Op0 = DAG.getNode(ISD::AND, dl, VT, 2724 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2725 DAG.getConstant(1, dl, VT)); 2726 else if (Op0.getValueType().bitsLT(VT)) 2727 Op0 = DAG.getNode(ISD::AND, dl, VT, 2728 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2729 DAG.getConstant(1, dl, VT)); 2730 2731 return DAG.getSetCC(dl, VT, Op0, 2732 DAG.getConstant(0, dl, Op0.getValueType()), 2733 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2734 } 2735 if (Op0.getOpcode() == ISD::AssertZext && 2736 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2737 return DAG.getSetCC(dl, VT, Op0, 2738 DAG.getConstant(0, dl, Op0.getValueType()), 2739 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2740 } 2741 } 2742 2743 if (SDValue V = 2744 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2745 return V; 2746 } 2747 2748 // These simplifications apply to splat vectors as well. 2749 // TODO: Handle more splat vector cases. 2750 if (auto *N1C = isConstOrConstSplat(N1)) { 2751 const APInt &C1 = N1C->getAPIntValue(); 2752 2753 APInt MinVal, MaxVal; 2754 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2755 if (ISD::isSignedIntSetCC(Cond)) { 2756 MinVal = APInt::getSignedMinValue(OperandBitSize); 2757 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2758 } else { 2759 MinVal = APInt::getMinValue(OperandBitSize); 2760 MaxVal = APInt::getMaxValue(OperandBitSize); 2761 } 2762 2763 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2764 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2765 // X >= MIN --> true 2766 if (C1 == MinVal) 2767 return DAG.getBoolConstant(true, dl, VT, OpVT); 2768 2769 if (!VT.isVector()) { // TODO: Support this for vectors. 2770 // X >= C0 --> X > (C0 - 1) 2771 APInt C = C1 - 1; 2772 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2773 if ((DCI.isBeforeLegalizeOps() || 2774 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2775 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2776 isLegalICmpImmediate(C.getSExtValue())))) { 2777 return DAG.getSetCC(dl, VT, N0, 2778 DAG.getConstant(C, dl, N1.getValueType()), 2779 NewCC); 2780 } 2781 } 2782 } 2783 2784 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2785 // X <= MAX --> true 2786 if (C1 == MaxVal) 2787 return DAG.getBoolConstant(true, dl, VT, OpVT); 2788 2789 // X <= C0 --> X < (C0 + 1) 2790 if (!VT.isVector()) { // TODO: Support this for vectors. 2791 APInt C = C1 + 1; 2792 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2793 if ((DCI.isBeforeLegalizeOps() || 2794 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2795 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2796 isLegalICmpImmediate(C.getSExtValue())))) { 2797 return DAG.getSetCC(dl, VT, N0, 2798 DAG.getConstant(C, dl, N1.getValueType()), 2799 NewCC); 2800 } 2801 } 2802 } 2803 2804 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2805 if (C1 == MinVal) 2806 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2807 2808 // TODO: Support this for vectors after legalize ops. 2809 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2810 // Canonicalize setlt X, Max --> setne X, Max 2811 if (C1 == MaxVal) 2812 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2813 2814 // If we have setult X, 1, turn it into seteq X, 0 2815 if (C1 == MinVal+1) 2816 return DAG.getSetCC(dl, VT, N0, 2817 DAG.getConstant(MinVal, dl, N0.getValueType()), 2818 ISD::SETEQ); 2819 } 2820 } 2821 2822 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2823 if (C1 == MaxVal) 2824 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2825 2826 // TODO: Support this for vectors after legalize ops. 2827 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2828 // Canonicalize setgt X, Min --> setne X, Min 2829 if (C1 == MinVal) 2830 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2831 2832 // If we have setugt X, Max-1, turn it into seteq X, Max 2833 if (C1 == MaxVal-1) 2834 return DAG.getSetCC(dl, VT, N0, 2835 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2836 ISD::SETEQ); 2837 } 2838 } 2839 2840 // If we have "setcc X, C0", check to see if we can shrink the immediate 2841 // by changing cc. 2842 // TODO: Support this for vectors after legalize ops. 2843 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2844 // SETUGT X, SINTMAX -> SETLT X, 0 2845 if (Cond == ISD::SETUGT && 2846 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2847 return DAG.getSetCC(dl, VT, N0, 2848 DAG.getConstant(0, dl, N1.getValueType()), 2849 ISD::SETLT); 2850 2851 // SETULT X, SINTMIN -> SETGT X, -1 2852 if (Cond == ISD::SETULT && 2853 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2854 SDValue ConstMinusOne = 2855 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2856 N1.getValueType()); 2857 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2858 } 2859 } 2860 } 2861 2862 // Back to non-vector simplifications. 2863 // TODO: Can we do these for vector splats? 2864 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2865 const APInt &C1 = N1C->getAPIntValue(); 2866 2867 // Fold bit comparisons when we can. 2868 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2869 (VT == N0.getValueType() || 2870 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2871 N0.getOpcode() == ISD::AND) { 2872 auto &DL = DAG.getDataLayout(); 2873 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2874 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2875 !DCI.isBeforeLegalize()); 2876 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2877 // Perform the xform if the AND RHS is a single bit. 2878 if (AndRHS->getAPIntValue().isPowerOf2()) { 2879 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2880 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2881 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2882 ShiftTy))); 2883 } 2884 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2885 // (X & 8) == 8 --> (X & 8) >> 3 2886 // Perform the xform if C1 is a single bit. 2887 if (C1.isPowerOf2()) { 2888 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2889 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2890 DAG.getConstant(C1.logBase2(), dl, 2891 ShiftTy))); 2892 } 2893 } 2894 } 2895 } 2896 2897 if (C1.getMinSignedBits() <= 64 && 2898 !isLegalICmpImmediate(C1.getSExtValue())) { 2899 // (X & -256) == 256 -> (X >> 8) == 1 2900 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2901 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2902 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2903 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2904 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2905 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2906 auto &DL = DAG.getDataLayout(); 2907 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2908 !DCI.isBeforeLegalize()); 2909 EVT CmpTy = N0.getValueType(); 2910 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2911 DAG.getConstant(ShiftBits, dl, 2912 ShiftTy)); 2913 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2914 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2915 } 2916 } 2917 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2918 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2919 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2920 // X < 0x100000000 -> (X >> 32) < 1 2921 // X >= 0x100000000 -> (X >> 32) >= 1 2922 // X <= 0x0ffffffff -> (X >> 32) < 1 2923 // X > 0x0ffffffff -> (X >> 32) >= 1 2924 unsigned ShiftBits; 2925 APInt NewC = C1; 2926 ISD::CondCode NewCond = Cond; 2927 if (AdjOne) { 2928 ShiftBits = C1.countTrailingOnes(); 2929 NewC = NewC + 1; 2930 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2931 } else { 2932 ShiftBits = C1.countTrailingZeros(); 2933 } 2934 NewC.lshrInPlace(ShiftBits); 2935 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2936 isLegalICmpImmediate(NewC.getSExtValue())) { 2937 auto &DL = DAG.getDataLayout(); 2938 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2939 !DCI.isBeforeLegalize()); 2940 EVT CmpTy = N0.getValueType(); 2941 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2942 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2943 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2944 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2945 } 2946 } 2947 } 2948 } 2949 2950 if (isa<ConstantFPSDNode>(N0.getNode())) { 2951 // Constant fold or commute setcc. 2952 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2953 if (O.getNode()) return O; 2954 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2955 // If the RHS of an FP comparison is a constant, simplify it away in 2956 // some cases. 2957 if (CFP->getValueAPF().isNaN()) { 2958 // If an operand is known to be a nan, we can fold it. 2959 switch (ISD::getUnorderedFlavor(Cond)) { 2960 default: llvm_unreachable("Unknown flavor!"); 2961 case 0: // Known false. 2962 return DAG.getBoolConstant(false, dl, VT, OpVT); 2963 case 1: // Known true. 2964 return DAG.getBoolConstant(true, dl, VT, OpVT); 2965 case 2: // Undefined. 2966 return DAG.getUNDEF(VT); 2967 } 2968 } 2969 2970 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2971 // constant if knowing that the operand is non-nan is enough. We prefer to 2972 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2973 // materialize 0.0. 2974 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2975 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2976 2977 // setcc (fneg x), C -> setcc swap(pred) x, -C 2978 if (N0.getOpcode() == ISD::FNEG) { 2979 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2980 if (DCI.isBeforeLegalizeOps() || 2981 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2982 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2983 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2984 } 2985 } 2986 2987 // If the condition is not legal, see if we can find an equivalent one 2988 // which is legal. 2989 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2990 // If the comparison was an awkward floating-point == or != and one of 2991 // the comparison operands is infinity or negative infinity, convert the 2992 // condition to a less-awkward <= or >=. 2993 if (CFP->getValueAPF().isInfinity()) { 2994 if (CFP->getValueAPF().isNegative()) { 2995 if (Cond == ISD::SETOEQ && 2996 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2997 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2998 if (Cond == ISD::SETUEQ && 2999 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 3000 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 3001 if (Cond == ISD::SETUNE && 3002 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3003 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 3004 if (Cond == ISD::SETONE && 3005 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 3006 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 3007 } else { 3008 if (Cond == ISD::SETOEQ && 3009 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3010 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 3011 if (Cond == ISD::SETUEQ && 3012 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 3013 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 3014 if (Cond == ISD::SETUNE && 3015 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3016 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 3017 if (Cond == ISD::SETONE && 3018 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 3019 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 3020 } 3021 } 3022 } 3023 } 3024 3025 if (N0 == N1) { 3026 // The sext(setcc()) => setcc() optimization relies on the appropriate 3027 // constant being emitted. 3028 3029 bool EqTrue = ISD::isTrueWhenEqual(Cond); 3030 3031 // We can always fold X == X for integer setcc's. 3032 if (N0.getValueType().isInteger()) 3033 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3034 3035 unsigned UOF = ISD::getUnorderedFlavor(Cond); 3036 if (UOF == 2) // FP operators that are undefined on NaNs. 3037 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3038 if (UOF == unsigned(EqTrue)) 3039 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 3040 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 3041 // if it is not already. 3042 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 3043 if (NewCond != Cond && 3044 (DCI.isBeforeLegalizeOps() || 3045 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 3046 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 3047 } 3048 3049 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3050 N0.getValueType().isInteger()) { 3051 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 3052 N0.getOpcode() == ISD::XOR) { 3053 // Simplify (X+Y) == (X+Z) --> Y == Z 3054 if (N0.getOpcode() == N1.getOpcode()) { 3055 if (N0.getOperand(0) == N1.getOperand(0)) 3056 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 3057 if (N0.getOperand(1) == N1.getOperand(1)) 3058 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 3059 if (isCommutativeBinOp(N0.getOpcode())) { 3060 // If X op Y == Y op X, try other combinations. 3061 if (N0.getOperand(0) == N1.getOperand(1)) 3062 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 3063 Cond); 3064 if (N0.getOperand(1) == N1.getOperand(0)) 3065 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 3066 Cond); 3067 } 3068 } 3069 3070 // If RHS is a legal immediate value for a compare instruction, we need 3071 // to be careful about increasing register pressure needlessly. 3072 bool LegalRHSImm = false; 3073 3074 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 3075 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 3076 // Turn (X+C1) == C2 --> X == C2-C1 3077 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 3078 return DAG.getSetCC(dl, VT, N0.getOperand(0), 3079 DAG.getConstant(RHSC->getAPIntValue()- 3080 LHSR->getAPIntValue(), 3081 dl, N0.getValueType()), Cond); 3082 } 3083 3084 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 3085 if (N0.getOpcode() == ISD::XOR) 3086 // If we know that all of the inverted bits are zero, don't bother 3087 // performing the inversion. 3088 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 3089 return 3090 DAG.getSetCC(dl, VT, N0.getOperand(0), 3091 DAG.getConstant(LHSR->getAPIntValue() ^ 3092 RHSC->getAPIntValue(), 3093 dl, N0.getValueType()), 3094 Cond); 3095 } 3096 3097 // Turn (C1-X) == C2 --> X == C1-C2 3098 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 3099 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 3100 return 3101 DAG.getSetCC(dl, VT, N0.getOperand(1), 3102 DAG.getConstant(SUBC->getAPIntValue() - 3103 RHSC->getAPIntValue(), 3104 dl, N0.getValueType()), 3105 Cond); 3106 } 3107 } 3108 3109 // Could RHSC fold directly into a compare? 3110 if (RHSC->getValueType(0).getSizeInBits() <= 64) 3111 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 3112 } 3113 3114 // (X+Y) == X --> Y == 0 and similar folds. 3115 // Don't do this if X is an immediate that can fold into a cmp 3116 // instruction and X+Y has other uses. It could be an induction variable 3117 // chain, and the transform would increase register pressure. 3118 if (!LegalRHSImm || N0.hasOneUse()) 3119 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 3120 return V; 3121 } 3122 3123 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3124 N1.getOpcode() == ISD::XOR) 3125 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 3126 return V; 3127 3128 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 3129 return V; 3130 } 3131 3132 // Fold away ALL boolean setcc's. 3133 SDValue Temp; 3134 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3135 EVT OpVT = N0.getValueType(); 3136 switch (Cond) { 3137 default: llvm_unreachable("Unknown integer setcc!"); 3138 case ISD::SETEQ: // X == Y -> ~(X^Y) 3139 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3140 N0 = DAG.getNOT(dl, Temp, OpVT); 3141 if (!DCI.isCalledByLegalizer()) 3142 DCI.AddToWorklist(Temp.getNode()); 3143 break; 3144 case ISD::SETNE: // X != Y --> (X^Y) 3145 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3146 break; 3147 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3148 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3149 Temp = DAG.getNOT(dl, N0, OpVT); 3150 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3151 if (!DCI.isCalledByLegalizer()) 3152 DCI.AddToWorklist(Temp.getNode()); 3153 break; 3154 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3155 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3156 Temp = DAG.getNOT(dl, N1, OpVT); 3157 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3158 if (!DCI.isCalledByLegalizer()) 3159 DCI.AddToWorklist(Temp.getNode()); 3160 break; 3161 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3162 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3163 Temp = DAG.getNOT(dl, N0, OpVT); 3164 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3165 if (!DCI.isCalledByLegalizer()) 3166 DCI.AddToWorklist(Temp.getNode()); 3167 break; 3168 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3169 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3170 Temp = DAG.getNOT(dl, N1, OpVT); 3171 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3172 break; 3173 } 3174 if (VT.getScalarType() != MVT::i1) { 3175 if (!DCI.isCalledByLegalizer()) 3176 DCI.AddToWorklist(N0.getNode()); 3177 // FIXME: If running after legalize, we probably can't do this. 3178 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3179 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3180 } 3181 return N0; 3182 } 3183 3184 // Could not fold it. 3185 return SDValue(); 3186 } 3187 3188 /// Returns true (and the GlobalValue and the offset) if the node is a 3189 /// GlobalAddress + offset. 3190 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3191 int64_t &Offset) const { 3192 3193 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3194 3195 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3196 GA = GASD->getGlobal(); 3197 Offset += GASD->getOffset(); 3198 return true; 3199 } 3200 3201 if (N->getOpcode() == ISD::ADD) { 3202 SDValue N1 = N->getOperand(0); 3203 SDValue N2 = N->getOperand(1); 3204 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3205 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3206 Offset += V->getSExtValue(); 3207 return true; 3208 } 3209 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3210 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3211 Offset += V->getSExtValue(); 3212 return true; 3213 } 3214 } 3215 } 3216 3217 return false; 3218 } 3219 3220 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3221 DAGCombinerInfo &DCI) const { 3222 // Default implementation: no optimization. 3223 return SDValue(); 3224 } 3225 3226 //===----------------------------------------------------------------------===// 3227 // Inline Assembler Implementation Methods 3228 //===----------------------------------------------------------------------===// 3229 3230 TargetLowering::ConstraintType 3231 TargetLowering::getConstraintType(StringRef Constraint) const { 3232 unsigned S = Constraint.size(); 3233 3234 if (S == 1) { 3235 switch (Constraint[0]) { 3236 default: break; 3237 case 'r': return C_RegisterClass; 3238 case 'm': // memory 3239 case 'o': // offsetable 3240 case 'V': // not offsetable 3241 return C_Memory; 3242 case 'i': // Simple Integer or Relocatable Constant 3243 case 'n': // Simple Integer 3244 case 'E': // Floating Point Constant 3245 case 'F': // Floating Point Constant 3246 case 's': // Relocatable Constant 3247 case 'p': // Address. 3248 case 'X': // Allow ANY value. 3249 case 'I': // Target registers. 3250 case 'J': 3251 case 'K': 3252 case 'L': 3253 case 'M': 3254 case 'N': 3255 case 'O': 3256 case 'P': 3257 case '<': 3258 case '>': 3259 return C_Other; 3260 } 3261 } 3262 3263 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 3264 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3265 return C_Memory; 3266 return C_Register; 3267 } 3268 return C_Unknown; 3269 } 3270 3271 /// Try to replace an X constraint, which matches anything, with another that 3272 /// has more specific requirements based on the type of the corresponding 3273 /// operand. 3274 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 3275 if (ConstraintVT.isInteger()) 3276 return "r"; 3277 if (ConstraintVT.isFloatingPoint()) 3278 return "f"; // works for many targets 3279 return nullptr; 3280 } 3281 3282 SDValue TargetLowering::LowerAsmOutputForConstraint( 3283 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo, 3284 SelectionDAG &DAG) const { 3285 return SDValue(); 3286 } 3287 3288 /// Lower the specified operand into the Ops vector. 3289 /// If it is invalid, don't add anything to Ops. 3290 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3291 std::string &Constraint, 3292 std::vector<SDValue> &Ops, 3293 SelectionDAG &DAG) const { 3294 3295 if (Constraint.length() > 1) return; 3296 3297 char ConstraintLetter = Constraint[0]; 3298 switch (ConstraintLetter) { 3299 default: break; 3300 case 'X': // Allows any operand; labels (basic block) use this. 3301 if (Op.getOpcode() == ISD::BasicBlock || 3302 Op.getOpcode() == ISD::TargetBlockAddress) { 3303 Ops.push_back(Op); 3304 return; 3305 } 3306 LLVM_FALLTHROUGH; 3307 case 'i': // Simple Integer or Relocatable Constant 3308 case 'n': // Simple Integer 3309 case 's': { // Relocatable Constant 3310 // These operands are interested in values of the form (GV+C), where C may 3311 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3312 // is possible and fine if either GV or C are missing. 3313 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3314 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3315 3316 // If we have "(add GV, C)", pull out GV/C 3317 if (Op.getOpcode() == ISD::ADD) { 3318 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3319 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3320 if (!C || !GA) { 3321 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3322 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3323 } 3324 if (!C || !GA) { 3325 C = nullptr; 3326 GA = nullptr; 3327 } 3328 } 3329 3330 // If we find a valid operand, map to the TargetXXX version so that the 3331 // value itself doesn't get selected. 3332 if (GA) { // Either &GV or &GV+C 3333 if (ConstraintLetter != 'n') { 3334 int64_t Offs = GA->getOffset(); 3335 if (C) Offs += C->getZExtValue(); 3336 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3337 C ? SDLoc(C) : SDLoc(), 3338 Op.getValueType(), Offs)); 3339 } 3340 return; 3341 } 3342 if (C) { // just C, no GV. 3343 // Simple constants are not allowed for 's'. 3344 if (ConstraintLetter != 's') { 3345 // gcc prints these as sign extended. Sign extend value to 64 bits 3346 // now; without this it would get ZExt'd later in 3347 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3348 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3349 SDLoc(C), MVT::i64)); 3350 } 3351 return; 3352 } 3353 break; 3354 } 3355 } 3356 } 3357 3358 std::pair<unsigned, const TargetRegisterClass *> 3359 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3360 StringRef Constraint, 3361 MVT VT) const { 3362 if (Constraint.empty() || Constraint[0] != '{') 3363 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 3364 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 3365 3366 // Remove the braces from around the name. 3367 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 3368 3369 std::pair<unsigned, const TargetRegisterClass *> R = 3370 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 3371 3372 // Figure out which register class contains this reg. 3373 for (const TargetRegisterClass *RC : RI->regclasses()) { 3374 // If none of the value types for this register class are valid, we 3375 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3376 if (!isLegalRC(*RI, *RC)) 3377 continue; 3378 3379 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3380 I != E; ++I) { 3381 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3382 std::pair<unsigned, const TargetRegisterClass *> S = 3383 std::make_pair(*I, RC); 3384 3385 // If this register class has the requested value type, return it, 3386 // otherwise keep searching and return the first class found 3387 // if no other is found which explicitly has the requested type. 3388 if (RI->isTypeLegalForClass(*RC, VT)) 3389 return S; 3390 if (!R.second) 3391 R = S; 3392 } 3393 } 3394 } 3395 3396 return R; 3397 } 3398 3399 //===----------------------------------------------------------------------===// 3400 // Constraint Selection. 3401 3402 /// Return true of this is an input operand that is a matching constraint like 3403 /// "4". 3404 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3405 assert(!ConstraintCode.empty() && "No known constraint!"); 3406 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3407 } 3408 3409 /// If this is an input matching constraint, this method returns the output 3410 /// operand it matches. 3411 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3412 assert(!ConstraintCode.empty() && "No known constraint!"); 3413 return atoi(ConstraintCode.c_str()); 3414 } 3415 3416 /// Split up the constraint string from the inline assembly value into the 3417 /// specific constraints and their prefixes, and also tie in the associated 3418 /// operand values. 3419 /// If this returns an empty vector, and if the constraint string itself 3420 /// isn't empty, there was an error parsing. 3421 TargetLowering::AsmOperandInfoVector 3422 TargetLowering::ParseConstraints(const DataLayout &DL, 3423 const TargetRegisterInfo *TRI, 3424 ImmutableCallSite CS) const { 3425 /// Information about all of the constraints. 3426 AsmOperandInfoVector ConstraintOperands; 3427 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3428 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3429 3430 // Do a prepass over the constraints, canonicalizing them, and building up the 3431 // ConstraintOperands list. 3432 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3433 unsigned ResNo = 0; // ResNo - The result number of the next output. 3434 3435 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3436 ConstraintOperands.emplace_back(std::move(CI)); 3437 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3438 3439 // Update multiple alternative constraint count. 3440 if (OpInfo.multipleAlternatives.size() > maCount) 3441 maCount = OpInfo.multipleAlternatives.size(); 3442 3443 OpInfo.ConstraintVT = MVT::Other; 3444 3445 // Compute the value type for each operand. 3446 switch (OpInfo.Type) { 3447 case InlineAsm::isOutput: 3448 // Indirect outputs just consume an argument. 3449 if (OpInfo.isIndirect) { 3450 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3451 break; 3452 } 3453 3454 // The return value of the call is this value. As such, there is no 3455 // corresponding argument. 3456 assert(!CS.getType()->isVoidTy() && 3457 "Bad inline asm!"); 3458 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3459 OpInfo.ConstraintVT = 3460 getSimpleValueType(DL, STy->getElementType(ResNo)); 3461 } else { 3462 assert(ResNo == 0 && "Asm only has one result!"); 3463 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3464 } 3465 ++ResNo; 3466 break; 3467 case InlineAsm::isInput: 3468 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3469 break; 3470 case InlineAsm::isClobber: 3471 // Nothing to do. 3472 break; 3473 } 3474 3475 if (OpInfo.CallOperandVal) { 3476 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3477 if (OpInfo.isIndirect) { 3478 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3479 if (!PtrTy) 3480 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3481 OpTy = PtrTy->getElementType(); 3482 } 3483 3484 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3485 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3486 if (STy->getNumElements() == 1) 3487 OpTy = STy->getElementType(0); 3488 3489 // If OpTy is not a single value, it may be a struct/union that we 3490 // can tile with integers. 3491 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3492 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3493 switch (BitSize) { 3494 default: break; 3495 case 1: 3496 case 8: 3497 case 16: 3498 case 32: 3499 case 64: 3500 case 128: 3501 OpInfo.ConstraintVT = 3502 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3503 break; 3504 } 3505 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3506 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3507 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3508 } else { 3509 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3510 } 3511 } 3512 } 3513 3514 // If we have multiple alternative constraints, select the best alternative. 3515 if (!ConstraintOperands.empty()) { 3516 if (maCount) { 3517 unsigned bestMAIndex = 0; 3518 int bestWeight = -1; 3519 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3520 int weight = -1; 3521 unsigned maIndex; 3522 // Compute the sums of the weights for each alternative, keeping track 3523 // of the best (highest weight) one so far. 3524 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3525 int weightSum = 0; 3526 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3527 cIndex != eIndex; ++cIndex) { 3528 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3529 if (OpInfo.Type == InlineAsm::isClobber) 3530 continue; 3531 3532 // If this is an output operand with a matching input operand, 3533 // look up the matching input. If their types mismatch, e.g. one 3534 // is an integer, the other is floating point, or their sizes are 3535 // different, flag it as an maCantMatch. 3536 if (OpInfo.hasMatchingInput()) { 3537 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3538 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3539 if ((OpInfo.ConstraintVT.isInteger() != 3540 Input.ConstraintVT.isInteger()) || 3541 (OpInfo.ConstraintVT.getSizeInBits() != 3542 Input.ConstraintVT.getSizeInBits())) { 3543 weightSum = -1; // Can't match. 3544 break; 3545 } 3546 } 3547 } 3548 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3549 if (weight == -1) { 3550 weightSum = -1; 3551 break; 3552 } 3553 weightSum += weight; 3554 } 3555 // Update best. 3556 if (weightSum > bestWeight) { 3557 bestWeight = weightSum; 3558 bestMAIndex = maIndex; 3559 } 3560 } 3561 3562 // Now select chosen alternative in each constraint. 3563 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3564 cIndex != eIndex; ++cIndex) { 3565 AsmOperandInfo &cInfo = ConstraintOperands[cIndex]; 3566 if (cInfo.Type == InlineAsm::isClobber) 3567 continue; 3568 cInfo.selectAlternative(bestMAIndex); 3569 } 3570 } 3571 } 3572 3573 // Check and hook up tied operands, choose constraint code to use. 3574 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3575 cIndex != eIndex; ++cIndex) { 3576 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 3577 3578 // If this is an output operand with a matching input operand, look up the 3579 // matching input. If their types mismatch, e.g. one is an integer, the 3580 // other is floating point, or their sizes are different, flag it as an 3581 // error. 3582 if (OpInfo.hasMatchingInput()) { 3583 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3584 3585 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3586 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3587 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3588 OpInfo.ConstraintVT); 3589 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3590 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3591 Input.ConstraintVT); 3592 if ((OpInfo.ConstraintVT.isInteger() != 3593 Input.ConstraintVT.isInteger()) || 3594 (MatchRC.second != InputRC.second)) { 3595 report_fatal_error("Unsupported asm: input constraint" 3596 " with a matching output constraint of" 3597 " incompatible type!"); 3598 } 3599 } 3600 } 3601 } 3602 3603 return ConstraintOperands; 3604 } 3605 3606 /// Return an integer indicating how general CT is. 3607 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3608 switch (CT) { 3609 case TargetLowering::C_Other: 3610 case TargetLowering::C_Unknown: 3611 return 0; 3612 case TargetLowering::C_Register: 3613 return 1; 3614 case TargetLowering::C_RegisterClass: 3615 return 2; 3616 case TargetLowering::C_Memory: 3617 return 3; 3618 } 3619 llvm_unreachable("Invalid constraint type"); 3620 } 3621 3622 /// Examine constraint type and operand type and determine a weight value. 3623 /// This object must already have been set up with the operand type 3624 /// and the current alternative constraint selected. 3625 TargetLowering::ConstraintWeight 3626 TargetLowering::getMultipleConstraintMatchWeight( 3627 AsmOperandInfo &info, int maIndex) const { 3628 InlineAsm::ConstraintCodeVector *rCodes; 3629 if (maIndex >= (int)info.multipleAlternatives.size()) 3630 rCodes = &info.Codes; 3631 else 3632 rCodes = &info.multipleAlternatives[maIndex].Codes; 3633 ConstraintWeight BestWeight = CW_Invalid; 3634 3635 // Loop over the options, keeping track of the most general one. 3636 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3637 ConstraintWeight weight = 3638 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3639 if (weight > BestWeight) 3640 BestWeight = weight; 3641 } 3642 3643 return BestWeight; 3644 } 3645 3646 /// Examine constraint type and operand type and determine a weight value. 3647 /// This object must already have been set up with the operand type 3648 /// and the current alternative constraint selected. 3649 TargetLowering::ConstraintWeight 3650 TargetLowering::getSingleConstraintMatchWeight( 3651 AsmOperandInfo &info, const char *constraint) const { 3652 ConstraintWeight weight = CW_Invalid; 3653 Value *CallOperandVal = info.CallOperandVal; 3654 // If we don't have a value, we can't do a match, 3655 // but allow it at the lowest weight. 3656 if (!CallOperandVal) 3657 return CW_Default; 3658 // Look at the constraint type. 3659 switch (*constraint) { 3660 case 'i': // immediate integer. 3661 case 'n': // immediate integer with a known value. 3662 if (isa<ConstantInt>(CallOperandVal)) 3663 weight = CW_Constant; 3664 break; 3665 case 's': // non-explicit intregal immediate. 3666 if (isa<GlobalValue>(CallOperandVal)) 3667 weight = CW_Constant; 3668 break; 3669 case 'E': // immediate float if host format. 3670 case 'F': // immediate float. 3671 if (isa<ConstantFP>(CallOperandVal)) 3672 weight = CW_Constant; 3673 break; 3674 case '<': // memory operand with autodecrement. 3675 case '>': // memory operand with autoincrement. 3676 case 'm': // memory operand. 3677 case 'o': // offsettable memory operand 3678 case 'V': // non-offsettable memory operand 3679 weight = CW_Memory; 3680 break; 3681 case 'r': // general register. 3682 case 'g': // general register, memory operand or immediate integer. 3683 // note: Clang converts "g" to "imr". 3684 if (CallOperandVal->getType()->isIntegerTy()) 3685 weight = CW_Register; 3686 break; 3687 case 'X': // any operand. 3688 default: 3689 weight = CW_Default; 3690 break; 3691 } 3692 return weight; 3693 } 3694 3695 /// If there are multiple different constraints that we could pick for this 3696 /// operand (e.g. "imr") try to pick the 'best' one. 3697 /// This is somewhat tricky: constraints fall into four classes: 3698 /// Other -> immediates and magic values 3699 /// Register -> one specific register 3700 /// RegisterClass -> a group of regs 3701 /// Memory -> memory 3702 /// Ideally, we would pick the most specific constraint possible: if we have 3703 /// something that fits into a register, we would pick it. The problem here 3704 /// is that if we have something that could either be in a register or in 3705 /// memory that use of the register could cause selection of *other* 3706 /// operands to fail: they might only succeed if we pick memory. Because of 3707 /// this the heuristic we use is: 3708 /// 3709 /// 1) If there is an 'other' constraint, and if the operand is valid for 3710 /// that constraint, use it. This makes us take advantage of 'i' 3711 /// constraints when available. 3712 /// 2) Otherwise, pick the most general constraint present. This prefers 3713 /// 'm' over 'r', for example. 3714 /// 3715 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3716 const TargetLowering &TLI, 3717 SDValue Op, SelectionDAG *DAG) { 3718 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3719 unsigned BestIdx = 0; 3720 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3721 int BestGenerality = -1; 3722 3723 // Loop over the options, keeping track of the most general one. 3724 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3725 TargetLowering::ConstraintType CType = 3726 TLI.getConstraintType(OpInfo.Codes[i]); 3727 3728 // If this is an 'other' constraint, see if the operand is valid for it. 3729 // For example, on X86 we might have an 'rI' constraint. If the operand 3730 // is an integer in the range [0..31] we want to use I (saving a load 3731 // of a register), otherwise we must use 'r'. 3732 if (CType == TargetLowering::C_Other && Op.getNode()) { 3733 assert(OpInfo.Codes[i].size() == 1 && 3734 "Unhandled multi-letter 'other' constraint"); 3735 std::vector<SDValue> ResultOps; 3736 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3737 ResultOps, *DAG); 3738 if (!ResultOps.empty()) { 3739 BestType = CType; 3740 BestIdx = i; 3741 break; 3742 } 3743 } 3744 3745 // Things with matching constraints can only be registers, per gcc 3746 // documentation. This mainly affects "g" constraints. 3747 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3748 continue; 3749 3750 // This constraint letter is more general than the previous one, use it. 3751 int Generality = getConstraintGenerality(CType); 3752 if (Generality > BestGenerality) { 3753 BestType = CType; 3754 BestIdx = i; 3755 BestGenerality = Generality; 3756 } 3757 } 3758 3759 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3760 OpInfo.ConstraintType = BestType; 3761 } 3762 3763 /// Determines the constraint code and constraint type to use for the specific 3764 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3765 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3766 SDValue Op, 3767 SelectionDAG *DAG) const { 3768 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3769 3770 // Single-letter constraints ('r') are very common. 3771 if (OpInfo.Codes.size() == 1) { 3772 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3773 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3774 } else { 3775 ChooseConstraint(OpInfo, *this, Op, DAG); 3776 } 3777 3778 // 'X' matches anything. 3779 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3780 // Labels and constants are handled elsewhere ('X' is the only thing 3781 // that matches labels). For Functions, the type here is the type of 3782 // the result, which is not what we want to look at; leave them alone. 3783 Value *v = OpInfo.CallOperandVal; 3784 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3785 OpInfo.CallOperandVal = v; 3786 return; 3787 } 3788 3789 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress) 3790 return; 3791 3792 // Otherwise, try to resolve it to something we know about by looking at 3793 // the actual operand type. 3794 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3795 OpInfo.ConstraintCode = Repl; 3796 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3797 } 3798 } 3799 } 3800 3801 /// Given an exact SDIV by a constant, create a multiplication 3802 /// with the multiplicative inverse of the constant. 3803 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3804 const SDLoc &dl, SelectionDAG &DAG, 3805 SmallVectorImpl<SDNode *> &Created) { 3806 SDValue Op0 = N->getOperand(0); 3807 SDValue Op1 = N->getOperand(1); 3808 EVT VT = N->getValueType(0); 3809 EVT SVT = VT.getScalarType(); 3810 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3811 EVT ShSVT = ShVT.getScalarType(); 3812 3813 bool UseSRA = false; 3814 SmallVector<SDValue, 16> Shifts, Factors; 3815 3816 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3817 if (C->isNullValue()) 3818 return false; 3819 APInt Divisor = C->getAPIntValue(); 3820 unsigned Shift = Divisor.countTrailingZeros(); 3821 if (Shift) { 3822 Divisor.ashrInPlace(Shift); 3823 UseSRA = true; 3824 } 3825 // Calculate the multiplicative inverse, using Newton's method. 3826 APInt t; 3827 APInt Factor = Divisor; 3828 while ((t = Divisor * Factor) != 1) 3829 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3830 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3831 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3832 return true; 3833 }; 3834 3835 // Collect all magic values from the build vector. 3836 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3837 return SDValue(); 3838 3839 SDValue Shift, Factor; 3840 if (VT.isVector()) { 3841 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3842 Factor = DAG.getBuildVector(VT, dl, Factors); 3843 } else { 3844 Shift = Shifts[0]; 3845 Factor = Factors[0]; 3846 } 3847 3848 SDValue Res = Op0; 3849 3850 // Shift the value upfront if it is even, so the LSB is one. 3851 if (UseSRA) { 3852 // TODO: For UDIV use SRL instead of SRA. 3853 SDNodeFlags Flags; 3854 Flags.setExact(true); 3855 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3856 Created.push_back(Res.getNode()); 3857 } 3858 3859 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3860 } 3861 3862 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3863 SelectionDAG &DAG, 3864 SmallVectorImpl<SDNode *> &Created) const { 3865 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3867 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3868 return SDValue(N, 0); // Lower SDIV as SDIV 3869 return SDValue(); 3870 } 3871 3872 /// Given an ISD::SDIV node expressing a divide by constant, 3873 /// return a DAG expression to select that will generate the same value by 3874 /// multiplying by a magic number. 3875 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3876 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3877 bool IsAfterLegalization, 3878 SmallVectorImpl<SDNode *> &Created) const { 3879 SDLoc dl(N); 3880 EVT VT = N->getValueType(0); 3881 EVT SVT = VT.getScalarType(); 3882 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3883 EVT ShSVT = ShVT.getScalarType(); 3884 unsigned EltBits = VT.getScalarSizeInBits(); 3885 3886 // Check to see if we can do this. 3887 // FIXME: We should be more aggressive here. 3888 if (!isTypeLegal(VT)) 3889 return SDValue(); 3890 3891 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3892 if (N->getFlags().hasExact()) 3893 return BuildExactSDIV(*this, N, dl, DAG, Created); 3894 3895 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3896 3897 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3898 if (C->isNullValue()) 3899 return false; 3900 3901 const APInt &Divisor = C->getAPIntValue(); 3902 APInt::ms magics = Divisor.magic(); 3903 int NumeratorFactor = 0; 3904 int ShiftMask = -1; 3905 3906 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3907 // If d is +1/-1, we just multiply the numerator by +1/-1. 3908 NumeratorFactor = Divisor.getSExtValue(); 3909 magics.m = 0; 3910 magics.s = 0; 3911 ShiftMask = 0; 3912 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3913 // If d > 0 and m < 0, add the numerator. 3914 NumeratorFactor = 1; 3915 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3916 // If d < 0 and m > 0, subtract the numerator. 3917 NumeratorFactor = -1; 3918 } 3919 3920 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3921 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3922 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3923 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3924 return true; 3925 }; 3926 3927 SDValue N0 = N->getOperand(0); 3928 SDValue N1 = N->getOperand(1); 3929 3930 // Collect the shifts / magic values from each element. 3931 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3932 return SDValue(); 3933 3934 SDValue MagicFactor, Factor, Shift, ShiftMask; 3935 if (VT.isVector()) { 3936 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3937 Factor = DAG.getBuildVector(VT, dl, Factors); 3938 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3939 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3940 } else { 3941 MagicFactor = MagicFactors[0]; 3942 Factor = Factors[0]; 3943 Shift = Shifts[0]; 3944 ShiftMask = ShiftMasks[0]; 3945 } 3946 3947 // Multiply the numerator (operand 0) by the magic value. 3948 // FIXME: We should support doing a MUL in a wider type. 3949 SDValue Q; 3950 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3951 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3952 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3953 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3954 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3955 SDValue LoHi = 3956 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3957 Q = SDValue(LoHi.getNode(), 1); 3958 } else 3959 return SDValue(); // No mulhs or equivalent. 3960 Created.push_back(Q.getNode()); 3961 3962 // (Optionally) Add/subtract the numerator using Factor. 3963 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3964 Created.push_back(Factor.getNode()); 3965 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3966 Created.push_back(Q.getNode()); 3967 3968 // Shift right algebraic by shift value. 3969 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3970 Created.push_back(Q.getNode()); 3971 3972 // Extract the sign bit, mask it and add it to the quotient. 3973 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3974 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3975 Created.push_back(T.getNode()); 3976 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3977 Created.push_back(T.getNode()); 3978 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3979 } 3980 3981 /// Given an ISD::UDIV node expressing a divide by constant, 3982 /// return a DAG expression to select that will generate the same value by 3983 /// multiplying by a magic number. 3984 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3985 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3986 bool IsAfterLegalization, 3987 SmallVectorImpl<SDNode *> &Created) const { 3988 SDLoc dl(N); 3989 EVT VT = N->getValueType(0); 3990 EVT SVT = VT.getScalarType(); 3991 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3992 EVT ShSVT = ShVT.getScalarType(); 3993 unsigned EltBits = VT.getScalarSizeInBits(); 3994 3995 // Check to see if we can do this. 3996 // FIXME: We should be more aggressive here. 3997 if (!isTypeLegal(VT)) 3998 return SDValue(); 3999 4000 bool UseNPQ = false; 4001 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 4002 4003 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 4004 if (C->isNullValue()) 4005 return false; 4006 // FIXME: We should use a narrower constant when the upper 4007 // bits are known to be zero. 4008 APInt Divisor = C->getAPIntValue(); 4009 APInt::mu magics = Divisor.magicu(); 4010 unsigned PreShift = 0, PostShift = 0; 4011 4012 // If the divisor is even, we can avoid using the expensive fixup by 4013 // shifting the divided value upfront. 4014 if (magics.a != 0 && !Divisor[0]) { 4015 PreShift = Divisor.countTrailingZeros(); 4016 // Get magic number for the shifted divisor. 4017 magics = Divisor.lshr(PreShift).magicu(PreShift); 4018 assert(magics.a == 0 && "Should use cheap fixup now"); 4019 } 4020 4021 APInt Magic = magics.m; 4022 4023 unsigned SelNPQ; 4024 if (magics.a == 0 || Divisor.isOneValue()) { 4025 assert(magics.s < Divisor.getBitWidth() && 4026 "We shouldn't generate an undefined shift!"); 4027 PostShift = magics.s; 4028 SelNPQ = false; 4029 } else { 4030 PostShift = magics.s - 1; 4031 SelNPQ = true; 4032 } 4033 4034 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 4035 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 4036 NPQFactors.push_back( 4037 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 4038 : APInt::getNullValue(EltBits), 4039 dl, SVT)); 4040 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 4041 UseNPQ |= SelNPQ; 4042 return true; 4043 }; 4044 4045 SDValue N0 = N->getOperand(0); 4046 SDValue N1 = N->getOperand(1); 4047 4048 // Collect the shifts/magic values from each element. 4049 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 4050 return SDValue(); 4051 4052 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 4053 if (VT.isVector()) { 4054 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 4055 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 4056 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 4057 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 4058 } else { 4059 PreShift = PreShifts[0]; 4060 MagicFactor = MagicFactors[0]; 4061 PostShift = PostShifts[0]; 4062 } 4063 4064 SDValue Q = N0; 4065 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 4066 Created.push_back(Q.getNode()); 4067 4068 // FIXME: We should support doing a MUL in a wider type. 4069 auto GetMULHU = [&](SDValue X, SDValue Y) { 4070 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 4071 : isOperationLegalOrCustom(ISD::MULHU, VT)) 4072 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 4073 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 4074 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 4075 SDValue LoHi = 4076 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 4077 return SDValue(LoHi.getNode(), 1); 4078 } 4079 return SDValue(); // No mulhu or equivalent 4080 }; 4081 4082 // Multiply the numerator (operand 0) by the magic value. 4083 Q = GetMULHU(Q, MagicFactor); 4084 if (!Q) 4085 return SDValue(); 4086 4087 Created.push_back(Q.getNode()); 4088 4089 if (UseNPQ) { 4090 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 4091 Created.push_back(NPQ.getNode()); 4092 4093 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 4094 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 4095 if (VT.isVector()) 4096 NPQ = GetMULHU(NPQ, NPQFactor); 4097 else 4098 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 4099 4100 Created.push_back(NPQ.getNode()); 4101 4102 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 4103 Created.push_back(Q.getNode()); 4104 } 4105 4106 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 4107 Created.push_back(Q.getNode()); 4108 4109 SDValue One = DAG.getConstant(1, dl, VT); 4110 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 4111 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4112 } 4113 4114 bool TargetLowering:: 4115 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4116 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4117 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4118 "be a constant integer"); 4119 return true; 4120 } 4121 4122 return false; 4123 } 4124 4125 //===----------------------------------------------------------------------===// 4126 // Legalization Utilities 4127 //===----------------------------------------------------------------------===// 4128 4129 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4130 SDValue LHS, SDValue RHS, 4131 SmallVectorImpl<SDValue> &Result, 4132 EVT HiLoVT, SelectionDAG &DAG, 4133 MulExpansionKind Kind, SDValue LL, 4134 SDValue LH, SDValue RL, SDValue RH) const { 4135 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4136 Opcode == ISD::SMUL_LOHI); 4137 4138 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4139 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4140 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4141 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4142 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4143 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4144 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4145 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4146 4147 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4148 return false; 4149 4150 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4151 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4152 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4153 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4154 4155 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4156 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4157 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4158 4159 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4160 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4161 bool Signed) -> bool { 4162 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4163 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4164 Hi = SDValue(Lo.getNode(), 1); 4165 return true; 4166 } 4167 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4168 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4169 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4170 return true; 4171 } 4172 return false; 4173 }; 4174 4175 SDValue Lo, Hi; 4176 4177 if (!LL.getNode() && !RL.getNode() && 4178 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4179 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4180 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4181 } 4182 4183 if (!LL.getNode()) 4184 return false; 4185 4186 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4187 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4188 DAG.MaskedValueIsZero(RHS, HighMask)) { 4189 // The inputs are both zero-extended. 4190 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4191 Result.push_back(Lo); 4192 Result.push_back(Hi); 4193 if (Opcode != ISD::MUL) { 4194 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4195 Result.push_back(Zero); 4196 Result.push_back(Zero); 4197 } 4198 return true; 4199 } 4200 } 4201 4202 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4203 RHSSB > InnerBitSize) { 4204 // The input values are both sign-extended. 4205 // TODO non-MUL case? 4206 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4207 Result.push_back(Lo); 4208 Result.push_back(Hi); 4209 return true; 4210 } 4211 } 4212 4213 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4214 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4215 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4216 // FIXME getShiftAmountTy does not always return a sensible result when VT 4217 // is an illegal type, and so the type may be too small to fit the shift 4218 // amount. Override it with i32. The shift will have to be legalized. 4219 ShiftAmountTy = MVT::i32; 4220 } 4221 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4222 4223 if (!LH.getNode() && !RH.getNode() && 4224 isOperationLegalOrCustom(ISD::SRL, VT) && 4225 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4226 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4227 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4228 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4229 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4230 } 4231 4232 if (!LH.getNode()) 4233 return false; 4234 4235 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4236 return false; 4237 4238 Result.push_back(Lo); 4239 4240 if (Opcode == ISD::MUL) { 4241 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4242 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4243 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4244 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4245 Result.push_back(Hi); 4246 return true; 4247 } 4248 4249 // Compute the full width result. 4250 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4251 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4252 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4253 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4254 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4255 }; 4256 4257 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4258 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4259 return false; 4260 4261 // This is effectively the add part of a multiply-add of half-sized operands, 4262 // so it cannot overflow. 4263 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4264 4265 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4266 return false; 4267 4268 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4269 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4270 4271 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4272 isOperationLegalOrCustom(ISD::ADDE, VT)); 4273 if (UseGlue) 4274 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4275 Merge(Lo, Hi)); 4276 else 4277 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4278 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4279 4280 SDValue Carry = Next.getValue(1); 4281 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4282 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4283 4284 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4285 return false; 4286 4287 if (UseGlue) 4288 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4289 Carry); 4290 else 4291 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4292 Zero, Carry); 4293 4294 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4295 4296 if (Opcode == ISD::SMUL_LOHI) { 4297 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4298 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4299 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4300 4301 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4302 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4303 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4304 } 4305 4306 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4307 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4308 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4309 return true; 4310 } 4311 4312 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4313 SelectionDAG &DAG, MulExpansionKind Kind, 4314 SDValue LL, SDValue LH, SDValue RL, 4315 SDValue RH) const { 4316 SmallVector<SDValue, 2> Result; 4317 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4318 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4319 DAG, Kind, LL, LH, RL, RH); 4320 if (Ok) { 4321 assert(Result.size() == 2); 4322 Lo = Result[0]; 4323 Hi = Result[1]; 4324 } 4325 return Ok; 4326 } 4327 4328 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4329 SelectionDAG &DAG) const { 4330 EVT VT = Node->getValueType(0); 4331 4332 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4333 !isOperationLegalOrCustom(ISD::SRL, VT) || 4334 !isOperationLegalOrCustom(ISD::SUB, VT) || 4335 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4336 return false; 4337 4338 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4339 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4340 SDValue X = Node->getOperand(0); 4341 SDValue Y = Node->getOperand(1); 4342 SDValue Z = Node->getOperand(2); 4343 4344 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4345 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4346 SDLoc DL(SDValue(Node, 0)); 4347 4348 EVT ShVT = Z.getValueType(); 4349 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4350 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4351 4352 SDValue ShAmt; 4353 if (isPowerOf2_32(EltSizeInBits)) { 4354 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4355 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4356 } else { 4357 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4358 } 4359 4360 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4361 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4362 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4363 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4364 4365 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4366 // and that is undefined. We must compare and select to avoid UB. 4367 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4368 4369 // For fshl, 0-shift returns the 1st arg (X). 4370 // For fshr, 0-shift returns the 2nd arg (Y). 4371 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4372 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4373 return true; 4374 } 4375 4376 // TODO: Merge with expandFunnelShift. 4377 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4378 SelectionDAG &DAG) const { 4379 EVT VT = Node->getValueType(0); 4380 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4381 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4382 SDValue Op0 = Node->getOperand(0); 4383 SDValue Op1 = Node->getOperand(1); 4384 SDLoc DL(SDValue(Node, 0)); 4385 4386 EVT ShVT = Op1.getValueType(); 4387 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4388 4389 // If a rotate in the other direction is legal, use it. 4390 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4391 if (isOperationLegal(RevRot, VT)) { 4392 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4393 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4394 return true; 4395 } 4396 4397 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4398 !isOperationLegalOrCustom(ISD::SRL, VT) || 4399 !isOperationLegalOrCustom(ISD::SUB, VT) || 4400 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4401 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4402 return false; 4403 4404 // Otherwise, 4405 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4406 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4407 // 4408 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4409 "Expecting the type bitwidth to be a power of 2"); 4410 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4411 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4412 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4413 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4414 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4415 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4416 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4417 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4418 return true; 4419 } 4420 4421 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4422 SelectionDAG &DAG) const { 4423 SDValue Src = Node->getOperand(0); 4424 EVT SrcVT = Src.getValueType(); 4425 EVT DstVT = Node->getValueType(0); 4426 SDLoc dl(SDValue(Node, 0)); 4427 4428 // FIXME: Only f32 to i64 conversions are supported. 4429 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4430 return false; 4431 4432 // Expand f32 -> i64 conversion 4433 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4434 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c 4435 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4436 EVT IntVT = SrcVT.changeTypeToInteger(); 4437 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4438 4439 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4440 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4441 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4442 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4443 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4444 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4445 4446 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4447 4448 SDValue ExponentBits = DAG.getNode( 4449 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4450 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4451 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4452 4453 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4454 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4455 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4456 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4457 4458 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4459 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4460 DAG.getConstant(0x00800000, dl, IntVT)); 4461 4462 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4463 4464 R = DAG.getSelectCC( 4465 dl, Exponent, ExponentLoBit, 4466 DAG.getNode(ISD::SHL, dl, DstVT, R, 4467 DAG.getZExtOrTrunc( 4468 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4469 dl, IntShVT)), 4470 DAG.getNode(ISD::SRL, dl, DstVT, R, 4471 DAG.getZExtOrTrunc( 4472 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4473 dl, IntShVT)), 4474 ISD::SETGT); 4475 4476 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4477 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4478 4479 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4480 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4481 return true; 4482 } 4483 4484 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4485 SelectionDAG &DAG) const { 4486 SDLoc dl(SDValue(Node, 0)); 4487 SDValue Src = Node->getOperand(0); 4488 4489 EVT SrcVT = Src.getValueType(); 4490 EVT DstVT = Node->getValueType(0); 4491 EVT SetCCVT = 4492 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4493 4494 // Only expand vector types if we have the appropriate vector bit operations. 4495 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4496 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4497 return false; 4498 4499 // If the maximum float value is smaller then the signed integer range, 4500 // the destination signmask can't be represented by the float, so we can 4501 // just use FP_TO_SINT directly. 4502 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4503 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4504 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4505 if (APFloat::opOverflow & 4506 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4507 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4508 return true; 4509 } 4510 4511 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4512 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4513 4514 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4515 if (Strict) { 4516 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4517 // signmask then offset (the result of which should be fully representable). 4518 // Sel = Src < 0x8000000000000000 4519 // Val = select Sel, Src, Src - 0x8000000000000000 4520 // Ofs = select Sel, 0, 0x8000000000000000 4521 // Result = fp_to_sint(Val) ^ Ofs 4522 4523 // TODO: Should any fast-math-flags be set for the FSUB? 4524 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4525 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4526 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4527 DAG.getConstant(SignMask, dl, DstVT)); 4528 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4529 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4530 } else { 4531 // Expand based on maximum range of FP_TO_SINT: 4532 // True = fp_to_sint(Src) 4533 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4534 // Result = select (Src < 0x8000000000000000), True, False 4535 4536 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4537 // TODO: Should any fast-math-flags be set for the FSUB? 4538 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4539 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4540 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4541 DAG.getConstant(SignMask, dl, DstVT)); 4542 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4543 } 4544 return true; 4545 } 4546 4547 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4548 SelectionDAG &DAG) const { 4549 SDValue Src = Node->getOperand(0); 4550 EVT SrcVT = Src.getValueType(); 4551 EVT DstVT = Node->getValueType(0); 4552 4553 if (SrcVT.getScalarType() != MVT::i64) 4554 return false; 4555 4556 SDLoc dl(SDValue(Node, 0)); 4557 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4558 4559 if (DstVT.getScalarType() == MVT::f32) { 4560 // Only expand vector types if we have the appropriate vector bit 4561 // operations. 4562 if (SrcVT.isVector() && 4563 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4564 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4565 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4566 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4567 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4568 return false; 4569 4570 // For unsigned conversions, convert them to signed conversions using the 4571 // algorithm from the x86_64 __floatundidf in compiler_rt. 4572 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4573 4574 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4575 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4576 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4577 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4578 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4579 4580 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4581 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4582 4583 // TODO: This really should be implemented using a branch rather than a 4584 // select. We happen to get lucky and machinesink does the right 4585 // thing most of the time. This would be a good candidate for a 4586 // pseudo-op, or, even better, for whole-function isel. 4587 EVT SetCCVT = 4588 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4589 4590 SDValue SignBitTest = DAG.getSetCC( 4591 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4592 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4593 return true; 4594 } 4595 4596 if (DstVT.getScalarType() == MVT::f64) { 4597 // Only expand vector types if we have the appropriate vector bit 4598 // operations. 4599 if (SrcVT.isVector() && 4600 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4601 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4602 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4603 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4604 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4605 return false; 4606 4607 // Implementation of unsigned i64 to f64 following the algorithm in 4608 // __floatundidf in compiler_rt. This implementation has the advantage 4609 // of performing rounding correctly, both in the default rounding mode 4610 // and in all alternate rounding modes. 4611 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4612 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4613 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4614 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4615 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4616 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4617 4618 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4619 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4620 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4621 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4622 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4623 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4624 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4625 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4626 return true; 4627 } 4628 4629 return false; 4630 } 4631 4632 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4633 SelectionDAG &DAG) const { 4634 SDLoc dl(Node); 4635 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4636 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4637 EVT VT = Node->getValueType(0); 4638 if (isOperationLegalOrCustom(NewOp, VT)) { 4639 SDValue Quiet0 = Node->getOperand(0); 4640 SDValue Quiet1 = Node->getOperand(1); 4641 4642 if (!Node->getFlags().hasNoNaNs()) { 4643 // Insert canonicalizes if it's possible we need to quiet to get correct 4644 // sNaN behavior. 4645 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4646 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4647 Node->getFlags()); 4648 } 4649 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4650 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4651 Node->getFlags()); 4652 } 4653 } 4654 4655 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4656 } 4657 4658 return SDValue(); 4659 } 4660 4661 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4662 SelectionDAG &DAG) const { 4663 SDLoc dl(Node); 4664 EVT VT = Node->getValueType(0); 4665 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4666 SDValue Op = Node->getOperand(0); 4667 unsigned Len = VT.getScalarSizeInBits(); 4668 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4669 4670 // TODO: Add support for irregular type lengths. 4671 if (!(Len <= 128 && Len % 8 == 0)) 4672 return false; 4673 4674 // Only expand vector types if we have the appropriate vector bit operations. 4675 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4676 !isOperationLegalOrCustom(ISD::SUB, VT) || 4677 !isOperationLegalOrCustom(ISD::SRL, VT) || 4678 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4679 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4680 return false; 4681 4682 // This is the "best" algorithm from 4683 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4684 SDValue Mask55 = 4685 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4686 SDValue Mask33 = 4687 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4688 SDValue Mask0F = 4689 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4690 SDValue Mask01 = 4691 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4692 4693 // v = v - ((v >> 1) & 0x55555555...) 4694 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4695 DAG.getNode(ISD::AND, dl, VT, 4696 DAG.getNode(ISD::SRL, dl, VT, Op, 4697 DAG.getConstant(1, dl, ShVT)), 4698 Mask55)); 4699 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4700 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4701 DAG.getNode(ISD::AND, dl, VT, 4702 DAG.getNode(ISD::SRL, dl, VT, Op, 4703 DAG.getConstant(2, dl, ShVT)), 4704 Mask33)); 4705 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4706 Op = DAG.getNode(ISD::AND, dl, VT, 4707 DAG.getNode(ISD::ADD, dl, VT, Op, 4708 DAG.getNode(ISD::SRL, dl, VT, Op, 4709 DAG.getConstant(4, dl, ShVT))), 4710 Mask0F); 4711 // v = (v * 0x01010101...) >> (Len - 8) 4712 if (Len > 8) 4713 Op = 4714 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4715 DAG.getConstant(Len - 8, dl, ShVT)); 4716 4717 Result = Op; 4718 return true; 4719 } 4720 4721 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4722 SelectionDAG &DAG) const { 4723 SDLoc dl(Node); 4724 EVT VT = Node->getValueType(0); 4725 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4726 SDValue Op = Node->getOperand(0); 4727 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4728 4729 // If the non-ZERO_UNDEF version is supported we can use that instead. 4730 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4731 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4732 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4733 return true; 4734 } 4735 4736 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4737 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4738 EVT SetCCVT = 4739 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4740 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4741 SDValue Zero = DAG.getConstant(0, dl, VT); 4742 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4743 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4744 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4745 return true; 4746 } 4747 4748 // Only expand vector types if we have the appropriate vector bit operations. 4749 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4750 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4751 !isOperationLegalOrCustom(ISD::SRL, VT) || 4752 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4753 return false; 4754 4755 // for now, we do this: 4756 // x = x | (x >> 1); 4757 // x = x | (x >> 2); 4758 // ... 4759 // x = x | (x >>16); 4760 // x = x | (x >>32); // for 64-bit input 4761 // return popcount(~x); 4762 // 4763 // Ref: "Hacker's Delight" by Henry Warren 4764 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4765 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4766 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4767 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4768 } 4769 Op = DAG.getNOT(dl, Op, VT); 4770 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4771 return true; 4772 } 4773 4774 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4775 SelectionDAG &DAG) const { 4776 SDLoc dl(Node); 4777 EVT VT = Node->getValueType(0); 4778 SDValue Op = Node->getOperand(0); 4779 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4780 4781 // If the non-ZERO_UNDEF version is supported we can use that instead. 4782 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4783 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4784 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4785 return true; 4786 } 4787 4788 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4789 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4790 EVT SetCCVT = 4791 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4792 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4793 SDValue Zero = DAG.getConstant(0, dl, VT); 4794 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4795 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4796 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4797 return true; 4798 } 4799 4800 // Only expand vector types if we have the appropriate vector bit operations. 4801 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4802 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4803 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4804 !isOperationLegalOrCustom(ISD::SUB, VT) || 4805 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4806 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4807 return false; 4808 4809 // for now, we use: { return popcount(~x & (x - 1)); } 4810 // unless the target has ctlz but not ctpop, in which case we use: 4811 // { return 32 - nlz(~x & (x-1)); } 4812 // Ref: "Hacker's Delight" by Henry Warren 4813 SDValue Tmp = DAG.getNode( 4814 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4815 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4816 4817 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4818 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4819 Result = 4820 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4821 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4822 return true; 4823 } 4824 4825 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4826 return true; 4827 } 4828 4829 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4830 SelectionDAG &DAG) const { 4831 SDLoc dl(N); 4832 EVT VT = N->getValueType(0); 4833 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4834 SDValue Op = N->getOperand(0); 4835 4836 // Only expand vector types if we have the appropriate vector operations. 4837 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4838 !isOperationLegalOrCustom(ISD::ADD, VT) || 4839 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4840 return false; 4841 4842 SDValue Shift = 4843 DAG.getNode(ISD::SRA, dl, VT, Op, 4844 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4845 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4846 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4847 return true; 4848 } 4849 4850 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4851 SelectionDAG &DAG) const { 4852 SDLoc SL(LD); 4853 SDValue Chain = LD->getChain(); 4854 SDValue BasePTR = LD->getBasePtr(); 4855 EVT SrcVT = LD->getMemoryVT(); 4856 ISD::LoadExtType ExtType = LD->getExtensionType(); 4857 4858 unsigned NumElem = SrcVT.getVectorNumElements(); 4859 4860 EVT SrcEltVT = SrcVT.getScalarType(); 4861 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4862 4863 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4864 assert(SrcEltVT.isByteSized()); 4865 4866 SmallVector<SDValue, 8> Vals; 4867 SmallVector<SDValue, 8> LoadChains; 4868 4869 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4870 SDValue ScalarLoad = 4871 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4872 LD->getPointerInfo().getWithOffset(Idx * Stride), 4873 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4874 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4875 4876 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4877 4878 Vals.push_back(ScalarLoad.getValue(0)); 4879 LoadChains.push_back(ScalarLoad.getValue(1)); 4880 } 4881 4882 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4883 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4884 4885 return DAG.getMergeValues({Value, NewChain}, SL); 4886 } 4887 4888 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4889 SelectionDAG &DAG) const { 4890 SDLoc SL(ST); 4891 4892 SDValue Chain = ST->getChain(); 4893 SDValue BasePtr = ST->getBasePtr(); 4894 SDValue Value = ST->getValue(); 4895 EVT StVT = ST->getMemoryVT(); 4896 4897 // The type of the data we want to save 4898 EVT RegVT = Value.getValueType(); 4899 EVT RegSclVT = RegVT.getScalarType(); 4900 4901 // The type of data as saved in memory. 4902 EVT MemSclVT = StVT.getScalarType(); 4903 4904 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4905 unsigned NumElem = StVT.getVectorNumElements(); 4906 4907 // A vector must always be stored in memory as-is, i.e. without any padding 4908 // between the elements, since various code depend on it, e.g. in the 4909 // handling of a bitcast of a vector type to int, which may be done with a 4910 // vector store followed by an integer load. A vector that does not have 4911 // elements that are byte-sized must therefore be stored as an integer 4912 // built out of the extracted vector elements. 4913 if (!MemSclVT.isByteSized()) { 4914 unsigned NumBits = StVT.getSizeInBits(); 4915 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4916 4917 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4918 4919 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4920 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4921 DAG.getConstant(Idx, SL, IdxVT)); 4922 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4923 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4924 unsigned ShiftIntoIdx = 4925 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4926 SDValue ShiftAmount = 4927 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4928 SDValue ShiftedElt = 4929 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4930 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4931 } 4932 4933 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4934 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4935 ST->getAAInfo()); 4936 } 4937 4938 // Store Stride in bytes 4939 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4940 assert(Stride && "Zero stride!"); 4941 // Extract each of the elements from the original vector and save them into 4942 // memory individually. 4943 SmallVector<SDValue, 8> Stores; 4944 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4945 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4946 DAG.getConstant(Idx, SL, IdxVT)); 4947 4948 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4949 4950 // This scalar TruncStore may be illegal, but we legalize it later. 4951 SDValue Store = DAG.getTruncStore( 4952 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4953 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4954 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4955 4956 Stores.push_back(Store); 4957 } 4958 4959 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4960 } 4961 4962 std::pair<SDValue, SDValue> 4963 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4964 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4965 "unaligned indexed loads not implemented!"); 4966 SDValue Chain = LD->getChain(); 4967 SDValue Ptr = LD->getBasePtr(); 4968 EVT VT = LD->getValueType(0); 4969 EVT LoadedVT = LD->getMemoryVT(); 4970 SDLoc dl(LD); 4971 auto &MF = DAG.getMachineFunction(); 4972 4973 if (VT.isFloatingPoint() || VT.isVector()) { 4974 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4975 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4976 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4977 LoadedVT.isVector()) { 4978 // Scalarize the load and let the individual components be handled. 4979 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4980 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4981 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4982 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4983 } 4984 4985 // Expand to a (misaligned) integer load of the same size, 4986 // then bitconvert to floating point or vector. 4987 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4988 LD->getMemOperand()); 4989 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4990 if (LoadedVT != VT) 4991 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4992 ISD::ANY_EXTEND, dl, VT, Result); 4993 4994 return std::make_pair(Result, newLoad.getValue(1)); 4995 } 4996 4997 // Copy the value to a (aligned) stack slot using (unaligned) integer 4998 // loads and stores, then do a (aligned) load from the stack slot. 4999 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 5000 unsigned LoadedBytes = LoadedVT.getStoreSize(); 5001 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5002 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 5003 5004 // Make sure the stack slot is also aligned for the register type. 5005 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 5006 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 5007 SmallVector<SDValue, 8> Stores; 5008 SDValue StackPtr = StackBase; 5009 unsigned Offset = 0; 5010 5011 EVT PtrVT = Ptr.getValueType(); 5012 EVT StackPtrVT = StackPtr.getValueType(); 5013 5014 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5015 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5016 5017 // Do all but one copies using the full register width. 5018 for (unsigned i = 1; i < NumRegs; i++) { 5019 // Load one integer register's worth from the original location. 5020 SDValue Load = DAG.getLoad( 5021 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 5022 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 5023 LD->getAAInfo()); 5024 // Follow the load with a store to the stack slot. Remember the store. 5025 Stores.push_back(DAG.getStore( 5026 Load.getValue(1), dl, Load, StackPtr, 5027 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 5028 // Increment the pointers. 5029 Offset += RegBytes; 5030 5031 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5032 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5033 } 5034 5035 // The last copy may be partial. Do an extending load. 5036 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5037 8 * (LoadedBytes - Offset)); 5038 SDValue Load = 5039 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 5040 LD->getPointerInfo().getWithOffset(Offset), MemVT, 5041 MinAlign(LD->getAlignment(), Offset), 5042 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5043 // Follow the load with a store to the stack slot. Remember the store. 5044 // On big-endian machines this requires a truncating store to ensure 5045 // that the bits end up in the right place. 5046 Stores.push_back(DAG.getTruncStore( 5047 Load.getValue(1), dl, Load, StackPtr, 5048 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 5049 5050 // The order of the stores doesn't matter - say it with a TokenFactor. 5051 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5052 5053 // Finally, perform the original load only redirected to the stack slot. 5054 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 5055 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 5056 LoadedVT); 5057 5058 // Callers expect a MERGE_VALUES node. 5059 return std::make_pair(Load, TF); 5060 } 5061 5062 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 5063 "Unaligned load of unsupported type."); 5064 5065 // Compute the new VT that is half the size of the old one. This is an 5066 // integer MVT. 5067 unsigned NumBits = LoadedVT.getSizeInBits(); 5068 EVT NewLoadedVT; 5069 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 5070 NumBits >>= 1; 5071 5072 unsigned Alignment = LD->getAlignment(); 5073 unsigned IncrementSize = NumBits / 8; 5074 ISD::LoadExtType HiExtType = LD->getExtensionType(); 5075 5076 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 5077 if (HiExtType == ISD::NON_EXTLOAD) 5078 HiExtType = ISD::ZEXTLOAD; 5079 5080 // Load the value in two parts 5081 SDValue Lo, Hi; 5082 if (DAG.getDataLayout().isLittleEndian()) { 5083 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5084 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5085 LD->getAAInfo()); 5086 5087 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5088 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 5089 LD->getPointerInfo().getWithOffset(IncrementSize), 5090 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5091 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5092 } else { 5093 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 5094 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 5095 LD->getAAInfo()); 5096 5097 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5098 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 5099 LD->getPointerInfo().getWithOffset(IncrementSize), 5100 NewLoadedVT, MinAlign(Alignment, IncrementSize), 5101 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 5102 } 5103 5104 // aggregate the two parts 5105 SDValue ShiftAmount = 5106 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 5107 DAG.getDataLayout())); 5108 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 5109 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 5110 5111 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5112 Hi.getValue(1)); 5113 5114 return std::make_pair(Result, TF); 5115 } 5116 5117 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5118 SelectionDAG &DAG) const { 5119 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5120 "unaligned indexed stores not implemented!"); 5121 SDValue Chain = ST->getChain(); 5122 SDValue Ptr = ST->getBasePtr(); 5123 SDValue Val = ST->getValue(); 5124 EVT VT = Val.getValueType(); 5125 int Alignment = ST->getAlignment(); 5126 auto &MF = DAG.getMachineFunction(); 5127 EVT MemVT = ST->getMemoryVT(); 5128 5129 SDLoc dl(ST); 5130 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5131 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5132 if (isTypeLegal(intVT)) { 5133 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5134 MemVT.isVector()) { 5135 // Scalarize the store and let the individual components be handled. 5136 SDValue Result = scalarizeVectorStore(ST, DAG); 5137 5138 return Result; 5139 } 5140 // Expand to a bitconvert of the value to the integer type of the 5141 // same size, then a (misaligned) int store. 5142 // FIXME: Does not handle truncating floating point stores! 5143 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5144 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5145 Alignment, ST->getMemOperand()->getFlags()); 5146 return Result; 5147 } 5148 // Do a (aligned) store to a stack slot, then copy from the stack slot 5149 // to the final destination using (unaligned) integer loads and stores. 5150 EVT StoredVT = ST->getMemoryVT(); 5151 MVT RegVT = 5152 getRegisterType(*DAG.getContext(), 5153 EVT::getIntegerVT(*DAG.getContext(), 5154 StoredVT.getSizeInBits())); 5155 EVT PtrVT = Ptr.getValueType(); 5156 unsigned StoredBytes = StoredVT.getStoreSize(); 5157 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5158 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5159 5160 // Make sure the stack slot is also aligned for the register type. 5161 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5162 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5163 5164 // Perform the original store, only redirected to the stack slot. 5165 SDValue Store = DAG.getTruncStore( 5166 Chain, dl, Val, StackPtr, 5167 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5168 5169 EVT StackPtrVT = StackPtr.getValueType(); 5170 5171 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5172 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5173 SmallVector<SDValue, 8> Stores; 5174 unsigned Offset = 0; 5175 5176 // Do all but one copies using the full register width. 5177 for (unsigned i = 1; i < NumRegs; i++) { 5178 // Load one integer register's worth from the stack slot. 5179 SDValue Load = DAG.getLoad( 5180 RegVT, dl, Store, StackPtr, 5181 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5182 // Store it to the final location. Remember the store. 5183 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5184 ST->getPointerInfo().getWithOffset(Offset), 5185 MinAlign(ST->getAlignment(), Offset), 5186 ST->getMemOperand()->getFlags())); 5187 // Increment the pointers. 5188 Offset += RegBytes; 5189 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5190 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5191 } 5192 5193 // The last store may be partial. Do a truncating store. On big-endian 5194 // machines this requires an extending load from the stack slot to ensure 5195 // that the bits are in the right place. 5196 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5197 8 * (StoredBytes - Offset)); 5198 5199 // Load from the stack slot. 5200 SDValue Load = DAG.getExtLoad( 5201 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5202 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5203 5204 Stores.push_back( 5205 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5206 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5207 MinAlign(ST->getAlignment(), Offset), 5208 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5209 // The order of the stores doesn't matter - say it with a TokenFactor. 5210 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5211 return Result; 5212 } 5213 5214 assert(ST->getMemoryVT().isInteger() && 5215 !ST->getMemoryVT().isVector() && 5216 "Unaligned store of unknown type."); 5217 // Get the half-size VT 5218 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5219 int NumBits = NewStoredVT.getSizeInBits(); 5220 int IncrementSize = NumBits / 8; 5221 5222 // Divide the stored value in two parts. 5223 SDValue ShiftAmount = 5224 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5225 DAG.getDataLayout())); 5226 SDValue Lo = Val; 5227 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5228 5229 // Store the two parts 5230 SDValue Store1, Store2; 5231 Store1 = DAG.getTruncStore(Chain, dl, 5232 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5233 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5234 ST->getMemOperand()->getFlags()); 5235 5236 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5237 Alignment = MinAlign(Alignment, IncrementSize); 5238 Store2 = DAG.getTruncStore( 5239 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5240 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5241 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5242 5243 SDValue Result = 5244 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5245 return Result; 5246 } 5247 5248 SDValue 5249 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5250 const SDLoc &DL, EVT DataVT, 5251 SelectionDAG &DAG, 5252 bool IsCompressedMemory) const { 5253 SDValue Increment; 5254 EVT AddrVT = Addr.getValueType(); 5255 EVT MaskVT = Mask.getValueType(); 5256 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5257 "Incompatible types of Data and Mask"); 5258 if (IsCompressedMemory) { 5259 // Incrementing the pointer according to number of '1's in the mask. 5260 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5261 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5262 if (MaskIntVT.getSizeInBits() < 32) { 5263 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5264 MaskIntVT = MVT::i32; 5265 } 5266 5267 // Count '1's with POPCNT. 5268 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5269 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5270 // Scale is an element size in bytes. 5271 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5272 AddrVT); 5273 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5274 } else 5275 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5276 5277 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5278 } 5279 5280 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5281 SDValue Idx, 5282 EVT VecVT, 5283 const SDLoc &dl) { 5284 if (isa<ConstantSDNode>(Idx)) 5285 return Idx; 5286 5287 EVT IdxVT = Idx.getValueType(); 5288 unsigned NElts = VecVT.getVectorNumElements(); 5289 if (isPowerOf2_32(NElts)) { 5290 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5291 Log2_32(NElts)); 5292 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5293 DAG.getConstant(Imm, dl, IdxVT)); 5294 } 5295 5296 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5297 DAG.getConstant(NElts - 1, dl, IdxVT)); 5298 } 5299 5300 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5301 SDValue VecPtr, EVT VecVT, 5302 SDValue Index) const { 5303 SDLoc dl(Index); 5304 // Make sure the index type is big enough to compute in. 5305 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5306 5307 EVT EltVT = VecVT.getVectorElementType(); 5308 5309 // Calculate the element offset and add it to the pointer. 5310 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5311 assert(EltSize * 8 == EltVT.getSizeInBits() && 5312 "Converting bits to bytes lost precision"); 5313 5314 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5315 5316 EVT IdxVT = Index.getValueType(); 5317 5318 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5319 DAG.getConstant(EltSize, dl, IdxVT)); 5320 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5321 } 5322 5323 //===----------------------------------------------------------------------===// 5324 // Implementation of Emulated TLS Model 5325 //===----------------------------------------------------------------------===// 5326 5327 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5328 SelectionDAG &DAG) const { 5329 // Access to address of TLS varialbe xyz is lowered to a function call: 5330 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5331 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5332 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5333 SDLoc dl(GA); 5334 5335 ArgListTy Args; 5336 ArgListEntry Entry; 5337 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5338 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5339 StringRef EmuTlsVarName(NameString); 5340 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5341 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5342 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5343 Entry.Ty = VoidPtrType; 5344 Args.push_back(Entry); 5345 5346 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5347 5348 TargetLowering::CallLoweringInfo CLI(DAG); 5349 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5350 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5351 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5352 5353 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5354 // At last for X86 targets, maybe good for other targets too? 5355 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5356 MFI.setAdjustsStack(true); // Is this only for X86 target? 5357 MFI.setHasCalls(true); 5358 5359 assert((GA->getOffset() == 0) && 5360 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5361 return CallResult.first; 5362 } 5363 5364 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5365 SelectionDAG &DAG) const { 5366 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5367 if (!isCtlzFast()) 5368 return SDValue(); 5369 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5370 SDLoc dl(Op); 5371 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5372 if (C->isNullValue() && CC == ISD::SETEQ) { 5373 EVT VT = Op.getOperand(0).getValueType(); 5374 SDValue Zext = Op.getOperand(0); 5375 if (VT.bitsLT(MVT::i32)) { 5376 VT = MVT::i32; 5377 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5378 } 5379 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5380 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5381 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5382 DAG.getConstant(Log2b, dl, MVT::i32)); 5383 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5384 } 5385 } 5386 return SDValue(); 5387 } 5388 5389 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5390 unsigned Opcode = Node->getOpcode(); 5391 SDValue LHS = Node->getOperand(0); 5392 SDValue RHS = Node->getOperand(1); 5393 EVT VT = LHS.getValueType(); 5394 SDLoc dl(Node); 5395 5396 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 5397 assert(VT.isInteger() && "Expected operands to be integers"); 5398 5399 // usub.sat(a, b) -> umax(a, b) - b 5400 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5401 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5402 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5403 } 5404 5405 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) { 5406 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 5407 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 5408 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 5409 } 5410 5411 unsigned OverflowOp; 5412 switch (Opcode) { 5413 case ISD::SADDSAT: 5414 OverflowOp = ISD::SADDO; 5415 break; 5416 case ISD::UADDSAT: 5417 OverflowOp = ISD::UADDO; 5418 break; 5419 case ISD::SSUBSAT: 5420 OverflowOp = ISD::SSUBO; 5421 break; 5422 case ISD::USUBSAT: 5423 OverflowOp = ISD::USUBO; 5424 break; 5425 default: 5426 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5427 "addition or subtraction node."); 5428 } 5429 5430 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 5431 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5432 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), 5433 LHS, RHS); 5434 SDValue SumDiff = Result.getValue(0); 5435 SDValue Overflow = Result.getValue(1); 5436 SDValue Zero = DAG.getConstant(0, dl, VT); 5437 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 5438 5439 if (Opcode == ISD::UADDSAT) { 5440 // Overflow ? 0xffff.... : (LHS + RHS) 5441 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 5442 } else if (Opcode == ISD::USUBSAT) { 5443 // Overflow ? 0 : (LHS - RHS) 5444 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 5445 } else { 5446 // SatMax -> Overflow && SumDiff < 0 5447 // SatMin -> Overflow && SumDiff >= 0 5448 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5449 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5450 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 5451 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 5452 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5453 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin); 5454 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 5455 } 5456 } 5457 5458 SDValue 5459 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 5460 assert((Node->getOpcode() == ISD::SMULFIX || 5461 Node->getOpcode() == ISD::UMULFIX) && 5462 "Expected opcode to be SMULFIX or UMULFIX."); 5463 5464 SDLoc dl(Node); 5465 SDValue LHS = Node->getOperand(0); 5466 SDValue RHS = Node->getOperand(1); 5467 EVT VT = LHS.getValueType(); 5468 unsigned Scale = Node->getConstantOperandVal(2); 5469 5470 // [us]mul.fix(a, b, 0) -> mul(a, b) 5471 if (!Scale) { 5472 if (VT.isVector() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5473 return SDValue(); 5474 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5475 } 5476 5477 unsigned VTSize = VT.getScalarSizeInBits(); 5478 bool Signed = Node->getOpcode() == ISD::SMULFIX; 5479 5480 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 5481 "Expected scale to be less than the number of bits if signed or at " 5482 "most the number of bits if unsigned."); 5483 assert(LHS.getValueType() == RHS.getValueType() && 5484 "Expected both operands to be the same type"); 5485 5486 // Get the upper and lower bits of the result. 5487 SDValue Lo, Hi; 5488 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 5489 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 5490 if (isOperationLegalOrCustom(LoHiOp, VT)) { 5491 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 5492 Lo = Result.getValue(0); 5493 Hi = Result.getValue(1); 5494 } else if (isOperationLegalOrCustom(HiOp, VT)) { 5495 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5496 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 5497 } else if (VT.isVector()) { 5498 return SDValue(); 5499 } else { 5500 report_fatal_error("Unable to expand fixed point multiplication."); 5501 } 5502 5503 if (Scale == VTSize) 5504 // Result is just the top half since we'd be shifting by the width of the 5505 // operand. 5506 return Hi; 5507 5508 // The result will need to be shifted right by the scale since both operands 5509 // are scaled. The result is given to us in 2 halves, so we only want part of 5510 // both in the result. 5511 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5512 return DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 5513 DAG.getConstant(Scale, dl, ShiftTy)); 5514 } 5515 5516 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 5517 SDValue &Overflow, SelectionDAG &DAG) const { 5518 SDLoc dl(Node); 5519 EVT VT = Node->getValueType(0); 5520 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 5521 if (VT.isVector()) 5522 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT, 5523 VT.getVectorNumElements()); 5524 5525 SDValue LHS = Node->getOperand(0); 5526 SDValue RHS = Node->getOperand(1); 5527 SDValue BottomHalf; 5528 SDValue TopHalf; 5529 static const unsigned Ops[2][3] = 5530 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 5531 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 5532 bool isSigned = Node->getOpcode() == ISD::SMULO; 5533 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 5534 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5535 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 5536 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 5537 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 5538 RHS); 5539 TopHalf = BottomHalf.getValue(1); 5540 } else if (isTypeLegal(WideVT)) { 5541 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 5542 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 5543 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 5544 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 5545 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 5546 getShiftAmountTy(WideVT, DAG.getDataLayout())); 5547 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 5548 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 5549 } else { 5550 if (VT.isVector()) 5551 return false; 5552 5553 // We can fall back to a libcall with an illegal type for the MUL if we 5554 // have a libcall big enough. 5555 // Also, we can fall back to a division in some cases, but that's a big 5556 // performance hit in the general case. 5557 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 5558 if (WideVT == MVT::i16) 5559 LC = RTLIB::MUL_I16; 5560 else if (WideVT == MVT::i32) 5561 LC = RTLIB::MUL_I32; 5562 else if (WideVT == MVT::i64) 5563 LC = RTLIB::MUL_I64; 5564 else if (WideVT == MVT::i128) 5565 LC = RTLIB::MUL_I128; 5566 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 5567 5568 SDValue HiLHS; 5569 SDValue HiRHS; 5570 if (isSigned) { 5571 // The high part is obtained by SRA'ing all but one of the bits of low 5572 // part. 5573 unsigned LoSize = VT.getSizeInBits(); 5574 HiLHS = 5575 DAG.getNode(ISD::SRA, dl, VT, LHS, 5576 DAG.getConstant(LoSize - 1, dl, 5577 getPointerTy(DAG.getDataLayout()))); 5578 HiRHS = 5579 DAG.getNode(ISD::SRA, dl, VT, RHS, 5580 DAG.getConstant(LoSize - 1, dl, 5581 getPointerTy(DAG.getDataLayout()))); 5582 } else { 5583 HiLHS = DAG.getConstant(0, dl, VT); 5584 HiRHS = DAG.getConstant(0, dl, VT); 5585 } 5586 5587 // Here we're passing the 2 arguments explicitly as 4 arguments that are 5588 // pre-lowered to the correct types. This all depends upon WideVT not 5589 // being a legal type for the architecture and thus has to be split to 5590 // two arguments. 5591 SDValue Ret; 5592 if (DAG.getDataLayout().isLittleEndian()) { 5593 // Halves of WideVT are packed into registers in different order 5594 // depending on platform endianness. This is usually handled by 5595 // the C calling convention, but we can't defer to it in 5596 // the legalizer. 5597 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 5598 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5599 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5600 /* isPostTypeLegalization */ true).first; 5601 } else { 5602 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 5603 Ret = makeLibCall(DAG, LC, WideVT, Args, isSigned, dl, 5604 /* doesNotReturn */ false, /* isReturnValueUsed */ true, 5605 /* isPostTypeLegalization */ true).first; 5606 } 5607 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 5608 "Ret value is a collection of constituent nodes holding result."); 5609 if (DAG.getDataLayout().isLittleEndian()) { 5610 // Same as above. 5611 BottomHalf = Ret.getOperand(0); 5612 TopHalf = Ret.getOperand(1); 5613 } else { 5614 BottomHalf = Ret.getOperand(1); 5615 TopHalf = Ret.getOperand(0); 5616 } 5617 } 5618 5619 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5620 Result = BottomHalf; 5621 if (isSigned) { 5622 SDValue ShiftAmt = DAG.getConstant( 5623 VT.getScalarSizeInBits() - 1, dl, 5624 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 5625 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 5626 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 5627 } else { 5628 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 5629 DAG.getConstant(0, dl, VT), ISD::SETNE); 5630 } 5631 5632 // Truncate the result if SetCC returns a larger type than needed. 5633 EVT RType = Node->getValueType(1); 5634 if (RType.getSizeInBits() < Overflow.getValueSizeInBits()) 5635 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 5636 5637 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 5638 "Unexpected result type for S/UMULO legalization"); 5639 return true; 5640 } 5641