1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/DivisionByConstantInfo.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/KnownBits.h"
32 #include "llvm/Support/MathExtras.h"
33 #include "llvm/Target/TargetLoweringObjectFile.h"
34 #include "llvm/Target/TargetMachine.h"
35 #include <cctype>
36 using namespace llvm;
37 
38 /// NOTE: The TargetMachine owns TLOF.
39 TargetLowering::TargetLowering(const TargetMachine &tm)
40     : TargetLoweringBase(tm) {}
41 
42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
43   return nullptr;
44 }
45 
46 bool TargetLowering::isPositionIndependent() const {
47   return getTargetMachine().isPositionIndependent();
48 }
49 
50 /// Check whether a given call node is in tail position within its function. If
51 /// so, it sets Chain to the input chain of the tail call.
52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
53                                           SDValue &Chain) const {
54   const Function &F = DAG.getMachineFunction().getFunction();
55 
56   // First, check if tail calls have been disabled in this function.
57   if (F.getFnAttribute("disable-tail-calls").getValueAsBool())
58     return false;
59 
60   // Conservatively require the attributes of the call to match those of
61   // the return. Ignore following attributes because they don't affect the
62   // call sequence.
63   AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs());
64   for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable,
65                            Attribute::DereferenceableOrNull, Attribute::NoAlias,
66                            Attribute::NonNull, Attribute::NoUndef})
67     CallerAttrs.removeAttribute(Attr);
68 
69   if (CallerAttrs.hasAttributes())
70     return false;
71 
72   // It's not safe to eliminate the sign / zero extension of the return value.
73   if (CallerAttrs.contains(Attribute::ZExt) ||
74       CallerAttrs.contains(Attribute::SExt))
75     return false;
76 
77   // Check if the only use is a function return node.
78   return isUsedByReturnOnly(Node, Chain);
79 }
80 
81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
82     const uint32_t *CallerPreservedMask,
83     const SmallVectorImpl<CCValAssign> &ArgLocs,
84     const SmallVectorImpl<SDValue> &OutVals) const {
85   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
86     const CCValAssign &ArgLoc = ArgLocs[I];
87     if (!ArgLoc.isRegLoc())
88       continue;
89     MCRegister Reg = ArgLoc.getLocReg();
90     // Only look at callee saved registers.
91     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
92       continue;
93     // Check that we pass the value used for the caller.
94     // (We look for a CopyFromReg reading a virtual register that is used
95     //  for the function live-in value of register Reg)
96     SDValue Value = OutVals[I];
97     if (Value->getOpcode() != ISD::CopyFromReg)
98       return false;
99     Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
100     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
101       return false;
102   }
103   return true;
104 }
105 
106 /// Set CallLoweringInfo attribute flags based on a call instruction
107 /// and called function attributes.
108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
109                                                      unsigned ArgIdx) {
110   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
111   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
112   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
113   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
114   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
115   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
116   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
117   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
118   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
119   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
120   IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync);
121   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
122   Alignment = Call->getParamStackAlign(ArgIdx);
123   IndirectType = nullptr;
124   assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 &&
125          "multiple ABI attributes?");
126   if (IsByVal) {
127     IndirectType = Call->getParamByValType(ArgIdx);
128     if (!Alignment)
129       Alignment = Call->getParamAlign(ArgIdx);
130   }
131   if (IsPreallocated)
132     IndirectType = Call->getParamPreallocatedType(ArgIdx);
133   if (IsInAlloca)
134     IndirectType = Call->getParamInAllocaType(ArgIdx);
135   if (IsSRet)
136     IndirectType = Call->getParamStructRetType(ArgIdx);
137 }
138 
139 /// Generate a libcall taking the given operands as arguments and returning a
140 /// result of type RetVT.
141 std::pair<SDValue, SDValue>
142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
143                             ArrayRef<SDValue> Ops,
144                             MakeLibCallOptions CallOptions,
145                             const SDLoc &dl,
146                             SDValue InChain) const {
147   if (!InChain)
148     InChain = DAG.getEntryNode();
149 
150   TargetLowering::ArgListTy Args;
151   Args.reserve(Ops.size());
152 
153   TargetLowering::ArgListEntry Entry;
154   for (unsigned i = 0; i < Ops.size(); ++i) {
155     SDValue NewOp = Ops[i];
156     Entry.Node = NewOp;
157     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
158     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
159                                                  CallOptions.IsSExt);
160     Entry.IsZExt = !Entry.IsSExt;
161 
162     if (CallOptions.IsSoften &&
163         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
164       Entry.IsSExt = Entry.IsZExt = false;
165     }
166     Args.push_back(Entry);
167   }
168 
169   if (LC == RTLIB::UNKNOWN_LIBCALL)
170     report_fatal_error("Unsupported library call operation!");
171   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
172                                          getPointerTy(DAG.getDataLayout()));
173 
174   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
175   TargetLowering::CallLoweringInfo CLI(DAG);
176   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
177   bool zeroExtend = !signExtend;
178 
179   if (CallOptions.IsSoften &&
180       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
181     signExtend = zeroExtend = false;
182   }
183 
184   CLI.setDebugLoc(dl)
185       .setChain(InChain)
186       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
187       .setNoReturn(CallOptions.DoesNotReturn)
188       .setDiscardResult(!CallOptions.IsReturnValueUsed)
189       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
190       .setSExtResult(signExtend)
191       .setZExtResult(zeroExtend);
192   return LowerCallTo(CLI);
193 }
194 
195 bool TargetLowering::findOptimalMemOpLowering(
196     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
197     unsigned SrcAS, const AttributeList &FuncAttributes) const {
198   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
199     return false;
200 
201   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
202 
203   if (VT == MVT::Other) {
204     // Use the largest integer type whose alignment constraints are satisfied.
205     // We only need to check DstAlign here as SrcAlign is always greater or
206     // equal to DstAlign (or zero).
207     VT = MVT::i64;
208     if (Op.isFixedDstAlign())
209       while (Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
210              !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign()))
211         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
212     assert(VT.isInteger());
213 
214     // Find the largest legal integer type.
215     MVT LVT = MVT::i64;
216     while (!isTypeLegal(LVT))
217       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
218     assert(LVT.isInteger());
219 
220     // If the type we've chosen is larger than the largest legal integer type
221     // then use that instead.
222     if (VT.bitsGT(LVT))
223       VT = LVT;
224   }
225 
226   unsigned NumMemOps = 0;
227   uint64_t Size = Op.size();
228   while (Size) {
229     unsigned VTSize = VT.getSizeInBits() / 8;
230     while (VTSize > Size) {
231       // For now, only use non-vector load / store's for the left-over pieces.
232       EVT NewVT = VT;
233       unsigned NewVTSize;
234 
235       bool Found = false;
236       if (VT.isVector() || VT.isFloatingPoint()) {
237         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
238         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
239             isSafeMemOpType(NewVT.getSimpleVT()))
240           Found = true;
241         else if (NewVT == MVT::i64 &&
242                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
243                  isSafeMemOpType(MVT::f64)) {
244           // i64 is usually not legal on 32-bit targets, but f64 may be.
245           NewVT = MVT::f64;
246           Found = true;
247         }
248       }
249 
250       if (!Found) {
251         do {
252           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
253           if (NewVT == MVT::i8)
254             break;
255         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
256       }
257       NewVTSize = NewVT.getSizeInBits() / 8;
258 
259       // If the new VT cannot cover all of the remaining bits, then consider
260       // issuing a (or a pair of) unaligned and overlapping load / store.
261       bool Fast;
262       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
263           allowsMisalignedMemoryAccesses(
264               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1),
265               MachineMemOperand::MONone, &Fast) &&
266           Fast)
267         VTSize = Size;
268       else {
269         VT = NewVT;
270         VTSize = NewVTSize;
271       }
272     }
273 
274     if (++NumMemOps > Limit)
275       return false;
276 
277     MemOps.push_back(VT);
278     Size -= VTSize;
279   }
280 
281   return true;
282 }
283 
284 /// Soften the operands of a comparison. This code is shared among BR_CC,
285 /// SELECT_CC, and SETCC handlers.
286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
287                                          SDValue &NewLHS, SDValue &NewRHS,
288                                          ISD::CondCode &CCCode,
289                                          const SDLoc &dl, const SDValue OldLHS,
290                                          const SDValue OldRHS) const {
291   SDValue Chain;
292   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
293                              OldRHS, Chain);
294 }
295 
296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
297                                          SDValue &NewLHS, SDValue &NewRHS,
298                                          ISD::CondCode &CCCode,
299                                          const SDLoc &dl, const SDValue OldLHS,
300                                          const SDValue OldRHS,
301                                          SDValue &Chain,
302                                          bool IsSignaling) const {
303   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
304   // not supporting it. We can update this code when libgcc provides such
305   // functions.
306 
307   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
308          && "Unsupported setcc type!");
309 
310   // Expand into one or more soft-fp libcall(s).
311   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
312   bool ShouldInvertCC = false;
313   switch (CCCode) {
314   case ISD::SETEQ:
315   case ISD::SETOEQ:
316     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
317           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
318           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
319     break;
320   case ISD::SETNE:
321   case ISD::SETUNE:
322     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
323           (VT == MVT::f64) ? RTLIB::UNE_F64 :
324           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
325     break;
326   case ISD::SETGE:
327   case ISD::SETOGE:
328     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
329           (VT == MVT::f64) ? RTLIB::OGE_F64 :
330           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
331     break;
332   case ISD::SETLT:
333   case ISD::SETOLT:
334     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
335           (VT == MVT::f64) ? RTLIB::OLT_F64 :
336           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
337     break;
338   case ISD::SETLE:
339   case ISD::SETOLE:
340     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
341           (VT == MVT::f64) ? RTLIB::OLE_F64 :
342           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
343     break;
344   case ISD::SETGT:
345   case ISD::SETOGT:
346     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
347           (VT == MVT::f64) ? RTLIB::OGT_F64 :
348           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
349     break;
350   case ISD::SETO:
351     ShouldInvertCC = true;
352     LLVM_FALLTHROUGH;
353   case ISD::SETUO:
354     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
355           (VT == MVT::f64) ? RTLIB::UO_F64 :
356           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
357     break;
358   case ISD::SETONE:
359     // SETONE = O && UNE
360     ShouldInvertCC = true;
361     LLVM_FALLTHROUGH;
362   case ISD::SETUEQ:
363     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
364           (VT == MVT::f64) ? RTLIB::UO_F64 :
365           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
366     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
367           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
368           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
369     break;
370   default:
371     // Invert CC for unordered comparisons
372     ShouldInvertCC = true;
373     switch (CCCode) {
374     case ISD::SETULT:
375       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
376             (VT == MVT::f64) ? RTLIB::OGE_F64 :
377             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
378       break;
379     case ISD::SETULE:
380       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
381             (VT == MVT::f64) ? RTLIB::OGT_F64 :
382             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
383       break;
384     case ISD::SETUGT:
385       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
386             (VT == MVT::f64) ? RTLIB::OLE_F64 :
387             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
388       break;
389     case ISD::SETUGE:
390       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
391             (VT == MVT::f64) ? RTLIB::OLT_F64 :
392             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
393       break;
394     default: llvm_unreachable("Do not know how to soften this setcc!");
395     }
396   }
397 
398   // Use the target specific return value for comparions lib calls.
399   EVT RetVT = getCmpLibcallReturnType();
400   SDValue Ops[2] = {NewLHS, NewRHS};
401   TargetLowering::MakeLibCallOptions CallOptions;
402   EVT OpsVT[2] = { OldLHS.getValueType(),
403                    OldRHS.getValueType() };
404   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
405   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
406   NewLHS = Call.first;
407   NewRHS = DAG.getConstant(0, dl, RetVT);
408 
409   CCCode = getCmpLibcallCC(LC1);
410   if (ShouldInvertCC) {
411     assert(RetVT.isInteger());
412     CCCode = getSetCCInverse(CCCode, RetVT);
413   }
414 
415   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
416     // Update Chain.
417     Chain = Call.second;
418   } else {
419     EVT SetCCVT =
420         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
421     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
422     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
423     CCCode = getCmpLibcallCC(LC2);
424     if (ShouldInvertCC)
425       CCCode = getSetCCInverse(CCCode, RetVT);
426     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
427     if (Chain)
428       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
429                           Call2.second);
430     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
431                          Tmp.getValueType(), Tmp, NewLHS);
432     NewRHS = SDValue();
433   }
434 }
435 
436 /// Return the entry encoding for a jump table in the current function. The
437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
438 unsigned TargetLowering::getJumpTableEncoding() const {
439   // In non-pic modes, just use the address of a block.
440   if (!isPositionIndependent())
441     return MachineJumpTableInfo::EK_BlockAddress;
442 
443   // In PIC mode, if the target supports a GPRel32 directive, use it.
444   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
445     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
446 
447   // Otherwise, use a label difference.
448   return MachineJumpTableInfo::EK_LabelDifference32;
449 }
450 
451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
452                                                  SelectionDAG &DAG) const {
453   // If our PIC model is GP relative, use the global offset table as the base.
454   unsigned JTEncoding = getJumpTableEncoding();
455 
456   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
457       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
458     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
459 
460   return Table;
461 }
462 
463 /// This returns the relocation base for the given PIC jumptable, the same as
464 /// getPICJumpTableRelocBase, but as an MCExpr.
465 const MCExpr *
466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
467                                              unsigned JTI,MCContext &Ctx) const{
468   // The normal PIC reloc base is the label at the start of the jump table.
469   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
470 }
471 
472 bool
473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
474   const TargetMachine &TM = getTargetMachine();
475   const GlobalValue *GV = GA->getGlobal();
476 
477   // If the address is not even local to this DSO we will have to load it from
478   // a got and then add the offset.
479   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
480     return false;
481 
482   // If the code is position independent we will have to add a base register.
483   if (isPositionIndependent())
484     return false;
485 
486   // Otherwise we can do it.
487   return true;
488 }
489 
490 //===----------------------------------------------------------------------===//
491 //  Optimization Methods
492 //===----------------------------------------------------------------------===//
493 
494 /// If the specified instruction has a constant integer operand and there are
495 /// bits set in that constant that are not demanded, then clear those bits and
496 /// return true.
497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
498                                             const APInt &DemandedBits,
499                                             const APInt &DemandedElts,
500                                             TargetLoweringOpt &TLO) const {
501   SDLoc DL(Op);
502   unsigned Opcode = Op.getOpcode();
503 
504   // Do target-specific constant optimization.
505   if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
506     return TLO.New.getNode();
507 
508   // FIXME: ISD::SELECT, ISD::SELECT_CC
509   switch (Opcode) {
510   default:
511     break;
512   case ISD::XOR:
513   case ISD::AND:
514   case ISD::OR: {
515     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
516     if (!Op1C || Op1C->isOpaque())
517       return false;
518 
519     // If this is a 'not' op, don't touch it because that's a canonical form.
520     const APInt &C = Op1C->getAPIntValue();
521     if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C))
522       return false;
523 
524     if (!C.isSubsetOf(DemandedBits)) {
525       EVT VT = Op.getValueType();
526       SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT);
527       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
528       return TLO.CombineTo(Op, NewOp);
529     }
530 
531     break;
532   }
533   }
534 
535   return false;
536 }
537 
538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op,
539                                             const APInt &DemandedBits,
540                                             TargetLoweringOpt &TLO) const {
541   EVT VT = Op.getValueType();
542   APInt DemandedElts = VT.isVector()
543                            ? APInt::getAllOnes(VT.getVectorNumElements())
544                            : APInt(1, 1);
545   return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO);
546 }
547 
548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
550 /// generalized for targets with other types of implicit widening casts.
551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
552                                       const APInt &Demanded,
553                                       TargetLoweringOpt &TLO) const {
554   assert(Op.getNumOperands() == 2 &&
555          "ShrinkDemandedOp only supports binary operators!");
556   assert(Op.getNode()->getNumValues() == 1 &&
557          "ShrinkDemandedOp only supports nodes with one result!");
558 
559   SelectionDAG &DAG = TLO.DAG;
560   SDLoc dl(Op);
561 
562   // Early return, as this function cannot handle vector types.
563   if (Op.getValueType().isVector())
564     return false;
565 
566   // Don't do this if the node has another user, which may require the
567   // full value.
568   if (!Op.getNode()->hasOneUse())
569     return false;
570 
571   // Search for the smallest integer type with free casts to and from
572   // Op's type. For expedience, just check power-of-2 integer types.
573   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
574   unsigned DemandedSize = Demanded.getActiveBits();
575   unsigned SmallVTBits = DemandedSize;
576   if (!isPowerOf2_32(SmallVTBits))
577     SmallVTBits = NextPowerOf2(SmallVTBits);
578   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
579     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
580     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
581         TLI.isZExtFree(SmallVT, Op.getValueType())) {
582       // We found a type with free casts.
583       SDValue X = DAG.getNode(
584           Op.getOpcode(), dl, SmallVT,
585           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
586           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
587       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
588       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
589       return TLO.CombineTo(Op, Z);
590     }
591   }
592   return false;
593 }
594 
595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
596                                           DAGCombinerInfo &DCI) const {
597   SelectionDAG &DAG = DCI.DAG;
598   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
599                         !DCI.isBeforeLegalizeOps());
600   KnownBits Known;
601 
602   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
603   if (Simplified) {
604     DCI.AddToWorklist(Op.getNode());
605     DCI.CommitTargetLoweringOpt(TLO);
606   }
607   return Simplified;
608 }
609 
610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
611                                           const APInt &DemandedElts,
612                                           DAGCombinerInfo &DCI) const {
613   SelectionDAG &DAG = DCI.DAG;
614   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
615                         !DCI.isBeforeLegalizeOps());
616   KnownBits Known;
617 
618   bool Simplified =
619       SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO);
620   if (Simplified) {
621     DCI.AddToWorklist(Op.getNode());
622     DCI.CommitTargetLoweringOpt(TLO);
623   }
624   return Simplified;
625 }
626 
627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
628                                           KnownBits &Known,
629                                           TargetLoweringOpt &TLO,
630                                           unsigned Depth,
631                                           bool AssumeSingleUse) const {
632   EVT VT = Op.getValueType();
633 
634   // TODO: We can probably do more work on calculating the known bits and
635   // simplifying the operations for scalable vectors, but for now we just
636   // bail out.
637   if (VT.isScalableVector()) {
638     // Pretend we don't know anything for now.
639     Known = KnownBits(DemandedBits.getBitWidth());
640     return false;
641   }
642 
643   APInt DemandedElts = VT.isVector()
644                            ? APInt::getAllOnes(VT.getVectorNumElements())
645                            : APInt(1, 1);
646   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
647                               AssumeSingleUse);
648 }
649 
650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
651 // TODO: Under what circumstances can we create nodes? Constant folding?
652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
653     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
654     SelectionDAG &DAG, unsigned Depth) const {
655   // Limit search depth.
656   if (Depth >= SelectionDAG::MaxRecursionDepth)
657     return SDValue();
658 
659   // Ignore UNDEFs.
660   if (Op.isUndef())
661     return SDValue();
662 
663   // Not demanding any bits/elts from Op.
664   if (DemandedBits == 0 || DemandedElts == 0)
665     return DAG.getUNDEF(Op.getValueType());
666 
667   bool IsLE = DAG.getDataLayout().isLittleEndian();
668   unsigned NumElts = DemandedElts.getBitWidth();
669   unsigned BitWidth = DemandedBits.getBitWidth();
670   KnownBits LHSKnown, RHSKnown;
671   switch (Op.getOpcode()) {
672   case ISD::BITCAST: {
673     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
674     EVT SrcVT = Src.getValueType();
675     EVT DstVT = Op.getValueType();
676     if (SrcVT == DstVT)
677       return Src;
678 
679     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
680     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
681     if (NumSrcEltBits == NumDstEltBits)
682       if (SDValue V = SimplifyMultipleUseDemandedBits(
683               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
684         return DAG.getBitcast(DstVT, V);
685 
686     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) {
687       unsigned Scale = NumDstEltBits / NumSrcEltBits;
688       unsigned NumSrcElts = SrcVT.getVectorNumElements();
689       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
690       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
691       for (unsigned i = 0; i != Scale; ++i) {
692         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
693         unsigned BitOffset = EltOffset * NumSrcEltBits;
694         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
695         if (!Sub.isZero()) {
696           DemandedSrcBits |= Sub;
697           for (unsigned j = 0; j != NumElts; ++j)
698             if (DemandedElts[j])
699               DemandedSrcElts.setBit((j * Scale) + i);
700         }
701       }
702 
703       if (SDValue V = SimplifyMultipleUseDemandedBits(
704               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
705         return DAG.getBitcast(DstVT, V);
706     }
707 
708     // TODO - bigendian once we have test coverage.
709     if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) {
710       unsigned Scale = NumSrcEltBits / NumDstEltBits;
711       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
712       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
713       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
714       for (unsigned i = 0; i != NumElts; ++i)
715         if (DemandedElts[i]) {
716           unsigned Offset = (i % Scale) * NumDstEltBits;
717           DemandedSrcBits.insertBits(DemandedBits, Offset);
718           DemandedSrcElts.setBit(i / Scale);
719         }
720 
721       if (SDValue V = SimplifyMultipleUseDemandedBits(
722               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
723         return DAG.getBitcast(DstVT, V);
724     }
725 
726     break;
727   }
728   case ISD::AND: {
729     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
730     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
731 
732     // If all of the demanded bits are known 1 on one side, return the other.
733     // These bits cannot contribute to the result of the 'and' in this
734     // context.
735     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
736       return Op.getOperand(0);
737     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
738       return Op.getOperand(1);
739     break;
740   }
741   case ISD::OR: {
742     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
743     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
744 
745     // If all of the demanded bits are known zero on one side, return the
746     // other.  These bits cannot contribute to the result of the 'or' in this
747     // context.
748     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
749       return Op.getOperand(0);
750     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
751       return Op.getOperand(1);
752     break;
753   }
754   case ISD::XOR: {
755     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
756     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
757 
758     // If all of the demanded bits are known zero on one side, return the
759     // other.
760     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
761       return Op.getOperand(0);
762     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
763       return Op.getOperand(1);
764     break;
765   }
766   case ISD::SHL: {
767     // If we are only demanding sign bits then we can use the shift source
768     // directly.
769     if (const APInt *MaxSA =
770             DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
771       SDValue Op0 = Op.getOperand(0);
772       unsigned ShAmt = MaxSA->getZExtValue();
773       unsigned NumSignBits =
774           DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
775       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
776       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
777         return Op0;
778     }
779     break;
780   }
781   case ISD::SETCC: {
782     SDValue Op0 = Op.getOperand(0);
783     SDValue Op1 = Op.getOperand(1);
784     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
785     // If (1) we only need the sign-bit, (2) the setcc operands are the same
786     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
787     // -1, we may be able to bypass the setcc.
788     if (DemandedBits.isSignMask() &&
789         Op0.getScalarValueSizeInBits() == BitWidth &&
790         getBooleanContents(Op0.getValueType()) ==
791             BooleanContent::ZeroOrNegativeOneBooleanContent) {
792       // If we're testing X < 0, then this compare isn't needed - just use X!
793       // FIXME: We're limiting to integer types here, but this should also work
794       // if we don't care about FP signed-zero. The use of SETLT with FP means
795       // that we don't care about NaNs.
796       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
797           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
798         return Op0;
799     }
800     break;
801   }
802   case ISD::SIGN_EXTEND_INREG: {
803     // If none of the extended bits are demanded, eliminate the sextinreg.
804     SDValue Op0 = Op.getOperand(0);
805     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
806     unsigned ExBits = ExVT.getScalarSizeInBits();
807     if (DemandedBits.getActiveBits() <= ExBits)
808       return Op0;
809     // If the input is already sign extended, just drop the extension.
810     unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
811     if (NumSignBits >= (BitWidth - ExBits + 1))
812       return Op0;
813     break;
814   }
815   case ISD::ANY_EXTEND_VECTOR_INREG:
816   case ISD::SIGN_EXTEND_VECTOR_INREG:
817   case ISD::ZERO_EXTEND_VECTOR_INREG: {
818     // If we only want the lowest element and none of extended bits, then we can
819     // return the bitcasted source vector.
820     SDValue Src = Op.getOperand(0);
821     EVT SrcVT = Src.getValueType();
822     EVT DstVT = Op.getValueType();
823     if (IsLE && DemandedElts == 1 &&
824         DstVT.getSizeInBits() == SrcVT.getSizeInBits() &&
825         DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) {
826       return DAG.getBitcast(DstVT, Src);
827     }
828     break;
829   }
830   case ISD::INSERT_VECTOR_ELT: {
831     // If we don't demand the inserted element, return the base vector.
832     SDValue Vec = Op.getOperand(0);
833     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
834     EVT VecVT = Vec.getValueType();
835     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
836         !DemandedElts[CIdx->getZExtValue()])
837       return Vec;
838     break;
839   }
840   case ISD::INSERT_SUBVECTOR: {
841     SDValue Vec = Op.getOperand(0);
842     SDValue Sub = Op.getOperand(1);
843     uint64_t Idx = Op.getConstantOperandVal(2);
844     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
845     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
846     // If we don't demand the inserted subvector, return the base vector.
847     if (DemandedSubElts == 0)
848       return Vec;
849     // If this simply widens the lowest subvector, see if we can do it earlier.
850     if (Idx == 0 && Vec.isUndef()) {
851       if (SDValue NewSub = SimplifyMultipleUseDemandedBits(
852               Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1))
853         return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(),
854                            Op.getOperand(0), NewSub, Op.getOperand(2));
855     }
856     break;
857   }
858   case ISD::VECTOR_SHUFFLE: {
859     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
860 
861     // If all the demanded elts are from one operand and are inline,
862     // then we can use the operand directly.
863     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
864     for (unsigned i = 0; i != NumElts; ++i) {
865       int M = ShuffleMask[i];
866       if (M < 0 || !DemandedElts[i])
867         continue;
868       AllUndef = false;
869       IdentityLHS &= (M == (int)i);
870       IdentityRHS &= ((M - NumElts) == i);
871     }
872 
873     if (AllUndef)
874       return DAG.getUNDEF(Op.getValueType());
875     if (IdentityLHS)
876       return Op.getOperand(0);
877     if (IdentityRHS)
878       return Op.getOperand(1);
879     break;
880   }
881   default:
882     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
883       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
884               Op, DemandedBits, DemandedElts, DAG, Depth))
885         return V;
886     break;
887   }
888   return SDValue();
889 }
890 
891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
892     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
893     unsigned Depth) const {
894   EVT VT = Op.getValueType();
895   APInt DemandedElts = VT.isVector()
896                            ? APInt::getAllOnes(VT.getVectorNumElements())
897                            : APInt(1, 1);
898   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
899                                          Depth);
900 }
901 
902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts(
903     SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG,
904     unsigned Depth) const {
905   APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits());
906   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
907                                          Depth);
908 }
909 
910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1).
911 //      or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1).
912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG,
913                                  const TargetLowering &TLI,
914                                  const APInt &DemandedBits,
915                                  const APInt &DemandedElts,
916                                  unsigned Depth) {
917   assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) &&
918          "SRL or SRA node is required here!");
919   // Is the right shift using an immediate value of 1?
920   ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
921   if (!N1C || !N1C->isOne())
922     return SDValue();
923 
924   // We are looking for an avgfloor
925   // add(ext, ext)
926   // or one of these as a avgceil
927   // add(add(ext, ext), 1)
928   // add(add(ext, 1), ext)
929   // add(ext, add(ext, 1))
930   SDValue Add = Op.getOperand(0);
931   if (Add.getOpcode() != ISD::ADD)
932     return SDValue();
933 
934   SDValue ExtOpA = Add.getOperand(0);
935   SDValue ExtOpB = Add.getOperand(1);
936   auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) {
937     ConstantSDNode *ConstOp;
938     if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) &&
939         ConstOp->isOne()) {
940       ExtOpA = Op2;
941       ExtOpB = Op3;
942       return true;
943     }
944     if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) &&
945         ConstOp->isOne()) {
946       ExtOpA = Op1;
947       ExtOpB = Op3;
948       return true;
949     }
950     if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) &&
951         ConstOp->isOne()) {
952       ExtOpA = Op1;
953       ExtOpB = Op2;
954       return true;
955     }
956     return false;
957   };
958   bool IsCeil =
959       (ExtOpA.getOpcode() == ISD::ADD &&
960        MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) ||
961       (ExtOpB.getOpcode() == ISD::ADD &&
962        MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA));
963 
964   // If the shift is signed (sra):
965   //  - Needs >= 2 sign bit for both operands.
966   //  - Needs >= 2 zero bits.
967   // If the shift is unsigned (srl):
968   //  - Needs >= 1 zero bit for both operands.
969   //  - Needs 1 demanded bit zero and >= 2 sign bits.
970   unsigned ShiftOpc = Op.getOpcode();
971   bool IsSigned = false;
972   unsigned KnownBits;
973   unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth);
974   unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth);
975   unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1;
976   unsigned NumZeroA =
977       DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros();
978   unsigned NumZeroB =
979       DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros();
980   unsigned NumZero = std::min(NumZeroA, NumZeroB);
981 
982   switch (ShiftOpc) {
983   default:
984     llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG");
985   case ISD::SRA: {
986     if (NumZero >= 2 && NumSigned < NumZero) {
987       IsSigned = false;
988       KnownBits = NumZero;
989       break;
990     }
991     if (NumSigned >= 1) {
992       IsSigned = true;
993       KnownBits = NumSigned;
994       break;
995     }
996     return SDValue();
997   }
998   case ISD::SRL: {
999     if (NumZero >= 1 && NumSigned < NumZero) {
1000       IsSigned = false;
1001       KnownBits = NumZero;
1002       break;
1003     }
1004     if (NumSigned >= 1 && DemandedBits.isSignBitClear()) {
1005       IsSigned = true;
1006       KnownBits = NumSigned;
1007       break;
1008     }
1009     return SDValue();
1010   }
1011   }
1012 
1013   unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU)
1014                            : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU);
1015 
1016   // Find the smallest power-2 type that is legal for this vector size and
1017   // operation, given the original type size and the number of known sign/zero
1018   // bits.
1019   EVT VT = Op.getValueType();
1020   unsigned MinWidth =
1021       std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8);
1022   EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth));
1023   if (VT.isVector())
1024     NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount());
1025   if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT))
1026     return SDValue();
1027 
1028   SDLoc DL(Op);
1029   SDValue ResultAVG =
1030       DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA),
1031                   DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB));
1032   return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT,
1033                      ResultAVG);
1034 }
1035 
1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
1037 /// result of Op are ever used downstream. If we can use this information to
1038 /// simplify Op, create a new simplified DAG node and return true, returning the
1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and
1040 /// return a mask of Known bits for the expression (used to simplify the
1041 /// caller).  The Known bits may only be accurate for those bits in the
1042 /// OriginalDemandedBits and OriginalDemandedElts.
1043 bool TargetLowering::SimplifyDemandedBits(
1044     SDValue Op, const APInt &OriginalDemandedBits,
1045     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
1046     unsigned Depth, bool AssumeSingleUse) const {
1047   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
1048   assert(Op.getScalarValueSizeInBits() == BitWidth &&
1049          "Mask size mismatches value type size!");
1050 
1051   // Don't know anything.
1052   Known = KnownBits(BitWidth);
1053 
1054   // TODO: We can probably do more work on calculating the known bits and
1055   // simplifying the operations for scalable vectors, but for now we just
1056   // bail out.
1057   if (Op.getValueType().isScalableVector())
1058     return false;
1059 
1060   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
1061   unsigned NumElts = OriginalDemandedElts.getBitWidth();
1062   assert((!Op.getValueType().isVector() ||
1063           NumElts == Op.getValueType().getVectorNumElements()) &&
1064          "Unexpected vector size");
1065 
1066   APInt DemandedBits = OriginalDemandedBits;
1067   APInt DemandedElts = OriginalDemandedElts;
1068   SDLoc dl(Op);
1069   auto &DL = TLO.DAG.getDataLayout();
1070 
1071   // Undef operand.
1072   if (Op.isUndef())
1073     return false;
1074 
1075   if (Op.getOpcode() == ISD::Constant) {
1076     // We know all of the bits for a constant!
1077     Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue());
1078     return false;
1079   }
1080 
1081   if (Op.getOpcode() == ISD::ConstantFP) {
1082     // We know all of the bits for a floating point constant!
1083     Known = KnownBits::makeConstant(
1084         cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt());
1085     return false;
1086   }
1087 
1088   // Other users may use these bits.
1089   EVT VT = Op.getValueType();
1090   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
1091     if (Depth != 0) {
1092       // If not at the root, Just compute the Known bits to
1093       // simplify things downstream.
1094       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1095       return false;
1096     }
1097     // If this is the root being simplified, allow it to have multiple uses,
1098     // just set the DemandedBits/Elts to all bits.
1099     DemandedBits = APInt::getAllOnes(BitWidth);
1100     DemandedElts = APInt::getAllOnes(NumElts);
1101   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
1102     // Not demanding any bits/elts from Op.
1103     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1104   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
1105     // Limit search depth.
1106     return false;
1107   }
1108 
1109   KnownBits Known2;
1110   switch (Op.getOpcode()) {
1111   case ISD::TargetConstant:
1112     llvm_unreachable("Can't simplify this node");
1113   case ISD::SCALAR_TO_VECTOR: {
1114     if (!DemandedElts[0])
1115       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1116 
1117     KnownBits SrcKnown;
1118     SDValue Src = Op.getOperand(0);
1119     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
1120     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
1121     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
1122       return true;
1123 
1124     // Upper elements are undef, so only get the knownbits if we just demand
1125     // the bottom element.
1126     if (DemandedElts == 1)
1127       Known = SrcKnown.anyextOrTrunc(BitWidth);
1128     break;
1129   }
1130   case ISD::BUILD_VECTOR:
1131     // Collect the known bits that are shared by every demanded element.
1132     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
1133     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1134     return false; // Don't fall through, will infinitely loop.
1135   case ISD::LOAD: {
1136     auto *LD = cast<LoadSDNode>(Op);
1137     if (getTargetConstantFromLoad(LD)) {
1138       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1139       return false; // Don't fall through, will infinitely loop.
1140     }
1141     if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
1142       // If this is a ZEXTLoad and we are looking at the loaded value.
1143       EVT MemVT = LD->getMemoryVT();
1144       unsigned MemBits = MemVT.getScalarSizeInBits();
1145       Known.Zero.setBitsFrom(MemBits);
1146       return false; // Don't fall through, will infinitely loop.
1147     }
1148     break;
1149   }
1150   case ISD::INSERT_VECTOR_ELT: {
1151     SDValue Vec = Op.getOperand(0);
1152     SDValue Scl = Op.getOperand(1);
1153     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1154     EVT VecVT = Vec.getValueType();
1155 
1156     // If index isn't constant, assume we need all vector elements AND the
1157     // inserted element.
1158     APInt DemandedVecElts(DemandedElts);
1159     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
1160       unsigned Idx = CIdx->getZExtValue();
1161       DemandedVecElts.clearBit(Idx);
1162 
1163       // Inserted element is not required.
1164       if (!DemandedElts[Idx])
1165         return TLO.CombineTo(Op, Vec);
1166     }
1167 
1168     KnownBits KnownScl;
1169     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
1170     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
1171     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
1172       return true;
1173 
1174     Known = KnownScl.anyextOrTrunc(BitWidth);
1175 
1176     KnownBits KnownVec;
1177     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
1178                              Depth + 1))
1179       return true;
1180 
1181     if (!!DemandedVecElts)
1182       Known = KnownBits::commonBits(Known, KnownVec);
1183 
1184     return false;
1185   }
1186   case ISD::INSERT_SUBVECTOR: {
1187     // Demand any elements from the subvector and the remainder from the src its
1188     // inserted into.
1189     SDValue Src = Op.getOperand(0);
1190     SDValue Sub = Op.getOperand(1);
1191     uint64_t Idx = Op.getConstantOperandVal(2);
1192     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
1193     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
1194     APInt DemandedSrcElts = DemandedElts;
1195     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
1196 
1197     KnownBits KnownSub, KnownSrc;
1198     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
1199                              Depth + 1))
1200       return true;
1201     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
1202                              Depth + 1))
1203       return true;
1204 
1205     Known.Zero.setAllBits();
1206     Known.One.setAllBits();
1207     if (!!DemandedSubElts)
1208       Known = KnownBits::commonBits(Known, KnownSub);
1209     if (!!DemandedSrcElts)
1210       Known = KnownBits::commonBits(Known, KnownSrc);
1211 
1212     // Attempt to avoid multi-use src if we don't need anything from it.
1213     if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() ||
1214         !DemandedSrcElts.isAllOnes()) {
1215       SDValue NewSub = SimplifyMultipleUseDemandedBits(
1216           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
1217       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1218           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1219       if (NewSub || NewSrc) {
1220         NewSub = NewSub ? NewSub : Sub;
1221         NewSrc = NewSrc ? NewSrc : Src;
1222         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
1223                                         Op.getOperand(2));
1224         return TLO.CombineTo(Op, NewOp);
1225       }
1226     }
1227     break;
1228   }
1229   case ISD::EXTRACT_SUBVECTOR: {
1230     // Offset the demanded elts by the subvector index.
1231     SDValue Src = Op.getOperand(0);
1232     if (Src.getValueType().isScalableVector())
1233       break;
1234     uint64_t Idx = Op.getConstantOperandVal(1);
1235     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1236     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1237 
1238     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1239                              Depth + 1))
1240       return true;
1241 
1242     // Attempt to avoid multi-use src if we don't need anything from it.
1243     if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
1244       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1245           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1246       if (DemandedSrc) {
1247         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1248                                         Op.getOperand(1));
1249         return TLO.CombineTo(Op, NewOp);
1250       }
1251     }
1252     break;
1253   }
1254   case ISD::CONCAT_VECTORS: {
1255     Known.Zero.setAllBits();
1256     Known.One.setAllBits();
1257     EVT SubVT = Op.getOperand(0).getValueType();
1258     unsigned NumSubVecs = Op.getNumOperands();
1259     unsigned NumSubElts = SubVT.getVectorNumElements();
1260     for (unsigned i = 0; i != NumSubVecs; ++i) {
1261       APInt DemandedSubElts =
1262           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1263       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1264                                Known2, TLO, Depth + 1))
1265         return true;
1266       // Known bits are shared by every demanded subvector element.
1267       if (!!DemandedSubElts)
1268         Known = KnownBits::commonBits(Known, Known2);
1269     }
1270     break;
1271   }
1272   case ISD::VECTOR_SHUFFLE: {
1273     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1274 
1275     // Collect demanded elements from shuffle operands..
1276     APInt DemandedLHS(NumElts, 0);
1277     APInt DemandedRHS(NumElts, 0);
1278     for (unsigned i = 0; i != NumElts; ++i) {
1279       if (!DemandedElts[i])
1280         continue;
1281       int M = ShuffleMask[i];
1282       if (M < 0) {
1283         // For UNDEF elements, we don't know anything about the common state of
1284         // the shuffle result.
1285         DemandedLHS.clearAllBits();
1286         DemandedRHS.clearAllBits();
1287         break;
1288       }
1289       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1290       if (M < (int)NumElts)
1291         DemandedLHS.setBit(M);
1292       else
1293         DemandedRHS.setBit(M - NumElts);
1294     }
1295 
1296     if (!!DemandedLHS || !!DemandedRHS) {
1297       SDValue Op0 = Op.getOperand(0);
1298       SDValue Op1 = Op.getOperand(1);
1299 
1300       Known.Zero.setAllBits();
1301       Known.One.setAllBits();
1302       if (!!DemandedLHS) {
1303         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1304                                  Depth + 1))
1305           return true;
1306         Known = KnownBits::commonBits(Known, Known2);
1307       }
1308       if (!!DemandedRHS) {
1309         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1310                                  Depth + 1))
1311           return true;
1312         Known = KnownBits::commonBits(Known, Known2);
1313       }
1314 
1315       // Attempt to avoid multi-use ops if we don't need anything from them.
1316       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1317           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1318       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1319           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1320       if (DemandedOp0 || DemandedOp1) {
1321         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1322         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1323         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1324         return TLO.CombineTo(Op, NewOp);
1325       }
1326     }
1327     break;
1328   }
1329   case ISD::AND: {
1330     SDValue Op0 = Op.getOperand(0);
1331     SDValue Op1 = Op.getOperand(1);
1332 
1333     // If the RHS is a constant, check to see if the LHS would be zero without
1334     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1335     // simplify the LHS, here we're using information from the LHS to simplify
1336     // the RHS.
1337     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1338       // Do not increment Depth here; that can cause an infinite loop.
1339       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1340       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1341       if ((LHSKnown.Zero & DemandedBits) ==
1342           (~RHSC->getAPIntValue() & DemandedBits))
1343         return TLO.CombineTo(Op, Op0);
1344 
1345       // If any of the set bits in the RHS are known zero on the LHS, shrink
1346       // the constant.
1347       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits,
1348                                  DemandedElts, TLO))
1349         return true;
1350 
1351       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1352       // constant, but if this 'and' is only clearing bits that were just set by
1353       // the xor, then this 'and' can be eliminated by shrinking the mask of
1354       // the xor. For example, for a 32-bit X:
1355       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1356       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1357           LHSKnown.One == ~RHSC->getAPIntValue()) {
1358         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1359         return TLO.CombineTo(Op, Xor);
1360       }
1361     }
1362 
1363     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1364                              Depth + 1))
1365       return true;
1366     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1367     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1368                              Known2, TLO, Depth + 1))
1369       return true;
1370     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1371 
1372     // Attempt to avoid multi-use ops if we don't need anything from them.
1373     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1374       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1375           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1376       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1377           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1378       if (DemandedOp0 || DemandedOp1) {
1379         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1380         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1381         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1382         return TLO.CombineTo(Op, NewOp);
1383       }
1384     }
1385 
1386     // If all of the demanded bits are known one on one side, return the other.
1387     // These bits cannot contribute to the result of the 'and'.
1388     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1389       return TLO.CombineTo(Op, Op0);
1390     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1391       return TLO.CombineTo(Op, Op1);
1392     // If all of the demanded bits in the inputs are known zeros, return zero.
1393     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1394       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1395     // If the RHS is a constant, see if we can simplify it.
1396     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts,
1397                                TLO))
1398       return true;
1399     // If the operation can be done in a smaller type, do so.
1400     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1401       return true;
1402 
1403     Known &= Known2;
1404     break;
1405   }
1406   case ISD::OR: {
1407     SDValue Op0 = Op.getOperand(0);
1408     SDValue Op1 = Op.getOperand(1);
1409 
1410     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1411                              Depth + 1))
1412       return true;
1413     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1414     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1415                              Known2, TLO, Depth + 1))
1416       return true;
1417     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1418 
1419     // Attempt to avoid multi-use ops if we don't need anything from them.
1420     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1421       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1422           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1423       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1424           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1425       if (DemandedOp0 || DemandedOp1) {
1426         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1427         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1428         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1429         return TLO.CombineTo(Op, NewOp);
1430       }
1431     }
1432 
1433     // If all of the demanded bits are known zero on one side, return the other.
1434     // These bits cannot contribute to the result of the 'or'.
1435     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1436       return TLO.CombineTo(Op, Op0);
1437     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1438       return TLO.CombineTo(Op, Op1);
1439     // If the RHS is a constant, see if we can simplify it.
1440     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1441       return true;
1442     // If the operation can be done in a smaller type, do so.
1443     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1444       return true;
1445 
1446     Known |= Known2;
1447     break;
1448   }
1449   case ISD::XOR: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452 
1453     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1454                              Depth + 1))
1455       return true;
1456     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1457     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1458                              Depth + 1))
1459       return true;
1460     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1461 
1462     // Attempt to avoid multi-use ops if we don't need anything from them.
1463     if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) {
1464       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1465           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1466       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1467           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1468       if (DemandedOp0 || DemandedOp1) {
1469         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1470         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1471         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1472         return TLO.CombineTo(Op, NewOp);
1473       }
1474     }
1475 
1476     // If all of the demanded bits are known zero on one side, return the other.
1477     // These bits cannot contribute to the result of the 'xor'.
1478     if (DemandedBits.isSubsetOf(Known.Zero))
1479       return TLO.CombineTo(Op, Op0);
1480     if (DemandedBits.isSubsetOf(Known2.Zero))
1481       return TLO.CombineTo(Op, Op1);
1482     // If the operation can be done in a smaller type, do so.
1483     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1484       return true;
1485 
1486     // If all of the unknown bits are known to be zero on one side or the other
1487     // turn this into an *inclusive* or.
1488     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1489     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1490       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1491 
1492     ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts);
1493     if (C) {
1494       // If one side is a constant, and all of the set bits in the constant are
1495       // also known set on the other side, turn this into an AND, as we know
1496       // the bits will be cleared.
1497       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1498       // NB: it is okay if more bits are known than are requested
1499       if (C->getAPIntValue() == Known2.One) {
1500         SDValue ANDC =
1501             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1502         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1503       }
1504 
1505       // If the RHS is a constant, see if we can change it. Don't alter a -1
1506       // constant because that's a 'not' op, and that is better for combining
1507       // and codegen.
1508       if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) {
1509         // We're flipping all demanded bits. Flip the undemanded bits too.
1510         SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1511         return TLO.CombineTo(Op, New);
1512       }
1513     }
1514 
1515     // If we can't turn this into a 'not', try to shrink the constant.
1516     if (!C || !C->isAllOnes())
1517       if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1518         return true;
1519 
1520     Known ^= Known2;
1521     break;
1522   }
1523   case ISD::SELECT:
1524     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1525                              Depth + 1))
1526       return true;
1527     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1528                              Depth + 1))
1529       return true;
1530     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1531     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1532 
1533     // If the operands are constants, see if we can simplify them.
1534     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1535       return true;
1536 
1537     // Only known if known in both the LHS and RHS.
1538     Known = KnownBits::commonBits(Known, Known2);
1539     break;
1540   case ISD::SELECT_CC:
1541     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1542                              Depth + 1))
1543       return true;
1544     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1545                              Depth + 1))
1546       return true;
1547     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1548     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1549 
1550     // If the operands are constants, see if we can simplify them.
1551     if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO))
1552       return true;
1553 
1554     // Only known if known in both the LHS and RHS.
1555     Known = KnownBits::commonBits(Known, Known2);
1556     break;
1557   case ISD::SETCC: {
1558     SDValue Op0 = Op.getOperand(0);
1559     SDValue Op1 = Op.getOperand(1);
1560     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1561     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1562     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1563     // -1, we may be able to bypass the setcc.
1564     if (DemandedBits.isSignMask() &&
1565         Op0.getScalarValueSizeInBits() == BitWidth &&
1566         getBooleanContents(Op0.getValueType()) ==
1567             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1568       // If we're testing X < 0, then this compare isn't needed - just use X!
1569       // FIXME: We're limiting to integer types here, but this should also work
1570       // if we don't care about FP signed-zero. The use of SETLT with FP means
1571       // that we don't care about NaNs.
1572       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1573           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1574         return TLO.CombineTo(Op, Op0);
1575 
1576       // TODO: Should we check for other forms of sign-bit comparisons?
1577       // Examples: X <= -1, X >= 0
1578     }
1579     if (getBooleanContents(Op0.getValueType()) ==
1580             TargetLowering::ZeroOrOneBooleanContent &&
1581         BitWidth > 1)
1582       Known.Zero.setBitsFrom(1);
1583     break;
1584   }
1585   case ISD::SHL: {
1586     SDValue Op0 = Op.getOperand(0);
1587     SDValue Op1 = Op.getOperand(1);
1588     EVT ShiftVT = Op1.getValueType();
1589 
1590     if (const APInt *SA =
1591             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1592       unsigned ShAmt = SA->getZExtValue();
1593       if (ShAmt == 0)
1594         return TLO.CombineTo(Op, Op0);
1595 
1596       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1597       // single shift.  We can do this if the bottom bits (which are shifted
1598       // out) are never demanded.
1599       // TODO - support non-uniform vector amounts.
1600       if (Op0.getOpcode() == ISD::SRL) {
1601         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1602           if (const APInt *SA2 =
1603                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1604             unsigned C1 = SA2->getZExtValue();
1605             unsigned Opc = ISD::SHL;
1606             int Diff = ShAmt - C1;
1607             if (Diff < 0) {
1608               Diff = -Diff;
1609               Opc = ISD::SRL;
1610             }
1611             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1612             return TLO.CombineTo(
1613                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1614           }
1615         }
1616       }
1617 
1618       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1619       // are not demanded. This will likely allow the anyext to be folded away.
1620       // TODO - support non-uniform vector amounts.
1621       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1622         SDValue InnerOp = Op0.getOperand(0);
1623         EVT InnerVT = InnerOp.getValueType();
1624         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1625         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1626             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1627           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1628           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1629             ShTy = InnerVT;
1630           SDValue NarrowShl =
1631               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1632                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1633           return TLO.CombineTo(
1634               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1635         }
1636 
1637         // Repeat the SHL optimization above in cases where an extension
1638         // intervenes: (shl (anyext (shr x, c1)), c2) to
1639         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1640         // aren't demanded (as above) and that the shifted upper c1 bits of
1641         // x aren't demanded.
1642         // TODO - support non-uniform vector amounts.
1643         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1644             InnerOp.hasOneUse()) {
1645           if (const APInt *SA2 =
1646                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1647             unsigned InnerShAmt = SA2->getZExtValue();
1648             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1649                 DemandedBits.getActiveBits() <=
1650                     (InnerBits - InnerShAmt + ShAmt) &&
1651                 DemandedBits.countTrailingZeros() >= ShAmt) {
1652               SDValue NewSA =
1653                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1654               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1655                                                InnerOp.getOperand(0));
1656               return TLO.CombineTo(
1657                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1658             }
1659           }
1660         }
1661       }
1662 
1663       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1664       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1665                                Depth + 1))
1666         return true;
1667       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668       Known.Zero <<= ShAmt;
1669       Known.One <<= ShAmt;
1670       // low bits known zero.
1671       Known.Zero.setLowBits(ShAmt);
1672 
1673       // Try shrinking the operation as long as the shift amount will still be
1674       // in range.
1675       if ((ShAmt < DemandedBits.getActiveBits()) &&
1676           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1677         return true;
1678     }
1679 
1680     // If we are only demanding sign bits then we can use the shift source
1681     // directly.
1682     if (const APInt *MaxSA =
1683             TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) {
1684       unsigned ShAmt = MaxSA->getZExtValue();
1685       unsigned NumSignBits =
1686           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1687       unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1688       if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits))
1689         return TLO.CombineTo(Op, Op0);
1690     }
1691     break;
1692   }
1693   case ISD::SRL: {
1694     SDValue Op0 = Op.getOperand(0);
1695     SDValue Op1 = Op.getOperand(1);
1696     EVT ShiftVT = Op1.getValueType();
1697 
1698     // Try to match AVG patterns.
1699     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1700                                         DemandedElts, Depth + 1))
1701       return TLO.CombineTo(Op, AVG);
1702 
1703     if (const APInt *SA =
1704             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1705       unsigned ShAmt = SA->getZExtValue();
1706       if (ShAmt == 0)
1707         return TLO.CombineTo(Op, Op0);
1708 
1709       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1710       // single shift.  We can do this if the top bits (which are shifted out)
1711       // are never demanded.
1712       // TODO - support non-uniform vector amounts.
1713       if (Op0.getOpcode() == ISD::SHL) {
1714         if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) {
1715           if (const APInt *SA2 =
1716                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1717             unsigned C1 = SA2->getZExtValue();
1718             unsigned Opc = ISD::SRL;
1719             int Diff = ShAmt - C1;
1720             if (Diff < 0) {
1721               Diff = -Diff;
1722               Opc = ISD::SHL;
1723             }
1724             SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1725             return TLO.CombineTo(
1726                 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1727           }
1728         }
1729       }
1730 
1731       APInt InDemandedMask = (DemandedBits << ShAmt);
1732 
1733       // If the shift is exact, then it does demand the low bits (and knows that
1734       // they are zero).
1735       if (Op->getFlags().hasExact())
1736         InDemandedMask.setLowBits(ShAmt);
1737 
1738       // Compute the new bits that are at the top now.
1739       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1740                                Depth + 1))
1741         return true;
1742       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1743       Known.Zero.lshrInPlace(ShAmt);
1744       Known.One.lshrInPlace(ShAmt);
1745       // High bits known zero.
1746       Known.Zero.setHighBits(ShAmt);
1747     }
1748     break;
1749   }
1750   case ISD::SRA: {
1751     SDValue Op0 = Op.getOperand(0);
1752     SDValue Op1 = Op.getOperand(1);
1753     EVT ShiftVT = Op1.getValueType();
1754 
1755     // If we only want bits that already match the signbit then we don't need
1756     // to shift.
1757     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1758     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1759         NumHiDemandedBits)
1760       return TLO.CombineTo(Op, Op0);
1761 
1762     // If this is an arithmetic shift right and only the low-bit is set, we can
1763     // always convert this into a logical shr, even if the shift amount is
1764     // variable.  The low bit of the shift cannot be an input sign bit unless
1765     // the shift amount is >= the size of the datatype, which is undefined.
1766     if (DemandedBits.isOne())
1767       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1768 
1769     // Try to match AVG patterns.
1770     if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits,
1771                                         DemandedElts, Depth + 1))
1772       return TLO.CombineTo(Op, AVG);
1773 
1774     if (const APInt *SA =
1775             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1776       unsigned ShAmt = SA->getZExtValue();
1777       if (ShAmt == 0)
1778         return TLO.CombineTo(Op, Op0);
1779 
1780       APInt InDemandedMask = (DemandedBits << ShAmt);
1781 
1782       // If the shift is exact, then it does demand the low bits (and knows that
1783       // they are zero).
1784       if (Op->getFlags().hasExact())
1785         InDemandedMask.setLowBits(ShAmt);
1786 
1787       // If any of the demanded bits are produced by the sign extension, we also
1788       // demand the input sign bit.
1789       if (DemandedBits.countLeadingZeros() < ShAmt)
1790         InDemandedMask.setSignBit();
1791 
1792       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1793                                Depth + 1))
1794         return true;
1795       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1796       Known.Zero.lshrInPlace(ShAmt);
1797       Known.One.lshrInPlace(ShAmt);
1798 
1799       // If the input sign bit is known to be zero, or if none of the top bits
1800       // are demanded, turn this into an unsigned shift right.
1801       if (Known.Zero[BitWidth - ShAmt - 1] ||
1802           DemandedBits.countLeadingZeros() >= ShAmt) {
1803         SDNodeFlags Flags;
1804         Flags.setExact(Op->getFlags().hasExact());
1805         return TLO.CombineTo(
1806             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1807       }
1808 
1809       int Log2 = DemandedBits.exactLogBase2();
1810       if (Log2 >= 0) {
1811         // The bit must come from the sign.
1812         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1813         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1814       }
1815 
1816       if (Known.One[BitWidth - ShAmt - 1])
1817         // New bits are known one.
1818         Known.One.setHighBits(ShAmt);
1819 
1820       // Attempt to avoid multi-use ops if we don't need anything from them.
1821       if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) {
1822         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1823             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1824         if (DemandedOp0) {
1825           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1826           return TLO.CombineTo(Op, NewOp);
1827         }
1828       }
1829     }
1830     break;
1831   }
1832   case ISD::FSHL:
1833   case ISD::FSHR: {
1834     SDValue Op0 = Op.getOperand(0);
1835     SDValue Op1 = Op.getOperand(1);
1836     SDValue Op2 = Op.getOperand(2);
1837     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1838 
1839     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1840       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1841 
1842       // For fshl, 0-shift returns the 1st arg.
1843       // For fshr, 0-shift returns the 2nd arg.
1844       if (Amt == 0) {
1845         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1846                                  Known, TLO, Depth + 1))
1847           return true;
1848         break;
1849       }
1850 
1851       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1852       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1853       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1854       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1855       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1856                                Depth + 1))
1857         return true;
1858       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1859                                Depth + 1))
1860         return true;
1861 
1862       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1863       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1864       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1865       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1866       Known.One |= Known2.One;
1867       Known.Zero |= Known2.Zero;
1868     }
1869 
1870     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1871     if (isPowerOf2_32(BitWidth)) {
1872       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1873       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1874                                Known2, TLO, Depth + 1))
1875         return true;
1876     }
1877     break;
1878   }
1879   case ISD::ROTL:
1880   case ISD::ROTR: {
1881     SDValue Op0 = Op.getOperand(0);
1882     SDValue Op1 = Op.getOperand(1);
1883     bool IsROTL = (Op.getOpcode() == ISD::ROTL);
1884 
1885     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1886     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1887       return TLO.CombineTo(Op, Op0);
1888 
1889     if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1890       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1891       unsigned RevAmt = BitWidth - Amt;
1892 
1893       // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt))
1894       // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt)
1895       APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt);
1896       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1897                                Depth + 1))
1898         return true;
1899 
1900       // rot*(x, 0) --> x
1901       if (Amt == 0)
1902         return TLO.CombineTo(Op, Op0);
1903 
1904       // See if we don't demand either half of the rotated bits.
1905       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) &&
1906           DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) {
1907         Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType());
1908         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1));
1909       }
1910       if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) &&
1911           DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) {
1912         Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType());
1913         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1914       }
1915     }
1916 
1917     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1918     if (isPowerOf2_32(BitWidth)) {
1919       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1920       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1921                                Depth + 1))
1922         return true;
1923     }
1924     break;
1925   }
1926   case ISD::UMIN: {
1927     // Check if one arg is always less than (or equal) to the other arg.
1928     SDValue Op0 = Op.getOperand(0);
1929     SDValue Op1 = Op.getOperand(1);
1930     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1931     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1932     Known = KnownBits::umin(Known0, Known1);
1933     if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1))
1934       return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1);
1935     if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1))
1936       return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1);
1937     break;
1938   }
1939   case ISD::UMAX: {
1940     // Check if one arg is always greater than (or equal) to the other arg.
1941     SDValue Op0 = Op.getOperand(0);
1942     SDValue Op1 = Op.getOperand(1);
1943     KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1);
1944     KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1);
1945     Known = KnownBits::umax(Known0, Known1);
1946     if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1))
1947       return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1);
1948     if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1))
1949       return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1);
1950     break;
1951   }
1952   case ISD::BITREVERSE: {
1953     SDValue Src = Op.getOperand(0);
1954     APInt DemandedSrcBits = DemandedBits.reverseBits();
1955     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1956                              Depth + 1))
1957       return true;
1958     Known.One = Known2.One.reverseBits();
1959     Known.Zero = Known2.Zero.reverseBits();
1960     break;
1961   }
1962   case ISD::BSWAP: {
1963     SDValue Src = Op.getOperand(0);
1964 
1965     // If the only bits demanded come from one byte of the bswap result,
1966     // just shift the input byte into position to eliminate the bswap.
1967     unsigned NLZ = DemandedBits.countLeadingZeros();
1968     unsigned NTZ = DemandedBits.countTrailingZeros();
1969 
1970     // Round NTZ down to the next byte.  If we have 11 trailing zeros, then
1971     // we need all the bits down to bit 8.  Likewise, round NLZ.  If we
1972     // have 14 leading zeros, round to 8.
1973     NLZ = alignDown(NLZ, 8);
1974     NTZ = alignDown(NTZ, 8);
1975     // If we need exactly one byte, we can do this transformation.
1976     if (BitWidth - NLZ - NTZ == 8) {
1977       // Replace this with either a left or right shift to get the byte into
1978       // the right place.
1979       unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL;
1980       if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) {
1981         EVT ShiftAmtTy = getShiftAmountTy(VT, DL);
1982         unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ;
1983         SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy);
1984         SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt);
1985         return TLO.CombineTo(Op, NewOp);
1986       }
1987     }
1988 
1989     APInt DemandedSrcBits = DemandedBits.byteSwap();
1990     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1991                              Depth + 1))
1992       return true;
1993     Known.One = Known2.One.byteSwap();
1994     Known.Zero = Known2.Zero.byteSwap();
1995     break;
1996   }
1997   case ISD::CTPOP: {
1998     // If only 1 bit is demanded, replace with PARITY as long as we're before
1999     // op legalization.
2000     // FIXME: Limit to scalars for now.
2001     if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector())
2002       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT,
2003                                                Op.getOperand(0)));
2004 
2005     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2006     break;
2007   }
2008   case ISD::SIGN_EXTEND_INREG: {
2009     SDValue Op0 = Op.getOperand(0);
2010     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2011     unsigned ExVTBits = ExVT.getScalarSizeInBits();
2012 
2013     // If we only care about the highest bit, don't bother shifting right.
2014     if (DemandedBits.isSignMask()) {
2015       unsigned MinSignedBits =
2016           TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1);
2017       bool AlreadySignExtended = ExVTBits >= MinSignedBits;
2018       // However if the input is already sign extended we expect the sign
2019       // extension to be dropped altogether later and do not simplify.
2020       if (!AlreadySignExtended) {
2021         // Compute the correct shift amount type, which must be getShiftAmountTy
2022         // for scalar types after legalization.
2023         SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl,
2024                                                getShiftAmountTy(VT, DL));
2025         return TLO.CombineTo(Op,
2026                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
2027       }
2028     }
2029 
2030     // If none of the extended bits are demanded, eliminate the sextinreg.
2031     if (DemandedBits.getActiveBits() <= ExVTBits)
2032       return TLO.CombineTo(Op, Op0);
2033 
2034     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
2035 
2036     // Since the sign extended bits are demanded, we know that the sign
2037     // bit is demanded.
2038     InputDemandedBits.setBit(ExVTBits - 1);
2039 
2040     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
2041       return true;
2042     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2043 
2044     // If the sign bit of the input is known set or clear, then we know the
2045     // top bits of the result.
2046 
2047     // If the input sign bit is known zero, convert this into a zero extension.
2048     if (Known.Zero[ExVTBits - 1])
2049       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
2050 
2051     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
2052     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
2053       Known.One.setBitsFrom(ExVTBits);
2054       Known.Zero &= Mask;
2055     } else { // Input sign bit unknown
2056       Known.Zero &= Mask;
2057       Known.One &= Mask;
2058     }
2059     break;
2060   }
2061   case ISD::BUILD_PAIR: {
2062     EVT HalfVT = Op.getOperand(0).getValueType();
2063     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
2064 
2065     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
2066     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
2067 
2068     KnownBits KnownLo, KnownHi;
2069 
2070     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
2071       return true;
2072 
2073     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
2074       return true;
2075 
2076     Known.Zero = KnownLo.Zero.zext(BitWidth) |
2077                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
2078 
2079     Known.One = KnownLo.One.zext(BitWidth) |
2080                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
2081     break;
2082   }
2083   case ISD::ZERO_EXTEND:
2084   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2085     SDValue Src = Op.getOperand(0);
2086     EVT SrcVT = Src.getValueType();
2087     unsigned InBits = SrcVT.getScalarSizeInBits();
2088     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2089     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
2090 
2091     // If none of the top bits are demanded, convert this into an any_extend.
2092     if (DemandedBits.getActiveBits() <= InBits) {
2093       // If we only need the non-extended bits of the bottom element
2094       // then we can just bitcast to the result.
2095       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2096           VT.getSizeInBits() == SrcVT.getSizeInBits())
2097         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2098 
2099       unsigned Opc =
2100           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2101       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2102         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2103     }
2104 
2105     APInt InDemandedBits = DemandedBits.trunc(InBits);
2106     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2107     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2108                              Depth + 1))
2109       return true;
2110     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2111     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2112     Known = Known.zext(BitWidth);
2113 
2114     // Attempt to avoid multi-use ops if we don't need anything from them.
2115     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2116             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2117       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2118     break;
2119   }
2120   case ISD::SIGN_EXTEND:
2121   case ISD::SIGN_EXTEND_VECTOR_INREG: {
2122     SDValue Src = Op.getOperand(0);
2123     EVT SrcVT = Src.getValueType();
2124     unsigned InBits = SrcVT.getScalarSizeInBits();
2125     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2126     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
2127 
2128     // If none of the top bits are demanded, convert this into an any_extend.
2129     if (DemandedBits.getActiveBits() <= InBits) {
2130       // If we only need the non-extended bits of the bottom element
2131       // then we can just bitcast to the result.
2132       if (IsLE && IsVecInReg && DemandedElts == 1 &&
2133           VT.getSizeInBits() == SrcVT.getSizeInBits())
2134         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2135 
2136       unsigned Opc =
2137           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
2138       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2139         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2140     }
2141 
2142     APInt InDemandedBits = DemandedBits.trunc(InBits);
2143     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2144 
2145     // Since some of the sign extended bits are demanded, we know that the sign
2146     // bit is demanded.
2147     InDemandedBits.setBit(InBits - 1);
2148 
2149     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2150                              Depth + 1))
2151       return true;
2152     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2153     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2154 
2155     // If the sign bit is known one, the top bits match.
2156     Known = Known.sext(BitWidth);
2157 
2158     // If the sign bit is known zero, convert this to a zero extend.
2159     if (Known.isNonNegative()) {
2160       unsigned Opc =
2161           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
2162       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
2163         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
2164     }
2165 
2166     // Attempt to avoid multi-use ops if we don't need anything from them.
2167     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2168             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2169       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2170     break;
2171   }
2172   case ISD::ANY_EXTEND:
2173   case ISD::ANY_EXTEND_VECTOR_INREG: {
2174     SDValue Src = Op.getOperand(0);
2175     EVT SrcVT = Src.getValueType();
2176     unsigned InBits = SrcVT.getScalarSizeInBits();
2177     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2178     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
2179 
2180     // If we only need the bottom element then we can just bitcast.
2181     // TODO: Handle ANY_EXTEND?
2182     if (IsLE && IsVecInReg && DemandedElts == 1 &&
2183         VT.getSizeInBits() == SrcVT.getSizeInBits())
2184       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2185 
2186     APInt InDemandedBits = DemandedBits.trunc(InBits);
2187     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
2188     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
2189                              Depth + 1))
2190       return true;
2191     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2192     assert(Known.getBitWidth() == InBits && "Src width has changed?");
2193     Known = Known.anyext(BitWidth);
2194 
2195     // Attempt to avoid multi-use ops if we don't need anything from them.
2196     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2197             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
2198       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
2199     break;
2200   }
2201   case ISD::TRUNCATE: {
2202     SDValue Src = Op.getOperand(0);
2203 
2204     // Simplify the input, using demanded bit information, and compute the known
2205     // zero/one bits live out.
2206     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
2207     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
2208     if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO,
2209                              Depth + 1))
2210       return true;
2211     Known = Known.trunc(BitWidth);
2212 
2213     // Attempt to avoid multi-use ops if we don't need anything from them.
2214     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2215             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
2216       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
2217 
2218     // If the input is only used by this truncate, see if we can shrink it based
2219     // on the known demanded bits.
2220     if (Src.getNode()->hasOneUse()) {
2221       switch (Src.getOpcode()) {
2222       default:
2223         break;
2224       case ISD::SRL:
2225         // Shrink SRL by a constant if none of the high bits shifted in are
2226         // demanded.
2227         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
2228           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
2229           // undesirable.
2230           break;
2231 
2232         const APInt *ShAmtC =
2233             TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts);
2234         if (!ShAmtC || ShAmtC->uge(BitWidth))
2235           break;
2236         uint64_t ShVal = ShAmtC->getZExtValue();
2237 
2238         APInt HighBits =
2239             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
2240         HighBits.lshrInPlace(ShVal);
2241         HighBits = HighBits.trunc(BitWidth);
2242 
2243         if (!(HighBits & DemandedBits)) {
2244           // None of the shifted in bits are needed.  Add a truncate of the
2245           // shift input, then shift it.
2246           SDValue NewShAmt = TLO.DAG.getConstant(
2247               ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes()));
2248           SDValue NewTrunc =
2249               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
2250           return TLO.CombineTo(
2251               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt));
2252         }
2253         break;
2254       }
2255     }
2256 
2257     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2258     break;
2259   }
2260   case ISD::AssertZext: {
2261     // AssertZext demands all of the high bits, plus any of the low bits
2262     // demanded by its users.
2263     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2264     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
2265     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
2266                              TLO, Depth + 1))
2267       return true;
2268     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
2269 
2270     Known.Zero |= ~InMask;
2271     break;
2272   }
2273   case ISD::EXTRACT_VECTOR_ELT: {
2274     SDValue Src = Op.getOperand(0);
2275     SDValue Idx = Op.getOperand(1);
2276     ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount();
2277     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
2278 
2279     if (SrcEltCnt.isScalable())
2280       return false;
2281 
2282     // Demand the bits from every vector element without a constant index.
2283     unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2284     APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts);
2285     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
2286       if (CIdx->getAPIntValue().ult(NumSrcElts))
2287         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
2288 
2289     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
2290     // anything about the extended bits.
2291     APInt DemandedSrcBits = DemandedBits;
2292     if (BitWidth > EltBitWidth)
2293       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
2294 
2295     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
2296                              Depth + 1))
2297       return true;
2298 
2299     // Attempt to avoid multi-use ops if we don't need anything from them.
2300     if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) {
2301       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
2302               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
2303         SDValue NewOp =
2304             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
2305         return TLO.CombineTo(Op, NewOp);
2306       }
2307     }
2308 
2309     Known = Known2;
2310     if (BitWidth > EltBitWidth)
2311       Known = Known.anyext(BitWidth);
2312     break;
2313   }
2314   case ISD::BITCAST: {
2315     SDValue Src = Op.getOperand(0);
2316     EVT SrcVT = Src.getValueType();
2317     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
2318 
2319     // If this is an FP->Int bitcast and if the sign bit is the only
2320     // thing demanded, turn this into a FGETSIGN.
2321     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
2322         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
2323         SrcVT.isFloatingPoint()) {
2324       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
2325       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
2326       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
2327           SrcVT != MVT::f128) {
2328         // Cannot eliminate/lower SHL for f128 yet.
2329         EVT Ty = OpVTLegal ? VT : MVT::i32;
2330         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
2331         // place.  We expect the SHL to be eliminated by other optimizations.
2332         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
2333         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
2334         if (!OpVTLegal && OpVTSizeInBits > 32)
2335           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
2336         unsigned ShVal = Op.getValueSizeInBits() - 1;
2337         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
2338         return TLO.CombineTo(Op,
2339                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
2340       }
2341     }
2342 
2343     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
2344     // Demand the elt/bit if any of the original elts/bits are demanded.
2345     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) {
2346       unsigned Scale = BitWidth / NumSrcEltBits;
2347       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2348       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2349       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2350       for (unsigned i = 0; i != Scale; ++i) {
2351         unsigned EltOffset = IsLE ? i : (Scale - 1 - i);
2352         unsigned BitOffset = EltOffset * NumSrcEltBits;
2353         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset);
2354         if (!Sub.isZero()) {
2355           DemandedSrcBits |= Sub;
2356           for (unsigned j = 0; j != NumElts; ++j)
2357             if (DemandedElts[j])
2358               DemandedSrcElts.setBit((j * Scale) + i);
2359         }
2360       }
2361 
2362       APInt KnownSrcUndef, KnownSrcZero;
2363       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2364                                      KnownSrcZero, TLO, Depth + 1))
2365         return true;
2366 
2367       KnownBits KnownSrcBits;
2368       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2369                                KnownSrcBits, TLO, Depth + 1))
2370         return true;
2371     } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) {
2372       // TODO - bigendian once we have test coverage.
2373       unsigned Scale = NumSrcEltBits / BitWidth;
2374       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2375       APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits);
2376       APInt DemandedSrcElts = APInt::getZero(NumSrcElts);
2377       for (unsigned i = 0; i != NumElts; ++i)
2378         if (DemandedElts[i]) {
2379           unsigned Offset = (i % Scale) * BitWidth;
2380           DemandedSrcBits.insertBits(DemandedBits, Offset);
2381           DemandedSrcElts.setBit(i / Scale);
2382         }
2383 
2384       if (SrcVT.isVector()) {
2385         APInt KnownSrcUndef, KnownSrcZero;
2386         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2387                                        KnownSrcZero, TLO, Depth + 1))
2388           return true;
2389       }
2390 
2391       KnownBits KnownSrcBits;
2392       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2393                                KnownSrcBits, TLO, Depth + 1))
2394         return true;
2395     }
2396 
2397     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2398     // recursive call where Known may be useful to the caller.
2399     if (Depth > 0) {
2400       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2401       return false;
2402     }
2403     break;
2404   }
2405   case ISD::MUL:
2406     if (DemandedBits.isPowerOf2()) {
2407       // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1.
2408       // If we demand exactly one bit N and we have "X * (C' << N)" where C' is
2409       // odd (has LSB set), then the left-shifted low bit of X is the answer.
2410       unsigned CTZ = DemandedBits.countTrailingZeros();
2411       ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts);
2412       if (C && C->getAPIntValue().countTrailingZeros() == CTZ) {
2413         EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout());
2414         SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy);
2415         SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC);
2416         return TLO.CombineTo(Op, Shl);
2417       }
2418     }
2419     // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because:
2420     // X * X is odd iff X is odd.
2421     // 'Quadratic Reciprocity': X * X -> 0 for bit[1]
2422     if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) {
2423       SDValue One = TLO.DAG.getConstant(1, dl, VT);
2424       SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One);
2425       return TLO.CombineTo(Op, And1);
2426     }
2427     LLVM_FALLTHROUGH;
2428   case ISD::ADD:
2429   case ISD::SUB: {
2430     // Add, Sub, and Mul don't demand any bits in positions beyond that
2431     // of the highest bit demanded of them.
2432     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2433     SDNodeFlags Flags = Op.getNode()->getFlags();
2434     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2435     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2436     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2437                              Depth + 1) ||
2438         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2439                              Depth + 1) ||
2440         // See if the operation should be performed at a smaller bit width.
2441         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2442       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2443         // Disable the nsw and nuw flags. We can no longer guarantee that we
2444         // won't wrap after simplification.
2445         Flags.setNoSignedWrap(false);
2446         Flags.setNoUnsignedWrap(false);
2447         SDValue NewOp =
2448             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2449         return TLO.CombineTo(Op, NewOp);
2450       }
2451       return true;
2452     }
2453 
2454     // Attempt to avoid multi-use ops if we don't need anything from them.
2455     if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) {
2456       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2457           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2458       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2459           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2460       if (DemandedOp0 || DemandedOp1) {
2461         Flags.setNoSignedWrap(false);
2462         Flags.setNoUnsignedWrap(false);
2463         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2464         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2465         SDValue NewOp =
2466             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2467         return TLO.CombineTo(Op, NewOp);
2468       }
2469     }
2470 
2471     // If we have a constant operand, we may be able to turn it into -1 if we
2472     // do not demand the high bits. This can make the constant smaller to
2473     // encode, allow more general folding, or match specialized instruction
2474     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2475     // is probably not useful (and could be detrimental).
2476     ConstantSDNode *C = isConstOrConstSplat(Op1);
2477     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2478     if (C && !C->isAllOnes() && !C->isOne() &&
2479         (C->getAPIntValue() | HighMask).isAllOnes()) {
2480       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2481       // Disable the nsw and nuw flags. We can no longer guarantee that we
2482       // won't wrap after simplification.
2483       Flags.setNoSignedWrap(false);
2484       Flags.setNoUnsignedWrap(false);
2485       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2486       return TLO.CombineTo(Op, NewOp);
2487     }
2488 
2489     LLVM_FALLTHROUGH;
2490   }
2491   default:
2492     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2493       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2494                                             Known, TLO, Depth))
2495         return true;
2496       break;
2497     }
2498 
2499     // Just use computeKnownBits to compute output bits.
2500     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2501     break;
2502   }
2503 
2504   // If we know the value of all of the demanded bits, return this as a
2505   // constant.
2506   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2507     // Avoid folding to a constant if any OpaqueConstant is involved.
2508     const SDNode *N = Op.getNode();
2509     for (SDNode *Op :
2510          llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) {
2511       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2512         if (C->isOpaque())
2513           return false;
2514     }
2515     if (VT.isInteger())
2516       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2517     if (VT.isFloatingPoint())
2518       return TLO.CombineTo(
2519           Op,
2520           TLO.DAG.getConstantFP(
2521               APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT));
2522   }
2523 
2524   return false;
2525 }
2526 
2527 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2528                                                 const APInt &DemandedElts,
2529                                                 DAGCombinerInfo &DCI) const {
2530   SelectionDAG &DAG = DCI.DAG;
2531   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2532                         !DCI.isBeforeLegalizeOps());
2533 
2534   APInt KnownUndef, KnownZero;
2535   bool Simplified =
2536       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2537   if (Simplified) {
2538     DCI.AddToWorklist(Op.getNode());
2539     DCI.CommitTargetLoweringOpt(TLO);
2540   }
2541 
2542   return Simplified;
2543 }
2544 
2545 /// Given a vector binary operation and known undefined elements for each input
2546 /// operand, compute whether each element of the output is undefined.
2547 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2548                                          const APInt &UndefOp0,
2549                                          const APInt &UndefOp1) {
2550   EVT VT = BO.getValueType();
2551   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2552          "Vector binop only");
2553 
2554   EVT EltVT = VT.getVectorElementType();
2555   unsigned NumElts = VT.getVectorNumElements();
2556   assert(UndefOp0.getBitWidth() == NumElts &&
2557          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2558 
2559   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2560                                    const APInt &UndefVals) {
2561     if (UndefVals[Index])
2562       return DAG.getUNDEF(EltVT);
2563 
2564     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2565       // Try hard to make sure that the getNode() call is not creating temporary
2566       // nodes. Ignore opaque integers because they do not constant fold.
2567       SDValue Elt = BV->getOperand(Index);
2568       auto *C = dyn_cast<ConstantSDNode>(Elt);
2569       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2570         return Elt;
2571     }
2572 
2573     return SDValue();
2574   };
2575 
2576   APInt KnownUndef = APInt::getZero(NumElts);
2577   for (unsigned i = 0; i != NumElts; ++i) {
2578     // If both inputs for this element are either constant or undef and match
2579     // the element type, compute the constant/undef result for this element of
2580     // the vector.
2581     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2582     // not handle FP constants. The code within getNode() should be refactored
2583     // to avoid the danger of creating a bogus temporary node here.
2584     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2585     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2586     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2587       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2588         KnownUndef.setBit(i);
2589   }
2590   return KnownUndef;
2591 }
2592 
2593 bool TargetLowering::SimplifyDemandedVectorElts(
2594     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2595     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2596     bool AssumeSingleUse) const {
2597   EVT VT = Op.getValueType();
2598   unsigned Opcode = Op.getOpcode();
2599   APInt DemandedElts = OriginalDemandedElts;
2600   unsigned NumElts = DemandedElts.getBitWidth();
2601   assert(VT.isVector() && "Expected vector op");
2602 
2603   KnownUndef = KnownZero = APInt::getZero(NumElts);
2604 
2605   // TODO: For now we assume we know nothing about scalable vectors.
2606   if (VT.isScalableVector())
2607     return false;
2608 
2609   assert(VT.getVectorNumElements() == NumElts &&
2610          "Mask size mismatches value type element count!");
2611 
2612   // Undef operand.
2613   if (Op.isUndef()) {
2614     KnownUndef.setAllBits();
2615     return false;
2616   }
2617 
2618   // If Op has other users, assume that all elements are needed.
2619   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2620     DemandedElts.setAllBits();
2621 
2622   // Not demanding any elements from Op.
2623   if (DemandedElts == 0) {
2624     KnownUndef.setAllBits();
2625     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2626   }
2627 
2628   // Limit search depth.
2629   if (Depth >= SelectionDAG::MaxRecursionDepth)
2630     return false;
2631 
2632   SDLoc DL(Op);
2633   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2634   bool IsLE = TLO.DAG.getDataLayout().isLittleEndian();
2635 
2636   // Helper for demanding the specified elements and all the bits of both binary
2637   // operands.
2638   auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) {
2639     SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts,
2640                                                            TLO.DAG, Depth + 1);
2641     SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts,
2642                                                            TLO.DAG, Depth + 1);
2643     if (NewOp0 || NewOp1) {
2644       SDValue NewOp = TLO.DAG.getNode(
2645           Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1);
2646       return TLO.CombineTo(Op, NewOp);
2647     }
2648     return false;
2649   };
2650 
2651   switch (Opcode) {
2652   case ISD::SCALAR_TO_VECTOR: {
2653     if (!DemandedElts[0]) {
2654       KnownUndef.setAllBits();
2655       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2656     }
2657     SDValue ScalarSrc = Op.getOperand(0);
2658     if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
2659       SDValue Src = ScalarSrc.getOperand(0);
2660       SDValue Idx = ScalarSrc.getOperand(1);
2661       EVT SrcVT = Src.getValueType();
2662 
2663       ElementCount SrcEltCnt = SrcVT.getVectorElementCount();
2664 
2665       if (SrcEltCnt.isScalable())
2666         return false;
2667 
2668       unsigned NumSrcElts = SrcEltCnt.getFixedValue();
2669       if (isNullConstant(Idx)) {
2670         APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0);
2671         APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts);
2672         APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts);
2673         if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2674                                        TLO, Depth + 1))
2675           return true;
2676       }
2677     }
2678     KnownUndef.setHighBits(NumElts - 1);
2679     break;
2680   }
2681   case ISD::BITCAST: {
2682     SDValue Src = Op.getOperand(0);
2683     EVT SrcVT = Src.getValueType();
2684 
2685     // We only handle vectors here.
2686     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2687     if (!SrcVT.isVector())
2688       break;
2689 
2690     // Fast handling of 'identity' bitcasts.
2691     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2692     if (NumSrcElts == NumElts)
2693       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2694                                         KnownZero, TLO, Depth + 1);
2695 
2696     APInt SrcDemandedElts, SrcZero, SrcUndef;
2697 
2698     // Bitcast from 'large element' src vector to 'small element' vector, we
2699     // must demand a source element if any DemandedElt maps to it.
2700     if ((NumElts % NumSrcElts) == 0) {
2701       unsigned Scale = NumElts / NumSrcElts;
2702       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2703       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2704                                      TLO, Depth + 1))
2705         return true;
2706 
2707       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2708       // of the large element.
2709       // TODO - bigendian once we have test coverage.
2710       if (IsLE) {
2711         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2712         APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits);
2713         for (unsigned i = 0; i != NumElts; ++i)
2714           if (DemandedElts[i]) {
2715             unsigned Ofs = (i % Scale) * EltSizeInBits;
2716             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2717           }
2718 
2719         KnownBits Known;
2720         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2721                                  TLO, Depth + 1))
2722           return true;
2723       }
2724 
2725       // If the src element is zero/undef then all the output elements will be -
2726       // only demanded elements are guaranteed to be correct.
2727       for (unsigned i = 0; i != NumSrcElts; ++i) {
2728         if (SrcDemandedElts[i]) {
2729           if (SrcZero[i])
2730             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2731           if (SrcUndef[i])
2732             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2733         }
2734       }
2735     }
2736 
2737     // Bitcast from 'small element' src vector to 'large element' vector, we
2738     // demand all smaller source elements covered by the larger demanded element
2739     // of this vector.
2740     if ((NumSrcElts % NumElts) == 0) {
2741       unsigned Scale = NumSrcElts / NumElts;
2742       SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts);
2743       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2744                                      TLO, Depth + 1))
2745         return true;
2746 
2747       // If all the src elements covering an output element are zero/undef, then
2748       // the output element will be as well, assuming it was demanded.
2749       for (unsigned i = 0; i != NumElts; ++i) {
2750         if (DemandedElts[i]) {
2751           if (SrcZero.extractBits(Scale, i * Scale).isAllOnes())
2752             KnownZero.setBit(i);
2753           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes())
2754             KnownUndef.setBit(i);
2755         }
2756       }
2757     }
2758     break;
2759   }
2760   case ISD::BUILD_VECTOR: {
2761     // Check all elements and simplify any unused elements with UNDEF.
2762     if (!DemandedElts.isAllOnes()) {
2763       // Don't simplify BROADCASTS.
2764       if (llvm::any_of(Op->op_values(),
2765                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2766         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2767         bool Updated = false;
2768         for (unsigned i = 0; i != NumElts; ++i) {
2769           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2770             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2771             KnownUndef.setBit(i);
2772             Updated = true;
2773           }
2774         }
2775         if (Updated)
2776           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2777       }
2778     }
2779     for (unsigned i = 0; i != NumElts; ++i) {
2780       SDValue SrcOp = Op.getOperand(i);
2781       if (SrcOp.isUndef()) {
2782         KnownUndef.setBit(i);
2783       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2784                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2785         KnownZero.setBit(i);
2786       }
2787     }
2788     break;
2789   }
2790   case ISD::CONCAT_VECTORS: {
2791     EVT SubVT = Op.getOperand(0).getValueType();
2792     unsigned NumSubVecs = Op.getNumOperands();
2793     unsigned NumSubElts = SubVT.getVectorNumElements();
2794     for (unsigned i = 0; i != NumSubVecs; ++i) {
2795       SDValue SubOp = Op.getOperand(i);
2796       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2797       APInt SubUndef, SubZero;
2798       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2799                                      Depth + 1))
2800         return true;
2801       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2802       KnownZero.insertBits(SubZero, i * NumSubElts);
2803     }
2804     break;
2805   }
2806   case ISD::INSERT_SUBVECTOR: {
2807     // Demand any elements from the subvector and the remainder from the src its
2808     // inserted into.
2809     SDValue Src = Op.getOperand(0);
2810     SDValue Sub = Op.getOperand(1);
2811     uint64_t Idx = Op.getConstantOperandVal(2);
2812     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2813     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2814     APInt DemandedSrcElts = DemandedElts;
2815     DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx);
2816 
2817     APInt SubUndef, SubZero;
2818     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2819                                    Depth + 1))
2820       return true;
2821 
2822     // If none of the src operand elements are demanded, replace it with undef.
2823     if (!DemandedSrcElts && !Src.isUndef())
2824       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2825                                                TLO.DAG.getUNDEF(VT), Sub,
2826                                                Op.getOperand(2)));
2827 
2828     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2829                                    TLO, Depth + 1))
2830       return true;
2831     KnownUndef.insertBits(SubUndef, Idx);
2832     KnownZero.insertBits(SubZero, Idx);
2833 
2834     // Attempt to avoid multi-use ops if we don't need anything from them.
2835     if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) {
2836       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2837           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2838       SDValue NewSub = SimplifyMultipleUseDemandedVectorElts(
2839           Sub, DemandedSubElts, TLO.DAG, Depth + 1);
2840       if (NewSrc || NewSub) {
2841         NewSrc = NewSrc ? NewSrc : Src;
2842         NewSub = NewSub ? NewSub : Sub;
2843         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2844                                         NewSub, Op.getOperand(2));
2845         return TLO.CombineTo(Op, NewOp);
2846       }
2847     }
2848     break;
2849   }
2850   case ISD::EXTRACT_SUBVECTOR: {
2851     // Offset the demanded elts by the subvector index.
2852     SDValue Src = Op.getOperand(0);
2853     if (Src.getValueType().isScalableVector())
2854       break;
2855     uint64_t Idx = Op.getConstantOperandVal(1);
2856     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2857     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2858 
2859     APInt SrcUndef, SrcZero;
2860     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2861                                    Depth + 1))
2862       return true;
2863     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2864     KnownZero = SrcZero.extractBits(NumElts, Idx);
2865 
2866     // Attempt to avoid multi-use ops if we don't need anything from them.
2867     if (!DemandedElts.isAllOnes()) {
2868       SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts(
2869           Src, DemandedSrcElts, TLO.DAG, Depth + 1);
2870       if (NewSrc) {
2871         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2872                                         Op.getOperand(1));
2873         return TLO.CombineTo(Op, NewOp);
2874       }
2875     }
2876     break;
2877   }
2878   case ISD::INSERT_VECTOR_ELT: {
2879     SDValue Vec = Op.getOperand(0);
2880     SDValue Scl = Op.getOperand(1);
2881     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2882 
2883     // For a legal, constant insertion index, if we don't need this insertion
2884     // then strip it, else remove it from the demanded elts.
2885     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2886       unsigned Idx = CIdx->getZExtValue();
2887       if (!DemandedElts[Idx])
2888         return TLO.CombineTo(Op, Vec);
2889 
2890       APInt DemandedVecElts(DemandedElts);
2891       DemandedVecElts.clearBit(Idx);
2892       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2893                                      KnownZero, TLO, Depth + 1))
2894         return true;
2895 
2896       KnownUndef.setBitVal(Idx, Scl.isUndef());
2897 
2898       KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl));
2899       break;
2900     }
2901 
2902     APInt VecUndef, VecZero;
2903     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2904                                    Depth + 1))
2905       return true;
2906     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2907     break;
2908   }
2909   case ISD::VSELECT: {
2910     // Try to transform the select condition based on the current demanded
2911     // elements.
2912     // TODO: If a condition element is undef, we can choose from one arm of the
2913     //       select (and if one arm is undef, then we can propagate that to the
2914     //       result).
2915     // TODO - add support for constant vselect masks (see IR version of this).
2916     APInt UnusedUndef, UnusedZero;
2917     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2918                                    UnusedZero, TLO, Depth + 1))
2919       return true;
2920 
2921     // See if we can simplify either vselect operand.
2922     APInt DemandedLHS(DemandedElts);
2923     APInt DemandedRHS(DemandedElts);
2924     APInt UndefLHS, ZeroLHS;
2925     APInt UndefRHS, ZeroRHS;
2926     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2927                                    ZeroLHS, TLO, Depth + 1))
2928       return true;
2929     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2930                                    ZeroRHS, TLO, Depth + 1))
2931       return true;
2932 
2933     KnownUndef = UndefLHS & UndefRHS;
2934     KnownZero = ZeroLHS & ZeroRHS;
2935     break;
2936   }
2937   case ISD::VECTOR_SHUFFLE: {
2938     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2939 
2940     // Collect demanded elements from shuffle operands..
2941     APInt DemandedLHS(NumElts, 0);
2942     APInt DemandedRHS(NumElts, 0);
2943     for (unsigned i = 0; i != NumElts; ++i) {
2944       int M = ShuffleMask[i];
2945       if (M < 0 || !DemandedElts[i])
2946         continue;
2947       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2948       if (M < (int)NumElts)
2949         DemandedLHS.setBit(M);
2950       else
2951         DemandedRHS.setBit(M - NumElts);
2952     }
2953 
2954     // See if we can simplify either shuffle operand.
2955     APInt UndefLHS, ZeroLHS;
2956     APInt UndefRHS, ZeroRHS;
2957     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2958                                    ZeroLHS, TLO, Depth + 1))
2959       return true;
2960     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2961                                    ZeroRHS, TLO, Depth + 1))
2962       return true;
2963 
2964     // Simplify mask using undef elements from LHS/RHS.
2965     bool Updated = false;
2966     bool IdentityLHS = true, IdentityRHS = true;
2967     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2968     for (unsigned i = 0; i != NumElts; ++i) {
2969       int &M = NewMask[i];
2970       if (M < 0)
2971         continue;
2972       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2973           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2974         Updated = true;
2975         M = -1;
2976       }
2977       IdentityLHS &= (M < 0) || (M == (int)i);
2978       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2979     }
2980 
2981     // Update legal shuffle masks based on demanded elements if it won't reduce
2982     // to Identity which can cause premature removal of the shuffle mask.
2983     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2984       SDValue LegalShuffle =
2985           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2986                                   NewMask, TLO.DAG);
2987       if (LegalShuffle)
2988         return TLO.CombineTo(Op, LegalShuffle);
2989     }
2990 
2991     // Propagate undef/zero elements from LHS/RHS.
2992     for (unsigned i = 0; i != NumElts; ++i) {
2993       int M = ShuffleMask[i];
2994       if (M < 0) {
2995         KnownUndef.setBit(i);
2996       } else if (M < (int)NumElts) {
2997         if (UndefLHS[M])
2998           KnownUndef.setBit(i);
2999         if (ZeroLHS[M])
3000           KnownZero.setBit(i);
3001       } else {
3002         if (UndefRHS[M - NumElts])
3003           KnownUndef.setBit(i);
3004         if (ZeroRHS[M - NumElts])
3005           KnownZero.setBit(i);
3006       }
3007     }
3008     break;
3009   }
3010   case ISD::ANY_EXTEND_VECTOR_INREG:
3011   case ISD::SIGN_EXTEND_VECTOR_INREG:
3012   case ISD::ZERO_EXTEND_VECTOR_INREG: {
3013     APInt SrcUndef, SrcZero;
3014     SDValue Src = Op.getOperand(0);
3015     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
3016     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
3017     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
3018                                    Depth + 1))
3019       return true;
3020     KnownZero = SrcZero.zextOrTrunc(NumElts);
3021     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
3022 
3023     if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
3024         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
3025         DemandedSrcElts == 1) {
3026       // aext - if we just need the bottom element then we can bitcast.
3027       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
3028     }
3029 
3030     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
3031       // zext(undef) upper bits are guaranteed to be zero.
3032       if (DemandedElts.isSubsetOf(KnownUndef))
3033         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3034       KnownUndef.clearAllBits();
3035 
3036       // zext - if we just need the bottom element then we can mask:
3037       // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and.
3038       if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND &&
3039           Op->isOnlyUserOf(Src.getNode()) &&
3040           Op.getValueSizeInBits() == Src.getValueSizeInBits()) {
3041         SDLoc DL(Op);
3042         EVT SrcVT = Src.getValueType();
3043         EVT SrcSVT = SrcVT.getScalarType();
3044         SmallVector<SDValue> MaskElts;
3045         MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT));
3046         MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT));
3047         SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts);
3048         if (SDValue Fold = TLO.DAG.FoldConstantArithmetic(
3049                 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) {
3050           Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold);
3051           return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold));
3052         }
3053       }
3054     }
3055     break;
3056   }
3057 
3058   // TODO: There are more binop opcodes that could be handled here - MIN,
3059   // MAX, saturated math, etc.
3060   case ISD::ADD: {
3061     SDValue Op0 = Op.getOperand(0);
3062     SDValue Op1 = Op.getOperand(1);
3063     if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) {
3064       APInt UndefLHS, ZeroLHS;
3065       if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3066                                      Depth + 1, /*AssumeSingleUse*/ true))
3067         return true;
3068     }
3069     LLVM_FALLTHROUGH;
3070   }
3071   case ISD::OR:
3072   case ISD::XOR:
3073   case ISD::SUB:
3074   case ISD::FADD:
3075   case ISD::FSUB:
3076   case ISD::FMUL:
3077   case ISD::FDIV:
3078   case ISD::FREM: {
3079     SDValue Op0 = Op.getOperand(0);
3080     SDValue Op1 = Op.getOperand(1);
3081 
3082     APInt UndefRHS, ZeroRHS;
3083     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3084                                    Depth + 1))
3085       return true;
3086     APInt UndefLHS, ZeroLHS;
3087     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3088                                    Depth + 1))
3089       return true;
3090 
3091     KnownZero = ZeroLHS & ZeroRHS;
3092     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
3093 
3094     // Attempt to avoid multi-use ops if we don't need anything from them.
3095     // TODO - use KnownUndef to relax the demandedelts?
3096     if (!DemandedElts.isAllOnes())
3097       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3098         return true;
3099     break;
3100   }
3101   case ISD::SHL:
3102   case ISD::SRL:
3103   case ISD::SRA:
3104   case ISD::ROTL:
3105   case ISD::ROTR: {
3106     SDValue Op0 = Op.getOperand(0);
3107     SDValue Op1 = Op.getOperand(1);
3108 
3109     APInt UndefRHS, ZeroRHS;
3110     if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO,
3111                                    Depth + 1))
3112       return true;
3113     APInt UndefLHS, ZeroLHS;
3114     if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO,
3115                                    Depth + 1))
3116       return true;
3117 
3118     KnownZero = ZeroLHS;
3119     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
3120 
3121     // Attempt to avoid multi-use ops if we don't need anything from them.
3122     // TODO - use KnownUndef to relax the demandedelts?
3123     if (!DemandedElts.isAllOnes())
3124       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3125         return true;
3126     break;
3127   }
3128   case ISD::MUL:
3129   case ISD::AND: {
3130     SDValue Op0 = Op.getOperand(0);
3131     SDValue Op1 = Op.getOperand(1);
3132 
3133     APInt SrcUndef, SrcZero;
3134     if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO,
3135                                    Depth + 1))
3136       return true;
3137     if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero,
3138                                    TLO, Depth + 1))
3139       return true;
3140 
3141     // If either side has a zero element, then the result element is zero, even
3142     // if the other is an UNDEF.
3143     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
3144     // and then handle 'and' nodes with the rest of the binop opcodes.
3145     KnownZero |= SrcZero;
3146     KnownUndef &= SrcUndef;
3147     KnownUndef &= ~KnownZero;
3148 
3149     // Attempt to avoid multi-use ops if we don't need anything from them.
3150     // TODO - use KnownUndef to relax the demandedelts?
3151     if (!DemandedElts.isAllOnes())
3152       if (SimplifyDemandedVectorEltsBinOp(Op0, Op1))
3153         return true;
3154     break;
3155   }
3156   case ISD::TRUNCATE:
3157   case ISD::SIGN_EXTEND:
3158   case ISD::ZERO_EXTEND:
3159     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
3160                                    KnownZero, TLO, Depth + 1))
3161       return true;
3162 
3163     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
3164       // zext(undef) upper bits are guaranteed to be zero.
3165       if (DemandedElts.isSubsetOf(KnownUndef))
3166         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
3167       KnownUndef.clearAllBits();
3168     }
3169     break;
3170   default: {
3171     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
3172       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
3173                                                   KnownZero, TLO, Depth))
3174         return true;
3175     } else {
3176       KnownBits Known;
3177       APInt DemandedBits = APInt::getAllOnes(EltSizeInBits);
3178       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
3179                                TLO, Depth, AssumeSingleUse))
3180         return true;
3181     }
3182     break;
3183   }
3184   }
3185   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
3186 
3187   // Constant fold all undef cases.
3188   // TODO: Handle zero cases as well.
3189   if (DemandedElts.isSubsetOf(KnownUndef))
3190     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
3191 
3192   return false;
3193 }
3194 
3195 /// Determine which of the bits specified in Mask are known to be either zero or
3196 /// one and return them in the Known.
3197 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
3198                                                    KnownBits &Known,
3199                                                    const APInt &DemandedElts,
3200                                                    const SelectionDAG &DAG,
3201                                                    unsigned Depth) const {
3202   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3203           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3204           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3205           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3206          "Should use MaskedValueIsZero if you don't know whether Op"
3207          " is a target node!");
3208   Known.resetAll();
3209 }
3210 
3211 void TargetLowering::computeKnownBitsForTargetInstr(
3212     GISelKnownBits &Analysis, Register R, KnownBits &Known,
3213     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
3214     unsigned Depth) const {
3215   Known.resetAll();
3216 }
3217 
3218 void TargetLowering::computeKnownBitsForFrameIndex(
3219   const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const {
3220   // The low bits are known zero if the pointer is aligned.
3221   Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx)));
3222 }
3223 
3224 Align TargetLowering::computeKnownAlignForTargetInstr(
3225   GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI,
3226   unsigned Depth) const {
3227   return Align(1);
3228 }
3229 
3230 /// This method can be implemented by targets that want to expose additional
3231 /// information about sign bits to the DAG Combiner.
3232 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
3233                                                          const APInt &,
3234                                                          const SelectionDAG &,
3235                                                          unsigned Depth) const {
3236   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3237           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3238           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3239           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3240          "Should use ComputeNumSignBits if you don't know whether Op"
3241          " is a target node!");
3242   return 1;
3243 }
3244 
3245 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
3246   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
3247   const MachineRegisterInfo &MRI, unsigned Depth) const {
3248   return 1;
3249 }
3250 
3251 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
3252     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
3253     TargetLoweringOpt &TLO, unsigned Depth) const {
3254   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3255           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3256           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3257           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3258          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
3259          " is a target node!");
3260   return false;
3261 }
3262 
3263 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
3264     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3265     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
3266   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3267           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3268           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3269           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3270          "Should use SimplifyDemandedBits if you don't know whether Op"
3271          " is a target node!");
3272   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
3273   return false;
3274 }
3275 
3276 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
3277     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
3278     SelectionDAG &DAG, unsigned Depth) const {
3279   assert(
3280       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3281        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3282        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3283        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3284       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
3285       " is a target node!");
3286   return SDValue();
3287 }
3288 
3289 SDValue
3290 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
3291                                         SDValue N1, MutableArrayRef<int> Mask,
3292                                         SelectionDAG &DAG) const {
3293   bool LegalMask = isShuffleMaskLegal(Mask, VT);
3294   if (!LegalMask) {
3295     std::swap(N0, N1);
3296     ShuffleVectorSDNode::commuteMask(Mask);
3297     LegalMask = isShuffleMaskLegal(Mask, VT);
3298   }
3299 
3300   if (!LegalMask)
3301     return SDValue();
3302 
3303   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
3304 }
3305 
3306 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
3307   return nullptr;
3308 }
3309 
3310 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode(
3311     SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
3312     bool PoisonOnly, unsigned Depth) const {
3313   assert(
3314       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3315        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3316        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3317        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3318       "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op"
3319       " is a target node!");
3320   return false;
3321 }
3322 
3323 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
3324                                                   const SelectionDAG &DAG,
3325                                                   bool SNaN,
3326                                                   unsigned Depth) const {
3327   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3328           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3329           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3330           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3331          "Should use isKnownNeverNaN if you don't know whether Op"
3332          " is a target node!");
3333   return false;
3334 }
3335 
3336 bool TargetLowering::isSplatValueForTargetNode(SDValue Op,
3337                                                const APInt &DemandedElts,
3338                                                APInt &UndefElts,
3339                                                unsigned Depth) const {
3340   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
3341           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
3342           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
3343           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
3344          "Should use isSplatValue if you don't know whether Op"
3345          " is a target node!");
3346   return false;
3347 }
3348 
3349 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
3350 // work with truncating build vectors and vectors with elements of less than
3351 // 8 bits.
3352 bool TargetLowering::isConstTrueVal(SDValue N) const {
3353   if (!N)
3354     return false;
3355 
3356   unsigned EltWidth;
3357   APInt CVal;
3358   if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false,
3359                                                /*AllowTruncation=*/true)) {
3360     CVal = CN->getAPIntValue();
3361     EltWidth = N.getValueType().getScalarSizeInBits();
3362   } else
3363     return false;
3364 
3365   // If this is a truncating splat, truncate the splat value.
3366   // Otherwise, we may fail to match the expected values below.
3367   if (EltWidth < CVal.getBitWidth())
3368     CVal = CVal.trunc(EltWidth);
3369 
3370   switch (getBooleanContents(N.getValueType())) {
3371   case UndefinedBooleanContent:
3372     return CVal[0];
3373   case ZeroOrOneBooleanContent:
3374     return CVal.isOne();
3375   case ZeroOrNegativeOneBooleanContent:
3376     return CVal.isAllOnes();
3377   }
3378 
3379   llvm_unreachable("Invalid boolean contents");
3380 }
3381 
3382 bool TargetLowering::isConstFalseVal(SDValue N) const {
3383   if (!N)
3384     return false;
3385 
3386   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
3387   if (!CN) {
3388     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
3389     if (!BV)
3390       return false;
3391 
3392     // Only interested in constant splats, we don't care about undef
3393     // elements in identifying boolean constants and getConstantSplatNode
3394     // returns NULL if all ops are undef;
3395     CN = BV->getConstantSplatNode();
3396     if (!CN)
3397       return false;
3398   }
3399 
3400   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
3401     return !CN->getAPIntValue()[0];
3402 
3403   return CN->isZero();
3404 }
3405 
3406 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
3407                                        bool SExt) const {
3408   if (VT == MVT::i1)
3409     return N->isOne();
3410 
3411   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
3412   switch (Cnt) {
3413   case TargetLowering::ZeroOrOneBooleanContent:
3414     // An extended value of 1 is always true, unless its original type is i1,
3415     // in which case it will be sign extended to -1.
3416     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
3417   case TargetLowering::UndefinedBooleanContent:
3418   case TargetLowering::ZeroOrNegativeOneBooleanContent:
3419     return N->isAllOnes() && SExt;
3420   }
3421   llvm_unreachable("Unexpected enumeration.");
3422 }
3423 
3424 /// This helper function of SimplifySetCC tries to optimize the comparison when
3425 /// either operand of the SetCC node is a bitwise-and instruction.
3426 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
3427                                          ISD::CondCode Cond, const SDLoc &DL,
3428                                          DAGCombinerInfo &DCI) const {
3429   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
3430     std::swap(N0, N1);
3431 
3432   SelectionDAG &DAG = DCI.DAG;
3433   EVT OpVT = N0.getValueType();
3434   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
3435       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
3436     return SDValue();
3437 
3438   // (X & Y) != 0 --> zextOrTrunc(X & Y)
3439   // iff everything but LSB is known zero:
3440   if (Cond == ISD::SETNE && isNullConstant(N1) &&
3441       (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent ||
3442        getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) {
3443     unsigned NumEltBits = OpVT.getScalarSizeInBits();
3444     APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1);
3445     if (DAG.MaskedValueIsZero(N0, UpperBits))
3446       return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT);
3447   }
3448 
3449   // Match these patterns in any of their permutations:
3450   // (X & Y) == Y
3451   // (X & Y) != Y
3452   SDValue X, Y;
3453   if (N0.getOperand(0) == N1) {
3454     X = N0.getOperand(1);
3455     Y = N0.getOperand(0);
3456   } else if (N0.getOperand(1) == N1) {
3457     X = N0.getOperand(0);
3458     Y = N0.getOperand(1);
3459   } else {
3460     return SDValue();
3461   }
3462 
3463   SDValue Zero = DAG.getConstant(0, DL, OpVT);
3464   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
3465     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
3466     // Note that where Y is variable and is known to have at most one bit set
3467     // (for example, if it is Z & 1) we cannot do this; the expressions are not
3468     // equivalent when Y == 0.
3469     assert(OpVT.isInteger());
3470     Cond = ISD::getSetCCInverse(Cond, OpVT);
3471     if (DCI.isBeforeLegalizeOps() ||
3472         isCondCodeLegal(Cond, N0.getSimpleValueType()))
3473       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
3474   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
3475     // If the target supports an 'and-not' or 'and-complement' logic operation,
3476     // try to use that to make a comparison operation more efficient.
3477     // But don't do this transform if the mask is a single bit because there are
3478     // more efficient ways to deal with that case (for example, 'bt' on x86 or
3479     // 'rlwinm' on PPC).
3480 
3481     // Bail out if the compare operand that we want to turn into a zero is
3482     // already a zero (otherwise, infinite loop).
3483     auto *YConst = dyn_cast<ConstantSDNode>(Y);
3484     if (YConst && YConst->isZero())
3485       return SDValue();
3486 
3487     // Transform this into: ~X & Y == 0.
3488     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3489     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3490     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3491   }
3492 
3493   return SDValue();
3494 }
3495 
3496 /// There are multiple IR patterns that could be checking whether certain
3497 /// truncation of a signed number would be lossy or not. The pattern which is
3498 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3499 /// We are looking for the following pattern: (KeptBits is a constant)
3500 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3501 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3502 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3503 /// We will unfold it into the natural trunc+sext pattern:
3504 ///   ((%x << C) a>> C) dstcond %x
3505 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3506 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3507     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3508     const SDLoc &DL) const {
3509   // We must be comparing with a constant.
3510   ConstantSDNode *C1;
3511   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3512     return SDValue();
3513 
3514   // N0 should be:  add %x, (1 << (KeptBits-1))
3515   if (N0->getOpcode() != ISD::ADD)
3516     return SDValue();
3517 
3518   // And we must be 'add'ing a constant.
3519   ConstantSDNode *C01;
3520   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3521     return SDValue();
3522 
3523   SDValue X = N0->getOperand(0);
3524   EVT XVT = X.getValueType();
3525 
3526   // Validate constants ...
3527 
3528   APInt I1 = C1->getAPIntValue();
3529 
3530   ISD::CondCode NewCond;
3531   if (Cond == ISD::CondCode::SETULT) {
3532     NewCond = ISD::CondCode::SETEQ;
3533   } else if (Cond == ISD::CondCode::SETULE) {
3534     NewCond = ISD::CondCode::SETEQ;
3535     // But need to 'canonicalize' the constant.
3536     I1 += 1;
3537   } else if (Cond == ISD::CondCode::SETUGT) {
3538     NewCond = ISD::CondCode::SETNE;
3539     // But need to 'canonicalize' the constant.
3540     I1 += 1;
3541   } else if (Cond == ISD::CondCode::SETUGE) {
3542     NewCond = ISD::CondCode::SETNE;
3543   } else
3544     return SDValue();
3545 
3546   APInt I01 = C01->getAPIntValue();
3547 
3548   auto checkConstants = [&I1, &I01]() -> bool {
3549     // Both of them must be power-of-two, and the constant from setcc is bigger.
3550     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3551   };
3552 
3553   if (checkConstants()) {
3554     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3555   } else {
3556     // What if we invert constants? (and the target predicate)
3557     I1.negate();
3558     I01.negate();
3559     assert(XVT.isInteger());
3560     NewCond = getSetCCInverse(NewCond, XVT);
3561     if (!checkConstants())
3562       return SDValue();
3563     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3564   }
3565 
3566   // They are power-of-two, so which bit is set?
3567   const unsigned KeptBits = I1.logBase2();
3568   const unsigned KeptBitsMinusOne = I01.logBase2();
3569 
3570   // Magic!
3571   if (KeptBits != (KeptBitsMinusOne + 1))
3572     return SDValue();
3573   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3574 
3575   // We don't want to do this in every single case.
3576   SelectionDAG &DAG = DCI.DAG;
3577   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3578           XVT, KeptBits))
3579     return SDValue();
3580 
3581   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3582   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3583 
3584   // Unfold into:  ((%x << C) a>> C) cond %x
3585   // Where 'cond' will be either 'eq' or 'ne'.
3586   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3587   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3588   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3589   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3590 
3591   return T2;
3592 }
3593 
3594 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3595 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3596     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3597     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3598   assert(isConstOrConstSplat(N1C) &&
3599          isConstOrConstSplat(N1C)->getAPIntValue().isZero() &&
3600          "Should be a comparison with 0.");
3601   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3602          "Valid only for [in]equality comparisons.");
3603 
3604   unsigned NewShiftOpcode;
3605   SDValue X, C, Y;
3606 
3607   SelectionDAG &DAG = DCI.DAG;
3608   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3609 
3610   // Look for '(C l>>/<< Y)'.
3611   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3612     // The shift should be one-use.
3613     if (!V.hasOneUse())
3614       return false;
3615     unsigned OldShiftOpcode = V.getOpcode();
3616     switch (OldShiftOpcode) {
3617     case ISD::SHL:
3618       NewShiftOpcode = ISD::SRL;
3619       break;
3620     case ISD::SRL:
3621       NewShiftOpcode = ISD::SHL;
3622       break;
3623     default:
3624       return false; // must be a logical shift.
3625     }
3626     // We should be shifting a constant.
3627     // FIXME: best to use isConstantOrConstantVector().
3628     C = V.getOperand(0);
3629     ConstantSDNode *CC =
3630         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3631     if (!CC)
3632       return false;
3633     Y = V.getOperand(1);
3634 
3635     ConstantSDNode *XC =
3636         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3637     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3638         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3639   };
3640 
3641   // LHS of comparison should be an one-use 'and'.
3642   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3643     return SDValue();
3644 
3645   X = N0.getOperand(0);
3646   SDValue Mask = N0.getOperand(1);
3647 
3648   // 'and' is commutative!
3649   if (!Match(Mask)) {
3650     std::swap(X, Mask);
3651     if (!Match(Mask))
3652       return SDValue();
3653   }
3654 
3655   EVT VT = X.getValueType();
3656 
3657   // Produce:
3658   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3659   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3660   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3661   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3662   return T2;
3663 }
3664 
3665 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3666 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3667 /// handle the commuted versions of these patterns.
3668 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3669                                            ISD::CondCode Cond, const SDLoc &DL,
3670                                            DAGCombinerInfo &DCI) const {
3671   unsigned BOpcode = N0.getOpcode();
3672   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3673          "Unexpected binop");
3674   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3675 
3676   // (X + Y) == X --> Y == 0
3677   // (X - Y) == X --> Y == 0
3678   // (X ^ Y) == X --> Y == 0
3679   SelectionDAG &DAG = DCI.DAG;
3680   EVT OpVT = N0.getValueType();
3681   SDValue X = N0.getOperand(0);
3682   SDValue Y = N0.getOperand(1);
3683   if (X == N1)
3684     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3685 
3686   if (Y != N1)
3687     return SDValue();
3688 
3689   // (X + Y) == Y --> X == 0
3690   // (X ^ Y) == Y --> X == 0
3691   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3692     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3693 
3694   // The shift would not be valid if the operands are boolean (i1).
3695   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3696     return SDValue();
3697 
3698   // (X - Y) == Y --> X == Y << 1
3699   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3700                                  !DCI.isBeforeLegalize());
3701   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3702   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3703   if (!DCI.isCalledByLegalizer())
3704     DCI.AddToWorklist(YShl1.getNode());
3705   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3706 }
3707 
3708 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT,
3709                                       SDValue N0, const APInt &C1,
3710                                       ISD::CondCode Cond, const SDLoc &dl,
3711                                       SelectionDAG &DAG) {
3712   // Look through truncs that don't change the value of a ctpop.
3713   // FIXME: Add vector support? Need to be careful with setcc result type below.
3714   SDValue CTPOP = N0;
3715   if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() &&
3716       N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits()))
3717     CTPOP = N0.getOperand(0);
3718 
3719   if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse())
3720     return SDValue();
3721 
3722   EVT CTVT = CTPOP.getValueType();
3723   SDValue CTOp = CTPOP.getOperand(0);
3724 
3725   // If this is a vector CTPOP, keep the CTPOP if it is legal.
3726   // TODO: Should we check if CTPOP is legal(or custom) for scalars?
3727   if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT))
3728     return SDValue();
3729 
3730   // (ctpop x) u< 2 -> (x & x-1) == 0
3731   // (ctpop x) u> 1 -> (x & x-1) != 0
3732   if (Cond == ISD::SETULT || Cond == ISD::SETUGT) {
3733     unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond);
3734     if (C1.ugt(CostLimit + (Cond == ISD::SETULT)))
3735       return SDValue();
3736     if (C1 == 0 && (Cond == ISD::SETULT))
3737       return SDValue(); // This is handled elsewhere.
3738 
3739     unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT);
3740 
3741     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3742     SDValue Result = CTOp;
3743     for (unsigned i = 0; i < Passes; i++) {
3744       SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne);
3745       Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add);
3746     }
3747     ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3748     return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC);
3749   }
3750 
3751   // If ctpop is not supported, expand a power-of-2 comparison based on it.
3752   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) {
3753     // For scalars, keep CTPOP if it is legal or custom.
3754     if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT))
3755       return SDValue();
3756     // This is based on X86's custom lowering for CTPOP which produces more
3757     // instructions than the expansion here.
3758 
3759     // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3760     // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3761     SDValue Zero = DAG.getConstant(0, dl, CTVT);
3762     SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3763     assert(CTVT.isInteger());
3764     ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3765     SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3766     SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3767     SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3768     SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3769     unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3770     return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3771   }
3772 
3773   return SDValue();
3774 }
3775 
3776 /// Try to simplify a setcc built with the specified operands and cc. If it is
3777 /// unable to simplify it, return a null SDValue.
3778 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3779                                       ISD::CondCode Cond, bool foldBooleans,
3780                                       DAGCombinerInfo &DCI,
3781                                       const SDLoc &dl) const {
3782   SelectionDAG &DAG = DCI.DAG;
3783   const DataLayout &Layout = DAG.getDataLayout();
3784   EVT OpVT = N0.getValueType();
3785 
3786   // Constant fold or commute setcc.
3787   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3788     return Fold;
3789 
3790   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3791   // TODO: Handle non-splat vector constants. All undef causes trouble.
3792   // FIXME: We can't yet fold constant scalable vector splats, so avoid an
3793   // infinite loop here when we encounter one.
3794   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3795   if (isConstOrConstSplat(N0) &&
3796       (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) &&
3797       (DCI.isBeforeLegalizeOps() ||
3798        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3799     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3800 
3801   // If we have a subtract with the same 2 non-constant operands as this setcc
3802   // -- but in reverse order -- then try to commute the operands of this setcc
3803   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3804   // instruction on some targets.
3805   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3806       (DCI.isBeforeLegalizeOps() ||
3807        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3808       DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) &&
3809       !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1}))
3810     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3811 
3812   if (auto *N1C = isConstOrConstSplat(N1)) {
3813     const APInt &C1 = N1C->getAPIntValue();
3814 
3815     // Optimize some CTPOP cases.
3816     if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG))
3817       return V;
3818 
3819     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3820     // equality comparison, then we're just comparing whether X itself is
3821     // zero.
3822     if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) &&
3823         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3824         isPowerOf2_32(N0.getScalarValueSizeInBits())) {
3825       if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) {
3826         if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3827             ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) {
3828           if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3829             // (srl (ctlz x), 5) == 0  -> X != 0
3830             // (srl (ctlz x), 5) != 1  -> X != 0
3831             Cond = ISD::SETNE;
3832           } else {
3833             // (srl (ctlz x), 5) != 0  -> X == 0
3834             // (srl (ctlz x), 5) == 1  -> X == 0
3835             Cond = ISD::SETEQ;
3836           }
3837           SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3838           return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero,
3839                               Cond);
3840         }
3841       }
3842     }
3843   }
3844 
3845   // FIXME: Support vectors.
3846   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3847     const APInt &C1 = N1C->getAPIntValue();
3848 
3849     // (zext x) == C --> x == (trunc C)
3850     // (sext x) == C --> x == (trunc C)
3851     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3852         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3853       unsigned MinBits = N0.getValueSizeInBits();
3854       SDValue PreExt;
3855       bool Signed = false;
3856       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3857         // ZExt
3858         MinBits = N0->getOperand(0).getValueSizeInBits();
3859         PreExt = N0->getOperand(0);
3860       } else if (N0->getOpcode() == ISD::AND) {
3861         // DAGCombine turns costly ZExts into ANDs
3862         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3863           if ((C->getAPIntValue()+1).isPowerOf2()) {
3864             MinBits = C->getAPIntValue().countTrailingOnes();
3865             PreExt = N0->getOperand(0);
3866           }
3867       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3868         // SExt
3869         MinBits = N0->getOperand(0).getValueSizeInBits();
3870         PreExt = N0->getOperand(0);
3871         Signed = true;
3872       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3873         // ZEXTLOAD / SEXTLOAD
3874         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3875           MinBits = LN0->getMemoryVT().getSizeInBits();
3876           PreExt = N0;
3877         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3878           Signed = true;
3879           MinBits = LN0->getMemoryVT().getSizeInBits();
3880           PreExt = N0;
3881         }
3882       }
3883 
3884       // Figure out how many bits we need to preserve this constant.
3885       unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits();
3886 
3887       // Make sure we're not losing bits from the constant.
3888       if (MinBits > 0 &&
3889           MinBits < C1.getBitWidth() &&
3890           MinBits >= ReqdBits) {
3891         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3892         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3893           // Will get folded away.
3894           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3895           if (MinBits == 1 && C1 == 1)
3896             // Invert the condition.
3897             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3898                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3899           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3900           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3901         }
3902 
3903         // If truncating the setcc operands is not desirable, we can still
3904         // simplify the expression in some cases:
3905         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3906         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3907         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3908         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3909         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3910         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3911         SDValue TopSetCC = N0->getOperand(0);
3912         unsigned N0Opc = N0->getOpcode();
3913         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3914         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3915             TopSetCC.getOpcode() == ISD::SETCC &&
3916             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3917             (isConstFalseVal(N1) ||
3918              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3919 
3920           bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) ||
3921                          (!N1C->isZero() && Cond == ISD::SETNE);
3922 
3923           if (!Inverse)
3924             return TopSetCC;
3925 
3926           ISD::CondCode InvCond = ISD::getSetCCInverse(
3927               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3928               TopSetCC.getOperand(0).getValueType());
3929           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3930                                       TopSetCC.getOperand(1),
3931                                       InvCond);
3932         }
3933       }
3934     }
3935 
3936     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3937     // equality or unsigned, and all 1 bits of the const are in the same
3938     // partial word, see if we can shorten the load.
3939     if (DCI.isBeforeLegalize() &&
3940         !ISD::isSignedIntSetCC(Cond) &&
3941         N0.getOpcode() == ISD::AND && C1 == 0 &&
3942         N0.getNode()->hasOneUse() &&
3943         isa<LoadSDNode>(N0.getOperand(0)) &&
3944         N0.getOperand(0).getNode()->hasOneUse() &&
3945         isa<ConstantSDNode>(N0.getOperand(1))) {
3946       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3947       APInt bestMask;
3948       unsigned bestWidth = 0, bestOffset = 0;
3949       if (Lod->isSimple() && Lod->isUnindexed()) {
3950         unsigned origWidth = N0.getValueSizeInBits();
3951         unsigned maskWidth = origWidth;
3952         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3953         // 8 bits, but have to be careful...
3954         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3955           origWidth = Lod->getMemoryVT().getSizeInBits();
3956         const APInt &Mask = N0.getConstantOperandAPInt(1);
3957         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3958           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3959           for (unsigned offset=0; offset<origWidth/width; offset++) {
3960             if (Mask.isSubsetOf(newMask)) {
3961               if (Layout.isLittleEndian())
3962                 bestOffset = (uint64_t)offset * (width/8);
3963               else
3964                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3965               bestMask = Mask.lshr(offset * (width/8) * 8);
3966               bestWidth = width;
3967               break;
3968             }
3969             newMask <<= width;
3970           }
3971         }
3972       }
3973       if (bestWidth) {
3974         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3975         if (newVT.isRound() &&
3976             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3977           SDValue Ptr = Lod->getBasePtr();
3978           if (bestOffset != 0)
3979             Ptr =
3980                 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl);
3981           SDValue NewLoad =
3982               DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
3983                           Lod->getPointerInfo().getWithOffset(bestOffset),
3984                           Lod->getOriginalAlign());
3985           return DAG.getSetCC(dl, VT,
3986                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3987                                       DAG.getConstant(bestMask.trunc(bestWidth),
3988                                                       dl, newVT)),
3989                               DAG.getConstant(0LL, dl, newVT), Cond);
3990         }
3991       }
3992     }
3993 
3994     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3995     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3996       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3997 
3998       // If the comparison constant has bits in the upper part, the
3999       // zero-extended value could never match.
4000       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
4001                                               C1.getBitWidth() - InSize))) {
4002         switch (Cond) {
4003         case ISD::SETUGT:
4004         case ISD::SETUGE:
4005         case ISD::SETEQ:
4006           return DAG.getConstant(0, dl, VT);
4007         case ISD::SETULT:
4008         case ISD::SETULE:
4009         case ISD::SETNE:
4010           return DAG.getConstant(1, dl, VT);
4011         case ISD::SETGT:
4012         case ISD::SETGE:
4013           // True if the sign bit of C1 is set.
4014           return DAG.getConstant(C1.isNegative(), dl, VT);
4015         case ISD::SETLT:
4016         case ISD::SETLE:
4017           // True if the sign bit of C1 isn't set.
4018           return DAG.getConstant(C1.isNonNegative(), dl, VT);
4019         default:
4020           break;
4021         }
4022       }
4023 
4024       // Otherwise, we can perform the comparison with the low bits.
4025       switch (Cond) {
4026       case ISD::SETEQ:
4027       case ISD::SETNE:
4028       case ISD::SETUGT:
4029       case ISD::SETUGE:
4030       case ISD::SETULT:
4031       case ISD::SETULE: {
4032         EVT newVT = N0.getOperand(0).getValueType();
4033         if (DCI.isBeforeLegalizeOps() ||
4034             (isOperationLegal(ISD::SETCC, newVT) &&
4035              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
4036           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
4037           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
4038 
4039           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
4040                                           NewConst, Cond);
4041           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
4042         }
4043         break;
4044       }
4045       default:
4046         break; // todo, be more careful with signed comparisons
4047       }
4048     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
4049                (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4050                !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(),
4051                                       OpVT)) {
4052       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
4053       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
4054       EVT ExtDstTy = N0.getValueType();
4055       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
4056 
4057       // If the constant doesn't fit into the number of bits for the source of
4058       // the sign extension, it is impossible for both sides to be equal.
4059       if (C1.getMinSignedBits() > ExtSrcTyBits)
4060         return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT);
4061 
4062       assert(ExtDstTy == N0.getOperand(0).getValueType() &&
4063              ExtDstTy != ExtSrcTy && "Unexpected types!");
4064       APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
4065       SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0),
4066                                    DAG.getConstant(Imm, dl, ExtDstTy));
4067       if (!DCI.isCalledByLegalizer())
4068         DCI.AddToWorklist(ZextOp.getNode());
4069       // Otherwise, make this a use of a zext.
4070       return DAG.getSetCC(dl, VT, ZextOp,
4071                           DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond);
4072     } else if ((N1C->isZero() || N1C->isOne()) &&
4073                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4074       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
4075       if (N0.getOpcode() == ISD::SETCC &&
4076           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
4077           (N0.getValueType() == MVT::i1 ||
4078            getBooleanContents(N0.getOperand(0).getValueType()) ==
4079                        ZeroOrOneBooleanContent)) {
4080         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
4081         if (TrueWhenTrue)
4082           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
4083         // Invert the condition.
4084         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
4085         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
4086         if (DCI.isBeforeLegalizeOps() ||
4087             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
4088           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
4089       }
4090 
4091       if ((N0.getOpcode() == ISD::XOR ||
4092            (N0.getOpcode() == ISD::AND &&
4093             N0.getOperand(0).getOpcode() == ISD::XOR &&
4094             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
4095           isOneConstant(N0.getOperand(1))) {
4096         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
4097         // can only do this if the top bits are known zero.
4098         unsigned BitWidth = N0.getValueSizeInBits();
4099         if (DAG.MaskedValueIsZero(N0,
4100                                   APInt::getHighBitsSet(BitWidth,
4101                                                         BitWidth-1))) {
4102           // Okay, get the un-inverted input value.
4103           SDValue Val;
4104           if (N0.getOpcode() == ISD::XOR) {
4105             Val = N0.getOperand(0);
4106           } else {
4107             assert(N0.getOpcode() == ISD::AND &&
4108                     N0.getOperand(0).getOpcode() == ISD::XOR);
4109             // ((X^1)&1)^1 -> X & 1
4110             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
4111                               N0.getOperand(0).getOperand(0),
4112                               N0.getOperand(1));
4113           }
4114 
4115           return DAG.getSetCC(dl, VT, Val, N1,
4116                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4117         }
4118       } else if (N1C->isOne()) {
4119         SDValue Op0 = N0;
4120         if (Op0.getOpcode() == ISD::TRUNCATE)
4121           Op0 = Op0.getOperand(0);
4122 
4123         if ((Op0.getOpcode() == ISD::XOR) &&
4124             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
4125             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
4126           SDValue XorLHS = Op0.getOperand(0);
4127           SDValue XorRHS = Op0.getOperand(1);
4128           // Ensure that the input setccs return an i1 type or 0/1 value.
4129           if (Op0.getValueType() == MVT::i1 ||
4130               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
4131                       ZeroOrOneBooleanContent &&
4132                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
4133                         ZeroOrOneBooleanContent)) {
4134             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
4135             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
4136             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
4137           }
4138         }
4139         if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) {
4140           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
4141           if (Op0.getValueType().bitsGT(VT))
4142             Op0 = DAG.getNode(ISD::AND, dl, VT,
4143                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
4144                           DAG.getConstant(1, dl, VT));
4145           else if (Op0.getValueType().bitsLT(VT))
4146             Op0 = DAG.getNode(ISD::AND, dl, VT,
4147                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
4148                         DAG.getConstant(1, dl, VT));
4149 
4150           return DAG.getSetCC(dl, VT, Op0,
4151                               DAG.getConstant(0, dl, Op0.getValueType()),
4152                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4153         }
4154         if (Op0.getOpcode() == ISD::AssertZext &&
4155             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
4156           return DAG.getSetCC(dl, VT, Op0,
4157                               DAG.getConstant(0, dl, Op0.getValueType()),
4158                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
4159       }
4160     }
4161 
4162     // Given:
4163     //   icmp eq/ne (urem %x, %y), 0
4164     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
4165     //   icmp eq/ne %x, 0
4166     if (N0.getOpcode() == ISD::UREM && N1C->isZero() &&
4167         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4168       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
4169       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
4170       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
4171         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
4172     }
4173 
4174     // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0
4175     //  and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0
4176     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4177         N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) &&
4178         N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 &&
4179         N1C && N1C->isAllOnes()) {
4180       return DAG.getSetCC(dl, VT, N0.getOperand(0),
4181                           DAG.getConstant(0, dl, OpVT),
4182                           Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE);
4183     }
4184 
4185     if (SDValue V =
4186             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
4187       return V;
4188   }
4189 
4190   // These simplifications apply to splat vectors as well.
4191   // TODO: Handle more splat vector cases.
4192   if (auto *N1C = isConstOrConstSplat(N1)) {
4193     const APInt &C1 = N1C->getAPIntValue();
4194 
4195     APInt MinVal, MaxVal;
4196     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
4197     if (ISD::isSignedIntSetCC(Cond)) {
4198       MinVal = APInt::getSignedMinValue(OperandBitSize);
4199       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
4200     } else {
4201       MinVal = APInt::getMinValue(OperandBitSize);
4202       MaxVal = APInt::getMaxValue(OperandBitSize);
4203     }
4204 
4205     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
4206     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
4207       // X >= MIN --> true
4208       if (C1 == MinVal)
4209         return DAG.getBoolConstant(true, dl, VT, OpVT);
4210 
4211       if (!VT.isVector()) { // TODO: Support this for vectors.
4212         // X >= C0 --> X > (C0 - 1)
4213         APInt C = C1 - 1;
4214         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
4215         if ((DCI.isBeforeLegalizeOps() ||
4216              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4217             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4218                                   isLegalICmpImmediate(C.getSExtValue())))) {
4219           return DAG.getSetCC(dl, VT, N0,
4220                               DAG.getConstant(C, dl, N1.getValueType()),
4221                               NewCC);
4222         }
4223       }
4224     }
4225 
4226     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
4227       // X <= MAX --> true
4228       if (C1 == MaxVal)
4229         return DAG.getBoolConstant(true, dl, VT, OpVT);
4230 
4231       // X <= C0 --> X < (C0 + 1)
4232       if (!VT.isVector()) { // TODO: Support this for vectors.
4233         APInt C = C1 + 1;
4234         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
4235         if ((DCI.isBeforeLegalizeOps() ||
4236              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
4237             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
4238                                   isLegalICmpImmediate(C.getSExtValue())))) {
4239           return DAG.getSetCC(dl, VT, N0,
4240                               DAG.getConstant(C, dl, N1.getValueType()),
4241                               NewCC);
4242         }
4243       }
4244     }
4245 
4246     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
4247       if (C1 == MinVal)
4248         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
4249 
4250       // TODO: Support this for vectors after legalize ops.
4251       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4252         // Canonicalize setlt X, Max --> setne X, Max
4253         if (C1 == MaxVal)
4254           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4255 
4256         // If we have setult X, 1, turn it into seteq X, 0
4257         if (C1 == MinVal+1)
4258           return DAG.getSetCC(dl, VT, N0,
4259                               DAG.getConstant(MinVal, dl, N0.getValueType()),
4260                               ISD::SETEQ);
4261       }
4262     }
4263 
4264     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
4265       if (C1 == MaxVal)
4266         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
4267 
4268       // TODO: Support this for vectors after legalize ops.
4269       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4270         // Canonicalize setgt X, Min --> setne X, Min
4271         if (C1 == MinVal)
4272           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
4273 
4274         // If we have setugt X, Max-1, turn it into seteq X, Max
4275         if (C1 == MaxVal-1)
4276           return DAG.getSetCC(dl, VT, N0,
4277                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
4278                               ISD::SETEQ);
4279       }
4280     }
4281 
4282     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
4283       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
4284       if (C1.isZero())
4285         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
4286                 VT, N0, N1, Cond, DCI, dl))
4287           return CC;
4288 
4289       // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y).
4290       // For example, when high 32-bits of i64 X are known clear:
4291       // all bits clear: (X | (Y<<32)) ==  0 --> (X | Y) ==  0
4292       // all bits set:   (X | (Y<<32)) == -1 --> (X & Y) == -1
4293       bool CmpZero = N1C->getAPIntValue().isZero();
4294       bool CmpNegOne = N1C->getAPIntValue().isAllOnes();
4295       if ((CmpZero || CmpNegOne) && N0.hasOneUse()) {
4296         // Match or(lo,shl(hi,bw/2)) pattern.
4297         auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) {
4298           unsigned EltBits = V.getScalarValueSizeInBits();
4299           if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0)
4300             return false;
4301           SDValue LHS = V.getOperand(0);
4302           SDValue RHS = V.getOperand(1);
4303           APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2);
4304           // Unshifted element must have zero upperbits.
4305           if (RHS.getOpcode() == ISD::SHL &&
4306               isa<ConstantSDNode>(RHS.getOperand(1)) &&
4307               RHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4308               DAG.MaskedValueIsZero(LHS, HiBits)) {
4309             Lo = LHS;
4310             Hi = RHS.getOperand(0);
4311             return true;
4312           }
4313           if (LHS.getOpcode() == ISD::SHL &&
4314               isa<ConstantSDNode>(LHS.getOperand(1)) &&
4315               LHS.getConstantOperandAPInt(1) == (EltBits / 2) &&
4316               DAG.MaskedValueIsZero(RHS, HiBits)) {
4317             Lo = RHS;
4318             Hi = LHS.getOperand(0);
4319             return true;
4320           }
4321           return false;
4322         };
4323 
4324         auto MergeConcat = [&](SDValue Lo, SDValue Hi) {
4325           unsigned EltBits = N0.getScalarValueSizeInBits();
4326           unsigned HalfBits = EltBits / 2;
4327           APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits);
4328           SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT);
4329           SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits);
4330           SDValue NewN0 =
4331               DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask);
4332           SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits;
4333           return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond);
4334         };
4335 
4336         SDValue Lo, Hi;
4337         if (IsConcat(N0, Lo, Hi))
4338           return MergeConcat(Lo, Hi);
4339 
4340         if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) {
4341           SDValue Lo0, Lo1, Hi0, Hi1;
4342           if (IsConcat(N0.getOperand(0), Lo0, Hi0) &&
4343               IsConcat(N0.getOperand(1), Lo1, Hi1)) {
4344             return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1),
4345                                DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1));
4346           }
4347         }
4348       }
4349     }
4350 
4351     // If we have "setcc X, C0", check to see if we can shrink the immediate
4352     // by changing cc.
4353     // TODO: Support this for vectors after legalize ops.
4354     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
4355       // SETUGT X, SINTMAX  -> SETLT X, 0
4356       // SETUGE X, SINTMIN -> SETLT X, 0
4357       if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) ||
4358           (Cond == ISD::SETUGE && C1.isMinSignedValue()))
4359         return DAG.getSetCC(dl, VT, N0,
4360                             DAG.getConstant(0, dl, N1.getValueType()),
4361                             ISD::SETLT);
4362 
4363       // SETULT X, SINTMIN  -> SETGT X, -1
4364       // SETULE X, SINTMAX  -> SETGT X, -1
4365       if ((Cond == ISD::SETULT && C1.isMinSignedValue()) ||
4366           (Cond == ISD::SETULE && C1.isMaxSignedValue()))
4367         return DAG.getSetCC(dl, VT, N0,
4368                             DAG.getAllOnesConstant(dl, N1.getValueType()),
4369                             ISD::SETGT);
4370     }
4371   }
4372 
4373   // Back to non-vector simplifications.
4374   // TODO: Can we do these for vector splats?
4375   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
4376     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4377     const APInt &C1 = N1C->getAPIntValue();
4378     EVT ShValTy = N0.getValueType();
4379 
4380     // Fold bit comparisons when we can. This will result in an
4381     // incorrect value when boolean false is negative one, unless
4382     // the bitsize is 1 in which case the false value is the same
4383     // in practice regardless of the representation.
4384     if ((VT.getSizeInBits() == 1 ||
4385          getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) &&
4386         (Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4387         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
4388         N0.getOpcode() == ISD::AND) {
4389       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4390         EVT ShiftTy =
4391             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4392         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
4393           // Perform the xform if the AND RHS is a single bit.
4394           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
4395           if (AndRHS->getAPIntValue().isPowerOf2() &&
4396               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4397             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4398                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4399                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4400           }
4401         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
4402           // (X & 8) == 8  -->  (X & 8) >> 3
4403           // Perform the xform if C1 is a single bit.
4404           unsigned ShCt = C1.logBase2();
4405           if (C1.isPowerOf2() &&
4406               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
4407             return DAG.getNode(ISD::TRUNCATE, dl, VT,
4408                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4409                                            DAG.getConstant(ShCt, dl, ShiftTy)));
4410           }
4411         }
4412       }
4413     }
4414 
4415     if (C1.getMinSignedBits() <= 64 &&
4416         !isLegalICmpImmediate(C1.getSExtValue())) {
4417       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
4418       // (X & -256) == 256 -> (X >> 8) == 1
4419       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4420           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
4421         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4422           const APInt &AndRHSC = AndRHS->getAPIntValue();
4423           if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) {
4424             unsigned ShiftBits = AndRHSC.countTrailingZeros();
4425             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4426               SDValue Shift =
4427                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
4428                             DAG.getConstant(ShiftBits, dl, ShiftTy));
4429               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
4430               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
4431             }
4432           }
4433         }
4434       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
4435                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
4436         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
4437         // X <  0x100000000 -> (X >> 32) <  1
4438         // X >= 0x100000000 -> (X >> 32) >= 1
4439         // X <= 0x0ffffffff -> (X >> 32) <  1
4440         // X >  0x0ffffffff -> (X >> 32) >= 1
4441         unsigned ShiftBits;
4442         APInt NewC = C1;
4443         ISD::CondCode NewCond = Cond;
4444         if (AdjOne) {
4445           ShiftBits = C1.countTrailingOnes();
4446           NewC = NewC + 1;
4447           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
4448         } else {
4449           ShiftBits = C1.countTrailingZeros();
4450         }
4451         NewC.lshrInPlace(ShiftBits);
4452         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
4453             isLegalICmpImmediate(NewC.getSExtValue()) &&
4454             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
4455           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
4456                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
4457           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
4458           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
4459         }
4460       }
4461     }
4462   }
4463 
4464   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
4465     auto *CFP = cast<ConstantFPSDNode>(N1);
4466     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
4467 
4468     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
4469     // constant if knowing that the operand is non-nan is enough.  We prefer to
4470     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
4471     // materialize 0.0.
4472     if (Cond == ISD::SETO || Cond == ISD::SETUO)
4473       return DAG.getSetCC(dl, VT, N0, N0, Cond);
4474 
4475     // setcc (fneg x), C -> setcc swap(pred) x, -C
4476     if (N0.getOpcode() == ISD::FNEG) {
4477       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
4478       if (DCI.isBeforeLegalizeOps() ||
4479           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
4480         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
4481         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
4482       }
4483     }
4484 
4485     // If the condition is not legal, see if we can find an equivalent one
4486     // which is legal.
4487     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
4488       // If the comparison was an awkward floating-point == or != and one of
4489       // the comparison operands is infinity or negative infinity, convert the
4490       // condition to a less-awkward <= or >=.
4491       if (CFP->getValueAPF().isInfinity()) {
4492         bool IsNegInf = CFP->getValueAPF().isNegative();
4493         ISD::CondCode NewCond = ISD::SETCC_INVALID;
4494         switch (Cond) {
4495         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
4496         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
4497         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
4498         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
4499         default: break;
4500         }
4501         if (NewCond != ISD::SETCC_INVALID &&
4502             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
4503           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4504       }
4505     }
4506   }
4507 
4508   if (N0 == N1) {
4509     // The sext(setcc()) => setcc() optimization relies on the appropriate
4510     // constant being emitted.
4511     assert(!N0.getValueType().isInteger() &&
4512            "Integer types should be handled by FoldSetCC");
4513 
4514     bool EqTrue = ISD::isTrueWhenEqual(Cond);
4515     unsigned UOF = ISD::getUnorderedFlavor(Cond);
4516     if (UOF == 2) // FP operators that are undefined on NaNs.
4517       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4518     if (UOF == unsigned(EqTrue))
4519       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
4520     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
4521     // if it is not already.
4522     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
4523     if (NewCond != Cond &&
4524         (DCI.isBeforeLegalizeOps() ||
4525                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
4526       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
4527   }
4528 
4529   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4530       N0.getValueType().isInteger()) {
4531     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
4532         N0.getOpcode() == ISD::XOR) {
4533       // Simplify (X+Y) == (X+Z) -->  Y == Z
4534       if (N0.getOpcode() == N1.getOpcode()) {
4535         if (N0.getOperand(0) == N1.getOperand(0))
4536           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
4537         if (N0.getOperand(1) == N1.getOperand(1))
4538           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
4539         if (isCommutativeBinOp(N0.getOpcode())) {
4540           // If X op Y == Y op X, try other combinations.
4541           if (N0.getOperand(0) == N1.getOperand(1))
4542             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
4543                                 Cond);
4544           if (N0.getOperand(1) == N1.getOperand(0))
4545             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
4546                                 Cond);
4547         }
4548       }
4549 
4550       // If RHS is a legal immediate value for a compare instruction, we need
4551       // to be careful about increasing register pressure needlessly.
4552       bool LegalRHSImm = false;
4553 
4554       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
4555         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
4556           // Turn (X+C1) == C2 --> X == C2-C1
4557           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
4558             return DAG.getSetCC(dl, VT, N0.getOperand(0),
4559                                 DAG.getConstant(RHSC->getAPIntValue()-
4560                                                 LHSR->getAPIntValue(),
4561                                 dl, N0.getValueType()), Cond);
4562           }
4563 
4564           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
4565           if (N0.getOpcode() == ISD::XOR)
4566             // If we know that all of the inverted bits are zero, don't bother
4567             // performing the inversion.
4568             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
4569               return
4570                 DAG.getSetCC(dl, VT, N0.getOperand(0),
4571                              DAG.getConstant(LHSR->getAPIntValue() ^
4572                                                RHSC->getAPIntValue(),
4573                                              dl, N0.getValueType()),
4574                              Cond);
4575         }
4576 
4577         // Turn (C1-X) == C2 --> X == C1-C2
4578         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
4579           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
4580             return
4581               DAG.getSetCC(dl, VT, N0.getOperand(1),
4582                            DAG.getConstant(SUBC->getAPIntValue() -
4583                                              RHSC->getAPIntValue(),
4584                                            dl, N0.getValueType()),
4585                            Cond);
4586           }
4587         }
4588 
4589         // Could RHSC fold directly into a compare?
4590         if (RHSC->getValueType(0).getSizeInBits() <= 64)
4591           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
4592       }
4593 
4594       // (X+Y) == X --> Y == 0 and similar folds.
4595       // Don't do this if X is an immediate that can fold into a cmp
4596       // instruction and X+Y has other uses. It could be an induction variable
4597       // chain, and the transform would increase register pressure.
4598       if (!LegalRHSImm || N0.hasOneUse())
4599         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4600           return V;
4601     }
4602 
4603     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4604         N1.getOpcode() == ISD::XOR)
4605       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4606         return V;
4607 
4608     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4609       return V;
4610   }
4611 
4612   // Fold remainder of division by a constant.
4613   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4614       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4615     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4616 
4617     // When division is cheap or optimizing for minimum size,
4618     // fall through to DIVREM creation by skipping this fold.
4619     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) {
4620       if (N0.getOpcode() == ISD::UREM) {
4621         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4622           return Folded;
4623       } else if (N0.getOpcode() == ISD::SREM) {
4624         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4625           return Folded;
4626       }
4627     }
4628   }
4629 
4630   // Fold away ALL boolean setcc's.
4631   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4632     SDValue Temp;
4633     switch (Cond) {
4634     default: llvm_unreachable("Unknown integer setcc!");
4635     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4636       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4637       N0 = DAG.getNOT(dl, Temp, OpVT);
4638       if (!DCI.isCalledByLegalizer())
4639         DCI.AddToWorklist(Temp.getNode());
4640       break;
4641     case ISD::SETNE:  // X != Y   -->  (X^Y)
4642       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4643       break;
4644     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4645     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4646       Temp = DAG.getNOT(dl, N0, OpVT);
4647       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4648       if (!DCI.isCalledByLegalizer())
4649         DCI.AddToWorklist(Temp.getNode());
4650       break;
4651     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4652     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4653       Temp = DAG.getNOT(dl, N1, OpVT);
4654       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4655       if (!DCI.isCalledByLegalizer())
4656         DCI.AddToWorklist(Temp.getNode());
4657       break;
4658     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4659     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4660       Temp = DAG.getNOT(dl, N0, OpVT);
4661       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4662       if (!DCI.isCalledByLegalizer())
4663         DCI.AddToWorklist(Temp.getNode());
4664       break;
4665     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4666     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4667       Temp = DAG.getNOT(dl, N1, OpVT);
4668       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4669       break;
4670     }
4671     if (VT.getScalarType() != MVT::i1) {
4672       if (!DCI.isCalledByLegalizer())
4673         DCI.AddToWorklist(N0.getNode());
4674       // FIXME: If running after legalize, we probably can't do this.
4675       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4676       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4677     }
4678     return N0;
4679   }
4680 
4681   // Could not fold it.
4682   return SDValue();
4683 }
4684 
4685 /// Returns true (and the GlobalValue and the offset) if the node is a
4686 /// GlobalAddress + offset.
4687 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4688                                     int64_t &Offset) const {
4689 
4690   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4691 
4692   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4693     GA = GASD->getGlobal();
4694     Offset += GASD->getOffset();
4695     return true;
4696   }
4697 
4698   if (N->getOpcode() == ISD::ADD) {
4699     SDValue N1 = N->getOperand(0);
4700     SDValue N2 = N->getOperand(1);
4701     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4702       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4703         Offset += V->getSExtValue();
4704         return true;
4705       }
4706     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4707       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4708         Offset += V->getSExtValue();
4709         return true;
4710       }
4711     }
4712   }
4713 
4714   return false;
4715 }
4716 
4717 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4718                                           DAGCombinerInfo &DCI) const {
4719   // Default implementation: no optimization.
4720   return SDValue();
4721 }
4722 
4723 //===----------------------------------------------------------------------===//
4724 //  Inline Assembler Implementation Methods
4725 //===----------------------------------------------------------------------===//
4726 
4727 TargetLowering::ConstraintType
4728 TargetLowering::getConstraintType(StringRef Constraint) const {
4729   unsigned S = Constraint.size();
4730 
4731   if (S == 1) {
4732     switch (Constraint[0]) {
4733     default: break;
4734     case 'r':
4735       return C_RegisterClass;
4736     case 'm': // memory
4737     case 'o': // offsetable
4738     case 'V': // not offsetable
4739       return C_Memory;
4740     case 'n': // Simple Integer
4741     case 'E': // Floating Point Constant
4742     case 'F': // Floating Point Constant
4743       return C_Immediate;
4744     case 'i': // Simple Integer or Relocatable Constant
4745     case 's': // Relocatable Constant
4746     case 'p': // Address.
4747     case 'X': // Allow ANY value.
4748     case 'I': // Target registers.
4749     case 'J':
4750     case 'K':
4751     case 'L':
4752     case 'M':
4753     case 'N':
4754     case 'O':
4755     case 'P':
4756     case '<':
4757     case '>':
4758       return C_Other;
4759     }
4760   }
4761 
4762   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4763     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4764       return C_Memory;
4765     return C_Register;
4766   }
4767   return C_Unknown;
4768 }
4769 
4770 /// Try to replace an X constraint, which matches anything, with another that
4771 /// has more specific requirements based on the type of the corresponding
4772 /// operand.
4773 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4774   if (ConstraintVT.isInteger())
4775     return "r";
4776   if (ConstraintVT.isFloatingPoint())
4777     return "f"; // works for many targets
4778   return nullptr;
4779 }
4780 
4781 SDValue TargetLowering::LowerAsmOutputForConstraint(
4782     SDValue &Chain, SDValue &Flag, const SDLoc &DL,
4783     const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const {
4784   return SDValue();
4785 }
4786 
4787 /// Lower the specified operand into the Ops vector.
4788 /// If it is invalid, don't add anything to Ops.
4789 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4790                                                   std::string &Constraint,
4791                                                   std::vector<SDValue> &Ops,
4792                                                   SelectionDAG &DAG) const {
4793 
4794   if (Constraint.length() > 1) return;
4795 
4796   char ConstraintLetter = Constraint[0];
4797   switch (ConstraintLetter) {
4798   default: break;
4799   case 'X':    // Allows any operand
4800   case 'i':    // Simple Integer or Relocatable Constant
4801   case 'n':    // Simple Integer
4802   case 's': {  // Relocatable Constant
4803 
4804     ConstantSDNode *C;
4805     uint64_t Offset = 0;
4806 
4807     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4808     // etc., since getelementpointer is variadic. We can't use
4809     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4810     // while in this case the GA may be furthest from the root node which is
4811     // likely an ISD::ADD.
4812     while (true) {
4813       if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') {
4814         // gcc prints these as sign extended.  Sign extend value to 64 bits
4815         // now; without this it would get ZExt'd later in
4816         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4817         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4818         BooleanContent BCont = getBooleanContents(MVT::i64);
4819         ISD::NodeType ExtOpc =
4820             IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND;
4821         int64_t ExtVal =
4822             ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue();
4823         Ops.push_back(
4824             DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64));
4825         return;
4826       }
4827       if (ConstraintLetter != 'n') {
4828         if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
4829           Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4830                                                    GA->getValueType(0),
4831                                                    Offset + GA->getOffset()));
4832           return;
4833         }
4834         if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) {
4835           Ops.push_back(DAG.getTargetBlockAddress(
4836               BA->getBlockAddress(), BA->getValueType(0),
4837               Offset + BA->getOffset(), BA->getTargetFlags()));
4838           return;
4839         }
4840         if (isa<BasicBlockSDNode>(Op)) {
4841           Ops.push_back(Op);
4842           return;
4843         }
4844       }
4845       const unsigned OpCode = Op.getOpcode();
4846       if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4847         if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4848           Op = Op.getOperand(1);
4849         // Subtraction is not commutative.
4850         else if (OpCode == ISD::ADD &&
4851                  (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4852           Op = Op.getOperand(0);
4853         else
4854           return;
4855         Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4856         continue;
4857       }
4858       return;
4859     }
4860     break;
4861   }
4862   }
4863 }
4864 
4865 std::pair<unsigned, const TargetRegisterClass *>
4866 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4867                                              StringRef Constraint,
4868                                              MVT VT) const {
4869   if (Constraint.empty() || Constraint[0] != '{')
4870     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4871   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4872 
4873   // Remove the braces from around the name.
4874   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4875 
4876   std::pair<unsigned, const TargetRegisterClass *> R =
4877       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4878 
4879   // Figure out which register class contains this reg.
4880   for (const TargetRegisterClass *RC : RI->regclasses()) {
4881     // If none of the value types for this register class are valid, we
4882     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4883     if (!isLegalRC(*RI, *RC))
4884       continue;
4885 
4886     for (const MCPhysReg &PR : *RC) {
4887       if (RegName.equals_insensitive(RI->getRegAsmName(PR))) {
4888         std::pair<unsigned, const TargetRegisterClass *> S =
4889             std::make_pair(PR, RC);
4890 
4891         // If this register class has the requested value type, return it,
4892         // otherwise keep searching and return the first class found
4893         // if no other is found which explicitly has the requested type.
4894         if (RI->isTypeLegalForClass(*RC, VT))
4895           return S;
4896         if (!R.second)
4897           R = S;
4898       }
4899     }
4900   }
4901 
4902   return R;
4903 }
4904 
4905 //===----------------------------------------------------------------------===//
4906 // Constraint Selection.
4907 
4908 /// Return true of this is an input operand that is a matching constraint like
4909 /// "4".
4910 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4911   assert(!ConstraintCode.empty() && "No known constraint!");
4912   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4913 }
4914 
4915 /// If this is an input matching constraint, this method returns the output
4916 /// operand it matches.
4917 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4918   assert(!ConstraintCode.empty() && "No known constraint!");
4919   return atoi(ConstraintCode.c_str());
4920 }
4921 
4922 /// Split up the constraint string from the inline assembly value into the
4923 /// specific constraints and their prefixes, and also tie in the associated
4924 /// operand values.
4925 /// If this returns an empty vector, and if the constraint string itself
4926 /// isn't empty, there was an error parsing.
4927 TargetLowering::AsmOperandInfoVector
4928 TargetLowering::ParseConstraints(const DataLayout &DL,
4929                                  const TargetRegisterInfo *TRI,
4930                                  const CallBase &Call) const {
4931   /// Information about all of the constraints.
4932   AsmOperandInfoVector ConstraintOperands;
4933   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4934   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4935 
4936   // Do a prepass over the constraints, canonicalizing them, and building up the
4937   // ConstraintOperands list.
4938   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4939   unsigned ResNo = 0; // ResNo - The result number of the next output.
4940 
4941   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4942     ConstraintOperands.emplace_back(std::move(CI));
4943     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4944 
4945     // Update multiple alternative constraint count.
4946     if (OpInfo.multipleAlternatives.size() > maCount)
4947       maCount = OpInfo.multipleAlternatives.size();
4948 
4949     OpInfo.ConstraintVT = MVT::Other;
4950 
4951     // Compute the value type for each operand.
4952     switch (OpInfo.Type) {
4953     case InlineAsm::isOutput:
4954       // Indirect outputs just consume an argument.
4955       if (OpInfo.isIndirect) {
4956         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4957         break;
4958       }
4959 
4960       // The return value of the call is this value.  As such, there is no
4961       // corresponding argument.
4962       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4963       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4964         OpInfo.ConstraintVT =
4965             getSimpleValueType(DL, STy->getElementType(ResNo));
4966       } else {
4967         assert(ResNo == 0 && "Asm only has one result!");
4968         OpInfo.ConstraintVT =
4969             getAsmOperandValueType(DL, Call.getType()).getSimpleVT();
4970       }
4971       ++ResNo;
4972       break;
4973     case InlineAsm::isInput:
4974       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo);
4975       break;
4976     case InlineAsm::isClobber:
4977       // Nothing to do.
4978       break;
4979     }
4980 
4981     if (OpInfo.CallOperandVal) {
4982       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4983       if (OpInfo.isIndirect) {
4984         OpTy = Call.getAttributes().getParamElementType(ArgNo);
4985         assert(OpTy && "Indirect opernad must have elementtype attribute");
4986       }
4987 
4988       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4989       if (StructType *STy = dyn_cast<StructType>(OpTy))
4990         if (STy->getNumElements() == 1)
4991           OpTy = STy->getElementType(0);
4992 
4993       // If OpTy is not a single value, it may be a struct/union that we
4994       // can tile with integers.
4995       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4996         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4997         switch (BitSize) {
4998         default: break;
4999         case 1:
5000         case 8:
5001         case 16:
5002         case 32:
5003         case 64:
5004         case 128:
5005           OpInfo.ConstraintVT =
5006               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
5007           break;
5008         }
5009       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
5010         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
5011         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
5012       } else {
5013         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
5014       }
5015 
5016       ArgNo++;
5017     }
5018   }
5019 
5020   // If we have multiple alternative constraints, select the best alternative.
5021   if (!ConstraintOperands.empty()) {
5022     if (maCount) {
5023       unsigned bestMAIndex = 0;
5024       int bestWeight = -1;
5025       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
5026       int weight = -1;
5027       unsigned maIndex;
5028       // Compute the sums of the weights for each alternative, keeping track
5029       // of the best (highest weight) one so far.
5030       for (maIndex = 0; maIndex < maCount; ++maIndex) {
5031         int weightSum = 0;
5032         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5033              cIndex != eIndex; ++cIndex) {
5034           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5035           if (OpInfo.Type == InlineAsm::isClobber)
5036             continue;
5037 
5038           // If this is an output operand with a matching input operand,
5039           // look up the matching input. If their types mismatch, e.g. one
5040           // is an integer, the other is floating point, or their sizes are
5041           // different, flag it as an maCantMatch.
5042           if (OpInfo.hasMatchingInput()) {
5043             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5044             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5045               if ((OpInfo.ConstraintVT.isInteger() !=
5046                    Input.ConstraintVT.isInteger()) ||
5047                   (OpInfo.ConstraintVT.getSizeInBits() !=
5048                    Input.ConstraintVT.getSizeInBits())) {
5049                 weightSum = -1; // Can't match.
5050                 break;
5051               }
5052             }
5053           }
5054           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
5055           if (weight == -1) {
5056             weightSum = -1;
5057             break;
5058           }
5059           weightSum += weight;
5060         }
5061         // Update best.
5062         if (weightSum > bestWeight) {
5063           bestWeight = weightSum;
5064           bestMAIndex = maIndex;
5065         }
5066       }
5067 
5068       // Now select chosen alternative in each constraint.
5069       for (AsmOperandInfo &cInfo : ConstraintOperands)
5070         if (cInfo.Type != InlineAsm::isClobber)
5071           cInfo.selectAlternative(bestMAIndex);
5072     }
5073   }
5074 
5075   // Check and hook up tied operands, choose constraint code to use.
5076   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
5077        cIndex != eIndex; ++cIndex) {
5078     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
5079 
5080     // If this is an output operand with a matching input operand, look up the
5081     // matching input. If their types mismatch, e.g. one is an integer, the
5082     // other is floating point, or their sizes are different, flag it as an
5083     // error.
5084     if (OpInfo.hasMatchingInput()) {
5085       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
5086 
5087       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
5088         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
5089             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
5090                                          OpInfo.ConstraintVT);
5091         std::pair<unsigned, const TargetRegisterClass *> InputRC =
5092             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
5093                                          Input.ConstraintVT);
5094         if ((OpInfo.ConstraintVT.isInteger() !=
5095              Input.ConstraintVT.isInteger()) ||
5096             (MatchRC.second != InputRC.second)) {
5097           report_fatal_error("Unsupported asm: input constraint"
5098                              " with a matching output constraint of"
5099                              " incompatible type!");
5100         }
5101       }
5102     }
5103   }
5104 
5105   return ConstraintOperands;
5106 }
5107 
5108 /// Return an integer indicating how general CT is.
5109 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
5110   switch (CT) {
5111   case TargetLowering::C_Immediate:
5112   case TargetLowering::C_Other:
5113   case TargetLowering::C_Unknown:
5114     return 0;
5115   case TargetLowering::C_Register:
5116     return 1;
5117   case TargetLowering::C_RegisterClass:
5118     return 2;
5119   case TargetLowering::C_Memory:
5120     return 3;
5121   }
5122   llvm_unreachable("Invalid constraint type");
5123 }
5124 
5125 /// Examine constraint type and operand type and determine a weight value.
5126 /// This object must already have been set up with the operand type
5127 /// and the current alternative constraint selected.
5128 TargetLowering::ConstraintWeight
5129   TargetLowering::getMultipleConstraintMatchWeight(
5130     AsmOperandInfo &info, int maIndex) const {
5131   InlineAsm::ConstraintCodeVector *rCodes;
5132   if (maIndex >= (int)info.multipleAlternatives.size())
5133     rCodes = &info.Codes;
5134   else
5135     rCodes = &info.multipleAlternatives[maIndex].Codes;
5136   ConstraintWeight BestWeight = CW_Invalid;
5137 
5138   // Loop over the options, keeping track of the most general one.
5139   for (const std::string &rCode : *rCodes) {
5140     ConstraintWeight weight =
5141         getSingleConstraintMatchWeight(info, rCode.c_str());
5142     if (weight > BestWeight)
5143       BestWeight = weight;
5144   }
5145 
5146   return BestWeight;
5147 }
5148 
5149 /// Examine constraint type and operand type and determine a weight value.
5150 /// This object must already have been set up with the operand type
5151 /// and the current alternative constraint selected.
5152 TargetLowering::ConstraintWeight
5153   TargetLowering::getSingleConstraintMatchWeight(
5154     AsmOperandInfo &info, const char *constraint) const {
5155   ConstraintWeight weight = CW_Invalid;
5156   Value *CallOperandVal = info.CallOperandVal;
5157     // If we don't have a value, we can't do a match,
5158     // but allow it at the lowest weight.
5159   if (!CallOperandVal)
5160     return CW_Default;
5161   // Look at the constraint type.
5162   switch (*constraint) {
5163     case 'i': // immediate integer.
5164     case 'n': // immediate integer with a known value.
5165       if (isa<ConstantInt>(CallOperandVal))
5166         weight = CW_Constant;
5167       break;
5168     case 's': // non-explicit intregal immediate.
5169       if (isa<GlobalValue>(CallOperandVal))
5170         weight = CW_Constant;
5171       break;
5172     case 'E': // immediate float if host format.
5173     case 'F': // immediate float.
5174       if (isa<ConstantFP>(CallOperandVal))
5175         weight = CW_Constant;
5176       break;
5177     case '<': // memory operand with autodecrement.
5178     case '>': // memory operand with autoincrement.
5179     case 'm': // memory operand.
5180     case 'o': // offsettable memory operand
5181     case 'V': // non-offsettable memory operand
5182       weight = CW_Memory;
5183       break;
5184     case 'r': // general register.
5185     case 'g': // general register, memory operand or immediate integer.
5186               // note: Clang converts "g" to "imr".
5187       if (CallOperandVal->getType()->isIntegerTy())
5188         weight = CW_Register;
5189       break;
5190     case 'X': // any operand.
5191   default:
5192     weight = CW_Default;
5193     break;
5194   }
5195   return weight;
5196 }
5197 
5198 /// If there are multiple different constraints that we could pick for this
5199 /// operand (e.g. "imr") try to pick the 'best' one.
5200 /// This is somewhat tricky: constraints fall into four classes:
5201 ///    Other         -> immediates and magic values
5202 ///    Register      -> one specific register
5203 ///    RegisterClass -> a group of regs
5204 ///    Memory        -> memory
5205 /// Ideally, we would pick the most specific constraint possible: if we have
5206 /// something that fits into a register, we would pick it.  The problem here
5207 /// is that if we have something that could either be in a register or in
5208 /// memory that use of the register could cause selection of *other*
5209 /// operands to fail: they might only succeed if we pick memory.  Because of
5210 /// this the heuristic we use is:
5211 ///
5212 ///  1) If there is an 'other' constraint, and if the operand is valid for
5213 ///     that constraint, use it.  This makes us take advantage of 'i'
5214 ///     constraints when available.
5215 ///  2) Otherwise, pick the most general constraint present.  This prefers
5216 ///     'm' over 'r', for example.
5217 ///
5218 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
5219                              const TargetLowering &TLI,
5220                              SDValue Op, SelectionDAG *DAG) {
5221   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
5222   unsigned BestIdx = 0;
5223   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
5224   int BestGenerality = -1;
5225 
5226   // Loop over the options, keeping track of the most general one.
5227   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
5228     TargetLowering::ConstraintType CType =
5229       TLI.getConstraintType(OpInfo.Codes[i]);
5230 
5231     // Indirect 'other' or 'immediate' constraints are not allowed.
5232     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
5233                                CType == TargetLowering::C_Register ||
5234                                CType == TargetLowering::C_RegisterClass))
5235       continue;
5236 
5237     // If this is an 'other' or 'immediate' constraint, see if the operand is
5238     // valid for it. For example, on X86 we might have an 'rI' constraint. If
5239     // the operand is an integer in the range [0..31] we want to use I (saving a
5240     // load of a register), otherwise we must use 'r'.
5241     if ((CType == TargetLowering::C_Other ||
5242          CType == TargetLowering::C_Immediate) && Op.getNode()) {
5243       assert(OpInfo.Codes[i].size() == 1 &&
5244              "Unhandled multi-letter 'other' constraint");
5245       std::vector<SDValue> ResultOps;
5246       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
5247                                        ResultOps, *DAG);
5248       if (!ResultOps.empty()) {
5249         BestType = CType;
5250         BestIdx = i;
5251         break;
5252       }
5253     }
5254 
5255     // Things with matching constraints can only be registers, per gcc
5256     // documentation.  This mainly affects "g" constraints.
5257     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
5258       continue;
5259 
5260     // This constraint letter is more general than the previous one, use it.
5261     int Generality = getConstraintGenerality(CType);
5262     if (Generality > BestGenerality) {
5263       BestType = CType;
5264       BestIdx = i;
5265       BestGenerality = Generality;
5266     }
5267   }
5268 
5269   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
5270   OpInfo.ConstraintType = BestType;
5271 }
5272 
5273 /// Determines the constraint code and constraint type to use for the specific
5274 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
5275 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
5276                                             SDValue Op,
5277                                             SelectionDAG *DAG) const {
5278   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
5279 
5280   // Single-letter constraints ('r') are very common.
5281   if (OpInfo.Codes.size() == 1) {
5282     OpInfo.ConstraintCode = OpInfo.Codes[0];
5283     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5284   } else {
5285     ChooseConstraint(OpInfo, *this, Op, DAG);
5286   }
5287 
5288   // 'X' matches anything.
5289   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
5290     // Constants are handled elsewhere.  For Functions, the type here is the
5291     // type of the result, which is not what we want to look at; leave them
5292     // alone.
5293     Value *v = OpInfo.CallOperandVal;
5294     if (isa<ConstantInt>(v) || isa<Function>(v)) {
5295       return;
5296     }
5297 
5298     if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) {
5299       OpInfo.ConstraintCode = "i";
5300       return;
5301     }
5302 
5303     // Otherwise, try to resolve it to something we know about by looking at
5304     // the actual operand type.
5305     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
5306       OpInfo.ConstraintCode = Repl;
5307       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
5308     }
5309   }
5310 }
5311 
5312 /// Given an exact SDIV by a constant, create a multiplication
5313 /// with the multiplicative inverse of the constant.
5314 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
5315                               const SDLoc &dl, SelectionDAG &DAG,
5316                               SmallVectorImpl<SDNode *> &Created) {
5317   SDValue Op0 = N->getOperand(0);
5318   SDValue Op1 = N->getOperand(1);
5319   EVT VT = N->getValueType(0);
5320   EVT SVT = VT.getScalarType();
5321   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
5322   EVT ShSVT = ShVT.getScalarType();
5323 
5324   bool UseSRA = false;
5325   SmallVector<SDValue, 16> Shifts, Factors;
5326 
5327   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5328     if (C->isZero())
5329       return false;
5330     APInt Divisor = C->getAPIntValue();
5331     unsigned Shift = Divisor.countTrailingZeros();
5332     if (Shift) {
5333       Divisor.ashrInPlace(Shift);
5334       UseSRA = true;
5335     }
5336     // Calculate the multiplicative inverse, using Newton's method.
5337     APInt t;
5338     APInt Factor = Divisor;
5339     while ((t = Divisor * Factor) != 1)
5340       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
5341     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
5342     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
5343     return true;
5344   };
5345 
5346   // Collect all magic values from the build vector.
5347   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
5348     return SDValue();
5349 
5350   SDValue Shift, Factor;
5351   if (Op1.getOpcode() == ISD::BUILD_VECTOR) {
5352     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5353     Factor = DAG.getBuildVector(VT, dl, Factors);
5354   } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) {
5355     assert(Shifts.size() == 1 && Factors.size() == 1 &&
5356            "Expected matchUnaryPredicate to return one element for scalable "
5357            "vectors");
5358     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5359     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5360   } else {
5361     assert(isa<ConstantSDNode>(Op1) && "Expected a constant");
5362     Shift = Shifts[0];
5363     Factor = Factors[0];
5364   }
5365 
5366   SDValue Res = Op0;
5367 
5368   // Shift the value upfront if it is even, so the LSB is one.
5369   if (UseSRA) {
5370     // TODO: For UDIV use SRL instead of SRA.
5371     SDNodeFlags Flags;
5372     Flags.setExact(true);
5373     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
5374     Created.push_back(Res.getNode());
5375   }
5376 
5377   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
5378 }
5379 
5380 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5381                               SelectionDAG &DAG,
5382                               SmallVectorImpl<SDNode *> &Created) const {
5383   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
5384   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5385   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
5386     return SDValue(N, 0); // Lower SDIV as SDIV
5387   return SDValue();
5388 }
5389 
5390 /// Given an ISD::SDIV node expressing a divide by constant,
5391 /// return a DAG expression to select that will generate the same value by
5392 /// multiplying by a magic number.
5393 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5394 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
5395                                   bool IsAfterLegalization,
5396                                   SmallVectorImpl<SDNode *> &Created) const {
5397   SDLoc dl(N);
5398   EVT VT = N->getValueType(0);
5399   EVT SVT = VT.getScalarType();
5400   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5401   EVT ShSVT = ShVT.getScalarType();
5402   unsigned EltBits = VT.getScalarSizeInBits();
5403   EVT MulVT;
5404 
5405   // Check to see if we can do this.
5406   // FIXME: We should be more aggressive here.
5407   if (!isTypeLegal(VT)) {
5408     // Limit this to simple scalars for now.
5409     if (VT.isVector() || !VT.isSimple())
5410       return SDValue();
5411 
5412     // If this type will be promoted to a large enough type with a legal
5413     // multiply operation, we can go ahead and do this transform.
5414     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5415       return SDValue();
5416 
5417     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5418     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5419         !isOperationLegal(ISD::MUL, MulVT))
5420       return SDValue();
5421   }
5422 
5423   // If the sdiv has an 'exact' bit we can use a simpler lowering.
5424   if (N->getFlags().hasExact())
5425     return BuildExactSDIV(*this, N, dl, DAG, Created);
5426 
5427   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
5428 
5429   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
5430     if (C->isZero())
5431       return false;
5432 
5433     const APInt &Divisor = C->getAPIntValue();
5434     SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor);
5435     int NumeratorFactor = 0;
5436     int ShiftMask = -1;
5437 
5438     if (Divisor.isOne() || Divisor.isAllOnes()) {
5439       // If d is +1/-1, we just multiply the numerator by +1/-1.
5440       NumeratorFactor = Divisor.getSExtValue();
5441       magics.Magic = 0;
5442       magics.ShiftAmount = 0;
5443       ShiftMask = 0;
5444     } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) {
5445       // If d > 0 and m < 0, add the numerator.
5446       NumeratorFactor = 1;
5447     } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) {
5448       // If d < 0 and m > 0, subtract the numerator.
5449       NumeratorFactor = -1;
5450     }
5451 
5452     MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT));
5453     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
5454     Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT));
5455     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
5456     return true;
5457   };
5458 
5459   SDValue N0 = N->getOperand(0);
5460   SDValue N1 = N->getOperand(1);
5461 
5462   // Collect the shifts / magic values from each element.
5463   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
5464     return SDValue();
5465 
5466   SDValue MagicFactor, Factor, Shift, ShiftMask;
5467   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5468     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5469     Factor = DAG.getBuildVector(VT, dl, Factors);
5470     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
5471     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
5472   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5473     assert(MagicFactors.size() == 1 && Factors.size() == 1 &&
5474            Shifts.size() == 1 && ShiftMasks.size() == 1 &&
5475            "Expected matchUnaryPredicate to return one element for scalable "
5476            "vectors");
5477     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5478     Factor = DAG.getSplatVector(VT, dl, Factors[0]);
5479     Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]);
5480     ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]);
5481   } else {
5482     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5483     MagicFactor = MagicFactors[0];
5484     Factor = Factors[0];
5485     Shift = Shifts[0];
5486     ShiftMask = ShiftMasks[0];
5487   }
5488 
5489   // Multiply the numerator (operand 0) by the magic value.
5490   // FIXME: We should support doing a MUL in a wider type.
5491   auto GetMULHS = [&](SDValue X, SDValue Y) {
5492     // If the type isn't legal, use a wider mul of the the type calculated
5493     // earlier.
5494     if (!isTypeLegal(VT)) {
5495       X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X);
5496       Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y);
5497       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5498       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5499                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5500       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5501     }
5502 
5503     if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization))
5504       return DAG.getNode(ISD::MULHS, dl, VT, X, Y);
5505     if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) {
5506       SDValue LoHi =
5507           DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5508       return SDValue(LoHi.getNode(), 1);
5509     }
5510     return SDValue();
5511   };
5512 
5513   SDValue Q = GetMULHS(N0, MagicFactor);
5514   if (!Q)
5515     return SDValue();
5516 
5517   Created.push_back(Q.getNode());
5518 
5519   // (Optionally) Add/subtract the numerator using Factor.
5520   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
5521   Created.push_back(Factor.getNode());
5522   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
5523   Created.push_back(Q.getNode());
5524 
5525   // Shift right algebraic by shift value.
5526   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
5527   Created.push_back(Q.getNode());
5528 
5529   // Extract the sign bit, mask it and add it to the quotient.
5530   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
5531   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
5532   Created.push_back(T.getNode());
5533   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
5534   Created.push_back(T.getNode());
5535   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
5536 }
5537 
5538 /// Given an ISD::UDIV node expressing a divide by constant,
5539 /// return a DAG expression to select that will generate the same value by
5540 /// multiplying by a magic number.
5541 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
5542 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
5543                                   bool IsAfterLegalization,
5544                                   SmallVectorImpl<SDNode *> &Created) const {
5545   SDLoc dl(N);
5546   EVT VT = N->getValueType(0);
5547   EVT SVT = VT.getScalarType();
5548   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5549   EVT ShSVT = ShVT.getScalarType();
5550   unsigned EltBits = VT.getScalarSizeInBits();
5551   EVT MulVT;
5552 
5553   // Check to see if we can do this.
5554   // FIXME: We should be more aggressive here.
5555   if (!isTypeLegal(VT)) {
5556     // Limit this to simple scalars for now.
5557     if (VT.isVector() || !VT.isSimple())
5558       return SDValue();
5559 
5560     // If this type will be promoted to a large enough type with a legal
5561     // multiply operation, we can go ahead and do this transform.
5562     if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger)
5563       return SDValue();
5564 
5565     MulVT = getTypeToTransformTo(*DAG.getContext(), VT);
5566     if (MulVT.getSizeInBits() < (2 * EltBits) ||
5567         !isOperationLegal(ISD::MUL, MulVT))
5568       return SDValue();
5569   }
5570 
5571   bool UseNPQ = false;
5572   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
5573 
5574   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
5575     if (C->isZero())
5576       return false;
5577     // FIXME: We should use a narrower constant when the upper
5578     // bits are known to be zero.
5579     const APInt& Divisor = C->getAPIntValue();
5580     UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor);
5581     unsigned PreShift = 0, PostShift = 0;
5582 
5583     // If the divisor is even, we can avoid using the expensive fixup by
5584     // shifting the divided value upfront.
5585     if (magics.IsAdd != 0 && !Divisor[0]) {
5586       PreShift = Divisor.countTrailingZeros();
5587       // Get magic number for the shifted divisor.
5588       magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift);
5589       assert(magics.IsAdd == 0 && "Should use cheap fixup now");
5590     }
5591 
5592     APInt Magic = magics.Magic;
5593 
5594     unsigned SelNPQ;
5595     if (magics.IsAdd == 0 || Divisor.isOne()) {
5596       assert(magics.ShiftAmount < Divisor.getBitWidth() &&
5597              "We shouldn't generate an undefined shift!");
5598       PostShift = magics.ShiftAmount;
5599       SelNPQ = false;
5600     } else {
5601       PostShift = magics.ShiftAmount - 1;
5602       SelNPQ = true;
5603     }
5604 
5605     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
5606     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
5607     NPQFactors.push_back(
5608         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
5609                                : APInt::getZero(EltBits),
5610                         dl, SVT));
5611     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
5612     UseNPQ |= SelNPQ;
5613     return true;
5614   };
5615 
5616   SDValue N0 = N->getOperand(0);
5617   SDValue N1 = N->getOperand(1);
5618 
5619   // Collect the shifts/magic values from each element.
5620   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
5621     return SDValue();
5622 
5623   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
5624   if (N1.getOpcode() == ISD::BUILD_VECTOR) {
5625     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
5626     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
5627     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
5628     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
5629   } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
5630     assert(PreShifts.size() == 1 && MagicFactors.size() == 1 &&
5631            NPQFactors.size() == 1 && PostShifts.size() == 1 &&
5632            "Expected matchUnaryPredicate to return one for scalable vectors");
5633     PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]);
5634     MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]);
5635     NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]);
5636     PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]);
5637   } else {
5638     assert(isa<ConstantSDNode>(N1) && "Expected a constant");
5639     PreShift = PreShifts[0];
5640     MagicFactor = MagicFactors[0];
5641     PostShift = PostShifts[0];
5642   }
5643 
5644   SDValue Q = N0;
5645   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
5646   Created.push_back(Q.getNode());
5647 
5648   // FIXME: We should support doing a MUL in a wider type.
5649   auto GetMULHU = [&](SDValue X, SDValue Y) {
5650     // If the type isn't legal, use a wider mul of the the type calculated
5651     // earlier.
5652     if (!isTypeLegal(VT)) {
5653       X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X);
5654       Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y);
5655       Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y);
5656       Y = DAG.getNode(ISD::SRL, dl, MulVT, Y,
5657                       DAG.getShiftAmountConstant(EltBits, MulVT, dl));
5658       return DAG.getNode(ISD::TRUNCATE, dl, VT, Y);
5659     }
5660 
5661     if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization))
5662       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
5663     if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) {
5664       SDValue LoHi =
5665           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
5666       return SDValue(LoHi.getNode(), 1);
5667     }
5668     return SDValue(); // No mulhu or equivalent
5669   };
5670 
5671   // Multiply the numerator (operand 0) by the magic value.
5672   Q = GetMULHU(Q, MagicFactor);
5673   if (!Q)
5674     return SDValue();
5675 
5676   Created.push_back(Q.getNode());
5677 
5678   if (UseNPQ) {
5679     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5680     Created.push_back(NPQ.getNode());
5681 
5682     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5683     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5684     if (VT.isVector())
5685       NPQ = GetMULHU(NPQ, NPQFactor);
5686     else
5687       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5688 
5689     Created.push_back(NPQ.getNode());
5690 
5691     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5692     Created.push_back(Q.getNode());
5693   }
5694 
5695   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5696   Created.push_back(Q.getNode());
5697 
5698   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5699 
5700   SDValue One = DAG.getConstant(1, dl, VT);
5701   SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ);
5702   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5703 }
5704 
5705 /// If all values in Values that *don't* match the predicate are same 'splat'
5706 /// value, then replace all values with that splat value.
5707 /// Else, if AlternativeReplacement was provided, then replace all values that
5708 /// do match predicate with AlternativeReplacement value.
5709 static void
5710 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5711                           std::function<bool(SDValue)> Predicate,
5712                           SDValue AlternativeReplacement = SDValue()) {
5713   SDValue Replacement;
5714   // Is there a value for which the Predicate does *NOT* match? What is it?
5715   auto SplatValue = llvm::find_if_not(Values, Predicate);
5716   if (SplatValue != Values.end()) {
5717     // Does Values consist only of SplatValue's and values matching Predicate?
5718     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5719           return Value == *SplatValue || Predicate(Value);
5720         })) // Then we shall replace values matching predicate with SplatValue.
5721       Replacement = *SplatValue;
5722   }
5723   if (!Replacement) {
5724     // Oops, we did not find the "baseline" splat value.
5725     if (!AlternativeReplacement)
5726       return; // Nothing to do.
5727     // Let's replace with provided value then.
5728     Replacement = AlternativeReplacement;
5729   }
5730   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5731 }
5732 
5733 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5734 /// where the divisor is constant and the comparison target is zero,
5735 /// return a DAG expression that will generate the same comparison result
5736 /// using only multiplications, additions and shifts/rotations.
5737 /// Ref: "Hacker's Delight" 10-17.
5738 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5739                                         SDValue CompTargetNode,
5740                                         ISD::CondCode Cond,
5741                                         DAGCombinerInfo &DCI,
5742                                         const SDLoc &DL) const {
5743   SmallVector<SDNode *, 5> Built;
5744   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5745                                          DCI, DL, Built)) {
5746     for (SDNode *N : Built)
5747       DCI.AddToWorklist(N);
5748     return Folded;
5749   }
5750 
5751   return SDValue();
5752 }
5753 
5754 SDValue
5755 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5756                                   SDValue CompTargetNode, ISD::CondCode Cond,
5757                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5758                                   SmallVectorImpl<SDNode *> &Created) const {
5759   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5760   // - D must be constant, with D = D0 * 2^K where D0 is odd
5761   // - P is the multiplicative inverse of D0 modulo 2^W
5762   // - Q = floor(((2^W) - 1) / D)
5763   // where W is the width of the common type of N and D.
5764   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5765          "Only applicable for (in)equality comparisons.");
5766 
5767   SelectionDAG &DAG = DCI.DAG;
5768 
5769   EVT VT = REMNode.getValueType();
5770   EVT SVT = VT.getScalarType();
5771   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
5772   EVT ShSVT = ShVT.getScalarType();
5773 
5774   // If MUL is unavailable, we cannot proceed in any case.
5775   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
5776     return SDValue();
5777 
5778   bool ComparingWithAllZeros = true;
5779   bool AllComparisonsWithNonZerosAreTautological = true;
5780   bool HadTautologicalLanes = false;
5781   bool AllLanesAreTautological = true;
5782   bool HadEvenDivisor = false;
5783   bool AllDivisorsArePowerOfTwo = true;
5784   bool HadTautologicalInvertedLanes = false;
5785   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5786 
5787   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5788     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5789     if (CDiv->isZero())
5790       return false;
5791 
5792     const APInt &D = CDiv->getAPIntValue();
5793     const APInt &Cmp = CCmp->getAPIntValue();
5794 
5795     ComparingWithAllZeros &= Cmp.isZero();
5796 
5797     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5798     // if C2 is not less than C1, the comparison is always false.
5799     // But we will only be able to produce the comparison that will give the
5800     // opposive tautological answer. So this lane would need to be fixed up.
5801     bool TautologicalInvertedLane = D.ule(Cmp);
5802     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5803 
5804     // If all lanes are tautological (either all divisors are ones, or divisor
5805     // is not greater than the constant we are comparing with),
5806     // we will prefer to avoid the fold.
5807     bool TautologicalLane = D.isOne() || TautologicalInvertedLane;
5808     HadTautologicalLanes |= TautologicalLane;
5809     AllLanesAreTautological &= TautologicalLane;
5810 
5811     // If we are comparing with non-zero, we need'll need  to subtract said
5812     // comparison value from the LHS. But there is no point in doing that if
5813     // every lane where we are comparing with non-zero is tautological..
5814     if (!Cmp.isZero())
5815       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5816 
5817     // Decompose D into D0 * 2^K
5818     unsigned K = D.countTrailingZeros();
5819     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
5820     APInt D0 = D.lshr(K);
5821 
5822     // D is even if it has trailing zeros.
5823     HadEvenDivisor |= (K != 0);
5824     // D is a power-of-two if D0 is one.
5825     // If all divisors are power-of-two, we will prefer to avoid the fold.
5826     AllDivisorsArePowerOfTwo &= D0.isOne();
5827 
5828     // P = inv(D0, 2^W)
5829     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5830     unsigned W = D.getBitWidth();
5831     APInt P = D0.zext(W + 1)
5832                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5833                   .trunc(W);
5834     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
5835     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
5836 
5837     // Q = floor((2^W - 1) u/ D)
5838     // R = ((2^W - 1) u% D)
5839     APInt Q, R;
5840     APInt::udivrem(APInt::getAllOnes(W), D, Q, R);
5841 
5842     // If we are comparing with zero, then that comparison constant is okay,
5843     // else it may need to be one less than that.
5844     if (Cmp.ugt(R))
5845       Q -= 1;
5846 
5847     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
5848            "We are expecting that K is always less than all-ones for ShSVT");
5849 
5850     // If the lane is tautological the result can be constant-folded.
5851     if (TautologicalLane) {
5852       // Set P and K amount to a bogus values so we can try to splat them.
5853       P = 0;
5854       K = -1;
5855       // And ensure that comparison constant is tautological,
5856       // it will always compare true/false.
5857       Q = -1;
5858     }
5859 
5860     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5861     KAmts.push_back(
5862         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5863     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5864     return true;
5865   };
5866 
5867   SDValue N = REMNode.getOperand(0);
5868   SDValue D = REMNode.getOperand(1);
5869 
5870   // Collect the values from each element.
5871   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5872     return SDValue();
5873 
5874   // If all lanes are tautological, the result can be constant-folded.
5875   if (AllLanesAreTautological)
5876     return SDValue();
5877 
5878   // If this is a urem by a powers-of-two, avoid the fold since it can be
5879   // best implemented as a bit test.
5880   if (AllDivisorsArePowerOfTwo)
5881     return SDValue();
5882 
5883   SDValue PVal, KVal, QVal;
5884   if (D.getOpcode() == ISD::BUILD_VECTOR) {
5885     if (HadTautologicalLanes) {
5886       // Try to turn PAmts into a splat, since we don't care about the values
5887       // that are currently '0'. If we can't, just keep '0'`s.
5888       turnVectorIntoSplatVector(PAmts, isNullConstant);
5889       // Try to turn KAmts into a splat, since we don't care about the values
5890       // that are currently '-1'. If we can't, change them to '0'`s.
5891       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5892                                 DAG.getConstant(0, DL, ShSVT));
5893     }
5894 
5895     PVal = DAG.getBuildVector(VT, DL, PAmts);
5896     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5897     QVal = DAG.getBuildVector(VT, DL, QAmts);
5898   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
5899     assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 &&
5900            "Expected matchBinaryPredicate to return one element for "
5901            "SPLAT_VECTORs");
5902     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
5903     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
5904     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
5905   } else {
5906     PVal = PAmts[0];
5907     KVal = KAmts[0];
5908     QVal = QAmts[0];
5909   }
5910 
5911   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5912     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT))
5913       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5914     assert(CompTargetNode.getValueType() == N.getValueType() &&
5915            "Expecting that the types on LHS and RHS of comparisons match.");
5916     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5917   }
5918 
5919   // (mul N, P)
5920   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5921   Created.push_back(Op0.getNode());
5922 
5923   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5924   // divisors as a performance improvement, since rotating by 0 is a no-op.
5925   if (HadEvenDivisor) {
5926     // We need ROTR to do this.
5927     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
5928       return SDValue();
5929     // UREM: (rotr (mul N, P), K)
5930     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
5931     Created.push_back(Op0.getNode());
5932   }
5933 
5934   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5935   SDValue NewCC =
5936       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5937                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5938   if (!HadTautologicalInvertedLanes)
5939     return NewCC;
5940 
5941   // If any lanes previously compared always-false, the NewCC will give
5942   // always-true result for them, so we need to fixup those lanes.
5943   // Or the other way around for inequality predicate.
5944   assert(VT.isVector() && "Can/should only get here for vectors.");
5945   Created.push_back(NewCC.getNode());
5946 
5947   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5948   // if C2 is not less than C1, the comparison is always false.
5949   // But we have produced the comparison that will give the
5950   // opposive tautological answer. So these lanes would need to be fixed up.
5951   SDValue TautologicalInvertedChannels =
5952       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5953   Created.push_back(TautologicalInvertedChannels.getNode());
5954 
5955   // NOTE: we avoid letting illegal types through even if we're before legalize
5956   // ops – legalization has a hard time producing good code for this.
5957   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5958     // If we have a vector select, let's replace the comparison results in the
5959     // affected lanes with the correct tautological result.
5960     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5961                                               DL, SETCCVT, SETCCVT);
5962     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5963                        Replacement, NewCC);
5964   }
5965 
5966   // Else, we can just invert the comparison result in the appropriate lanes.
5967   //
5968   // NOTE: see the note above VSELECT above.
5969   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5970     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5971                        TautologicalInvertedChannels);
5972 
5973   return SDValue(); // Don't know how to lower.
5974 }
5975 
5976 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5977 /// where the divisor is constant and the comparison target is zero,
5978 /// return a DAG expression that will generate the same comparison result
5979 /// using only multiplications, additions and shifts/rotations.
5980 /// Ref: "Hacker's Delight" 10-17.
5981 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5982                                         SDValue CompTargetNode,
5983                                         ISD::CondCode Cond,
5984                                         DAGCombinerInfo &DCI,
5985                                         const SDLoc &DL) const {
5986   SmallVector<SDNode *, 7> Built;
5987   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5988                                          DCI, DL, Built)) {
5989     assert(Built.size() <= 7 && "Max size prediction failed.");
5990     for (SDNode *N : Built)
5991       DCI.AddToWorklist(N);
5992     return Folded;
5993   }
5994 
5995   return SDValue();
5996 }
5997 
5998 SDValue
5999 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
6000                                   SDValue CompTargetNode, ISD::CondCode Cond,
6001                                   DAGCombinerInfo &DCI, const SDLoc &DL,
6002                                   SmallVectorImpl<SDNode *> &Created) const {
6003   // Fold:
6004   //   (seteq/ne (srem N, D), 0)
6005   // To:
6006   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
6007   //
6008   // - D must be constant, with D = D0 * 2^K where D0 is odd
6009   // - P is the multiplicative inverse of D0 modulo 2^W
6010   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
6011   // - Q = floor((2 * A) / (2^K))
6012   // where W is the width of the common type of N and D.
6013   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
6014          "Only applicable for (in)equality comparisons.");
6015 
6016   SelectionDAG &DAG = DCI.DAG;
6017 
6018   EVT VT = REMNode.getValueType();
6019   EVT SVT = VT.getScalarType();
6020   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize());
6021   EVT ShSVT = ShVT.getScalarType();
6022 
6023   // If we are after ops legalization, and MUL is unavailable, we can not
6024   // proceed.
6025   if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT))
6026     return SDValue();
6027 
6028   // TODO: Could support comparing with non-zero too.
6029   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
6030   if (!CompTarget || !CompTarget->isZero())
6031     return SDValue();
6032 
6033   bool HadIntMinDivisor = false;
6034   bool HadOneDivisor = false;
6035   bool AllDivisorsAreOnes = true;
6036   bool HadEvenDivisor = false;
6037   bool NeedToApplyOffset = false;
6038   bool AllDivisorsArePowerOfTwo = true;
6039   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
6040 
6041   auto BuildSREMPattern = [&](ConstantSDNode *C) {
6042     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
6043     if (C->isZero())
6044       return false;
6045 
6046     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
6047 
6048     // WARNING: this fold is only valid for positive divisors!
6049     APInt D = C->getAPIntValue();
6050     if (D.isNegative())
6051       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
6052 
6053     HadIntMinDivisor |= D.isMinSignedValue();
6054 
6055     // If all divisors are ones, we will prefer to avoid the fold.
6056     HadOneDivisor |= D.isOne();
6057     AllDivisorsAreOnes &= D.isOne();
6058 
6059     // Decompose D into D0 * 2^K
6060     unsigned K = D.countTrailingZeros();
6061     assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate.");
6062     APInt D0 = D.lshr(K);
6063 
6064     if (!D.isMinSignedValue()) {
6065       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
6066       // we don't care about this lane in this fold, we'll special-handle it.
6067       HadEvenDivisor |= (K != 0);
6068     }
6069 
6070     // D is a power-of-two if D0 is one. This includes INT_MIN.
6071     // If all divisors are power-of-two, we will prefer to avoid the fold.
6072     AllDivisorsArePowerOfTwo &= D0.isOne();
6073 
6074     // P = inv(D0, 2^W)
6075     // 2^W requires W + 1 bits, so we have to extend and then truncate.
6076     unsigned W = D.getBitWidth();
6077     APInt P = D0.zext(W + 1)
6078                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
6079                   .trunc(W);
6080     assert(!P.isZero() && "No multiplicative inverse!"); // unreachable
6081     assert((D0 * P).isOne() && "Multiplicative inverse basic check failed.");
6082 
6083     // A = floor((2^(W - 1) - 1) / D0) & -2^K
6084     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
6085     A.clearLowBits(K);
6086 
6087     if (!D.isMinSignedValue()) {
6088       // If divisor INT_MIN, then we don't care about this lane in this fold,
6089       // we'll special-handle it.
6090       NeedToApplyOffset |= A != 0;
6091     }
6092 
6093     // Q = floor((2 * A) / (2^K))
6094     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
6095 
6096     assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) &&
6097            "We are expecting that A is always less than all-ones for SVT");
6098     assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) &&
6099            "We are expecting that K is always less than all-ones for ShSVT");
6100 
6101     // If the divisor is 1 the result can be constant-folded. Likewise, we
6102     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
6103     if (D.isOne()) {
6104       // Set P, A and K to a bogus values so we can try to splat them.
6105       P = 0;
6106       A = -1;
6107       K = -1;
6108 
6109       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
6110       Q = -1;
6111     }
6112 
6113     PAmts.push_back(DAG.getConstant(P, DL, SVT));
6114     AAmts.push_back(DAG.getConstant(A, DL, SVT));
6115     KAmts.push_back(
6116         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
6117     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
6118     return true;
6119   };
6120 
6121   SDValue N = REMNode.getOperand(0);
6122   SDValue D = REMNode.getOperand(1);
6123 
6124   // Collect the values from each element.
6125   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
6126     return SDValue();
6127 
6128   // If this is a srem by a one, avoid the fold since it can be constant-folded.
6129   if (AllDivisorsAreOnes)
6130     return SDValue();
6131 
6132   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
6133   // since it can be best implemented as a bit test.
6134   if (AllDivisorsArePowerOfTwo)
6135     return SDValue();
6136 
6137   SDValue PVal, AVal, KVal, QVal;
6138   if (D.getOpcode() == ISD::BUILD_VECTOR) {
6139     if (HadOneDivisor) {
6140       // Try to turn PAmts into a splat, since we don't care about the values
6141       // that are currently '0'. If we can't, just keep '0'`s.
6142       turnVectorIntoSplatVector(PAmts, isNullConstant);
6143       // Try to turn AAmts into a splat, since we don't care about the
6144       // values that are currently '-1'. If we can't, change them to '0'`s.
6145       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
6146                                 DAG.getConstant(0, DL, SVT));
6147       // Try to turn KAmts into a splat, since we don't care about the values
6148       // that are currently '-1'. If we can't, change them to '0'`s.
6149       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
6150                                 DAG.getConstant(0, DL, ShSVT));
6151     }
6152 
6153     PVal = DAG.getBuildVector(VT, DL, PAmts);
6154     AVal = DAG.getBuildVector(VT, DL, AAmts);
6155     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
6156     QVal = DAG.getBuildVector(VT, DL, QAmts);
6157   } else if (D.getOpcode() == ISD::SPLAT_VECTOR) {
6158     assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 &&
6159            QAmts.size() == 1 &&
6160            "Expected matchUnaryPredicate to return one element for scalable "
6161            "vectors");
6162     PVal = DAG.getSplatVector(VT, DL, PAmts[0]);
6163     AVal = DAG.getSplatVector(VT, DL, AAmts[0]);
6164     KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]);
6165     QVal = DAG.getSplatVector(VT, DL, QAmts[0]);
6166   } else {
6167     assert(isa<ConstantSDNode>(D) && "Expected a constant");
6168     PVal = PAmts[0];
6169     AVal = AAmts[0];
6170     KVal = KAmts[0];
6171     QVal = QAmts[0];
6172   }
6173 
6174   // (mul N, P)
6175   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
6176   Created.push_back(Op0.getNode());
6177 
6178   if (NeedToApplyOffset) {
6179     // We need ADD to do this.
6180     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT))
6181       return SDValue();
6182 
6183     // (add (mul N, P), A)
6184     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
6185     Created.push_back(Op0.getNode());
6186   }
6187 
6188   // Rotate right only if any divisor was even. We avoid rotates for all-odd
6189   // divisors as a performance improvement, since rotating by 0 is a no-op.
6190   if (HadEvenDivisor) {
6191     // We need ROTR to do this.
6192     if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT))
6193       return SDValue();
6194     // SREM: (rotr (add (mul N, P), A), K)
6195     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal);
6196     Created.push_back(Op0.getNode());
6197   }
6198 
6199   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
6200   SDValue Fold =
6201       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
6202                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
6203 
6204   // If we didn't have lanes with INT_MIN divisor, then we're done.
6205   if (!HadIntMinDivisor)
6206     return Fold;
6207 
6208   // That fold is only valid for positive divisors. Which effectively means,
6209   // it is invalid for INT_MIN divisors. So if we have such a lane,
6210   // we must fix-up results for said lanes.
6211   assert(VT.isVector() && "Can/should only get here for vectors.");
6212 
6213   // NOTE: we avoid letting illegal types through even if we're before legalize
6214   // ops – legalization has a hard time producing good code for the code that
6215   // follows.
6216   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
6217       !isOperationLegalOrCustom(ISD::AND, VT) ||
6218       !isOperationLegalOrCustom(Cond, VT) ||
6219       !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT))
6220     return SDValue();
6221 
6222   Created.push_back(Fold.getNode());
6223 
6224   SDValue IntMin = DAG.getConstant(
6225       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
6226   SDValue IntMax = DAG.getConstant(
6227       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
6228   SDValue Zero =
6229       DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT);
6230 
6231   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
6232   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
6233   Created.push_back(DivisorIsIntMin.getNode());
6234 
6235   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
6236   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
6237   Created.push_back(Masked.getNode());
6238   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
6239   Created.push_back(MaskedIsZero.getNode());
6240 
6241   // To produce final result we need to blend 2 vectors: 'SetCC' and
6242   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
6243   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
6244   // constant-folded, select can get lowered to a shuffle with constant mask.
6245   SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin,
6246                                 MaskedIsZero, Fold);
6247 
6248   return Blended;
6249 }
6250 
6251 bool TargetLowering::
6252 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
6253   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
6254     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
6255                                 "be a constant integer");
6256     return true;
6257   }
6258 
6259   return false;
6260 }
6261 
6262 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
6263                                          const DenormalMode &Mode) const {
6264   SDLoc DL(Op);
6265   EVT VT = Op.getValueType();
6266   EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6267   SDValue FPZero = DAG.getConstantFP(0.0, DL, VT);
6268   // Testing it with denormal inputs to avoid wrong estimate.
6269   if (Mode.Input == DenormalMode::IEEE) {
6270     // This is specifically a check for the handling of denormal inputs,
6271     // not the result.
6272 
6273     // Test = fabs(X) < SmallestNormal
6274     const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT);
6275     APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem);
6276     SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT);
6277     SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op);
6278     return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT);
6279   }
6280   // Test = X == 0.0
6281   return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ);
6282 }
6283 
6284 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
6285                                              bool LegalOps, bool OptForSize,
6286                                              NegatibleCost &Cost,
6287                                              unsigned Depth) const {
6288   // fneg is removable even if it has multiple uses.
6289   if (Op.getOpcode() == ISD::FNEG) {
6290     Cost = NegatibleCost::Cheaper;
6291     return Op.getOperand(0);
6292   }
6293 
6294   // Don't recurse exponentially.
6295   if (Depth > SelectionDAG::MaxRecursionDepth)
6296     return SDValue();
6297 
6298   // Pre-increment recursion depth for use in recursive calls.
6299   ++Depth;
6300   const SDNodeFlags Flags = Op->getFlags();
6301   const TargetOptions &Options = DAG.getTarget().Options;
6302   EVT VT = Op.getValueType();
6303   unsigned Opcode = Op.getOpcode();
6304 
6305   // Don't allow anything with multiple uses unless we know it is free.
6306   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
6307     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
6308                         isFPExtFree(VT, Op.getOperand(0).getValueType());
6309     if (!IsFreeExtend)
6310       return SDValue();
6311   }
6312 
6313   auto RemoveDeadNode = [&](SDValue N) {
6314     if (N && N.getNode()->use_empty())
6315       DAG.RemoveDeadNode(N.getNode());
6316   };
6317 
6318   SDLoc DL(Op);
6319 
6320   // Because getNegatedExpression can delete nodes we need a handle to keep
6321   // temporary nodes alive in case the recursion manages to create an identical
6322   // node.
6323   std::list<HandleSDNode> Handles;
6324 
6325   switch (Opcode) {
6326   case ISD::ConstantFP: {
6327     // Don't invert constant FP values after legalization unless the target says
6328     // the negated constant is legal.
6329     bool IsOpLegal =
6330         isOperationLegal(ISD::ConstantFP, VT) ||
6331         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
6332                      OptForSize);
6333 
6334     if (LegalOps && !IsOpLegal)
6335       break;
6336 
6337     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
6338     V.changeSign();
6339     SDValue CFP = DAG.getConstantFP(V, DL, VT);
6340 
6341     // If we already have the use of the negated floating constant, it is free
6342     // to negate it even it has multiple uses.
6343     if (!Op.hasOneUse() && CFP.use_empty())
6344       break;
6345     Cost = NegatibleCost::Neutral;
6346     return CFP;
6347   }
6348   case ISD::BUILD_VECTOR: {
6349     // Only permit BUILD_VECTOR of constants.
6350     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
6351           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
6352         }))
6353       break;
6354 
6355     bool IsOpLegal =
6356         (isOperationLegal(ISD::ConstantFP, VT) &&
6357          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
6358         llvm::all_of(Op->op_values(), [&](SDValue N) {
6359           return N.isUndef() ||
6360                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
6361                               OptForSize);
6362         });
6363 
6364     if (LegalOps && !IsOpLegal)
6365       break;
6366 
6367     SmallVector<SDValue, 4> Ops;
6368     for (SDValue C : Op->op_values()) {
6369       if (C.isUndef()) {
6370         Ops.push_back(C);
6371         continue;
6372       }
6373       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
6374       V.changeSign();
6375       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
6376     }
6377     Cost = NegatibleCost::Neutral;
6378     return DAG.getBuildVector(VT, DL, Ops);
6379   }
6380   case ISD::FADD: {
6381     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6382       break;
6383 
6384     // After operation legalization, it might not be legal to create new FSUBs.
6385     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
6386       break;
6387     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6388 
6389     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
6390     NegatibleCost CostX = NegatibleCost::Expensive;
6391     SDValue NegX =
6392         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6393     // Prevent this node from being deleted by the next call.
6394     if (NegX)
6395       Handles.emplace_back(NegX);
6396 
6397     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
6398     NegatibleCost CostY = NegatibleCost::Expensive;
6399     SDValue NegY =
6400         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6401 
6402     // We're done with the handles.
6403     Handles.clear();
6404 
6405     // Negate the X if its cost is less or equal than Y.
6406     if (NegX && (CostX <= CostY)) {
6407       Cost = CostX;
6408       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
6409       if (NegY != N)
6410         RemoveDeadNode(NegY);
6411       return N;
6412     }
6413 
6414     // Negate the Y if it is not expensive.
6415     if (NegY) {
6416       Cost = CostY;
6417       SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
6418       if (NegX != N)
6419         RemoveDeadNode(NegX);
6420       return N;
6421     }
6422     break;
6423   }
6424   case ISD::FSUB: {
6425     // We can't turn -(A-B) into B-A when we honor signed zeros.
6426     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6427       break;
6428 
6429     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6430     // fold (fneg (fsub 0, Y)) -> Y
6431     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
6432       if (C->isZero()) {
6433         Cost = NegatibleCost::Cheaper;
6434         return Y;
6435       }
6436 
6437     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
6438     Cost = NegatibleCost::Neutral;
6439     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
6440   }
6441   case ISD::FMUL:
6442   case ISD::FDIV: {
6443     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
6444 
6445     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
6446     NegatibleCost CostX = NegatibleCost::Expensive;
6447     SDValue NegX =
6448         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6449     // Prevent this node from being deleted by the next call.
6450     if (NegX)
6451       Handles.emplace_back(NegX);
6452 
6453     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
6454     NegatibleCost CostY = NegatibleCost::Expensive;
6455     SDValue NegY =
6456         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6457 
6458     // We're done with the handles.
6459     Handles.clear();
6460 
6461     // Negate the X if its cost is less or equal than Y.
6462     if (NegX && (CostX <= CostY)) {
6463       Cost = CostX;
6464       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
6465       if (NegY != N)
6466         RemoveDeadNode(NegY);
6467       return N;
6468     }
6469 
6470     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
6471     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
6472       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
6473         break;
6474 
6475     // Negate the Y if it is not expensive.
6476     if (NegY) {
6477       Cost = CostY;
6478       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
6479       if (NegX != N)
6480         RemoveDeadNode(NegX);
6481       return N;
6482     }
6483     break;
6484   }
6485   case ISD::FMA:
6486   case ISD::FMAD: {
6487     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
6488       break;
6489 
6490     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
6491     NegatibleCost CostZ = NegatibleCost::Expensive;
6492     SDValue NegZ =
6493         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
6494     // Give up if fail to negate the Z.
6495     if (!NegZ)
6496       break;
6497 
6498     // Prevent this node from being deleted by the next two calls.
6499     Handles.emplace_back(NegZ);
6500 
6501     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
6502     NegatibleCost CostX = NegatibleCost::Expensive;
6503     SDValue NegX =
6504         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
6505     // Prevent this node from being deleted by the next call.
6506     if (NegX)
6507       Handles.emplace_back(NegX);
6508 
6509     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
6510     NegatibleCost CostY = NegatibleCost::Expensive;
6511     SDValue NegY =
6512         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
6513 
6514     // We're done with the handles.
6515     Handles.clear();
6516 
6517     // Negate the X if its cost is less or equal than Y.
6518     if (NegX && (CostX <= CostY)) {
6519       Cost = std::min(CostX, CostZ);
6520       SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
6521       if (NegY != N)
6522         RemoveDeadNode(NegY);
6523       return N;
6524     }
6525 
6526     // Negate the Y if it is not expensive.
6527     if (NegY) {
6528       Cost = std::min(CostY, CostZ);
6529       SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
6530       if (NegX != N)
6531         RemoveDeadNode(NegX);
6532       return N;
6533     }
6534     break;
6535   }
6536 
6537   case ISD::FP_EXTEND:
6538   case ISD::FSIN:
6539     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6540                                             OptForSize, Cost, Depth))
6541       return DAG.getNode(Opcode, DL, VT, NegV);
6542     break;
6543   case ISD::FP_ROUND:
6544     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
6545                                             OptForSize, Cost, Depth))
6546       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
6547     break;
6548   }
6549 
6550   return SDValue();
6551 }
6552 
6553 //===----------------------------------------------------------------------===//
6554 // Legalization Utilities
6555 //===----------------------------------------------------------------------===//
6556 
6557 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl,
6558                                     SDValue LHS, SDValue RHS,
6559                                     SmallVectorImpl<SDValue> &Result,
6560                                     EVT HiLoVT, SelectionDAG &DAG,
6561                                     MulExpansionKind Kind, SDValue LL,
6562                                     SDValue LH, SDValue RL, SDValue RH) const {
6563   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
6564          Opcode == ISD::SMUL_LOHI);
6565 
6566   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
6567                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
6568   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
6569                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
6570   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6571                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
6572   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
6573                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
6574 
6575   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
6576     return false;
6577 
6578   unsigned OuterBitSize = VT.getScalarSizeInBits();
6579   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
6580 
6581   // LL, LH, RL, and RH must be either all NULL or all set to a value.
6582   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
6583          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
6584 
6585   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
6586   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
6587                           bool Signed) -> bool {
6588     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
6589       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
6590       Hi = SDValue(Lo.getNode(), 1);
6591       return true;
6592     }
6593     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
6594       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
6595       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
6596       return true;
6597     }
6598     return false;
6599   };
6600 
6601   SDValue Lo, Hi;
6602 
6603   if (!LL.getNode() && !RL.getNode() &&
6604       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6605     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
6606     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
6607   }
6608 
6609   if (!LL.getNode())
6610     return false;
6611 
6612   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
6613   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
6614       DAG.MaskedValueIsZero(RHS, HighMask)) {
6615     // The inputs are both zero-extended.
6616     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
6617       Result.push_back(Lo);
6618       Result.push_back(Hi);
6619       if (Opcode != ISD::MUL) {
6620         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6621         Result.push_back(Zero);
6622         Result.push_back(Zero);
6623       }
6624       return true;
6625     }
6626   }
6627 
6628   if (!VT.isVector() && Opcode == ISD::MUL &&
6629       DAG.ComputeNumSignBits(LHS) > InnerBitSize &&
6630       DAG.ComputeNumSignBits(RHS) > InnerBitSize) {
6631     // The input values are both sign-extended.
6632     // TODO non-MUL case?
6633     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
6634       Result.push_back(Lo);
6635       Result.push_back(Hi);
6636       return true;
6637     }
6638   }
6639 
6640   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
6641   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
6642   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
6643 
6644   if (!LH.getNode() && !RH.getNode() &&
6645       isOperationLegalOrCustom(ISD::SRL, VT) &&
6646       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
6647     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
6648     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
6649     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
6650     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
6651   }
6652 
6653   if (!LH.getNode())
6654     return false;
6655 
6656   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
6657     return false;
6658 
6659   Result.push_back(Lo);
6660 
6661   if (Opcode == ISD::MUL) {
6662     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
6663     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
6664     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
6665     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
6666     Result.push_back(Hi);
6667     return true;
6668   }
6669 
6670   // Compute the full width result.
6671   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
6672     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
6673     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6674     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
6675     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
6676   };
6677 
6678   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
6679   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
6680     return false;
6681 
6682   // This is effectively the add part of a multiply-add of half-sized operands,
6683   // so it cannot overflow.
6684   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6685 
6686   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
6687     return false;
6688 
6689   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
6690   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6691 
6692   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
6693                   isOperationLegalOrCustom(ISD::ADDE, VT));
6694   if (UseGlue)
6695     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
6696                        Merge(Lo, Hi));
6697   else
6698     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
6699                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
6700 
6701   SDValue Carry = Next.getValue(1);
6702   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6703   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6704 
6705   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
6706     return false;
6707 
6708   if (UseGlue)
6709     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
6710                      Carry);
6711   else
6712     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
6713                      Zero, Carry);
6714 
6715   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
6716 
6717   if (Opcode == ISD::SMUL_LOHI) {
6718     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6719                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
6720     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
6721 
6722     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
6723                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
6724     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
6725   }
6726 
6727   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6728   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
6729   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
6730   return true;
6731 }
6732 
6733 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
6734                                SelectionDAG &DAG, MulExpansionKind Kind,
6735                                SDValue LL, SDValue LH, SDValue RL,
6736                                SDValue RH) const {
6737   SmallVector<SDValue, 2> Result;
6738   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N),
6739                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
6740                            DAG, Kind, LL, LH, RL, RH);
6741   if (Ok) {
6742     assert(Result.size() == 2);
6743     Lo = Result[0];
6744     Hi = Result[1];
6745   }
6746   return Ok;
6747 }
6748 
6749 // Check that (every element of) Z is undef or not an exact multiple of BW.
6750 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) {
6751   return ISD::matchUnaryPredicate(
6752       Z,
6753       [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; },
6754       true);
6755 }
6756 
6757 SDValue TargetLowering::expandFunnelShift(SDNode *Node,
6758                                           SelectionDAG &DAG) const {
6759   EVT VT = Node->getValueType(0);
6760 
6761   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6762                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6763                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6764                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6765     return SDValue();
6766 
6767   SDValue X = Node->getOperand(0);
6768   SDValue Y = Node->getOperand(1);
6769   SDValue Z = Node->getOperand(2);
6770 
6771   unsigned BW = VT.getScalarSizeInBits();
6772   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6773   SDLoc DL(SDValue(Node, 0));
6774 
6775   EVT ShVT = Z.getValueType();
6776 
6777   // If a funnel shift in the other direction is more supported, use it.
6778   unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL;
6779   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6780       isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) {
6781     if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6782       // fshl X, Y, Z -> fshr X, Y, -Z
6783       // fshr X, Y, Z -> fshl X, Y, -Z
6784       SDValue Zero = DAG.getConstant(0, DL, ShVT);
6785       Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z);
6786     } else {
6787       // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z
6788       // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z
6789       SDValue One = DAG.getConstant(1, DL, ShVT);
6790       if (IsFSHL) {
6791         Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6792         X = DAG.getNode(ISD::SRL, DL, VT, X, One);
6793       } else {
6794         X = DAG.getNode(RevOpcode, DL, VT, X, Y, One);
6795         Y = DAG.getNode(ISD::SHL, DL, VT, Y, One);
6796       }
6797       Z = DAG.getNOT(DL, Z, ShVT);
6798     }
6799     return DAG.getNode(RevOpcode, DL, VT, X, Y, Z);
6800   }
6801 
6802   SDValue ShX, ShY;
6803   SDValue ShAmt, InvShAmt;
6804   if (isNonZeroModBitWidthOrUndef(Z, BW)) {
6805     // fshl: X << C | Y >> (BW - C)
6806     // fshr: X << (BW - C) | Y >> C
6807     // where C = Z % BW is not zero
6808     SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6809     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6810     InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
6811     ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
6812     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6813   } else {
6814     // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6815     // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6816     SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT);
6817     if (isPowerOf2_32(BW)) {
6818       // Z % BW -> Z & (BW - 1)
6819       ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6820       // (BW - 1) - (Z % BW) -> ~Z & (BW - 1)
6821       InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask);
6822     } else {
6823       SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT);
6824       ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6825       InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6826     }
6827 
6828     SDValue One = DAG.getConstant(1, DL, ShVT);
6829     if (IsFSHL) {
6830       ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6831       SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6832       ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6833     } else {
6834       SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6835       ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6836       ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6837     }
6838   }
6839   return DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6840 }
6841 
6842 // TODO: Merge with expandFunnelShift.
6843 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps,
6844                                   SelectionDAG &DAG) const {
6845   EVT VT = Node->getValueType(0);
6846   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6847   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6848   SDValue Op0 = Node->getOperand(0);
6849   SDValue Op1 = Node->getOperand(1);
6850   SDLoc DL(SDValue(Node, 0));
6851 
6852   EVT ShVT = Op1.getValueType();
6853   SDValue Zero = DAG.getConstant(0, DL, ShVT);
6854 
6855   // If a rotate in the other direction is more supported, use it.
6856   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6857   if (!isOperationLegalOrCustom(Node->getOpcode(), VT) &&
6858       isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) {
6859     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6860     return DAG.getNode(RevRot, DL, VT, Op0, Sub);
6861   }
6862 
6863   if (!AllowVectorOps && VT.isVector() &&
6864       (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6865        !isOperationLegalOrCustom(ISD::SRL, VT) ||
6866        !isOperationLegalOrCustom(ISD::SUB, VT) ||
6867        !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6868        !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6869     return SDValue();
6870 
6871   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6872   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6873   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6874   SDValue ShVal;
6875   SDValue HsVal;
6876   if (isPowerOf2_32(EltSizeInBits)) {
6877     // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1))
6878     // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1))
6879     SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1);
6880     SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6881     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6882     SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6883     HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt);
6884   } else {
6885     // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w))
6886     // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w))
6887     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6888     SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC);
6889     ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt);
6890     SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt);
6891     SDValue One = DAG.getConstant(1, DL, ShVT);
6892     HsVal =
6893         DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt);
6894   }
6895   return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal);
6896 }
6897 
6898 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi,
6899                                       SelectionDAG &DAG) const {
6900   assert(Node->getNumOperands() == 3 && "Not a double-shift!");
6901   EVT VT = Node->getValueType(0);
6902   unsigned VTBits = VT.getScalarSizeInBits();
6903   assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected");
6904 
6905   bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS;
6906   bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS;
6907   SDValue ShOpLo = Node->getOperand(0);
6908   SDValue ShOpHi = Node->getOperand(1);
6909   SDValue ShAmt = Node->getOperand(2);
6910   EVT ShAmtVT = ShAmt.getValueType();
6911   EVT ShAmtCCVT =
6912       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT);
6913   SDLoc dl(Node);
6914 
6915   // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and
6916   // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized
6917   // away during isel.
6918   SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6919                                   DAG.getConstant(VTBits - 1, dl, ShAmtVT));
6920   SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
6921                                      DAG.getConstant(VTBits - 1, dl, ShAmtVT))
6922                        : DAG.getConstant(0, dl, VT);
6923 
6924   SDValue Tmp2, Tmp3;
6925   if (IsSHL) {
6926     Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt);
6927     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
6928   } else {
6929     Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt);
6930     Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
6931   }
6932 
6933   // If the shift amount is larger or equal than the width of a part we don't
6934   // use the result from the FSHL/FSHR. Insert a test and select the appropriate
6935   // values for large shift amounts.
6936   SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt,
6937                                 DAG.getConstant(VTBits, dl, ShAmtVT));
6938   SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode,
6939                               DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE);
6940 
6941   if (IsSHL) {
6942     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6943     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6944   } else {
6945     Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2);
6946     Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3);
6947   }
6948 }
6949 
6950 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6951                                       SelectionDAG &DAG) const {
6952   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6953   SDValue Src = Node->getOperand(OpNo);
6954   EVT SrcVT = Src.getValueType();
6955   EVT DstVT = Node->getValueType(0);
6956   SDLoc dl(SDValue(Node, 0));
6957 
6958   // FIXME: Only f32 to i64 conversions are supported.
6959   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6960     return false;
6961 
6962   if (Node->isStrictFPOpcode())
6963     // When a NaN is converted to an integer a trap is allowed. We can't
6964     // use this expansion here because it would eliminate that trap. Other
6965     // traps are also allowed and cannot be eliminated. See
6966     // IEEE 754-2008 sec 5.8.
6967     return false;
6968 
6969   // Expand f32 -> i64 conversion
6970   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6971   // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c
6972   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6973   EVT IntVT = SrcVT.changeTypeToInteger();
6974   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6975 
6976   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6977   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6978   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6979   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6980   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6981   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6982 
6983   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6984 
6985   SDValue ExponentBits = DAG.getNode(
6986       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6987       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6988   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6989 
6990   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6991                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6992                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6993   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6994 
6995   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6996                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6997                           DAG.getConstant(0x00800000, dl, IntVT));
6998 
6999   R = DAG.getZExtOrTrunc(R, dl, DstVT);
7000 
7001   R = DAG.getSelectCC(
7002       dl, Exponent, ExponentLoBit,
7003       DAG.getNode(ISD::SHL, dl, DstVT, R,
7004                   DAG.getZExtOrTrunc(
7005                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
7006                       dl, IntShVT)),
7007       DAG.getNode(ISD::SRL, dl, DstVT, R,
7008                   DAG.getZExtOrTrunc(
7009                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
7010                       dl, IntShVT)),
7011       ISD::SETGT);
7012 
7013   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
7014                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
7015 
7016   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
7017                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
7018   return true;
7019 }
7020 
7021 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
7022                                       SDValue &Chain,
7023                                       SelectionDAG &DAG) const {
7024   SDLoc dl(SDValue(Node, 0));
7025   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
7026   SDValue Src = Node->getOperand(OpNo);
7027 
7028   EVT SrcVT = Src.getValueType();
7029   EVT DstVT = Node->getValueType(0);
7030   EVT SetCCVT =
7031       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
7032   EVT DstSetCCVT =
7033       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
7034 
7035   // Only expand vector types if we have the appropriate vector bit operations.
7036   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
7037                                                    ISD::FP_TO_SINT;
7038   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
7039                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
7040     return false;
7041 
7042   // If the maximum float value is smaller then the signed integer range,
7043   // the destination signmask can't be represented by the float, so we can
7044   // just use FP_TO_SINT directly.
7045   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
7046   APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits()));
7047   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
7048   if (APFloat::opOverflow &
7049       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
7050     if (Node->isStrictFPOpcode()) {
7051       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7052                            { Node->getOperand(0), Src });
7053       Chain = Result.getValue(1);
7054     } else
7055       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7056     return true;
7057   }
7058 
7059   // Don't expand it if there isn't cheap fsub instruction.
7060   if (!isOperationLegalOrCustom(
7061           Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT))
7062     return false;
7063 
7064   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
7065   SDValue Sel;
7066 
7067   if (Node->isStrictFPOpcode()) {
7068     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
7069                        Node->getOperand(0), /*IsSignaling*/ true);
7070     Chain = Sel.getValue(1);
7071   } else {
7072     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
7073   }
7074 
7075   bool Strict = Node->isStrictFPOpcode() ||
7076                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
7077 
7078   if (Strict) {
7079     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
7080     // signmask then offset (the result of which should be fully representable).
7081     // Sel = Src < 0x8000000000000000
7082     // FltOfs = select Sel, 0, 0x8000000000000000
7083     // IntOfs = select Sel, 0, 0x8000000000000000
7084     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
7085 
7086     // TODO: Should any fast-math-flags be set for the FSUB?
7087     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
7088                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
7089     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7090     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
7091                                    DAG.getConstant(0, dl, DstVT),
7092                                    DAG.getConstant(SignMask, dl, DstVT));
7093     SDValue SInt;
7094     if (Node->isStrictFPOpcode()) {
7095       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
7096                                 { Chain, Src, FltOfs });
7097       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
7098                          { Val.getValue(1), Val });
7099       Chain = SInt.getValue(1);
7100     } else {
7101       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
7102       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
7103     }
7104     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
7105   } else {
7106     // Expand based on maximum range of FP_TO_SINT:
7107     // True = fp_to_sint(Src)
7108     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
7109     // Result = select (Src < 0x8000000000000000), True, False
7110 
7111     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
7112     // TODO: Should any fast-math-flags be set for the FSUB?
7113     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
7114                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
7115     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
7116                         DAG.getConstant(SignMask, dl, DstVT));
7117     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
7118     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
7119   }
7120   return true;
7121 }
7122 
7123 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
7124                                       SDValue &Chain,
7125                                       SelectionDAG &DAG) const {
7126   // This transform is not correct for converting 0 when rounding mode is set
7127   // to round toward negative infinity which will produce -0.0. So disable under
7128   // strictfp.
7129   if (Node->isStrictFPOpcode())
7130     return false;
7131 
7132   SDValue Src = Node->getOperand(0);
7133   EVT SrcVT = Src.getValueType();
7134   EVT DstVT = Node->getValueType(0);
7135 
7136   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
7137     return false;
7138 
7139   // Only expand vector types if we have the appropriate vector bit operations.
7140   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
7141                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
7142                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
7143                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
7144                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
7145     return false;
7146 
7147   SDLoc dl(SDValue(Node, 0));
7148   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
7149 
7150   // Implementation of unsigned i64 to f64 following the algorithm in
7151   // __floatundidf in compiler_rt.  This implementation performs rounding
7152   // correctly in all rounding modes with the exception of converting 0
7153   // when rounding toward negative infinity. In that case the fsub will produce
7154   // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect.
7155   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
7156   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
7157       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
7158   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
7159   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
7160   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
7161 
7162   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
7163   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
7164   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
7165   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
7166   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
7167   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
7168   SDValue HiSub =
7169       DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
7170   Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
7171   return true;
7172 }
7173 
7174 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
7175                                               SelectionDAG &DAG) const {
7176   SDLoc dl(Node);
7177   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
7178     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
7179   EVT VT = Node->getValueType(0);
7180 
7181   if (VT.isScalableVector())
7182     report_fatal_error(
7183         "Expanding fminnum/fmaxnum for scalable vectors is undefined.");
7184 
7185   if (isOperationLegalOrCustom(NewOp, VT)) {
7186     SDValue Quiet0 = Node->getOperand(0);
7187     SDValue Quiet1 = Node->getOperand(1);
7188 
7189     if (!Node->getFlags().hasNoNaNs()) {
7190       // Insert canonicalizes if it's possible we need to quiet to get correct
7191       // sNaN behavior.
7192       if (!DAG.isKnownNeverSNaN(Quiet0)) {
7193         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
7194                              Node->getFlags());
7195       }
7196       if (!DAG.isKnownNeverSNaN(Quiet1)) {
7197         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
7198                              Node->getFlags());
7199       }
7200     }
7201 
7202     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
7203   }
7204 
7205   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
7206   // instead if there are no NaNs.
7207   if (Node->getFlags().hasNoNaNs()) {
7208     unsigned IEEE2018Op =
7209         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
7210     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
7211       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
7212                          Node->getOperand(1), Node->getFlags());
7213     }
7214   }
7215 
7216   // If none of the above worked, but there are no NaNs, then expand to
7217   // a compare/select sequence.  This is required for correctness since
7218   // InstCombine might have canonicalized a fcmp+select sequence to a
7219   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
7220   // expansion to libcall, we might introduce a link-time dependency
7221   // on libm into a file that originally did not have one.
7222   if (Node->getFlags().hasNoNaNs()) {
7223     ISD::CondCode Pred =
7224         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
7225     SDValue Op1 = Node->getOperand(0);
7226     SDValue Op2 = Node->getOperand(1);
7227     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
7228     // Copy FMF flags, but always set the no-signed-zeros flag
7229     // as this is implied by the FMINNUM/FMAXNUM semantics.
7230     SDNodeFlags Flags = Node->getFlags();
7231     Flags.setNoSignedZeros(true);
7232     SelCC->setFlags(Flags);
7233     return SelCC;
7234   }
7235 
7236   return SDValue();
7237 }
7238 
7239 // Only expand vector types if we have the appropriate vector bit operations.
7240 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) {
7241   assert(VT.isVector() && "Expected vector type");
7242   unsigned Len = VT.getScalarSizeInBits();
7243   return TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
7244          TLI.isOperationLegalOrCustom(ISD::SUB, VT) &&
7245          TLI.isOperationLegalOrCustom(ISD::SRL, VT) &&
7246          (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) &&
7247          TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT);
7248 }
7249 
7250 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const {
7251   SDLoc dl(Node);
7252   EVT VT = Node->getValueType(0);
7253   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7254   SDValue Op = Node->getOperand(0);
7255   unsigned Len = VT.getScalarSizeInBits();
7256   assert(VT.isInteger() && "CTPOP not implemented for this type.");
7257 
7258   // TODO: Add support for irregular type lengths.
7259   if (!(Len <= 128 && Len % 8 == 0))
7260     return SDValue();
7261 
7262   // Only expand vector types if we have the appropriate vector bit operations.
7263   if (VT.isVector() && !canExpandVectorCTPOP(*this, VT))
7264     return SDValue();
7265 
7266   // This is the "best" algorithm from
7267   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
7268   SDValue Mask55 =
7269       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
7270   SDValue Mask33 =
7271       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
7272   SDValue Mask0F =
7273       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
7274   SDValue Mask01 =
7275       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
7276 
7277   // v = v - ((v >> 1) & 0x55555555...)
7278   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
7279                    DAG.getNode(ISD::AND, dl, VT,
7280                                DAG.getNode(ISD::SRL, dl, VT, Op,
7281                                            DAG.getConstant(1, dl, ShVT)),
7282                                Mask55));
7283   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
7284   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
7285                    DAG.getNode(ISD::AND, dl, VT,
7286                                DAG.getNode(ISD::SRL, dl, VT, Op,
7287                                            DAG.getConstant(2, dl, ShVT)),
7288                                Mask33));
7289   // v = (v + (v >> 4)) & 0x0F0F0F0F...
7290   Op = DAG.getNode(ISD::AND, dl, VT,
7291                    DAG.getNode(ISD::ADD, dl, VT, Op,
7292                                DAG.getNode(ISD::SRL, dl, VT, Op,
7293                                            DAG.getConstant(4, dl, ShVT))),
7294                    Mask0F);
7295   // v = (v * 0x01010101...) >> (Len - 8)
7296   if (Len > 8)
7297     Op =
7298         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
7299                     DAG.getConstant(Len - 8, dl, ShVT));
7300 
7301   return Op;
7302 }
7303 
7304 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const {
7305   SDLoc dl(Node);
7306   EVT VT = Node->getValueType(0);
7307   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7308   SDValue Op = Node->getOperand(0);
7309   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7310 
7311   // If the non-ZERO_UNDEF version is supported we can use that instead.
7312   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
7313       isOperationLegalOrCustom(ISD::CTLZ, VT))
7314     return DAG.getNode(ISD::CTLZ, dl, VT, Op);
7315 
7316   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7317   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
7318     EVT SetCCVT =
7319         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7320     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
7321     SDValue Zero = DAG.getConstant(0, dl, VT);
7322     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7323     return DAG.getSelect(dl, VT, SrcIsZero,
7324                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
7325   }
7326 
7327   // Only expand vector types if we have the appropriate vector bit operations.
7328   // This includes the operations needed to expand CTPOP if it isn't supported.
7329   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7330                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7331                          !canExpandVectorCTPOP(*this, VT)) ||
7332                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
7333                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
7334     return SDValue();
7335 
7336   // for now, we do this:
7337   // x = x | (x >> 1);
7338   // x = x | (x >> 2);
7339   // ...
7340   // x = x | (x >>16);
7341   // x = x | (x >>32); // for 64-bit input
7342   // return popcount(~x);
7343   //
7344   // Ref: "Hacker's Delight" by Henry Warren
7345   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
7346     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
7347     Op = DAG.getNode(ISD::OR, dl, VT, Op,
7348                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
7349   }
7350   Op = DAG.getNOT(dl, Op, VT);
7351   return DAG.getNode(ISD::CTPOP, dl, VT, Op);
7352 }
7353 
7354 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const {
7355   SDLoc dl(Node);
7356   EVT VT = Node->getValueType(0);
7357   SDValue Op = Node->getOperand(0);
7358   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
7359 
7360   // If the non-ZERO_UNDEF version is supported we can use that instead.
7361   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
7362       isOperationLegalOrCustom(ISD::CTTZ, VT))
7363     return DAG.getNode(ISD::CTTZ, dl, VT, Op);
7364 
7365   // If the ZERO_UNDEF version is supported use that and handle the zero case.
7366   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
7367     EVT SetCCVT =
7368         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7369     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
7370     SDValue Zero = DAG.getConstant(0, dl, VT);
7371     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
7372     return DAG.getSelect(dl, VT, SrcIsZero,
7373                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
7374   }
7375 
7376   // Only expand vector types if we have the appropriate vector bit operations.
7377   // This includes the operations needed to expand CTPOP if it isn't supported.
7378   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
7379                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
7380                          !isOperationLegalOrCustom(ISD::CTLZ, VT) &&
7381                          !canExpandVectorCTPOP(*this, VT)) ||
7382                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
7383                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
7384                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7385     return SDValue();
7386 
7387   // for now, we use: { return popcount(~x & (x - 1)); }
7388   // unless the target has ctlz but not ctpop, in which case we use:
7389   // { return 32 - nlz(~x & (x-1)); }
7390   // Ref: "Hacker's Delight" by Henry Warren
7391   SDValue Tmp = DAG.getNode(
7392       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
7393       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
7394 
7395   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
7396   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
7397     return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
7398                        DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
7399   }
7400 
7401   return DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
7402 }
7403 
7404 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG,
7405                                   bool IsNegative) const {
7406   SDLoc dl(N);
7407   EVT VT = N->getValueType(0);
7408   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
7409   SDValue Op = N->getOperand(0);
7410 
7411   // abs(x) -> smax(x,sub(0,x))
7412   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7413       isOperationLegal(ISD::SMAX, VT)) {
7414     SDValue Zero = DAG.getConstant(0, dl, VT);
7415     return DAG.getNode(ISD::SMAX, dl, VT, Op,
7416                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7417   }
7418 
7419   // abs(x) -> umin(x,sub(0,x))
7420   if (!IsNegative && isOperationLegal(ISD::SUB, VT) &&
7421       isOperationLegal(ISD::UMIN, VT)) {
7422     SDValue Zero = DAG.getConstant(0, dl, VT);
7423     return DAG.getNode(ISD::UMIN, dl, VT, Op,
7424                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7425   }
7426 
7427   // 0 - abs(x) -> smin(x, sub(0,x))
7428   if (IsNegative && isOperationLegal(ISD::SUB, VT) &&
7429       isOperationLegal(ISD::SMIN, VT)) {
7430     SDValue Zero = DAG.getConstant(0, dl, VT);
7431     return DAG.getNode(ISD::SMIN, dl, VT, Op,
7432                        DAG.getNode(ISD::SUB, dl, VT, Zero, Op));
7433   }
7434 
7435   // Only expand vector types if we have the appropriate vector operations.
7436   if (VT.isVector() &&
7437       (!isOperationLegalOrCustom(ISD::SRA, VT) ||
7438        (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) ||
7439        (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) ||
7440        !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
7441     return SDValue();
7442 
7443   SDValue Shift =
7444       DAG.getNode(ISD::SRA, dl, VT, Op,
7445                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
7446   SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift);
7447 
7448   // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y)
7449   if (!IsNegative)
7450     return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift);
7451 
7452   // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y))
7453   return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor);
7454 }
7455 
7456 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const {
7457   SDLoc dl(N);
7458   EVT VT = N->getValueType(0);
7459   SDValue Op = N->getOperand(0);
7460 
7461   if (!VT.isSimple())
7462     return SDValue();
7463 
7464   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7465   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
7466   switch (VT.getSimpleVT().getScalarType().SimpleTy) {
7467   default:
7468     return SDValue();
7469   case MVT::i16:
7470     // Use a rotate by 8. This can be further expanded if necessary.
7471     return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7472   case MVT::i32:
7473     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7474     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7475     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7476     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7477     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7478                        DAG.getConstant(0xFF0000, dl, VT));
7479     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT));
7480     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7481     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7482     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7483   case MVT::i64:
7484     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7485     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7486     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7487     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7488     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT));
7489     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT));
7490     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT));
7491     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT));
7492     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7,
7493                        DAG.getConstant(255ULL<<48, dl, VT));
7494     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6,
7495                        DAG.getConstant(255ULL<<40, dl, VT));
7496     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5,
7497                        DAG.getConstant(255ULL<<32, dl, VT));
7498     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4,
7499                        DAG.getConstant(255ULL<<24, dl, VT));
7500     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3,
7501                        DAG.getConstant(255ULL<<16, dl, VT));
7502     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2,
7503                        DAG.getConstant(255ULL<<8 , dl, VT));
7504     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
7505     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
7506     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
7507     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
7508     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
7509     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
7510     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
7511   }
7512 }
7513 
7514 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const {
7515   SDLoc dl(N);
7516   EVT VT = N->getValueType(0);
7517   SDValue Op = N->getOperand(0);
7518   EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout());
7519   unsigned Sz = VT.getScalarSizeInBits();
7520 
7521   SDValue Tmp, Tmp2, Tmp3;
7522 
7523   // If we can, perform BSWAP first and then the mask+swap the i4, then i2
7524   // and finally the i1 pairs.
7525   // TODO: We can easily support i4/i2 legal types if any target ever does.
7526   if (Sz >= 8 && isPowerOf2_32(Sz)) {
7527     // Create the masks - repeating the pattern every byte.
7528     APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F));
7529     APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33));
7530     APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55));
7531 
7532     // BSWAP if the type is wider than a single byte.
7533     Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op);
7534 
7535     // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4)
7536     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT));
7537     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT));
7538     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT));
7539     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT));
7540     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7541 
7542     // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2)
7543     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT));
7544     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT));
7545     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT));
7546     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT));
7547     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7548 
7549     // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1)
7550     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT));
7551     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT));
7552     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT));
7553     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT));
7554     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
7555     return Tmp;
7556   }
7557 
7558   Tmp = DAG.getConstant(0, dl, VT);
7559   for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) {
7560     if (I < J)
7561       Tmp2 =
7562           DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT));
7563     else
7564       Tmp2 =
7565           DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT));
7566 
7567     APInt Shift(Sz, 1);
7568     Shift <<= J;
7569     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT));
7570     Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2);
7571   }
7572 
7573   return Tmp;
7574 }
7575 
7576 std::pair<SDValue, SDValue>
7577 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
7578                                     SelectionDAG &DAG) const {
7579   SDLoc SL(LD);
7580   SDValue Chain = LD->getChain();
7581   SDValue BasePTR = LD->getBasePtr();
7582   EVT SrcVT = LD->getMemoryVT();
7583   EVT DstVT = LD->getValueType(0);
7584   ISD::LoadExtType ExtType = LD->getExtensionType();
7585 
7586   if (SrcVT.isScalableVector())
7587     report_fatal_error("Cannot scalarize scalable vector loads");
7588 
7589   unsigned NumElem = SrcVT.getVectorNumElements();
7590 
7591   EVT SrcEltVT = SrcVT.getScalarType();
7592   EVT DstEltVT = DstVT.getScalarType();
7593 
7594   // A vector must always be stored in memory as-is, i.e. without any padding
7595   // between the elements, since various code depend on it, e.g. in the
7596   // handling of a bitcast of a vector type to int, which may be done with a
7597   // vector store followed by an integer load. A vector that does not have
7598   // elements that are byte-sized must therefore be stored as an integer
7599   // built out of the extracted vector elements.
7600   if (!SrcEltVT.isByteSized()) {
7601     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
7602     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
7603 
7604     unsigned NumSrcBits = SrcVT.getSizeInBits();
7605     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
7606 
7607     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
7608     SDValue SrcEltBitMask = DAG.getConstant(
7609         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
7610 
7611     // Load the whole vector and avoid masking off the top bits as it makes
7612     // the codegen worse.
7613     SDValue Load =
7614         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
7615                        LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(),
7616                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7617 
7618     SmallVector<SDValue, 8> Vals;
7619     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7620       unsigned ShiftIntoIdx =
7621           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7622       SDValue ShiftAmount =
7623           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
7624                                      LoadVT, SL, /*LegalTypes=*/false);
7625       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
7626       SDValue Elt =
7627           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
7628       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
7629 
7630       if (ExtType != ISD::NON_EXTLOAD) {
7631         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
7632         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
7633       }
7634 
7635       Vals.push_back(Scalar);
7636     }
7637 
7638     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7639     return std::make_pair(Value, Load.getValue(1));
7640   }
7641 
7642   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
7643   assert(SrcEltVT.isByteSized());
7644 
7645   SmallVector<SDValue, 8> Vals;
7646   SmallVector<SDValue, 8> LoadChains;
7647 
7648   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7649     SDValue ScalarLoad =
7650         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
7651                        LD->getPointerInfo().getWithOffset(Idx * Stride),
7652                        SrcEltVT, LD->getOriginalAlign(),
7653                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
7654 
7655     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride));
7656 
7657     Vals.push_back(ScalarLoad.getValue(0));
7658     LoadChains.push_back(ScalarLoad.getValue(1));
7659   }
7660 
7661   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
7662   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
7663 
7664   return std::make_pair(Value, NewChain);
7665 }
7666 
7667 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
7668                                              SelectionDAG &DAG) const {
7669   SDLoc SL(ST);
7670 
7671   SDValue Chain = ST->getChain();
7672   SDValue BasePtr = ST->getBasePtr();
7673   SDValue Value = ST->getValue();
7674   EVT StVT = ST->getMemoryVT();
7675 
7676   if (StVT.isScalableVector())
7677     report_fatal_error("Cannot scalarize scalable vector stores");
7678 
7679   // The type of the data we want to save
7680   EVT RegVT = Value.getValueType();
7681   EVT RegSclVT = RegVT.getScalarType();
7682 
7683   // The type of data as saved in memory.
7684   EVT MemSclVT = StVT.getScalarType();
7685 
7686   unsigned NumElem = StVT.getVectorNumElements();
7687 
7688   // A vector must always be stored in memory as-is, i.e. without any padding
7689   // between the elements, since various code depend on it, e.g. in the
7690   // handling of a bitcast of a vector type to int, which may be done with a
7691   // vector store followed by an integer load. A vector that does not have
7692   // elements that are byte-sized must therefore be stored as an integer
7693   // built out of the extracted vector elements.
7694   if (!MemSclVT.isByteSized()) {
7695     unsigned NumBits = StVT.getSizeInBits();
7696     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
7697 
7698     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
7699 
7700     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7701       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7702                                 DAG.getVectorIdxConstant(Idx, SL));
7703       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
7704       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
7705       unsigned ShiftIntoIdx =
7706           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
7707       SDValue ShiftAmount =
7708           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
7709       SDValue ShiftedElt =
7710           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
7711       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
7712     }
7713 
7714     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
7715                         ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7716                         ST->getAAInfo());
7717   }
7718 
7719   // Store Stride in bytes
7720   unsigned Stride = MemSclVT.getSizeInBits() / 8;
7721   assert(Stride && "Zero stride!");
7722   // Extract each of the elements from the original vector and save them into
7723   // memory individually.
7724   SmallVector<SDValue, 8> Stores;
7725   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
7726     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
7727                               DAG.getVectorIdxConstant(Idx, SL));
7728 
7729     SDValue Ptr =
7730         DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride));
7731 
7732     // This scalar TruncStore may be illegal, but we legalize it later.
7733     SDValue Store = DAG.getTruncStore(
7734         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
7735         MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(),
7736         ST->getAAInfo());
7737 
7738     Stores.push_back(Store);
7739   }
7740 
7741   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
7742 }
7743 
7744 std::pair<SDValue, SDValue>
7745 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
7746   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
7747          "unaligned indexed loads not implemented!");
7748   SDValue Chain = LD->getChain();
7749   SDValue Ptr = LD->getBasePtr();
7750   EVT VT = LD->getValueType(0);
7751   EVT LoadedVT = LD->getMemoryVT();
7752   SDLoc dl(LD);
7753   auto &MF = DAG.getMachineFunction();
7754 
7755   if (VT.isFloatingPoint() || VT.isVector()) {
7756     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
7757     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
7758       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
7759           LoadedVT.isVector()) {
7760         // Scalarize the load and let the individual components be handled.
7761         return scalarizeVectorLoad(LD, DAG);
7762       }
7763 
7764       // Expand to a (misaligned) integer load of the same size,
7765       // then bitconvert to floating point or vector.
7766       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
7767                                     LD->getMemOperand());
7768       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
7769       if (LoadedVT != VT)
7770         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
7771                              ISD::ANY_EXTEND, dl, VT, Result);
7772 
7773       return std::make_pair(Result, newLoad.getValue(1));
7774     }
7775 
7776     // Copy the value to a (aligned) stack slot using (unaligned) integer
7777     // loads and stores, then do a (aligned) load from the stack slot.
7778     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
7779     unsigned LoadedBytes = LoadedVT.getStoreSize();
7780     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7781     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
7782 
7783     // Make sure the stack slot is also aligned for the register type.
7784     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
7785     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
7786     SmallVector<SDValue, 8> Stores;
7787     SDValue StackPtr = StackBase;
7788     unsigned Offset = 0;
7789 
7790     EVT PtrVT = Ptr.getValueType();
7791     EVT StackPtrVT = StackPtr.getValueType();
7792 
7793     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7794     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7795 
7796     // Do all but one copies using the full register width.
7797     for (unsigned i = 1; i < NumRegs; i++) {
7798       // Load one integer register's worth from the original location.
7799       SDValue Load = DAG.getLoad(
7800           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
7801           LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7802           LD->getAAInfo());
7803       // Follow the load with a store to the stack slot.  Remember the store.
7804       Stores.push_back(DAG.getStore(
7805           Load.getValue(1), dl, Load, StackPtr,
7806           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
7807       // Increment the pointers.
7808       Offset += RegBytes;
7809 
7810       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7811       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7812     }
7813 
7814     // The last copy may be partial.  Do an extending load.
7815     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
7816                                   8 * (LoadedBytes - Offset));
7817     SDValue Load =
7818         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
7819                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
7820                        LD->getOriginalAlign(), LD->getMemOperand()->getFlags(),
7821                        LD->getAAInfo());
7822     // Follow the load with a store to the stack slot.  Remember the store.
7823     // On big-endian machines this requires a truncating store to ensure
7824     // that the bits end up in the right place.
7825     Stores.push_back(DAG.getTruncStore(
7826         Load.getValue(1), dl, Load, StackPtr,
7827         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
7828 
7829     // The order of the stores doesn't matter - say it with a TokenFactor.
7830     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7831 
7832     // Finally, perform the original load only redirected to the stack slot.
7833     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
7834                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
7835                           LoadedVT);
7836 
7837     // Callers expect a MERGE_VALUES node.
7838     return std::make_pair(Load, TF);
7839   }
7840 
7841   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
7842          "Unaligned load of unsupported type.");
7843 
7844   // Compute the new VT that is half the size of the old one.  This is an
7845   // integer MVT.
7846   unsigned NumBits = LoadedVT.getSizeInBits();
7847   EVT NewLoadedVT;
7848   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
7849   NumBits >>= 1;
7850 
7851   Align Alignment = LD->getOriginalAlign();
7852   unsigned IncrementSize = NumBits / 8;
7853   ISD::LoadExtType HiExtType = LD->getExtensionType();
7854 
7855   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
7856   if (HiExtType == ISD::NON_EXTLOAD)
7857     HiExtType = ISD::ZEXTLOAD;
7858 
7859   // Load the value in two parts
7860   SDValue Lo, Hi;
7861   if (DAG.getDataLayout().isLittleEndian()) {
7862     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7863                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7864                         LD->getAAInfo());
7865 
7866     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7867     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
7868                         LD->getPointerInfo().getWithOffset(IncrementSize),
7869                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7870                         LD->getAAInfo());
7871   } else {
7872     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
7873                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7874                         LD->getAAInfo());
7875 
7876     Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
7877     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
7878                         LD->getPointerInfo().getWithOffset(IncrementSize),
7879                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
7880                         LD->getAAInfo());
7881   }
7882 
7883   // aggregate the two parts
7884   SDValue ShiftAmount =
7885       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
7886                                                     DAG.getDataLayout()));
7887   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
7888   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
7889 
7890   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
7891                              Hi.getValue(1));
7892 
7893   return std::make_pair(Result, TF);
7894 }
7895 
7896 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
7897                                              SelectionDAG &DAG) const {
7898   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
7899          "unaligned indexed stores not implemented!");
7900   SDValue Chain = ST->getChain();
7901   SDValue Ptr = ST->getBasePtr();
7902   SDValue Val = ST->getValue();
7903   EVT VT = Val.getValueType();
7904   Align Alignment = ST->getOriginalAlign();
7905   auto &MF = DAG.getMachineFunction();
7906   EVT StoreMemVT = ST->getMemoryVT();
7907 
7908   SDLoc dl(ST);
7909   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
7910     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
7911     if (isTypeLegal(intVT)) {
7912       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
7913           StoreMemVT.isVector()) {
7914         // Scalarize the store and let the individual components be handled.
7915         SDValue Result = scalarizeVectorStore(ST, DAG);
7916         return Result;
7917       }
7918       // Expand to a bitconvert of the value to the integer type of the
7919       // same size, then a (misaligned) int store.
7920       // FIXME: Does not handle truncating floating point stores!
7921       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
7922       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
7923                             Alignment, ST->getMemOperand()->getFlags());
7924       return Result;
7925     }
7926     // Do a (aligned) store to a stack slot, then copy from the stack slot
7927     // to the final destination using (unaligned) integer loads and stores.
7928     MVT RegVT = getRegisterType(
7929         *DAG.getContext(),
7930         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
7931     EVT PtrVT = Ptr.getValueType();
7932     unsigned StoredBytes = StoreMemVT.getStoreSize();
7933     unsigned RegBytes = RegVT.getSizeInBits() / 8;
7934     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
7935 
7936     // Make sure the stack slot is also aligned for the register type.
7937     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
7938     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
7939 
7940     // Perform the original store, only redirected to the stack slot.
7941     SDValue Store = DAG.getTruncStore(
7942         Chain, dl, Val, StackPtr,
7943         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
7944 
7945     EVT StackPtrVT = StackPtr.getValueType();
7946 
7947     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
7948     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
7949     SmallVector<SDValue, 8> Stores;
7950     unsigned Offset = 0;
7951 
7952     // Do all but one copies using the full register width.
7953     for (unsigned i = 1; i < NumRegs; i++) {
7954       // Load one integer register's worth from the stack slot.
7955       SDValue Load = DAG.getLoad(
7956           RegVT, dl, Store, StackPtr,
7957           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
7958       // Store it to the final location.  Remember the store.
7959       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
7960                                     ST->getPointerInfo().getWithOffset(Offset),
7961                                     ST->getOriginalAlign(),
7962                                     ST->getMemOperand()->getFlags()));
7963       // Increment the pointers.
7964       Offset += RegBytes;
7965       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
7966       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
7967     }
7968 
7969     // The last store may be partial.  Do a truncating store.  On big-endian
7970     // machines this requires an extending load from the stack slot to ensure
7971     // that the bits are in the right place.
7972     EVT LoadMemVT =
7973         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
7974 
7975     // Load from the stack slot.
7976     SDValue Load = DAG.getExtLoad(
7977         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
7978         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
7979 
7980     Stores.push_back(
7981         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
7982                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
7983                           ST->getOriginalAlign(),
7984                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
7985     // The order of the stores doesn't matter - say it with a TokenFactor.
7986     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
7987     return Result;
7988   }
7989 
7990   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
7991          "Unaligned store of unknown type.");
7992   // Get the half-size VT
7993   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
7994   unsigned NumBits = NewStoredVT.getFixedSizeInBits();
7995   unsigned IncrementSize = NumBits / 8;
7996 
7997   // Divide the stored value in two parts.
7998   SDValue ShiftAmount = DAG.getConstant(
7999       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
8000   SDValue Lo = Val;
8001   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
8002 
8003   // Store the two parts
8004   SDValue Store1, Store2;
8005   Store1 = DAG.getTruncStore(Chain, dl,
8006                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
8007                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
8008                              ST->getMemOperand()->getFlags());
8009 
8010   Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize));
8011   Store2 = DAG.getTruncStore(
8012       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
8013       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
8014       ST->getMemOperand()->getFlags(), ST->getAAInfo());
8015 
8016   SDValue Result =
8017       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
8018   return Result;
8019 }
8020 
8021 SDValue
8022 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
8023                                        const SDLoc &DL, EVT DataVT,
8024                                        SelectionDAG &DAG,
8025                                        bool IsCompressedMemory) const {
8026   SDValue Increment;
8027   EVT AddrVT = Addr.getValueType();
8028   EVT MaskVT = Mask.getValueType();
8029   assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() &&
8030          "Incompatible types of Data and Mask");
8031   if (IsCompressedMemory) {
8032     if (DataVT.isScalableVector())
8033       report_fatal_error(
8034           "Cannot currently handle compressed memory with scalable vectors");
8035     // Incrementing the pointer according to number of '1's in the mask.
8036     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
8037     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
8038     if (MaskIntVT.getSizeInBits() < 32) {
8039       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
8040       MaskIntVT = MVT::i32;
8041     }
8042 
8043     // Count '1's with POPCNT.
8044     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
8045     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
8046     // Scale is an element size in bytes.
8047     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
8048                                     AddrVT);
8049     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
8050   } else if (DataVT.isScalableVector()) {
8051     Increment = DAG.getVScale(DL, AddrVT,
8052                               APInt(AddrVT.getFixedSizeInBits(),
8053                                     DataVT.getStoreSize().getKnownMinSize()));
8054   } else
8055     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
8056 
8057   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
8058 }
8059 
8060 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx,
8061                                        EVT VecVT, const SDLoc &dl,
8062                                        ElementCount SubEC) {
8063   assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) &&
8064          "Cannot index a scalable vector within a fixed-width vector");
8065 
8066   unsigned NElts = VecVT.getVectorMinNumElements();
8067   unsigned NumSubElts = SubEC.getKnownMinValue();
8068   EVT IdxVT = Idx.getValueType();
8069 
8070   if (VecVT.isScalableVector() && !SubEC.isScalable()) {
8071     // If this is a constant index and we know the value plus the number of the
8072     // elements in the subvector minus one is less than the minimum number of
8073     // elements then it's safe to return Idx.
8074     if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx))
8075       if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts)
8076         return Idx;
8077     SDValue VS =
8078         DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts));
8079     unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT;
8080     SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS,
8081                               DAG.getConstant(NumSubElts, dl, IdxVT));
8082     return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub);
8083   }
8084   if (isPowerOf2_32(NElts) && NumSubElts == 1) {
8085     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts));
8086     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
8087                        DAG.getConstant(Imm, dl, IdxVT));
8088   }
8089   unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0;
8090   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
8091                      DAG.getConstant(MaxIndex, dl, IdxVT));
8092 }
8093 
8094 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
8095                                                 SDValue VecPtr, EVT VecVT,
8096                                                 SDValue Index) const {
8097   return getVectorSubVecPointer(
8098       DAG, VecPtr, VecVT,
8099       EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1),
8100       Index);
8101 }
8102 
8103 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG,
8104                                                SDValue VecPtr, EVT VecVT,
8105                                                EVT SubVecVT,
8106                                                SDValue Index) const {
8107   SDLoc dl(Index);
8108   // Make sure the index type is big enough to compute in.
8109   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
8110 
8111   EVT EltVT = VecVT.getVectorElementType();
8112 
8113   // Calculate the element offset and add it to the pointer.
8114   unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size.
8115   assert(EltSize * 8 == EltVT.getFixedSizeInBits() &&
8116          "Converting bits to bytes lost precision");
8117   assert(SubVecVT.getVectorElementType() == EltVT &&
8118          "Sub-vector must be a vector with matching element type");
8119   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl,
8120                                   SubVecVT.getVectorElementCount());
8121 
8122   EVT IdxVT = Index.getValueType();
8123   if (SubVecVT.isScalableVector())
8124     Index =
8125         DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8126                     DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1)));
8127 
8128   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
8129                       DAG.getConstant(EltSize, dl, IdxVT));
8130   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
8131 }
8132 
8133 //===----------------------------------------------------------------------===//
8134 // Implementation of Emulated TLS Model
8135 //===----------------------------------------------------------------------===//
8136 
8137 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
8138                                                 SelectionDAG &DAG) const {
8139   // Access to address of TLS varialbe xyz is lowered to a function call:
8140   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
8141   EVT PtrVT = getPointerTy(DAG.getDataLayout());
8142   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
8143   SDLoc dl(GA);
8144 
8145   ArgListTy Args;
8146   ArgListEntry Entry;
8147   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
8148   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
8149   StringRef EmuTlsVarName(NameString);
8150   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
8151   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
8152   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
8153   Entry.Ty = VoidPtrType;
8154   Args.push_back(Entry);
8155 
8156   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
8157 
8158   TargetLowering::CallLoweringInfo CLI(DAG);
8159   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
8160   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
8161   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
8162 
8163   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
8164   // At last for X86 targets, maybe good for other targets too?
8165   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
8166   MFI.setAdjustsStack(true); // Is this only for X86 target?
8167   MFI.setHasCalls(true);
8168 
8169   assert((GA->getOffset() == 0) &&
8170          "Emulated TLS must have zero offset in GlobalAddressSDNode");
8171   return CallResult.first;
8172 }
8173 
8174 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
8175                                                 SelectionDAG &DAG) const {
8176   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
8177   if (!isCtlzFast())
8178     return SDValue();
8179   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8180   SDLoc dl(Op);
8181   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
8182     if (C->isZero() && CC == ISD::SETEQ) {
8183       EVT VT = Op.getOperand(0).getValueType();
8184       SDValue Zext = Op.getOperand(0);
8185       if (VT.bitsLT(MVT::i32)) {
8186         VT = MVT::i32;
8187         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
8188       }
8189       unsigned Log2b = Log2_32(VT.getSizeInBits());
8190       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
8191       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
8192                                 DAG.getConstant(Log2b, dl, MVT::i32));
8193       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
8194     }
8195   }
8196   return SDValue();
8197 }
8198 
8199 // Convert redundant addressing modes (e.g. scaling is redundant
8200 // when accessing bytes).
8201 ISD::MemIndexType
8202 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT,
8203                                       SDValue Offsets) const {
8204   bool IsScaledIndex =
8205       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED);
8206   bool IsSignedIndex =
8207       (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED);
8208 
8209   // Scaling is unimportant for bytes, canonicalize to unscaled.
8210   if (IsScaledIndex && MemVT.getScalarType() == MVT::i8)
8211     return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED;
8212 
8213   return IndexType;
8214 }
8215 
8216 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const {
8217   SDValue Op0 = Node->getOperand(0);
8218   SDValue Op1 = Node->getOperand(1);
8219   EVT VT = Op0.getValueType();
8220   unsigned Opcode = Node->getOpcode();
8221   SDLoc DL(Node);
8222 
8223   // umin(x,y) -> sub(x,usubsat(x,y))
8224   if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) &&
8225       isOperationLegal(ISD::USUBSAT, VT)) {
8226     return DAG.getNode(ISD::SUB, DL, VT, Op0,
8227                        DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1));
8228   }
8229 
8230   // umax(x,y) -> add(x,usubsat(y,x))
8231   if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) &&
8232       isOperationLegal(ISD::USUBSAT, VT)) {
8233     return DAG.getNode(ISD::ADD, DL, VT, Op0,
8234                        DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0));
8235   }
8236 
8237   // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B
8238   ISD::CondCode CC;
8239   switch (Opcode) {
8240   default: llvm_unreachable("How did we get here?");
8241   case ISD::SMAX: CC = ISD::SETGT; break;
8242   case ISD::SMIN: CC = ISD::SETLT; break;
8243   case ISD::UMAX: CC = ISD::SETUGT; break;
8244   case ISD::UMIN: CC = ISD::SETULT; break;
8245   }
8246 
8247   // FIXME: Should really try to split the vector in case it's legal on a
8248   // subvector.
8249   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8250     return DAG.UnrollVectorOp(Node);
8251 
8252   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8253   SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC);
8254   return DAG.getSelect(DL, VT, Cond, Op0, Op1);
8255 }
8256 
8257 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
8258   unsigned Opcode = Node->getOpcode();
8259   SDValue LHS = Node->getOperand(0);
8260   SDValue RHS = Node->getOperand(1);
8261   EVT VT = LHS.getValueType();
8262   SDLoc dl(Node);
8263 
8264   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8265   assert(VT.isInteger() && "Expected operands to be integers");
8266 
8267   // usub.sat(a, b) -> umax(a, b) - b
8268   if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) {
8269     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
8270     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
8271   }
8272 
8273   // uadd.sat(a, b) -> umin(a, ~b) + b
8274   if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) {
8275     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
8276     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
8277     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
8278   }
8279 
8280   unsigned OverflowOp;
8281   switch (Opcode) {
8282   case ISD::SADDSAT:
8283     OverflowOp = ISD::SADDO;
8284     break;
8285   case ISD::UADDSAT:
8286     OverflowOp = ISD::UADDO;
8287     break;
8288   case ISD::SSUBSAT:
8289     OverflowOp = ISD::SSUBO;
8290     break;
8291   case ISD::USUBSAT:
8292     OverflowOp = ISD::USUBO;
8293     break;
8294   default:
8295     llvm_unreachable("Expected method to receive signed or unsigned saturation "
8296                      "addition or subtraction node.");
8297   }
8298 
8299   // FIXME: Should really try to split the vector in case it's legal on a
8300   // subvector.
8301   if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT))
8302     return DAG.UnrollVectorOp(Node);
8303 
8304   unsigned BitWidth = LHS.getScalarValueSizeInBits();
8305   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8306   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8307   SDValue SumDiff = Result.getValue(0);
8308   SDValue Overflow = Result.getValue(1);
8309   SDValue Zero = DAG.getConstant(0, dl, VT);
8310   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
8311 
8312   if (Opcode == ISD::UADDSAT) {
8313     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8314       // (LHS + RHS) | OverflowMask
8315       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8316       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
8317     }
8318     // Overflow ? 0xffff.... : (LHS + RHS)
8319     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
8320   }
8321 
8322   if (Opcode == ISD::USUBSAT) {
8323     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
8324       // (LHS - RHS) & ~OverflowMask
8325       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
8326       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
8327       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
8328     }
8329     // Overflow ? 0 : (LHS - RHS)
8330     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
8331   }
8332 
8333   // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff
8334   APInt MinVal = APInt::getSignedMinValue(BitWidth);
8335   SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8336   SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff,
8337                               DAG.getConstant(BitWidth - 1, dl, VT));
8338   Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin);
8339   return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
8340 }
8341 
8342 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const {
8343   unsigned Opcode = Node->getOpcode();
8344   bool IsSigned = Opcode == ISD::SSHLSAT;
8345   SDValue LHS = Node->getOperand(0);
8346   SDValue RHS = Node->getOperand(1);
8347   EVT VT = LHS.getValueType();
8348   SDLoc dl(Node);
8349 
8350   assert((Node->getOpcode() == ISD::SSHLSAT ||
8351           Node->getOpcode() == ISD::USHLSAT) &&
8352           "Expected a SHLSAT opcode");
8353   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
8354   assert(VT.isInteger() && "Expected operands to be integers");
8355 
8356   // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate.
8357 
8358   unsigned BW = VT.getScalarSizeInBits();
8359   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS);
8360   SDValue Orig =
8361       DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS);
8362 
8363   SDValue SatVal;
8364   if (IsSigned) {
8365     SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT);
8366     SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT);
8367     SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT),
8368                              SatMin, SatMax, ISD::SETLT);
8369   } else {
8370     SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT);
8371   }
8372   Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE);
8373 
8374   return Result;
8375 }
8376 
8377 SDValue
8378 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
8379   assert((Node->getOpcode() == ISD::SMULFIX ||
8380           Node->getOpcode() == ISD::UMULFIX ||
8381           Node->getOpcode() == ISD::SMULFIXSAT ||
8382           Node->getOpcode() == ISD::UMULFIXSAT) &&
8383          "Expected a fixed point multiplication opcode");
8384 
8385   SDLoc dl(Node);
8386   SDValue LHS = Node->getOperand(0);
8387   SDValue RHS = Node->getOperand(1);
8388   EVT VT = LHS.getValueType();
8389   unsigned Scale = Node->getConstantOperandVal(2);
8390   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
8391                      Node->getOpcode() == ISD::UMULFIXSAT);
8392   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
8393                  Node->getOpcode() == ISD::SMULFIXSAT);
8394   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8395   unsigned VTSize = VT.getScalarSizeInBits();
8396 
8397   if (!Scale) {
8398     // [us]mul.fix(a, b, 0) -> mul(a, b)
8399     if (!Saturating) {
8400       if (isOperationLegalOrCustom(ISD::MUL, VT))
8401         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8402     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
8403       SDValue Result =
8404           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8405       SDValue Product = Result.getValue(0);
8406       SDValue Overflow = Result.getValue(1);
8407       SDValue Zero = DAG.getConstant(0, dl, VT);
8408 
8409       APInt MinVal = APInt::getSignedMinValue(VTSize);
8410       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
8411       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
8412       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8413       // Xor the inputs, if resulting sign bit is 0 the product will be
8414       // positive, else negative.
8415       SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS);
8416       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT);
8417       Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax);
8418       return DAG.getSelect(dl, VT, Overflow, Result, Product);
8419     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
8420       SDValue Result =
8421           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
8422       SDValue Product = Result.getValue(0);
8423       SDValue Overflow = Result.getValue(1);
8424 
8425       APInt MaxVal = APInt::getMaxValue(VTSize);
8426       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
8427       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
8428     }
8429   }
8430 
8431   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
8432          "Expected scale to be less than the number of bits if signed or at "
8433          "most the number of bits if unsigned.");
8434   assert(LHS.getValueType() == RHS.getValueType() &&
8435          "Expected both operands to be the same type");
8436 
8437   // Get the upper and lower bits of the result.
8438   SDValue Lo, Hi;
8439   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
8440   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
8441   if (isOperationLegalOrCustom(LoHiOp, VT)) {
8442     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
8443     Lo = Result.getValue(0);
8444     Hi = Result.getValue(1);
8445   } else if (isOperationLegalOrCustom(HiOp, VT)) {
8446     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8447     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
8448   } else if (VT.isVector()) {
8449     return SDValue();
8450   } else {
8451     report_fatal_error("Unable to expand fixed point multiplication.");
8452   }
8453 
8454   if (Scale == VTSize)
8455     // Result is just the top half since we'd be shifting by the width of the
8456     // operand. Overflow impossible so this works for both UMULFIX and
8457     // UMULFIXSAT.
8458     return Hi;
8459 
8460   // The result will need to be shifted right by the scale since both operands
8461   // are scaled. The result is given to us in 2 halves, so we only want part of
8462   // both in the result.
8463   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8464   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
8465                                DAG.getConstant(Scale, dl, ShiftTy));
8466   if (!Saturating)
8467     return Result;
8468 
8469   if (!Signed) {
8470     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
8471     // widened multiplication) aren't all zeroes.
8472 
8473     // Saturate to max if ((Hi >> Scale) != 0),
8474     // which is the same as if (Hi > ((1 << Scale) - 1))
8475     APInt MaxVal = APInt::getMaxValue(VTSize);
8476     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
8477                                       dl, VT);
8478     Result = DAG.getSelectCC(dl, Hi, LowMask,
8479                              DAG.getConstant(MaxVal, dl, VT), Result,
8480                              ISD::SETUGT);
8481 
8482     return Result;
8483   }
8484 
8485   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
8486   // widened multiplication) aren't all ones or all zeroes.
8487 
8488   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
8489   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
8490 
8491   if (Scale == 0) {
8492     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
8493                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
8494     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
8495     // Saturated to SatMin if wide product is negative, and SatMax if wide
8496     // product is positive ...
8497     SDValue Zero = DAG.getConstant(0, dl, VT);
8498     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
8499                                                ISD::SETLT);
8500     // ... but only if we overflowed.
8501     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
8502   }
8503 
8504   //  We handled Scale==0 above so all the bits to examine is in Hi.
8505 
8506   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
8507   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
8508   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
8509                                     dl, VT);
8510   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
8511   // Saturate to min if (Hi >> (Scale - 1)) < -1),
8512   // which is the same as if (HI < (-1 << (Scale - 1))
8513   SDValue HighMask =
8514       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
8515                       dl, VT);
8516   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
8517   return Result;
8518 }
8519 
8520 SDValue
8521 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
8522                                     SDValue LHS, SDValue RHS,
8523                                     unsigned Scale, SelectionDAG &DAG) const {
8524   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
8525           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
8526          "Expected a fixed point division opcode");
8527 
8528   EVT VT = LHS.getValueType();
8529   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
8530   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
8531   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8532 
8533   // If there is enough room in the type to upscale the LHS or downscale the
8534   // RHS before the division, we can perform it in this type without having to
8535   // resize. For signed operations, the LHS headroom is the number of
8536   // redundant sign bits, and for unsigned ones it is the number of zeroes.
8537   // The headroom for the RHS is the number of trailing zeroes.
8538   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
8539                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
8540   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
8541 
8542   // For signed saturating operations, we need to be able to detect true integer
8543   // division overflow; that is, when you have MIN / -EPS. However, this
8544   // is undefined behavior and if we emit divisions that could take such
8545   // values it may cause undesired behavior (arithmetic exceptions on x86, for
8546   // example).
8547   // Avoid this by requiring an extra bit so that we never get this case.
8548   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
8549   // signed saturating division, we need to emit a whopping 32-bit division.
8550   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
8551     return SDValue();
8552 
8553   unsigned LHSShift = std::min(LHSLead, Scale);
8554   unsigned RHSShift = Scale - LHSShift;
8555 
8556   // At this point, we know that if we shift the LHS up by LHSShift and the
8557   // RHS down by RHSShift, we can emit a regular division with a final scaling
8558   // factor of Scale.
8559 
8560   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
8561   if (LHSShift)
8562     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
8563                       DAG.getConstant(LHSShift, dl, ShiftTy));
8564   if (RHSShift)
8565     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
8566                       DAG.getConstant(RHSShift, dl, ShiftTy));
8567 
8568   SDValue Quot;
8569   if (Signed) {
8570     // For signed operations, if the resulting quotient is negative and the
8571     // remainder is nonzero, subtract 1 from the quotient to round towards
8572     // negative infinity.
8573     SDValue Rem;
8574     // FIXME: Ideally we would always produce an SDIVREM here, but if the
8575     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
8576     // we couldn't just form a libcall, but the type legalizer doesn't do it.
8577     if (isTypeLegal(VT) &&
8578         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
8579       Quot = DAG.getNode(ISD::SDIVREM, dl,
8580                          DAG.getVTList(VT, VT),
8581                          LHS, RHS);
8582       Rem = Quot.getValue(1);
8583       Quot = Quot.getValue(0);
8584     } else {
8585       Quot = DAG.getNode(ISD::SDIV, dl, VT,
8586                          LHS, RHS);
8587       Rem = DAG.getNode(ISD::SREM, dl, VT,
8588                         LHS, RHS);
8589     }
8590     SDValue Zero = DAG.getConstant(0, dl, VT);
8591     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
8592     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
8593     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
8594     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
8595     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
8596                                DAG.getConstant(1, dl, VT));
8597     Quot = DAG.getSelect(dl, VT,
8598                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
8599                          Sub1, Quot);
8600   } else
8601     Quot = DAG.getNode(ISD::UDIV, dl, VT,
8602                        LHS, RHS);
8603 
8604   return Quot;
8605 }
8606 
8607 void TargetLowering::expandUADDSUBO(
8608     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8609   SDLoc dl(Node);
8610   SDValue LHS = Node->getOperand(0);
8611   SDValue RHS = Node->getOperand(1);
8612   bool IsAdd = Node->getOpcode() == ISD::UADDO;
8613 
8614   // If ADD/SUBCARRY is legal, use that instead.
8615   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
8616   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
8617     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
8618     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
8619                                     { LHS, RHS, CarryIn });
8620     Result = SDValue(NodeCarry.getNode(), 0);
8621     Overflow = SDValue(NodeCarry.getNode(), 1);
8622     return;
8623   }
8624 
8625   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8626                             LHS.getValueType(), LHS, RHS);
8627 
8628   EVT ResultType = Node->getValueType(1);
8629   EVT SetCCType = getSetCCResultType(
8630       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8631   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
8632   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
8633   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8634 }
8635 
8636 void TargetLowering::expandSADDSUBO(
8637     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
8638   SDLoc dl(Node);
8639   SDValue LHS = Node->getOperand(0);
8640   SDValue RHS = Node->getOperand(1);
8641   bool IsAdd = Node->getOpcode() == ISD::SADDO;
8642 
8643   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
8644                             LHS.getValueType(), LHS, RHS);
8645 
8646   EVT ResultType = Node->getValueType(1);
8647   EVT OType = getSetCCResultType(
8648       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
8649 
8650   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
8651   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
8652   if (isOperationLegal(OpcSat, LHS.getValueType())) {
8653     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
8654     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
8655     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
8656     return;
8657   }
8658 
8659   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
8660 
8661   // For an addition, the result should be less than one of the operands (LHS)
8662   // if and only if the other operand (RHS) is negative, otherwise there will
8663   // be overflow.
8664   // For a subtraction, the result should be less than one of the operands
8665   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
8666   // otherwise there will be overflow.
8667   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
8668   SDValue ConditionRHS =
8669       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
8670 
8671   Overflow = DAG.getBoolExtOrTrunc(
8672       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
8673       ResultType, ResultType);
8674 }
8675 
8676 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
8677                                 SDValue &Overflow, SelectionDAG &DAG) const {
8678   SDLoc dl(Node);
8679   EVT VT = Node->getValueType(0);
8680   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
8681   SDValue LHS = Node->getOperand(0);
8682   SDValue RHS = Node->getOperand(1);
8683   bool isSigned = Node->getOpcode() == ISD::SMULO;
8684 
8685   // For power-of-two multiplications we can use a simpler shift expansion.
8686   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
8687     const APInt &C = RHSC->getAPIntValue();
8688     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
8689     if (C.isPowerOf2()) {
8690       // smulo(x, signed_min) is same as umulo(x, signed_min).
8691       bool UseArithShift = isSigned && !C.isMinSignedValue();
8692       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
8693       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
8694       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
8695       Overflow = DAG.getSetCC(dl, SetCCVT,
8696           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
8697                       dl, VT, Result, ShiftAmt),
8698           LHS, ISD::SETNE);
8699       return true;
8700     }
8701   }
8702 
8703   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
8704   if (VT.isVector())
8705     WideVT =
8706         EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount());
8707 
8708   SDValue BottomHalf;
8709   SDValue TopHalf;
8710   static const unsigned Ops[2][3] =
8711       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
8712         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
8713   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
8714     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
8715     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
8716   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
8717     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
8718                              RHS);
8719     TopHalf = BottomHalf.getValue(1);
8720   } else if (isTypeLegal(WideVT)) {
8721     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
8722     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
8723     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
8724     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
8725     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
8726         getShiftAmountTy(WideVT, DAG.getDataLayout()));
8727     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
8728                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
8729   } else {
8730     if (VT.isVector())
8731       return false;
8732 
8733     // We can fall back to a libcall with an illegal type for the MUL if we
8734     // have a libcall big enough.
8735     // Also, we can fall back to a division in some cases, but that's a big
8736     // performance hit in the general case.
8737     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
8738     if (WideVT == MVT::i16)
8739       LC = RTLIB::MUL_I16;
8740     else if (WideVT == MVT::i32)
8741       LC = RTLIB::MUL_I32;
8742     else if (WideVT == MVT::i64)
8743       LC = RTLIB::MUL_I64;
8744     else if (WideVT == MVT::i128)
8745       LC = RTLIB::MUL_I128;
8746     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
8747 
8748     SDValue HiLHS;
8749     SDValue HiRHS;
8750     if (isSigned) {
8751       // The high part is obtained by SRA'ing all but one of the bits of low
8752       // part.
8753       unsigned LoSize = VT.getFixedSizeInBits();
8754       HiLHS =
8755           DAG.getNode(ISD::SRA, dl, VT, LHS,
8756                       DAG.getConstant(LoSize - 1, dl,
8757                                       getPointerTy(DAG.getDataLayout())));
8758       HiRHS =
8759           DAG.getNode(ISD::SRA, dl, VT, RHS,
8760                       DAG.getConstant(LoSize - 1, dl,
8761                                       getPointerTy(DAG.getDataLayout())));
8762     } else {
8763         HiLHS = DAG.getConstant(0, dl, VT);
8764         HiRHS = DAG.getConstant(0, dl, VT);
8765     }
8766 
8767     // Here we're passing the 2 arguments explicitly as 4 arguments that are
8768     // pre-lowered to the correct types. This all depends upon WideVT not
8769     // being a legal type for the architecture and thus has to be split to
8770     // two arguments.
8771     SDValue Ret;
8772     TargetLowering::MakeLibCallOptions CallOptions;
8773     CallOptions.setSExt(isSigned);
8774     CallOptions.setIsPostTypeLegalization(true);
8775     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
8776       // Halves of WideVT are packed into registers in different order
8777       // depending on platform endianness. This is usually handled by
8778       // the C calling convention, but we can't defer to it in
8779       // the legalizer.
8780       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
8781       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8782     } else {
8783       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
8784       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
8785     }
8786     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
8787            "Ret value is a collection of constituent nodes holding result.");
8788     if (DAG.getDataLayout().isLittleEndian()) {
8789       // Same as above.
8790       BottomHalf = Ret.getOperand(0);
8791       TopHalf = Ret.getOperand(1);
8792     } else {
8793       BottomHalf = Ret.getOperand(1);
8794       TopHalf = Ret.getOperand(0);
8795     }
8796   }
8797 
8798   Result = BottomHalf;
8799   if (isSigned) {
8800     SDValue ShiftAmt = DAG.getConstant(
8801         VT.getScalarSizeInBits() - 1, dl,
8802         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
8803     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
8804     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
8805   } else {
8806     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
8807                             DAG.getConstant(0, dl, VT), ISD::SETNE);
8808   }
8809 
8810   // Truncate the result if SetCC returns a larger type than needed.
8811   EVT RType = Node->getValueType(1);
8812   if (RType.bitsLT(Overflow.getValueType()))
8813     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
8814 
8815   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
8816          "Unexpected result type for S/UMULO legalization");
8817   return true;
8818 }
8819 
8820 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
8821   SDLoc dl(Node);
8822   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8823   SDValue Op = Node->getOperand(0);
8824   EVT VT = Op.getValueType();
8825 
8826   if (VT.isScalableVector())
8827     report_fatal_error(
8828         "Expanding reductions for scalable vectors is undefined.");
8829 
8830   // Try to use a shuffle reduction for power of two vectors.
8831   if (VT.isPow2VectorType()) {
8832     while (VT.getVectorNumElements() > 1) {
8833       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
8834       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
8835         break;
8836 
8837       SDValue Lo, Hi;
8838       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
8839       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
8840       VT = HalfVT;
8841     }
8842   }
8843 
8844   EVT EltVT = VT.getVectorElementType();
8845   unsigned NumElts = VT.getVectorNumElements();
8846 
8847   SmallVector<SDValue, 8> Ops;
8848   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
8849 
8850   SDValue Res = Ops[0];
8851   for (unsigned i = 1; i < NumElts; i++)
8852     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
8853 
8854   // Result type may be wider than element type.
8855   if (EltVT != Node->getValueType(0))
8856     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
8857   return Res;
8858 }
8859 
8860 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const {
8861   SDLoc dl(Node);
8862   SDValue AccOp = Node->getOperand(0);
8863   SDValue VecOp = Node->getOperand(1);
8864   SDNodeFlags Flags = Node->getFlags();
8865 
8866   EVT VT = VecOp.getValueType();
8867   EVT EltVT = VT.getVectorElementType();
8868 
8869   if (VT.isScalableVector())
8870     report_fatal_error(
8871         "Expanding reductions for scalable vectors is undefined.");
8872 
8873   unsigned NumElts = VT.getVectorNumElements();
8874 
8875   SmallVector<SDValue, 8> Ops;
8876   DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts);
8877 
8878   unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode());
8879 
8880   SDValue Res = AccOp;
8881   for (unsigned i = 0; i < NumElts; i++)
8882     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags);
8883 
8884   return Res;
8885 }
8886 
8887 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result,
8888                                SelectionDAG &DAG) const {
8889   EVT VT = Node->getValueType(0);
8890   SDLoc dl(Node);
8891   bool isSigned = Node->getOpcode() == ISD::SREM;
8892   unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
8893   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
8894   SDValue Dividend = Node->getOperand(0);
8895   SDValue Divisor = Node->getOperand(1);
8896   if (isOperationLegalOrCustom(DivRemOpc, VT)) {
8897     SDVTList VTs = DAG.getVTList(VT, VT);
8898     Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1);
8899     return true;
8900   }
8901   if (isOperationLegalOrCustom(DivOpc, VT)) {
8902     // X % Y -> X-X/Y*Y
8903     SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor);
8904     SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor);
8905     Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul);
8906     return true;
8907   }
8908   return false;
8909 }
8910 
8911 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node,
8912                                             SelectionDAG &DAG) const {
8913   bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT;
8914   SDLoc dl(SDValue(Node, 0));
8915   SDValue Src = Node->getOperand(0);
8916 
8917   // DstVT is the result type, while SatVT is the size to which we saturate
8918   EVT SrcVT = Src.getValueType();
8919   EVT DstVT = Node->getValueType(0);
8920 
8921   EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
8922   unsigned SatWidth = SatVT.getScalarSizeInBits();
8923   unsigned DstWidth = DstVT.getScalarSizeInBits();
8924   assert(SatWidth <= DstWidth &&
8925          "Expected saturation width smaller than result width");
8926 
8927   // Determine minimum and maximum integer values and their corresponding
8928   // floating-point values.
8929   APInt MinInt, MaxInt;
8930   if (IsSigned) {
8931     MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth);
8932     MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth);
8933   } else {
8934     MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth);
8935     MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth);
8936   }
8937 
8938   // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as
8939   // libcall emission cannot handle this. Large result types will fail.
8940   if (SrcVT == MVT::f16) {
8941     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src);
8942     SrcVT = Src.getValueType();
8943   }
8944 
8945   APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8946   APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT));
8947 
8948   APFloat::opStatus MinStatus =
8949       MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero);
8950   APFloat::opStatus MaxStatus =
8951       MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero);
8952   bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) &&
8953                              !(MaxStatus & APFloat::opStatus::opInexact);
8954 
8955   SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT);
8956   SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT);
8957 
8958   // If the integer bounds are exactly representable as floats and min/max are
8959   // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence
8960   // of comparisons and selects.
8961   bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) &&
8962                      isOperationLegal(ISD::FMAXNUM, SrcVT);
8963   if (AreExactFloatBounds && MinMaxLegal) {
8964     SDValue Clamped = Src;
8965 
8966     // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat.
8967     Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode);
8968     // Clamp by MaxFloat from above. NaN cannot occur.
8969     Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode);
8970     // Convert clamped value to integer.
8971     SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT,
8972                                   dl, DstVT, Clamped);
8973 
8974     // In the unsigned case we're done, because we mapped NaN to MinFloat,
8975     // which will cast to zero.
8976     if (!IsSigned)
8977       return FpToInt;
8978 
8979     // Otherwise, select 0 if Src is NaN.
8980     SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
8981     return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt,
8982                            ISD::CondCode::SETUO);
8983   }
8984 
8985   SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT);
8986   SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT);
8987 
8988   // Result of direct conversion. The assumption here is that the operation is
8989   // non-trapping and it's fine to apply it to an out-of-range value if we
8990   // select it away later.
8991   SDValue FpToInt =
8992       DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src);
8993 
8994   SDValue Select = FpToInt;
8995 
8996   // If Src ULT MinFloat, select MinInt. In particular, this also selects
8997   // MinInt if Src is NaN.
8998   Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select,
8999                            ISD::CondCode::SETULT);
9000   // If Src OGT MaxFloat, select MaxInt.
9001   Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select,
9002                            ISD::CondCode::SETOGT);
9003 
9004   // In the unsigned case we are done, because we mapped NaN to MinInt, which
9005   // is already zero.
9006   if (!IsSigned)
9007     return Select;
9008 
9009   // Otherwise, select 0 if Src is NaN.
9010   SDValue ZeroInt = DAG.getConstant(0, dl, DstVT);
9011   return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO);
9012 }
9013 
9014 SDValue TargetLowering::expandVectorSplice(SDNode *Node,
9015                                            SelectionDAG &DAG) const {
9016   assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!");
9017   assert(Node->getValueType(0).isScalableVector() &&
9018          "Fixed length vector types expected to use SHUFFLE_VECTOR!");
9019 
9020   EVT VT = Node->getValueType(0);
9021   SDValue V1 = Node->getOperand(0);
9022   SDValue V2 = Node->getOperand(1);
9023   int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue();
9024   SDLoc DL(Node);
9025 
9026   // Expand through memory thusly:
9027   //  Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr
9028   //  Store V1, Ptr
9029   //  Store V2, Ptr + sizeof(V1)
9030   //  If (Imm < 0)
9031   //    TrailingElts = -Imm
9032   //    Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt))
9033   //  else
9034   //    Ptr = Ptr + (Imm * sizeof(VT.Elt))
9035   //  Res = Load Ptr
9036 
9037   Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false);
9038 
9039   EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(),
9040                                VT.getVectorElementCount() * 2);
9041   SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment);
9042   EVT PtrVT = StackPtr.getValueType();
9043   auto &MF = DAG.getMachineFunction();
9044   auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
9045   auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex);
9046 
9047   // Store the lo part of CONCAT_VECTORS(V1, V2)
9048   SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo);
9049   // Store the hi part of CONCAT_VECTORS(V1, V2)
9050   SDValue OffsetToV2 = DAG.getVScale(
9051       DL, PtrVT,
9052       APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9053   SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2);
9054   SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo);
9055 
9056   if (Imm >= 0) {
9057     // Load back the required element. getVectorElementPointer takes care of
9058     // clamping the index if it's out-of-bounds.
9059     StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2));
9060     // Load the spliced result
9061     return DAG.getLoad(VT, DL, StoreV2, StackPtr,
9062                        MachinePointerInfo::getUnknownStack(MF));
9063   }
9064 
9065   uint64_t TrailingElts = -Imm;
9066 
9067   // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2.
9068   TypeSize EltByteSize = VT.getVectorElementType().getStoreSize();
9069   SDValue TrailingBytes =
9070       DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT);
9071 
9072   if (TrailingElts > VT.getVectorMinNumElements()) {
9073     SDValue VLBytes = DAG.getVScale(
9074         DL, PtrVT,
9075         APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize()));
9076     TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes);
9077   }
9078 
9079   // Calculate the start address of the spliced result.
9080   StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes);
9081 
9082   // Load the spliced result
9083   return DAG.getLoad(VT, DL, StoreV2, StackPtr2,
9084                      MachinePointerInfo::getUnknownStack(MF));
9085 }
9086 
9087 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT,
9088                                            SDValue &LHS, SDValue &RHS,
9089                                            SDValue &CC, bool &NeedInvert,
9090                                            const SDLoc &dl, SDValue &Chain,
9091                                            bool IsSignaling) const {
9092   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9093   MVT OpVT = LHS.getSimpleValueType();
9094   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
9095   NeedInvert = false;
9096   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
9097   default:
9098     llvm_unreachable("Unknown condition code action!");
9099   case TargetLowering::Legal:
9100     // Nothing to do.
9101     break;
9102   case TargetLowering::Expand: {
9103     ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode);
9104     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9105       std::swap(LHS, RHS);
9106       CC = DAG.getCondCode(InvCC);
9107       return true;
9108     }
9109     // Swapping operands didn't work. Try inverting the condition.
9110     bool NeedSwap = false;
9111     InvCC = getSetCCInverse(CCCode, OpVT);
9112     if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9113       // If inverting the condition is not enough, try swapping operands
9114       // on top of it.
9115       InvCC = ISD::getSetCCSwappedOperands(InvCC);
9116       NeedSwap = true;
9117     }
9118     if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) {
9119       CC = DAG.getCondCode(InvCC);
9120       NeedInvert = true;
9121       if (NeedSwap)
9122         std::swap(LHS, RHS);
9123       return true;
9124     }
9125 
9126     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
9127     unsigned Opc = 0;
9128     switch (CCCode) {
9129     default:
9130       llvm_unreachable("Don't know how to expand this condition!");
9131     case ISD::SETUO:
9132       if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) {
9133         CC1 = ISD::SETUNE;
9134         CC2 = ISD::SETUNE;
9135         Opc = ISD::OR;
9136         break;
9137       }
9138       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9139              "If SETUE is expanded, SETOEQ or SETUNE must be legal!");
9140       NeedInvert = true;
9141       LLVM_FALLTHROUGH;
9142     case ISD::SETO:
9143       assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) &&
9144              "If SETO is expanded, SETOEQ must be legal!");
9145       CC1 = ISD::SETOEQ;
9146       CC2 = ISD::SETOEQ;
9147       Opc = ISD::AND;
9148       break;
9149     case ISD::SETONE:
9150     case ISD::SETUEQ:
9151       // If the SETUO or SETO CC isn't legal, we might be able to use
9152       // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one
9153       // of SETOGT/SETOLT to be legal, the other can be emulated by swapping
9154       // the operands.
9155       CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9156       if (!TLI.isCondCodeLegal(CC2, OpVT) &&
9157           (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) ||
9158            TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) {
9159         CC1 = ISD::SETOGT;
9160         CC2 = ISD::SETOLT;
9161         Opc = ISD::OR;
9162         NeedInvert = ((unsigned)CCCode & 0x8U);
9163         break;
9164       }
9165       LLVM_FALLTHROUGH;
9166     case ISD::SETOEQ:
9167     case ISD::SETOGT:
9168     case ISD::SETOGE:
9169     case ISD::SETOLT:
9170     case ISD::SETOLE:
9171     case ISD::SETUNE:
9172     case ISD::SETUGT:
9173     case ISD::SETUGE:
9174     case ISD::SETULT:
9175     case ISD::SETULE:
9176       // If we are floating point, assign and break, otherwise fall through.
9177       if (!OpVT.isInteger()) {
9178         // We can use the 4th bit to tell if we are the unordered
9179         // or ordered version of the opcode.
9180         CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO;
9181         Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND;
9182         CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10);
9183         break;
9184       }
9185       // Fallthrough if we are unsigned integer.
9186       LLVM_FALLTHROUGH;
9187     case ISD::SETLE:
9188     case ISD::SETGT:
9189     case ISD::SETGE:
9190     case ISD::SETLT:
9191     case ISD::SETNE:
9192     case ISD::SETEQ:
9193       // If all combinations of inverting the condition and swapping operands
9194       // didn't work then we have no means to expand the condition.
9195       llvm_unreachable("Don't know how to expand this condition!");
9196     }
9197 
9198     SDValue SetCC1, SetCC2;
9199     if (CCCode != ISD::SETO && CCCode != ISD::SETUO) {
9200       // If we aren't the ordered or unorder operation,
9201       // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS).
9202       SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling);
9203       SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling);
9204     } else {
9205       // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS)
9206       SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling);
9207       SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling);
9208     }
9209     if (Chain)
9210       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1),
9211                           SetCC2.getValue(1));
9212     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
9213     RHS = SDValue();
9214     CC = SDValue();
9215     return true;
9216   }
9217   }
9218   return false;
9219 }
9220