1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/CodeGen/CallingConvLower.h" 16 #include "llvm/CodeGen/MachineFrameInfo.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineJumpTableInfo.h" 19 #include "llvm/CodeGen/MachineRegisterInfo.h" 20 #include "llvm/CodeGen/SelectionDAG.h" 21 #include "llvm/CodeGen/TargetRegisterInfo.h" 22 #include "llvm/CodeGen/TargetSubtargetInfo.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/DerivedTypes.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/MC/MCAsmInfo.h" 28 #include "llvm/MC/MCExpr.h" 29 #include "llvm/Support/DivisionByConstantInfo.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // First, check if tail calls have been disabled in this function. 57 if (F.getFnAttribute("disable-tail-calls").getValueAsBool()) 58 return false; 59 60 // Conservatively require the attributes of the call to match those of 61 // the return. Ignore following attributes because they don't affect the 62 // call sequence. 63 AttrBuilder CallerAttrs(F.getContext(), F.getAttributes().getRetAttrs()); 64 for (const auto &Attr : {Attribute::Alignment, Attribute::Dereferenceable, 65 Attribute::DereferenceableOrNull, Attribute::NoAlias, 66 Attribute::NonNull, Attribute::NoUndef}) 67 CallerAttrs.removeAttribute(Attr); 68 69 if (CallerAttrs.hasAttributes()) 70 return false; 71 72 // It's not safe to eliminate the sign / zero extension of the return value. 73 if (CallerAttrs.contains(Attribute::ZExt) || 74 CallerAttrs.contains(Attribute::SExt)) 75 return false; 76 77 // Check if the only use is a function return node. 78 return isUsedByReturnOnly(Node, Chain); 79 } 80 81 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 82 const uint32_t *CallerPreservedMask, 83 const SmallVectorImpl<CCValAssign> &ArgLocs, 84 const SmallVectorImpl<SDValue> &OutVals) const { 85 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 86 const CCValAssign &ArgLoc = ArgLocs[I]; 87 if (!ArgLoc.isRegLoc()) 88 continue; 89 MCRegister Reg = ArgLoc.getLocReg(); 90 // Only look at callee saved registers. 91 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 92 continue; 93 // Check that we pass the value used for the caller. 94 // (We look for a CopyFromReg reading a virtual register that is used 95 // for the function live-in value of register Reg) 96 SDValue Value = OutVals[I]; 97 if (Value->getOpcode() != ISD::CopyFromReg) 98 return false; 99 Register ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 100 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 101 return false; 102 } 103 return true; 104 } 105 106 /// Set CallLoweringInfo attribute flags based on a call instruction 107 /// and called function attributes. 108 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call, 109 unsigned ArgIdx) { 110 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt); 111 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt); 112 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg); 113 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet); 114 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest); 115 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal); 116 IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated); 117 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca); 118 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned); 119 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 120 IsSwiftAsync = Call->paramHasAttr(ArgIdx, Attribute::SwiftAsync); 121 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError); 122 Alignment = Call->getParamStackAlign(ArgIdx); 123 IndirectType = nullptr; 124 assert(IsByVal + IsPreallocated + IsInAlloca + IsSRet <= 1 && 125 "multiple ABI attributes?"); 126 if (IsByVal) { 127 IndirectType = Call->getParamByValType(ArgIdx); 128 if (!Alignment) 129 Alignment = Call->getParamAlign(ArgIdx); 130 } 131 if (IsPreallocated) 132 IndirectType = Call->getParamPreallocatedType(ArgIdx); 133 if (IsInAlloca) 134 IndirectType = Call->getParamInAllocaType(ArgIdx); 135 if (IsSRet) 136 IndirectType = Call->getParamStructRetType(ArgIdx); 137 } 138 139 /// Generate a libcall taking the given operands as arguments and returning a 140 /// result of type RetVT. 141 std::pair<SDValue, SDValue> 142 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 143 ArrayRef<SDValue> Ops, 144 MakeLibCallOptions CallOptions, 145 const SDLoc &dl, 146 SDValue InChain) const { 147 if (!InChain) 148 InChain = DAG.getEntryNode(); 149 150 TargetLowering::ArgListTy Args; 151 Args.reserve(Ops.size()); 152 153 TargetLowering::ArgListEntry Entry; 154 for (unsigned i = 0; i < Ops.size(); ++i) { 155 SDValue NewOp = Ops[i]; 156 Entry.Node = NewOp; 157 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 158 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(), 159 CallOptions.IsSExt); 160 Entry.IsZExt = !Entry.IsSExt; 161 162 if (CallOptions.IsSoften && 163 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) { 164 Entry.IsSExt = Entry.IsZExt = false; 165 } 166 Args.push_back(Entry); 167 } 168 169 if (LC == RTLIB::UNKNOWN_LIBCALL) 170 report_fatal_error("Unsupported library call operation!"); 171 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 172 getPointerTy(DAG.getDataLayout())); 173 174 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 175 TargetLowering::CallLoweringInfo CLI(DAG); 176 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt); 177 bool zeroExtend = !signExtend; 178 179 if (CallOptions.IsSoften && 180 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) { 181 signExtend = zeroExtend = false; 182 } 183 184 CLI.setDebugLoc(dl) 185 .setChain(InChain) 186 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 187 .setNoReturn(CallOptions.DoesNotReturn) 188 .setDiscardResult(!CallOptions.IsReturnValueUsed) 189 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization) 190 .setSExtResult(signExtend) 191 .setZExtResult(zeroExtend); 192 return LowerCallTo(CLI); 193 } 194 195 bool TargetLowering::findOptimalMemOpLowering( 196 std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, 197 unsigned SrcAS, const AttributeList &FuncAttributes) const { 198 if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign()) 199 return false; 200 201 EVT VT = getOptimalMemOpType(Op, FuncAttributes); 202 203 if (VT == MVT::Other) { 204 // Use the largest integer type whose alignment constraints are satisfied. 205 // We only need to check DstAlign here as SrcAlign is always greater or 206 // equal to DstAlign (or zero). 207 VT = MVT::i64; 208 if (Op.isFixedDstAlign()) 209 while (Op.getDstAlign() < (VT.getSizeInBits() / 8) && 210 !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign())) 211 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1); 212 assert(VT.isInteger()); 213 214 // Find the largest legal integer type. 215 MVT LVT = MVT::i64; 216 while (!isTypeLegal(LVT)) 217 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1); 218 assert(LVT.isInteger()); 219 220 // If the type we've chosen is larger than the largest legal integer type 221 // then use that instead. 222 if (VT.bitsGT(LVT)) 223 VT = LVT; 224 } 225 226 unsigned NumMemOps = 0; 227 uint64_t Size = Op.size(); 228 while (Size) { 229 unsigned VTSize = VT.getSizeInBits() / 8; 230 while (VTSize > Size) { 231 // For now, only use non-vector load / store's for the left-over pieces. 232 EVT NewVT = VT; 233 unsigned NewVTSize; 234 235 bool Found = false; 236 if (VT.isVector() || VT.isFloatingPoint()) { 237 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32; 238 if (isOperationLegalOrCustom(ISD::STORE, NewVT) && 239 isSafeMemOpType(NewVT.getSimpleVT())) 240 Found = true; 241 else if (NewVT == MVT::i64 && 242 isOperationLegalOrCustom(ISD::STORE, MVT::f64) && 243 isSafeMemOpType(MVT::f64)) { 244 // i64 is usually not legal on 32-bit targets, but f64 may be. 245 NewVT = MVT::f64; 246 Found = true; 247 } 248 } 249 250 if (!Found) { 251 do { 252 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1); 253 if (NewVT == MVT::i8) 254 break; 255 } while (!isSafeMemOpType(NewVT.getSimpleVT())); 256 } 257 NewVTSize = NewVT.getSizeInBits() / 8; 258 259 // If the new VT cannot cover all of the remaining bits, then consider 260 // issuing a (or a pair of) unaligned and overlapping load / store. 261 bool Fast; 262 if (NumMemOps && Op.allowOverlap() && NewVTSize < Size && 263 allowsMisalignedMemoryAccesses( 264 VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign() : Align(1), 265 MachineMemOperand::MONone, &Fast) && 266 Fast) 267 VTSize = Size; 268 else { 269 VT = NewVT; 270 VTSize = NewVTSize; 271 } 272 } 273 274 if (++NumMemOps > Limit) 275 return false; 276 277 MemOps.push_back(VT); 278 Size -= VTSize; 279 } 280 281 return true; 282 } 283 284 /// Soften the operands of a comparison. This code is shared among BR_CC, 285 /// SELECT_CC, and SETCC handlers. 286 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 287 SDValue &NewLHS, SDValue &NewRHS, 288 ISD::CondCode &CCCode, 289 const SDLoc &dl, const SDValue OldLHS, 290 const SDValue OldRHS) const { 291 SDValue Chain; 292 return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS, 293 OldRHS, Chain); 294 } 295 296 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 297 SDValue &NewLHS, SDValue &NewRHS, 298 ISD::CondCode &CCCode, 299 const SDLoc &dl, const SDValue OldLHS, 300 const SDValue OldRHS, 301 SDValue &Chain, 302 bool IsSignaling) const { 303 // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc 304 // not supporting it. We can update this code when libgcc provides such 305 // functions. 306 307 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 308 && "Unsupported setcc type!"); 309 310 // Expand into one or more soft-fp libcall(s). 311 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 312 bool ShouldInvertCC = false; 313 switch (CCCode) { 314 case ISD::SETEQ: 315 case ISD::SETOEQ: 316 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 317 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 318 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 319 break; 320 case ISD::SETNE: 321 case ISD::SETUNE: 322 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 323 (VT == MVT::f64) ? RTLIB::UNE_F64 : 324 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 325 break; 326 case ISD::SETGE: 327 case ISD::SETOGE: 328 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 329 (VT == MVT::f64) ? RTLIB::OGE_F64 : 330 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 331 break; 332 case ISD::SETLT: 333 case ISD::SETOLT: 334 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 335 (VT == MVT::f64) ? RTLIB::OLT_F64 : 336 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 337 break; 338 case ISD::SETLE: 339 case ISD::SETOLE: 340 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 341 (VT == MVT::f64) ? RTLIB::OLE_F64 : 342 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 343 break; 344 case ISD::SETGT: 345 case ISD::SETOGT: 346 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 347 (VT == MVT::f64) ? RTLIB::OGT_F64 : 348 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 349 break; 350 case ISD::SETO: 351 ShouldInvertCC = true; 352 LLVM_FALLTHROUGH; 353 case ISD::SETUO: 354 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 355 (VT == MVT::f64) ? RTLIB::UO_F64 : 356 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 357 break; 358 case ISD::SETONE: 359 // SETONE = O && UNE 360 ShouldInvertCC = true; 361 LLVM_FALLTHROUGH; 362 case ISD::SETUEQ: 363 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 364 (VT == MVT::f64) ? RTLIB::UO_F64 : 365 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 366 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 367 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 368 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 369 break; 370 default: 371 // Invert CC for unordered comparisons 372 ShouldInvertCC = true; 373 switch (CCCode) { 374 case ISD::SETULT: 375 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 376 (VT == MVT::f64) ? RTLIB::OGE_F64 : 377 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 378 break; 379 case ISD::SETULE: 380 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 381 (VT == MVT::f64) ? RTLIB::OGT_F64 : 382 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 383 break; 384 case ISD::SETUGT: 385 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 386 (VT == MVT::f64) ? RTLIB::OLE_F64 : 387 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 388 break; 389 case ISD::SETUGE: 390 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 391 (VT == MVT::f64) ? RTLIB::OLT_F64 : 392 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 393 break; 394 default: llvm_unreachable("Do not know how to soften this setcc!"); 395 } 396 } 397 398 // Use the target specific return value for comparions lib calls. 399 EVT RetVT = getCmpLibcallReturnType(); 400 SDValue Ops[2] = {NewLHS, NewRHS}; 401 TargetLowering::MakeLibCallOptions CallOptions; 402 EVT OpsVT[2] = { OldLHS.getValueType(), 403 OldRHS.getValueType() }; 404 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true); 405 auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain); 406 NewLHS = Call.first; 407 NewRHS = DAG.getConstant(0, dl, RetVT); 408 409 CCCode = getCmpLibcallCC(LC1); 410 if (ShouldInvertCC) { 411 assert(RetVT.isInteger()); 412 CCCode = getSetCCInverse(CCCode, RetVT); 413 } 414 415 if (LC2 == RTLIB::UNKNOWN_LIBCALL) { 416 // Update Chain. 417 Chain = Call.second; 418 } else { 419 EVT SetCCVT = 420 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT); 421 SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode); 422 auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain); 423 CCCode = getCmpLibcallCC(LC2); 424 if (ShouldInvertCC) 425 CCCode = getSetCCInverse(CCCode, RetVT); 426 NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode); 427 if (Chain) 428 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second, 429 Call2.second); 430 NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl, 431 Tmp.getValueType(), Tmp, NewLHS); 432 NewRHS = SDValue(); 433 } 434 } 435 436 /// Return the entry encoding for a jump table in the current function. The 437 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 438 unsigned TargetLowering::getJumpTableEncoding() const { 439 // In non-pic modes, just use the address of a block. 440 if (!isPositionIndependent()) 441 return MachineJumpTableInfo::EK_BlockAddress; 442 443 // In PIC mode, if the target supports a GPRel32 directive, use it. 444 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 445 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 446 447 // Otherwise, use a label difference. 448 return MachineJumpTableInfo::EK_LabelDifference32; 449 } 450 451 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 452 SelectionDAG &DAG) const { 453 // If our PIC model is GP relative, use the global offset table as the base. 454 unsigned JTEncoding = getJumpTableEncoding(); 455 456 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 457 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 458 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 459 460 return Table; 461 } 462 463 /// This returns the relocation base for the given PIC jumptable, the same as 464 /// getPICJumpTableRelocBase, but as an MCExpr. 465 const MCExpr * 466 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 467 unsigned JTI,MCContext &Ctx) const{ 468 // The normal PIC reloc base is the label at the start of the jump table. 469 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 470 } 471 472 bool 473 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 474 const TargetMachine &TM = getTargetMachine(); 475 const GlobalValue *GV = GA->getGlobal(); 476 477 // If the address is not even local to this DSO we will have to load it from 478 // a got and then add the offset. 479 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 480 return false; 481 482 // If the code is position independent we will have to add a base register. 483 if (isPositionIndependent()) 484 return false; 485 486 // Otherwise we can do it. 487 return true; 488 } 489 490 //===----------------------------------------------------------------------===// 491 // Optimization Methods 492 //===----------------------------------------------------------------------===// 493 494 /// If the specified instruction has a constant integer operand and there are 495 /// bits set in that constant that are not demanded, then clear those bits and 496 /// return true. 497 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 498 const APInt &DemandedBits, 499 const APInt &DemandedElts, 500 TargetLoweringOpt &TLO) const { 501 SDLoc DL(Op); 502 unsigned Opcode = Op.getOpcode(); 503 504 // Do target-specific constant optimization. 505 if (targetShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 506 return TLO.New.getNode(); 507 508 // FIXME: ISD::SELECT, ISD::SELECT_CC 509 switch (Opcode) { 510 default: 511 break; 512 case ISD::XOR: 513 case ISD::AND: 514 case ISD::OR: { 515 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 516 if (!Op1C || Op1C->isOpaque()) 517 return false; 518 519 // If this is a 'not' op, don't touch it because that's a canonical form. 520 const APInt &C = Op1C->getAPIntValue(); 521 if (Opcode == ISD::XOR && DemandedBits.isSubsetOf(C)) 522 return false; 523 524 if (!C.isSubsetOf(DemandedBits)) { 525 EVT VT = Op.getValueType(); 526 SDValue NewC = TLO.DAG.getConstant(DemandedBits & C, DL, VT); 527 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 528 return TLO.CombineTo(Op, NewOp); 529 } 530 531 break; 532 } 533 } 534 535 return false; 536 } 537 538 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, 539 const APInt &DemandedBits, 540 TargetLoweringOpt &TLO) const { 541 EVT VT = Op.getValueType(); 542 APInt DemandedElts = VT.isVector() 543 ? APInt::getAllOnes(VT.getVectorNumElements()) 544 : APInt(1, 1); 545 return ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO); 546 } 547 548 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 549 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 550 /// generalized for targets with other types of implicit widening casts. 551 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 552 const APInt &Demanded, 553 TargetLoweringOpt &TLO) const { 554 assert(Op.getNumOperands() == 2 && 555 "ShrinkDemandedOp only supports binary operators!"); 556 assert(Op.getNode()->getNumValues() == 1 && 557 "ShrinkDemandedOp only supports nodes with one result!"); 558 559 SelectionDAG &DAG = TLO.DAG; 560 SDLoc dl(Op); 561 562 // Early return, as this function cannot handle vector types. 563 if (Op.getValueType().isVector()) 564 return false; 565 566 // Don't do this if the node has another user, which may require the 567 // full value. 568 if (!Op.getNode()->hasOneUse()) 569 return false; 570 571 // Search for the smallest integer type with free casts to and from 572 // Op's type. For expedience, just check power-of-2 integer types. 573 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 574 unsigned DemandedSize = Demanded.getActiveBits(); 575 unsigned SmallVTBits = DemandedSize; 576 if (!isPowerOf2_32(SmallVTBits)) 577 SmallVTBits = NextPowerOf2(SmallVTBits); 578 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 579 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 580 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 581 TLI.isZExtFree(SmallVT, Op.getValueType())) { 582 // We found a type with free casts. 583 SDValue X = DAG.getNode( 584 Op.getOpcode(), dl, SmallVT, 585 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 586 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 587 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 588 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 589 return TLO.CombineTo(Op, Z); 590 } 591 } 592 return false; 593 } 594 595 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 596 DAGCombinerInfo &DCI) const { 597 SelectionDAG &DAG = DCI.DAG; 598 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 599 !DCI.isBeforeLegalizeOps()); 600 KnownBits Known; 601 602 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 603 if (Simplified) { 604 DCI.AddToWorklist(Op.getNode()); 605 DCI.CommitTargetLoweringOpt(TLO); 606 } 607 return Simplified; 608 } 609 610 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 611 const APInt &DemandedElts, 612 DAGCombinerInfo &DCI) const { 613 SelectionDAG &DAG = DCI.DAG; 614 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 615 !DCI.isBeforeLegalizeOps()); 616 KnownBits Known; 617 618 bool Simplified = 619 SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO); 620 if (Simplified) { 621 DCI.AddToWorklist(Op.getNode()); 622 DCI.CommitTargetLoweringOpt(TLO); 623 } 624 return Simplified; 625 } 626 627 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 628 KnownBits &Known, 629 TargetLoweringOpt &TLO, 630 unsigned Depth, 631 bool AssumeSingleUse) const { 632 EVT VT = Op.getValueType(); 633 634 // TODO: We can probably do more work on calculating the known bits and 635 // simplifying the operations for scalable vectors, but for now we just 636 // bail out. 637 if (VT.isScalableVector()) { 638 // Pretend we don't know anything for now. 639 Known = KnownBits(DemandedBits.getBitWidth()); 640 return false; 641 } 642 643 APInt DemandedElts = VT.isVector() 644 ? APInt::getAllOnes(VT.getVectorNumElements()) 645 : APInt(1, 1); 646 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 647 AssumeSingleUse); 648 } 649 650 // TODO: Can we merge SelectionDAG::GetDemandedBits into this? 651 // TODO: Under what circumstances can we create nodes? Constant folding? 652 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 653 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 654 SelectionDAG &DAG, unsigned Depth) const { 655 // Limit search depth. 656 if (Depth >= SelectionDAG::MaxRecursionDepth) 657 return SDValue(); 658 659 // Ignore UNDEFs. 660 if (Op.isUndef()) 661 return SDValue(); 662 663 // Not demanding any bits/elts from Op. 664 if (DemandedBits == 0 || DemandedElts == 0) 665 return DAG.getUNDEF(Op.getValueType()); 666 667 bool IsLE = DAG.getDataLayout().isLittleEndian(); 668 unsigned NumElts = DemandedElts.getBitWidth(); 669 unsigned BitWidth = DemandedBits.getBitWidth(); 670 KnownBits LHSKnown, RHSKnown; 671 switch (Op.getOpcode()) { 672 case ISD::BITCAST: { 673 SDValue Src = peekThroughBitcasts(Op.getOperand(0)); 674 EVT SrcVT = Src.getValueType(); 675 EVT DstVT = Op.getValueType(); 676 if (SrcVT == DstVT) 677 return Src; 678 679 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 680 unsigned NumDstEltBits = DstVT.getScalarSizeInBits(); 681 if (NumSrcEltBits == NumDstEltBits) 682 if (SDValue V = SimplifyMultipleUseDemandedBits( 683 Src, DemandedBits, DemandedElts, DAG, Depth + 1)) 684 return DAG.getBitcast(DstVT, V); 685 686 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0) { 687 unsigned Scale = NumDstEltBits / NumSrcEltBits; 688 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 689 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 690 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 691 for (unsigned i = 0; i != Scale; ++i) { 692 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 693 unsigned BitOffset = EltOffset * NumSrcEltBits; 694 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 695 if (!Sub.isZero()) { 696 DemandedSrcBits |= Sub; 697 for (unsigned j = 0; j != NumElts; ++j) 698 if (DemandedElts[j]) 699 DemandedSrcElts.setBit((j * Scale) + i); 700 } 701 } 702 703 if (SDValue V = SimplifyMultipleUseDemandedBits( 704 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 705 return DAG.getBitcast(DstVT, V); 706 } 707 708 // TODO - bigendian once we have test coverage. 709 if (IsLE && (NumSrcEltBits % NumDstEltBits) == 0) { 710 unsigned Scale = NumSrcEltBits / NumDstEltBits; 711 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 712 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 713 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 714 for (unsigned i = 0; i != NumElts; ++i) 715 if (DemandedElts[i]) { 716 unsigned Offset = (i % Scale) * NumDstEltBits; 717 DemandedSrcBits.insertBits(DemandedBits, Offset); 718 DemandedSrcElts.setBit(i / Scale); 719 } 720 721 if (SDValue V = SimplifyMultipleUseDemandedBits( 722 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1)) 723 return DAG.getBitcast(DstVT, V); 724 } 725 726 break; 727 } 728 case ISD::AND: { 729 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 730 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 731 732 // If all of the demanded bits are known 1 on one side, return the other. 733 // These bits cannot contribute to the result of the 'and' in this 734 // context. 735 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One)) 736 return Op.getOperand(0); 737 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One)) 738 return Op.getOperand(1); 739 break; 740 } 741 case ISD::OR: { 742 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 743 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 744 745 // If all of the demanded bits are known zero on one side, return the 746 // other. These bits cannot contribute to the result of the 'or' in this 747 // context. 748 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero)) 749 return Op.getOperand(0); 750 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero)) 751 return Op.getOperand(1); 752 break; 753 } 754 case ISD::XOR: { 755 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1); 756 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1); 757 758 // If all of the demanded bits are known zero on one side, return the 759 // other. 760 if (DemandedBits.isSubsetOf(RHSKnown.Zero)) 761 return Op.getOperand(0); 762 if (DemandedBits.isSubsetOf(LHSKnown.Zero)) 763 return Op.getOperand(1); 764 break; 765 } 766 case ISD::SHL: { 767 // If we are only demanding sign bits then we can use the shift source 768 // directly. 769 if (const APInt *MaxSA = 770 DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 771 SDValue Op0 = Op.getOperand(0); 772 unsigned ShAmt = MaxSA->getZExtValue(); 773 unsigned NumSignBits = 774 DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 775 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 776 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 777 return Op0; 778 } 779 break; 780 } 781 case ISD::SETCC: { 782 SDValue Op0 = Op.getOperand(0); 783 SDValue Op1 = Op.getOperand(1); 784 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 785 // If (1) we only need the sign-bit, (2) the setcc operands are the same 786 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 787 // -1, we may be able to bypass the setcc. 788 if (DemandedBits.isSignMask() && 789 Op0.getScalarValueSizeInBits() == BitWidth && 790 getBooleanContents(Op0.getValueType()) == 791 BooleanContent::ZeroOrNegativeOneBooleanContent) { 792 // If we're testing X < 0, then this compare isn't needed - just use X! 793 // FIXME: We're limiting to integer types here, but this should also work 794 // if we don't care about FP signed-zero. The use of SETLT with FP means 795 // that we don't care about NaNs. 796 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 797 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 798 return Op0; 799 } 800 break; 801 } 802 case ISD::SIGN_EXTEND_INREG: { 803 // If none of the extended bits are demanded, eliminate the sextinreg. 804 SDValue Op0 = Op.getOperand(0); 805 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 806 unsigned ExBits = ExVT.getScalarSizeInBits(); 807 if (DemandedBits.getActiveBits() <= ExBits) 808 return Op0; 809 // If the input is already sign extended, just drop the extension. 810 unsigned NumSignBits = DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 811 if (NumSignBits >= (BitWidth - ExBits + 1)) 812 return Op0; 813 break; 814 } 815 case ISD::ANY_EXTEND_VECTOR_INREG: 816 case ISD::SIGN_EXTEND_VECTOR_INREG: 817 case ISD::ZERO_EXTEND_VECTOR_INREG: { 818 // If we only want the lowest element and none of extended bits, then we can 819 // return the bitcasted source vector. 820 SDValue Src = Op.getOperand(0); 821 EVT SrcVT = Src.getValueType(); 822 EVT DstVT = Op.getValueType(); 823 if (IsLE && DemandedElts == 1 && 824 DstVT.getSizeInBits() == SrcVT.getSizeInBits() && 825 DemandedBits.getActiveBits() <= SrcVT.getScalarSizeInBits()) { 826 return DAG.getBitcast(DstVT, Src); 827 } 828 break; 829 } 830 case ISD::INSERT_VECTOR_ELT: { 831 // If we don't demand the inserted element, return the base vector. 832 SDValue Vec = Op.getOperand(0); 833 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 834 EVT VecVT = Vec.getValueType(); 835 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) && 836 !DemandedElts[CIdx->getZExtValue()]) 837 return Vec; 838 break; 839 } 840 case ISD::INSERT_SUBVECTOR: { 841 SDValue Vec = Op.getOperand(0); 842 SDValue Sub = Op.getOperand(1); 843 uint64_t Idx = Op.getConstantOperandVal(2); 844 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 845 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 846 // If we don't demand the inserted subvector, return the base vector. 847 if (DemandedSubElts == 0) 848 return Vec; 849 // If this simply widens the lowest subvector, see if we can do it earlier. 850 if (Idx == 0 && Vec.isUndef()) { 851 if (SDValue NewSub = SimplifyMultipleUseDemandedBits( 852 Sub, DemandedBits, DemandedSubElts, DAG, Depth + 1)) 853 return DAG.getNode(Op.getOpcode(), SDLoc(Op), Op.getValueType(), 854 Op.getOperand(0), NewSub, Op.getOperand(2)); 855 } 856 break; 857 } 858 case ISD::VECTOR_SHUFFLE: { 859 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 860 861 // If all the demanded elts are from one operand and are inline, 862 // then we can use the operand directly. 863 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true; 864 for (unsigned i = 0; i != NumElts; ++i) { 865 int M = ShuffleMask[i]; 866 if (M < 0 || !DemandedElts[i]) 867 continue; 868 AllUndef = false; 869 IdentityLHS &= (M == (int)i); 870 IdentityRHS &= ((M - NumElts) == i); 871 } 872 873 if (AllUndef) 874 return DAG.getUNDEF(Op.getValueType()); 875 if (IdentityLHS) 876 return Op.getOperand(0); 877 if (IdentityRHS) 878 return Op.getOperand(1); 879 break; 880 } 881 default: 882 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) 883 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode( 884 Op, DemandedBits, DemandedElts, DAG, Depth)) 885 return V; 886 break; 887 } 888 return SDValue(); 889 } 890 891 SDValue TargetLowering::SimplifyMultipleUseDemandedBits( 892 SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG, 893 unsigned Depth) const { 894 EVT VT = Op.getValueType(); 895 APInt DemandedElts = VT.isVector() 896 ? APInt::getAllOnes(VT.getVectorNumElements()) 897 : APInt(1, 1); 898 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 899 Depth); 900 } 901 902 SDValue TargetLowering::SimplifyMultipleUseDemandedVectorElts( 903 SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, 904 unsigned Depth) const { 905 APInt DemandedBits = APInt::getAllOnes(Op.getScalarValueSizeInBits()); 906 return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG, 907 Depth); 908 } 909 910 // Attempt to form ext(avgfloor(A, B)) from shr(add(ext(A), ext(B)), 1). 911 // or to form ext(avgceil(A, B)) from shr(add(ext(A), ext(B), 1), 1). 912 static SDValue combineShiftToAVG(SDValue Op, SelectionDAG &DAG, 913 const TargetLowering &TLI, 914 const APInt &DemandedBits, 915 const APInt &DemandedElts, 916 unsigned Depth) { 917 assert((Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && 918 "SRL or SRA node is required here!"); 919 // Is the right shift using an immediate value of 1? 920 ConstantSDNode *N1C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 921 if (!N1C || !N1C->isOne()) 922 return SDValue(); 923 924 // We are looking for an avgfloor 925 // add(ext, ext) 926 // or one of these as a avgceil 927 // add(add(ext, ext), 1) 928 // add(add(ext, 1), ext) 929 // add(ext, add(ext, 1)) 930 SDValue Add = Op.getOperand(0); 931 if (Add.getOpcode() != ISD::ADD) 932 return SDValue(); 933 934 SDValue ExtOpA = Add.getOperand(0); 935 SDValue ExtOpB = Add.getOperand(1); 936 auto MatchOperands = [&](SDValue Op1, SDValue Op2, SDValue Op3) { 937 ConstantSDNode *ConstOp; 938 if ((ConstOp = isConstOrConstSplat(Op1, DemandedElts)) && 939 ConstOp->isOne()) { 940 ExtOpA = Op2; 941 ExtOpB = Op3; 942 return true; 943 } 944 if ((ConstOp = isConstOrConstSplat(Op2, DemandedElts)) && 945 ConstOp->isOne()) { 946 ExtOpA = Op1; 947 ExtOpB = Op3; 948 return true; 949 } 950 if ((ConstOp = isConstOrConstSplat(Op3, DemandedElts)) && 951 ConstOp->isOne()) { 952 ExtOpA = Op1; 953 ExtOpB = Op2; 954 return true; 955 } 956 return false; 957 }; 958 bool IsCeil = 959 (ExtOpA.getOpcode() == ISD::ADD && 960 MatchOperands(ExtOpA.getOperand(0), ExtOpA.getOperand(1), ExtOpB)) || 961 (ExtOpB.getOpcode() == ISD::ADD && 962 MatchOperands(ExtOpB.getOperand(0), ExtOpB.getOperand(1), ExtOpA)); 963 964 // If the shift is signed (sra): 965 // - Needs >= 2 sign bit for both operands. 966 // - Needs >= 2 zero bits. 967 // If the shift is unsigned (srl): 968 // - Needs >= 1 zero bit for both operands. 969 // - Needs 1 demanded bit zero and >= 2 sign bits. 970 unsigned ShiftOpc = Op.getOpcode(); 971 bool IsSigned = false; 972 unsigned KnownBits; 973 unsigned NumSignedA = DAG.ComputeNumSignBits(ExtOpA, DemandedElts, Depth); 974 unsigned NumSignedB = DAG.ComputeNumSignBits(ExtOpB, DemandedElts, Depth); 975 unsigned NumSigned = std::min(NumSignedA, NumSignedB) - 1; 976 unsigned NumZeroA = 977 DAG.computeKnownBits(ExtOpA, DemandedElts, Depth).countMinLeadingZeros(); 978 unsigned NumZeroB = 979 DAG.computeKnownBits(ExtOpB, DemandedElts, Depth).countMinLeadingZeros(); 980 unsigned NumZero = std::min(NumZeroA, NumZeroB); 981 982 switch (ShiftOpc) { 983 default: 984 llvm_unreachable("Unexpected ShiftOpc in combineShiftToAVG"); 985 case ISD::SRA: { 986 if (NumZero >= 2 && NumSigned < NumZero) { 987 IsSigned = false; 988 KnownBits = NumZero; 989 break; 990 } 991 if (NumSigned >= 1) { 992 IsSigned = true; 993 KnownBits = NumSigned; 994 break; 995 } 996 return SDValue(); 997 } 998 case ISD::SRL: { 999 if (NumZero >= 1 && NumSigned < NumZero) { 1000 IsSigned = false; 1001 KnownBits = NumZero; 1002 break; 1003 } 1004 if (NumSigned >= 1 && DemandedBits.isSignBitClear()) { 1005 IsSigned = true; 1006 KnownBits = NumSigned; 1007 break; 1008 } 1009 return SDValue(); 1010 } 1011 } 1012 1013 unsigned AVGOpc = IsCeil ? (IsSigned ? ISD::AVGCEILS : ISD::AVGCEILU) 1014 : (IsSigned ? ISD::AVGFLOORS : ISD::AVGFLOORU); 1015 1016 // Find the smallest power-2 type that is legal for this vector size and 1017 // operation, given the original type size and the number of known sign/zero 1018 // bits. 1019 EVT VT = Op.getValueType(); 1020 unsigned MinWidth = 1021 std::max<unsigned>(VT.getScalarSizeInBits() - KnownBits, 8); 1022 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), PowerOf2Ceil(MinWidth)); 1023 if (VT.isVector()) 1024 NVT = EVT::getVectorVT(*DAG.getContext(), NVT, VT.getVectorElementCount()); 1025 if (!TLI.isOperationLegalOrCustom(AVGOpc, NVT)) 1026 return SDValue(); 1027 1028 SDLoc DL(Op); 1029 SDValue ResultAVG = 1030 DAG.getNode(AVGOpc, DL, NVT, DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpA), 1031 DAG.getNode(ISD::TRUNCATE, DL, NVT, ExtOpB)); 1032 return DAG.getNode(IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, DL, VT, 1033 ResultAVG); 1034 } 1035 1036 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 1037 /// result of Op are ever used downstream. If we can use this information to 1038 /// simplify Op, create a new simplified DAG node and return true, returning the 1039 /// original and new nodes in Old and New. Otherwise, analyze the expression and 1040 /// return a mask of Known bits for the expression (used to simplify the 1041 /// caller). The Known bits may only be accurate for those bits in the 1042 /// OriginalDemandedBits and OriginalDemandedElts. 1043 bool TargetLowering::SimplifyDemandedBits( 1044 SDValue Op, const APInt &OriginalDemandedBits, 1045 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 1046 unsigned Depth, bool AssumeSingleUse) const { 1047 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 1048 assert(Op.getScalarValueSizeInBits() == BitWidth && 1049 "Mask size mismatches value type size!"); 1050 1051 // Don't know anything. 1052 Known = KnownBits(BitWidth); 1053 1054 // TODO: We can probably do more work on calculating the known bits and 1055 // simplifying the operations for scalable vectors, but for now we just 1056 // bail out. 1057 if (Op.getValueType().isScalableVector()) 1058 return false; 1059 1060 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 1061 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 1062 assert((!Op.getValueType().isVector() || 1063 NumElts == Op.getValueType().getVectorNumElements()) && 1064 "Unexpected vector size"); 1065 1066 APInt DemandedBits = OriginalDemandedBits; 1067 APInt DemandedElts = OriginalDemandedElts; 1068 SDLoc dl(Op); 1069 auto &DL = TLO.DAG.getDataLayout(); 1070 1071 // Undef operand. 1072 if (Op.isUndef()) 1073 return false; 1074 1075 if (Op.getOpcode() == ISD::Constant) { 1076 // We know all of the bits for a constant! 1077 Known = KnownBits::makeConstant(cast<ConstantSDNode>(Op)->getAPIntValue()); 1078 return false; 1079 } 1080 1081 if (Op.getOpcode() == ISD::ConstantFP) { 1082 // We know all of the bits for a floating point constant! 1083 Known = KnownBits::makeConstant( 1084 cast<ConstantFPSDNode>(Op)->getValueAPF().bitcastToAPInt()); 1085 return false; 1086 } 1087 1088 // Other users may use these bits. 1089 EVT VT = Op.getValueType(); 1090 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 1091 if (Depth != 0) { 1092 // If not at the root, Just compute the Known bits to 1093 // simplify things downstream. 1094 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1095 return false; 1096 } 1097 // If this is the root being simplified, allow it to have multiple uses, 1098 // just set the DemandedBits/Elts to all bits. 1099 DemandedBits = APInt::getAllOnes(BitWidth); 1100 DemandedElts = APInt::getAllOnes(NumElts); 1101 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 1102 // Not demanding any bits/elts from Op. 1103 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1104 } else if (Depth >= SelectionDAG::MaxRecursionDepth) { 1105 // Limit search depth. 1106 return false; 1107 } 1108 1109 KnownBits Known2; 1110 switch (Op.getOpcode()) { 1111 case ISD::TargetConstant: 1112 llvm_unreachable("Can't simplify this node"); 1113 case ISD::SCALAR_TO_VECTOR: { 1114 if (!DemandedElts[0]) 1115 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1116 1117 KnownBits SrcKnown; 1118 SDValue Src = Op.getOperand(0); 1119 unsigned SrcBitWidth = Src.getScalarValueSizeInBits(); 1120 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth); 1121 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1)) 1122 return true; 1123 1124 // Upper elements are undef, so only get the knownbits if we just demand 1125 // the bottom element. 1126 if (DemandedElts == 1) 1127 Known = SrcKnown.anyextOrTrunc(BitWidth); 1128 break; 1129 } 1130 case ISD::BUILD_VECTOR: 1131 // Collect the known bits that are shared by every demanded element. 1132 // TODO: Call SimplifyDemandedBits for non-constant demanded elements. 1133 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1134 return false; // Don't fall through, will infinitely loop. 1135 case ISD::LOAD: { 1136 auto *LD = cast<LoadSDNode>(Op); 1137 if (getTargetConstantFromLoad(LD)) { 1138 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1139 return false; // Don't fall through, will infinitely loop. 1140 } 1141 if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) { 1142 // If this is a ZEXTLoad and we are looking at the loaded value. 1143 EVT MemVT = LD->getMemoryVT(); 1144 unsigned MemBits = MemVT.getScalarSizeInBits(); 1145 Known.Zero.setBitsFrom(MemBits); 1146 return false; // Don't fall through, will infinitely loop. 1147 } 1148 break; 1149 } 1150 case ISD::INSERT_VECTOR_ELT: { 1151 SDValue Vec = Op.getOperand(0); 1152 SDValue Scl = Op.getOperand(1); 1153 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1154 EVT VecVT = Vec.getValueType(); 1155 1156 // If index isn't constant, assume we need all vector elements AND the 1157 // inserted element. 1158 APInt DemandedVecElts(DemandedElts); 1159 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) { 1160 unsigned Idx = CIdx->getZExtValue(); 1161 DemandedVecElts.clearBit(Idx); 1162 1163 // Inserted element is not required. 1164 if (!DemandedElts[Idx]) 1165 return TLO.CombineTo(Op, Vec); 1166 } 1167 1168 KnownBits KnownScl; 1169 unsigned NumSclBits = Scl.getScalarValueSizeInBits(); 1170 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits); 1171 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1)) 1172 return true; 1173 1174 Known = KnownScl.anyextOrTrunc(BitWidth); 1175 1176 KnownBits KnownVec; 1177 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO, 1178 Depth + 1)) 1179 return true; 1180 1181 if (!!DemandedVecElts) 1182 Known = KnownBits::commonBits(Known, KnownVec); 1183 1184 return false; 1185 } 1186 case ISD::INSERT_SUBVECTOR: { 1187 // Demand any elements from the subvector and the remainder from the src its 1188 // inserted into. 1189 SDValue Src = Op.getOperand(0); 1190 SDValue Sub = Op.getOperand(1); 1191 uint64_t Idx = Op.getConstantOperandVal(2); 1192 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 1193 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 1194 APInt DemandedSrcElts = DemandedElts; 1195 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 1196 1197 KnownBits KnownSub, KnownSrc; 1198 if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO, 1199 Depth + 1)) 1200 return true; 1201 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO, 1202 Depth + 1)) 1203 return true; 1204 1205 Known.Zero.setAllBits(); 1206 Known.One.setAllBits(); 1207 if (!!DemandedSubElts) 1208 Known = KnownBits::commonBits(Known, KnownSub); 1209 if (!!DemandedSrcElts) 1210 Known = KnownBits::commonBits(Known, KnownSrc); 1211 1212 // Attempt to avoid multi-use src if we don't need anything from it. 1213 if (!DemandedBits.isAllOnes() || !DemandedSubElts.isAllOnes() || 1214 !DemandedSrcElts.isAllOnes()) { 1215 SDValue NewSub = SimplifyMultipleUseDemandedBits( 1216 Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1); 1217 SDValue NewSrc = SimplifyMultipleUseDemandedBits( 1218 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1219 if (NewSub || NewSrc) { 1220 NewSub = NewSub ? NewSub : Sub; 1221 NewSrc = NewSrc ? NewSrc : Src; 1222 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub, 1223 Op.getOperand(2)); 1224 return TLO.CombineTo(Op, NewOp); 1225 } 1226 } 1227 break; 1228 } 1229 case ISD::EXTRACT_SUBVECTOR: { 1230 // Offset the demanded elts by the subvector index. 1231 SDValue Src = Op.getOperand(0); 1232 if (Src.getValueType().isScalableVector()) 1233 break; 1234 uint64_t Idx = Op.getConstantOperandVal(1); 1235 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1236 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1237 1238 if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO, 1239 Depth + 1)) 1240 return true; 1241 1242 // Attempt to avoid multi-use src if we don't need anything from it. 1243 if (!DemandedBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 1244 SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 1245 Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1); 1246 if (DemandedSrc) { 1247 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, 1248 Op.getOperand(1)); 1249 return TLO.CombineTo(Op, NewOp); 1250 } 1251 } 1252 break; 1253 } 1254 case ISD::CONCAT_VECTORS: { 1255 Known.Zero.setAllBits(); 1256 Known.One.setAllBits(); 1257 EVT SubVT = Op.getOperand(0).getValueType(); 1258 unsigned NumSubVecs = Op.getNumOperands(); 1259 unsigned NumSubElts = SubVT.getVectorNumElements(); 1260 for (unsigned i = 0; i != NumSubVecs; ++i) { 1261 APInt DemandedSubElts = 1262 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1263 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 1264 Known2, TLO, Depth + 1)) 1265 return true; 1266 // Known bits are shared by every demanded subvector element. 1267 if (!!DemandedSubElts) 1268 Known = KnownBits::commonBits(Known, Known2); 1269 } 1270 break; 1271 } 1272 case ISD::VECTOR_SHUFFLE: { 1273 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1274 1275 // Collect demanded elements from shuffle operands.. 1276 APInt DemandedLHS(NumElts, 0); 1277 APInt DemandedRHS(NumElts, 0); 1278 for (unsigned i = 0; i != NumElts; ++i) { 1279 if (!DemandedElts[i]) 1280 continue; 1281 int M = ShuffleMask[i]; 1282 if (M < 0) { 1283 // For UNDEF elements, we don't know anything about the common state of 1284 // the shuffle result. 1285 DemandedLHS.clearAllBits(); 1286 DemandedRHS.clearAllBits(); 1287 break; 1288 } 1289 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1290 if (M < (int)NumElts) 1291 DemandedLHS.setBit(M); 1292 else 1293 DemandedRHS.setBit(M - NumElts); 1294 } 1295 1296 if (!!DemandedLHS || !!DemandedRHS) { 1297 SDValue Op0 = Op.getOperand(0); 1298 SDValue Op1 = Op.getOperand(1); 1299 1300 Known.Zero.setAllBits(); 1301 Known.One.setAllBits(); 1302 if (!!DemandedLHS) { 1303 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO, 1304 Depth + 1)) 1305 return true; 1306 Known = KnownBits::commonBits(Known, Known2); 1307 } 1308 if (!!DemandedRHS) { 1309 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO, 1310 Depth + 1)) 1311 return true; 1312 Known = KnownBits::commonBits(Known, Known2); 1313 } 1314 1315 // Attempt to avoid multi-use ops if we don't need anything from them. 1316 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1317 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1); 1318 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1319 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1); 1320 if (DemandedOp0 || DemandedOp1) { 1321 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1322 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1323 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask); 1324 return TLO.CombineTo(Op, NewOp); 1325 } 1326 } 1327 break; 1328 } 1329 case ISD::AND: { 1330 SDValue Op0 = Op.getOperand(0); 1331 SDValue Op1 = Op.getOperand(1); 1332 1333 // If the RHS is a constant, check to see if the LHS would be zero without 1334 // using the bits from the RHS. Below, we use knowledge about the RHS to 1335 // simplify the LHS, here we're using information from the LHS to simplify 1336 // the RHS. 1337 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 1338 // Do not increment Depth here; that can cause an infinite loop. 1339 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 1340 // If the LHS already has zeros where RHSC does, this 'and' is dead. 1341 if ((LHSKnown.Zero & DemandedBits) == 1342 (~RHSC->getAPIntValue() & DemandedBits)) 1343 return TLO.CombineTo(Op, Op0); 1344 1345 // If any of the set bits in the RHS are known zero on the LHS, shrink 1346 // the constant. 1347 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, 1348 DemandedElts, TLO)) 1349 return true; 1350 1351 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 1352 // constant, but if this 'and' is only clearing bits that were just set by 1353 // the xor, then this 'and' can be eliminated by shrinking the mask of 1354 // the xor. For example, for a 32-bit X: 1355 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 1356 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 1357 LHSKnown.One == ~RHSC->getAPIntValue()) { 1358 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 1359 return TLO.CombineTo(Op, Xor); 1360 } 1361 } 1362 1363 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1364 Depth + 1)) 1365 return true; 1366 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1367 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, 1368 Known2, TLO, Depth + 1)) 1369 return true; 1370 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1371 1372 // Attempt to avoid multi-use ops if we don't need anything from them. 1373 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1374 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1375 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1376 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1377 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1378 if (DemandedOp0 || DemandedOp1) { 1379 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1380 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1381 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1382 return TLO.CombineTo(Op, NewOp); 1383 } 1384 } 1385 1386 // If all of the demanded bits are known one on one side, return the other. 1387 // These bits cannot contribute to the result of the 'and'. 1388 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 1389 return TLO.CombineTo(Op, Op0); 1390 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 1391 return TLO.CombineTo(Op, Op1); 1392 // If all of the demanded bits in the inputs are known zeros, return zero. 1393 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1394 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 1395 // If the RHS is a constant, see if we can simplify it. 1396 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, DemandedElts, 1397 TLO)) 1398 return true; 1399 // If the operation can be done in a smaller type, do so. 1400 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1401 return true; 1402 1403 Known &= Known2; 1404 break; 1405 } 1406 case ISD::OR: { 1407 SDValue Op0 = Op.getOperand(0); 1408 SDValue Op1 = Op.getOperand(1); 1409 1410 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1411 Depth + 1)) 1412 return true; 1413 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1414 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, 1415 Known2, TLO, Depth + 1)) 1416 return true; 1417 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1418 1419 // Attempt to avoid multi-use ops if we don't need anything from them. 1420 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1421 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1422 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1423 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1424 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1425 if (DemandedOp0 || DemandedOp1) { 1426 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1427 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1428 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1429 return TLO.CombineTo(Op, NewOp); 1430 } 1431 } 1432 1433 // If all of the demanded bits are known zero on one side, return the other. 1434 // These bits cannot contribute to the result of the 'or'. 1435 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 1436 return TLO.CombineTo(Op, Op0); 1437 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 1438 return TLO.CombineTo(Op, Op1); 1439 // If the RHS is a constant, see if we can simplify it. 1440 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1441 return true; 1442 // If the operation can be done in a smaller type, do so. 1443 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1444 return true; 1445 1446 Known |= Known2; 1447 break; 1448 } 1449 case ISD::XOR: { 1450 SDValue Op0 = Op.getOperand(0); 1451 SDValue Op1 = Op.getOperand(1); 1452 1453 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, 1454 Depth + 1)) 1455 return true; 1456 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1457 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, 1458 Depth + 1)) 1459 return true; 1460 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1461 1462 // Attempt to avoid multi-use ops if we don't need anything from them. 1463 if (!DemandedBits.isAllOnes() || !DemandedElts.isAllOnes()) { 1464 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1465 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1466 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 1467 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1); 1468 if (DemandedOp0 || DemandedOp1) { 1469 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 1470 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 1471 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1); 1472 return TLO.CombineTo(Op, NewOp); 1473 } 1474 } 1475 1476 // If all of the demanded bits are known zero on one side, return the other. 1477 // These bits cannot contribute to the result of the 'xor'. 1478 if (DemandedBits.isSubsetOf(Known.Zero)) 1479 return TLO.CombineTo(Op, Op0); 1480 if (DemandedBits.isSubsetOf(Known2.Zero)) 1481 return TLO.CombineTo(Op, Op1); 1482 // If the operation can be done in a smaller type, do so. 1483 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1484 return true; 1485 1486 // If all of the unknown bits are known to be zero on one side or the other 1487 // turn this into an *inclusive* or. 1488 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 1489 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 1490 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 1491 1492 ConstantSDNode* C = isConstOrConstSplat(Op1, DemandedElts); 1493 if (C) { 1494 // If one side is a constant, and all of the set bits in the constant are 1495 // also known set on the other side, turn this into an AND, as we know 1496 // the bits will be cleared. 1497 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 1498 // NB: it is okay if more bits are known than are requested 1499 if (C->getAPIntValue() == Known2.One) { 1500 SDValue ANDC = 1501 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 1502 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 1503 } 1504 1505 // If the RHS is a constant, see if we can change it. Don't alter a -1 1506 // constant because that's a 'not' op, and that is better for combining 1507 // and codegen. 1508 if (!C->isAllOnes() && DemandedBits.isSubsetOf(C->getAPIntValue())) { 1509 // We're flipping all demanded bits. Flip the undemanded bits too. 1510 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 1511 return TLO.CombineTo(Op, New); 1512 } 1513 } 1514 1515 // If we can't turn this into a 'not', try to shrink the constant. 1516 if (!C || !C->isAllOnes()) 1517 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1518 return true; 1519 1520 Known ^= Known2; 1521 break; 1522 } 1523 case ISD::SELECT: 1524 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 1525 Depth + 1)) 1526 return true; 1527 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 1528 Depth + 1)) 1529 return true; 1530 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1531 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1532 1533 // If the operands are constants, see if we can simplify them. 1534 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1535 return true; 1536 1537 // Only known if known in both the LHS and RHS. 1538 Known = KnownBits::commonBits(Known, Known2); 1539 break; 1540 case ISD::SELECT_CC: 1541 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 1542 Depth + 1)) 1543 return true; 1544 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 1545 Depth + 1)) 1546 return true; 1547 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1548 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 1549 1550 // If the operands are constants, see if we can simplify them. 1551 if (ShrinkDemandedConstant(Op, DemandedBits, DemandedElts, TLO)) 1552 return true; 1553 1554 // Only known if known in both the LHS and RHS. 1555 Known = KnownBits::commonBits(Known, Known2); 1556 break; 1557 case ISD::SETCC: { 1558 SDValue Op0 = Op.getOperand(0); 1559 SDValue Op1 = Op.getOperand(1); 1560 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 1561 // If (1) we only need the sign-bit, (2) the setcc operands are the same 1562 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 1563 // -1, we may be able to bypass the setcc. 1564 if (DemandedBits.isSignMask() && 1565 Op0.getScalarValueSizeInBits() == BitWidth && 1566 getBooleanContents(Op0.getValueType()) == 1567 BooleanContent::ZeroOrNegativeOneBooleanContent) { 1568 // If we're testing X < 0, then this compare isn't needed - just use X! 1569 // FIXME: We're limiting to integer types here, but this should also work 1570 // if we don't care about FP signed-zero. The use of SETLT with FP means 1571 // that we don't care about NaNs. 1572 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 1573 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 1574 return TLO.CombineTo(Op, Op0); 1575 1576 // TODO: Should we check for other forms of sign-bit comparisons? 1577 // Examples: X <= -1, X >= 0 1578 } 1579 if (getBooleanContents(Op0.getValueType()) == 1580 TargetLowering::ZeroOrOneBooleanContent && 1581 BitWidth > 1) 1582 Known.Zero.setBitsFrom(1); 1583 break; 1584 } 1585 case ISD::SHL: { 1586 SDValue Op0 = Op.getOperand(0); 1587 SDValue Op1 = Op.getOperand(1); 1588 EVT ShiftVT = Op1.getValueType(); 1589 1590 if (const APInt *SA = 1591 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1592 unsigned ShAmt = SA->getZExtValue(); 1593 if (ShAmt == 0) 1594 return TLO.CombineTo(Op, Op0); 1595 1596 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 1597 // single shift. We can do this if the bottom bits (which are shifted 1598 // out) are never demanded. 1599 // TODO - support non-uniform vector amounts. 1600 if (Op0.getOpcode() == ISD::SRL) { 1601 if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) { 1602 if (const APInt *SA2 = 1603 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1604 unsigned C1 = SA2->getZExtValue(); 1605 unsigned Opc = ISD::SHL; 1606 int Diff = ShAmt - C1; 1607 if (Diff < 0) { 1608 Diff = -Diff; 1609 Opc = ISD::SRL; 1610 } 1611 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1612 return TLO.CombineTo( 1613 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1614 } 1615 } 1616 } 1617 1618 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 1619 // are not demanded. This will likely allow the anyext to be folded away. 1620 // TODO - support non-uniform vector amounts. 1621 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 1622 SDValue InnerOp = Op0.getOperand(0); 1623 EVT InnerVT = InnerOp.getValueType(); 1624 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 1625 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 1626 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 1627 EVT ShTy = getShiftAmountTy(InnerVT, DL); 1628 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 1629 ShTy = InnerVT; 1630 SDValue NarrowShl = 1631 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 1632 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 1633 return TLO.CombineTo( 1634 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 1635 } 1636 1637 // Repeat the SHL optimization above in cases where an extension 1638 // intervenes: (shl (anyext (shr x, c1)), c2) to 1639 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 1640 // aren't demanded (as above) and that the shifted upper c1 bits of 1641 // x aren't demanded. 1642 // TODO - support non-uniform vector amounts. 1643 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 1644 InnerOp.hasOneUse()) { 1645 if (const APInt *SA2 = 1646 TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) { 1647 unsigned InnerShAmt = SA2->getZExtValue(); 1648 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 1649 DemandedBits.getActiveBits() <= 1650 (InnerBits - InnerShAmt + ShAmt) && 1651 DemandedBits.countTrailingZeros() >= ShAmt) { 1652 SDValue NewSA = 1653 TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT); 1654 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 1655 InnerOp.getOperand(0)); 1656 return TLO.CombineTo( 1657 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 1658 } 1659 } 1660 } 1661 } 1662 1663 APInt InDemandedMask = DemandedBits.lshr(ShAmt); 1664 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1665 Depth + 1)) 1666 return true; 1667 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1668 Known.Zero <<= ShAmt; 1669 Known.One <<= ShAmt; 1670 // low bits known zero. 1671 Known.Zero.setLowBits(ShAmt); 1672 1673 // Try shrinking the operation as long as the shift amount will still be 1674 // in range. 1675 if ((ShAmt < DemandedBits.getActiveBits()) && 1676 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 1677 return true; 1678 } 1679 1680 // If we are only demanding sign bits then we can use the shift source 1681 // directly. 1682 if (const APInt *MaxSA = 1683 TLO.DAG.getValidMaximumShiftAmountConstant(Op, DemandedElts)) { 1684 unsigned ShAmt = MaxSA->getZExtValue(); 1685 unsigned NumSignBits = 1686 TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1); 1687 unsigned UpperDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1688 if (NumSignBits > ShAmt && (NumSignBits - ShAmt) >= (UpperDemandedBits)) 1689 return TLO.CombineTo(Op, Op0); 1690 } 1691 break; 1692 } 1693 case ISD::SRL: { 1694 SDValue Op0 = Op.getOperand(0); 1695 SDValue Op1 = Op.getOperand(1); 1696 EVT ShiftVT = Op1.getValueType(); 1697 1698 // Try to match AVG patterns. 1699 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1700 DemandedElts, Depth + 1)) 1701 return TLO.CombineTo(Op, AVG); 1702 1703 if (const APInt *SA = 1704 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1705 unsigned ShAmt = SA->getZExtValue(); 1706 if (ShAmt == 0) 1707 return TLO.CombineTo(Op, Op0); 1708 1709 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 1710 // single shift. We can do this if the top bits (which are shifted out) 1711 // are never demanded. 1712 // TODO - support non-uniform vector amounts. 1713 if (Op0.getOpcode() == ISD::SHL) { 1714 if (!DemandedBits.intersects(APInt::getHighBitsSet(BitWidth, ShAmt))) { 1715 if (const APInt *SA2 = 1716 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) { 1717 unsigned C1 = SA2->getZExtValue(); 1718 unsigned Opc = ISD::SRL; 1719 int Diff = ShAmt - C1; 1720 if (Diff < 0) { 1721 Diff = -Diff; 1722 Opc = ISD::SHL; 1723 } 1724 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT); 1725 return TLO.CombineTo( 1726 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 1727 } 1728 } 1729 } 1730 1731 APInt InDemandedMask = (DemandedBits << ShAmt); 1732 1733 // If the shift is exact, then it does demand the low bits (and knows that 1734 // they are zero). 1735 if (Op->getFlags().hasExact()) 1736 InDemandedMask.setLowBits(ShAmt); 1737 1738 // Compute the new bits that are at the top now. 1739 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1740 Depth + 1)) 1741 return true; 1742 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1743 Known.Zero.lshrInPlace(ShAmt); 1744 Known.One.lshrInPlace(ShAmt); 1745 // High bits known zero. 1746 Known.Zero.setHighBits(ShAmt); 1747 } 1748 break; 1749 } 1750 case ISD::SRA: { 1751 SDValue Op0 = Op.getOperand(0); 1752 SDValue Op1 = Op.getOperand(1); 1753 EVT ShiftVT = Op1.getValueType(); 1754 1755 // If we only want bits that already match the signbit then we don't need 1756 // to shift. 1757 unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros(); 1758 if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >= 1759 NumHiDemandedBits) 1760 return TLO.CombineTo(Op, Op0); 1761 1762 // If this is an arithmetic shift right and only the low-bit is set, we can 1763 // always convert this into a logical shr, even if the shift amount is 1764 // variable. The low bit of the shift cannot be an input sign bit unless 1765 // the shift amount is >= the size of the datatype, which is undefined. 1766 if (DemandedBits.isOne()) 1767 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1768 1769 // Try to match AVG patterns. 1770 if (SDValue AVG = combineShiftToAVG(Op, TLO.DAG, *this, DemandedBits, 1771 DemandedElts, Depth + 1)) 1772 return TLO.CombineTo(Op, AVG); 1773 1774 if (const APInt *SA = 1775 TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) { 1776 unsigned ShAmt = SA->getZExtValue(); 1777 if (ShAmt == 0) 1778 return TLO.CombineTo(Op, Op0); 1779 1780 APInt InDemandedMask = (DemandedBits << ShAmt); 1781 1782 // If the shift is exact, then it does demand the low bits (and knows that 1783 // they are zero). 1784 if (Op->getFlags().hasExact()) 1785 InDemandedMask.setLowBits(ShAmt); 1786 1787 // If any of the demanded bits are produced by the sign extension, we also 1788 // demand the input sign bit. 1789 if (DemandedBits.countLeadingZeros() < ShAmt) 1790 InDemandedMask.setSignBit(); 1791 1792 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, 1793 Depth + 1)) 1794 return true; 1795 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1796 Known.Zero.lshrInPlace(ShAmt); 1797 Known.One.lshrInPlace(ShAmt); 1798 1799 // If the input sign bit is known to be zero, or if none of the top bits 1800 // are demanded, turn this into an unsigned shift right. 1801 if (Known.Zero[BitWidth - ShAmt - 1] || 1802 DemandedBits.countLeadingZeros() >= ShAmt) { 1803 SDNodeFlags Flags; 1804 Flags.setExact(Op->getFlags().hasExact()); 1805 return TLO.CombineTo( 1806 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1807 } 1808 1809 int Log2 = DemandedBits.exactLogBase2(); 1810 if (Log2 >= 0) { 1811 // The bit must come from the sign. 1812 SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT); 1813 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1814 } 1815 1816 if (Known.One[BitWidth - ShAmt - 1]) 1817 // New bits are known one. 1818 Known.One.setHighBits(ShAmt); 1819 1820 // Attempt to avoid multi-use ops if we don't need anything from them. 1821 if (!InDemandedMask.isAllOnes() || !DemandedElts.isAllOnes()) { 1822 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 1823 Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1); 1824 if (DemandedOp0) { 1825 SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1); 1826 return TLO.CombineTo(Op, NewOp); 1827 } 1828 } 1829 } 1830 break; 1831 } 1832 case ISD::FSHL: 1833 case ISD::FSHR: { 1834 SDValue Op0 = Op.getOperand(0); 1835 SDValue Op1 = Op.getOperand(1); 1836 SDValue Op2 = Op.getOperand(2); 1837 bool IsFSHL = (Op.getOpcode() == ISD::FSHL); 1838 1839 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) { 1840 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1841 1842 // For fshl, 0-shift returns the 1st arg. 1843 // For fshr, 0-shift returns the 2nd arg. 1844 if (Amt == 0) { 1845 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts, 1846 Known, TLO, Depth + 1)) 1847 return true; 1848 break; 1849 } 1850 1851 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt)) 1852 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt) 1853 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt)); 1854 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt); 1855 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1856 Depth + 1)) 1857 return true; 1858 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO, 1859 Depth + 1)) 1860 return true; 1861 1862 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1863 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt)); 1864 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1865 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt); 1866 Known.One |= Known2.One; 1867 Known.Zero |= Known2.Zero; 1868 } 1869 1870 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1871 if (isPowerOf2_32(BitWidth)) { 1872 APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1); 1873 if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts, 1874 Known2, TLO, Depth + 1)) 1875 return true; 1876 } 1877 break; 1878 } 1879 case ISD::ROTL: 1880 case ISD::ROTR: { 1881 SDValue Op0 = Op.getOperand(0); 1882 SDValue Op1 = Op.getOperand(1); 1883 bool IsROTL = (Op.getOpcode() == ISD::ROTL); 1884 1885 // If we're rotating an 0/-1 value, then it stays an 0/-1 value. 1886 if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1)) 1887 return TLO.CombineTo(Op, Op0); 1888 1889 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) { 1890 unsigned Amt = SA->getAPIntValue().urem(BitWidth); 1891 unsigned RevAmt = BitWidth - Amt; 1892 1893 // rotl: (Op0 << Amt) | (Op0 >> (BW - Amt)) 1894 // rotr: (Op0 << (BW - Amt)) | (Op0 >> Amt) 1895 APInt Demanded0 = DemandedBits.rotr(IsROTL ? Amt : RevAmt); 1896 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO, 1897 Depth + 1)) 1898 return true; 1899 1900 // rot*(x, 0) --> x 1901 if (Amt == 0) 1902 return TLO.CombineTo(Op, Op0); 1903 1904 // See if we don't demand either half of the rotated bits. 1905 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SHL, VT)) && 1906 DemandedBits.countTrailingZeros() >= (IsROTL ? Amt : RevAmt)) { 1907 Op1 = TLO.DAG.getConstant(IsROTL ? Amt : RevAmt, dl, Op1.getValueType()); 1908 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, Op1)); 1909 } 1910 if ((!TLO.LegalOperations() || isOperationLegal(ISD::SRL, VT)) && 1911 DemandedBits.countLeadingZeros() >= (IsROTL ? RevAmt : Amt)) { 1912 Op1 = TLO.DAG.getConstant(IsROTL ? RevAmt : Amt, dl, Op1.getValueType()); 1913 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 1914 } 1915 } 1916 1917 // For pow-2 bitwidths we only demand the bottom modulo amt bits. 1918 if (isPowerOf2_32(BitWidth)) { 1919 APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1); 1920 if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO, 1921 Depth + 1)) 1922 return true; 1923 } 1924 break; 1925 } 1926 case ISD::UMIN: { 1927 // Check if one arg is always less than (or equal) to the other arg. 1928 SDValue Op0 = Op.getOperand(0); 1929 SDValue Op1 = Op.getOperand(1); 1930 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1931 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1932 Known = KnownBits::umin(Known0, Known1); 1933 if (Optional<bool> IsULE = KnownBits::ule(Known0, Known1)) 1934 return TLO.CombineTo(Op, IsULE.getValue() ? Op0 : Op1); 1935 if (Optional<bool> IsULT = KnownBits::ult(Known0, Known1)) 1936 return TLO.CombineTo(Op, IsULT.getValue() ? Op0 : Op1); 1937 break; 1938 } 1939 case ISD::UMAX: { 1940 // Check if one arg is always greater than (or equal) to the other arg. 1941 SDValue Op0 = Op.getOperand(0); 1942 SDValue Op1 = Op.getOperand(1); 1943 KnownBits Known0 = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth + 1); 1944 KnownBits Known1 = TLO.DAG.computeKnownBits(Op1, DemandedElts, Depth + 1); 1945 Known = KnownBits::umax(Known0, Known1); 1946 if (Optional<bool> IsUGE = KnownBits::uge(Known0, Known1)) 1947 return TLO.CombineTo(Op, IsUGE.getValue() ? Op0 : Op1); 1948 if (Optional<bool> IsUGT = KnownBits::ugt(Known0, Known1)) 1949 return TLO.CombineTo(Op, IsUGT.getValue() ? Op0 : Op1); 1950 break; 1951 } 1952 case ISD::BITREVERSE: { 1953 SDValue Src = Op.getOperand(0); 1954 APInt DemandedSrcBits = DemandedBits.reverseBits(); 1955 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1956 Depth + 1)) 1957 return true; 1958 Known.One = Known2.One.reverseBits(); 1959 Known.Zero = Known2.Zero.reverseBits(); 1960 break; 1961 } 1962 case ISD::BSWAP: { 1963 SDValue Src = Op.getOperand(0); 1964 1965 // If the only bits demanded come from one byte of the bswap result, 1966 // just shift the input byte into position to eliminate the bswap. 1967 unsigned NLZ = DemandedBits.countLeadingZeros(); 1968 unsigned NTZ = DemandedBits.countTrailingZeros(); 1969 1970 // Round NTZ down to the next byte. If we have 11 trailing zeros, then 1971 // we need all the bits down to bit 8. Likewise, round NLZ. If we 1972 // have 14 leading zeros, round to 8. 1973 NLZ = alignDown(NLZ, 8); 1974 NTZ = alignDown(NTZ, 8); 1975 // If we need exactly one byte, we can do this transformation. 1976 if (BitWidth - NLZ - NTZ == 8) { 1977 // Replace this with either a left or right shift to get the byte into 1978 // the right place. 1979 unsigned ShiftOpcode = NLZ > NTZ ? ISD::SRL : ISD::SHL; 1980 if (!TLO.LegalOperations() || isOperationLegal(ShiftOpcode, VT)) { 1981 EVT ShiftAmtTy = getShiftAmountTy(VT, DL); 1982 unsigned ShiftAmount = NLZ > NTZ ? NLZ - NTZ : NTZ - NLZ; 1983 SDValue ShAmt = TLO.DAG.getConstant(ShiftAmount, dl, ShiftAmtTy); 1984 SDValue NewOp = TLO.DAG.getNode(ShiftOpcode, dl, VT, Src, ShAmt); 1985 return TLO.CombineTo(Op, NewOp); 1986 } 1987 } 1988 1989 APInt DemandedSrcBits = DemandedBits.byteSwap(); 1990 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO, 1991 Depth + 1)) 1992 return true; 1993 Known.One = Known2.One.byteSwap(); 1994 Known.Zero = Known2.Zero.byteSwap(); 1995 break; 1996 } 1997 case ISD::CTPOP: { 1998 // If only 1 bit is demanded, replace with PARITY as long as we're before 1999 // op legalization. 2000 // FIXME: Limit to scalars for now. 2001 if (DemandedBits.isOne() && !TLO.LegalOps && !VT.isVector()) 2002 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::PARITY, dl, VT, 2003 Op.getOperand(0))); 2004 2005 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2006 break; 2007 } 2008 case ISD::SIGN_EXTEND_INREG: { 2009 SDValue Op0 = Op.getOperand(0); 2010 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2011 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 2012 2013 // If we only care about the highest bit, don't bother shifting right. 2014 if (DemandedBits.isSignMask()) { 2015 unsigned MinSignedBits = 2016 TLO.DAG.ComputeMaxSignificantBits(Op0, DemandedElts, Depth + 1); 2017 bool AlreadySignExtended = ExVTBits >= MinSignedBits; 2018 // However if the input is already sign extended we expect the sign 2019 // extension to be dropped altogether later and do not simplify. 2020 if (!AlreadySignExtended) { 2021 // Compute the correct shift amount type, which must be getShiftAmountTy 2022 // for scalar types after legalization. 2023 SDValue ShiftAmt = TLO.DAG.getConstant(BitWidth - ExVTBits, dl, 2024 getShiftAmountTy(VT, DL)); 2025 return TLO.CombineTo(Op, 2026 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 2027 } 2028 } 2029 2030 // If none of the extended bits are demanded, eliminate the sextinreg. 2031 if (DemandedBits.getActiveBits() <= ExVTBits) 2032 return TLO.CombineTo(Op, Op0); 2033 2034 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 2035 2036 // Since the sign extended bits are demanded, we know that the sign 2037 // bit is demanded. 2038 InputDemandedBits.setBit(ExVTBits - 1); 2039 2040 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 2041 return true; 2042 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2043 2044 // If the sign bit of the input is known set or clear, then we know the 2045 // top bits of the result. 2046 2047 // If the input sign bit is known zero, convert this into a zero extension. 2048 if (Known.Zero[ExVTBits - 1]) 2049 return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT)); 2050 2051 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 2052 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 2053 Known.One.setBitsFrom(ExVTBits); 2054 Known.Zero &= Mask; 2055 } else { // Input sign bit unknown 2056 Known.Zero &= Mask; 2057 Known.One &= Mask; 2058 } 2059 break; 2060 } 2061 case ISD::BUILD_PAIR: { 2062 EVT HalfVT = Op.getOperand(0).getValueType(); 2063 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 2064 2065 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 2066 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 2067 2068 KnownBits KnownLo, KnownHi; 2069 2070 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 2071 return true; 2072 2073 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 2074 return true; 2075 2076 Known.Zero = KnownLo.Zero.zext(BitWidth) | 2077 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 2078 2079 Known.One = KnownLo.One.zext(BitWidth) | 2080 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 2081 break; 2082 } 2083 case ISD::ZERO_EXTEND: 2084 case ISD::ZERO_EXTEND_VECTOR_INREG: { 2085 SDValue Src = Op.getOperand(0); 2086 EVT SrcVT = Src.getValueType(); 2087 unsigned InBits = SrcVT.getScalarSizeInBits(); 2088 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2089 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG; 2090 2091 // If none of the top bits are demanded, convert this into an any_extend. 2092 if (DemandedBits.getActiveBits() <= InBits) { 2093 // If we only need the non-extended bits of the bottom element 2094 // then we can just bitcast to the result. 2095 if (IsLE && IsVecInReg && DemandedElts == 1 && 2096 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2097 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2098 2099 unsigned Opc = 2100 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2101 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2102 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2103 } 2104 2105 APInt InDemandedBits = DemandedBits.trunc(InBits); 2106 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2107 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2108 Depth + 1)) 2109 return true; 2110 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2111 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2112 Known = Known.zext(BitWidth); 2113 2114 // Attempt to avoid multi-use ops if we don't need anything from them. 2115 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2116 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2117 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2118 break; 2119 } 2120 case ISD::SIGN_EXTEND: 2121 case ISD::SIGN_EXTEND_VECTOR_INREG: { 2122 SDValue Src = Op.getOperand(0); 2123 EVT SrcVT = Src.getValueType(); 2124 unsigned InBits = SrcVT.getScalarSizeInBits(); 2125 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2126 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG; 2127 2128 // If none of the top bits are demanded, convert this into an any_extend. 2129 if (DemandedBits.getActiveBits() <= InBits) { 2130 // If we only need the non-extended bits of the bottom element 2131 // then we can just bitcast to the result. 2132 if (IsLE && IsVecInReg && DemandedElts == 1 && 2133 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2134 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2135 2136 unsigned Opc = 2137 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND; 2138 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2139 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2140 } 2141 2142 APInt InDemandedBits = DemandedBits.trunc(InBits); 2143 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2144 2145 // Since some of the sign extended bits are demanded, we know that the sign 2146 // bit is demanded. 2147 InDemandedBits.setBit(InBits - 1); 2148 2149 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2150 Depth + 1)) 2151 return true; 2152 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2153 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2154 2155 // If the sign bit is known one, the top bits match. 2156 Known = Known.sext(BitWidth); 2157 2158 // If the sign bit is known zero, convert this to a zero extend. 2159 if (Known.isNonNegative()) { 2160 unsigned Opc = 2161 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND; 2162 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT)) 2163 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src)); 2164 } 2165 2166 // Attempt to avoid multi-use ops if we don't need anything from them. 2167 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2168 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2169 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2170 break; 2171 } 2172 case ISD::ANY_EXTEND: 2173 case ISD::ANY_EXTEND_VECTOR_INREG: { 2174 SDValue Src = Op.getOperand(0); 2175 EVT SrcVT = Src.getValueType(); 2176 unsigned InBits = SrcVT.getScalarSizeInBits(); 2177 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2178 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG; 2179 2180 // If we only need the bottom element then we can just bitcast. 2181 // TODO: Handle ANY_EXTEND? 2182 if (IsLE && IsVecInReg && DemandedElts == 1 && 2183 VT.getSizeInBits() == SrcVT.getSizeInBits()) 2184 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 2185 2186 APInt InDemandedBits = DemandedBits.trunc(InBits); 2187 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts); 2188 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO, 2189 Depth + 1)) 2190 return true; 2191 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2192 assert(Known.getBitWidth() == InBits && "Src width has changed?"); 2193 Known = Known.anyext(BitWidth); 2194 2195 // Attempt to avoid multi-use ops if we don't need anything from them. 2196 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2197 Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1)) 2198 return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc)); 2199 break; 2200 } 2201 case ISD::TRUNCATE: { 2202 SDValue Src = Op.getOperand(0); 2203 2204 // Simplify the input, using demanded bit information, and compute the known 2205 // zero/one bits live out. 2206 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 2207 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 2208 if (SimplifyDemandedBits(Src, TruncMask, DemandedElts, Known, TLO, 2209 Depth + 1)) 2210 return true; 2211 Known = Known.trunc(BitWidth); 2212 2213 // Attempt to avoid multi-use ops if we don't need anything from them. 2214 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits( 2215 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1)) 2216 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc)); 2217 2218 // If the input is only used by this truncate, see if we can shrink it based 2219 // on the known demanded bits. 2220 if (Src.getNode()->hasOneUse()) { 2221 switch (Src.getOpcode()) { 2222 default: 2223 break; 2224 case ISD::SRL: 2225 // Shrink SRL by a constant if none of the high bits shifted in are 2226 // demanded. 2227 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 2228 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 2229 // undesirable. 2230 break; 2231 2232 const APInt *ShAmtC = 2233 TLO.DAG.getValidShiftAmountConstant(Src, DemandedElts); 2234 if (!ShAmtC || ShAmtC->uge(BitWidth)) 2235 break; 2236 uint64_t ShVal = ShAmtC->getZExtValue(); 2237 2238 APInt HighBits = 2239 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth); 2240 HighBits.lshrInPlace(ShVal); 2241 HighBits = HighBits.trunc(BitWidth); 2242 2243 if (!(HighBits & DemandedBits)) { 2244 // None of the shifted in bits are needed. Add a truncate of the 2245 // shift input, then shift it. 2246 SDValue NewShAmt = TLO.DAG.getConstant( 2247 ShVal, dl, getShiftAmountTy(VT, DL, TLO.LegalTypes())); 2248 SDValue NewTrunc = 2249 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 2250 return TLO.CombineTo( 2251 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, NewShAmt)); 2252 } 2253 break; 2254 } 2255 } 2256 2257 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2258 break; 2259 } 2260 case ISD::AssertZext: { 2261 // AssertZext demands all of the high bits, plus any of the low bits 2262 // demanded by its users. 2263 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2264 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 2265 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known, 2266 TLO, Depth + 1)) 2267 return true; 2268 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 2269 2270 Known.Zero |= ~InMask; 2271 break; 2272 } 2273 case ISD::EXTRACT_VECTOR_ELT: { 2274 SDValue Src = Op.getOperand(0); 2275 SDValue Idx = Op.getOperand(1); 2276 ElementCount SrcEltCnt = Src.getValueType().getVectorElementCount(); 2277 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 2278 2279 if (SrcEltCnt.isScalable()) 2280 return false; 2281 2282 // Demand the bits from every vector element without a constant index. 2283 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2284 APInt DemandedSrcElts = APInt::getAllOnes(NumSrcElts); 2285 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 2286 if (CIdx->getAPIntValue().ult(NumSrcElts)) 2287 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 2288 2289 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 2290 // anything about the extended bits. 2291 APInt DemandedSrcBits = DemandedBits; 2292 if (BitWidth > EltBitWidth) 2293 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 2294 2295 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 2296 Depth + 1)) 2297 return true; 2298 2299 // Attempt to avoid multi-use ops if we don't need anything from them. 2300 if (!DemandedSrcBits.isAllOnes() || !DemandedSrcElts.isAllOnes()) { 2301 if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits( 2302 Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) { 2303 SDValue NewOp = 2304 TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx); 2305 return TLO.CombineTo(Op, NewOp); 2306 } 2307 } 2308 2309 Known = Known2; 2310 if (BitWidth > EltBitWidth) 2311 Known = Known.anyext(BitWidth); 2312 break; 2313 } 2314 case ISD::BITCAST: { 2315 SDValue Src = Op.getOperand(0); 2316 EVT SrcVT = Src.getValueType(); 2317 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 2318 2319 // If this is an FP->Int bitcast and if the sign bit is the only 2320 // thing demanded, turn this into a FGETSIGN. 2321 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 2322 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 2323 SrcVT.isFloatingPoint()) { 2324 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 2325 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 2326 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 2327 SrcVT != MVT::f128) { 2328 // Cannot eliminate/lower SHL for f128 yet. 2329 EVT Ty = OpVTLegal ? VT : MVT::i32; 2330 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 2331 // place. We expect the SHL to be eliminated by other optimizations. 2332 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 2333 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 2334 if (!OpVTLegal && OpVTSizeInBits > 32) 2335 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 2336 unsigned ShVal = Op.getValueSizeInBits() - 1; 2337 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 2338 return TLO.CombineTo(Op, 2339 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 2340 } 2341 } 2342 2343 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts. 2344 // Demand the elt/bit if any of the original elts/bits are demanded. 2345 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0) { 2346 unsigned Scale = BitWidth / NumSrcEltBits; 2347 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2348 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2349 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2350 for (unsigned i = 0; i != Scale; ++i) { 2351 unsigned EltOffset = IsLE ? i : (Scale - 1 - i); 2352 unsigned BitOffset = EltOffset * NumSrcEltBits; 2353 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, BitOffset); 2354 if (!Sub.isZero()) { 2355 DemandedSrcBits |= Sub; 2356 for (unsigned j = 0; j != NumElts; ++j) 2357 if (DemandedElts[j]) 2358 DemandedSrcElts.setBit((j * Scale) + i); 2359 } 2360 } 2361 2362 APInt KnownSrcUndef, KnownSrcZero; 2363 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2364 KnownSrcZero, TLO, Depth + 1)) 2365 return true; 2366 2367 KnownBits KnownSrcBits; 2368 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2369 KnownSrcBits, TLO, Depth + 1)) 2370 return true; 2371 } else if (IsLE && (NumSrcEltBits % BitWidth) == 0) { 2372 // TODO - bigendian once we have test coverage. 2373 unsigned Scale = NumSrcEltBits / BitWidth; 2374 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1; 2375 APInt DemandedSrcBits = APInt::getZero(NumSrcEltBits); 2376 APInt DemandedSrcElts = APInt::getZero(NumSrcElts); 2377 for (unsigned i = 0; i != NumElts; ++i) 2378 if (DemandedElts[i]) { 2379 unsigned Offset = (i % Scale) * BitWidth; 2380 DemandedSrcBits.insertBits(DemandedBits, Offset); 2381 DemandedSrcElts.setBit(i / Scale); 2382 } 2383 2384 if (SrcVT.isVector()) { 2385 APInt KnownSrcUndef, KnownSrcZero; 2386 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef, 2387 KnownSrcZero, TLO, Depth + 1)) 2388 return true; 2389 } 2390 2391 KnownBits KnownSrcBits; 2392 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, 2393 KnownSrcBits, TLO, Depth + 1)) 2394 return true; 2395 } 2396 2397 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 2398 // recursive call where Known may be useful to the caller. 2399 if (Depth > 0) { 2400 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2401 return false; 2402 } 2403 break; 2404 } 2405 case ISD::MUL: 2406 if (DemandedBits.isPowerOf2()) { 2407 // The LSB of X*Y is set only if (X & 1) == 1 and (Y & 1) == 1. 2408 // If we demand exactly one bit N and we have "X * (C' << N)" where C' is 2409 // odd (has LSB set), then the left-shifted low bit of X is the answer. 2410 unsigned CTZ = DemandedBits.countTrailingZeros(); 2411 ConstantSDNode *C = isConstOrConstSplat(Op.getOperand(1), DemandedElts); 2412 if (C && C->getAPIntValue().countTrailingZeros() == CTZ) { 2413 EVT ShiftAmtTy = getShiftAmountTy(VT, TLO.DAG.getDataLayout()); 2414 SDValue AmtC = TLO.DAG.getConstant(CTZ, dl, ShiftAmtTy); 2415 SDValue Shl = TLO.DAG.getNode(ISD::SHL, dl, VT, Op.getOperand(0), AmtC); 2416 return TLO.CombineTo(Op, Shl); 2417 } 2418 } 2419 // For a squared value "X * X", the bottom 2 bits are 0 and X[0] because: 2420 // X * X is odd iff X is odd. 2421 // 'Quadratic Reciprocity': X * X -> 0 for bit[1] 2422 if (Op.getOperand(0) == Op.getOperand(1) && DemandedBits.ult(4)) { 2423 SDValue One = TLO.DAG.getConstant(1, dl, VT); 2424 SDValue And1 = TLO.DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), One); 2425 return TLO.CombineTo(Op, And1); 2426 } 2427 LLVM_FALLTHROUGH; 2428 case ISD::ADD: 2429 case ISD::SUB: { 2430 // Add, Sub, and Mul don't demand any bits in positions beyond that 2431 // of the highest bit demanded of them. 2432 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 2433 SDNodeFlags Flags = Op.getNode()->getFlags(); 2434 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 2435 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 2436 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, 2437 Depth + 1) || 2438 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, 2439 Depth + 1) || 2440 // See if the operation should be performed at a smaller bit width. 2441 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 2442 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 2443 // Disable the nsw and nuw flags. We can no longer guarantee that we 2444 // won't wrap after simplification. 2445 Flags.setNoSignedWrap(false); 2446 Flags.setNoUnsignedWrap(false); 2447 SDValue NewOp = 2448 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2449 return TLO.CombineTo(Op, NewOp); 2450 } 2451 return true; 2452 } 2453 2454 // Attempt to avoid multi-use ops if we don't need anything from them. 2455 if (!LoMask.isAllOnes() || !DemandedElts.isAllOnes()) { 2456 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits( 2457 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2458 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits( 2459 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1); 2460 if (DemandedOp0 || DemandedOp1) { 2461 Flags.setNoSignedWrap(false); 2462 Flags.setNoUnsignedWrap(false); 2463 Op0 = DemandedOp0 ? DemandedOp0 : Op0; 2464 Op1 = DemandedOp1 ? DemandedOp1 : Op1; 2465 SDValue NewOp = 2466 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags); 2467 return TLO.CombineTo(Op, NewOp); 2468 } 2469 } 2470 2471 // If we have a constant operand, we may be able to turn it into -1 if we 2472 // do not demand the high bits. This can make the constant smaller to 2473 // encode, allow more general folding, or match specialized instruction 2474 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 2475 // is probably not useful (and could be detrimental). 2476 ConstantSDNode *C = isConstOrConstSplat(Op1); 2477 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 2478 if (C && !C->isAllOnes() && !C->isOne() && 2479 (C->getAPIntValue() | HighMask).isAllOnes()) { 2480 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 2481 // Disable the nsw and nuw flags. We can no longer guarantee that we 2482 // won't wrap after simplification. 2483 Flags.setNoSignedWrap(false); 2484 Flags.setNoUnsignedWrap(false); 2485 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 2486 return TLO.CombineTo(Op, NewOp); 2487 } 2488 2489 LLVM_FALLTHROUGH; 2490 } 2491 default: 2492 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 2493 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 2494 Known, TLO, Depth)) 2495 return true; 2496 break; 2497 } 2498 2499 // Just use computeKnownBits to compute output bits. 2500 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 2501 break; 2502 } 2503 2504 // If we know the value of all of the demanded bits, return this as a 2505 // constant. 2506 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 2507 // Avoid folding to a constant if any OpaqueConstant is involved. 2508 const SDNode *N = Op.getNode(); 2509 for (SDNode *Op : 2510 llvm::make_range(SDNodeIterator::begin(N), SDNodeIterator::end(N))) { 2511 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 2512 if (C->isOpaque()) 2513 return false; 2514 } 2515 if (VT.isInteger()) 2516 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 2517 if (VT.isFloatingPoint()) 2518 return TLO.CombineTo( 2519 Op, 2520 TLO.DAG.getConstantFP( 2521 APFloat(TLO.DAG.EVTToAPFloatSemantics(VT), Known.One), dl, VT)); 2522 } 2523 2524 return false; 2525 } 2526 2527 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 2528 const APInt &DemandedElts, 2529 DAGCombinerInfo &DCI) const { 2530 SelectionDAG &DAG = DCI.DAG; 2531 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2532 !DCI.isBeforeLegalizeOps()); 2533 2534 APInt KnownUndef, KnownZero; 2535 bool Simplified = 2536 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 2537 if (Simplified) { 2538 DCI.AddToWorklist(Op.getNode()); 2539 DCI.CommitTargetLoweringOpt(TLO); 2540 } 2541 2542 return Simplified; 2543 } 2544 2545 /// Given a vector binary operation and known undefined elements for each input 2546 /// operand, compute whether each element of the output is undefined. 2547 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG, 2548 const APInt &UndefOp0, 2549 const APInt &UndefOp1) { 2550 EVT VT = BO.getValueType(); 2551 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() && 2552 "Vector binop only"); 2553 2554 EVT EltVT = VT.getVectorElementType(); 2555 unsigned NumElts = VT.getVectorNumElements(); 2556 assert(UndefOp0.getBitWidth() == NumElts && 2557 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis"); 2558 2559 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index, 2560 const APInt &UndefVals) { 2561 if (UndefVals[Index]) 2562 return DAG.getUNDEF(EltVT); 2563 2564 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) { 2565 // Try hard to make sure that the getNode() call is not creating temporary 2566 // nodes. Ignore opaque integers because they do not constant fold. 2567 SDValue Elt = BV->getOperand(Index); 2568 auto *C = dyn_cast<ConstantSDNode>(Elt); 2569 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque())) 2570 return Elt; 2571 } 2572 2573 return SDValue(); 2574 }; 2575 2576 APInt KnownUndef = APInt::getZero(NumElts); 2577 for (unsigned i = 0; i != NumElts; ++i) { 2578 // If both inputs for this element are either constant or undef and match 2579 // the element type, compute the constant/undef result for this element of 2580 // the vector. 2581 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does 2582 // not handle FP constants. The code within getNode() should be refactored 2583 // to avoid the danger of creating a bogus temporary node here. 2584 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0); 2585 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1); 2586 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT) 2587 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef()) 2588 KnownUndef.setBit(i); 2589 } 2590 return KnownUndef; 2591 } 2592 2593 bool TargetLowering::SimplifyDemandedVectorElts( 2594 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef, 2595 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 2596 bool AssumeSingleUse) const { 2597 EVT VT = Op.getValueType(); 2598 unsigned Opcode = Op.getOpcode(); 2599 APInt DemandedElts = OriginalDemandedElts; 2600 unsigned NumElts = DemandedElts.getBitWidth(); 2601 assert(VT.isVector() && "Expected vector op"); 2602 2603 KnownUndef = KnownZero = APInt::getZero(NumElts); 2604 2605 // TODO: For now we assume we know nothing about scalable vectors. 2606 if (VT.isScalableVector()) 2607 return false; 2608 2609 assert(VT.getVectorNumElements() == NumElts && 2610 "Mask size mismatches value type element count!"); 2611 2612 // Undef operand. 2613 if (Op.isUndef()) { 2614 KnownUndef.setAllBits(); 2615 return false; 2616 } 2617 2618 // If Op has other users, assume that all elements are needed. 2619 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 2620 DemandedElts.setAllBits(); 2621 2622 // Not demanding any elements from Op. 2623 if (DemandedElts == 0) { 2624 KnownUndef.setAllBits(); 2625 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2626 } 2627 2628 // Limit search depth. 2629 if (Depth >= SelectionDAG::MaxRecursionDepth) 2630 return false; 2631 2632 SDLoc DL(Op); 2633 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 2634 bool IsLE = TLO.DAG.getDataLayout().isLittleEndian(); 2635 2636 // Helper for demanding the specified elements and all the bits of both binary 2637 // operands. 2638 auto SimplifyDemandedVectorEltsBinOp = [&](SDValue Op0, SDValue Op1) { 2639 SDValue NewOp0 = SimplifyMultipleUseDemandedVectorElts(Op0, DemandedElts, 2640 TLO.DAG, Depth + 1); 2641 SDValue NewOp1 = SimplifyMultipleUseDemandedVectorElts(Op1, DemandedElts, 2642 TLO.DAG, Depth + 1); 2643 if (NewOp0 || NewOp1) { 2644 SDValue NewOp = TLO.DAG.getNode( 2645 Opcode, SDLoc(Op), VT, NewOp0 ? NewOp0 : Op0, NewOp1 ? NewOp1 : Op1); 2646 return TLO.CombineTo(Op, NewOp); 2647 } 2648 return false; 2649 }; 2650 2651 switch (Opcode) { 2652 case ISD::SCALAR_TO_VECTOR: { 2653 if (!DemandedElts[0]) { 2654 KnownUndef.setAllBits(); 2655 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 2656 } 2657 SDValue ScalarSrc = Op.getOperand(0); 2658 if (ScalarSrc.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 2659 SDValue Src = ScalarSrc.getOperand(0); 2660 SDValue Idx = ScalarSrc.getOperand(1); 2661 EVT SrcVT = Src.getValueType(); 2662 2663 ElementCount SrcEltCnt = SrcVT.getVectorElementCount(); 2664 2665 if (SrcEltCnt.isScalable()) 2666 return false; 2667 2668 unsigned NumSrcElts = SrcEltCnt.getFixedValue(); 2669 if (isNullConstant(Idx)) { 2670 APInt SrcDemandedElts = APInt::getOneBitSet(NumSrcElts, 0); 2671 APInt SrcUndef = KnownUndef.zextOrTrunc(NumSrcElts); 2672 APInt SrcZero = KnownZero.zextOrTrunc(NumSrcElts); 2673 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2674 TLO, Depth + 1)) 2675 return true; 2676 } 2677 } 2678 KnownUndef.setHighBits(NumElts - 1); 2679 break; 2680 } 2681 case ISD::BITCAST: { 2682 SDValue Src = Op.getOperand(0); 2683 EVT SrcVT = Src.getValueType(); 2684 2685 // We only handle vectors here. 2686 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 2687 if (!SrcVT.isVector()) 2688 break; 2689 2690 // Fast handling of 'identity' bitcasts. 2691 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 2692 if (NumSrcElts == NumElts) 2693 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 2694 KnownZero, TLO, Depth + 1); 2695 2696 APInt SrcDemandedElts, SrcZero, SrcUndef; 2697 2698 // Bitcast from 'large element' src vector to 'small element' vector, we 2699 // must demand a source element if any DemandedElt maps to it. 2700 if ((NumElts % NumSrcElts) == 0) { 2701 unsigned Scale = NumElts / NumSrcElts; 2702 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2703 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2704 TLO, Depth + 1)) 2705 return true; 2706 2707 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 2708 // of the large element. 2709 // TODO - bigendian once we have test coverage. 2710 if (IsLE) { 2711 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 2712 APInt SrcDemandedBits = APInt::getZero(SrcEltSizeInBits); 2713 for (unsigned i = 0; i != NumElts; ++i) 2714 if (DemandedElts[i]) { 2715 unsigned Ofs = (i % Scale) * EltSizeInBits; 2716 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 2717 } 2718 2719 KnownBits Known; 2720 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known, 2721 TLO, Depth + 1)) 2722 return true; 2723 } 2724 2725 // If the src element is zero/undef then all the output elements will be - 2726 // only demanded elements are guaranteed to be correct. 2727 for (unsigned i = 0; i != NumSrcElts; ++i) { 2728 if (SrcDemandedElts[i]) { 2729 if (SrcZero[i]) 2730 KnownZero.setBits(i * Scale, (i + 1) * Scale); 2731 if (SrcUndef[i]) 2732 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 2733 } 2734 } 2735 } 2736 2737 // Bitcast from 'small element' src vector to 'large element' vector, we 2738 // demand all smaller source elements covered by the larger demanded element 2739 // of this vector. 2740 if ((NumSrcElts % NumElts) == 0) { 2741 unsigned Scale = NumSrcElts / NumElts; 2742 SrcDemandedElts = APIntOps::ScaleBitMask(DemandedElts, NumSrcElts); 2743 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 2744 TLO, Depth + 1)) 2745 return true; 2746 2747 // If all the src elements covering an output element are zero/undef, then 2748 // the output element will be as well, assuming it was demanded. 2749 for (unsigned i = 0; i != NumElts; ++i) { 2750 if (DemandedElts[i]) { 2751 if (SrcZero.extractBits(Scale, i * Scale).isAllOnes()) 2752 KnownZero.setBit(i); 2753 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnes()) 2754 KnownUndef.setBit(i); 2755 } 2756 } 2757 } 2758 break; 2759 } 2760 case ISD::BUILD_VECTOR: { 2761 // Check all elements and simplify any unused elements with UNDEF. 2762 if (!DemandedElts.isAllOnes()) { 2763 // Don't simplify BROADCASTS. 2764 if (llvm::any_of(Op->op_values(), 2765 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 2766 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 2767 bool Updated = false; 2768 for (unsigned i = 0; i != NumElts; ++i) { 2769 if (!DemandedElts[i] && !Ops[i].isUndef()) { 2770 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 2771 KnownUndef.setBit(i); 2772 Updated = true; 2773 } 2774 } 2775 if (Updated) 2776 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 2777 } 2778 } 2779 for (unsigned i = 0; i != NumElts; ++i) { 2780 SDValue SrcOp = Op.getOperand(i); 2781 if (SrcOp.isUndef()) { 2782 KnownUndef.setBit(i); 2783 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 2784 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 2785 KnownZero.setBit(i); 2786 } 2787 } 2788 break; 2789 } 2790 case ISD::CONCAT_VECTORS: { 2791 EVT SubVT = Op.getOperand(0).getValueType(); 2792 unsigned NumSubVecs = Op.getNumOperands(); 2793 unsigned NumSubElts = SubVT.getVectorNumElements(); 2794 for (unsigned i = 0; i != NumSubVecs; ++i) { 2795 SDValue SubOp = Op.getOperand(i); 2796 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 2797 APInt SubUndef, SubZero; 2798 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 2799 Depth + 1)) 2800 return true; 2801 KnownUndef.insertBits(SubUndef, i * NumSubElts); 2802 KnownZero.insertBits(SubZero, i * NumSubElts); 2803 } 2804 break; 2805 } 2806 case ISD::INSERT_SUBVECTOR: { 2807 // Demand any elements from the subvector and the remainder from the src its 2808 // inserted into. 2809 SDValue Src = Op.getOperand(0); 2810 SDValue Sub = Op.getOperand(1); 2811 uint64_t Idx = Op.getConstantOperandVal(2); 2812 unsigned NumSubElts = Sub.getValueType().getVectorNumElements(); 2813 APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx); 2814 APInt DemandedSrcElts = DemandedElts; 2815 DemandedSrcElts.insertBits(APInt::getZero(NumSubElts), Idx); 2816 2817 APInt SubUndef, SubZero; 2818 if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO, 2819 Depth + 1)) 2820 return true; 2821 2822 // If none of the src operand elements are demanded, replace it with undef. 2823 if (!DemandedSrcElts && !Src.isUndef()) 2824 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, 2825 TLO.DAG.getUNDEF(VT), Sub, 2826 Op.getOperand(2))); 2827 2828 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero, 2829 TLO, Depth + 1)) 2830 return true; 2831 KnownUndef.insertBits(SubUndef, Idx); 2832 KnownZero.insertBits(SubZero, Idx); 2833 2834 // Attempt to avoid multi-use ops if we don't need anything from them. 2835 if (!DemandedSrcElts.isAllOnes() || !DemandedSubElts.isAllOnes()) { 2836 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2837 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2838 SDValue NewSub = SimplifyMultipleUseDemandedVectorElts( 2839 Sub, DemandedSubElts, TLO.DAG, Depth + 1); 2840 if (NewSrc || NewSub) { 2841 NewSrc = NewSrc ? NewSrc : Src; 2842 NewSub = NewSub ? NewSub : Sub; 2843 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2844 NewSub, Op.getOperand(2)); 2845 return TLO.CombineTo(Op, NewOp); 2846 } 2847 } 2848 break; 2849 } 2850 case ISD::EXTRACT_SUBVECTOR: { 2851 // Offset the demanded elts by the subvector index. 2852 SDValue Src = Op.getOperand(0); 2853 if (Src.getValueType().isScalableVector()) 2854 break; 2855 uint64_t Idx = Op.getConstantOperandVal(1); 2856 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 2857 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 2858 2859 APInt SrcUndef, SrcZero; 2860 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 2861 Depth + 1)) 2862 return true; 2863 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 2864 KnownZero = SrcZero.extractBits(NumElts, Idx); 2865 2866 // Attempt to avoid multi-use ops if we don't need anything from them. 2867 if (!DemandedElts.isAllOnes()) { 2868 SDValue NewSrc = SimplifyMultipleUseDemandedVectorElts( 2869 Src, DemandedSrcElts, TLO.DAG, Depth + 1); 2870 if (NewSrc) { 2871 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc, 2872 Op.getOperand(1)); 2873 return TLO.CombineTo(Op, NewOp); 2874 } 2875 } 2876 break; 2877 } 2878 case ISD::INSERT_VECTOR_ELT: { 2879 SDValue Vec = Op.getOperand(0); 2880 SDValue Scl = Op.getOperand(1); 2881 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2882 2883 // For a legal, constant insertion index, if we don't need this insertion 2884 // then strip it, else remove it from the demanded elts. 2885 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 2886 unsigned Idx = CIdx->getZExtValue(); 2887 if (!DemandedElts[Idx]) 2888 return TLO.CombineTo(Op, Vec); 2889 2890 APInt DemandedVecElts(DemandedElts); 2891 DemandedVecElts.clearBit(Idx); 2892 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 2893 KnownZero, TLO, Depth + 1)) 2894 return true; 2895 2896 KnownUndef.setBitVal(Idx, Scl.isUndef()); 2897 2898 KnownZero.setBitVal(Idx, isNullConstant(Scl) || isNullFPConstant(Scl)); 2899 break; 2900 } 2901 2902 APInt VecUndef, VecZero; 2903 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 2904 Depth + 1)) 2905 return true; 2906 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 2907 break; 2908 } 2909 case ISD::VSELECT: { 2910 // Try to transform the select condition based on the current demanded 2911 // elements. 2912 // TODO: If a condition element is undef, we can choose from one arm of the 2913 // select (and if one arm is undef, then we can propagate that to the 2914 // result). 2915 // TODO - add support for constant vselect masks (see IR version of this). 2916 APInt UnusedUndef, UnusedZero; 2917 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 2918 UnusedZero, TLO, Depth + 1)) 2919 return true; 2920 2921 // See if we can simplify either vselect operand. 2922 APInt DemandedLHS(DemandedElts); 2923 APInt DemandedRHS(DemandedElts); 2924 APInt UndefLHS, ZeroLHS; 2925 APInt UndefRHS, ZeroRHS; 2926 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 2927 ZeroLHS, TLO, Depth + 1)) 2928 return true; 2929 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 2930 ZeroRHS, TLO, Depth + 1)) 2931 return true; 2932 2933 KnownUndef = UndefLHS & UndefRHS; 2934 KnownZero = ZeroLHS & ZeroRHS; 2935 break; 2936 } 2937 case ISD::VECTOR_SHUFFLE: { 2938 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 2939 2940 // Collect demanded elements from shuffle operands.. 2941 APInt DemandedLHS(NumElts, 0); 2942 APInt DemandedRHS(NumElts, 0); 2943 for (unsigned i = 0; i != NumElts; ++i) { 2944 int M = ShuffleMask[i]; 2945 if (M < 0 || !DemandedElts[i]) 2946 continue; 2947 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 2948 if (M < (int)NumElts) 2949 DemandedLHS.setBit(M); 2950 else 2951 DemandedRHS.setBit(M - NumElts); 2952 } 2953 2954 // See if we can simplify either shuffle operand. 2955 APInt UndefLHS, ZeroLHS; 2956 APInt UndefRHS, ZeroRHS; 2957 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 2958 ZeroLHS, TLO, Depth + 1)) 2959 return true; 2960 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 2961 ZeroRHS, TLO, Depth + 1)) 2962 return true; 2963 2964 // Simplify mask using undef elements from LHS/RHS. 2965 bool Updated = false; 2966 bool IdentityLHS = true, IdentityRHS = true; 2967 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 2968 for (unsigned i = 0; i != NumElts; ++i) { 2969 int &M = NewMask[i]; 2970 if (M < 0) 2971 continue; 2972 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 2973 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 2974 Updated = true; 2975 M = -1; 2976 } 2977 IdentityLHS &= (M < 0) || (M == (int)i); 2978 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 2979 } 2980 2981 // Update legal shuffle masks based on demanded elements if it won't reduce 2982 // to Identity which can cause premature removal of the shuffle mask. 2983 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) { 2984 SDValue LegalShuffle = 2985 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1), 2986 NewMask, TLO.DAG); 2987 if (LegalShuffle) 2988 return TLO.CombineTo(Op, LegalShuffle); 2989 } 2990 2991 // Propagate undef/zero elements from LHS/RHS. 2992 for (unsigned i = 0; i != NumElts; ++i) { 2993 int M = ShuffleMask[i]; 2994 if (M < 0) { 2995 KnownUndef.setBit(i); 2996 } else if (M < (int)NumElts) { 2997 if (UndefLHS[M]) 2998 KnownUndef.setBit(i); 2999 if (ZeroLHS[M]) 3000 KnownZero.setBit(i); 3001 } else { 3002 if (UndefRHS[M - NumElts]) 3003 KnownUndef.setBit(i); 3004 if (ZeroRHS[M - NumElts]) 3005 KnownZero.setBit(i); 3006 } 3007 } 3008 break; 3009 } 3010 case ISD::ANY_EXTEND_VECTOR_INREG: 3011 case ISD::SIGN_EXTEND_VECTOR_INREG: 3012 case ISD::ZERO_EXTEND_VECTOR_INREG: { 3013 APInt SrcUndef, SrcZero; 3014 SDValue Src = Op.getOperand(0); 3015 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 3016 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 3017 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO, 3018 Depth + 1)) 3019 return true; 3020 KnownZero = SrcZero.zextOrTrunc(NumElts); 3021 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 3022 3023 if (IsLE && Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG && 3024 Op.getValueSizeInBits() == Src.getValueSizeInBits() && 3025 DemandedSrcElts == 1) { 3026 // aext - if we just need the bottom element then we can bitcast. 3027 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src)); 3028 } 3029 3030 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 3031 // zext(undef) upper bits are guaranteed to be zero. 3032 if (DemandedElts.isSubsetOf(KnownUndef)) 3033 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3034 KnownUndef.clearAllBits(); 3035 3036 // zext - if we just need the bottom element then we can mask: 3037 // zext(and(x,c)) -> and(x,c') iff the zext is the only user of the and. 3038 if (IsLE && DemandedSrcElts == 1 && Src.getOpcode() == ISD::AND && 3039 Op->isOnlyUserOf(Src.getNode()) && 3040 Op.getValueSizeInBits() == Src.getValueSizeInBits()) { 3041 SDLoc DL(Op); 3042 EVT SrcVT = Src.getValueType(); 3043 EVT SrcSVT = SrcVT.getScalarType(); 3044 SmallVector<SDValue> MaskElts; 3045 MaskElts.push_back(TLO.DAG.getAllOnesConstant(DL, SrcSVT)); 3046 MaskElts.append(NumSrcElts - 1, TLO.DAG.getConstant(0, DL, SrcSVT)); 3047 SDValue Mask = TLO.DAG.getBuildVector(SrcVT, DL, MaskElts); 3048 if (SDValue Fold = TLO.DAG.FoldConstantArithmetic( 3049 ISD::AND, DL, SrcVT, {Src.getOperand(1), Mask})) { 3050 Fold = TLO.DAG.getNode(ISD::AND, DL, SrcVT, Src.getOperand(0), Fold); 3051 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Fold)); 3052 } 3053 } 3054 } 3055 break; 3056 } 3057 3058 // TODO: There are more binop opcodes that could be handled here - MIN, 3059 // MAX, saturated math, etc. 3060 case ISD::ADD: { 3061 SDValue Op0 = Op.getOperand(0); 3062 SDValue Op1 = Op.getOperand(1); 3063 if (Op0 == Op1 && Op->isOnlyUserOf(Op0.getNode())) { 3064 APInt UndefLHS, ZeroLHS; 3065 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3066 Depth + 1, /*AssumeSingleUse*/ true)) 3067 return true; 3068 } 3069 LLVM_FALLTHROUGH; 3070 } 3071 case ISD::OR: 3072 case ISD::XOR: 3073 case ISD::SUB: 3074 case ISD::FADD: 3075 case ISD::FSUB: 3076 case ISD::FMUL: 3077 case ISD::FDIV: 3078 case ISD::FREM: { 3079 SDValue Op0 = Op.getOperand(0); 3080 SDValue Op1 = Op.getOperand(1); 3081 3082 APInt UndefRHS, ZeroRHS; 3083 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3084 Depth + 1)) 3085 return true; 3086 APInt UndefLHS, ZeroLHS; 3087 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3088 Depth + 1)) 3089 return true; 3090 3091 KnownZero = ZeroLHS & ZeroRHS; 3092 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS); 3093 3094 // Attempt to avoid multi-use ops if we don't need anything from them. 3095 // TODO - use KnownUndef to relax the demandedelts? 3096 if (!DemandedElts.isAllOnes()) 3097 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3098 return true; 3099 break; 3100 } 3101 case ISD::SHL: 3102 case ISD::SRL: 3103 case ISD::SRA: 3104 case ISD::ROTL: 3105 case ISD::ROTR: { 3106 SDValue Op0 = Op.getOperand(0); 3107 SDValue Op1 = Op.getOperand(1); 3108 3109 APInt UndefRHS, ZeroRHS; 3110 if (SimplifyDemandedVectorElts(Op1, DemandedElts, UndefRHS, ZeroRHS, TLO, 3111 Depth + 1)) 3112 return true; 3113 APInt UndefLHS, ZeroLHS; 3114 if (SimplifyDemandedVectorElts(Op0, DemandedElts, UndefLHS, ZeroLHS, TLO, 3115 Depth + 1)) 3116 return true; 3117 3118 KnownZero = ZeroLHS; 3119 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop? 3120 3121 // Attempt to avoid multi-use ops if we don't need anything from them. 3122 // TODO - use KnownUndef to relax the demandedelts? 3123 if (!DemandedElts.isAllOnes()) 3124 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3125 return true; 3126 break; 3127 } 3128 case ISD::MUL: 3129 case ISD::AND: { 3130 SDValue Op0 = Op.getOperand(0); 3131 SDValue Op1 = Op.getOperand(1); 3132 3133 APInt SrcUndef, SrcZero; 3134 if (SimplifyDemandedVectorElts(Op1, DemandedElts, SrcUndef, SrcZero, TLO, 3135 Depth + 1)) 3136 return true; 3137 if (SimplifyDemandedVectorElts(Op0, DemandedElts, KnownUndef, KnownZero, 3138 TLO, Depth + 1)) 3139 return true; 3140 3141 // If either side has a zero element, then the result element is zero, even 3142 // if the other is an UNDEF. 3143 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros 3144 // and then handle 'and' nodes with the rest of the binop opcodes. 3145 KnownZero |= SrcZero; 3146 KnownUndef &= SrcUndef; 3147 KnownUndef &= ~KnownZero; 3148 3149 // Attempt to avoid multi-use ops if we don't need anything from them. 3150 // TODO - use KnownUndef to relax the demandedelts? 3151 if (!DemandedElts.isAllOnes()) 3152 if (SimplifyDemandedVectorEltsBinOp(Op0, Op1)) 3153 return true; 3154 break; 3155 } 3156 case ISD::TRUNCATE: 3157 case ISD::SIGN_EXTEND: 3158 case ISD::ZERO_EXTEND: 3159 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 3160 KnownZero, TLO, Depth + 1)) 3161 return true; 3162 3163 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 3164 // zext(undef) upper bits are guaranteed to be zero. 3165 if (DemandedElts.isSubsetOf(KnownUndef)) 3166 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 3167 KnownUndef.clearAllBits(); 3168 } 3169 break; 3170 default: { 3171 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 3172 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 3173 KnownZero, TLO, Depth)) 3174 return true; 3175 } else { 3176 KnownBits Known; 3177 APInt DemandedBits = APInt::getAllOnes(EltSizeInBits); 3178 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known, 3179 TLO, Depth, AssumeSingleUse)) 3180 return true; 3181 } 3182 break; 3183 } 3184 } 3185 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 3186 3187 // Constant fold all undef cases. 3188 // TODO: Handle zero cases as well. 3189 if (DemandedElts.isSubsetOf(KnownUndef)) 3190 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 3191 3192 return false; 3193 } 3194 3195 /// Determine which of the bits specified in Mask are known to be either zero or 3196 /// one and return them in the Known. 3197 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 3198 KnownBits &Known, 3199 const APInt &DemandedElts, 3200 const SelectionDAG &DAG, 3201 unsigned Depth) const { 3202 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3203 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3204 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3205 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3206 "Should use MaskedValueIsZero if you don't know whether Op" 3207 " is a target node!"); 3208 Known.resetAll(); 3209 } 3210 3211 void TargetLowering::computeKnownBitsForTargetInstr( 3212 GISelKnownBits &Analysis, Register R, KnownBits &Known, 3213 const APInt &DemandedElts, const MachineRegisterInfo &MRI, 3214 unsigned Depth) const { 3215 Known.resetAll(); 3216 } 3217 3218 void TargetLowering::computeKnownBitsForFrameIndex( 3219 const int FrameIdx, KnownBits &Known, const MachineFunction &MF) const { 3220 // The low bits are known zero if the pointer is aligned. 3221 Known.Zero.setLowBits(Log2(MF.getFrameInfo().getObjectAlign(FrameIdx))); 3222 } 3223 3224 Align TargetLowering::computeKnownAlignForTargetInstr( 3225 GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, 3226 unsigned Depth) const { 3227 return Align(1); 3228 } 3229 3230 /// This method can be implemented by targets that want to expose additional 3231 /// information about sign bits to the DAG Combiner. 3232 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 3233 const APInt &, 3234 const SelectionDAG &, 3235 unsigned Depth) const { 3236 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3237 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3238 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3239 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3240 "Should use ComputeNumSignBits if you don't know whether Op" 3241 " is a target node!"); 3242 return 1; 3243 } 3244 3245 unsigned TargetLowering::computeNumSignBitsForTargetInstr( 3246 GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, 3247 const MachineRegisterInfo &MRI, unsigned Depth) const { 3248 return 1; 3249 } 3250 3251 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 3252 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 3253 TargetLoweringOpt &TLO, unsigned Depth) const { 3254 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3255 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3256 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3257 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3258 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 3259 " is a target node!"); 3260 return false; 3261 } 3262 3263 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 3264 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3265 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 3266 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3267 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3268 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3269 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3270 "Should use SimplifyDemandedBits if you don't know whether Op" 3271 " is a target node!"); 3272 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 3273 return false; 3274 } 3275 3276 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode( 3277 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 3278 SelectionDAG &DAG, unsigned Depth) const { 3279 assert( 3280 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3281 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3282 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3283 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3284 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op" 3285 " is a target node!"); 3286 return SDValue(); 3287 } 3288 3289 SDValue 3290 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, 3291 SDValue N1, MutableArrayRef<int> Mask, 3292 SelectionDAG &DAG) const { 3293 bool LegalMask = isShuffleMaskLegal(Mask, VT); 3294 if (!LegalMask) { 3295 std::swap(N0, N1); 3296 ShuffleVectorSDNode::commuteMask(Mask); 3297 LegalMask = isShuffleMaskLegal(Mask, VT); 3298 } 3299 3300 if (!LegalMask) 3301 return SDValue(); 3302 3303 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask); 3304 } 3305 3306 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const { 3307 return nullptr; 3308 } 3309 3310 bool TargetLowering::isGuaranteedNotToBeUndefOrPoisonForTargetNode( 3311 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, 3312 bool PoisonOnly, unsigned Depth) const { 3313 assert( 3314 (Op.getOpcode() >= ISD::BUILTIN_OP_END || 3315 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3316 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3317 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3318 "Should use isGuaranteedNotToBeUndefOrPoison if you don't know whether Op" 3319 " is a target node!"); 3320 return false; 3321 } 3322 3323 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 3324 const SelectionDAG &DAG, 3325 bool SNaN, 3326 unsigned Depth) const { 3327 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3328 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3329 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3330 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3331 "Should use isKnownNeverNaN if you don't know whether Op" 3332 " is a target node!"); 3333 return false; 3334 } 3335 3336 bool TargetLowering::isSplatValueForTargetNode(SDValue Op, 3337 const APInt &DemandedElts, 3338 APInt &UndefElts, 3339 unsigned Depth) const { 3340 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 3341 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 3342 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 3343 Op.getOpcode() == ISD::INTRINSIC_VOID) && 3344 "Should use isSplatValue if you don't know whether Op" 3345 " is a target node!"); 3346 return false; 3347 } 3348 3349 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 3350 // work with truncating build vectors and vectors with elements of less than 3351 // 8 bits. 3352 bool TargetLowering::isConstTrueVal(SDValue N) const { 3353 if (!N) 3354 return false; 3355 3356 unsigned EltWidth; 3357 APInt CVal; 3358 if (ConstantSDNode *CN = isConstOrConstSplat(N, /*AllowUndefs=*/false, 3359 /*AllowTruncation=*/true)) { 3360 CVal = CN->getAPIntValue(); 3361 EltWidth = N.getValueType().getScalarSizeInBits(); 3362 } else 3363 return false; 3364 3365 // If this is a truncating splat, truncate the splat value. 3366 // Otherwise, we may fail to match the expected values below. 3367 if (EltWidth < CVal.getBitWidth()) 3368 CVal = CVal.trunc(EltWidth); 3369 3370 switch (getBooleanContents(N.getValueType())) { 3371 case UndefinedBooleanContent: 3372 return CVal[0]; 3373 case ZeroOrOneBooleanContent: 3374 return CVal.isOne(); 3375 case ZeroOrNegativeOneBooleanContent: 3376 return CVal.isAllOnes(); 3377 } 3378 3379 llvm_unreachable("Invalid boolean contents"); 3380 } 3381 3382 bool TargetLowering::isConstFalseVal(SDValue N) const { 3383 if (!N) 3384 return false; 3385 3386 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 3387 if (!CN) { 3388 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 3389 if (!BV) 3390 return false; 3391 3392 // Only interested in constant splats, we don't care about undef 3393 // elements in identifying boolean constants and getConstantSplatNode 3394 // returns NULL if all ops are undef; 3395 CN = BV->getConstantSplatNode(); 3396 if (!CN) 3397 return false; 3398 } 3399 3400 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 3401 return !CN->getAPIntValue()[0]; 3402 3403 return CN->isZero(); 3404 } 3405 3406 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 3407 bool SExt) const { 3408 if (VT == MVT::i1) 3409 return N->isOne(); 3410 3411 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 3412 switch (Cnt) { 3413 case TargetLowering::ZeroOrOneBooleanContent: 3414 // An extended value of 1 is always true, unless its original type is i1, 3415 // in which case it will be sign extended to -1. 3416 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 3417 case TargetLowering::UndefinedBooleanContent: 3418 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3419 return N->isAllOnes() && SExt; 3420 } 3421 llvm_unreachable("Unexpected enumeration."); 3422 } 3423 3424 /// This helper function of SimplifySetCC tries to optimize the comparison when 3425 /// either operand of the SetCC node is a bitwise-and instruction. 3426 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 3427 ISD::CondCode Cond, const SDLoc &DL, 3428 DAGCombinerInfo &DCI) const { 3429 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 3430 std::swap(N0, N1); 3431 3432 SelectionDAG &DAG = DCI.DAG; 3433 EVT OpVT = N0.getValueType(); 3434 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 3435 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 3436 return SDValue(); 3437 3438 // (X & Y) != 0 --> zextOrTrunc(X & Y) 3439 // iff everything but LSB is known zero: 3440 if (Cond == ISD::SETNE && isNullConstant(N1) && 3441 (getBooleanContents(OpVT) == TargetLowering::UndefinedBooleanContent || 3442 getBooleanContents(OpVT) == TargetLowering::ZeroOrOneBooleanContent)) { 3443 unsigned NumEltBits = OpVT.getScalarSizeInBits(); 3444 APInt UpperBits = APInt::getHighBitsSet(NumEltBits, NumEltBits - 1); 3445 if (DAG.MaskedValueIsZero(N0, UpperBits)) 3446 return DAG.getBoolExtOrTrunc(N0, DL, VT, OpVT); 3447 } 3448 3449 // Match these patterns in any of their permutations: 3450 // (X & Y) == Y 3451 // (X & Y) != Y 3452 SDValue X, Y; 3453 if (N0.getOperand(0) == N1) { 3454 X = N0.getOperand(1); 3455 Y = N0.getOperand(0); 3456 } else if (N0.getOperand(1) == N1) { 3457 X = N0.getOperand(0); 3458 Y = N0.getOperand(1); 3459 } else { 3460 return SDValue(); 3461 } 3462 3463 SDValue Zero = DAG.getConstant(0, DL, OpVT); 3464 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 3465 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 3466 // Note that where Y is variable and is known to have at most one bit set 3467 // (for example, if it is Z & 1) we cannot do this; the expressions are not 3468 // equivalent when Y == 0. 3469 assert(OpVT.isInteger()); 3470 Cond = ISD::getSetCCInverse(Cond, OpVT); 3471 if (DCI.isBeforeLegalizeOps() || 3472 isCondCodeLegal(Cond, N0.getSimpleValueType())) 3473 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 3474 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 3475 // If the target supports an 'and-not' or 'and-complement' logic operation, 3476 // try to use that to make a comparison operation more efficient. 3477 // But don't do this transform if the mask is a single bit because there are 3478 // more efficient ways to deal with that case (for example, 'bt' on x86 or 3479 // 'rlwinm' on PPC). 3480 3481 // Bail out if the compare operand that we want to turn into a zero is 3482 // already a zero (otherwise, infinite loop). 3483 auto *YConst = dyn_cast<ConstantSDNode>(Y); 3484 if (YConst && YConst->isZero()) 3485 return SDValue(); 3486 3487 // Transform this into: ~X & Y == 0. 3488 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 3489 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 3490 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 3491 } 3492 3493 return SDValue(); 3494 } 3495 3496 /// There are multiple IR patterns that could be checking whether certain 3497 /// truncation of a signed number would be lossy or not. The pattern which is 3498 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 3499 /// We are looking for the following pattern: (KeptBits is a constant) 3500 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 3501 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 3502 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 3503 /// We will unfold it into the natural trunc+sext pattern: 3504 /// ((%x << C) a>> C) dstcond %x 3505 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 3506 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 3507 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 3508 const SDLoc &DL) const { 3509 // We must be comparing with a constant. 3510 ConstantSDNode *C1; 3511 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 3512 return SDValue(); 3513 3514 // N0 should be: add %x, (1 << (KeptBits-1)) 3515 if (N0->getOpcode() != ISD::ADD) 3516 return SDValue(); 3517 3518 // And we must be 'add'ing a constant. 3519 ConstantSDNode *C01; 3520 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 3521 return SDValue(); 3522 3523 SDValue X = N0->getOperand(0); 3524 EVT XVT = X.getValueType(); 3525 3526 // Validate constants ... 3527 3528 APInt I1 = C1->getAPIntValue(); 3529 3530 ISD::CondCode NewCond; 3531 if (Cond == ISD::CondCode::SETULT) { 3532 NewCond = ISD::CondCode::SETEQ; 3533 } else if (Cond == ISD::CondCode::SETULE) { 3534 NewCond = ISD::CondCode::SETEQ; 3535 // But need to 'canonicalize' the constant. 3536 I1 += 1; 3537 } else if (Cond == ISD::CondCode::SETUGT) { 3538 NewCond = ISD::CondCode::SETNE; 3539 // But need to 'canonicalize' the constant. 3540 I1 += 1; 3541 } else if (Cond == ISD::CondCode::SETUGE) { 3542 NewCond = ISD::CondCode::SETNE; 3543 } else 3544 return SDValue(); 3545 3546 APInt I01 = C01->getAPIntValue(); 3547 3548 auto checkConstants = [&I1, &I01]() -> bool { 3549 // Both of them must be power-of-two, and the constant from setcc is bigger. 3550 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 3551 }; 3552 3553 if (checkConstants()) { 3554 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 3555 } else { 3556 // What if we invert constants? (and the target predicate) 3557 I1.negate(); 3558 I01.negate(); 3559 assert(XVT.isInteger()); 3560 NewCond = getSetCCInverse(NewCond, XVT); 3561 if (!checkConstants()) 3562 return SDValue(); 3563 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 3564 } 3565 3566 // They are power-of-two, so which bit is set? 3567 const unsigned KeptBits = I1.logBase2(); 3568 const unsigned KeptBitsMinusOne = I01.logBase2(); 3569 3570 // Magic! 3571 if (KeptBits != (KeptBitsMinusOne + 1)) 3572 return SDValue(); 3573 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 3574 3575 // We don't want to do this in every single case. 3576 SelectionDAG &DAG = DCI.DAG; 3577 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 3578 XVT, KeptBits)) 3579 return SDValue(); 3580 3581 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 3582 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 3583 3584 // Unfold into: ((%x << C) a>> C) cond %x 3585 // Where 'cond' will be either 'eq' or 'ne'. 3586 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 3587 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 3588 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 3589 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 3590 3591 return T2; 3592 } 3593 3594 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 3595 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift( 3596 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond, 3597 DAGCombinerInfo &DCI, const SDLoc &DL) const { 3598 assert(isConstOrConstSplat(N1C) && 3599 isConstOrConstSplat(N1C)->getAPIntValue().isZero() && 3600 "Should be a comparison with 0."); 3601 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3602 "Valid only for [in]equality comparisons."); 3603 3604 unsigned NewShiftOpcode; 3605 SDValue X, C, Y; 3606 3607 SelectionDAG &DAG = DCI.DAG; 3608 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3609 3610 // Look for '(C l>>/<< Y)'. 3611 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) { 3612 // The shift should be one-use. 3613 if (!V.hasOneUse()) 3614 return false; 3615 unsigned OldShiftOpcode = V.getOpcode(); 3616 switch (OldShiftOpcode) { 3617 case ISD::SHL: 3618 NewShiftOpcode = ISD::SRL; 3619 break; 3620 case ISD::SRL: 3621 NewShiftOpcode = ISD::SHL; 3622 break; 3623 default: 3624 return false; // must be a logical shift. 3625 } 3626 // We should be shifting a constant. 3627 // FIXME: best to use isConstantOrConstantVector(). 3628 C = V.getOperand(0); 3629 ConstantSDNode *CC = 3630 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3631 if (!CC) 3632 return false; 3633 Y = V.getOperand(1); 3634 3635 ConstantSDNode *XC = 3636 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true); 3637 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd( 3638 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG); 3639 }; 3640 3641 // LHS of comparison should be an one-use 'and'. 3642 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 3643 return SDValue(); 3644 3645 X = N0.getOperand(0); 3646 SDValue Mask = N0.getOperand(1); 3647 3648 // 'and' is commutative! 3649 if (!Match(Mask)) { 3650 std::swap(X, Mask); 3651 if (!Match(Mask)) 3652 return SDValue(); 3653 } 3654 3655 EVT VT = X.getValueType(); 3656 3657 // Produce: 3658 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0 3659 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y); 3660 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C); 3661 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond); 3662 return T2; 3663 } 3664 3665 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as 3666 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to 3667 /// handle the commuted versions of these patterns. 3668 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, 3669 ISD::CondCode Cond, const SDLoc &DL, 3670 DAGCombinerInfo &DCI) const { 3671 unsigned BOpcode = N0.getOpcode(); 3672 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) && 3673 "Unexpected binop"); 3674 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode"); 3675 3676 // (X + Y) == X --> Y == 0 3677 // (X - Y) == X --> Y == 0 3678 // (X ^ Y) == X --> Y == 0 3679 SelectionDAG &DAG = DCI.DAG; 3680 EVT OpVT = N0.getValueType(); 3681 SDValue X = N0.getOperand(0); 3682 SDValue Y = N0.getOperand(1); 3683 if (X == N1) 3684 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond); 3685 3686 if (Y != N1) 3687 return SDValue(); 3688 3689 // (X + Y) == Y --> X == 0 3690 // (X ^ Y) == Y --> X == 0 3691 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR) 3692 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond); 3693 3694 // The shift would not be valid if the operands are boolean (i1). 3695 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1) 3696 return SDValue(); 3697 3698 // (X - Y) == Y --> X == Y << 1 3699 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(), 3700 !DCI.isBeforeLegalize()); 3701 SDValue One = DAG.getConstant(1, DL, ShiftVT); 3702 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One); 3703 if (!DCI.isCalledByLegalizer()) 3704 DCI.AddToWorklist(YShl1.getNode()); 3705 return DAG.getSetCC(DL, VT, X, YShl1, Cond); 3706 } 3707 3708 static SDValue simplifySetCCWithCTPOP(const TargetLowering &TLI, EVT VT, 3709 SDValue N0, const APInt &C1, 3710 ISD::CondCode Cond, const SDLoc &dl, 3711 SelectionDAG &DAG) { 3712 // Look through truncs that don't change the value of a ctpop. 3713 // FIXME: Add vector support? Need to be careful with setcc result type below. 3714 SDValue CTPOP = N0; 3715 if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() && !VT.isVector() && 3716 N0.getScalarValueSizeInBits() > Log2_32(N0.getOperand(0).getScalarValueSizeInBits())) 3717 CTPOP = N0.getOperand(0); 3718 3719 if (CTPOP.getOpcode() != ISD::CTPOP || !CTPOP.hasOneUse()) 3720 return SDValue(); 3721 3722 EVT CTVT = CTPOP.getValueType(); 3723 SDValue CTOp = CTPOP.getOperand(0); 3724 3725 // If this is a vector CTPOP, keep the CTPOP if it is legal. 3726 // TODO: Should we check if CTPOP is legal(or custom) for scalars? 3727 if (VT.isVector() && TLI.isOperationLegal(ISD::CTPOP, CTVT)) 3728 return SDValue(); 3729 3730 // (ctpop x) u< 2 -> (x & x-1) == 0 3731 // (ctpop x) u> 1 -> (x & x-1) != 0 3732 if (Cond == ISD::SETULT || Cond == ISD::SETUGT) { 3733 unsigned CostLimit = TLI.getCustomCtpopCost(CTVT, Cond); 3734 if (C1.ugt(CostLimit + (Cond == ISD::SETULT))) 3735 return SDValue(); 3736 if (C1 == 0 && (Cond == ISD::SETULT)) 3737 return SDValue(); // This is handled elsewhere. 3738 3739 unsigned Passes = C1.getLimitedValue() - (Cond == ISD::SETULT); 3740 3741 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3742 SDValue Result = CTOp; 3743 for (unsigned i = 0; i < Passes; i++) { 3744 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, Result, NegOne); 3745 Result = DAG.getNode(ISD::AND, dl, CTVT, Result, Add); 3746 } 3747 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 3748 return DAG.getSetCC(dl, VT, Result, DAG.getConstant(0, dl, CTVT), CC); 3749 } 3750 3751 // If ctpop is not supported, expand a power-of-2 comparison based on it. 3752 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && C1 == 1) { 3753 // For scalars, keep CTPOP if it is legal or custom. 3754 if (!VT.isVector() && TLI.isOperationLegalOrCustom(ISD::CTPOP, CTVT)) 3755 return SDValue(); 3756 // This is based on X86's custom lowering for CTPOP which produces more 3757 // instructions than the expansion here. 3758 3759 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0) 3760 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0) 3761 SDValue Zero = DAG.getConstant(0, dl, CTVT); 3762 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT); 3763 assert(CTVT.isInteger()); 3764 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT); 3765 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne); 3766 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add); 3767 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond); 3768 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond); 3769 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR; 3770 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS); 3771 } 3772 3773 return SDValue(); 3774 } 3775 3776 /// Try to simplify a setcc built with the specified operands and cc. If it is 3777 /// unable to simplify it, return a null SDValue. 3778 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 3779 ISD::CondCode Cond, bool foldBooleans, 3780 DAGCombinerInfo &DCI, 3781 const SDLoc &dl) const { 3782 SelectionDAG &DAG = DCI.DAG; 3783 const DataLayout &Layout = DAG.getDataLayout(); 3784 EVT OpVT = N0.getValueType(); 3785 3786 // Constant fold or commute setcc. 3787 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl)) 3788 return Fold; 3789 3790 // Ensure that the constant occurs on the RHS and fold constant comparisons. 3791 // TODO: Handle non-splat vector constants. All undef causes trouble. 3792 // FIXME: We can't yet fold constant scalable vector splats, so avoid an 3793 // infinite loop here when we encounter one. 3794 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 3795 if (isConstOrConstSplat(N0) && 3796 (!OpVT.isScalableVector() || !isConstOrConstSplat(N1)) && 3797 (DCI.isBeforeLegalizeOps() || 3798 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 3799 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3800 3801 // If we have a subtract with the same 2 non-constant operands as this setcc 3802 // -- but in reverse order -- then try to commute the operands of this setcc 3803 // to match. A matching pair of setcc (cmp) and sub may be combined into 1 3804 // instruction on some targets. 3805 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) && 3806 (DCI.isBeforeLegalizeOps() || 3807 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) && 3808 DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N1, N0}) && 3809 !DAG.doesNodeExist(ISD::SUB, DAG.getVTList(OpVT), {N0, N1})) 3810 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 3811 3812 if (auto *N1C = isConstOrConstSplat(N1)) { 3813 const APInt &C1 = N1C->getAPIntValue(); 3814 3815 // Optimize some CTPOP cases. 3816 if (SDValue V = simplifySetCCWithCTPOP(*this, VT, N0, C1, Cond, dl, DAG)) 3817 return V; 3818 3819 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 3820 // equality comparison, then we're just comparing whether X itself is 3821 // zero. 3822 if (N0.getOpcode() == ISD::SRL && (C1.isZero() || C1.isOne()) && 3823 N0.getOperand(0).getOpcode() == ISD::CTLZ && 3824 isPowerOf2_32(N0.getScalarValueSizeInBits())) { 3825 if (ConstantSDNode *ShAmt = isConstOrConstSplat(N0.getOperand(1))) { 3826 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3827 ShAmt->getAPIntValue() == Log2_32(N0.getScalarValueSizeInBits())) { 3828 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 3829 // (srl (ctlz x), 5) == 0 -> X != 0 3830 // (srl (ctlz x), 5) != 1 -> X != 0 3831 Cond = ISD::SETNE; 3832 } else { 3833 // (srl (ctlz x), 5) != 0 -> X == 0 3834 // (srl (ctlz x), 5) == 1 -> X == 0 3835 Cond = ISD::SETEQ; 3836 } 3837 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 3838 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), Zero, 3839 Cond); 3840 } 3841 } 3842 } 3843 } 3844 3845 // FIXME: Support vectors. 3846 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 3847 const APInt &C1 = N1C->getAPIntValue(); 3848 3849 // (zext x) == C --> x == (trunc C) 3850 // (sext x) == C --> x == (trunc C) 3851 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 3852 DCI.isBeforeLegalize() && N0->hasOneUse()) { 3853 unsigned MinBits = N0.getValueSizeInBits(); 3854 SDValue PreExt; 3855 bool Signed = false; 3856 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 3857 // ZExt 3858 MinBits = N0->getOperand(0).getValueSizeInBits(); 3859 PreExt = N0->getOperand(0); 3860 } else if (N0->getOpcode() == ISD::AND) { 3861 // DAGCombine turns costly ZExts into ANDs 3862 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 3863 if ((C->getAPIntValue()+1).isPowerOf2()) { 3864 MinBits = C->getAPIntValue().countTrailingOnes(); 3865 PreExt = N0->getOperand(0); 3866 } 3867 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 3868 // SExt 3869 MinBits = N0->getOperand(0).getValueSizeInBits(); 3870 PreExt = N0->getOperand(0); 3871 Signed = true; 3872 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 3873 // ZEXTLOAD / SEXTLOAD 3874 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 3875 MinBits = LN0->getMemoryVT().getSizeInBits(); 3876 PreExt = N0; 3877 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 3878 Signed = true; 3879 MinBits = LN0->getMemoryVT().getSizeInBits(); 3880 PreExt = N0; 3881 } 3882 } 3883 3884 // Figure out how many bits we need to preserve this constant. 3885 unsigned ReqdBits = Signed ? C1.getMinSignedBits() : C1.getActiveBits(); 3886 3887 // Make sure we're not losing bits from the constant. 3888 if (MinBits > 0 && 3889 MinBits < C1.getBitWidth() && 3890 MinBits >= ReqdBits) { 3891 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 3892 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 3893 // Will get folded away. 3894 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 3895 if (MinBits == 1 && C1 == 1) 3896 // Invert the condition. 3897 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 3898 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 3899 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 3900 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 3901 } 3902 3903 // If truncating the setcc operands is not desirable, we can still 3904 // simplify the expression in some cases: 3905 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 3906 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 3907 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 3908 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 3909 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 3910 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 3911 SDValue TopSetCC = N0->getOperand(0); 3912 unsigned N0Opc = N0->getOpcode(); 3913 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 3914 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 3915 TopSetCC.getOpcode() == ISD::SETCC && 3916 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 3917 (isConstFalseVal(N1) || 3918 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 3919 3920 bool Inverse = (N1C->isZero() && Cond == ISD::SETEQ) || 3921 (!N1C->isZero() && Cond == ISD::SETNE); 3922 3923 if (!Inverse) 3924 return TopSetCC; 3925 3926 ISD::CondCode InvCond = ISD::getSetCCInverse( 3927 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 3928 TopSetCC.getOperand(0).getValueType()); 3929 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 3930 TopSetCC.getOperand(1), 3931 InvCond); 3932 } 3933 } 3934 } 3935 3936 // If the LHS is '(and load, const)', the RHS is 0, the test is for 3937 // equality or unsigned, and all 1 bits of the const are in the same 3938 // partial word, see if we can shorten the load. 3939 if (DCI.isBeforeLegalize() && 3940 !ISD::isSignedIntSetCC(Cond) && 3941 N0.getOpcode() == ISD::AND && C1 == 0 && 3942 N0.getNode()->hasOneUse() && 3943 isa<LoadSDNode>(N0.getOperand(0)) && 3944 N0.getOperand(0).getNode()->hasOneUse() && 3945 isa<ConstantSDNode>(N0.getOperand(1))) { 3946 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 3947 APInt bestMask; 3948 unsigned bestWidth = 0, bestOffset = 0; 3949 if (Lod->isSimple() && Lod->isUnindexed()) { 3950 unsigned origWidth = N0.getValueSizeInBits(); 3951 unsigned maskWidth = origWidth; 3952 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 3953 // 8 bits, but have to be careful... 3954 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 3955 origWidth = Lod->getMemoryVT().getSizeInBits(); 3956 const APInt &Mask = N0.getConstantOperandAPInt(1); 3957 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 3958 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 3959 for (unsigned offset=0; offset<origWidth/width; offset++) { 3960 if (Mask.isSubsetOf(newMask)) { 3961 if (Layout.isLittleEndian()) 3962 bestOffset = (uint64_t)offset * (width/8); 3963 else 3964 bestOffset = (origWidth/width - offset - 1) * (width/8); 3965 bestMask = Mask.lshr(offset * (width/8) * 8); 3966 bestWidth = width; 3967 break; 3968 } 3969 newMask <<= width; 3970 } 3971 } 3972 } 3973 if (bestWidth) { 3974 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 3975 if (newVT.isRound() && 3976 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 3977 SDValue Ptr = Lod->getBasePtr(); 3978 if (bestOffset != 0) 3979 Ptr = 3980 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(bestOffset), dl); 3981 SDValue NewLoad = 3982 DAG.getLoad(newVT, dl, Lod->getChain(), Ptr, 3983 Lod->getPointerInfo().getWithOffset(bestOffset), 3984 Lod->getOriginalAlign()); 3985 return DAG.getSetCC(dl, VT, 3986 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 3987 DAG.getConstant(bestMask.trunc(bestWidth), 3988 dl, newVT)), 3989 DAG.getConstant(0LL, dl, newVT), Cond); 3990 } 3991 } 3992 } 3993 3994 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 3995 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 3996 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 3997 3998 // If the comparison constant has bits in the upper part, the 3999 // zero-extended value could never match. 4000 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 4001 C1.getBitWidth() - InSize))) { 4002 switch (Cond) { 4003 case ISD::SETUGT: 4004 case ISD::SETUGE: 4005 case ISD::SETEQ: 4006 return DAG.getConstant(0, dl, VT); 4007 case ISD::SETULT: 4008 case ISD::SETULE: 4009 case ISD::SETNE: 4010 return DAG.getConstant(1, dl, VT); 4011 case ISD::SETGT: 4012 case ISD::SETGE: 4013 // True if the sign bit of C1 is set. 4014 return DAG.getConstant(C1.isNegative(), dl, VT); 4015 case ISD::SETLT: 4016 case ISD::SETLE: 4017 // True if the sign bit of C1 isn't set. 4018 return DAG.getConstant(C1.isNonNegative(), dl, VT); 4019 default: 4020 break; 4021 } 4022 } 4023 4024 // Otherwise, we can perform the comparison with the low bits. 4025 switch (Cond) { 4026 case ISD::SETEQ: 4027 case ISD::SETNE: 4028 case ISD::SETUGT: 4029 case ISD::SETUGE: 4030 case ISD::SETULT: 4031 case ISD::SETULE: { 4032 EVT newVT = N0.getOperand(0).getValueType(); 4033 if (DCI.isBeforeLegalizeOps() || 4034 (isOperationLegal(ISD::SETCC, newVT) && 4035 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 4036 EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT); 4037 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 4038 4039 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 4040 NewConst, Cond); 4041 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 4042 } 4043 break; 4044 } 4045 default: 4046 break; // todo, be more careful with signed comparisons 4047 } 4048 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 4049 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4050 !isSExtCheaperThanZExt(cast<VTSDNode>(N0.getOperand(1))->getVT(), 4051 OpVT)) { 4052 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 4053 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 4054 EVT ExtDstTy = N0.getValueType(); 4055 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 4056 4057 // If the constant doesn't fit into the number of bits for the source of 4058 // the sign extension, it is impossible for both sides to be equal. 4059 if (C1.getMinSignedBits() > ExtSrcTyBits) 4060 return DAG.getBoolConstant(Cond == ISD::SETNE, dl, VT, OpVT); 4061 4062 assert(ExtDstTy == N0.getOperand(0).getValueType() && 4063 ExtDstTy != ExtSrcTy && "Unexpected types!"); 4064 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 4065 SDValue ZextOp = DAG.getNode(ISD::AND, dl, ExtDstTy, N0.getOperand(0), 4066 DAG.getConstant(Imm, dl, ExtDstTy)); 4067 if (!DCI.isCalledByLegalizer()) 4068 DCI.AddToWorklist(ZextOp.getNode()); 4069 // Otherwise, make this a use of a zext. 4070 return DAG.getSetCC(dl, VT, ZextOp, 4071 DAG.getConstant(C1 & Imm, dl, ExtDstTy), Cond); 4072 } else if ((N1C->isZero() || N1C->isOne()) && 4073 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4074 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 4075 if (N0.getOpcode() == ISD::SETCC && 4076 isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) && 4077 (N0.getValueType() == MVT::i1 || 4078 getBooleanContents(N0.getOperand(0).getValueType()) == 4079 ZeroOrOneBooleanContent)) { 4080 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 4081 if (TrueWhenTrue) 4082 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 4083 // Invert the condition. 4084 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 4085 CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType()); 4086 if (DCI.isBeforeLegalizeOps() || 4087 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 4088 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 4089 } 4090 4091 if ((N0.getOpcode() == ISD::XOR || 4092 (N0.getOpcode() == ISD::AND && 4093 N0.getOperand(0).getOpcode() == ISD::XOR && 4094 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 4095 isOneConstant(N0.getOperand(1))) { 4096 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 4097 // can only do this if the top bits are known zero. 4098 unsigned BitWidth = N0.getValueSizeInBits(); 4099 if (DAG.MaskedValueIsZero(N0, 4100 APInt::getHighBitsSet(BitWidth, 4101 BitWidth-1))) { 4102 // Okay, get the un-inverted input value. 4103 SDValue Val; 4104 if (N0.getOpcode() == ISD::XOR) { 4105 Val = N0.getOperand(0); 4106 } else { 4107 assert(N0.getOpcode() == ISD::AND && 4108 N0.getOperand(0).getOpcode() == ISD::XOR); 4109 // ((X^1)&1)^1 -> X & 1 4110 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 4111 N0.getOperand(0).getOperand(0), 4112 N0.getOperand(1)); 4113 } 4114 4115 return DAG.getSetCC(dl, VT, Val, N1, 4116 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4117 } 4118 } else if (N1C->isOne()) { 4119 SDValue Op0 = N0; 4120 if (Op0.getOpcode() == ISD::TRUNCATE) 4121 Op0 = Op0.getOperand(0); 4122 4123 if ((Op0.getOpcode() == ISD::XOR) && 4124 Op0.getOperand(0).getOpcode() == ISD::SETCC && 4125 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 4126 SDValue XorLHS = Op0.getOperand(0); 4127 SDValue XorRHS = Op0.getOperand(1); 4128 // Ensure that the input setccs return an i1 type or 0/1 value. 4129 if (Op0.getValueType() == MVT::i1 || 4130 (getBooleanContents(XorLHS.getOperand(0).getValueType()) == 4131 ZeroOrOneBooleanContent && 4132 getBooleanContents(XorRHS.getOperand(0).getValueType()) == 4133 ZeroOrOneBooleanContent)) { 4134 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 4135 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 4136 return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond); 4137 } 4138 } 4139 if (Op0.getOpcode() == ISD::AND && isOneConstant(Op0.getOperand(1))) { 4140 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 4141 if (Op0.getValueType().bitsGT(VT)) 4142 Op0 = DAG.getNode(ISD::AND, dl, VT, 4143 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 4144 DAG.getConstant(1, dl, VT)); 4145 else if (Op0.getValueType().bitsLT(VT)) 4146 Op0 = DAG.getNode(ISD::AND, dl, VT, 4147 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 4148 DAG.getConstant(1, dl, VT)); 4149 4150 return DAG.getSetCC(dl, VT, Op0, 4151 DAG.getConstant(0, dl, Op0.getValueType()), 4152 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4153 } 4154 if (Op0.getOpcode() == ISD::AssertZext && 4155 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 4156 return DAG.getSetCC(dl, VT, Op0, 4157 DAG.getConstant(0, dl, Op0.getValueType()), 4158 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 4159 } 4160 } 4161 4162 // Given: 4163 // icmp eq/ne (urem %x, %y), 0 4164 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem': 4165 // icmp eq/ne %x, 0 4166 if (N0.getOpcode() == ISD::UREM && N1C->isZero() && 4167 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4168 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0)); 4169 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1)); 4170 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2) 4171 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond); 4172 } 4173 4174 // Fold set_cc seteq (ashr X, BW-1), -1 -> set_cc setlt X, 0 4175 // and set_cc setne (ashr X, BW-1), -1 -> set_cc setge X, 0 4176 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4177 N0.getOpcode() == ISD::SRA && isa<ConstantSDNode>(N0.getOperand(1)) && 4178 N0.getConstantOperandAPInt(1) == OpVT.getScalarSizeInBits() - 1 && 4179 N1C && N1C->isAllOnes()) { 4180 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4181 DAG.getConstant(0, dl, OpVT), 4182 Cond == ISD::SETEQ ? ISD::SETLT : ISD::SETGE); 4183 } 4184 4185 if (SDValue V = 4186 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 4187 return V; 4188 } 4189 4190 // These simplifications apply to splat vectors as well. 4191 // TODO: Handle more splat vector cases. 4192 if (auto *N1C = isConstOrConstSplat(N1)) { 4193 const APInt &C1 = N1C->getAPIntValue(); 4194 4195 APInt MinVal, MaxVal; 4196 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 4197 if (ISD::isSignedIntSetCC(Cond)) { 4198 MinVal = APInt::getSignedMinValue(OperandBitSize); 4199 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 4200 } else { 4201 MinVal = APInt::getMinValue(OperandBitSize); 4202 MaxVal = APInt::getMaxValue(OperandBitSize); 4203 } 4204 4205 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 4206 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 4207 // X >= MIN --> true 4208 if (C1 == MinVal) 4209 return DAG.getBoolConstant(true, dl, VT, OpVT); 4210 4211 if (!VT.isVector()) { // TODO: Support this for vectors. 4212 // X >= C0 --> X > (C0 - 1) 4213 APInt C = C1 - 1; 4214 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 4215 if ((DCI.isBeforeLegalizeOps() || 4216 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4217 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4218 isLegalICmpImmediate(C.getSExtValue())))) { 4219 return DAG.getSetCC(dl, VT, N0, 4220 DAG.getConstant(C, dl, N1.getValueType()), 4221 NewCC); 4222 } 4223 } 4224 } 4225 4226 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 4227 // X <= MAX --> true 4228 if (C1 == MaxVal) 4229 return DAG.getBoolConstant(true, dl, VT, OpVT); 4230 4231 // X <= C0 --> X < (C0 + 1) 4232 if (!VT.isVector()) { // TODO: Support this for vectors. 4233 APInt C = C1 + 1; 4234 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 4235 if ((DCI.isBeforeLegalizeOps() || 4236 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 4237 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 4238 isLegalICmpImmediate(C.getSExtValue())))) { 4239 return DAG.getSetCC(dl, VT, N0, 4240 DAG.getConstant(C, dl, N1.getValueType()), 4241 NewCC); 4242 } 4243 } 4244 } 4245 4246 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 4247 if (C1 == MinVal) 4248 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 4249 4250 // TODO: Support this for vectors after legalize ops. 4251 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4252 // Canonicalize setlt X, Max --> setne X, Max 4253 if (C1 == MaxVal) 4254 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4255 4256 // If we have setult X, 1, turn it into seteq X, 0 4257 if (C1 == MinVal+1) 4258 return DAG.getSetCC(dl, VT, N0, 4259 DAG.getConstant(MinVal, dl, N0.getValueType()), 4260 ISD::SETEQ); 4261 } 4262 } 4263 4264 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 4265 if (C1 == MaxVal) 4266 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 4267 4268 // TODO: Support this for vectors after legalize ops. 4269 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4270 // Canonicalize setgt X, Min --> setne X, Min 4271 if (C1 == MinVal) 4272 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 4273 4274 // If we have setugt X, Max-1, turn it into seteq X, Max 4275 if (C1 == MaxVal-1) 4276 return DAG.getSetCC(dl, VT, N0, 4277 DAG.getConstant(MaxVal, dl, N0.getValueType()), 4278 ISD::SETEQ); 4279 } 4280 } 4281 4282 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) { 4283 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0 4284 if (C1.isZero()) 4285 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift( 4286 VT, N0, N1, Cond, DCI, dl)) 4287 return CC; 4288 4289 // For all/any comparisons, replace or(x,shl(y,bw/2)) with and/or(x,y). 4290 // For example, when high 32-bits of i64 X are known clear: 4291 // all bits clear: (X | (Y<<32)) == 0 --> (X | Y) == 0 4292 // all bits set: (X | (Y<<32)) == -1 --> (X & Y) == -1 4293 bool CmpZero = N1C->getAPIntValue().isZero(); 4294 bool CmpNegOne = N1C->getAPIntValue().isAllOnes(); 4295 if ((CmpZero || CmpNegOne) && N0.hasOneUse()) { 4296 // Match or(lo,shl(hi,bw/2)) pattern. 4297 auto IsConcat = [&](SDValue V, SDValue &Lo, SDValue &Hi) { 4298 unsigned EltBits = V.getScalarValueSizeInBits(); 4299 if (V.getOpcode() != ISD::OR || (EltBits % 2) != 0) 4300 return false; 4301 SDValue LHS = V.getOperand(0); 4302 SDValue RHS = V.getOperand(1); 4303 APInt HiBits = APInt::getHighBitsSet(EltBits, EltBits / 2); 4304 // Unshifted element must have zero upperbits. 4305 if (RHS.getOpcode() == ISD::SHL && 4306 isa<ConstantSDNode>(RHS.getOperand(1)) && 4307 RHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4308 DAG.MaskedValueIsZero(LHS, HiBits)) { 4309 Lo = LHS; 4310 Hi = RHS.getOperand(0); 4311 return true; 4312 } 4313 if (LHS.getOpcode() == ISD::SHL && 4314 isa<ConstantSDNode>(LHS.getOperand(1)) && 4315 LHS.getConstantOperandAPInt(1) == (EltBits / 2) && 4316 DAG.MaskedValueIsZero(RHS, HiBits)) { 4317 Lo = RHS; 4318 Hi = LHS.getOperand(0); 4319 return true; 4320 } 4321 return false; 4322 }; 4323 4324 auto MergeConcat = [&](SDValue Lo, SDValue Hi) { 4325 unsigned EltBits = N0.getScalarValueSizeInBits(); 4326 unsigned HalfBits = EltBits / 2; 4327 APInt HiBits = APInt::getHighBitsSet(EltBits, HalfBits); 4328 SDValue LoBits = DAG.getConstant(~HiBits, dl, OpVT); 4329 SDValue HiMask = DAG.getNode(ISD::AND, dl, OpVT, Hi, LoBits); 4330 SDValue NewN0 = 4331 DAG.getNode(CmpZero ? ISD::OR : ISD::AND, dl, OpVT, Lo, HiMask); 4332 SDValue NewN1 = CmpZero ? DAG.getConstant(0, dl, OpVT) : LoBits; 4333 return DAG.getSetCC(dl, VT, NewN0, NewN1, Cond); 4334 }; 4335 4336 SDValue Lo, Hi; 4337 if (IsConcat(N0, Lo, Hi)) 4338 return MergeConcat(Lo, Hi); 4339 4340 if (N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR) { 4341 SDValue Lo0, Lo1, Hi0, Hi1; 4342 if (IsConcat(N0.getOperand(0), Lo0, Hi0) && 4343 IsConcat(N0.getOperand(1), Lo1, Hi1)) { 4344 return MergeConcat(DAG.getNode(N0.getOpcode(), dl, OpVT, Lo0, Lo1), 4345 DAG.getNode(N0.getOpcode(), dl, OpVT, Hi0, Hi1)); 4346 } 4347 } 4348 } 4349 } 4350 4351 // If we have "setcc X, C0", check to see if we can shrink the immediate 4352 // by changing cc. 4353 // TODO: Support this for vectors after legalize ops. 4354 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 4355 // SETUGT X, SINTMAX -> SETLT X, 0 4356 // SETUGE X, SINTMIN -> SETLT X, 0 4357 if ((Cond == ISD::SETUGT && C1.isMaxSignedValue()) || 4358 (Cond == ISD::SETUGE && C1.isMinSignedValue())) 4359 return DAG.getSetCC(dl, VT, N0, 4360 DAG.getConstant(0, dl, N1.getValueType()), 4361 ISD::SETLT); 4362 4363 // SETULT X, SINTMIN -> SETGT X, -1 4364 // SETULE X, SINTMAX -> SETGT X, -1 4365 if ((Cond == ISD::SETULT && C1.isMinSignedValue()) || 4366 (Cond == ISD::SETULE && C1.isMaxSignedValue())) 4367 return DAG.getSetCC(dl, VT, N0, 4368 DAG.getAllOnesConstant(dl, N1.getValueType()), 4369 ISD::SETGT); 4370 } 4371 } 4372 4373 // Back to non-vector simplifications. 4374 // TODO: Can we do these for vector splats? 4375 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 const APInt &C1 = N1C->getAPIntValue(); 4378 EVT ShValTy = N0.getValueType(); 4379 4380 // Fold bit comparisons when we can. This will result in an 4381 // incorrect value when boolean false is negative one, unless 4382 // the bitsize is 1 in which case the false value is the same 4383 // in practice regardless of the representation. 4384 if ((VT.getSizeInBits() == 1 || 4385 getBooleanContents(N0.getValueType()) == ZeroOrOneBooleanContent) && 4386 (Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4387 (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) && 4388 N0.getOpcode() == ISD::AND) { 4389 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4390 EVT ShiftTy = 4391 getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4392 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 4393 // Perform the xform if the AND RHS is a single bit. 4394 unsigned ShCt = AndRHS->getAPIntValue().logBase2(); 4395 if (AndRHS->getAPIntValue().isPowerOf2() && 4396 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4397 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4398 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4399 DAG.getConstant(ShCt, dl, ShiftTy))); 4400 } 4401 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 4402 // (X & 8) == 8 --> (X & 8) >> 3 4403 // Perform the xform if C1 is a single bit. 4404 unsigned ShCt = C1.logBase2(); 4405 if (C1.isPowerOf2() && 4406 !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) { 4407 return DAG.getNode(ISD::TRUNCATE, dl, VT, 4408 DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4409 DAG.getConstant(ShCt, dl, ShiftTy))); 4410 } 4411 } 4412 } 4413 } 4414 4415 if (C1.getMinSignedBits() <= 64 && 4416 !isLegalICmpImmediate(C1.getSExtValue())) { 4417 EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize()); 4418 // (X & -256) == 256 -> (X >> 8) == 1 4419 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4420 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 4421 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4422 const APInt &AndRHSC = AndRHS->getAPIntValue(); 4423 if (AndRHSC.isNegatedPowerOf2() && (AndRHSC & C1) == C1) { 4424 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 4425 if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4426 SDValue Shift = 4427 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0), 4428 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4429 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy); 4430 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 4431 } 4432 } 4433 } 4434 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 4435 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 4436 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 4437 // X < 0x100000000 -> (X >> 32) < 1 4438 // X >= 0x100000000 -> (X >> 32) >= 1 4439 // X <= 0x0ffffffff -> (X >> 32) < 1 4440 // X > 0x0ffffffff -> (X >> 32) >= 1 4441 unsigned ShiftBits; 4442 APInt NewC = C1; 4443 ISD::CondCode NewCond = Cond; 4444 if (AdjOne) { 4445 ShiftBits = C1.countTrailingOnes(); 4446 NewC = NewC + 1; 4447 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 4448 } else { 4449 ShiftBits = C1.countTrailingZeros(); 4450 } 4451 NewC.lshrInPlace(ShiftBits); 4452 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 4453 isLegalICmpImmediate(NewC.getSExtValue()) && 4454 !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) { 4455 SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0, 4456 DAG.getConstant(ShiftBits, dl, ShiftTy)); 4457 SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy); 4458 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 4459 } 4460 } 4461 } 4462 } 4463 4464 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) { 4465 auto *CFP = cast<ConstantFPSDNode>(N1); 4466 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value"); 4467 4468 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 4469 // constant if knowing that the operand is non-nan is enough. We prefer to 4470 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 4471 // materialize 0.0. 4472 if (Cond == ISD::SETO || Cond == ISD::SETUO) 4473 return DAG.getSetCC(dl, VT, N0, N0, Cond); 4474 4475 // setcc (fneg x), C -> setcc swap(pred) x, -C 4476 if (N0.getOpcode() == ISD::FNEG) { 4477 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 4478 if (DCI.isBeforeLegalizeOps() || 4479 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 4480 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 4481 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 4482 } 4483 } 4484 4485 // If the condition is not legal, see if we can find an equivalent one 4486 // which is legal. 4487 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 4488 // If the comparison was an awkward floating-point == or != and one of 4489 // the comparison operands is infinity or negative infinity, convert the 4490 // condition to a less-awkward <= or >=. 4491 if (CFP->getValueAPF().isInfinity()) { 4492 bool IsNegInf = CFP->getValueAPF().isNegative(); 4493 ISD::CondCode NewCond = ISD::SETCC_INVALID; 4494 switch (Cond) { 4495 case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break; 4496 case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break; 4497 case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break; 4498 case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break; 4499 default: break; 4500 } 4501 if (NewCond != ISD::SETCC_INVALID && 4502 isCondCodeLegal(NewCond, N0.getSimpleValueType())) 4503 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4504 } 4505 } 4506 } 4507 4508 if (N0 == N1) { 4509 // The sext(setcc()) => setcc() optimization relies on the appropriate 4510 // constant being emitted. 4511 assert(!N0.getValueType().isInteger() && 4512 "Integer types should be handled by FoldSetCC"); 4513 4514 bool EqTrue = ISD::isTrueWhenEqual(Cond); 4515 unsigned UOF = ISD::getUnorderedFlavor(Cond); 4516 if (UOF == 2) // FP operators that are undefined on NaNs. 4517 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4518 if (UOF == unsigned(EqTrue)) 4519 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 4520 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 4521 // if it is not already. 4522 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 4523 if (NewCond != Cond && 4524 (DCI.isBeforeLegalizeOps() || 4525 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 4526 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 4527 } 4528 4529 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 4530 N0.getValueType().isInteger()) { 4531 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 4532 N0.getOpcode() == ISD::XOR) { 4533 // Simplify (X+Y) == (X+Z) --> Y == Z 4534 if (N0.getOpcode() == N1.getOpcode()) { 4535 if (N0.getOperand(0) == N1.getOperand(0)) 4536 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 4537 if (N0.getOperand(1) == N1.getOperand(1)) 4538 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 4539 if (isCommutativeBinOp(N0.getOpcode())) { 4540 // If X op Y == Y op X, try other combinations. 4541 if (N0.getOperand(0) == N1.getOperand(1)) 4542 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 4543 Cond); 4544 if (N0.getOperand(1) == N1.getOperand(0)) 4545 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 4546 Cond); 4547 } 4548 } 4549 4550 // If RHS is a legal immediate value for a compare instruction, we need 4551 // to be careful about increasing register pressure needlessly. 4552 bool LegalRHSImm = false; 4553 4554 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 4555 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 4556 // Turn (X+C1) == C2 --> X == C2-C1 4557 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 4558 return DAG.getSetCC(dl, VT, N0.getOperand(0), 4559 DAG.getConstant(RHSC->getAPIntValue()- 4560 LHSR->getAPIntValue(), 4561 dl, N0.getValueType()), Cond); 4562 } 4563 4564 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 4565 if (N0.getOpcode() == ISD::XOR) 4566 // If we know that all of the inverted bits are zero, don't bother 4567 // performing the inversion. 4568 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 4569 return 4570 DAG.getSetCC(dl, VT, N0.getOperand(0), 4571 DAG.getConstant(LHSR->getAPIntValue() ^ 4572 RHSC->getAPIntValue(), 4573 dl, N0.getValueType()), 4574 Cond); 4575 } 4576 4577 // Turn (C1-X) == C2 --> X == C1-C2 4578 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 4579 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 4580 return 4581 DAG.getSetCC(dl, VT, N0.getOperand(1), 4582 DAG.getConstant(SUBC->getAPIntValue() - 4583 RHSC->getAPIntValue(), 4584 dl, N0.getValueType()), 4585 Cond); 4586 } 4587 } 4588 4589 // Could RHSC fold directly into a compare? 4590 if (RHSC->getValueType(0).getSizeInBits() <= 64) 4591 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 4592 } 4593 4594 // (X+Y) == X --> Y == 0 and similar folds. 4595 // Don't do this if X is an immediate that can fold into a cmp 4596 // instruction and X+Y has other uses. It could be an induction variable 4597 // chain, and the transform would increase register pressure. 4598 if (!LegalRHSImm || N0.hasOneUse()) 4599 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI)) 4600 return V; 4601 } 4602 4603 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 4604 N1.getOpcode() == ISD::XOR) 4605 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI)) 4606 return V; 4607 4608 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI)) 4609 return V; 4610 } 4611 4612 // Fold remainder of division by a constant. 4613 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) && 4614 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 4615 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 4616 4617 // When division is cheap or optimizing for minimum size, 4618 // fall through to DIVREM creation by skipping this fold. 4619 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttr(Attribute::MinSize)) { 4620 if (N0.getOpcode() == ISD::UREM) { 4621 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4622 return Folded; 4623 } else if (N0.getOpcode() == ISD::SREM) { 4624 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl)) 4625 return Folded; 4626 } 4627 } 4628 } 4629 4630 // Fold away ALL boolean setcc's. 4631 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 4632 SDValue Temp; 4633 switch (Cond) { 4634 default: llvm_unreachable("Unknown integer setcc!"); 4635 case ISD::SETEQ: // X == Y -> ~(X^Y) 4636 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4637 N0 = DAG.getNOT(dl, Temp, OpVT); 4638 if (!DCI.isCalledByLegalizer()) 4639 DCI.AddToWorklist(Temp.getNode()); 4640 break; 4641 case ISD::SETNE: // X != Y --> (X^Y) 4642 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 4643 break; 4644 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 4645 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 4646 Temp = DAG.getNOT(dl, N0, OpVT); 4647 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 4648 if (!DCI.isCalledByLegalizer()) 4649 DCI.AddToWorklist(Temp.getNode()); 4650 break; 4651 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 4652 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 4653 Temp = DAG.getNOT(dl, N1, OpVT); 4654 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 4655 if (!DCI.isCalledByLegalizer()) 4656 DCI.AddToWorklist(Temp.getNode()); 4657 break; 4658 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 4659 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 4660 Temp = DAG.getNOT(dl, N0, OpVT); 4661 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 4662 if (!DCI.isCalledByLegalizer()) 4663 DCI.AddToWorklist(Temp.getNode()); 4664 break; 4665 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 4666 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 4667 Temp = DAG.getNOT(dl, N1, OpVT); 4668 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 4669 break; 4670 } 4671 if (VT.getScalarType() != MVT::i1) { 4672 if (!DCI.isCalledByLegalizer()) 4673 DCI.AddToWorklist(N0.getNode()); 4674 // FIXME: If running after legalize, we probably can't do this. 4675 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 4676 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 4677 } 4678 return N0; 4679 } 4680 4681 // Could not fold it. 4682 return SDValue(); 4683 } 4684 4685 /// Returns true (and the GlobalValue and the offset) if the node is a 4686 /// GlobalAddress + offset. 4687 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 4688 int64_t &Offset) const { 4689 4690 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 4691 4692 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 4693 GA = GASD->getGlobal(); 4694 Offset += GASD->getOffset(); 4695 return true; 4696 } 4697 4698 if (N->getOpcode() == ISD::ADD) { 4699 SDValue N1 = N->getOperand(0); 4700 SDValue N2 = N->getOperand(1); 4701 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 4702 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 4703 Offset += V->getSExtValue(); 4704 return true; 4705 } 4706 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 4707 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 4708 Offset += V->getSExtValue(); 4709 return true; 4710 } 4711 } 4712 } 4713 4714 return false; 4715 } 4716 4717 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 4718 DAGCombinerInfo &DCI) const { 4719 // Default implementation: no optimization. 4720 return SDValue(); 4721 } 4722 4723 //===----------------------------------------------------------------------===// 4724 // Inline Assembler Implementation Methods 4725 //===----------------------------------------------------------------------===// 4726 4727 TargetLowering::ConstraintType 4728 TargetLowering::getConstraintType(StringRef Constraint) const { 4729 unsigned S = Constraint.size(); 4730 4731 if (S == 1) { 4732 switch (Constraint[0]) { 4733 default: break; 4734 case 'r': 4735 return C_RegisterClass; 4736 case 'm': // memory 4737 case 'o': // offsetable 4738 case 'V': // not offsetable 4739 return C_Memory; 4740 case 'n': // Simple Integer 4741 case 'E': // Floating Point Constant 4742 case 'F': // Floating Point Constant 4743 return C_Immediate; 4744 case 'i': // Simple Integer or Relocatable Constant 4745 case 's': // Relocatable Constant 4746 case 'p': // Address. 4747 case 'X': // Allow ANY value. 4748 case 'I': // Target registers. 4749 case 'J': 4750 case 'K': 4751 case 'L': 4752 case 'M': 4753 case 'N': 4754 case 'O': 4755 case 'P': 4756 case '<': 4757 case '>': 4758 return C_Other; 4759 } 4760 } 4761 4762 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') { 4763 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 4764 return C_Memory; 4765 return C_Register; 4766 } 4767 return C_Unknown; 4768 } 4769 4770 /// Try to replace an X constraint, which matches anything, with another that 4771 /// has more specific requirements based on the type of the corresponding 4772 /// operand. 4773 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const { 4774 if (ConstraintVT.isInteger()) 4775 return "r"; 4776 if (ConstraintVT.isFloatingPoint()) 4777 return "f"; // works for many targets 4778 return nullptr; 4779 } 4780 4781 SDValue TargetLowering::LowerAsmOutputForConstraint( 4782 SDValue &Chain, SDValue &Flag, const SDLoc &DL, 4783 const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const { 4784 return SDValue(); 4785 } 4786 4787 /// Lower the specified operand into the Ops vector. 4788 /// If it is invalid, don't add anything to Ops. 4789 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 4790 std::string &Constraint, 4791 std::vector<SDValue> &Ops, 4792 SelectionDAG &DAG) const { 4793 4794 if (Constraint.length() > 1) return; 4795 4796 char ConstraintLetter = Constraint[0]; 4797 switch (ConstraintLetter) { 4798 default: break; 4799 case 'X': // Allows any operand 4800 case 'i': // Simple Integer or Relocatable Constant 4801 case 'n': // Simple Integer 4802 case 's': { // Relocatable Constant 4803 4804 ConstantSDNode *C; 4805 uint64_t Offset = 0; 4806 4807 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C), 4808 // etc., since getelementpointer is variadic. We can't use 4809 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible 4810 // while in this case the GA may be furthest from the root node which is 4811 // likely an ISD::ADD. 4812 while (true) { 4813 if ((C = dyn_cast<ConstantSDNode>(Op)) && ConstraintLetter != 's') { 4814 // gcc prints these as sign extended. Sign extend value to 64 bits 4815 // now; without this it would get ZExt'd later in 4816 // ScheduleDAGSDNodes::EmitNode, which is very generic. 4817 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1; 4818 BooleanContent BCont = getBooleanContents(MVT::i64); 4819 ISD::NodeType ExtOpc = 4820 IsBool ? getExtendForContent(BCont) : ISD::SIGN_EXTEND; 4821 int64_t ExtVal = 4822 ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue() : C->getSExtValue(); 4823 Ops.push_back( 4824 DAG.getTargetConstant(Offset + ExtVal, SDLoc(C), MVT::i64)); 4825 return; 4826 } 4827 if (ConstraintLetter != 'n') { 4828 if (const auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 4829 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op), 4830 GA->getValueType(0), 4831 Offset + GA->getOffset())); 4832 return; 4833 } 4834 if (const auto *BA = dyn_cast<BlockAddressSDNode>(Op)) { 4835 Ops.push_back(DAG.getTargetBlockAddress( 4836 BA->getBlockAddress(), BA->getValueType(0), 4837 Offset + BA->getOffset(), BA->getTargetFlags())); 4838 return; 4839 } 4840 if (isa<BasicBlockSDNode>(Op)) { 4841 Ops.push_back(Op); 4842 return; 4843 } 4844 } 4845 const unsigned OpCode = Op.getOpcode(); 4846 if (OpCode == ISD::ADD || OpCode == ISD::SUB) { 4847 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0)))) 4848 Op = Op.getOperand(1); 4849 // Subtraction is not commutative. 4850 else if (OpCode == ISD::ADD && 4851 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))) 4852 Op = Op.getOperand(0); 4853 else 4854 return; 4855 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue(); 4856 continue; 4857 } 4858 return; 4859 } 4860 break; 4861 } 4862 } 4863 } 4864 4865 std::pair<unsigned, const TargetRegisterClass *> 4866 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 4867 StringRef Constraint, 4868 MVT VT) const { 4869 if (Constraint.empty() || Constraint[0] != '{') 4870 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr)); 4871 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?"); 4872 4873 // Remove the braces from around the name. 4874 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2); 4875 4876 std::pair<unsigned, const TargetRegisterClass *> R = 4877 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr)); 4878 4879 // Figure out which register class contains this reg. 4880 for (const TargetRegisterClass *RC : RI->regclasses()) { 4881 // If none of the value types for this register class are valid, we 4882 // can't use it. For example, 64-bit reg classes on 32-bit targets. 4883 if (!isLegalRC(*RI, *RC)) 4884 continue; 4885 4886 for (const MCPhysReg &PR : *RC) { 4887 if (RegName.equals_insensitive(RI->getRegAsmName(PR))) { 4888 std::pair<unsigned, const TargetRegisterClass *> S = 4889 std::make_pair(PR, RC); 4890 4891 // If this register class has the requested value type, return it, 4892 // otherwise keep searching and return the first class found 4893 // if no other is found which explicitly has the requested type. 4894 if (RI->isTypeLegalForClass(*RC, VT)) 4895 return S; 4896 if (!R.second) 4897 R = S; 4898 } 4899 } 4900 } 4901 4902 return R; 4903 } 4904 4905 //===----------------------------------------------------------------------===// 4906 // Constraint Selection. 4907 4908 /// Return true of this is an input operand that is a matching constraint like 4909 /// "4". 4910 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 4911 assert(!ConstraintCode.empty() && "No known constraint!"); 4912 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 4913 } 4914 4915 /// If this is an input matching constraint, this method returns the output 4916 /// operand it matches. 4917 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 4918 assert(!ConstraintCode.empty() && "No known constraint!"); 4919 return atoi(ConstraintCode.c_str()); 4920 } 4921 4922 /// Split up the constraint string from the inline assembly value into the 4923 /// specific constraints and their prefixes, and also tie in the associated 4924 /// operand values. 4925 /// If this returns an empty vector, and if the constraint string itself 4926 /// isn't empty, there was an error parsing. 4927 TargetLowering::AsmOperandInfoVector 4928 TargetLowering::ParseConstraints(const DataLayout &DL, 4929 const TargetRegisterInfo *TRI, 4930 const CallBase &Call) const { 4931 /// Information about all of the constraints. 4932 AsmOperandInfoVector ConstraintOperands; 4933 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 4934 unsigned maCount = 0; // Largest number of multiple alternative constraints. 4935 4936 // Do a prepass over the constraints, canonicalizing them, and building up the 4937 // ConstraintOperands list. 4938 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 4939 unsigned ResNo = 0; // ResNo - The result number of the next output. 4940 4941 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4942 ConstraintOperands.emplace_back(std::move(CI)); 4943 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 4944 4945 // Update multiple alternative constraint count. 4946 if (OpInfo.multipleAlternatives.size() > maCount) 4947 maCount = OpInfo.multipleAlternatives.size(); 4948 4949 OpInfo.ConstraintVT = MVT::Other; 4950 4951 // Compute the value type for each operand. 4952 switch (OpInfo.Type) { 4953 case InlineAsm::isOutput: 4954 // Indirect outputs just consume an argument. 4955 if (OpInfo.isIndirect) { 4956 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4957 break; 4958 } 4959 4960 // The return value of the call is this value. As such, there is no 4961 // corresponding argument. 4962 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 4963 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 4964 OpInfo.ConstraintVT = 4965 getSimpleValueType(DL, STy->getElementType(ResNo)); 4966 } else { 4967 assert(ResNo == 0 && "Asm only has one result!"); 4968 OpInfo.ConstraintVT = 4969 getAsmOperandValueType(DL, Call.getType()).getSimpleVT(); 4970 } 4971 ++ResNo; 4972 break; 4973 case InlineAsm::isInput: 4974 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo); 4975 break; 4976 case InlineAsm::isClobber: 4977 // Nothing to do. 4978 break; 4979 } 4980 4981 if (OpInfo.CallOperandVal) { 4982 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 4983 if (OpInfo.isIndirect) { 4984 OpTy = Call.getAttributes().getParamElementType(ArgNo); 4985 assert(OpTy && "Indirect opernad must have elementtype attribute"); 4986 } 4987 4988 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 4989 if (StructType *STy = dyn_cast<StructType>(OpTy)) 4990 if (STy->getNumElements() == 1) 4991 OpTy = STy->getElementType(0); 4992 4993 // If OpTy is not a single value, it may be a struct/union that we 4994 // can tile with integers. 4995 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 4996 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 4997 switch (BitSize) { 4998 default: break; 4999 case 1: 5000 case 8: 5001 case 16: 5002 case 32: 5003 case 64: 5004 case 128: 5005 OpInfo.ConstraintVT = 5006 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 5007 break; 5008 } 5009 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 5010 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 5011 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 5012 } else { 5013 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 5014 } 5015 5016 ArgNo++; 5017 } 5018 } 5019 5020 // If we have multiple alternative constraints, select the best alternative. 5021 if (!ConstraintOperands.empty()) { 5022 if (maCount) { 5023 unsigned bestMAIndex = 0; 5024 int bestWeight = -1; 5025 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 5026 int weight = -1; 5027 unsigned maIndex; 5028 // Compute the sums of the weights for each alternative, keeping track 5029 // of the best (highest weight) one so far. 5030 for (maIndex = 0; maIndex < maCount; ++maIndex) { 5031 int weightSum = 0; 5032 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5033 cIndex != eIndex; ++cIndex) { 5034 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5035 if (OpInfo.Type == InlineAsm::isClobber) 5036 continue; 5037 5038 // If this is an output operand with a matching input operand, 5039 // look up the matching input. If their types mismatch, e.g. one 5040 // is an integer, the other is floating point, or their sizes are 5041 // different, flag it as an maCantMatch. 5042 if (OpInfo.hasMatchingInput()) { 5043 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5044 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5045 if ((OpInfo.ConstraintVT.isInteger() != 5046 Input.ConstraintVT.isInteger()) || 5047 (OpInfo.ConstraintVT.getSizeInBits() != 5048 Input.ConstraintVT.getSizeInBits())) { 5049 weightSum = -1; // Can't match. 5050 break; 5051 } 5052 } 5053 } 5054 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 5055 if (weight == -1) { 5056 weightSum = -1; 5057 break; 5058 } 5059 weightSum += weight; 5060 } 5061 // Update best. 5062 if (weightSum > bestWeight) { 5063 bestWeight = weightSum; 5064 bestMAIndex = maIndex; 5065 } 5066 } 5067 5068 // Now select chosen alternative in each constraint. 5069 for (AsmOperandInfo &cInfo : ConstraintOperands) 5070 if (cInfo.Type != InlineAsm::isClobber) 5071 cInfo.selectAlternative(bestMAIndex); 5072 } 5073 } 5074 5075 // Check and hook up tied operands, choose constraint code to use. 5076 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 5077 cIndex != eIndex; ++cIndex) { 5078 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex]; 5079 5080 // If this is an output operand with a matching input operand, look up the 5081 // matching input. If their types mismatch, e.g. one is an integer, the 5082 // other is floating point, or their sizes are different, flag it as an 5083 // error. 5084 if (OpInfo.hasMatchingInput()) { 5085 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5086 5087 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5088 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5089 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5090 OpInfo.ConstraintVT); 5091 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5092 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5093 Input.ConstraintVT); 5094 if ((OpInfo.ConstraintVT.isInteger() != 5095 Input.ConstraintVT.isInteger()) || 5096 (MatchRC.second != InputRC.second)) { 5097 report_fatal_error("Unsupported asm: input constraint" 5098 " with a matching output constraint of" 5099 " incompatible type!"); 5100 } 5101 } 5102 } 5103 } 5104 5105 return ConstraintOperands; 5106 } 5107 5108 /// Return an integer indicating how general CT is. 5109 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 5110 switch (CT) { 5111 case TargetLowering::C_Immediate: 5112 case TargetLowering::C_Other: 5113 case TargetLowering::C_Unknown: 5114 return 0; 5115 case TargetLowering::C_Register: 5116 return 1; 5117 case TargetLowering::C_RegisterClass: 5118 return 2; 5119 case TargetLowering::C_Memory: 5120 return 3; 5121 } 5122 llvm_unreachable("Invalid constraint type"); 5123 } 5124 5125 /// Examine constraint type and operand type and determine a weight value. 5126 /// This object must already have been set up with the operand type 5127 /// and the current alternative constraint selected. 5128 TargetLowering::ConstraintWeight 5129 TargetLowering::getMultipleConstraintMatchWeight( 5130 AsmOperandInfo &info, int maIndex) const { 5131 InlineAsm::ConstraintCodeVector *rCodes; 5132 if (maIndex >= (int)info.multipleAlternatives.size()) 5133 rCodes = &info.Codes; 5134 else 5135 rCodes = &info.multipleAlternatives[maIndex].Codes; 5136 ConstraintWeight BestWeight = CW_Invalid; 5137 5138 // Loop over the options, keeping track of the most general one. 5139 for (const std::string &rCode : *rCodes) { 5140 ConstraintWeight weight = 5141 getSingleConstraintMatchWeight(info, rCode.c_str()); 5142 if (weight > BestWeight) 5143 BestWeight = weight; 5144 } 5145 5146 return BestWeight; 5147 } 5148 5149 /// Examine constraint type and operand type and determine a weight value. 5150 /// This object must already have been set up with the operand type 5151 /// and the current alternative constraint selected. 5152 TargetLowering::ConstraintWeight 5153 TargetLowering::getSingleConstraintMatchWeight( 5154 AsmOperandInfo &info, const char *constraint) const { 5155 ConstraintWeight weight = CW_Invalid; 5156 Value *CallOperandVal = info.CallOperandVal; 5157 // If we don't have a value, we can't do a match, 5158 // but allow it at the lowest weight. 5159 if (!CallOperandVal) 5160 return CW_Default; 5161 // Look at the constraint type. 5162 switch (*constraint) { 5163 case 'i': // immediate integer. 5164 case 'n': // immediate integer with a known value. 5165 if (isa<ConstantInt>(CallOperandVal)) 5166 weight = CW_Constant; 5167 break; 5168 case 's': // non-explicit intregal immediate. 5169 if (isa<GlobalValue>(CallOperandVal)) 5170 weight = CW_Constant; 5171 break; 5172 case 'E': // immediate float if host format. 5173 case 'F': // immediate float. 5174 if (isa<ConstantFP>(CallOperandVal)) 5175 weight = CW_Constant; 5176 break; 5177 case '<': // memory operand with autodecrement. 5178 case '>': // memory operand with autoincrement. 5179 case 'm': // memory operand. 5180 case 'o': // offsettable memory operand 5181 case 'V': // non-offsettable memory operand 5182 weight = CW_Memory; 5183 break; 5184 case 'r': // general register. 5185 case 'g': // general register, memory operand or immediate integer. 5186 // note: Clang converts "g" to "imr". 5187 if (CallOperandVal->getType()->isIntegerTy()) 5188 weight = CW_Register; 5189 break; 5190 case 'X': // any operand. 5191 default: 5192 weight = CW_Default; 5193 break; 5194 } 5195 return weight; 5196 } 5197 5198 /// If there are multiple different constraints that we could pick for this 5199 /// operand (e.g. "imr") try to pick the 'best' one. 5200 /// This is somewhat tricky: constraints fall into four classes: 5201 /// Other -> immediates and magic values 5202 /// Register -> one specific register 5203 /// RegisterClass -> a group of regs 5204 /// Memory -> memory 5205 /// Ideally, we would pick the most specific constraint possible: if we have 5206 /// something that fits into a register, we would pick it. The problem here 5207 /// is that if we have something that could either be in a register or in 5208 /// memory that use of the register could cause selection of *other* 5209 /// operands to fail: they might only succeed if we pick memory. Because of 5210 /// this the heuristic we use is: 5211 /// 5212 /// 1) If there is an 'other' constraint, and if the operand is valid for 5213 /// that constraint, use it. This makes us take advantage of 'i' 5214 /// constraints when available. 5215 /// 2) Otherwise, pick the most general constraint present. This prefers 5216 /// 'm' over 'r', for example. 5217 /// 5218 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 5219 const TargetLowering &TLI, 5220 SDValue Op, SelectionDAG *DAG) { 5221 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 5222 unsigned BestIdx = 0; 5223 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 5224 int BestGenerality = -1; 5225 5226 // Loop over the options, keeping track of the most general one. 5227 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 5228 TargetLowering::ConstraintType CType = 5229 TLI.getConstraintType(OpInfo.Codes[i]); 5230 5231 // Indirect 'other' or 'immediate' constraints are not allowed. 5232 if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory || 5233 CType == TargetLowering::C_Register || 5234 CType == TargetLowering::C_RegisterClass)) 5235 continue; 5236 5237 // If this is an 'other' or 'immediate' constraint, see if the operand is 5238 // valid for it. For example, on X86 we might have an 'rI' constraint. If 5239 // the operand is an integer in the range [0..31] we want to use I (saving a 5240 // load of a register), otherwise we must use 'r'. 5241 if ((CType == TargetLowering::C_Other || 5242 CType == TargetLowering::C_Immediate) && Op.getNode()) { 5243 assert(OpInfo.Codes[i].size() == 1 && 5244 "Unhandled multi-letter 'other' constraint"); 5245 std::vector<SDValue> ResultOps; 5246 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 5247 ResultOps, *DAG); 5248 if (!ResultOps.empty()) { 5249 BestType = CType; 5250 BestIdx = i; 5251 break; 5252 } 5253 } 5254 5255 // Things with matching constraints can only be registers, per gcc 5256 // documentation. This mainly affects "g" constraints. 5257 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 5258 continue; 5259 5260 // This constraint letter is more general than the previous one, use it. 5261 int Generality = getConstraintGenerality(CType); 5262 if (Generality > BestGenerality) { 5263 BestType = CType; 5264 BestIdx = i; 5265 BestGenerality = Generality; 5266 } 5267 } 5268 5269 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 5270 OpInfo.ConstraintType = BestType; 5271 } 5272 5273 /// Determines the constraint code and constraint type to use for the specific 5274 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 5275 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 5276 SDValue Op, 5277 SelectionDAG *DAG) const { 5278 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 5279 5280 // Single-letter constraints ('r') are very common. 5281 if (OpInfo.Codes.size() == 1) { 5282 OpInfo.ConstraintCode = OpInfo.Codes[0]; 5283 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5284 } else { 5285 ChooseConstraint(OpInfo, *this, Op, DAG); 5286 } 5287 5288 // 'X' matches anything. 5289 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 5290 // Constants are handled elsewhere. For Functions, the type here is the 5291 // type of the result, which is not what we want to look at; leave them 5292 // alone. 5293 Value *v = OpInfo.CallOperandVal; 5294 if (isa<ConstantInt>(v) || isa<Function>(v)) { 5295 return; 5296 } 5297 5298 if (isa<BasicBlock>(v) || isa<BlockAddress>(v)) { 5299 OpInfo.ConstraintCode = "i"; 5300 return; 5301 } 5302 5303 // Otherwise, try to resolve it to something we know about by looking at 5304 // the actual operand type. 5305 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 5306 OpInfo.ConstraintCode = Repl; 5307 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 5308 } 5309 } 5310 } 5311 5312 /// Given an exact SDIV by a constant, create a multiplication 5313 /// with the multiplicative inverse of the constant. 5314 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 5315 const SDLoc &dl, SelectionDAG &DAG, 5316 SmallVectorImpl<SDNode *> &Created) { 5317 SDValue Op0 = N->getOperand(0); 5318 SDValue Op1 = N->getOperand(1); 5319 EVT VT = N->getValueType(0); 5320 EVT SVT = VT.getScalarType(); 5321 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 5322 EVT ShSVT = ShVT.getScalarType(); 5323 5324 bool UseSRA = false; 5325 SmallVector<SDValue, 16> Shifts, Factors; 5326 5327 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5328 if (C->isZero()) 5329 return false; 5330 APInt Divisor = C->getAPIntValue(); 5331 unsigned Shift = Divisor.countTrailingZeros(); 5332 if (Shift) { 5333 Divisor.ashrInPlace(Shift); 5334 UseSRA = true; 5335 } 5336 // Calculate the multiplicative inverse, using Newton's method. 5337 APInt t; 5338 APInt Factor = Divisor; 5339 while ((t = Divisor * Factor) != 1) 5340 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 5341 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 5342 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 5343 return true; 5344 }; 5345 5346 // Collect all magic values from the build vector. 5347 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 5348 return SDValue(); 5349 5350 SDValue Shift, Factor; 5351 if (Op1.getOpcode() == ISD::BUILD_VECTOR) { 5352 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5353 Factor = DAG.getBuildVector(VT, dl, Factors); 5354 } else if (Op1.getOpcode() == ISD::SPLAT_VECTOR) { 5355 assert(Shifts.size() == 1 && Factors.size() == 1 && 5356 "Expected matchUnaryPredicate to return one element for scalable " 5357 "vectors"); 5358 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5359 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5360 } else { 5361 assert(isa<ConstantSDNode>(Op1) && "Expected a constant"); 5362 Shift = Shifts[0]; 5363 Factor = Factors[0]; 5364 } 5365 5366 SDValue Res = Op0; 5367 5368 // Shift the value upfront if it is even, so the LSB is one. 5369 if (UseSRA) { 5370 // TODO: For UDIV use SRL instead of SRA. 5371 SDNodeFlags Flags; 5372 Flags.setExact(true); 5373 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 5374 Created.push_back(Res.getNode()); 5375 } 5376 5377 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 5378 } 5379 5380 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 5381 SelectionDAG &DAG, 5382 SmallVectorImpl<SDNode *> &Created) const { 5383 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 5384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5385 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 5386 return SDValue(N, 0); // Lower SDIV as SDIV 5387 return SDValue(); 5388 } 5389 5390 /// Given an ISD::SDIV node expressing a divide by constant, 5391 /// return a DAG expression to select that will generate the same value by 5392 /// multiplying by a magic number. 5393 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5394 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 5395 bool IsAfterLegalization, 5396 SmallVectorImpl<SDNode *> &Created) const { 5397 SDLoc dl(N); 5398 EVT VT = N->getValueType(0); 5399 EVT SVT = VT.getScalarType(); 5400 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5401 EVT ShSVT = ShVT.getScalarType(); 5402 unsigned EltBits = VT.getScalarSizeInBits(); 5403 EVT MulVT; 5404 5405 // Check to see if we can do this. 5406 // FIXME: We should be more aggressive here. 5407 if (!isTypeLegal(VT)) { 5408 // Limit this to simple scalars for now. 5409 if (VT.isVector() || !VT.isSimple()) 5410 return SDValue(); 5411 5412 // If this type will be promoted to a large enough type with a legal 5413 // multiply operation, we can go ahead and do this transform. 5414 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5415 return SDValue(); 5416 5417 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5418 if (MulVT.getSizeInBits() < (2 * EltBits) || 5419 !isOperationLegal(ISD::MUL, MulVT)) 5420 return SDValue(); 5421 } 5422 5423 // If the sdiv has an 'exact' bit we can use a simpler lowering. 5424 if (N->getFlags().hasExact()) 5425 return BuildExactSDIV(*this, N, dl, DAG, Created); 5426 5427 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 5428 5429 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 5430 if (C->isZero()) 5431 return false; 5432 5433 const APInt &Divisor = C->getAPIntValue(); 5434 SignedDivisionByConstantInfo magics = SignedDivisionByConstantInfo::get(Divisor); 5435 int NumeratorFactor = 0; 5436 int ShiftMask = -1; 5437 5438 if (Divisor.isOne() || Divisor.isAllOnes()) { 5439 // If d is +1/-1, we just multiply the numerator by +1/-1. 5440 NumeratorFactor = Divisor.getSExtValue(); 5441 magics.Magic = 0; 5442 magics.ShiftAmount = 0; 5443 ShiftMask = 0; 5444 } else if (Divisor.isStrictlyPositive() && magics.Magic.isNegative()) { 5445 // If d > 0 and m < 0, add the numerator. 5446 NumeratorFactor = 1; 5447 } else if (Divisor.isNegative() && magics.Magic.isStrictlyPositive()) { 5448 // If d < 0 and m > 0, subtract the numerator. 5449 NumeratorFactor = -1; 5450 } 5451 5452 MagicFactors.push_back(DAG.getConstant(magics.Magic, dl, SVT)); 5453 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 5454 Shifts.push_back(DAG.getConstant(magics.ShiftAmount, dl, ShSVT)); 5455 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 5456 return true; 5457 }; 5458 5459 SDValue N0 = N->getOperand(0); 5460 SDValue N1 = N->getOperand(1); 5461 5462 // Collect the shifts / magic values from each element. 5463 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 5464 return SDValue(); 5465 5466 SDValue MagicFactor, Factor, Shift, ShiftMask; 5467 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5468 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5469 Factor = DAG.getBuildVector(VT, dl, Factors); 5470 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 5471 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 5472 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5473 assert(MagicFactors.size() == 1 && Factors.size() == 1 && 5474 Shifts.size() == 1 && ShiftMasks.size() == 1 && 5475 "Expected matchUnaryPredicate to return one element for scalable " 5476 "vectors"); 5477 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5478 Factor = DAG.getSplatVector(VT, dl, Factors[0]); 5479 Shift = DAG.getSplatVector(ShVT, dl, Shifts[0]); 5480 ShiftMask = DAG.getSplatVector(VT, dl, ShiftMasks[0]); 5481 } else { 5482 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5483 MagicFactor = MagicFactors[0]; 5484 Factor = Factors[0]; 5485 Shift = Shifts[0]; 5486 ShiftMask = ShiftMasks[0]; 5487 } 5488 5489 // Multiply the numerator (operand 0) by the magic value. 5490 // FIXME: We should support doing a MUL in a wider type. 5491 auto GetMULHS = [&](SDValue X, SDValue Y) { 5492 // If the type isn't legal, use a wider mul of the the type calculated 5493 // earlier. 5494 if (!isTypeLegal(VT)) { 5495 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, X); 5496 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MulVT, Y); 5497 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5498 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5499 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5500 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5501 } 5502 5503 if (isOperationLegalOrCustom(ISD::MULHS, VT, IsAfterLegalization)) 5504 return DAG.getNode(ISD::MULHS, dl, VT, X, Y); 5505 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT, IsAfterLegalization)) { 5506 SDValue LoHi = 5507 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5508 return SDValue(LoHi.getNode(), 1); 5509 } 5510 return SDValue(); 5511 }; 5512 5513 SDValue Q = GetMULHS(N0, MagicFactor); 5514 if (!Q) 5515 return SDValue(); 5516 5517 Created.push_back(Q.getNode()); 5518 5519 // (Optionally) Add/subtract the numerator using Factor. 5520 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 5521 Created.push_back(Factor.getNode()); 5522 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 5523 Created.push_back(Q.getNode()); 5524 5525 // Shift right algebraic by shift value. 5526 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 5527 Created.push_back(Q.getNode()); 5528 5529 // Extract the sign bit, mask it and add it to the quotient. 5530 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 5531 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 5532 Created.push_back(T.getNode()); 5533 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 5534 Created.push_back(T.getNode()); 5535 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 5536 } 5537 5538 /// Given an ISD::UDIV node expressing a divide by constant, 5539 /// return a DAG expression to select that will generate the same value by 5540 /// multiplying by a magic number. 5541 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 5542 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 5543 bool IsAfterLegalization, 5544 SmallVectorImpl<SDNode *> &Created) const { 5545 SDLoc dl(N); 5546 EVT VT = N->getValueType(0); 5547 EVT SVT = VT.getScalarType(); 5548 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 5549 EVT ShSVT = ShVT.getScalarType(); 5550 unsigned EltBits = VT.getScalarSizeInBits(); 5551 EVT MulVT; 5552 5553 // Check to see if we can do this. 5554 // FIXME: We should be more aggressive here. 5555 if (!isTypeLegal(VT)) { 5556 // Limit this to simple scalars for now. 5557 if (VT.isVector() || !VT.isSimple()) 5558 return SDValue(); 5559 5560 // If this type will be promoted to a large enough type with a legal 5561 // multiply operation, we can go ahead and do this transform. 5562 if (getTypeAction(VT.getSimpleVT()) != TypePromoteInteger) 5563 return SDValue(); 5564 5565 MulVT = getTypeToTransformTo(*DAG.getContext(), VT); 5566 if (MulVT.getSizeInBits() < (2 * EltBits) || 5567 !isOperationLegal(ISD::MUL, MulVT)) 5568 return SDValue(); 5569 } 5570 5571 bool UseNPQ = false; 5572 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 5573 5574 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 5575 if (C->isZero()) 5576 return false; 5577 // FIXME: We should use a narrower constant when the upper 5578 // bits are known to be zero. 5579 const APInt& Divisor = C->getAPIntValue(); 5580 UnsignedDivisonByConstantInfo magics = UnsignedDivisonByConstantInfo::get(Divisor); 5581 unsigned PreShift = 0, PostShift = 0; 5582 5583 // If the divisor is even, we can avoid using the expensive fixup by 5584 // shifting the divided value upfront. 5585 if (magics.IsAdd != 0 && !Divisor[0]) { 5586 PreShift = Divisor.countTrailingZeros(); 5587 // Get magic number for the shifted divisor. 5588 magics = UnsignedDivisonByConstantInfo::get(Divisor.lshr(PreShift), PreShift); 5589 assert(magics.IsAdd == 0 && "Should use cheap fixup now"); 5590 } 5591 5592 APInt Magic = magics.Magic; 5593 5594 unsigned SelNPQ; 5595 if (magics.IsAdd == 0 || Divisor.isOne()) { 5596 assert(magics.ShiftAmount < Divisor.getBitWidth() && 5597 "We shouldn't generate an undefined shift!"); 5598 PostShift = magics.ShiftAmount; 5599 SelNPQ = false; 5600 } else { 5601 PostShift = magics.ShiftAmount - 1; 5602 SelNPQ = true; 5603 } 5604 5605 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 5606 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 5607 NPQFactors.push_back( 5608 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 5609 : APInt::getZero(EltBits), 5610 dl, SVT)); 5611 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 5612 UseNPQ |= SelNPQ; 5613 return true; 5614 }; 5615 5616 SDValue N0 = N->getOperand(0); 5617 SDValue N1 = N->getOperand(1); 5618 5619 // Collect the shifts/magic values from each element. 5620 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 5621 return SDValue(); 5622 5623 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 5624 if (N1.getOpcode() == ISD::BUILD_VECTOR) { 5625 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 5626 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 5627 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 5628 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 5629 } else if (N1.getOpcode() == ISD::SPLAT_VECTOR) { 5630 assert(PreShifts.size() == 1 && MagicFactors.size() == 1 && 5631 NPQFactors.size() == 1 && PostShifts.size() == 1 && 5632 "Expected matchUnaryPredicate to return one for scalable vectors"); 5633 PreShift = DAG.getSplatVector(ShVT, dl, PreShifts[0]); 5634 MagicFactor = DAG.getSplatVector(VT, dl, MagicFactors[0]); 5635 NPQFactor = DAG.getSplatVector(VT, dl, NPQFactors[0]); 5636 PostShift = DAG.getSplatVector(ShVT, dl, PostShifts[0]); 5637 } else { 5638 assert(isa<ConstantSDNode>(N1) && "Expected a constant"); 5639 PreShift = PreShifts[0]; 5640 MagicFactor = MagicFactors[0]; 5641 PostShift = PostShifts[0]; 5642 } 5643 5644 SDValue Q = N0; 5645 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 5646 Created.push_back(Q.getNode()); 5647 5648 // FIXME: We should support doing a MUL in a wider type. 5649 auto GetMULHU = [&](SDValue X, SDValue Y) { 5650 // If the type isn't legal, use a wider mul of the the type calculated 5651 // earlier. 5652 if (!isTypeLegal(VT)) { 5653 X = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, X); 5654 Y = DAG.getNode(ISD::ZERO_EXTEND, dl, MulVT, Y); 5655 Y = DAG.getNode(ISD::MUL, dl, MulVT, X, Y); 5656 Y = DAG.getNode(ISD::SRL, dl, MulVT, Y, 5657 DAG.getShiftAmountConstant(EltBits, MulVT, dl)); 5658 return DAG.getNode(ISD::TRUNCATE, dl, VT, Y); 5659 } 5660 5661 if (isOperationLegalOrCustom(ISD::MULHU, VT, IsAfterLegalization)) 5662 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 5663 if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT, IsAfterLegalization)) { 5664 SDValue LoHi = 5665 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 5666 return SDValue(LoHi.getNode(), 1); 5667 } 5668 return SDValue(); // No mulhu or equivalent 5669 }; 5670 5671 // Multiply the numerator (operand 0) by the magic value. 5672 Q = GetMULHU(Q, MagicFactor); 5673 if (!Q) 5674 return SDValue(); 5675 5676 Created.push_back(Q.getNode()); 5677 5678 if (UseNPQ) { 5679 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 5680 Created.push_back(NPQ.getNode()); 5681 5682 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 5683 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 5684 if (VT.isVector()) 5685 NPQ = GetMULHU(NPQ, NPQFactor); 5686 else 5687 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 5688 5689 Created.push_back(NPQ.getNode()); 5690 5691 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 5692 Created.push_back(Q.getNode()); 5693 } 5694 5695 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 5696 Created.push_back(Q.getNode()); 5697 5698 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 5699 5700 SDValue One = DAG.getConstant(1, dl, VT); 5701 SDValue IsOne = DAG.getSetCC(dl, SetCCVT, N1, One, ISD::SETEQ); 5702 return DAG.getSelect(dl, VT, IsOne, N0, Q); 5703 } 5704 5705 /// If all values in Values that *don't* match the predicate are same 'splat' 5706 /// value, then replace all values with that splat value. 5707 /// Else, if AlternativeReplacement was provided, then replace all values that 5708 /// do match predicate with AlternativeReplacement value. 5709 static void 5710 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values, 5711 std::function<bool(SDValue)> Predicate, 5712 SDValue AlternativeReplacement = SDValue()) { 5713 SDValue Replacement; 5714 // Is there a value for which the Predicate does *NOT* match? What is it? 5715 auto SplatValue = llvm::find_if_not(Values, Predicate); 5716 if (SplatValue != Values.end()) { 5717 // Does Values consist only of SplatValue's and values matching Predicate? 5718 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) { 5719 return Value == *SplatValue || Predicate(Value); 5720 })) // Then we shall replace values matching predicate with SplatValue. 5721 Replacement = *SplatValue; 5722 } 5723 if (!Replacement) { 5724 // Oops, we did not find the "baseline" splat value. 5725 if (!AlternativeReplacement) 5726 return; // Nothing to do. 5727 // Let's replace with provided value then. 5728 Replacement = AlternativeReplacement; 5729 } 5730 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement); 5731 } 5732 5733 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE 5734 /// where the divisor is constant and the comparison target is zero, 5735 /// return a DAG expression that will generate the same comparison result 5736 /// using only multiplications, additions and shifts/rotations. 5737 /// Ref: "Hacker's Delight" 10-17. 5738 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode, 5739 SDValue CompTargetNode, 5740 ISD::CondCode Cond, 5741 DAGCombinerInfo &DCI, 5742 const SDLoc &DL) const { 5743 SmallVector<SDNode *, 5> Built; 5744 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5745 DCI, DL, Built)) { 5746 for (SDNode *N : Built) 5747 DCI.AddToWorklist(N); 5748 return Folded; 5749 } 5750 5751 return SDValue(); 5752 } 5753 5754 SDValue 5755 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode, 5756 SDValue CompTargetNode, ISD::CondCode Cond, 5757 DAGCombinerInfo &DCI, const SDLoc &DL, 5758 SmallVectorImpl<SDNode *> &Created) const { 5759 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q) 5760 // - D must be constant, with D = D0 * 2^K where D0 is odd 5761 // - P is the multiplicative inverse of D0 modulo 2^W 5762 // - Q = floor(((2^W) - 1) / D) 5763 // where W is the width of the common type of N and D. 5764 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 5765 "Only applicable for (in)equality comparisons."); 5766 5767 SelectionDAG &DAG = DCI.DAG; 5768 5769 EVT VT = REMNode.getValueType(); 5770 EVT SVT = VT.getScalarType(); 5771 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 5772 EVT ShSVT = ShVT.getScalarType(); 5773 5774 // If MUL is unavailable, we cannot proceed in any case. 5775 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 5776 return SDValue(); 5777 5778 bool ComparingWithAllZeros = true; 5779 bool AllComparisonsWithNonZerosAreTautological = true; 5780 bool HadTautologicalLanes = false; 5781 bool AllLanesAreTautological = true; 5782 bool HadEvenDivisor = false; 5783 bool AllDivisorsArePowerOfTwo = true; 5784 bool HadTautologicalInvertedLanes = false; 5785 SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts; 5786 5787 auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) { 5788 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 5789 if (CDiv->isZero()) 5790 return false; 5791 5792 const APInt &D = CDiv->getAPIntValue(); 5793 const APInt &Cmp = CCmp->getAPIntValue(); 5794 5795 ComparingWithAllZeros &= Cmp.isZero(); 5796 5797 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5798 // if C2 is not less than C1, the comparison is always false. 5799 // But we will only be able to produce the comparison that will give the 5800 // opposive tautological answer. So this lane would need to be fixed up. 5801 bool TautologicalInvertedLane = D.ule(Cmp); 5802 HadTautologicalInvertedLanes |= TautologicalInvertedLane; 5803 5804 // If all lanes are tautological (either all divisors are ones, or divisor 5805 // is not greater than the constant we are comparing with), 5806 // we will prefer to avoid the fold. 5807 bool TautologicalLane = D.isOne() || TautologicalInvertedLane; 5808 HadTautologicalLanes |= TautologicalLane; 5809 AllLanesAreTautological &= TautologicalLane; 5810 5811 // If we are comparing with non-zero, we need'll need to subtract said 5812 // comparison value from the LHS. But there is no point in doing that if 5813 // every lane where we are comparing with non-zero is tautological.. 5814 if (!Cmp.isZero()) 5815 AllComparisonsWithNonZerosAreTautological &= TautologicalLane; 5816 5817 // Decompose D into D0 * 2^K 5818 unsigned K = D.countTrailingZeros(); 5819 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 5820 APInt D0 = D.lshr(K); 5821 5822 // D is even if it has trailing zeros. 5823 HadEvenDivisor |= (K != 0); 5824 // D is a power-of-two if D0 is one. 5825 // If all divisors are power-of-two, we will prefer to avoid the fold. 5826 AllDivisorsArePowerOfTwo &= D0.isOne(); 5827 5828 // P = inv(D0, 2^W) 5829 // 2^W requires W + 1 bits, so we have to extend and then truncate. 5830 unsigned W = D.getBitWidth(); 5831 APInt P = D0.zext(W + 1) 5832 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 5833 .trunc(W); 5834 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 5835 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 5836 5837 // Q = floor((2^W - 1) u/ D) 5838 // R = ((2^W - 1) u% D) 5839 APInt Q, R; 5840 APInt::udivrem(APInt::getAllOnes(W), D, Q, R); 5841 5842 // If we are comparing with zero, then that comparison constant is okay, 5843 // else it may need to be one less than that. 5844 if (Cmp.ugt(R)) 5845 Q -= 1; 5846 5847 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 5848 "We are expecting that K is always less than all-ones for ShSVT"); 5849 5850 // If the lane is tautological the result can be constant-folded. 5851 if (TautologicalLane) { 5852 // Set P and K amount to a bogus values so we can try to splat them. 5853 P = 0; 5854 K = -1; 5855 // And ensure that comparison constant is tautological, 5856 // it will always compare true/false. 5857 Q = -1; 5858 } 5859 5860 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 5861 KAmts.push_back( 5862 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 5863 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 5864 return true; 5865 }; 5866 5867 SDValue N = REMNode.getOperand(0); 5868 SDValue D = REMNode.getOperand(1); 5869 5870 // Collect the values from each element. 5871 if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern)) 5872 return SDValue(); 5873 5874 // If all lanes are tautological, the result can be constant-folded. 5875 if (AllLanesAreTautological) 5876 return SDValue(); 5877 5878 // If this is a urem by a powers-of-two, avoid the fold since it can be 5879 // best implemented as a bit test. 5880 if (AllDivisorsArePowerOfTwo) 5881 return SDValue(); 5882 5883 SDValue PVal, KVal, QVal; 5884 if (D.getOpcode() == ISD::BUILD_VECTOR) { 5885 if (HadTautologicalLanes) { 5886 // Try to turn PAmts into a splat, since we don't care about the values 5887 // that are currently '0'. If we can't, just keep '0'`s. 5888 turnVectorIntoSplatVector(PAmts, isNullConstant); 5889 // Try to turn KAmts into a splat, since we don't care about the values 5890 // that are currently '-1'. If we can't, change them to '0'`s. 5891 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 5892 DAG.getConstant(0, DL, ShSVT)); 5893 } 5894 5895 PVal = DAG.getBuildVector(VT, DL, PAmts); 5896 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 5897 QVal = DAG.getBuildVector(VT, DL, QAmts); 5898 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 5899 assert(PAmts.size() == 1 && KAmts.size() == 1 && QAmts.size() == 1 && 5900 "Expected matchBinaryPredicate to return one element for " 5901 "SPLAT_VECTORs"); 5902 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 5903 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 5904 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 5905 } else { 5906 PVal = PAmts[0]; 5907 KVal = KAmts[0]; 5908 QVal = QAmts[0]; 5909 } 5910 5911 if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) { 5912 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::SUB, VT)) 5913 return SDValue(); // FIXME: Could/should use `ISD::ADD`? 5914 assert(CompTargetNode.getValueType() == N.getValueType() && 5915 "Expecting that the types on LHS and RHS of comparisons match."); 5916 N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode); 5917 } 5918 5919 // (mul N, P) 5920 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 5921 Created.push_back(Op0.getNode()); 5922 5923 // Rotate right only if any divisor was even. We avoid rotates for all-odd 5924 // divisors as a performance improvement, since rotating by 0 is a no-op. 5925 if (HadEvenDivisor) { 5926 // We need ROTR to do this. 5927 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 5928 return SDValue(); 5929 // UREM: (rotr (mul N, P), K) 5930 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 5931 Created.push_back(Op0.getNode()); 5932 } 5933 5934 // UREM: (setule/setugt (rotr (mul N, P), K), Q) 5935 SDValue NewCC = 5936 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 5937 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 5938 if (!HadTautologicalInvertedLanes) 5939 return NewCC; 5940 5941 // If any lanes previously compared always-false, the NewCC will give 5942 // always-true result for them, so we need to fixup those lanes. 5943 // Or the other way around for inequality predicate. 5944 assert(VT.isVector() && "Can/should only get here for vectors."); 5945 Created.push_back(NewCC.getNode()); 5946 5947 // x u% C1` is *always* less than C1. So given `x u% C1 == C2`, 5948 // if C2 is not less than C1, the comparison is always false. 5949 // But we have produced the comparison that will give the 5950 // opposive tautological answer. So these lanes would need to be fixed up. 5951 SDValue TautologicalInvertedChannels = 5952 DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE); 5953 Created.push_back(TautologicalInvertedChannels.getNode()); 5954 5955 // NOTE: we avoid letting illegal types through even if we're before legalize 5956 // ops – legalization has a hard time producing good code for this. 5957 if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) { 5958 // If we have a vector select, let's replace the comparison results in the 5959 // affected lanes with the correct tautological result. 5960 SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true, 5961 DL, SETCCVT, SETCCVT); 5962 return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels, 5963 Replacement, NewCC); 5964 } 5965 5966 // Else, we can just invert the comparison result in the appropriate lanes. 5967 // 5968 // NOTE: see the note above VSELECT above. 5969 if (isOperationLegalOrCustom(ISD::XOR, SETCCVT)) 5970 return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC, 5971 TautologicalInvertedChannels); 5972 5973 return SDValue(); // Don't know how to lower. 5974 } 5975 5976 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE 5977 /// where the divisor is constant and the comparison target is zero, 5978 /// return a DAG expression that will generate the same comparison result 5979 /// using only multiplications, additions and shifts/rotations. 5980 /// Ref: "Hacker's Delight" 10-17. 5981 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode, 5982 SDValue CompTargetNode, 5983 ISD::CondCode Cond, 5984 DAGCombinerInfo &DCI, 5985 const SDLoc &DL) const { 5986 SmallVector<SDNode *, 7> Built; 5987 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond, 5988 DCI, DL, Built)) { 5989 assert(Built.size() <= 7 && "Max size prediction failed."); 5990 for (SDNode *N : Built) 5991 DCI.AddToWorklist(N); 5992 return Folded; 5993 } 5994 5995 return SDValue(); 5996 } 5997 5998 SDValue 5999 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode, 6000 SDValue CompTargetNode, ISD::CondCode Cond, 6001 DAGCombinerInfo &DCI, const SDLoc &DL, 6002 SmallVectorImpl<SDNode *> &Created) const { 6003 // Fold: 6004 // (seteq/ne (srem N, D), 0) 6005 // To: 6006 // (setule/ugt (rotr (add (mul N, P), A), K), Q) 6007 // 6008 // - D must be constant, with D = D0 * 2^K where D0 is odd 6009 // - P is the multiplicative inverse of D0 modulo 2^W 6010 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k))) 6011 // - Q = floor((2 * A) / (2^K)) 6012 // where W is the width of the common type of N and D. 6013 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 6014 "Only applicable for (in)equality comparisons."); 6015 6016 SelectionDAG &DAG = DCI.DAG; 6017 6018 EVT VT = REMNode.getValueType(); 6019 EVT SVT = VT.getScalarType(); 6020 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout(), !DCI.isBeforeLegalize()); 6021 EVT ShSVT = ShVT.getScalarType(); 6022 6023 // If we are after ops legalization, and MUL is unavailable, we can not 6024 // proceed. 6025 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::MUL, VT)) 6026 return SDValue(); 6027 6028 // TODO: Could support comparing with non-zero too. 6029 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode); 6030 if (!CompTarget || !CompTarget->isZero()) 6031 return SDValue(); 6032 6033 bool HadIntMinDivisor = false; 6034 bool HadOneDivisor = false; 6035 bool AllDivisorsAreOnes = true; 6036 bool HadEvenDivisor = false; 6037 bool NeedToApplyOffset = false; 6038 bool AllDivisorsArePowerOfTwo = true; 6039 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts; 6040 6041 auto BuildSREMPattern = [&](ConstantSDNode *C) { 6042 // Division by 0 is UB. Leave it to be constant-folded elsewhere. 6043 if (C->isZero()) 6044 return false; 6045 6046 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine. 6047 6048 // WARNING: this fold is only valid for positive divisors! 6049 APInt D = C->getAPIntValue(); 6050 if (D.isNegative()) 6051 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C` 6052 6053 HadIntMinDivisor |= D.isMinSignedValue(); 6054 6055 // If all divisors are ones, we will prefer to avoid the fold. 6056 HadOneDivisor |= D.isOne(); 6057 AllDivisorsAreOnes &= D.isOne(); 6058 6059 // Decompose D into D0 * 2^K 6060 unsigned K = D.countTrailingZeros(); 6061 assert((!D.isOne() || (K == 0)) && "For divisor '1' we won't rotate."); 6062 APInt D0 = D.lshr(K); 6063 6064 if (!D.isMinSignedValue()) { 6065 // D is even if it has trailing zeros; unless it's INT_MIN, in which case 6066 // we don't care about this lane in this fold, we'll special-handle it. 6067 HadEvenDivisor |= (K != 0); 6068 } 6069 6070 // D is a power-of-two if D0 is one. This includes INT_MIN. 6071 // If all divisors are power-of-two, we will prefer to avoid the fold. 6072 AllDivisorsArePowerOfTwo &= D0.isOne(); 6073 6074 // P = inv(D0, 2^W) 6075 // 2^W requires W + 1 bits, so we have to extend and then truncate. 6076 unsigned W = D.getBitWidth(); 6077 APInt P = D0.zext(W + 1) 6078 .multiplicativeInverse(APInt::getSignedMinValue(W + 1)) 6079 .trunc(W); 6080 assert(!P.isZero() && "No multiplicative inverse!"); // unreachable 6081 assert((D0 * P).isOne() && "Multiplicative inverse basic check failed."); 6082 6083 // A = floor((2^(W - 1) - 1) / D0) & -2^K 6084 APInt A = APInt::getSignedMaxValue(W).udiv(D0); 6085 A.clearLowBits(K); 6086 6087 if (!D.isMinSignedValue()) { 6088 // If divisor INT_MIN, then we don't care about this lane in this fold, 6089 // we'll special-handle it. 6090 NeedToApplyOffset |= A != 0; 6091 } 6092 6093 // Q = floor((2 * A) / (2^K)) 6094 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K)); 6095 6096 assert(APInt::getAllOnes(SVT.getSizeInBits()).ugt(A) && 6097 "We are expecting that A is always less than all-ones for SVT"); 6098 assert(APInt::getAllOnes(ShSVT.getSizeInBits()).ugt(K) && 6099 "We are expecting that K is always less than all-ones for ShSVT"); 6100 6101 // If the divisor is 1 the result can be constant-folded. Likewise, we 6102 // don't care about INT_MIN lanes, those can be set to undef if appropriate. 6103 if (D.isOne()) { 6104 // Set P, A and K to a bogus values so we can try to splat them. 6105 P = 0; 6106 A = -1; 6107 K = -1; 6108 6109 // x ?% 1 == 0 <--> true <--> x u<= -1 6110 Q = -1; 6111 } 6112 6113 PAmts.push_back(DAG.getConstant(P, DL, SVT)); 6114 AAmts.push_back(DAG.getConstant(A, DL, SVT)); 6115 KAmts.push_back( 6116 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT)); 6117 QAmts.push_back(DAG.getConstant(Q, DL, SVT)); 6118 return true; 6119 }; 6120 6121 SDValue N = REMNode.getOperand(0); 6122 SDValue D = REMNode.getOperand(1); 6123 6124 // Collect the values from each element. 6125 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern)) 6126 return SDValue(); 6127 6128 // If this is a srem by a one, avoid the fold since it can be constant-folded. 6129 if (AllDivisorsAreOnes) 6130 return SDValue(); 6131 6132 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold 6133 // since it can be best implemented as a bit test. 6134 if (AllDivisorsArePowerOfTwo) 6135 return SDValue(); 6136 6137 SDValue PVal, AVal, KVal, QVal; 6138 if (D.getOpcode() == ISD::BUILD_VECTOR) { 6139 if (HadOneDivisor) { 6140 // Try to turn PAmts into a splat, since we don't care about the values 6141 // that are currently '0'. If we can't, just keep '0'`s. 6142 turnVectorIntoSplatVector(PAmts, isNullConstant); 6143 // Try to turn AAmts into a splat, since we don't care about the 6144 // values that are currently '-1'. If we can't, change them to '0'`s. 6145 turnVectorIntoSplatVector(AAmts, isAllOnesConstant, 6146 DAG.getConstant(0, DL, SVT)); 6147 // Try to turn KAmts into a splat, since we don't care about the values 6148 // that are currently '-1'. If we can't, change them to '0'`s. 6149 turnVectorIntoSplatVector(KAmts, isAllOnesConstant, 6150 DAG.getConstant(0, DL, ShSVT)); 6151 } 6152 6153 PVal = DAG.getBuildVector(VT, DL, PAmts); 6154 AVal = DAG.getBuildVector(VT, DL, AAmts); 6155 KVal = DAG.getBuildVector(ShVT, DL, KAmts); 6156 QVal = DAG.getBuildVector(VT, DL, QAmts); 6157 } else if (D.getOpcode() == ISD::SPLAT_VECTOR) { 6158 assert(PAmts.size() == 1 && AAmts.size() == 1 && KAmts.size() == 1 && 6159 QAmts.size() == 1 && 6160 "Expected matchUnaryPredicate to return one element for scalable " 6161 "vectors"); 6162 PVal = DAG.getSplatVector(VT, DL, PAmts[0]); 6163 AVal = DAG.getSplatVector(VT, DL, AAmts[0]); 6164 KVal = DAG.getSplatVector(ShVT, DL, KAmts[0]); 6165 QVal = DAG.getSplatVector(VT, DL, QAmts[0]); 6166 } else { 6167 assert(isa<ConstantSDNode>(D) && "Expected a constant"); 6168 PVal = PAmts[0]; 6169 AVal = AAmts[0]; 6170 KVal = KAmts[0]; 6171 QVal = QAmts[0]; 6172 } 6173 6174 // (mul N, P) 6175 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal); 6176 Created.push_back(Op0.getNode()); 6177 6178 if (NeedToApplyOffset) { 6179 // We need ADD to do this. 6180 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ADD, VT)) 6181 return SDValue(); 6182 6183 // (add (mul N, P), A) 6184 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal); 6185 Created.push_back(Op0.getNode()); 6186 } 6187 6188 // Rotate right only if any divisor was even. We avoid rotates for all-odd 6189 // divisors as a performance improvement, since rotating by 0 is a no-op. 6190 if (HadEvenDivisor) { 6191 // We need ROTR to do this. 6192 if (!DCI.isBeforeLegalizeOps() && !isOperationLegalOrCustom(ISD::ROTR, VT)) 6193 return SDValue(); 6194 // SREM: (rotr (add (mul N, P), A), K) 6195 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal); 6196 Created.push_back(Op0.getNode()); 6197 } 6198 6199 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q) 6200 SDValue Fold = 6201 DAG.getSetCC(DL, SETCCVT, Op0, QVal, 6202 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT)); 6203 6204 // If we didn't have lanes with INT_MIN divisor, then we're done. 6205 if (!HadIntMinDivisor) 6206 return Fold; 6207 6208 // That fold is only valid for positive divisors. Which effectively means, 6209 // it is invalid for INT_MIN divisors. So if we have such a lane, 6210 // we must fix-up results for said lanes. 6211 assert(VT.isVector() && "Can/should only get here for vectors."); 6212 6213 // NOTE: we avoid letting illegal types through even if we're before legalize 6214 // ops – legalization has a hard time producing good code for the code that 6215 // follows. 6216 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) || 6217 !isOperationLegalOrCustom(ISD::AND, VT) || 6218 !isOperationLegalOrCustom(Cond, VT) || 6219 !isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) 6220 return SDValue(); 6221 6222 Created.push_back(Fold.getNode()); 6223 6224 SDValue IntMin = DAG.getConstant( 6225 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT); 6226 SDValue IntMax = DAG.getConstant( 6227 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT); 6228 SDValue Zero = 6229 DAG.getConstant(APInt::getZero(SVT.getScalarSizeInBits()), DL, VT); 6230 6231 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded. 6232 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ); 6233 Created.push_back(DivisorIsIntMin.getNode()); 6234 6235 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0 6236 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax); 6237 Created.push_back(Masked.getNode()); 6238 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond); 6239 Created.push_back(MaskedIsZero.getNode()); 6240 6241 // To produce final result we need to blend 2 vectors: 'SetCC' and 6242 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick 6243 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is 6244 // constant-folded, select can get lowered to a shuffle with constant mask. 6245 SDValue Blended = DAG.getNode(ISD::VSELECT, DL, SETCCVT, DivisorIsIntMin, 6246 MaskedIsZero, Fold); 6247 6248 return Blended; 6249 } 6250 6251 bool TargetLowering:: 6252 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 6253 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 6254 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 6255 "be a constant integer"); 6256 return true; 6257 } 6258 6259 return false; 6260 } 6261 6262 SDValue TargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, 6263 const DenormalMode &Mode) const { 6264 SDLoc DL(Op); 6265 EVT VT = Op.getValueType(); 6266 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6267 SDValue FPZero = DAG.getConstantFP(0.0, DL, VT); 6268 // Testing it with denormal inputs to avoid wrong estimate. 6269 if (Mode.Input == DenormalMode::IEEE) { 6270 // This is specifically a check for the handling of denormal inputs, 6271 // not the result. 6272 6273 // Test = fabs(X) < SmallestNormal 6274 const fltSemantics &FltSem = DAG.EVTToAPFloatSemantics(VT); 6275 APFloat SmallestNorm = APFloat::getSmallestNormalized(FltSem); 6276 SDValue NormC = DAG.getConstantFP(SmallestNorm, DL, VT); 6277 SDValue Fabs = DAG.getNode(ISD::FABS, DL, VT, Op); 6278 return DAG.getSetCC(DL, CCVT, Fabs, NormC, ISD::SETLT); 6279 } 6280 // Test = X == 0.0 6281 return DAG.getSetCC(DL, CCVT, Op, FPZero, ISD::SETEQ); 6282 } 6283 6284 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, 6285 bool LegalOps, bool OptForSize, 6286 NegatibleCost &Cost, 6287 unsigned Depth) const { 6288 // fneg is removable even if it has multiple uses. 6289 if (Op.getOpcode() == ISD::FNEG) { 6290 Cost = NegatibleCost::Cheaper; 6291 return Op.getOperand(0); 6292 } 6293 6294 // Don't recurse exponentially. 6295 if (Depth > SelectionDAG::MaxRecursionDepth) 6296 return SDValue(); 6297 6298 // Pre-increment recursion depth for use in recursive calls. 6299 ++Depth; 6300 const SDNodeFlags Flags = Op->getFlags(); 6301 const TargetOptions &Options = DAG.getTarget().Options; 6302 EVT VT = Op.getValueType(); 6303 unsigned Opcode = Op.getOpcode(); 6304 6305 // Don't allow anything with multiple uses unless we know it is free. 6306 if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) { 6307 bool IsFreeExtend = Opcode == ISD::FP_EXTEND && 6308 isFPExtFree(VT, Op.getOperand(0).getValueType()); 6309 if (!IsFreeExtend) 6310 return SDValue(); 6311 } 6312 6313 auto RemoveDeadNode = [&](SDValue N) { 6314 if (N && N.getNode()->use_empty()) 6315 DAG.RemoveDeadNode(N.getNode()); 6316 }; 6317 6318 SDLoc DL(Op); 6319 6320 // Because getNegatedExpression can delete nodes we need a handle to keep 6321 // temporary nodes alive in case the recursion manages to create an identical 6322 // node. 6323 std::list<HandleSDNode> Handles; 6324 6325 switch (Opcode) { 6326 case ISD::ConstantFP: { 6327 // Don't invert constant FP values after legalization unless the target says 6328 // the negated constant is legal. 6329 bool IsOpLegal = 6330 isOperationLegal(ISD::ConstantFP, VT) || 6331 isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT, 6332 OptForSize); 6333 6334 if (LegalOps && !IsOpLegal) 6335 break; 6336 6337 APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF(); 6338 V.changeSign(); 6339 SDValue CFP = DAG.getConstantFP(V, DL, VT); 6340 6341 // If we already have the use of the negated floating constant, it is free 6342 // to negate it even it has multiple uses. 6343 if (!Op.hasOneUse() && CFP.use_empty()) 6344 break; 6345 Cost = NegatibleCost::Neutral; 6346 return CFP; 6347 } 6348 case ISD::BUILD_VECTOR: { 6349 // Only permit BUILD_VECTOR of constants. 6350 if (llvm::any_of(Op->op_values(), [&](SDValue N) { 6351 return !N.isUndef() && !isa<ConstantFPSDNode>(N); 6352 })) 6353 break; 6354 6355 bool IsOpLegal = 6356 (isOperationLegal(ISD::ConstantFP, VT) && 6357 isOperationLegal(ISD::BUILD_VECTOR, VT)) || 6358 llvm::all_of(Op->op_values(), [&](SDValue N) { 6359 return N.isUndef() || 6360 isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT, 6361 OptForSize); 6362 }); 6363 6364 if (LegalOps && !IsOpLegal) 6365 break; 6366 6367 SmallVector<SDValue, 4> Ops; 6368 for (SDValue C : Op->op_values()) { 6369 if (C.isUndef()) { 6370 Ops.push_back(C); 6371 continue; 6372 } 6373 APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF(); 6374 V.changeSign(); 6375 Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType())); 6376 } 6377 Cost = NegatibleCost::Neutral; 6378 return DAG.getBuildVector(VT, DL, Ops); 6379 } 6380 case ISD::FADD: { 6381 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6382 break; 6383 6384 // After operation legalization, it might not be legal to create new FSUBs. 6385 if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT)) 6386 break; 6387 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6388 6389 // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y) 6390 NegatibleCost CostX = NegatibleCost::Expensive; 6391 SDValue NegX = 6392 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6393 // Prevent this node from being deleted by the next call. 6394 if (NegX) 6395 Handles.emplace_back(NegX); 6396 6397 // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X) 6398 NegatibleCost CostY = NegatibleCost::Expensive; 6399 SDValue NegY = 6400 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6401 6402 // We're done with the handles. 6403 Handles.clear(); 6404 6405 // Negate the X if its cost is less or equal than Y. 6406 if (NegX && (CostX <= CostY)) { 6407 Cost = CostX; 6408 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags); 6409 if (NegY != N) 6410 RemoveDeadNode(NegY); 6411 return N; 6412 } 6413 6414 // Negate the Y if it is not expensive. 6415 if (NegY) { 6416 Cost = CostY; 6417 SDValue N = DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags); 6418 if (NegX != N) 6419 RemoveDeadNode(NegX); 6420 return N; 6421 } 6422 break; 6423 } 6424 case ISD::FSUB: { 6425 // We can't turn -(A-B) into B-A when we honor signed zeros. 6426 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6427 break; 6428 6429 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6430 // fold (fneg (fsub 0, Y)) -> Y 6431 if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true)) 6432 if (C->isZero()) { 6433 Cost = NegatibleCost::Cheaper; 6434 return Y; 6435 } 6436 6437 // fold (fneg (fsub X, Y)) -> (fsub Y, X) 6438 Cost = NegatibleCost::Neutral; 6439 return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags); 6440 } 6441 case ISD::FMUL: 6442 case ISD::FDIV: { 6443 SDValue X = Op.getOperand(0), Y = Op.getOperand(1); 6444 6445 // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y) 6446 NegatibleCost CostX = NegatibleCost::Expensive; 6447 SDValue NegX = 6448 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6449 // Prevent this node from being deleted by the next call. 6450 if (NegX) 6451 Handles.emplace_back(NegX); 6452 6453 // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y)) 6454 NegatibleCost CostY = NegatibleCost::Expensive; 6455 SDValue NegY = 6456 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6457 6458 // We're done with the handles. 6459 Handles.clear(); 6460 6461 // Negate the X if its cost is less or equal than Y. 6462 if (NegX && (CostX <= CostY)) { 6463 Cost = CostX; 6464 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, Flags); 6465 if (NegY != N) 6466 RemoveDeadNode(NegY); 6467 return N; 6468 } 6469 6470 // Ignore X * 2.0 because that is expected to be canonicalized to X + X. 6471 if (auto *C = isConstOrConstSplatFP(Op.getOperand(1))) 6472 if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL) 6473 break; 6474 6475 // Negate the Y if it is not expensive. 6476 if (NegY) { 6477 Cost = CostY; 6478 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, Flags); 6479 if (NegX != N) 6480 RemoveDeadNode(NegX); 6481 return N; 6482 } 6483 break; 6484 } 6485 case ISD::FMA: 6486 case ISD::FMAD: { 6487 if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros()) 6488 break; 6489 6490 SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2); 6491 NegatibleCost CostZ = NegatibleCost::Expensive; 6492 SDValue NegZ = 6493 getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth); 6494 // Give up if fail to negate the Z. 6495 if (!NegZ) 6496 break; 6497 6498 // Prevent this node from being deleted by the next two calls. 6499 Handles.emplace_back(NegZ); 6500 6501 // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z)) 6502 NegatibleCost CostX = NegatibleCost::Expensive; 6503 SDValue NegX = 6504 getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth); 6505 // Prevent this node from being deleted by the next call. 6506 if (NegX) 6507 Handles.emplace_back(NegX); 6508 6509 // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z)) 6510 NegatibleCost CostY = NegatibleCost::Expensive; 6511 SDValue NegY = 6512 getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth); 6513 6514 // We're done with the handles. 6515 Handles.clear(); 6516 6517 // Negate the X if its cost is less or equal than Y. 6518 if (NegX && (CostX <= CostY)) { 6519 Cost = std::min(CostX, CostZ); 6520 SDValue N = DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags); 6521 if (NegY != N) 6522 RemoveDeadNode(NegY); 6523 return N; 6524 } 6525 6526 // Negate the Y if it is not expensive. 6527 if (NegY) { 6528 Cost = std::min(CostY, CostZ); 6529 SDValue N = DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags); 6530 if (NegX != N) 6531 RemoveDeadNode(NegX); 6532 return N; 6533 } 6534 break; 6535 } 6536 6537 case ISD::FP_EXTEND: 6538 case ISD::FSIN: 6539 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6540 OptForSize, Cost, Depth)) 6541 return DAG.getNode(Opcode, DL, VT, NegV); 6542 break; 6543 case ISD::FP_ROUND: 6544 if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps, 6545 OptForSize, Cost, Depth)) 6546 return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1)); 6547 break; 6548 } 6549 6550 return SDValue(); 6551 } 6552 6553 //===----------------------------------------------------------------------===// 6554 // Legalization Utilities 6555 //===----------------------------------------------------------------------===// 6556 6557 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, 6558 SDValue LHS, SDValue RHS, 6559 SmallVectorImpl<SDValue> &Result, 6560 EVT HiLoVT, SelectionDAG &DAG, 6561 MulExpansionKind Kind, SDValue LL, 6562 SDValue LH, SDValue RL, SDValue RH) const { 6563 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 6564 Opcode == ISD::SMUL_LOHI); 6565 6566 bool HasMULHS = (Kind == MulExpansionKind::Always) || 6567 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 6568 bool HasMULHU = (Kind == MulExpansionKind::Always) || 6569 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 6570 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 6571 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 6572 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 6573 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 6574 6575 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 6576 return false; 6577 6578 unsigned OuterBitSize = VT.getScalarSizeInBits(); 6579 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 6580 6581 // LL, LH, RL, and RH must be either all NULL or all set to a value. 6582 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 6583 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 6584 6585 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 6586 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 6587 bool Signed) -> bool { 6588 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 6589 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 6590 Hi = SDValue(Lo.getNode(), 1); 6591 return true; 6592 } 6593 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 6594 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 6595 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 6596 return true; 6597 } 6598 return false; 6599 }; 6600 6601 SDValue Lo, Hi; 6602 6603 if (!LL.getNode() && !RL.getNode() && 6604 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6605 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 6606 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 6607 } 6608 6609 if (!LL.getNode()) 6610 return false; 6611 6612 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 6613 if (DAG.MaskedValueIsZero(LHS, HighMask) && 6614 DAG.MaskedValueIsZero(RHS, HighMask)) { 6615 // The inputs are both zero-extended. 6616 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 6617 Result.push_back(Lo); 6618 Result.push_back(Hi); 6619 if (Opcode != ISD::MUL) { 6620 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6621 Result.push_back(Zero); 6622 Result.push_back(Zero); 6623 } 6624 return true; 6625 } 6626 } 6627 6628 if (!VT.isVector() && Opcode == ISD::MUL && 6629 DAG.ComputeNumSignBits(LHS) > InnerBitSize && 6630 DAG.ComputeNumSignBits(RHS) > InnerBitSize) { 6631 // The input values are both sign-extended. 6632 // TODO non-MUL case? 6633 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 6634 Result.push_back(Lo); 6635 Result.push_back(Hi); 6636 return true; 6637 } 6638 } 6639 6640 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 6641 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 6642 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 6643 6644 if (!LH.getNode() && !RH.getNode() && 6645 isOperationLegalOrCustom(ISD::SRL, VT) && 6646 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 6647 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 6648 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 6649 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 6650 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 6651 } 6652 6653 if (!LH.getNode()) 6654 return false; 6655 6656 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 6657 return false; 6658 6659 Result.push_back(Lo); 6660 6661 if (Opcode == ISD::MUL) { 6662 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 6663 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 6664 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 6665 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 6666 Result.push_back(Hi); 6667 return true; 6668 } 6669 6670 // Compute the full width result. 6671 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 6672 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 6673 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6674 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 6675 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 6676 }; 6677 6678 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 6679 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 6680 return false; 6681 6682 // This is effectively the add part of a multiply-add of half-sized operands, 6683 // so it cannot overflow. 6684 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6685 6686 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 6687 return false; 6688 6689 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 6690 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 6691 6692 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 6693 isOperationLegalOrCustom(ISD::ADDE, VT)); 6694 if (UseGlue) 6695 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 6696 Merge(Lo, Hi)); 6697 else 6698 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 6699 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 6700 6701 SDValue Carry = Next.getValue(1); 6702 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6703 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6704 6705 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 6706 return false; 6707 6708 if (UseGlue) 6709 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 6710 Carry); 6711 else 6712 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 6713 Zero, Carry); 6714 6715 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 6716 6717 if (Opcode == ISD::SMUL_LOHI) { 6718 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6719 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 6720 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 6721 6722 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 6723 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 6724 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 6725 } 6726 6727 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6728 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 6729 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 6730 return true; 6731 } 6732 6733 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 6734 SelectionDAG &DAG, MulExpansionKind Kind, 6735 SDValue LL, SDValue LH, SDValue RL, 6736 SDValue RH) const { 6737 SmallVector<SDValue, 2> Result; 6738 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), SDLoc(N), 6739 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 6740 DAG, Kind, LL, LH, RL, RH); 6741 if (Ok) { 6742 assert(Result.size() == 2); 6743 Lo = Result[0]; 6744 Hi = Result[1]; 6745 } 6746 return Ok; 6747 } 6748 6749 // Check that (every element of) Z is undef or not an exact multiple of BW. 6750 static bool isNonZeroModBitWidthOrUndef(SDValue Z, unsigned BW) { 6751 return ISD::matchUnaryPredicate( 6752 Z, 6753 [=](ConstantSDNode *C) { return !C || C->getAPIntValue().urem(BW) != 0; }, 6754 true); 6755 } 6756 6757 SDValue TargetLowering::expandFunnelShift(SDNode *Node, 6758 SelectionDAG &DAG) const { 6759 EVT VT = Node->getValueType(0); 6760 6761 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 6762 !isOperationLegalOrCustom(ISD::SRL, VT) || 6763 !isOperationLegalOrCustom(ISD::SUB, VT) || 6764 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 6765 return SDValue(); 6766 6767 SDValue X = Node->getOperand(0); 6768 SDValue Y = Node->getOperand(1); 6769 SDValue Z = Node->getOperand(2); 6770 6771 unsigned BW = VT.getScalarSizeInBits(); 6772 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 6773 SDLoc DL(SDValue(Node, 0)); 6774 6775 EVT ShVT = Z.getValueType(); 6776 6777 // If a funnel shift in the other direction is more supported, use it. 6778 unsigned RevOpcode = IsFSHL ? ISD::FSHR : ISD::FSHL; 6779 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6780 isOperationLegalOrCustom(RevOpcode, VT) && isPowerOf2_32(BW)) { 6781 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6782 // fshl X, Y, Z -> fshr X, Y, -Z 6783 // fshr X, Y, Z -> fshl X, Y, -Z 6784 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6785 Z = DAG.getNode(ISD::SUB, DL, VT, Zero, Z); 6786 } else { 6787 // fshl X, Y, Z -> fshr (srl X, 1), (fshr X, Y, 1), ~Z 6788 // fshr X, Y, Z -> fshl (fshl X, Y, 1), (shl Y, 1), ~Z 6789 SDValue One = DAG.getConstant(1, DL, ShVT); 6790 if (IsFSHL) { 6791 Y = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6792 X = DAG.getNode(ISD::SRL, DL, VT, X, One); 6793 } else { 6794 X = DAG.getNode(RevOpcode, DL, VT, X, Y, One); 6795 Y = DAG.getNode(ISD::SHL, DL, VT, Y, One); 6796 } 6797 Z = DAG.getNOT(DL, Z, ShVT); 6798 } 6799 return DAG.getNode(RevOpcode, DL, VT, X, Y, Z); 6800 } 6801 6802 SDValue ShX, ShY; 6803 SDValue ShAmt, InvShAmt; 6804 if (isNonZeroModBitWidthOrUndef(Z, BW)) { 6805 // fshl: X << C | Y >> (BW - C) 6806 // fshr: X << (BW - C) | Y >> C 6807 // where C = Z % BW is not zero 6808 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6809 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6810 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 6811 ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 6812 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6813 } else { 6814 // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW)) 6815 // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW) 6816 SDValue Mask = DAG.getConstant(BW - 1, DL, ShVT); 6817 if (isPowerOf2_32(BW)) { 6818 // Z % BW -> Z & (BW - 1) 6819 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 6820 // (BW - 1) - (Z % BW) -> ~Z & (BW - 1) 6821 InvShAmt = DAG.getNode(ISD::AND, DL, ShVT, DAG.getNOT(DL, Z, ShVT), Mask); 6822 } else { 6823 SDValue BitWidthC = DAG.getConstant(BW, DL, ShVT); 6824 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 6825 InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt); 6826 } 6827 6828 SDValue One = DAG.getConstant(1, DL, ShVT); 6829 if (IsFSHL) { 6830 ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt); 6831 SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One); 6832 ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt); 6833 } else { 6834 SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One); 6835 ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt); 6836 ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt); 6837 } 6838 } 6839 return DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 6840 } 6841 6842 // TODO: Merge with expandFunnelShift. 6843 SDValue TargetLowering::expandROT(SDNode *Node, bool AllowVectorOps, 6844 SelectionDAG &DAG) const { 6845 EVT VT = Node->getValueType(0); 6846 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 6847 bool IsLeft = Node->getOpcode() == ISD::ROTL; 6848 SDValue Op0 = Node->getOperand(0); 6849 SDValue Op1 = Node->getOperand(1); 6850 SDLoc DL(SDValue(Node, 0)); 6851 6852 EVT ShVT = Op1.getValueType(); 6853 SDValue Zero = DAG.getConstant(0, DL, ShVT); 6854 6855 // If a rotate in the other direction is more supported, use it. 6856 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 6857 if (!isOperationLegalOrCustom(Node->getOpcode(), VT) && 6858 isOperationLegalOrCustom(RevRot, VT) && isPowerOf2_32(EltSizeInBits)) { 6859 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6860 return DAG.getNode(RevRot, DL, VT, Op0, Sub); 6861 } 6862 6863 if (!AllowVectorOps && VT.isVector() && 6864 (!isOperationLegalOrCustom(ISD::SHL, VT) || 6865 !isOperationLegalOrCustom(ISD::SRL, VT) || 6866 !isOperationLegalOrCustom(ISD::SUB, VT) || 6867 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 6868 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 6869 return SDValue(); 6870 6871 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 6872 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 6873 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 6874 SDValue ShVal; 6875 SDValue HsVal; 6876 if (isPowerOf2_32(EltSizeInBits)) { 6877 // (rotl x, c) -> x << (c & (w - 1)) | x >> (-c & (w - 1)) 6878 // (rotr x, c) -> x >> (c & (w - 1)) | x << (-c & (w - 1)) 6879 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, Zero, Op1); 6880 SDValue ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 6881 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6882 SDValue HsAmt = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 6883 HsVal = DAG.getNode(HsOpc, DL, VT, Op0, HsAmt); 6884 } else { 6885 // (rotl x, c) -> x << (c % w) | x >> 1 >> (w - 1 - (c % w)) 6886 // (rotr x, c) -> x >> (c % w) | x << 1 << (w - 1 - (c % w)) 6887 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 6888 SDValue ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Op1, BitWidthC); 6889 ShVal = DAG.getNode(ShOpc, DL, VT, Op0, ShAmt); 6890 SDValue HsAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthMinusOneC, ShAmt); 6891 SDValue One = DAG.getConstant(1, DL, ShVT); 6892 HsVal = 6893 DAG.getNode(HsOpc, DL, VT, DAG.getNode(HsOpc, DL, VT, Op0, One), HsAmt); 6894 } 6895 return DAG.getNode(ISD::OR, DL, VT, ShVal, HsVal); 6896 } 6897 6898 void TargetLowering::expandShiftParts(SDNode *Node, SDValue &Lo, SDValue &Hi, 6899 SelectionDAG &DAG) const { 6900 assert(Node->getNumOperands() == 3 && "Not a double-shift!"); 6901 EVT VT = Node->getValueType(0); 6902 unsigned VTBits = VT.getScalarSizeInBits(); 6903 assert(isPowerOf2_32(VTBits) && "Power-of-two integer type expected"); 6904 6905 bool IsSHL = Node->getOpcode() == ISD::SHL_PARTS; 6906 bool IsSRA = Node->getOpcode() == ISD::SRA_PARTS; 6907 SDValue ShOpLo = Node->getOperand(0); 6908 SDValue ShOpHi = Node->getOperand(1); 6909 SDValue ShAmt = Node->getOperand(2); 6910 EVT ShAmtVT = ShAmt.getValueType(); 6911 EVT ShAmtCCVT = 6912 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShAmtVT); 6913 SDLoc dl(Node); 6914 6915 // ISD::FSHL and ISD::FSHR have defined overflow behavior but ISD::SHL and 6916 // ISD::SRA/L nodes haven't. Insert an AND to be safe, it's usually optimized 6917 // away during isel. 6918 SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6919 DAG.getConstant(VTBits - 1, dl, ShAmtVT)); 6920 SDValue Tmp1 = IsSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi, 6921 DAG.getConstant(VTBits - 1, dl, ShAmtVT)) 6922 : DAG.getConstant(0, dl, VT); 6923 6924 SDValue Tmp2, Tmp3; 6925 if (IsSHL) { 6926 Tmp2 = DAG.getNode(ISD::FSHL, dl, VT, ShOpHi, ShOpLo, ShAmt); 6927 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt); 6928 } else { 6929 Tmp2 = DAG.getNode(ISD::FSHR, dl, VT, ShOpHi, ShOpLo, ShAmt); 6930 Tmp3 = DAG.getNode(IsSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt); 6931 } 6932 6933 // If the shift amount is larger or equal than the width of a part we don't 6934 // use the result from the FSHL/FSHR. Insert a test and select the appropriate 6935 // values for large shift amounts. 6936 SDValue AndNode = DAG.getNode(ISD::AND, dl, ShAmtVT, ShAmt, 6937 DAG.getConstant(VTBits, dl, ShAmtVT)); 6938 SDValue Cond = DAG.getSetCC(dl, ShAmtCCVT, AndNode, 6939 DAG.getConstant(0, dl, ShAmtVT), ISD::SETNE); 6940 6941 if (IsSHL) { 6942 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6943 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6944 } else { 6945 Lo = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp3, Tmp2); 6946 Hi = DAG.getNode(ISD::SELECT, dl, VT, Cond, Tmp1, Tmp3); 6947 } 6948 } 6949 6950 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 6951 SelectionDAG &DAG) const { 6952 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 6953 SDValue Src = Node->getOperand(OpNo); 6954 EVT SrcVT = Src.getValueType(); 6955 EVT DstVT = Node->getValueType(0); 6956 SDLoc dl(SDValue(Node, 0)); 6957 6958 // FIXME: Only f32 to i64 conversions are supported. 6959 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 6960 return false; 6961 6962 if (Node->isStrictFPOpcode()) 6963 // When a NaN is converted to an integer a trap is allowed. We can't 6964 // use this expansion here because it would eliminate that trap. Other 6965 // traps are also allowed and cannot be eliminated. See 6966 // IEEE 754-2008 sec 5.8. 6967 return false; 6968 6969 // Expand f32 -> i64 conversion 6970 // This algorithm comes from compiler-rt's implementation of fixsfdi: 6971 // https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/builtins/fixsfdi.c 6972 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 6973 EVT IntVT = SrcVT.changeTypeToInteger(); 6974 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 6975 6976 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 6977 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 6978 SDValue Bias = DAG.getConstant(127, dl, IntVT); 6979 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 6980 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 6981 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 6982 6983 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 6984 6985 SDValue ExponentBits = DAG.getNode( 6986 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 6987 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 6988 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 6989 6990 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 6991 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 6992 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 6993 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 6994 6995 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 6996 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 6997 DAG.getConstant(0x00800000, dl, IntVT)); 6998 6999 R = DAG.getZExtOrTrunc(R, dl, DstVT); 7000 7001 R = DAG.getSelectCC( 7002 dl, Exponent, ExponentLoBit, 7003 DAG.getNode(ISD::SHL, dl, DstVT, R, 7004 DAG.getZExtOrTrunc( 7005 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 7006 dl, IntShVT)), 7007 DAG.getNode(ISD::SRL, dl, DstVT, R, 7008 DAG.getZExtOrTrunc( 7009 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 7010 dl, IntShVT)), 7011 ISD::SETGT); 7012 7013 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 7014 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 7015 7016 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 7017 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 7018 return true; 7019 } 7020 7021 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 7022 SDValue &Chain, 7023 SelectionDAG &DAG) const { 7024 SDLoc dl(SDValue(Node, 0)); 7025 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0; 7026 SDValue Src = Node->getOperand(OpNo); 7027 7028 EVT SrcVT = Src.getValueType(); 7029 EVT DstVT = Node->getValueType(0); 7030 EVT SetCCVT = 7031 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 7032 EVT DstSetCCVT = 7033 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); 7034 7035 // Only expand vector types if we have the appropriate vector bit operations. 7036 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT : 7037 ISD::FP_TO_SINT; 7038 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) || 7039 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 7040 return false; 7041 7042 // If the maximum float value is smaller then the signed integer range, 7043 // the destination signmask can't be represented by the float, so we can 7044 // just use FP_TO_SINT directly. 7045 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 7046 APFloat APF(APFSem, APInt::getZero(SrcVT.getScalarSizeInBits())); 7047 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 7048 if (APFloat::opOverflow & 7049 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 7050 if (Node->isStrictFPOpcode()) { 7051 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7052 { Node->getOperand(0), Src }); 7053 Chain = Result.getValue(1); 7054 } else 7055 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7056 return true; 7057 } 7058 7059 // Don't expand it if there isn't cheap fsub instruction. 7060 if (!isOperationLegalOrCustom( 7061 Node->isStrictFPOpcode() ? ISD::STRICT_FSUB : ISD::FSUB, SrcVT)) 7062 return false; 7063 7064 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 7065 SDValue Sel; 7066 7067 if (Node->isStrictFPOpcode()) { 7068 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, 7069 Node->getOperand(0), /*IsSignaling*/ true); 7070 Chain = Sel.getValue(1); 7071 } else { 7072 Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 7073 } 7074 7075 bool Strict = Node->isStrictFPOpcode() || 7076 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 7077 7078 if (Strict) { 7079 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 7080 // signmask then offset (the result of which should be fully representable). 7081 // Sel = Src < 0x8000000000000000 7082 // FltOfs = select Sel, 0, 0x8000000000000000 7083 // IntOfs = select Sel, 0, 0x8000000000000000 7084 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs 7085 7086 // TODO: Should any fast-math-flags be set for the FSUB? 7087 SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel, 7088 DAG.getConstantFP(0.0, dl, SrcVT), Cst); 7089 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7090 SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel, 7091 DAG.getConstant(0, dl, DstVT), 7092 DAG.getConstant(SignMask, dl, DstVT)); 7093 SDValue SInt; 7094 if (Node->isStrictFPOpcode()) { 7095 SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other }, 7096 { Chain, Src, FltOfs }); 7097 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other }, 7098 { Val.getValue(1), Val }); 7099 Chain = SInt.getValue(1); 7100 } else { 7101 SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs); 7102 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val); 7103 } 7104 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); 7105 } else { 7106 // Expand based on maximum range of FP_TO_SINT: 7107 // True = fp_to_sint(Src) 7108 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 7109 // Result = select (Src < 0x8000000000000000), True, False 7110 7111 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 7112 // TODO: Should any fast-math-flags be set for the FSUB? 7113 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 7114 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 7115 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 7116 DAG.getConstant(SignMask, dl, DstVT)); 7117 Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); 7118 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 7119 } 7120 return true; 7121 } 7122 7123 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 7124 SDValue &Chain, 7125 SelectionDAG &DAG) const { 7126 // This transform is not correct for converting 0 when rounding mode is set 7127 // to round toward negative infinity which will produce -0.0. So disable under 7128 // strictfp. 7129 if (Node->isStrictFPOpcode()) 7130 return false; 7131 7132 SDValue Src = Node->getOperand(0); 7133 EVT SrcVT = Src.getValueType(); 7134 EVT DstVT = Node->getValueType(0); 7135 7136 if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64) 7137 return false; 7138 7139 // Only expand vector types if we have the appropriate vector bit operations. 7140 if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 7141 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 7142 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 7143 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 7144 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 7145 return false; 7146 7147 SDLoc dl(SDValue(Node, 0)); 7148 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 7149 7150 // Implementation of unsigned i64 to f64 following the algorithm in 7151 // __floatundidf in compiler_rt. This implementation performs rounding 7152 // correctly in all rounding modes with the exception of converting 0 7153 // when rounding toward negative infinity. In that case the fsub will produce 7154 // -0.0. This will be added to +0.0 and produce -0.0 which is incorrect. 7155 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 7156 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 7157 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 7158 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 7159 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 7160 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 7161 7162 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 7163 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 7164 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 7165 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 7166 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 7167 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 7168 SDValue HiSub = 7169 DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 7170 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 7171 return true; 7172 } 7173 7174 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 7175 SelectionDAG &DAG) const { 7176 SDLoc dl(Node); 7177 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 7178 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 7179 EVT VT = Node->getValueType(0); 7180 7181 if (VT.isScalableVector()) 7182 report_fatal_error( 7183 "Expanding fminnum/fmaxnum for scalable vectors is undefined."); 7184 7185 if (isOperationLegalOrCustom(NewOp, VT)) { 7186 SDValue Quiet0 = Node->getOperand(0); 7187 SDValue Quiet1 = Node->getOperand(1); 7188 7189 if (!Node->getFlags().hasNoNaNs()) { 7190 // Insert canonicalizes if it's possible we need to quiet to get correct 7191 // sNaN behavior. 7192 if (!DAG.isKnownNeverSNaN(Quiet0)) { 7193 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 7194 Node->getFlags()); 7195 } 7196 if (!DAG.isKnownNeverSNaN(Quiet1)) { 7197 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 7198 Node->getFlags()); 7199 } 7200 } 7201 7202 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 7203 } 7204 7205 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that 7206 // instead if there are no NaNs. 7207 if (Node->getFlags().hasNoNaNs()) { 7208 unsigned IEEE2018Op = 7209 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM; 7210 if (isOperationLegalOrCustom(IEEE2018Op, VT)) { 7211 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0), 7212 Node->getOperand(1), Node->getFlags()); 7213 } 7214 } 7215 7216 // If none of the above worked, but there are no NaNs, then expand to 7217 // a compare/select sequence. This is required for correctness since 7218 // InstCombine might have canonicalized a fcmp+select sequence to a 7219 // FMINNUM/FMAXNUM node. If we were to fall through to the default 7220 // expansion to libcall, we might introduce a link-time dependency 7221 // on libm into a file that originally did not have one. 7222 if (Node->getFlags().hasNoNaNs()) { 7223 ISD::CondCode Pred = 7224 Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT; 7225 SDValue Op1 = Node->getOperand(0); 7226 SDValue Op2 = Node->getOperand(1); 7227 SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred); 7228 // Copy FMF flags, but always set the no-signed-zeros flag 7229 // as this is implied by the FMINNUM/FMAXNUM semantics. 7230 SDNodeFlags Flags = Node->getFlags(); 7231 Flags.setNoSignedZeros(true); 7232 SelCC->setFlags(Flags); 7233 return SelCC; 7234 } 7235 7236 return SDValue(); 7237 } 7238 7239 // Only expand vector types if we have the appropriate vector bit operations. 7240 static bool canExpandVectorCTPOP(const TargetLowering &TLI, EVT VT) { 7241 assert(VT.isVector() && "Expected vector type"); 7242 unsigned Len = VT.getScalarSizeInBits(); 7243 return TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 7244 TLI.isOperationLegalOrCustom(ISD::SUB, VT) && 7245 TLI.isOperationLegalOrCustom(ISD::SRL, VT) && 7246 (Len == 8 || TLI.isOperationLegalOrCustom(ISD::MUL, VT)) && 7247 TLI.isOperationLegalOrCustomOrPromote(ISD::AND, VT); 7248 } 7249 7250 SDValue TargetLowering::expandCTPOP(SDNode *Node, SelectionDAG &DAG) const { 7251 SDLoc dl(Node); 7252 EVT VT = Node->getValueType(0); 7253 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7254 SDValue Op = Node->getOperand(0); 7255 unsigned Len = VT.getScalarSizeInBits(); 7256 assert(VT.isInteger() && "CTPOP not implemented for this type."); 7257 7258 // TODO: Add support for irregular type lengths. 7259 if (!(Len <= 128 && Len % 8 == 0)) 7260 return SDValue(); 7261 7262 // Only expand vector types if we have the appropriate vector bit operations. 7263 if (VT.isVector() && !canExpandVectorCTPOP(*this, VT)) 7264 return SDValue(); 7265 7266 // This is the "best" algorithm from 7267 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 7268 SDValue Mask55 = 7269 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 7270 SDValue Mask33 = 7271 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 7272 SDValue Mask0F = 7273 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 7274 SDValue Mask01 = 7275 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 7276 7277 // v = v - ((v >> 1) & 0x55555555...) 7278 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 7279 DAG.getNode(ISD::AND, dl, VT, 7280 DAG.getNode(ISD::SRL, dl, VT, Op, 7281 DAG.getConstant(1, dl, ShVT)), 7282 Mask55)); 7283 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 7284 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 7285 DAG.getNode(ISD::AND, dl, VT, 7286 DAG.getNode(ISD::SRL, dl, VT, Op, 7287 DAG.getConstant(2, dl, ShVT)), 7288 Mask33)); 7289 // v = (v + (v >> 4)) & 0x0F0F0F0F... 7290 Op = DAG.getNode(ISD::AND, dl, VT, 7291 DAG.getNode(ISD::ADD, dl, VT, Op, 7292 DAG.getNode(ISD::SRL, dl, VT, Op, 7293 DAG.getConstant(4, dl, ShVT))), 7294 Mask0F); 7295 // v = (v * 0x01010101...) >> (Len - 8) 7296 if (Len > 8) 7297 Op = 7298 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 7299 DAG.getConstant(Len - 8, dl, ShVT)); 7300 7301 return Op; 7302 } 7303 7304 SDValue TargetLowering::expandCTLZ(SDNode *Node, SelectionDAG &DAG) const { 7305 SDLoc dl(Node); 7306 EVT VT = Node->getValueType(0); 7307 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7308 SDValue Op = Node->getOperand(0); 7309 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7310 7311 // If the non-ZERO_UNDEF version is supported we can use that instead. 7312 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 7313 isOperationLegalOrCustom(ISD::CTLZ, VT)) 7314 return DAG.getNode(ISD::CTLZ, dl, VT, Op); 7315 7316 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7317 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 7318 EVT SetCCVT = 7319 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7320 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 7321 SDValue Zero = DAG.getConstant(0, dl, VT); 7322 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7323 return DAG.getSelect(dl, VT, SrcIsZero, 7324 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 7325 } 7326 7327 // Only expand vector types if we have the appropriate vector bit operations. 7328 // This includes the operations needed to expand CTPOP if it isn't supported. 7329 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7330 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7331 !canExpandVectorCTPOP(*this, VT)) || 7332 !isOperationLegalOrCustom(ISD::SRL, VT) || 7333 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 7334 return SDValue(); 7335 7336 // for now, we do this: 7337 // x = x | (x >> 1); 7338 // x = x | (x >> 2); 7339 // ... 7340 // x = x | (x >>16); 7341 // x = x | (x >>32); // for 64-bit input 7342 // return popcount(~x); 7343 // 7344 // Ref: "Hacker's Delight" by Henry Warren 7345 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 7346 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 7347 Op = DAG.getNode(ISD::OR, dl, VT, Op, 7348 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 7349 } 7350 Op = DAG.getNOT(dl, Op, VT); 7351 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 7352 } 7353 7354 SDValue TargetLowering::expandCTTZ(SDNode *Node, SelectionDAG &DAG) const { 7355 SDLoc dl(Node); 7356 EVT VT = Node->getValueType(0); 7357 SDValue Op = Node->getOperand(0); 7358 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 7359 7360 // If the non-ZERO_UNDEF version is supported we can use that instead. 7361 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 7362 isOperationLegalOrCustom(ISD::CTTZ, VT)) 7363 return DAG.getNode(ISD::CTTZ, dl, VT, Op); 7364 7365 // If the ZERO_UNDEF version is supported use that and handle the zero case. 7366 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 7367 EVT SetCCVT = 7368 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 7369 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 7370 SDValue Zero = DAG.getConstant(0, dl, VT); 7371 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 7372 return DAG.getSelect(dl, VT, SrcIsZero, 7373 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 7374 } 7375 7376 // Only expand vector types if we have the appropriate vector bit operations. 7377 // This includes the operations needed to expand CTPOP if it isn't supported. 7378 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 7379 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 7380 !isOperationLegalOrCustom(ISD::CTLZ, VT) && 7381 !canExpandVectorCTPOP(*this, VT)) || 7382 !isOperationLegalOrCustom(ISD::SUB, VT) || 7383 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 7384 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7385 return SDValue(); 7386 7387 // for now, we use: { return popcount(~x & (x - 1)); } 7388 // unless the target has ctlz but not ctpop, in which case we use: 7389 // { return 32 - nlz(~x & (x-1)); } 7390 // Ref: "Hacker's Delight" by Henry Warren 7391 SDValue Tmp = DAG.getNode( 7392 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 7393 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 7394 7395 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 7396 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 7397 return DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 7398 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 7399 } 7400 7401 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 7402 } 7403 7404 SDValue TargetLowering::expandABS(SDNode *N, SelectionDAG &DAG, 7405 bool IsNegative) const { 7406 SDLoc dl(N); 7407 EVT VT = N->getValueType(0); 7408 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7409 SDValue Op = N->getOperand(0); 7410 7411 // abs(x) -> smax(x,sub(0,x)) 7412 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7413 isOperationLegal(ISD::SMAX, VT)) { 7414 SDValue Zero = DAG.getConstant(0, dl, VT); 7415 return DAG.getNode(ISD::SMAX, dl, VT, Op, 7416 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7417 } 7418 7419 // abs(x) -> umin(x,sub(0,x)) 7420 if (!IsNegative && isOperationLegal(ISD::SUB, VT) && 7421 isOperationLegal(ISD::UMIN, VT)) { 7422 SDValue Zero = DAG.getConstant(0, dl, VT); 7423 return DAG.getNode(ISD::UMIN, dl, VT, Op, 7424 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7425 } 7426 7427 // 0 - abs(x) -> smin(x, sub(0,x)) 7428 if (IsNegative && isOperationLegal(ISD::SUB, VT) && 7429 isOperationLegal(ISD::SMIN, VT)) { 7430 SDValue Zero = DAG.getConstant(0, dl, VT); 7431 return DAG.getNode(ISD::SMIN, dl, VT, Op, 7432 DAG.getNode(ISD::SUB, dl, VT, Zero, Op)); 7433 } 7434 7435 // Only expand vector types if we have the appropriate vector operations. 7436 if (VT.isVector() && 7437 (!isOperationLegalOrCustom(ISD::SRA, VT) || 7438 (!IsNegative && !isOperationLegalOrCustom(ISD::ADD, VT)) || 7439 (IsNegative && !isOperationLegalOrCustom(ISD::SUB, VT)) || 7440 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 7441 return SDValue(); 7442 7443 SDValue Shift = 7444 DAG.getNode(ISD::SRA, dl, VT, Op, 7445 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 7446 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, Op, Shift); 7447 7448 // abs(x) -> Y = sra (X, size(X)-1); sub (xor (X, Y), Y) 7449 if (!IsNegative) 7450 return DAG.getNode(ISD::SUB, dl, VT, Xor, Shift); 7451 7452 // 0 - abs(x) -> Y = sra (X, size(X)-1); sub (Y, xor (X, Y)) 7453 return DAG.getNode(ISD::SUB, dl, VT, Shift, Xor); 7454 } 7455 7456 SDValue TargetLowering::expandBSWAP(SDNode *N, SelectionDAG &DAG) const { 7457 SDLoc dl(N); 7458 EVT VT = N->getValueType(0); 7459 SDValue Op = N->getOperand(0); 7460 7461 if (!VT.isSimple()) 7462 return SDValue(); 7463 7464 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7465 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 7466 switch (VT.getSimpleVT().getScalarType().SimpleTy) { 7467 default: 7468 return SDValue(); 7469 case MVT::i16: 7470 // Use a rotate by 8. This can be further expanded if necessary. 7471 return DAG.getNode(ISD::ROTL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7472 case MVT::i32: 7473 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7474 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7475 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7476 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7477 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7478 DAG.getConstant(0xFF0000, dl, VT)); 7479 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 7480 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7481 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7482 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7483 case MVT::i64: 7484 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7485 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7486 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7487 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7488 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 7489 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 7490 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 7491 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 7492 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 7493 DAG.getConstant(255ULL<<48, dl, VT)); 7494 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 7495 DAG.getConstant(255ULL<<40, dl, VT)); 7496 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 7497 DAG.getConstant(255ULL<<32, dl, VT)); 7498 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 7499 DAG.getConstant(255ULL<<24, dl, VT)); 7500 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 7501 DAG.getConstant(255ULL<<16, dl, VT)); 7502 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 7503 DAG.getConstant(255ULL<<8 , dl, VT)); 7504 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 7505 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 7506 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 7507 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 7508 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 7509 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 7510 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 7511 } 7512 } 7513 7514 SDValue TargetLowering::expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const { 7515 SDLoc dl(N); 7516 EVT VT = N->getValueType(0); 7517 SDValue Op = N->getOperand(0); 7518 EVT SHVT = getShiftAmountTy(VT, DAG.getDataLayout()); 7519 unsigned Sz = VT.getScalarSizeInBits(); 7520 7521 SDValue Tmp, Tmp2, Tmp3; 7522 7523 // If we can, perform BSWAP first and then the mask+swap the i4, then i2 7524 // and finally the i1 pairs. 7525 // TODO: We can easily support i4/i2 legal types if any target ever does. 7526 if (Sz >= 8 && isPowerOf2_32(Sz)) { 7527 // Create the masks - repeating the pattern every byte. 7528 APInt Mask4 = APInt::getSplat(Sz, APInt(8, 0x0F)); 7529 APInt Mask2 = APInt::getSplat(Sz, APInt(8, 0x33)); 7530 APInt Mask1 = APInt::getSplat(Sz, APInt(8, 0x55)); 7531 7532 // BSWAP if the type is wider than a single byte. 7533 Tmp = (Sz > 8 ? DAG.getNode(ISD::BSWAP, dl, VT, Op) : Op); 7534 7535 // swap i4: ((V >> 4) & 0x0F) | ((V & 0x0F) << 4) 7536 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(4, dl, SHVT)); 7537 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask4, dl, VT)); 7538 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask4, dl, VT)); 7539 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(4, dl, SHVT)); 7540 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7541 7542 // swap i2: ((V >> 2) & 0x33) | ((V & 0x33) << 2) 7543 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(2, dl, SHVT)); 7544 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask2, dl, VT)); 7545 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask2, dl, VT)); 7546 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(2, dl, SHVT)); 7547 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7548 7549 // swap i1: ((V >> 1) & 0x55) | ((V & 0x55) << 1) 7550 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Tmp, DAG.getConstant(1, dl, SHVT)); 7551 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Mask1, dl, VT)); 7552 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp, DAG.getConstant(Mask1, dl, VT)); 7553 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Tmp3, DAG.getConstant(1, dl, SHVT)); 7554 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); 7555 return Tmp; 7556 } 7557 7558 Tmp = DAG.getConstant(0, dl, VT); 7559 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 7560 if (I < J) 7561 Tmp2 = 7562 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 7563 else 7564 Tmp2 = 7565 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 7566 7567 APInt Shift(Sz, 1); 7568 Shift <<= J; 7569 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 7570 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 7571 } 7572 7573 return Tmp; 7574 } 7575 7576 std::pair<SDValue, SDValue> 7577 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 7578 SelectionDAG &DAG) const { 7579 SDLoc SL(LD); 7580 SDValue Chain = LD->getChain(); 7581 SDValue BasePTR = LD->getBasePtr(); 7582 EVT SrcVT = LD->getMemoryVT(); 7583 EVT DstVT = LD->getValueType(0); 7584 ISD::LoadExtType ExtType = LD->getExtensionType(); 7585 7586 if (SrcVT.isScalableVector()) 7587 report_fatal_error("Cannot scalarize scalable vector loads"); 7588 7589 unsigned NumElem = SrcVT.getVectorNumElements(); 7590 7591 EVT SrcEltVT = SrcVT.getScalarType(); 7592 EVT DstEltVT = DstVT.getScalarType(); 7593 7594 // A vector must always be stored in memory as-is, i.e. without any padding 7595 // between the elements, since various code depend on it, e.g. in the 7596 // handling of a bitcast of a vector type to int, which may be done with a 7597 // vector store followed by an integer load. A vector that does not have 7598 // elements that are byte-sized must therefore be stored as an integer 7599 // built out of the extracted vector elements. 7600 if (!SrcEltVT.isByteSized()) { 7601 unsigned NumLoadBits = SrcVT.getStoreSizeInBits(); 7602 EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits); 7603 7604 unsigned NumSrcBits = SrcVT.getSizeInBits(); 7605 EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits); 7606 7607 unsigned SrcEltBits = SrcEltVT.getSizeInBits(); 7608 SDValue SrcEltBitMask = DAG.getConstant( 7609 APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT); 7610 7611 // Load the whole vector and avoid masking off the top bits as it makes 7612 // the codegen worse. 7613 SDValue Load = 7614 DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR, 7615 LD->getPointerInfo(), SrcIntVT, LD->getOriginalAlign(), 7616 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7617 7618 SmallVector<SDValue, 8> Vals; 7619 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7620 unsigned ShiftIntoIdx = 7621 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7622 SDValue ShiftAmount = 7623 DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(), 7624 LoadVT, SL, /*LegalTypes=*/false); 7625 SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount); 7626 SDValue Elt = 7627 DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask); 7628 SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt); 7629 7630 if (ExtType != ISD::NON_EXTLOAD) { 7631 unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType); 7632 Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar); 7633 } 7634 7635 Vals.push_back(Scalar); 7636 } 7637 7638 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7639 return std::make_pair(Value, Load.getValue(1)); 7640 } 7641 7642 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 7643 assert(SrcEltVT.isByteSized()); 7644 7645 SmallVector<SDValue, 8> Vals; 7646 SmallVector<SDValue, 8> LoadChains; 7647 7648 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7649 SDValue ScalarLoad = 7650 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 7651 LD->getPointerInfo().getWithOffset(Idx * Stride), 7652 SrcEltVT, LD->getOriginalAlign(), 7653 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 7654 7655 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, TypeSize::Fixed(Stride)); 7656 7657 Vals.push_back(ScalarLoad.getValue(0)); 7658 LoadChains.push_back(ScalarLoad.getValue(1)); 7659 } 7660 7661 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 7662 SDValue Value = DAG.getBuildVector(DstVT, SL, Vals); 7663 7664 return std::make_pair(Value, NewChain); 7665 } 7666 7667 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 7668 SelectionDAG &DAG) const { 7669 SDLoc SL(ST); 7670 7671 SDValue Chain = ST->getChain(); 7672 SDValue BasePtr = ST->getBasePtr(); 7673 SDValue Value = ST->getValue(); 7674 EVT StVT = ST->getMemoryVT(); 7675 7676 if (StVT.isScalableVector()) 7677 report_fatal_error("Cannot scalarize scalable vector stores"); 7678 7679 // The type of the data we want to save 7680 EVT RegVT = Value.getValueType(); 7681 EVT RegSclVT = RegVT.getScalarType(); 7682 7683 // The type of data as saved in memory. 7684 EVT MemSclVT = StVT.getScalarType(); 7685 7686 unsigned NumElem = StVT.getVectorNumElements(); 7687 7688 // A vector must always be stored in memory as-is, i.e. without any padding 7689 // between the elements, since various code depend on it, e.g. in the 7690 // handling of a bitcast of a vector type to int, which may be done with a 7691 // vector store followed by an integer load. A vector that does not have 7692 // elements that are byte-sized must therefore be stored as an integer 7693 // built out of the extracted vector elements. 7694 if (!MemSclVT.isByteSized()) { 7695 unsigned NumBits = StVT.getSizeInBits(); 7696 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 7697 7698 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 7699 7700 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7701 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7702 DAG.getVectorIdxConstant(Idx, SL)); 7703 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 7704 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 7705 unsigned ShiftIntoIdx = 7706 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 7707 SDValue ShiftAmount = 7708 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 7709 SDValue ShiftedElt = 7710 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 7711 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 7712 } 7713 7714 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 7715 ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7716 ST->getAAInfo()); 7717 } 7718 7719 // Store Stride in bytes 7720 unsigned Stride = MemSclVT.getSizeInBits() / 8; 7721 assert(Stride && "Zero stride!"); 7722 // Extract each of the elements from the original vector and save them into 7723 // memory individually. 7724 SmallVector<SDValue, 8> Stores; 7725 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 7726 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 7727 DAG.getVectorIdxConstant(Idx, SL)); 7728 7729 SDValue Ptr = 7730 DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Idx * Stride)); 7731 7732 // This scalar TruncStore may be illegal, but we legalize it later. 7733 SDValue Store = DAG.getTruncStore( 7734 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 7735 MemSclVT, ST->getOriginalAlign(), ST->getMemOperand()->getFlags(), 7736 ST->getAAInfo()); 7737 7738 Stores.push_back(Store); 7739 } 7740 7741 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 7742 } 7743 7744 std::pair<SDValue, SDValue> 7745 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 7746 assert(LD->getAddressingMode() == ISD::UNINDEXED && 7747 "unaligned indexed loads not implemented!"); 7748 SDValue Chain = LD->getChain(); 7749 SDValue Ptr = LD->getBasePtr(); 7750 EVT VT = LD->getValueType(0); 7751 EVT LoadedVT = LD->getMemoryVT(); 7752 SDLoc dl(LD); 7753 auto &MF = DAG.getMachineFunction(); 7754 7755 if (VT.isFloatingPoint() || VT.isVector()) { 7756 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 7757 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 7758 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 7759 LoadedVT.isVector()) { 7760 // Scalarize the load and let the individual components be handled. 7761 return scalarizeVectorLoad(LD, DAG); 7762 } 7763 7764 // Expand to a (misaligned) integer load of the same size, 7765 // then bitconvert to floating point or vector. 7766 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 7767 LD->getMemOperand()); 7768 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 7769 if (LoadedVT != VT) 7770 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 7771 ISD::ANY_EXTEND, dl, VT, Result); 7772 7773 return std::make_pair(Result, newLoad.getValue(1)); 7774 } 7775 7776 // Copy the value to a (aligned) stack slot using (unaligned) integer 7777 // loads and stores, then do a (aligned) load from the stack slot. 7778 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 7779 unsigned LoadedBytes = LoadedVT.getStoreSize(); 7780 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7781 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 7782 7783 // Make sure the stack slot is also aligned for the register type. 7784 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 7785 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 7786 SmallVector<SDValue, 8> Stores; 7787 SDValue StackPtr = StackBase; 7788 unsigned Offset = 0; 7789 7790 EVT PtrVT = Ptr.getValueType(); 7791 EVT StackPtrVT = StackPtr.getValueType(); 7792 7793 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7794 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7795 7796 // Do all but one copies using the full register width. 7797 for (unsigned i = 1; i < NumRegs; i++) { 7798 // Load one integer register's worth from the original location. 7799 SDValue Load = DAG.getLoad( 7800 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 7801 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7802 LD->getAAInfo()); 7803 // Follow the load with a store to the stack slot. Remember the store. 7804 Stores.push_back(DAG.getStore( 7805 Load.getValue(1), dl, Load, StackPtr, 7806 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 7807 // Increment the pointers. 7808 Offset += RegBytes; 7809 7810 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7811 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7812 } 7813 7814 // The last copy may be partial. Do an extending load. 7815 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 7816 8 * (LoadedBytes - Offset)); 7817 SDValue Load = 7818 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 7819 LD->getPointerInfo().getWithOffset(Offset), MemVT, 7820 LD->getOriginalAlign(), LD->getMemOperand()->getFlags(), 7821 LD->getAAInfo()); 7822 // Follow the load with a store to the stack slot. Remember the store. 7823 // On big-endian machines this requires a truncating store to ensure 7824 // that the bits end up in the right place. 7825 Stores.push_back(DAG.getTruncStore( 7826 Load.getValue(1), dl, Load, StackPtr, 7827 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 7828 7829 // The order of the stores doesn't matter - say it with a TokenFactor. 7830 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7831 7832 // Finally, perform the original load only redirected to the stack slot. 7833 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 7834 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 7835 LoadedVT); 7836 7837 // Callers expect a MERGE_VALUES node. 7838 return std::make_pair(Load, TF); 7839 } 7840 7841 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 7842 "Unaligned load of unsupported type."); 7843 7844 // Compute the new VT that is half the size of the old one. This is an 7845 // integer MVT. 7846 unsigned NumBits = LoadedVT.getSizeInBits(); 7847 EVT NewLoadedVT; 7848 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 7849 NumBits >>= 1; 7850 7851 Align Alignment = LD->getOriginalAlign(); 7852 unsigned IncrementSize = NumBits / 8; 7853 ISD::LoadExtType HiExtType = LD->getExtensionType(); 7854 7855 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 7856 if (HiExtType == ISD::NON_EXTLOAD) 7857 HiExtType = ISD::ZEXTLOAD; 7858 7859 // Load the value in two parts 7860 SDValue Lo, Hi; 7861 if (DAG.getDataLayout().isLittleEndian()) { 7862 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7863 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7864 LD->getAAInfo()); 7865 7866 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7867 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 7868 LD->getPointerInfo().getWithOffset(IncrementSize), 7869 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7870 LD->getAAInfo()); 7871 } else { 7872 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 7873 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7874 LD->getAAInfo()); 7875 7876 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 7877 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 7878 LD->getPointerInfo().getWithOffset(IncrementSize), 7879 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 7880 LD->getAAInfo()); 7881 } 7882 7883 // aggregate the two parts 7884 SDValue ShiftAmount = 7885 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 7886 DAG.getDataLayout())); 7887 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 7888 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 7889 7890 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 7891 Hi.getValue(1)); 7892 7893 return std::make_pair(Result, TF); 7894 } 7895 7896 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 7897 SelectionDAG &DAG) const { 7898 assert(ST->getAddressingMode() == ISD::UNINDEXED && 7899 "unaligned indexed stores not implemented!"); 7900 SDValue Chain = ST->getChain(); 7901 SDValue Ptr = ST->getBasePtr(); 7902 SDValue Val = ST->getValue(); 7903 EVT VT = Val.getValueType(); 7904 Align Alignment = ST->getOriginalAlign(); 7905 auto &MF = DAG.getMachineFunction(); 7906 EVT StoreMemVT = ST->getMemoryVT(); 7907 7908 SDLoc dl(ST); 7909 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) { 7910 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 7911 if (isTypeLegal(intVT)) { 7912 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 7913 StoreMemVT.isVector()) { 7914 // Scalarize the store and let the individual components be handled. 7915 SDValue Result = scalarizeVectorStore(ST, DAG); 7916 return Result; 7917 } 7918 // Expand to a bitconvert of the value to the integer type of the 7919 // same size, then a (misaligned) int store. 7920 // FIXME: Does not handle truncating floating point stores! 7921 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 7922 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 7923 Alignment, ST->getMemOperand()->getFlags()); 7924 return Result; 7925 } 7926 // Do a (aligned) store to a stack slot, then copy from the stack slot 7927 // to the final destination using (unaligned) integer loads and stores. 7928 MVT RegVT = getRegisterType( 7929 *DAG.getContext(), 7930 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits())); 7931 EVT PtrVT = Ptr.getValueType(); 7932 unsigned StoredBytes = StoreMemVT.getStoreSize(); 7933 unsigned RegBytes = RegVT.getSizeInBits() / 8; 7934 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 7935 7936 // Make sure the stack slot is also aligned for the register type. 7937 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT); 7938 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 7939 7940 // Perform the original store, only redirected to the stack slot. 7941 SDValue Store = DAG.getTruncStore( 7942 Chain, dl, Val, StackPtr, 7943 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT); 7944 7945 EVT StackPtrVT = StackPtr.getValueType(); 7946 7947 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 7948 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 7949 SmallVector<SDValue, 8> Stores; 7950 unsigned Offset = 0; 7951 7952 // Do all but one copies using the full register width. 7953 for (unsigned i = 1; i < NumRegs; i++) { 7954 // Load one integer register's worth from the stack slot. 7955 SDValue Load = DAG.getLoad( 7956 RegVT, dl, Store, StackPtr, 7957 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 7958 // Store it to the final location. Remember the store. 7959 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 7960 ST->getPointerInfo().getWithOffset(Offset), 7961 ST->getOriginalAlign(), 7962 ST->getMemOperand()->getFlags())); 7963 // Increment the pointers. 7964 Offset += RegBytes; 7965 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 7966 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 7967 } 7968 7969 // The last store may be partial. Do a truncating store. On big-endian 7970 // machines this requires an extending load from the stack slot to ensure 7971 // that the bits are in the right place. 7972 EVT LoadMemVT = 7973 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset)); 7974 7975 // Load from the stack slot. 7976 SDValue Load = DAG.getExtLoad( 7977 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 7978 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT); 7979 7980 Stores.push_back( 7981 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 7982 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT, 7983 ST->getOriginalAlign(), 7984 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 7985 // The order of the stores doesn't matter - say it with a TokenFactor. 7986 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 7987 return Result; 7988 } 7989 7990 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() && 7991 "Unaligned store of unknown type."); 7992 // Get the half-size VT 7993 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext()); 7994 unsigned NumBits = NewStoredVT.getFixedSizeInBits(); 7995 unsigned IncrementSize = NumBits / 8; 7996 7997 // Divide the stored value in two parts. 7998 SDValue ShiftAmount = DAG.getConstant( 7999 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout())); 8000 SDValue Lo = Val; 8001 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 8002 8003 // Store the two parts 8004 SDValue Store1, Store2; 8005 Store1 = DAG.getTruncStore(Chain, dl, 8006 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 8007 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 8008 ST->getMemOperand()->getFlags()); 8009 8010 Ptr = DAG.getObjectPtrOffset(dl, Ptr, TypeSize::Fixed(IncrementSize)); 8011 Store2 = DAG.getTruncStore( 8012 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 8013 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 8014 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 8015 8016 SDValue Result = 8017 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 8018 return Result; 8019 } 8020 8021 SDValue 8022 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 8023 const SDLoc &DL, EVT DataVT, 8024 SelectionDAG &DAG, 8025 bool IsCompressedMemory) const { 8026 SDValue Increment; 8027 EVT AddrVT = Addr.getValueType(); 8028 EVT MaskVT = Mask.getValueType(); 8029 assert(DataVT.getVectorElementCount() == MaskVT.getVectorElementCount() && 8030 "Incompatible types of Data and Mask"); 8031 if (IsCompressedMemory) { 8032 if (DataVT.isScalableVector()) 8033 report_fatal_error( 8034 "Cannot currently handle compressed memory with scalable vectors"); 8035 // Incrementing the pointer according to number of '1's in the mask. 8036 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 8037 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 8038 if (MaskIntVT.getSizeInBits() < 32) { 8039 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 8040 MaskIntVT = MVT::i32; 8041 } 8042 8043 // Count '1's with POPCNT. 8044 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 8045 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 8046 // Scale is an element size in bytes. 8047 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 8048 AddrVT); 8049 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 8050 } else if (DataVT.isScalableVector()) { 8051 Increment = DAG.getVScale(DL, AddrVT, 8052 APInt(AddrVT.getFixedSizeInBits(), 8053 DataVT.getStoreSize().getKnownMinSize())); 8054 } else 8055 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 8056 8057 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 8058 } 8059 8060 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, SDValue Idx, 8061 EVT VecVT, const SDLoc &dl, 8062 ElementCount SubEC) { 8063 assert(!(SubEC.isScalable() && VecVT.isFixedLengthVector()) && 8064 "Cannot index a scalable vector within a fixed-width vector"); 8065 8066 unsigned NElts = VecVT.getVectorMinNumElements(); 8067 unsigned NumSubElts = SubEC.getKnownMinValue(); 8068 EVT IdxVT = Idx.getValueType(); 8069 8070 if (VecVT.isScalableVector() && !SubEC.isScalable()) { 8071 // If this is a constant index and we know the value plus the number of the 8072 // elements in the subvector minus one is less than the minimum number of 8073 // elements then it's safe to return Idx. 8074 if (auto *IdxCst = dyn_cast<ConstantSDNode>(Idx)) 8075 if (IdxCst->getZExtValue() + (NumSubElts - 1) < NElts) 8076 return Idx; 8077 SDValue VS = 8078 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getFixedSizeInBits(), NElts)); 8079 unsigned SubOpcode = NumSubElts <= NElts ? ISD::SUB : ISD::USUBSAT; 8080 SDValue Sub = DAG.getNode(SubOpcode, dl, IdxVT, VS, 8081 DAG.getConstant(NumSubElts, dl, IdxVT)); 8082 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, Sub); 8083 } 8084 if (isPowerOf2_32(NElts) && NumSubElts == 1) { 8085 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), Log2_32(NElts)); 8086 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 8087 DAG.getConstant(Imm, dl, IdxVT)); 8088 } 8089 unsigned MaxIndex = NumSubElts < NElts ? NElts - NumSubElts : 0; 8090 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 8091 DAG.getConstant(MaxIndex, dl, IdxVT)); 8092 } 8093 8094 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 8095 SDValue VecPtr, EVT VecVT, 8096 SDValue Index) const { 8097 return getVectorSubVecPointer( 8098 DAG, VecPtr, VecVT, 8099 EVT::getVectorVT(*DAG.getContext(), VecVT.getVectorElementType(), 1), 8100 Index); 8101 } 8102 8103 SDValue TargetLowering::getVectorSubVecPointer(SelectionDAG &DAG, 8104 SDValue VecPtr, EVT VecVT, 8105 EVT SubVecVT, 8106 SDValue Index) const { 8107 SDLoc dl(Index); 8108 // Make sure the index type is big enough to compute in. 8109 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 8110 8111 EVT EltVT = VecVT.getVectorElementType(); 8112 8113 // Calculate the element offset and add it to the pointer. 8114 unsigned EltSize = EltVT.getFixedSizeInBits() / 8; // FIXME: should be ABI size. 8115 assert(EltSize * 8 == EltVT.getFixedSizeInBits() && 8116 "Converting bits to bytes lost precision"); 8117 assert(SubVecVT.getVectorElementType() == EltVT && 8118 "Sub-vector must be a vector with matching element type"); 8119 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl, 8120 SubVecVT.getVectorElementCount()); 8121 8122 EVT IdxVT = Index.getValueType(); 8123 if (SubVecVT.isScalableVector()) 8124 Index = 8125 DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8126 DAG.getVScale(dl, IdxVT, APInt(IdxVT.getSizeInBits(), 1))); 8127 8128 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 8129 DAG.getConstant(EltSize, dl, IdxVT)); 8130 return DAG.getMemBasePlusOffset(VecPtr, Index, dl); 8131 } 8132 8133 //===----------------------------------------------------------------------===// 8134 // Implementation of Emulated TLS Model 8135 //===----------------------------------------------------------------------===// 8136 8137 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 8138 SelectionDAG &DAG) const { 8139 // Access to address of TLS varialbe xyz is lowered to a function call: 8140 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 8141 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 8142 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 8143 SDLoc dl(GA); 8144 8145 ArgListTy Args; 8146 ArgListEntry Entry; 8147 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 8148 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 8149 StringRef EmuTlsVarName(NameString); 8150 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 8151 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 8152 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 8153 Entry.Ty = VoidPtrType; 8154 Args.push_back(Entry); 8155 8156 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 8157 8158 TargetLowering::CallLoweringInfo CLI(DAG); 8159 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 8160 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 8161 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 8162 8163 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 8164 // At last for X86 targets, maybe good for other targets too? 8165 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 8166 MFI.setAdjustsStack(true); // Is this only for X86 target? 8167 MFI.setHasCalls(true); 8168 8169 assert((GA->getOffset() == 0) && 8170 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 8171 return CallResult.first; 8172 } 8173 8174 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 8175 SelectionDAG &DAG) const { 8176 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 8177 if (!isCtlzFast()) 8178 return SDValue(); 8179 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 8180 SDLoc dl(Op); 8181 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 8182 if (C->isZero() && CC == ISD::SETEQ) { 8183 EVT VT = Op.getOperand(0).getValueType(); 8184 SDValue Zext = Op.getOperand(0); 8185 if (VT.bitsLT(MVT::i32)) { 8186 VT = MVT::i32; 8187 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 8188 } 8189 unsigned Log2b = Log2_32(VT.getSizeInBits()); 8190 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 8191 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 8192 DAG.getConstant(Log2b, dl, MVT::i32)); 8193 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 8194 } 8195 } 8196 return SDValue(); 8197 } 8198 8199 // Convert redundant addressing modes (e.g. scaling is redundant 8200 // when accessing bytes). 8201 ISD::MemIndexType 8202 TargetLowering::getCanonicalIndexType(ISD::MemIndexType IndexType, EVT MemVT, 8203 SDValue Offsets) const { 8204 bool IsScaledIndex = 8205 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::UNSIGNED_SCALED); 8206 bool IsSignedIndex = 8207 (IndexType == ISD::SIGNED_SCALED) || (IndexType == ISD::SIGNED_UNSCALED); 8208 8209 // Scaling is unimportant for bytes, canonicalize to unscaled. 8210 if (IsScaledIndex && MemVT.getScalarType() == MVT::i8) 8211 return IsSignedIndex ? ISD::SIGNED_UNSCALED : ISD::UNSIGNED_UNSCALED; 8212 8213 return IndexType; 8214 } 8215 8216 SDValue TargetLowering::expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const { 8217 SDValue Op0 = Node->getOperand(0); 8218 SDValue Op1 = Node->getOperand(1); 8219 EVT VT = Op0.getValueType(); 8220 unsigned Opcode = Node->getOpcode(); 8221 SDLoc DL(Node); 8222 8223 // umin(x,y) -> sub(x,usubsat(x,y)) 8224 if (Opcode == ISD::UMIN && isOperationLegal(ISD::SUB, VT) && 8225 isOperationLegal(ISD::USUBSAT, VT)) { 8226 return DAG.getNode(ISD::SUB, DL, VT, Op0, 8227 DAG.getNode(ISD::USUBSAT, DL, VT, Op0, Op1)); 8228 } 8229 8230 // umax(x,y) -> add(x,usubsat(y,x)) 8231 if (Opcode == ISD::UMAX && isOperationLegal(ISD::ADD, VT) && 8232 isOperationLegal(ISD::USUBSAT, VT)) { 8233 return DAG.getNode(ISD::ADD, DL, VT, Op0, 8234 DAG.getNode(ISD::USUBSAT, DL, VT, Op1, Op0)); 8235 } 8236 8237 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 8238 ISD::CondCode CC; 8239 switch (Opcode) { 8240 default: llvm_unreachable("How did we get here?"); 8241 case ISD::SMAX: CC = ISD::SETGT; break; 8242 case ISD::SMIN: CC = ISD::SETLT; break; 8243 case ISD::UMAX: CC = ISD::SETUGT; break; 8244 case ISD::UMIN: CC = ISD::SETULT; break; 8245 } 8246 8247 // FIXME: Should really try to split the vector in case it's legal on a 8248 // subvector. 8249 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8250 return DAG.UnrollVectorOp(Node); 8251 8252 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8253 SDValue Cond = DAG.getSetCC(DL, BoolVT, Op0, Op1, CC); 8254 return DAG.getSelect(DL, VT, Cond, Op0, Op1); 8255 } 8256 8257 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 8258 unsigned Opcode = Node->getOpcode(); 8259 SDValue LHS = Node->getOperand(0); 8260 SDValue RHS = Node->getOperand(1); 8261 EVT VT = LHS.getValueType(); 8262 SDLoc dl(Node); 8263 8264 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8265 assert(VT.isInteger() && "Expected operands to be integers"); 8266 8267 // usub.sat(a, b) -> umax(a, b) - b 8268 if (Opcode == ISD::USUBSAT && isOperationLegal(ISD::UMAX, VT)) { 8269 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 8270 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 8271 } 8272 8273 // uadd.sat(a, b) -> umin(a, ~b) + b 8274 if (Opcode == ISD::UADDSAT && isOperationLegal(ISD::UMIN, VT)) { 8275 SDValue InvRHS = DAG.getNOT(dl, RHS, VT); 8276 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS); 8277 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS); 8278 } 8279 8280 unsigned OverflowOp; 8281 switch (Opcode) { 8282 case ISD::SADDSAT: 8283 OverflowOp = ISD::SADDO; 8284 break; 8285 case ISD::UADDSAT: 8286 OverflowOp = ISD::UADDO; 8287 break; 8288 case ISD::SSUBSAT: 8289 OverflowOp = ISD::SSUBO; 8290 break; 8291 case ISD::USUBSAT: 8292 OverflowOp = ISD::USUBO; 8293 break; 8294 default: 8295 llvm_unreachable("Expected method to receive signed or unsigned saturation " 8296 "addition or subtraction node."); 8297 } 8298 8299 // FIXME: Should really try to split the vector in case it's legal on a 8300 // subvector. 8301 if (VT.isVector() && !isOperationLegalOrCustom(ISD::VSELECT, VT)) 8302 return DAG.UnrollVectorOp(Node); 8303 8304 unsigned BitWidth = LHS.getScalarValueSizeInBits(); 8305 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8306 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8307 SDValue SumDiff = Result.getValue(0); 8308 SDValue Overflow = Result.getValue(1); 8309 SDValue Zero = DAG.getConstant(0, dl, VT); 8310 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT); 8311 8312 if (Opcode == ISD::UADDSAT) { 8313 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8314 // (LHS + RHS) | OverflowMask 8315 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8316 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask); 8317 } 8318 // Overflow ? 0xffff.... : (LHS + RHS) 8319 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff); 8320 } 8321 8322 if (Opcode == ISD::USUBSAT) { 8323 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) { 8324 // (LHS - RHS) & ~OverflowMask 8325 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT); 8326 SDValue Not = DAG.getNOT(dl, OverflowMask, VT); 8327 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not); 8328 } 8329 // Overflow ? 0 : (LHS - RHS) 8330 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff); 8331 } 8332 8333 // Overflow ? (SumDiff >> BW) ^ MinVal : SumDiff 8334 APInt MinVal = APInt::getSignedMinValue(BitWidth); 8335 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8336 SDValue Shift = DAG.getNode(ISD::SRA, dl, VT, SumDiff, 8337 DAG.getConstant(BitWidth - 1, dl, VT)); 8338 Result = DAG.getNode(ISD::XOR, dl, VT, Shift, SatMin); 8339 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff); 8340 } 8341 8342 SDValue TargetLowering::expandShlSat(SDNode *Node, SelectionDAG &DAG) const { 8343 unsigned Opcode = Node->getOpcode(); 8344 bool IsSigned = Opcode == ISD::SSHLSAT; 8345 SDValue LHS = Node->getOperand(0); 8346 SDValue RHS = Node->getOperand(1); 8347 EVT VT = LHS.getValueType(); 8348 SDLoc dl(Node); 8349 8350 assert((Node->getOpcode() == ISD::SSHLSAT || 8351 Node->getOpcode() == ISD::USHLSAT) && 8352 "Expected a SHLSAT opcode"); 8353 assert(VT == RHS.getValueType() && "Expected operands to be the same type"); 8354 assert(VT.isInteger() && "Expected operands to be integers"); 8355 8356 // If LHS != (LHS << RHS) >> RHS, we have overflow and must saturate. 8357 8358 unsigned BW = VT.getScalarSizeInBits(); 8359 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, LHS, RHS); 8360 SDValue Orig = 8361 DAG.getNode(IsSigned ? ISD::SRA : ISD::SRL, dl, VT, Result, RHS); 8362 8363 SDValue SatVal; 8364 if (IsSigned) { 8365 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(BW), dl, VT); 8366 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(BW), dl, VT); 8367 SatVal = DAG.getSelectCC(dl, LHS, DAG.getConstant(0, dl, VT), 8368 SatMin, SatMax, ISD::SETLT); 8369 } else { 8370 SatVal = DAG.getConstant(APInt::getMaxValue(BW), dl, VT); 8371 } 8372 Result = DAG.getSelectCC(dl, LHS, Orig, SatVal, Result, ISD::SETNE); 8373 8374 return Result; 8375 } 8376 8377 SDValue 8378 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const { 8379 assert((Node->getOpcode() == ISD::SMULFIX || 8380 Node->getOpcode() == ISD::UMULFIX || 8381 Node->getOpcode() == ISD::SMULFIXSAT || 8382 Node->getOpcode() == ISD::UMULFIXSAT) && 8383 "Expected a fixed point multiplication opcode"); 8384 8385 SDLoc dl(Node); 8386 SDValue LHS = Node->getOperand(0); 8387 SDValue RHS = Node->getOperand(1); 8388 EVT VT = LHS.getValueType(); 8389 unsigned Scale = Node->getConstantOperandVal(2); 8390 bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT || 8391 Node->getOpcode() == ISD::UMULFIXSAT); 8392 bool Signed = (Node->getOpcode() == ISD::SMULFIX || 8393 Node->getOpcode() == ISD::SMULFIXSAT); 8394 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8395 unsigned VTSize = VT.getScalarSizeInBits(); 8396 8397 if (!Scale) { 8398 // [us]mul.fix(a, b, 0) -> mul(a, b) 8399 if (!Saturating) { 8400 if (isOperationLegalOrCustom(ISD::MUL, VT)) 8401 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8402 } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) { 8403 SDValue Result = 8404 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8405 SDValue Product = Result.getValue(0); 8406 SDValue Overflow = Result.getValue(1); 8407 SDValue Zero = DAG.getConstant(0, dl, VT); 8408 8409 APInt MinVal = APInt::getSignedMinValue(VTSize); 8410 APInt MaxVal = APInt::getSignedMaxValue(VTSize); 8411 SDValue SatMin = DAG.getConstant(MinVal, dl, VT); 8412 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8413 // Xor the inputs, if resulting sign bit is 0 the product will be 8414 // positive, else negative. 8415 SDValue Xor = DAG.getNode(ISD::XOR, dl, VT, LHS, RHS); 8416 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Xor, Zero, ISD::SETLT); 8417 Result = DAG.getSelect(dl, VT, ProdNeg, SatMin, SatMax); 8418 return DAG.getSelect(dl, VT, Overflow, Result, Product); 8419 } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) { 8420 SDValue Result = 8421 DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS); 8422 SDValue Product = Result.getValue(0); 8423 SDValue Overflow = Result.getValue(1); 8424 8425 APInt MaxVal = APInt::getMaxValue(VTSize); 8426 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT); 8427 return DAG.getSelect(dl, VT, Overflow, SatMax, Product); 8428 } 8429 } 8430 8431 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) && 8432 "Expected scale to be less than the number of bits if signed or at " 8433 "most the number of bits if unsigned."); 8434 assert(LHS.getValueType() == RHS.getValueType() && 8435 "Expected both operands to be the same type"); 8436 8437 // Get the upper and lower bits of the result. 8438 SDValue Lo, Hi; 8439 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI; 8440 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU; 8441 if (isOperationLegalOrCustom(LoHiOp, VT)) { 8442 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS); 8443 Lo = Result.getValue(0); 8444 Hi = Result.getValue(1); 8445 } else if (isOperationLegalOrCustom(HiOp, VT)) { 8446 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8447 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS); 8448 } else if (VT.isVector()) { 8449 return SDValue(); 8450 } else { 8451 report_fatal_error("Unable to expand fixed point multiplication."); 8452 } 8453 8454 if (Scale == VTSize) 8455 // Result is just the top half since we'd be shifting by the width of the 8456 // operand. Overflow impossible so this works for both UMULFIX and 8457 // UMULFIXSAT. 8458 return Hi; 8459 8460 // The result will need to be shifted right by the scale since both operands 8461 // are scaled. The result is given to us in 2 halves, so we only want part of 8462 // both in the result. 8463 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8464 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo, 8465 DAG.getConstant(Scale, dl, ShiftTy)); 8466 if (!Saturating) 8467 return Result; 8468 8469 if (!Signed) { 8470 // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the 8471 // widened multiplication) aren't all zeroes. 8472 8473 // Saturate to max if ((Hi >> Scale) != 0), 8474 // which is the same as if (Hi > ((1 << Scale) - 1)) 8475 APInt MaxVal = APInt::getMaxValue(VTSize); 8476 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale), 8477 dl, VT); 8478 Result = DAG.getSelectCC(dl, Hi, LowMask, 8479 DAG.getConstant(MaxVal, dl, VT), Result, 8480 ISD::SETUGT); 8481 8482 return Result; 8483 } 8484 8485 // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the 8486 // widened multiplication) aren't all ones or all zeroes. 8487 8488 SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT); 8489 SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT); 8490 8491 if (Scale == 0) { 8492 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo, 8493 DAG.getConstant(VTSize - 1, dl, ShiftTy)); 8494 SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE); 8495 // Saturated to SatMin if wide product is negative, and SatMax if wide 8496 // product is positive ... 8497 SDValue Zero = DAG.getConstant(0, dl, VT); 8498 SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax, 8499 ISD::SETLT); 8500 // ... but only if we overflowed. 8501 return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result); 8502 } 8503 8504 // We handled Scale==0 above so all the bits to examine is in Hi. 8505 8506 // Saturate to max if ((Hi >> (Scale - 1)) > 0), 8507 // which is the same as if (Hi > (1 << (Scale - 1)) - 1) 8508 SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1), 8509 dl, VT); 8510 Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT); 8511 // Saturate to min if (Hi >> (Scale - 1)) < -1), 8512 // which is the same as if (HI < (-1 << (Scale - 1)) 8513 SDValue HighMask = 8514 DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1), 8515 dl, VT); 8516 Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT); 8517 return Result; 8518 } 8519 8520 SDValue 8521 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, 8522 SDValue LHS, SDValue RHS, 8523 unsigned Scale, SelectionDAG &DAG) const { 8524 assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT || 8525 Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) && 8526 "Expected a fixed point division opcode"); 8527 8528 EVT VT = LHS.getValueType(); 8529 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 8530 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 8531 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8532 8533 // If there is enough room in the type to upscale the LHS or downscale the 8534 // RHS before the division, we can perform it in this type without having to 8535 // resize. For signed operations, the LHS headroom is the number of 8536 // redundant sign bits, and for unsigned ones it is the number of zeroes. 8537 // The headroom for the RHS is the number of trailing zeroes. 8538 unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1 8539 : DAG.computeKnownBits(LHS).countMinLeadingZeros(); 8540 unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros(); 8541 8542 // For signed saturating operations, we need to be able to detect true integer 8543 // division overflow; that is, when you have MIN / -EPS. However, this 8544 // is undefined behavior and if we emit divisions that could take such 8545 // values it may cause undesired behavior (arithmetic exceptions on x86, for 8546 // example). 8547 // Avoid this by requiring an extra bit so that we never get this case. 8548 // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale 8549 // signed saturating division, we need to emit a whopping 32-bit division. 8550 if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed)) 8551 return SDValue(); 8552 8553 unsigned LHSShift = std::min(LHSLead, Scale); 8554 unsigned RHSShift = Scale - LHSShift; 8555 8556 // At this point, we know that if we shift the LHS up by LHSShift and the 8557 // RHS down by RHSShift, we can emit a regular division with a final scaling 8558 // factor of Scale. 8559 8560 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8561 if (LHSShift) 8562 LHS = DAG.getNode(ISD::SHL, dl, VT, LHS, 8563 DAG.getConstant(LHSShift, dl, ShiftTy)); 8564 if (RHSShift) 8565 RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS, 8566 DAG.getConstant(RHSShift, dl, ShiftTy)); 8567 8568 SDValue Quot; 8569 if (Signed) { 8570 // For signed operations, if the resulting quotient is negative and the 8571 // remainder is nonzero, subtract 1 from the quotient to round towards 8572 // negative infinity. 8573 SDValue Rem; 8574 // FIXME: Ideally we would always produce an SDIVREM here, but if the 8575 // type isn't legal, SDIVREM cannot be expanded. There is no reason why 8576 // we couldn't just form a libcall, but the type legalizer doesn't do it. 8577 if (isTypeLegal(VT) && 8578 isOperationLegalOrCustom(ISD::SDIVREM, VT)) { 8579 Quot = DAG.getNode(ISD::SDIVREM, dl, 8580 DAG.getVTList(VT, VT), 8581 LHS, RHS); 8582 Rem = Quot.getValue(1); 8583 Quot = Quot.getValue(0); 8584 } else { 8585 Quot = DAG.getNode(ISD::SDIV, dl, VT, 8586 LHS, RHS); 8587 Rem = DAG.getNode(ISD::SREM, dl, VT, 8588 LHS, RHS); 8589 } 8590 SDValue Zero = DAG.getConstant(0, dl, VT); 8591 SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE); 8592 SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT); 8593 SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT); 8594 SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg); 8595 SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot, 8596 DAG.getConstant(1, dl, VT)); 8597 Quot = DAG.getSelect(dl, VT, 8598 DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg), 8599 Sub1, Quot); 8600 } else 8601 Quot = DAG.getNode(ISD::UDIV, dl, VT, 8602 LHS, RHS); 8603 8604 return Quot; 8605 } 8606 8607 void TargetLowering::expandUADDSUBO( 8608 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8609 SDLoc dl(Node); 8610 SDValue LHS = Node->getOperand(0); 8611 SDValue RHS = Node->getOperand(1); 8612 bool IsAdd = Node->getOpcode() == ISD::UADDO; 8613 8614 // If ADD/SUBCARRY is legal, use that instead. 8615 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY; 8616 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) { 8617 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1)); 8618 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(), 8619 { LHS, RHS, CarryIn }); 8620 Result = SDValue(NodeCarry.getNode(), 0); 8621 Overflow = SDValue(NodeCarry.getNode(), 1); 8622 return; 8623 } 8624 8625 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8626 LHS.getValueType(), LHS, RHS); 8627 8628 EVT ResultType = Node->getValueType(1); 8629 EVT SetCCType = getSetCCResultType( 8630 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8631 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT; 8632 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC); 8633 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8634 } 8635 8636 void TargetLowering::expandSADDSUBO( 8637 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const { 8638 SDLoc dl(Node); 8639 SDValue LHS = Node->getOperand(0); 8640 SDValue RHS = Node->getOperand(1); 8641 bool IsAdd = Node->getOpcode() == ISD::SADDO; 8642 8643 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl, 8644 LHS.getValueType(), LHS, RHS); 8645 8646 EVT ResultType = Node->getValueType(1); 8647 EVT OType = getSetCCResultType( 8648 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0)); 8649 8650 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow. 8651 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT; 8652 if (isOperationLegal(OpcSat, LHS.getValueType())) { 8653 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS); 8654 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE); 8655 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType); 8656 return; 8657 } 8658 8659 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 8660 8661 // For an addition, the result should be less than one of the operands (LHS) 8662 // if and only if the other operand (RHS) is negative, otherwise there will 8663 // be overflow. 8664 // For a subtraction, the result should be less than one of the operands 8665 // (LHS) if and only if the other operand (RHS) is (non-zero) positive, 8666 // otherwise there will be overflow. 8667 SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT); 8668 SDValue ConditionRHS = 8669 DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT); 8670 8671 Overflow = DAG.getBoolExtOrTrunc( 8672 DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl, 8673 ResultType, ResultType); 8674 } 8675 8676 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result, 8677 SDValue &Overflow, SelectionDAG &DAG) const { 8678 SDLoc dl(Node); 8679 EVT VT = Node->getValueType(0); 8680 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 8681 SDValue LHS = Node->getOperand(0); 8682 SDValue RHS = Node->getOperand(1); 8683 bool isSigned = Node->getOpcode() == ISD::SMULO; 8684 8685 // For power-of-two multiplications we can use a simpler shift expansion. 8686 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) { 8687 const APInt &C = RHSC->getAPIntValue(); 8688 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X } 8689 if (C.isPowerOf2()) { 8690 // smulo(x, signed_min) is same as umulo(x, signed_min). 8691 bool UseArithShift = isSigned && !C.isMinSignedValue(); 8692 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout()); 8693 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy); 8694 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt); 8695 Overflow = DAG.getSetCC(dl, SetCCVT, 8696 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL, 8697 dl, VT, Result, ShiftAmt), 8698 LHS, ISD::SETNE); 8699 return true; 8700 } 8701 } 8702 8703 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2); 8704 if (VT.isVector()) 8705 WideVT = 8706 EVT::getVectorVT(*DAG.getContext(), WideVT, VT.getVectorElementCount()); 8707 8708 SDValue BottomHalf; 8709 SDValue TopHalf; 8710 static const unsigned Ops[2][3] = 8711 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 8712 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 8713 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 8714 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 8715 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 8716 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 8717 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 8718 RHS); 8719 TopHalf = BottomHalf.getValue(1); 8720 } else if (isTypeLegal(WideVT)) { 8721 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 8722 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 8723 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 8724 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul); 8725 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl, 8726 getShiftAmountTy(WideVT, DAG.getDataLayout())); 8727 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, 8728 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt)); 8729 } else { 8730 if (VT.isVector()) 8731 return false; 8732 8733 // We can fall back to a libcall with an illegal type for the MUL if we 8734 // have a libcall big enough. 8735 // Also, we can fall back to a division in some cases, but that's a big 8736 // performance hit in the general case. 8737 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 8738 if (WideVT == MVT::i16) 8739 LC = RTLIB::MUL_I16; 8740 else if (WideVT == MVT::i32) 8741 LC = RTLIB::MUL_I32; 8742 else if (WideVT == MVT::i64) 8743 LC = RTLIB::MUL_I64; 8744 else if (WideVT == MVT::i128) 8745 LC = RTLIB::MUL_I128; 8746 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 8747 8748 SDValue HiLHS; 8749 SDValue HiRHS; 8750 if (isSigned) { 8751 // The high part is obtained by SRA'ing all but one of the bits of low 8752 // part. 8753 unsigned LoSize = VT.getFixedSizeInBits(); 8754 HiLHS = 8755 DAG.getNode(ISD::SRA, dl, VT, LHS, 8756 DAG.getConstant(LoSize - 1, dl, 8757 getPointerTy(DAG.getDataLayout()))); 8758 HiRHS = 8759 DAG.getNode(ISD::SRA, dl, VT, RHS, 8760 DAG.getConstant(LoSize - 1, dl, 8761 getPointerTy(DAG.getDataLayout()))); 8762 } else { 8763 HiLHS = DAG.getConstant(0, dl, VT); 8764 HiRHS = DAG.getConstant(0, dl, VT); 8765 } 8766 8767 // Here we're passing the 2 arguments explicitly as 4 arguments that are 8768 // pre-lowered to the correct types. This all depends upon WideVT not 8769 // being a legal type for the architecture and thus has to be split to 8770 // two arguments. 8771 SDValue Ret; 8772 TargetLowering::MakeLibCallOptions CallOptions; 8773 CallOptions.setSExt(isSigned); 8774 CallOptions.setIsPostTypeLegalization(true); 8775 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) { 8776 // Halves of WideVT are packed into registers in different order 8777 // depending on platform endianness. This is usually handled by 8778 // the C calling convention, but we can't defer to it in 8779 // the legalizer. 8780 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 8781 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8782 } else { 8783 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS }; 8784 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first; 8785 } 8786 assert(Ret.getOpcode() == ISD::MERGE_VALUES && 8787 "Ret value is a collection of constituent nodes holding result."); 8788 if (DAG.getDataLayout().isLittleEndian()) { 8789 // Same as above. 8790 BottomHalf = Ret.getOperand(0); 8791 TopHalf = Ret.getOperand(1); 8792 } else { 8793 BottomHalf = Ret.getOperand(1); 8794 TopHalf = Ret.getOperand(0); 8795 } 8796 } 8797 8798 Result = BottomHalf; 8799 if (isSigned) { 8800 SDValue ShiftAmt = DAG.getConstant( 8801 VT.getScalarSizeInBits() - 1, dl, 8802 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 8803 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt); 8804 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE); 8805 } else { 8806 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, 8807 DAG.getConstant(0, dl, VT), ISD::SETNE); 8808 } 8809 8810 // Truncate the result if SetCC returns a larger type than needed. 8811 EVT RType = Node->getValueType(1); 8812 if (RType.bitsLT(Overflow.getValueType())) 8813 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow); 8814 8815 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() && 8816 "Unexpected result type for S/UMULO legalization"); 8817 return true; 8818 } 8819 8820 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const { 8821 SDLoc dl(Node); 8822 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8823 SDValue Op = Node->getOperand(0); 8824 EVT VT = Op.getValueType(); 8825 8826 if (VT.isScalableVector()) 8827 report_fatal_error( 8828 "Expanding reductions for scalable vectors is undefined."); 8829 8830 // Try to use a shuffle reduction for power of two vectors. 8831 if (VT.isPow2VectorType()) { 8832 while (VT.getVectorNumElements() > 1) { 8833 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext()); 8834 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT)) 8835 break; 8836 8837 SDValue Lo, Hi; 8838 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl); 8839 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi); 8840 VT = HalfVT; 8841 } 8842 } 8843 8844 EVT EltVT = VT.getVectorElementType(); 8845 unsigned NumElts = VT.getVectorNumElements(); 8846 8847 SmallVector<SDValue, 8> Ops; 8848 DAG.ExtractVectorElements(Op, Ops, 0, NumElts); 8849 8850 SDValue Res = Ops[0]; 8851 for (unsigned i = 1; i < NumElts; i++) 8852 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags()); 8853 8854 // Result type may be wider than element type. 8855 if (EltVT != Node->getValueType(0)) 8856 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res); 8857 return Res; 8858 } 8859 8860 SDValue TargetLowering::expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const { 8861 SDLoc dl(Node); 8862 SDValue AccOp = Node->getOperand(0); 8863 SDValue VecOp = Node->getOperand(1); 8864 SDNodeFlags Flags = Node->getFlags(); 8865 8866 EVT VT = VecOp.getValueType(); 8867 EVT EltVT = VT.getVectorElementType(); 8868 8869 if (VT.isScalableVector()) 8870 report_fatal_error( 8871 "Expanding reductions for scalable vectors is undefined."); 8872 8873 unsigned NumElts = VT.getVectorNumElements(); 8874 8875 SmallVector<SDValue, 8> Ops; 8876 DAG.ExtractVectorElements(VecOp, Ops, 0, NumElts); 8877 8878 unsigned BaseOpcode = ISD::getVecReduceBaseOpcode(Node->getOpcode()); 8879 8880 SDValue Res = AccOp; 8881 for (unsigned i = 0; i < NumElts; i++) 8882 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Flags); 8883 8884 return Res; 8885 } 8886 8887 bool TargetLowering::expandREM(SDNode *Node, SDValue &Result, 8888 SelectionDAG &DAG) const { 8889 EVT VT = Node->getValueType(0); 8890 SDLoc dl(Node); 8891 bool isSigned = Node->getOpcode() == ISD::SREM; 8892 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 8893 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 8894 SDValue Dividend = Node->getOperand(0); 8895 SDValue Divisor = Node->getOperand(1); 8896 if (isOperationLegalOrCustom(DivRemOpc, VT)) { 8897 SDVTList VTs = DAG.getVTList(VT, VT); 8898 Result = DAG.getNode(DivRemOpc, dl, VTs, Dividend, Divisor).getValue(1); 8899 return true; 8900 } 8901 if (isOperationLegalOrCustom(DivOpc, VT)) { 8902 // X % Y -> X-X/Y*Y 8903 SDValue Divide = DAG.getNode(DivOpc, dl, VT, Dividend, Divisor); 8904 SDValue Mul = DAG.getNode(ISD::MUL, dl, VT, Divide, Divisor); 8905 Result = DAG.getNode(ISD::SUB, dl, VT, Dividend, Mul); 8906 return true; 8907 } 8908 return false; 8909 } 8910 8911 SDValue TargetLowering::expandFP_TO_INT_SAT(SDNode *Node, 8912 SelectionDAG &DAG) const { 8913 bool IsSigned = Node->getOpcode() == ISD::FP_TO_SINT_SAT; 8914 SDLoc dl(SDValue(Node, 0)); 8915 SDValue Src = Node->getOperand(0); 8916 8917 // DstVT is the result type, while SatVT is the size to which we saturate 8918 EVT SrcVT = Src.getValueType(); 8919 EVT DstVT = Node->getValueType(0); 8920 8921 EVT SatVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 8922 unsigned SatWidth = SatVT.getScalarSizeInBits(); 8923 unsigned DstWidth = DstVT.getScalarSizeInBits(); 8924 assert(SatWidth <= DstWidth && 8925 "Expected saturation width smaller than result width"); 8926 8927 // Determine minimum and maximum integer values and their corresponding 8928 // floating-point values. 8929 APInt MinInt, MaxInt; 8930 if (IsSigned) { 8931 MinInt = APInt::getSignedMinValue(SatWidth).sextOrSelf(DstWidth); 8932 MaxInt = APInt::getSignedMaxValue(SatWidth).sextOrSelf(DstWidth); 8933 } else { 8934 MinInt = APInt::getMinValue(SatWidth).zextOrSelf(DstWidth); 8935 MaxInt = APInt::getMaxValue(SatWidth).zextOrSelf(DstWidth); 8936 } 8937 8938 // We cannot risk emitting FP_TO_XINT nodes with a source VT of f16, as 8939 // libcall emission cannot handle this. Large result types will fail. 8940 if (SrcVT == MVT::f16) { 8941 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f32, Src); 8942 SrcVT = Src.getValueType(); 8943 } 8944 8945 APFloat MinFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8946 APFloat MaxFloat(DAG.EVTToAPFloatSemantics(SrcVT)); 8947 8948 APFloat::opStatus MinStatus = 8949 MinFloat.convertFromAPInt(MinInt, IsSigned, APFloat::rmTowardZero); 8950 APFloat::opStatus MaxStatus = 8951 MaxFloat.convertFromAPInt(MaxInt, IsSigned, APFloat::rmTowardZero); 8952 bool AreExactFloatBounds = !(MinStatus & APFloat::opStatus::opInexact) && 8953 !(MaxStatus & APFloat::opStatus::opInexact); 8954 8955 SDValue MinFloatNode = DAG.getConstantFP(MinFloat, dl, SrcVT); 8956 SDValue MaxFloatNode = DAG.getConstantFP(MaxFloat, dl, SrcVT); 8957 8958 // If the integer bounds are exactly representable as floats and min/max are 8959 // legal, emit a min+max+fptoi sequence. Otherwise we have to use a sequence 8960 // of comparisons and selects. 8961 bool MinMaxLegal = isOperationLegal(ISD::FMINNUM, SrcVT) && 8962 isOperationLegal(ISD::FMAXNUM, SrcVT); 8963 if (AreExactFloatBounds && MinMaxLegal) { 8964 SDValue Clamped = Src; 8965 8966 // Clamp Src by MinFloat from below. If Src is NaN the result is MinFloat. 8967 Clamped = DAG.getNode(ISD::FMAXNUM, dl, SrcVT, Clamped, MinFloatNode); 8968 // Clamp by MaxFloat from above. NaN cannot occur. 8969 Clamped = DAG.getNode(ISD::FMINNUM, dl, SrcVT, Clamped, MaxFloatNode); 8970 // Convert clamped value to integer. 8971 SDValue FpToInt = DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, 8972 dl, DstVT, Clamped); 8973 8974 // In the unsigned case we're done, because we mapped NaN to MinFloat, 8975 // which will cast to zero. 8976 if (!IsSigned) 8977 return FpToInt; 8978 8979 // Otherwise, select 0 if Src is NaN. 8980 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 8981 return DAG.getSelectCC(dl, Src, Src, ZeroInt, FpToInt, 8982 ISD::CondCode::SETUO); 8983 } 8984 8985 SDValue MinIntNode = DAG.getConstant(MinInt, dl, DstVT); 8986 SDValue MaxIntNode = DAG.getConstant(MaxInt, dl, DstVT); 8987 8988 // Result of direct conversion. The assumption here is that the operation is 8989 // non-trapping and it's fine to apply it to an out-of-range value if we 8990 // select it away later. 8991 SDValue FpToInt = 8992 DAG.getNode(IsSigned ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, dl, DstVT, Src); 8993 8994 SDValue Select = FpToInt; 8995 8996 // If Src ULT MinFloat, select MinInt. In particular, this also selects 8997 // MinInt if Src is NaN. 8998 Select = DAG.getSelectCC(dl, Src, MinFloatNode, MinIntNode, Select, 8999 ISD::CondCode::SETULT); 9000 // If Src OGT MaxFloat, select MaxInt. 9001 Select = DAG.getSelectCC(dl, Src, MaxFloatNode, MaxIntNode, Select, 9002 ISD::CondCode::SETOGT); 9003 9004 // In the unsigned case we are done, because we mapped NaN to MinInt, which 9005 // is already zero. 9006 if (!IsSigned) 9007 return Select; 9008 9009 // Otherwise, select 0 if Src is NaN. 9010 SDValue ZeroInt = DAG.getConstant(0, dl, DstVT); 9011 return DAG.getSelectCC(dl, Src, Src, ZeroInt, Select, ISD::CondCode::SETUO); 9012 } 9013 9014 SDValue TargetLowering::expandVectorSplice(SDNode *Node, 9015 SelectionDAG &DAG) const { 9016 assert(Node->getOpcode() == ISD::VECTOR_SPLICE && "Unexpected opcode!"); 9017 assert(Node->getValueType(0).isScalableVector() && 9018 "Fixed length vector types expected to use SHUFFLE_VECTOR!"); 9019 9020 EVT VT = Node->getValueType(0); 9021 SDValue V1 = Node->getOperand(0); 9022 SDValue V2 = Node->getOperand(1); 9023 int64_t Imm = cast<ConstantSDNode>(Node->getOperand(2))->getSExtValue(); 9024 SDLoc DL(Node); 9025 9026 // Expand through memory thusly: 9027 // Alloca CONCAT_VECTORS_TYPES(V1, V2) Ptr 9028 // Store V1, Ptr 9029 // Store V2, Ptr + sizeof(V1) 9030 // If (Imm < 0) 9031 // TrailingElts = -Imm 9032 // Ptr = Ptr + sizeof(V1) - (TrailingElts * sizeof(VT.Elt)) 9033 // else 9034 // Ptr = Ptr + (Imm * sizeof(VT.Elt)) 9035 // Res = Load Ptr 9036 9037 Align Alignment = DAG.getReducedAlign(VT, /*UseABI=*/false); 9038 9039 EVT MemVT = EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 9040 VT.getVectorElementCount() * 2); 9041 SDValue StackPtr = DAG.CreateStackTemporary(MemVT.getStoreSize(), Alignment); 9042 EVT PtrVT = StackPtr.getValueType(); 9043 auto &MF = DAG.getMachineFunction(); 9044 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 9045 auto PtrInfo = MachinePointerInfo::getFixedStack(MF, FrameIndex); 9046 9047 // Store the lo part of CONCAT_VECTORS(V1, V2) 9048 SDValue StoreV1 = DAG.getStore(DAG.getEntryNode(), DL, V1, StackPtr, PtrInfo); 9049 // Store the hi part of CONCAT_VECTORS(V1, V2) 9050 SDValue OffsetToV2 = DAG.getVScale( 9051 DL, PtrVT, 9052 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9053 SDValue StackPtr2 = DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr, OffsetToV2); 9054 SDValue StoreV2 = DAG.getStore(StoreV1, DL, V2, StackPtr2, PtrInfo); 9055 9056 if (Imm >= 0) { 9057 // Load back the required element. getVectorElementPointer takes care of 9058 // clamping the index if it's out-of-bounds. 9059 StackPtr = getVectorElementPointer(DAG, StackPtr, VT, Node->getOperand(2)); 9060 // Load the spliced result 9061 return DAG.getLoad(VT, DL, StoreV2, StackPtr, 9062 MachinePointerInfo::getUnknownStack(MF)); 9063 } 9064 9065 uint64_t TrailingElts = -Imm; 9066 9067 // NOTE: TrailingElts must be clamped so as not to read outside of V1:V2. 9068 TypeSize EltByteSize = VT.getVectorElementType().getStoreSize(); 9069 SDValue TrailingBytes = 9070 DAG.getConstant(TrailingElts * EltByteSize, DL, PtrVT); 9071 9072 if (TrailingElts > VT.getVectorMinNumElements()) { 9073 SDValue VLBytes = DAG.getVScale( 9074 DL, PtrVT, 9075 APInt(PtrVT.getFixedSizeInBits(), VT.getStoreSize().getKnownMinSize())); 9076 TrailingBytes = DAG.getNode(ISD::UMIN, DL, PtrVT, TrailingBytes, VLBytes); 9077 } 9078 9079 // Calculate the start address of the spliced result. 9080 StackPtr2 = DAG.getNode(ISD::SUB, DL, PtrVT, StackPtr2, TrailingBytes); 9081 9082 // Load the spliced result 9083 return DAG.getLoad(VT, DL, StoreV2, StackPtr2, 9084 MachinePointerInfo::getUnknownStack(MF)); 9085 } 9086 9087 bool TargetLowering::LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, 9088 SDValue &LHS, SDValue &RHS, 9089 SDValue &CC, bool &NeedInvert, 9090 const SDLoc &dl, SDValue &Chain, 9091 bool IsSignaling) const { 9092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9093 MVT OpVT = LHS.getSimpleValueType(); 9094 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 9095 NeedInvert = false; 9096 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 9097 default: 9098 llvm_unreachable("Unknown condition code action!"); 9099 case TargetLowering::Legal: 9100 // Nothing to do. 9101 break; 9102 case TargetLowering::Expand: { 9103 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 9104 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9105 std::swap(LHS, RHS); 9106 CC = DAG.getCondCode(InvCC); 9107 return true; 9108 } 9109 // Swapping operands didn't work. Try inverting the condition. 9110 bool NeedSwap = false; 9111 InvCC = getSetCCInverse(CCCode, OpVT); 9112 if (!TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9113 // If inverting the condition is not enough, try swapping operands 9114 // on top of it. 9115 InvCC = ISD::getSetCCSwappedOperands(InvCC); 9116 NeedSwap = true; 9117 } 9118 if (TLI.isCondCodeLegalOrCustom(InvCC, OpVT)) { 9119 CC = DAG.getCondCode(InvCC); 9120 NeedInvert = true; 9121 if (NeedSwap) 9122 std::swap(LHS, RHS); 9123 return true; 9124 } 9125 9126 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 9127 unsigned Opc = 0; 9128 switch (CCCode) { 9129 default: 9130 llvm_unreachable("Don't know how to expand this condition!"); 9131 case ISD::SETUO: 9132 if (TLI.isCondCodeLegal(ISD::SETUNE, OpVT)) { 9133 CC1 = ISD::SETUNE; 9134 CC2 = ISD::SETUNE; 9135 Opc = ISD::OR; 9136 break; 9137 } 9138 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9139 "If SETUE is expanded, SETOEQ or SETUNE must be legal!"); 9140 NeedInvert = true; 9141 LLVM_FALLTHROUGH; 9142 case ISD::SETO: 9143 assert(TLI.isCondCodeLegal(ISD::SETOEQ, OpVT) && 9144 "If SETO is expanded, SETOEQ must be legal!"); 9145 CC1 = ISD::SETOEQ; 9146 CC2 = ISD::SETOEQ; 9147 Opc = ISD::AND; 9148 break; 9149 case ISD::SETONE: 9150 case ISD::SETUEQ: 9151 // If the SETUO or SETO CC isn't legal, we might be able to use 9152 // SETOGT || SETOLT, inverting the result for SETUEQ. We only need one 9153 // of SETOGT/SETOLT to be legal, the other can be emulated by swapping 9154 // the operands. 9155 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9156 if (!TLI.isCondCodeLegal(CC2, OpVT) && 9157 (TLI.isCondCodeLegal(ISD::SETOGT, OpVT) || 9158 TLI.isCondCodeLegal(ISD::SETOLT, OpVT))) { 9159 CC1 = ISD::SETOGT; 9160 CC2 = ISD::SETOLT; 9161 Opc = ISD::OR; 9162 NeedInvert = ((unsigned)CCCode & 0x8U); 9163 break; 9164 } 9165 LLVM_FALLTHROUGH; 9166 case ISD::SETOEQ: 9167 case ISD::SETOGT: 9168 case ISD::SETOGE: 9169 case ISD::SETOLT: 9170 case ISD::SETOLE: 9171 case ISD::SETUNE: 9172 case ISD::SETUGT: 9173 case ISD::SETUGE: 9174 case ISD::SETULT: 9175 case ISD::SETULE: 9176 // If we are floating point, assign and break, otherwise fall through. 9177 if (!OpVT.isInteger()) { 9178 // We can use the 4th bit to tell if we are the unordered 9179 // or ordered version of the opcode. 9180 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 9181 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 9182 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 9183 break; 9184 } 9185 // Fallthrough if we are unsigned integer. 9186 LLVM_FALLTHROUGH; 9187 case ISD::SETLE: 9188 case ISD::SETGT: 9189 case ISD::SETGE: 9190 case ISD::SETLT: 9191 case ISD::SETNE: 9192 case ISD::SETEQ: 9193 // If all combinations of inverting the condition and swapping operands 9194 // didn't work then we have no means to expand the condition. 9195 llvm_unreachable("Don't know how to expand this condition!"); 9196 } 9197 9198 SDValue SetCC1, SetCC2; 9199 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 9200 // If we aren't the ordered or unorder operation, 9201 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 9202 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1, Chain, IsSignaling); 9203 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2, Chain, IsSignaling); 9204 } else { 9205 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 9206 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1, Chain, IsSignaling); 9207 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2, Chain, IsSignaling); 9208 } 9209 if (Chain) 9210 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, SetCC1.getValue(1), 9211 SetCC2.getValue(1)); 9212 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 9213 RHS = SDValue(); 9214 CC = SDValue(); 9215 return true; 9216 } 9217 } 9218 return false; 9219 } 9220