1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
36 
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39     : TargetLoweringBase(tm) {}
40 
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42   return nullptr;
43 }
44 
45 bool TargetLowering::isPositionIndependent() const {
46   return getTargetMachine().isPositionIndependent();
47 }
48 
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52                                           SDValue &Chain) const {
53   const Function &F = DAG.getMachineFunction().getFunction();
54 
55   // First, check if tail calls have been disabled in this function.
56   if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
57     return false;
58 
59   // Conservatively require the attributes of the call to match those of
60   // the return. Ignore NoAlias and NonNull because they don't affect the
61   // call sequence.
62   AttributeList CallerAttrs = F.getAttributes();
63   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
64           .removeAttribute(Attribute::NoAlias)
65           .removeAttribute(Attribute::NonNull)
66           .hasAttributes())
67     return false;
68 
69   // It's not safe to eliminate the sign / zero extension of the return value.
70   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
71       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
72     return false;
73 
74   // Check if the only use is a function return node.
75   return isUsedByReturnOnly(Node, Chain);
76 }
77 
78 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
79     const uint32_t *CallerPreservedMask,
80     const SmallVectorImpl<CCValAssign> &ArgLocs,
81     const SmallVectorImpl<SDValue> &OutVals) const {
82   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
83     const CCValAssign &ArgLoc = ArgLocs[I];
84     if (!ArgLoc.isRegLoc())
85       continue;
86     MCRegister Reg = ArgLoc.getLocReg();
87     // Only look at callee saved registers.
88     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
89       continue;
90     // Check that we pass the value used for the caller.
91     // (We look for a CopyFromReg reading a virtual register that is used
92     //  for the function live-in value of register Reg)
93     SDValue Value = OutVals[I];
94     if (Value->getOpcode() != ISD::CopyFromReg)
95       return false;
96     MCRegister ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
97     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
98       return false;
99   }
100   return true;
101 }
102 
103 /// Set CallLoweringInfo attribute flags based on a call instruction
104 /// and called function attributes.
105 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
106                                                      unsigned ArgIdx) {
107   IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
108   IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
109   IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
110   IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
111   IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
112   IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
113   IsPreallocated = Call->paramHasAttr(ArgIdx, Attribute::Preallocated);
114   IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
115   IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
116   IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
117   IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
118   Alignment = Call->getParamAlign(ArgIdx);
119   ByValType = nullptr;
120   if (IsByVal)
121     ByValType = Call->getParamByValType(ArgIdx);
122   PreallocatedType = nullptr;
123   if (IsPreallocated)
124     PreallocatedType = Call->getParamPreallocatedType(ArgIdx);
125 }
126 
127 /// Generate a libcall taking the given operands as arguments and returning a
128 /// result of type RetVT.
129 std::pair<SDValue, SDValue>
130 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
131                             ArrayRef<SDValue> Ops,
132                             MakeLibCallOptions CallOptions,
133                             const SDLoc &dl,
134                             SDValue InChain) const {
135   if (!InChain)
136     InChain = DAG.getEntryNode();
137 
138   TargetLowering::ArgListTy Args;
139   Args.reserve(Ops.size());
140 
141   TargetLowering::ArgListEntry Entry;
142   for (unsigned i = 0; i < Ops.size(); ++i) {
143     SDValue NewOp = Ops[i];
144     Entry.Node = NewOp;
145     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
146     Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
147                                                  CallOptions.IsSExt);
148     Entry.IsZExt = !Entry.IsSExt;
149 
150     if (CallOptions.IsSoften &&
151         !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
152       Entry.IsSExt = Entry.IsZExt = false;
153     }
154     Args.push_back(Entry);
155   }
156 
157   if (LC == RTLIB::UNKNOWN_LIBCALL)
158     report_fatal_error("Unsupported library call operation!");
159   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
160                                          getPointerTy(DAG.getDataLayout()));
161 
162   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
163   TargetLowering::CallLoweringInfo CLI(DAG);
164   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
165   bool zeroExtend = !signExtend;
166 
167   if (CallOptions.IsSoften &&
168       !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
169     signExtend = zeroExtend = false;
170   }
171 
172   CLI.setDebugLoc(dl)
173       .setChain(InChain)
174       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
175       .setNoReturn(CallOptions.DoesNotReturn)
176       .setDiscardResult(!CallOptions.IsReturnValueUsed)
177       .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
178       .setSExtResult(signExtend)
179       .setZExtResult(zeroExtend);
180   return LowerCallTo(CLI);
181 }
182 
183 bool TargetLowering::findOptimalMemOpLowering(
184     std::vector<EVT> &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS,
185     unsigned SrcAS, const AttributeList &FuncAttributes) const {
186   if (Op.isMemcpyWithFixedDstAlign() && Op.getSrcAlign() < Op.getDstAlign())
187     return false;
188 
189   EVT VT = getOptimalMemOpType(Op, FuncAttributes);
190 
191   if (VT == MVT::Other) {
192     // Use the largest integer type whose alignment constraints are satisfied.
193     // We only need to check DstAlign here as SrcAlign is always greater or
194     // equal to DstAlign (or zero).
195     VT = MVT::i64;
196     if (Op.isFixedDstAlign())
197       while (
198           Op.getDstAlign() < (VT.getSizeInBits() / 8) &&
199           !allowsMisalignedMemoryAccesses(VT, DstAS, Op.getDstAlign().value()))
200         VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
201     assert(VT.isInteger());
202 
203     // Find the largest legal integer type.
204     MVT LVT = MVT::i64;
205     while (!isTypeLegal(LVT))
206       LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
207     assert(LVT.isInteger());
208 
209     // If the type we've chosen is larger than the largest legal integer type
210     // then use that instead.
211     if (VT.bitsGT(LVT))
212       VT = LVT;
213   }
214 
215   unsigned NumMemOps = 0;
216   uint64_t Size = Op.size();
217   while (Size) {
218     unsigned VTSize = VT.getSizeInBits() / 8;
219     while (VTSize > Size) {
220       // For now, only use non-vector load / store's for the left-over pieces.
221       EVT NewVT = VT;
222       unsigned NewVTSize;
223 
224       bool Found = false;
225       if (VT.isVector() || VT.isFloatingPoint()) {
226         NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
227         if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
228             isSafeMemOpType(NewVT.getSimpleVT()))
229           Found = true;
230         else if (NewVT == MVT::i64 &&
231                  isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
232                  isSafeMemOpType(MVT::f64)) {
233           // i64 is usually not legal on 32-bit targets, but f64 may be.
234           NewVT = MVT::f64;
235           Found = true;
236         }
237       }
238 
239       if (!Found) {
240         do {
241           NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
242           if (NewVT == MVT::i8)
243             break;
244         } while (!isSafeMemOpType(NewVT.getSimpleVT()));
245       }
246       NewVTSize = NewVT.getSizeInBits() / 8;
247 
248       // If the new VT cannot cover all of the remaining bits, then consider
249       // issuing a (or a pair of) unaligned and overlapping load / store.
250       bool Fast;
251       if (NumMemOps && Op.allowOverlap() && NewVTSize < Size &&
252           allowsMisalignedMemoryAccesses(
253               VT, DstAS, Op.isFixedDstAlign() ? Op.getDstAlign().value() : 0,
254               MachineMemOperand::MONone, &Fast) &&
255           Fast)
256         VTSize = Size;
257       else {
258         VT = NewVT;
259         VTSize = NewVTSize;
260       }
261     }
262 
263     if (++NumMemOps > Limit)
264       return false;
265 
266     MemOps.push_back(VT);
267     Size -= VTSize;
268   }
269 
270   return true;
271 }
272 
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276                                          SDValue &NewLHS, SDValue &NewRHS,
277                                          ISD::CondCode &CCCode,
278                                          const SDLoc &dl, const SDValue OldLHS,
279                                          const SDValue OldRHS) const {
280   SDValue Chain;
281   return softenSetCCOperands(DAG, VT, NewLHS, NewRHS, CCCode, dl, OldLHS,
282                              OldRHS, Chain);
283 }
284 
285 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
286                                          SDValue &NewLHS, SDValue &NewRHS,
287                                          ISD::CondCode &CCCode,
288                                          const SDLoc &dl, const SDValue OldLHS,
289                                          const SDValue OldRHS,
290                                          SDValue &Chain,
291                                          bool IsSignaling) const {
292   // FIXME: Currently we cannot really respect all IEEE predicates due to libgcc
293   // not supporting it. We can update this code when libgcc provides such
294   // functions.
295 
296   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
297          && "Unsupported setcc type!");
298 
299   // Expand into one or more soft-fp libcall(s).
300   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
301   bool ShouldInvertCC = false;
302   switch (CCCode) {
303   case ISD::SETEQ:
304   case ISD::SETOEQ:
305     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
306           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
307           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
308     break;
309   case ISD::SETNE:
310   case ISD::SETUNE:
311     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
312           (VT == MVT::f64) ? RTLIB::UNE_F64 :
313           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
314     break;
315   case ISD::SETGE:
316   case ISD::SETOGE:
317     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
318           (VT == MVT::f64) ? RTLIB::OGE_F64 :
319           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
320     break;
321   case ISD::SETLT:
322   case ISD::SETOLT:
323     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
324           (VT == MVT::f64) ? RTLIB::OLT_F64 :
325           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
326     break;
327   case ISD::SETLE:
328   case ISD::SETOLE:
329     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
330           (VT == MVT::f64) ? RTLIB::OLE_F64 :
331           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
332     break;
333   case ISD::SETGT:
334   case ISD::SETOGT:
335     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
336           (VT == MVT::f64) ? RTLIB::OGT_F64 :
337           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
338     break;
339   case ISD::SETO:
340     ShouldInvertCC = true;
341     LLVM_FALLTHROUGH;
342   case ISD::SETUO:
343     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344           (VT == MVT::f64) ? RTLIB::UO_F64 :
345           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346     break;
347   case ISD::SETONE:
348     // SETONE = O && UNE
349     ShouldInvertCC = true;
350     LLVM_FALLTHROUGH;
351   case ISD::SETUEQ:
352     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
353           (VT == MVT::f64) ? RTLIB::UO_F64 :
354           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
355     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
356           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
357           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
358     break;
359   default:
360     // Invert CC for unordered comparisons
361     ShouldInvertCC = true;
362     switch (CCCode) {
363     case ISD::SETULT:
364       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
365             (VT == MVT::f64) ? RTLIB::OGE_F64 :
366             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
367       break;
368     case ISD::SETULE:
369       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
370             (VT == MVT::f64) ? RTLIB::OGT_F64 :
371             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
372       break;
373     case ISD::SETUGT:
374       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
375             (VT == MVT::f64) ? RTLIB::OLE_F64 :
376             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
377       break;
378     case ISD::SETUGE:
379       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
380             (VT == MVT::f64) ? RTLIB::OLT_F64 :
381             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
382       break;
383     default: llvm_unreachable("Do not know how to soften this setcc!");
384     }
385   }
386 
387   // Use the target specific return value for comparions lib calls.
388   EVT RetVT = getCmpLibcallReturnType();
389   SDValue Ops[2] = {NewLHS, NewRHS};
390   TargetLowering::MakeLibCallOptions CallOptions;
391   EVT OpsVT[2] = { OldLHS.getValueType(),
392                    OldRHS.getValueType() };
393   CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
394   auto Call = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl, Chain);
395   NewLHS = Call.first;
396   NewRHS = DAG.getConstant(0, dl, RetVT);
397 
398   CCCode = getCmpLibcallCC(LC1);
399   if (ShouldInvertCC) {
400     assert(RetVT.isInteger());
401     CCCode = getSetCCInverse(CCCode, RetVT);
402   }
403 
404   if (LC2 == RTLIB::UNKNOWN_LIBCALL) {
405     // Update Chain.
406     Chain = Call.second;
407   } else {
408     EVT SetCCVT =
409         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT);
410     SDValue Tmp = DAG.getSetCC(dl, SetCCVT, NewLHS, NewRHS, CCCode);
411     auto Call2 = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl, Chain);
412     CCCode = getCmpLibcallCC(LC2);
413     if (ShouldInvertCC)
414       CCCode = getSetCCInverse(CCCode, RetVT);
415     NewLHS = DAG.getSetCC(dl, SetCCVT, Call2.first, NewRHS, CCCode);
416     if (Chain)
417       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Call.second,
418                           Call2.second);
419     NewLHS = DAG.getNode(ShouldInvertCC ? ISD::AND : ISD::OR, dl,
420                          Tmp.getValueType(), Tmp, NewLHS);
421     NewRHS = SDValue();
422   }
423 }
424 
425 /// Return the entry encoding for a jump table in the current function. The
426 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
427 unsigned TargetLowering::getJumpTableEncoding() const {
428   // In non-pic modes, just use the address of a block.
429   if (!isPositionIndependent())
430     return MachineJumpTableInfo::EK_BlockAddress;
431 
432   // In PIC mode, if the target supports a GPRel32 directive, use it.
433   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
434     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
435 
436   // Otherwise, use a label difference.
437   return MachineJumpTableInfo::EK_LabelDifference32;
438 }
439 
440 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
441                                                  SelectionDAG &DAG) const {
442   // If our PIC model is GP relative, use the global offset table as the base.
443   unsigned JTEncoding = getJumpTableEncoding();
444 
445   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
446       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
447     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
448 
449   return Table;
450 }
451 
452 /// This returns the relocation base for the given PIC jumptable, the same as
453 /// getPICJumpTableRelocBase, but as an MCExpr.
454 const MCExpr *
455 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
456                                              unsigned JTI,MCContext &Ctx) const{
457   // The normal PIC reloc base is the label at the start of the jump table.
458   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
459 }
460 
461 bool
462 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
463   const TargetMachine &TM = getTargetMachine();
464   const GlobalValue *GV = GA->getGlobal();
465 
466   // If the address is not even local to this DSO we will have to load it from
467   // a got and then add the offset.
468   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
469     return false;
470 
471   // If the code is position independent we will have to add a base register.
472   if (isPositionIndependent())
473     return false;
474 
475   // Otherwise we can do it.
476   return true;
477 }
478 
479 //===----------------------------------------------------------------------===//
480 //  Optimization Methods
481 //===----------------------------------------------------------------------===//
482 
483 /// If the specified instruction has a constant integer operand and there are
484 /// bits set in that constant that are not demanded, then clear those bits and
485 /// return true.
486 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
487                                             TargetLoweringOpt &TLO) const {
488   SDLoc DL(Op);
489   unsigned Opcode = Op.getOpcode();
490 
491   // Do target-specific constant optimization.
492   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
493     return TLO.New.getNode();
494 
495   // FIXME: ISD::SELECT, ISD::SELECT_CC
496   switch (Opcode) {
497   default:
498     break;
499   case ISD::XOR:
500   case ISD::AND:
501   case ISD::OR: {
502     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
503     if (!Op1C)
504       return false;
505 
506     // If this is a 'not' op, don't touch it because that's a canonical form.
507     const APInt &C = Op1C->getAPIntValue();
508     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
509       return false;
510 
511     if (!C.isSubsetOf(Demanded)) {
512       EVT VT = Op.getValueType();
513       SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
514       SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
515       return TLO.CombineTo(Op, NewOp);
516     }
517 
518     break;
519   }
520   }
521 
522   return false;
523 }
524 
525 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
526 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
527 /// generalized for targets with other types of implicit widening casts.
528 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
529                                       const APInt &Demanded,
530                                       TargetLoweringOpt &TLO) const {
531   assert(Op.getNumOperands() == 2 &&
532          "ShrinkDemandedOp only supports binary operators!");
533   assert(Op.getNode()->getNumValues() == 1 &&
534          "ShrinkDemandedOp only supports nodes with one result!");
535 
536   SelectionDAG &DAG = TLO.DAG;
537   SDLoc dl(Op);
538 
539   // Early return, as this function cannot handle vector types.
540   if (Op.getValueType().isVector())
541     return false;
542 
543   // Don't do this if the node has another user, which may require the
544   // full value.
545   if (!Op.getNode()->hasOneUse())
546     return false;
547 
548   // Search for the smallest integer type with free casts to and from
549   // Op's type. For expedience, just check power-of-2 integer types.
550   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
551   unsigned DemandedSize = Demanded.getActiveBits();
552   unsigned SmallVTBits = DemandedSize;
553   if (!isPowerOf2_32(SmallVTBits))
554     SmallVTBits = NextPowerOf2(SmallVTBits);
555   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
556     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
557     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
558         TLI.isZExtFree(SmallVT, Op.getValueType())) {
559       // We found a type with free casts.
560       SDValue X = DAG.getNode(
561           Op.getOpcode(), dl, SmallVT,
562           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
563           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
564       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
565       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
566       return TLO.CombineTo(Op, Z);
567     }
568   }
569   return false;
570 }
571 
572 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
573                                           DAGCombinerInfo &DCI) const {
574   SelectionDAG &DAG = DCI.DAG;
575   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
576                         !DCI.isBeforeLegalizeOps());
577   KnownBits Known;
578 
579   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
580   if (Simplified) {
581     DCI.AddToWorklist(Op.getNode());
582     DCI.CommitTargetLoweringOpt(TLO);
583   }
584   return Simplified;
585 }
586 
587 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
588                                           KnownBits &Known,
589                                           TargetLoweringOpt &TLO,
590                                           unsigned Depth,
591                                           bool AssumeSingleUse) const {
592   EVT VT = Op.getValueType();
593   APInt DemandedElts = VT.isVector()
594                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
595                            : APInt(1, 1);
596   return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
597                               AssumeSingleUse);
598 }
599 
600 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
601 // TODO: Under what circumstances can we create nodes? Constant folding?
602 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
603     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
604     SelectionDAG &DAG, unsigned Depth) const {
605   // Limit search depth.
606   if (Depth >= SelectionDAG::MaxRecursionDepth)
607     return SDValue();
608 
609   // Ignore UNDEFs.
610   if (Op.isUndef())
611     return SDValue();
612 
613   // Not demanding any bits/elts from Op.
614   if (DemandedBits == 0 || DemandedElts == 0)
615     return DAG.getUNDEF(Op.getValueType());
616 
617   unsigned NumElts = DemandedElts.getBitWidth();
618   KnownBits LHSKnown, RHSKnown;
619   switch (Op.getOpcode()) {
620   case ISD::BITCAST: {
621     SDValue Src = peekThroughBitcasts(Op.getOperand(0));
622     EVT SrcVT = Src.getValueType();
623     EVT DstVT = Op.getValueType();
624     if (SrcVT == DstVT)
625       return Src;
626 
627     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
628     unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
629     if (NumSrcEltBits == NumDstEltBits)
630       if (SDValue V = SimplifyMultipleUseDemandedBits(
631               Src, DemandedBits, DemandedElts, DAG, Depth + 1))
632         return DAG.getBitcast(DstVT, V);
633 
634     // TODO - bigendian once we have test coverage.
635     if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
636         DAG.getDataLayout().isLittleEndian()) {
637       unsigned Scale = NumDstEltBits / NumSrcEltBits;
638       unsigned NumSrcElts = SrcVT.getVectorNumElements();
639       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
640       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
641       for (unsigned i = 0; i != Scale; ++i) {
642         unsigned Offset = i * NumSrcEltBits;
643         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
644         if (!Sub.isNullValue()) {
645           DemandedSrcBits |= Sub;
646           for (unsigned j = 0; j != NumElts; ++j)
647             if (DemandedElts[j])
648               DemandedSrcElts.setBit((j * Scale) + i);
649         }
650       }
651 
652       if (SDValue V = SimplifyMultipleUseDemandedBits(
653               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
654         return DAG.getBitcast(DstVT, V);
655     }
656 
657     // TODO - bigendian once we have test coverage.
658     if ((NumSrcEltBits % NumDstEltBits) == 0 &&
659         DAG.getDataLayout().isLittleEndian()) {
660       unsigned Scale = NumSrcEltBits / NumDstEltBits;
661       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
662       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
663       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
664       for (unsigned i = 0; i != NumElts; ++i)
665         if (DemandedElts[i]) {
666           unsigned Offset = (i % Scale) * NumDstEltBits;
667           DemandedSrcBits.insertBits(DemandedBits, Offset);
668           DemandedSrcElts.setBit(i / Scale);
669         }
670 
671       if (SDValue V = SimplifyMultipleUseDemandedBits(
672               Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
673         return DAG.getBitcast(DstVT, V);
674     }
675 
676     break;
677   }
678   case ISD::AND: {
679     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
680     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
681 
682     // If all of the demanded bits are known 1 on one side, return the other.
683     // These bits cannot contribute to the result of the 'and' in this
684     // context.
685     if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
686       return Op.getOperand(0);
687     if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
688       return Op.getOperand(1);
689     break;
690   }
691   case ISD::OR: {
692     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
693     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
694 
695     // If all of the demanded bits are known zero on one side, return the
696     // other.  These bits cannot contribute to the result of the 'or' in this
697     // context.
698     if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
699       return Op.getOperand(0);
700     if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
701       return Op.getOperand(1);
702     break;
703   }
704   case ISD::XOR: {
705     LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
706     RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
707 
708     // If all of the demanded bits are known zero on one side, return the
709     // other.
710     if (DemandedBits.isSubsetOf(RHSKnown.Zero))
711       return Op.getOperand(0);
712     if (DemandedBits.isSubsetOf(LHSKnown.Zero))
713       return Op.getOperand(1);
714     break;
715   }
716   case ISD::SETCC: {
717     SDValue Op0 = Op.getOperand(0);
718     SDValue Op1 = Op.getOperand(1);
719     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
720     // If (1) we only need the sign-bit, (2) the setcc operands are the same
721     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
722     // -1, we may be able to bypass the setcc.
723     if (DemandedBits.isSignMask() &&
724         Op0.getScalarValueSizeInBits() == DemandedBits.getBitWidth() &&
725         getBooleanContents(Op0.getValueType()) ==
726             BooleanContent::ZeroOrNegativeOneBooleanContent) {
727       // If we're testing X < 0, then this compare isn't needed - just use X!
728       // FIXME: We're limiting to integer types here, but this should also work
729       // if we don't care about FP signed-zero. The use of SETLT with FP means
730       // that we don't care about NaNs.
731       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
732           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
733         return Op0;
734     }
735     break;
736   }
737   case ISD::SIGN_EXTEND_INREG: {
738     // If none of the extended bits are demanded, eliminate the sextinreg.
739     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
740     if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
741       return Op.getOperand(0);
742     break;
743   }
744   case ISD::INSERT_VECTOR_ELT: {
745     // If we don't demand the inserted element, return the base vector.
746     SDValue Vec = Op.getOperand(0);
747     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
748     EVT VecVT = Vec.getValueType();
749     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
750         !DemandedElts[CIdx->getZExtValue()])
751       return Vec;
752     break;
753   }
754   case ISD::INSERT_SUBVECTOR: {
755     // If we don't demand the inserted subvector, return the base vector.
756     SDValue Vec = Op.getOperand(0);
757     SDValue Sub = Op.getOperand(1);
758     uint64_t Idx = Op.getConstantOperandVal(2);
759     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
760     if (DemandedElts.extractBits(NumSubElts, Idx) == 0)
761       return Vec;
762     break;
763   }
764   case ISD::VECTOR_SHUFFLE: {
765     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
766 
767     // If all the demanded elts are from one operand and are inline,
768     // then we can use the operand directly.
769     bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
770     for (unsigned i = 0; i != NumElts; ++i) {
771       int M = ShuffleMask[i];
772       if (M < 0 || !DemandedElts[i])
773         continue;
774       AllUndef = false;
775       IdentityLHS &= (M == (int)i);
776       IdentityRHS &= ((M - NumElts) == i);
777     }
778 
779     if (AllUndef)
780       return DAG.getUNDEF(Op.getValueType());
781     if (IdentityLHS)
782       return Op.getOperand(0);
783     if (IdentityRHS)
784       return Op.getOperand(1);
785     break;
786   }
787   default:
788     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
789       if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
790               Op, DemandedBits, DemandedElts, DAG, Depth))
791         return V;
792     break;
793   }
794   return SDValue();
795 }
796 
797 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
798     SDValue Op, const APInt &DemandedBits, SelectionDAG &DAG,
799     unsigned Depth) const {
800   EVT VT = Op.getValueType();
801   APInt DemandedElts = VT.isVector()
802                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
803                            : APInt(1, 1);
804   return SimplifyMultipleUseDemandedBits(Op, DemandedBits, DemandedElts, DAG,
805                                          Depth);
806 }
807 
808 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
809 /// result of Op are ever used downstream. If we can use this information to
810 /// simplify Op, create a new simplified DAG node and return true, returning the
811 /// original and new nodes in Old and New. Otherwise, analyze the expression and
812 /// return a mask of Known bits for the expression (used to simplify the
813 /// caller).  The Known bits may only be accurate for those bits in the
814 /// OriginalDemandedBits and OriginalDemandedElts.
815 bool TargetLowering::SimplifyDemandedBits(
816     SDValue Op, const APInt &OriginalDemandedBits,
817     const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
818     unsigned Depth, bool AssumeSingleUse) const {
819   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
820   assert(Op.getScalarValueSizeInBits() == BitWidth &&
821          "Mask size mismatches value type size!");
822 
823   unsigned NumElts = OriginalDemandedElts.getBitWidth();
824   assert((!Op.getValueType().isVector() ||
825           NumElts == Op.getValueType().getVectorNumElements()) &&
826          "Unexpected vector size");
827 
828   APInt DemandedBits = OriginalDemandedBits;
829   APInt DemandedElts = OriginalDemandedElts;
830   SDLoc dl(Op);
831   auto &DL = TLO.DAG.getDataLayout();
832 
833   // Don't know anything.
834   Known = KnownBits(BitWidth);
835 
836   // Undef operand.
837   if (Op.isUndef())
838     return false;
839 
840   if (Op.getOpcode() == ISD::Constant) {
841     // We know all of the bits for a constant!
842     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
843     Known.Zero = ~Known.One;
844     return false;
845   }
846 
847   // Other users may use these bits.
848   EVT VT = Op.getValueType();
849   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
850     if (Depth != 0) {
851       // If not at the root, Just compute the Known bits to
852       // simplify things downstream.
853       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
854       return false;
855     }
856     // If this is the root being simplified, allow it to have multiple uses,
857     // just set the DemandedBits/Elts to all bits.
858     DemandedBits = APInt::getAllOnesValue(BitWidth);
859     DemandedElts = APInt::getAllOnesValue(NumElts);
860   } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
861     // Not demanding any bits/elts from Op.
862     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
863   } else if (Depth >= SelectionDAG::MaxRecursionDepth) {
864     // Limit search depth.
865     return false;
866   }
867 
868   KnownBits Known2;
869   switch (Op.getOpcode()) {
870   case ISD::TargetConstant:
871     llvm_unreachable("Can't simplify this node");
872   case ISD::SCALAR_TO_VECTOR: {
873     if (!DemandedElts[0])
874       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
875 
876     KnownBits SrcKnown;
877     SDValue Src = Op.getOperand(0);
878     unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
879     APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
880     if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
881       return true;
882 
883     // Upper elements are undef, so only get the knownbits if we just demand
884     // the bottom element.
885     if (DemandedElts == 1)
886       Known = SrcKnown.anyextOrTrunc(BitWidth);
887     break;
888   }
889   case ISD::BUILD_VECTOR:
890     // Collect the known bits that are shared by every demanded element.
891     // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
892     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
893     return false; // Don't fall through, will infinitely loop.
894   case ISD::LOAD: {
895     LoadSDNode *LD = cast<LoadSDNode>(Op);
896     if (getTargetConstantFromLoad(LD)) {
897       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
898       return false; // Don't fall through, will infinitely loop.
899     } else if (ISD::isZEXTLoad(Op.getNode()) && Op.getResNo() == 0) {
900       // If this is a ZEXTLoad and we are looking at the loaded value.
901       EVT MemVT = LD->getMemoryVT();
902       unsigned MemBits = MemVT.getScalarSizeInBits();
903       Known.Zero.setBitsFrom(MemBits);
904       return false; // Don't fall through, will infinitely loop.
905     }
906     break;
907   }
908   case ISD::INSERT_VECTOR_ELT: {
909     SDValue Vec = Op.getOperand(0);
910     SDValue Scl = Op.getOperand(1);
911     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
912     EVT VecVT = Vec.getValueType();
913 
914     // If index isn't constant, assume we need all vector elements AND the
915     // inserted element.
916     APInt DemandedVecElts(DemandedElts);
917     if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
918       unsigned Idx = CIdx->getZExtValue();
919       DemandedVecElts.clearBit(Idx);
920 
921       // Inserted element is not required.
922       if (!DemandedElts[Idx])
923         return TLO.CombineTo(Op, Vec);
924     }
925 
926     KnownBits KnownScl;
927     unsigned NumSclBits = Scl.getScalarValueSizeInBits();
928     APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
929     if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
930       return true;
931 
932     Known = KnownScl.anyextOrTrunc(BitWidth);
933 
934     KnownBits KnownVec;
935     if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
936                              Depth + 1))
937       return true;
938 
939     if (!!DemandedVecElts) {
940       Known.One &= KnownVec.One;
941       Known.Zero &= KnownVec.Zero;
942     }
943 
944     return false;
945   }
946   case ISD::INSERT_SUBVECTOR: {
947     // Demand any elements from the subvector and the remainder from the src its
948     // inserted into.
949     SDValue Src = Op.getOperand(0);
950     SDValue Sub = Op.getOperand(1);
951     uint64_t Idx = Op.getConstantOperandVal(2);
952     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
953     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
954     APInt DemandedSrcElts = DemandedElts;
955     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
956 
957     KnownBits KnownSub, KnownSrc;
958     if (SimplifyDemandedBits(Sub, DemandedBits, DemandedSubElts, KnownSub, TLO,
959                              Depth + 1))
960       return true;
961     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, KnownSrc, TLO,
962                              Depth + 1))
963       return true;
964 
965     Known.Zero.setAllBits();
966     Known.One.setAllBits();
967     if (!!DemandedSubElts) {
968       Known.One &= KnownSub.One;
969       Known.Zero &= KnownSub.Zero;
970     }
971     if (!!DemandedSrcElts) {
972       Known.One &= KnownSrc.One;
973       Known.Zero &= KnownSrc.Zero;
974     }
975 
976     // Attempt to avoid multi-use src if we don't need anything from it.
977     if (!DemandedBits.isAllOnesValue() || !DemandedSubElts.isAllOnesValue() ||
978         !DemandedSrcElts.isAllOnesValue()) {
979       SDValue NewSub = SimplifyMultipleUseDemandedBits(
980           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
981       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
982           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
983       if (NewSub || NewSrc) {
984         NewSub = NewSub ? NewSub : Sub;
985         NewSrc = NewSrc ? NewSrc : Src;
986         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc, NewSub,
987                                         Op.getOperand(2));
988         return TLO.CombineTo(Op, NewOp);
989       }
990     }
991     break;
992   }
993   case ISD::EXTRACT_SUBVECTOR: {
994     // Offset the demanded elts by the subvector index.
995     SDValue Src = Op.getOperand(0);
996     uint64_t Idx = Op.getConstantOperandVal(1);
997     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
998     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
999 
1000     if (SimplifyDemandedBits(Src, DemandedBits, DemandedSrcElts, Known, TLO,
1001                              Depth + 1))
1002       return true;
1003 
1004     // Attempt to avoid multi-use src if we don't need anything from it.
1005     if (!DemandedBits.isAllOnesValue() || !DemandedSrcElts.isAllOnesValue()) {
1006       SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1007           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
1008       if (DemandedSrc) {
1009         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc,
1010                                         Op.getOperand(1));
1011         return TLO.CombineTo(Op, NewOp);
1012       }
1013     }
1014     break;
1015   }
1016   case ISD::CONCAT_VECTORS: {
1017     Known.Zero.setAllBits();
1018     Known.One.setAllBits();
1019     EVT SubVT = Op.getOperand(0).getValueType();
1020     unsigned NumSubVecs = Op.getNumOperands();
1021     unsigned NumSubElts = SubVT.getVectorNumElements();
1022     for (unsigned i = 0; i != NumSubVecs; ++i) {
1023       APInt DemandedSubElts =
1024           DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1025       if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
1026                                Known2, TLO, Depth + 1))
1027         return true;
1028       // Known bits are shared by every demanded subvector element.
1029       if (!!DemandedSubElts) {
1030         Known.One &= Known2.One;
1031         Known.Zero &= Known2.Zero;
1032       }
1033     }
1034     break;
1035   }
1036   case ISD::VECTOR_SHUFFLE: {
1037     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1038 
1039     // Collect demanded elements from shuffle operands..
1040     APInt DemandedLHS(NumElts, 0);
1041     APInt DemandedRHS(NumElts, 0);
1042     for (unsigned i = 0; i != NumElts; ++i) {
1043       if (!DemandedElts[i])
1044         continue;
1045       int M = ShuffleMask[i];
1046       if (M < 0) {
1047         // For UNDEF elements, we don't know anything about the common state of
1048         // the shuffle result.
1049         DemandedLHS.clearAllBits();
1050         DemandedRHS.clearAllBits();
1051         break;
1052       }
1053       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1054       if (M < (int)NumElts)
1055         DemandedLHS.setBit(M);
1056       else
1057         DemandedRHS.setBit(M - NumElts);
1058     }
1059 
1060     if (!!DemandedLHS || !!DemandedRHS) {
1061       SDValue Op0 = Op.getOperand(0);
1062       SDValue Op1 = Op.getOperand(1);
1063 
1064       Known.Zero.setAllBits();
1065       Known.One.setAllBits();
1066       if (!!DemandedLHS) {
1067         if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
1068                                  Depth + 1))
1069           return true;
1070         Known.One &= Known2.One;
1071         Known.Zero &= Known2.Zero;
1072       }
1073       if (!!DemandedRHS) {
1074         if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
1075                                  Depth + 1))
1076           return true;
1077         Known.One &= Known2.One;
1078         Known.Zero &= Known2.Zero;
1079       }
1080 
1081       // Attempt to avoid multi-use ops if we don't need anything from them.
1082       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1083           Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
1084       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1085           Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
1086       if (DemandedOp0 || DemandedOp1) {
1087         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1088         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1089         SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
1090         return TLO.CombineTo(Op, NewOp);
1091       }
1092     }
1093     break;
1094   }
1095   case ISD::AND: {
1096     SDValue Op0 = Op.getOperand(0);
1097     SDValue Op1 = Op.getOperand(1);
1098 
1099     // If the RHS is a constant, check to see if the LHS would be zero without
1100     // using the bits from the RHS.  Below, we use knowledge about the RHS to
1101     // simplify the LHS, here we're using information from the LHS to simplify
1102     // the RHS.
1103     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
1104       // Do not increment Depth here; that can cause an infinite loop.
1105       KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1106       // If the LHS already has zeros where RHSC does, this 'and' is dead.
1107       if ((LHSKnown.Zero & DemandedBits) ==
1108           (~RHSC->getAPIntValue() & DemandedBits))
1109         return TLO.CombineTo(Op, Op0);
1110 
1111       // If any of the set bits in the RHS are known zero on the LHS, shrink
1112       // the constant.
1113       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1114         return true;
1115 
1116       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1117       // constant, but if this 'and' is only clearing bits that were just set by
1118       // the xor, then this 'and' can be eliminated by shrinking the mask of
1119       // the xor. For example, for a 32-bit X:
1120       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1121       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1122           LHSKnown.One == ~RHSC->getAPIntValue()) {
1123         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1124         return TLO.CombineTo(Op, Xor);
1125       }
1126     }
1127 
1128     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1129                              Depth + 1))
1130       return true;
1131     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1132     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1133                              Known2, TLO, Depth + 1))
1134       return true;
1135     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1136 
1137     // Attempt to avoid multi-use ops if we don't need anything from them.
1138     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1139       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1140           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1141       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1142           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1143       if (DemandedOp0 || DemandedOp1) {
1144         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1145         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1146         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1147         return TLO.CombineTo(Op, NewOp);
1148       }
1149     }
1150 
1151     // If all of the demanded bits are known one on one side, return the other.
1152     // These bits cannot contribute to the result of the 'and'.
1153     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1154       return TLO.CombineTo(Op, Op0);
1155     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1156       return TLO.CombineTo(Op, Op1);
1157     // If all of the demanded bits in the inputs are known zeros, return zero.
1158     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1159       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1160     // If the RHS is a constant, see if we can simplify it.
1161     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1162       return true;
1163     // If the operation can be done in a smaller type, do so.
1164     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1165       return true;
1166 
1167     Known &= Known2;
1168     break;
1169   }
1170   case ISD::OR: {
1171     SDValue Op0 = Op.getOperand(0);
1172     SDValue Op1 = Op.getOperand(1);
1173 
1174     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1175                              Depth + 1))
1176       return true;
1177     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1178     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1179                              Known2, TLO, Depth + 1))
1180       return true;
1181     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1182 
1183     // Attempt to avoid multi-use ops if we don't need anything from them.
1184     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1185       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1186           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1187       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1188           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1189       if (DemandedOp0 || DemandedOp1) {
1190         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1191         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1192         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1193         return TLO.CombineTo(Op, NewOp);
1194       }
1195     }
1196 
1197     // If all of the demanded bits are known zero on one side, return the other.
1198     // These bits cannot contribute to the result of the 'or'.
1199     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1200       return TLO.CombineTo(Op, Op0);
1201     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1202       return TLO.CombineTo(Op, Op1);
1203     // If the RHS is a constant, see if we can simplify it.
1204     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1205       return true;
1206     // If the operation can be done in a smaller type, do so.
1207     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1208       return true;
1209 
1210     Known |= Known2;
1211     break;
1212   }
1213   case ISD::XOR: {
1214     SDValue Op0 = Op.getOperand(0);
1215     SDValue Op1 = Op.getOperand(1);
1216 
1217     if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1218                              Depth + 1))
1219       return true;
1220     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1221     if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1222                              Depth + 1))
1223       return true;
1224     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1225 
1226     // Attempt to avoid multi-use ops if we don't need anything from them.
1227     if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1228       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1229           Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1230       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1231           Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1232       if (DemandedOp0 || DemandedOp1) {
1233         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1234         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1235         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1236         return TLO.CombineTo(Op, NewOp);
1237       }
1238     }
1239 
1240     // If all of the demanded bits are known zero on one side, return the other.
1241     // These bits cannot contribute to the result of the 'xor'.
1242     if (DemandedBits.isSubsetOf(Known.Zero))
1243       return TLO.CombineTo(Op, Op0);
1244     if (DemandedBits.isSubsetOf(Known2.Zero))
1245       return TLO.CombineTo(Op, Op1);
1246     // If the operation can be done in a smaller type, do so.
1247     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1248       return true;
1249 
1250     // If all of the unknown bits are known to be zero on one side or the other
1251     // (but not both) turn this into an *inclusive* or.
1252     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1253     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1254       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1255 
1256     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1257       // If one side is a constant, and all of the known set bits on the other
1258       // side are also set in the constant, turn this into an AND, as we know
1259       // the bits will be cleared.
1260       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1261       // NB: it is okay if more bits are known than are requested
1262       if (C->getAPIntValue() == Known2.One) {
1263         SDValue ANDC =
1264             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1265         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1266       }
1267 
1268       // If the RHS is a constant, see if we can change it. Don't alter a -1
1269       // constant because that's a 'not' op, and that is better for combining
1270       // and codegen.
1271       if (!C->isAllOnesValue()) {
1272         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1273           // We're flipping all demanded bits. Flip the undemanded bits too.
1274           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1275           return TLO.CombineTo(Op, New);
1276         }
1277         // If we can't turn this into a 'not', try to shrink the constant.
1278         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1279           return true;
1280       }
1281     }
1282 
1283     Known ^= Known2;
1284     break;
1285   }
1286   case ISD::SELECT:
1287     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1288                              Depth + 1))
1289       return true;
1290     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1291                              Depth + 1))
1292       return true;
1293     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1294     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1295 
1296     // If the operands are constants, see if we can simplify them.
1297     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1298       return true;
1299 
1300     // Only known if known in both the LHS and RHS.
1301     Known.One &= Known2.One;
1302     Known.Zero &= Known2.Zero;
1303     break;
1304   case ISD::SELECT_CC:
1305     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1306                              Depth + 1))
1307       return true;
1308     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1309                              Depth + 1))
1310       return true;
1311     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1312     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1313 
1314     // If the operands are constants, see if we can simplify them.
1315     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1316       return true;
1317 
1318     // Only known if known in both the LHS and RHS.
1319     Known.One &= Known2.One;
1320     Known.Zero &= Known2.Zero;
1321     break;
1322   case ISD::SETCC: {
1323     SDValue Op0 = Op.getOperand(0);
1324     SDValue Op1 = Op.getOperand(1);
1325     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1326     // If (1) we only need the sign-bit, (2) the setcc operands are the same
1327     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1328     // -1, we may be able to bypass the setcc.
1329     if (DemandedBits.isSignMask() &&
1330         Op0.getScalarValueSizeInBits() == BitWidth &&
1331         getBooleanContents(Op0.getValueType()) ==
1332             BooleanContent::ZeroOrNegativeOneBooleanContent) {
1333       // If we're testing X < 0, then this compare isn't needed - just use X!
1334       // FIXME: We're limiting to integer types here, but this should also work
1335       // if we don't care about FP signed-zero. The use of SETLT with FP means
1336       // that we don't care about NaNs.
1337       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1338           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1339         return TLO.CombineTo(Op, Op0);
1340 
1341       // TODO: Should we check for other forms of sign-bit comparisons?
1342       // Examples: X <= -1, X >= 0
1343     }
1344     if (getBooleanContents(Op0.getValueType()) ==
1345             TargetLowering::ZeroOrOneBooleanContent &&
1346         BitWidth > 1)
1347       Known.Zero.setBitsFrom(1);
1348     break;
1349   }
1350   case ISD::SHL: {
1351     SDValue Op0 = Op.getOperand(0);
1352     SDValue Op1 = Op.getOperand(1);
1353     EVT ShiftVT = Op1.getValueType();
1354 
1355     if (const APInt *SA =
1356             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1357       unsigned ShAmt = SA->getZExtValue();
1358       if (ShAmt == 0)
1359         return TLO.CombineTo(Op, Op0);
1360 
1361       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1362       // single shift.  We can do this if the bottom bits (which are shifted
1363       // out) are never demanded.
1364       // TODO - support non-uniform vector amounts.
1365       if (Op0.getOpcode() == ISD::SRL) {
1366         if (!DemandedBits.intersects(APInt::getLowBitsSet(BitWidth, ShAmt))) {
1367           if (const APInt *SA2 =
1368                   TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1369             if (SA2->ult(BitWidth)) {
1370               unsigned C1 = SA2->getZExtValue();
1371               unsigned Opc = ISD::SHL;
1372               int Diff = ShAmt - C1;
1373               if (Diff < 0) {
1374                 Diff = -Diff;
1375                 Opc = ISD::SRL;
1376               }
1377 
1378               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1379               return TLO.CombineTo(
1380                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1381             }
1382           }
1383         }
1384       }
1385 
1386       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1387       // are not demanded. This will likely allow the anyext to be folded away.
1388       // TODO - support non-uniform vector amounts.
1389       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1390         SDValue InnerOp = Op0.getOperand(0);
1391         EVT InnerVT = InnerOp.getValueType();
1392         unsigned InnerBits = InnerVT.getScalarSizeInBits();
1393         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1394             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1395           EVT ShTy = getShiftAmountTy(InnerVT, DL);
1396           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1397             ShTy = InnerVT;
1398           SDValue NarrowShl =
1399               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1400                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
1401           return TLO.CombineTo(
1402               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1403         }
1404 
1405         // Repeat the SHL optimization above in cases where an extension
1406         // intervenes: (shl (anyext (shr x, c1)), c2) to
1407         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
1408         // aren't demanded (as above) and that the shifted upper c1 bits of
1409         // x aren't demanded.
1410         // TODO - support non-uniform vector amounts.
1411         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1412             InnerOp.hasOneUse()) {
1413           if (const APInt *SA2 =
1414                   TLO.DAG.getValidShiftAmountConstant(InnerOp, DemandedElts)) {
1415             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1416             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1417                 DemandedBits.getActiveBits() <=
1418                     (InnerBits - InnerShAmt + ShAmt) &&
1419                 DemandedBits.countTrailingZeros() >= ShAmt) {
1420               SDValue NewSA =
1421                   TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, ShiftVT);
1422               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1423                                                InnerOp.getOperand(0));
1424               return TLO.CombineTo(
1425                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1426             }
1427           }
1428         }
1429       }
1430 
1431       APInt InDemandedMask = DemandedBits.lshr(ShAmt);
1432       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1433                                Depth + 1))
1434         return true;
1435       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1436       Known.Zero <<= ShAmt;
1437       Known.One <<= ShAmt;
1438       // low bits known zero.
1439       Known.Zero.setLowBits(ShAmt);
1440 
1441       // Try shrinking the operation as long as the shift amount will still be
1442       // in range.
1443       if ((ShAmt < DemandedBits.getActiveBits()) &&
1444           ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1445         return true;
1446     }
1447     break;
1448   }
1449   case ISD::SRL: {
1450     SDValue Op0 = Op.getOperand(0);
1451     SDValue Op1 = Op.getOperand(1);
1452     EVT ShiftVT = Op1.getValueType();
1453 
1454     if (const APInt *SA =
1455             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1456       unsigned ShAmt = SA->getZExtValue();
1457       if (ShAmt == 0)
1458         return TLO.CombineTo(Op, Op0);
1459 
1460       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1461       // single shift.  We can do this if the top bits (which are shifted out)
1462       // are never demanded.
1463       // TODO - support non-uniform vector amounts.
1464       if (Op0.getOpcode() == ISD::SHL) {
1465         if (const APInt *SA2 =
1466                 TLO.DAG.getValidShiftAmountConstant(Op0, DemandedElts)) {
1467           if (!DemandedBits.intersects(
1468                   APInt::getHighBitsSet(BitWidth, ShAmt))) {
1469             if (SA2->ult(BitWidth)) {
1470               unsigned C1 = SA2->getZExtValue();
1471               unsigned Opc = ISD::SRL;
1472               int Diff = ShAmt - C1;
1473               if (Diff < 0) {
1474                 Diff = -Diff;
1475                 Opc = ISD::SHL;
1476               }
1477 
1478               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1479               return TLO.CombineTo(
1480                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1481             }
1482           }
1483         }
1484       }
1485 
1486       APInt InDemandedMask = (DemandedBits << ShAmt);
1487 
1488       // If the shift is exact, then it does demand the low bits (and knows that
1489       // they are zero).
1490       if (Op->getFlags().hasExact())
1491         InDemandedMask.setLowBits(ShAmt);
1492 
1493       // Compute the new bits that are at the top now.
1494       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1495                                Depth + 1))
1496         return true;
1497       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1498       Known.Zero.lshrInPlace(ShAmt);
1499       Known.One.lshrInPlace(ShAmt);
1500       // High bits known zero.
1501       Known.Zero.setHighBits(ShAmt);
1502     }
1503     break;
1504   }
1505   case ISD::SRA: {
1506     SDValue Op0 = Op.getOperand(0);
1507     SDValue Op1 = Op.getOperand(1);
1508     EVT ShiftVT = Op1.getValueType();
1509 
1510     // If we only want bits that already match the signbit then we don't need
1511     // to shift.
1512     unsigned NumHiDemandedBits = BitWidth - DemandedBits.countTrailingZeros();
1513     if (TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1) >=
1514         NumHiDemandedBits)
1515       return TLO.CombineTo(Op, Op0);
1516 
1517     // If this is an arithmetic shift right and only the low-bit is set, we can
1518     // always convert this into a logical shr, even if the shift amount is
1519     // variable.  The low bit of the shift cannot be an input sign bit unless
1520     // the shift amount is >= the size of the datatype, which is undefined.
1521     if (DemandedBits.isOneValue())
1522       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1523 
1524     if (const APInt *SA =
1525             TLO.DAG.getValidShiftAmountConstant(Op, DemandedElts)) {
1526       unsigned ShAmt = SA->getZExtValue();
1527       if (ShAmt == 0)
1528         return TLO.CombineTo(Op, Op0);
1529 
1530       APInt InDemandedMask = (DemandedBits << ShAmt);
1531 
1532       // If the shift is exact, then it does demand the low bits (and knows that
1533       // they are zero).
1534       if (Op->getFlags().hasExact())
1535         InDemandedMask.setLowBits(ShAmt);
1536 
1537       // If any of the demanded bits are produced by the sign extension, we also
1538       // demand the input sign bit.
1539       if (DemandedBits.countLeadingZeros() < ShAmt)
1540         InDemandedMask.setSignBit();
1541 
1542       if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1543                                Depth + 1))
1544         return true;
1545       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1546       Known.Zero.lshrInPlace(ShAmt);
1547       Known.One.lshrInPlace(ShAmt);
1548 
1549       // If the input sign bit is known to be zero, or if none of the top bits
1550       // are demanded, turn this into an unsigned shift right.
1551       if (Known.Zero[BitWidth - ShAmt - 1] ||
1552           DemandedBits.countLeadingZeros() >= ShAmt) {
1553         SDNodeFlags Flags;
1554         Flags.setExact(Op->getFlags().hasExact());
1555         return TLO.CombineTo(
1556             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1557       }
1558 
1559       int Log2 = DemandedBits.exactLogBase2();
1560       if (Log2 >= 0) {
1561         // The bit must come from the sign.
1562         SDValue NewSA = TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, ShiftVT);
1563         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1564       }
1565 
1566       if (Known.One[BitWidth - ShAmt - 1])
1567         // New bits are known one.
1568         Known.One.setHighBits(ShAmt);
1569 
1570       // Attempt to avoid multi-use ops if we don't need anything from them.
1571       if (!InDemandedMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1572         SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1573             Op0, InDemandedMask, DemandedElts, TLO.DAG, Depth + 1);
1574         if (DemandedOp0) {
1575           SDValue NewOp = TLO.DAG.getNode(ISD::SRA, dl, VT, DemandedOp0, Op1);
1576           return TLO.CombineTo(Op, NewOp);
1577         }
1578       }
1579     }
1580     break;
1581   }
1582   case ISD::FSHL:
1583   case ISD::FSHR: {
1584     SDValue Op0 = Op.getOperand(0);
1585     SDValue Op1 = Op.getOperand(1);
1586     SDValue Op2 = Op.getOperand(2);
1587     bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1588 
1589     if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1590       unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1591 
1592       // For fshl, 0-shift returns the 1st arg.
1593       // For fshr, 0-shift returns the 2nd arg.
1594       if (Amt == 0) {
1595         if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1596                                  Known, TLO, Depth + 1))
1597           return true;
1598         break;
1599       }
1600 
1601       // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1602       // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1603       APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1604       APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1605       if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1606                                Depth + 1))
1607         return true;
1608       if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1609                                Depth + 1))
1610         return true;
1611 
1612       Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1613       Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1614       Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1615       Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1616       Known.One |= Known2.One;
1617       Known.Zero |= Known2.Zero;
1618     }
1619 
1620     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1621     if (isPowerOf2_32(BitWidth)) {
1622       APInt DemandedAmtBits(Op2.getScalarValueSizeInBits(), BitWidth - 1);
1623       if (SimplifyDemandedBits(Op2, DemandedAmtBits, DemandedElts,
1624                                Known2, TLO, Depth + 1))
1625         return true;
1626     }
1627     break;
1628   }
1629   case ISD::ROTL:
1630   case ISD::ROTR: {
1631     SDValue Op0 = Op.getOperand(0);
1632     SDValue Op1 = Op.getOperand(1);
1633 
1634     // If we're rotating an 0/-1 value, then it stays an 0/-1 value.
1635     if (BitWidth == TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1))
1636       return TLO.CombineTo(Op, Op0);
1637 
1638     // For pow-2 bitwidths we only demand the bottom modulo amt bits.
1639     if (isPowerOf2_32(BitWidth)) {
1640       APInt DemandedAmtBits(Op1.getScalarValueSizeInBits(), BitWidth - 1);
1641       if (SimplifyDemandedBits(Op1, DemandedAmtBits, DemandedElts, Known2, TLO,
1642                                Depth + 1))
1643         return true;
1644     }
1645     break;
1646   }
1647   case ISD::BITREVERSE: {
1648     SDValue Src = Op.getOperand(0);
1649     APInt DemandedSrcBits = DemandedBits.reverseBits();
1650     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1651                              Depth + 1))
1652       return true;
1653     Known.One = Known2.One.reverseBits();
1654     Known.Zero = Known2.Zero.reverseBits();
1655     break;
1656   }
1657   case ISD::BSWAP: {
1658     SDValue Src = Op.getOperand(0);
1659     APInt DemandedSrcBits = DemandedBits.byteSwap();
1660     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1661                              Depth + 1))
1662       return true;
1663     Known.One = Known2.One.byteSwap();
1664     Known.Zero = Known2.Zero.byteSwap();
1665     break;
1666   }
1667   case ISD::SIGN_EXTEND_INREG: {
1668     SDValue Op0 = Op.getOperand(0);
1669     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1670     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1671 
1672     // If we only care about the highest bit, don't bother shifting right.
1673     if (DemandedBits.isSignMask()) {
1674       unsigned NumSignBits =
1675           TLO.DAG.ComputeNumSignBits(Op0, DemandedElts, Depth + 1);
1676       bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1677       // However if the input is already sign extended we expect the sign
1678       // extension to be dropped altogether later and do not simplify.
1679       if (!AlreadySignExtended) {
1680         // Compute the correct shift amount type, which must be getShiftAmountTy
1681         // for scalar types after legalization.
1682         EVT ShiftAmtTy = VT;
1683         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1684           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1685 
1686         SDValue ShiftAmt =
1687             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1688         return TLO.CombineTo(Op,
1689                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1690       }
1691     }
1692 
1693     // If none of the extended bits are demanded, eliminate the sextinreg.
1694     if (DemandedBits.getActiveBits() <= ExVTBits)
1695       return TLO.CombineTo(Op, Op0);
1696 
1697     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1698 
1699     // Since the sign extended bits are demanded, we know that the sign
1700     // bit is demanded.
1701     InputDemandedBits.setBit(ExVTBits - 1);
1702 
1703     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1704       return true;
1705     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1706 
1707     // If the sign bit of the input is known set or clear, then we know the
1708     // top bits of the result.
1709 
1710     // If the input sign bit is known zero, convert this into a zero extension.
1711     if (Known.Zero[ExVTBits - 1])
1712       return TLO.CombineTo(Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT));
1713 
1714     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1715     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1716       Known.One.setBitsFrom(ExVTBits);
1717       Known.Zero &= Mask;
1718     } else { // Input sign bit unknown
1719       Known.Zero &= Mask;
1720       Known.One &= Mask;
1721     }
1722     break;
1723   }
1724   case ISD::BUILD_PAIR: {
1725     EVT HalfVT = Op.getOperand(0).getValueType();
1726     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1727 
1728     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1729     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1730 
1731     KnownBits KnownLo, KnownHi;
1732 
1733     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1734       return true;
1735 
1736     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1737       return true;
1738 
1739     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1740                  KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1741 
1742     Known.One = KnownLo.One.zext(BitWidth) |
1743                 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1744     break;
1745   }
1746   case ISD::ZERO_EXTEND:
1747   case ISD::ZERO_EXTEND_VECTOR_INREG: {
1748     SDValue Src = Op.getOperand(0);
1749     EVT SrcVT = Src.getValueType();
1750     unsigned InBits = SrcVT.getScalarSizeInBits();
1751     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1752     bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1753 
1754     // If none of the top bits are demanded, convert this into an any_extend.
1755     if (DemandedBits.getActiveBits() <= InBits) {
1756       // If we only need the non-extended bits of the bottom element
1757       // then we can just bitcast to the result.
1758       if (IsVecInReg && DemandedElts == 1 &&
1759           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1760           TLO.DAG.getDataLayout().isLittleEndian())
1761         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1762 
1763       unsigned Opc =
1764           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1765       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1766         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1767     }
1768 
1769     APInt InDemandedBits = DemandedBits.trunc(InBits);
1770     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1771     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1772                              Depth + 1))
1773       return true;
1774     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1775     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1776     Known = Known.zext(BitWidth);
1777     break;
1778   }
1779   case ISD::SIGN_EXTEND:
1780   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1781     SDValue Src = Op.getOperand(0);
1782     EVT SrcVT = Src.getValueType();
1783     unsigned InBits = SrcVT.getScalarSizeInBits();
1784     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1785     bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1786 
1787     // If none of the top bits are demanded, convert this into an any_extend.
1788     if (DemandedBits.getActiveBits() <= InBits) {
1789       // If we only need the non-extended bits of the bottom element
1790       // then we can just bitcast to the result.
1791       if (IsVecInReg && DemandedElts == 1 &&
1792           VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1793           TLO.DAG.getDataLayout().isLittleEndian())
1794         return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1795 
1796       unsigned Opc =
1797           IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1798       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1799         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1800     }
1801 
1802     APInt InDemandedBits = DemandedBits.trunc(InBits);
1803     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1804 
1805     // Since some of the sign extended bits are demanded, we know that the sign
1806     // bit is demanded.
1807     InDemandedBits.setBit(InBits - 1);
1808 
1809     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1810                              Depth + 1))
1811       return true;
1812     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1813     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1814 
1815     // If the sign bit is known one, the top bits match.
1816     Known = Known.sext(BitWidth);
1817 
1818     // If the sign bit is known zero, convert this to a zero extend.
1819     if (Known.isNonNegative()) {
1820       unsigned Opc =
1821           IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1822       if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1823         return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1824     }
1825     break;
1826   }
1827   case ISD::ANY_EXTEND:
1828   case ISD::ANY_EXTEND_VECTOR_INREG: {
1829     SDValue Src = Op.getOperand(0);
1830     EVT SrcVT = Src.getValueType();
1831     unsigned InBits = SrcVT.getScalarSizeInBits();
1832     unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1833     bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1834 
1835     // If we only need the bottom element then we can just bitcast.
1836     // TODO: Handle ANY_EXTEND?
1837     if (IsVecInReg && DemandedElts == 1 &&
1838         VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1839         TLO.DAG.getDataLayout().isLittleEndian())
1840       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1841 
1842     APInt InDemandedBits = DemandedBits.trunc(InBits);
1843     APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1844     if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1845                              Depth + 1))
1846       return true;
1847     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1848     assert(Known.getBitWidth() == InBits && "Src width has changed?");
1849     Known = Known.anyext(BitWidth);
1850 
1851     // Attempt to avoid multi-use ops if we don't need anything from them.
1852     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1853             Src, InDemandedBits, InDemandedElts, TLO.DAG, Depth + 1))
1854       return TLO.CombineTo(Op, TLO.DAG.getNode(Op.getOpcode(), dl, VT, NewSrc));
1855     break;
1856   }
1857   case ISD::TRUNCATE: {
1858     SDValue Src = Op.getOperand(0);
1859 
1860     // Simplify the input, using demanded bit information, and compute the known
1861     // zero/one bits live out.
1862     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1863     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1864     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1865       return true;
1866     Known = Known.trunc(BitWidth);
1867 
1868     // Attempt to avoid multi-use ops if we don't need anything from them.
1869     if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1870             Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1871       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1872 
1873     // If the input is only used by this truncate, see if we can shrink it based
1874     // on the known demanded bits.
1875     if (Src.getNode()->hasOneUse()) {
1876       switch (Src.getOpcode()) {
1877       default:
1878         break;
1879       case ISD::SRL:
1880         // Shrink SRL by a constant if none of the high bits shifted in are
1881         // demanded.
1882         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1883           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1884           // undesirable.
1885           break;
1886 
1887         SDValue ShAmt = Src.getOperand(1);
1888         auto *ShAmtC = dyn_cast<ConstantSDNode>(ShAmt);
1889         if (!ShAmtC || ShAmtC->getAPIntValue().uge(BitWidth))
1890           break;
1891         uint64_t ShVal = ShAmtC->getZExtValue();
1892 
1893         APInt HighBits =
1894             APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1895         HighBits.lshrInPlace(ShVal);
1896         HighBits = HighBits.trunc(BitWidth);
1897 
1898         if (!(HighBits & DemandedBits)) {
1899           // None of the shifted in bits are needed.  Add a truncate of the
1900           // shift input, then shift it.
1901           if (TLO.LegalTypes())
1902             ShAmt = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1903           SDValue NewTrunc =
1904               TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1905           return TLO.CombineTo(
1906               Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, ShAmt));
1907         }
1908         break;
1909       }
1910     }
1911 
1912     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1913     break;
1914   }
1915   case ISD::AssertZext: {
1916     // AssertZext demands all of the high bits, plus any of the low bits
1917     // demanded by its users.
1918     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1919     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1920     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1921                              TLO, Depth + 1))
1922       return true;
1923     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1924 
1925     Known.Zero |= ~InMask;
1926     break;
1927   }
1928   case ISD::EXTRACT_VECTOR_ELT: {
1929     SDValue Src = Op.getOperand(0);
1930     SDValue Idx = Op.getOperand(1);
1931     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1932     unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1933 
1934     // Demand the bits from every vector element without a constant index.
1935     APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1936     if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1937       if (CIdx->getAPIntValue().ult(NumSrcElts))
1938         DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1939 
1940     // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1941     // anything about the extended bits.
1942     APInt DemandedSrcBits = DemandedBits;
1943     if (BitWidth > EltBitWidth)
1944       DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1945 
1946     if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1947                              Depth + 1))
1948       return true;
1949 
1950     // Attempt to avoid multi-use ops if we don't need anything from them.
1951     if (!DemandedSrcBits.isAllOnesValue() ||
1952         !DemandedSrcElts.isAllOnesValue()) {
1953       if (SDValue DemandedSrc = SimplifyMultipleUseDemandedBits(
1954               Src, DemandedSrcBits, DemandedSrcElts, TLO.DAG, Depth + 1)) {
1955         SDValue NewOp =
1956             TLO.DAG.getNode(Op.getOpcode(), dl, VT, DemandedSrc, Idx);
1957         return TLO.CombineTo(Op, NewOp);
1958       }
1959     }
1960 
1961     Known = Known2;
1962     if (BitWidth > EltBitWidth)
1963       Known = Known.anyext(BitWidth);
1964     break;
1965   }
1966   case ISD::BITCAST: {
1967     SDValue Src = Op.getOperand(0);
1968     EVT SrcVT = Src.getValueType();
1969     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1970 
1971     // If this is an FP->Int bitcast and if the sign bit is the only
1972     // thing demanded, turn this into a FGETSIGN.
1973     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1974         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1975         SrcVT.isFloatingPoint()) {
1976       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1977       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1978       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1979           SrcVT != MVT::f128) {
1980         // Cannot eliminate/lower SHL for f128 yet.
1981         EVT Ty = OpVTLegal ? VT : MVT::i32;
1982         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1983         // place.  We expect the SHL to be eliminated by other optimizations.
1984         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1985         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1986         if (!OpVTLegal && OpVTSizeInBits > 32)
1987           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1988         unsigned ShVal = Op.getValueSizeInBits() - 1;
1989         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1990         return TLO.CombineTo(Op,
1991                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1992       }
1993     }
1994 
1995     // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1996     // Demand the elt/bit if any of the original elts/bits are demanded.
1997     // TODO - bigendian once we have test coverage.
1998     if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1999         TLO.DAG.getDataLayout().isLittleEndian()) {
2000       unsigned Scale = BitWidth / NumSrcEltBits;
2001       unsigned NumSrcElts = SrcVT.getVectorNumElements();
2002       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2003       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2004       for (unsigned i = 0; i != Scale; ++i) {
2005         unsigned Offset = i * NumSrcEltBits;
2006         APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
2007         if (!Sub.isNullValue()) {
2008           DemandedSrcBits |= Sub;
2009           for (unsigned j = 0; j != NumElts; ++j)
2010             if (DemandedElts[j])
2011               DemandedSrcElts.setBit((j * Scale) + i);
2012         }
2013       }
2014 
2015       APInt KnownSrcUndef, KnownSrcZero;
2016       if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2017                                      KnownSrcZero, TLO, Depth + 1))
2018         return true;
2019 
2020       KnownBits KnownSrcBits;
2021       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2022                                KnownSrcBits, TLO, Depth + 1))
2023         return true;
2024     } else if ((NumSrcEltBits % BitWidth) == 0 &&
2025                TLO.DAG.getDataLayout().isLittleEndian()) {
2026       unsigned Scale = NumSrcEltBits / BitWidth;
2027       unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
2028       APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
2029       APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
2030       for (unsigned i = 0; i != NumElts; ++i)
2031         if (DemandedElts[i]) {
2032           unsigned Offset = (i % Scale) * BitWidth;
2033           DemandedSrcBits.insertBits(DemandedBits, Offset);
2034           DemandedSrcElts.setBit(i / Scale);
2035         }
2036 
2037       if (SrcVT.isVector()) {
2038         APInt KnownSrcUndef, KnownSrcZero;
2039         if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
2040                                        KnownSrcZero, TLO, Depth + 1))
2041           return true;
2042       }
2043 
2044       KnownBits KnownSrcBits;
2045       if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
2046                                KnownSrcBits, TLO, Depth + 1))
2047         return true;
2048     }
2049 
2050     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
2051     // recursive call where Known may be useful to the caller.
2052     if (Depth > 0) {
2053       Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2054       return false;
2055     }
2056     break;
2057   }
2058   case ISD::ADD:
2059   case ISD::MUL:
2060   case ISD::SUB: {
2061     // Add, Sub, and Mul don't demand any bits in positions beyond that
2062     // of the highest bit demanded of them.
2063     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
2064     SDNodeFlags Flags = Op.getNode()->getFlags();
2065     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
2066     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
2067     if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
2068                              Depth + 1) ||
2069         SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
2070                              Depth + 1) ||
2071         // See if the operation should be performed at a smaller bit width.
2072         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
2073       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
2074         // Disable the nsw and nuw flags. We can no longer guarantee that we
2075         // won't wrap after simplification.
2076         Flags.setNoSignedWrap(false);
2077         Flags.setNoUnsignedWrap(false);
2078         SDValue NewOp =
2079             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2080         return TLO.CombineTo(Op, NewOp);
2081       }
2082       return true;
2083     }
2084 
2085     // Attempt to avoid multi-use ops if we don't need anything from them.
2086     if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
2087       SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
2088           Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2089       SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
2090           Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
2091       if (DemandedOp0 || DemandedOp1) {
2092         Flags.setNoSignedWrap(false);
2093         Flags.setNoUnsignedWrap(false);
2094         Op0 = DemandedOp0 ? DemandedOp0 : Op0;
2095         Op1 = DemandedOp1 ? DemandedOp1 : Op1;
2096         SDValue NewOp =
2097             TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
2098         return TLO.CombineTo(Op, NewOp);
2099       }
2100     }
2101 
2102     // If we have a constant operand, we may be able to turn it into -1 if we
2103     // do not demand the high bits. This can make the constant smaller to
2104     // encode, allow more general folding, or match specialized instruction
2105     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
2106     // is probably not useful (and could be detrimental).
2107     ConstantSDNode *C = isConstOrConstSplat(Op1);
2108     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
2109     if (C && !C->isAllOnesValue() && !C->isOne() &&
2110         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
2111       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
2112       // Disable the nsw and nuw flags. We can no longer guarantee that we
2113       // won't wrap after simplification.
2114       Flags.setNoSignedWrap(false);
2115       Flags.setNoUnsignedWrap(false);
2116       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
2117       return TLO.CombineTo(Op, NewOp);
2118     }
2119 
2120     LLVM_FALLTHROUGH;
2121   }
2122   default:
2123     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2124       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
2125                                             Known, TLO, Depth))
2126         return true;
2127       break;
2128     }
2129 
2130     // Just use computeKnownBits to compute output bits.
2131     Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
2132     break;
2133   }
2134 
2135   // If we know the value of all of the demanded bits, return this as a
2136   // constant.
2137   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
2138     // Avoid folding to a constant if any OpaqueConstant is involved.
2139     const SDNode *N = Op.getNode();
2140     for (SDNodeIterator I = SDNodeIterator::begin(N),
2141                         E = SDNodeIterator::end(N);
2142          I != E; ++I) {
2143       SDNode *Op = *I;
2144       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
2145         if (C->isOpaque())
2146           return false;
2147     }
2148     // TODO: Handle float bits as well.
2149     if (VT.isInteger())
2150       return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
2151   }
2152 
2153   return false;
2154 }
2155 
2156 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
2157                                                 const APInt &DemandedElts,
2158                                                 APInt &KnownUndef,
2159                                                 APInt &KnownZero,
2160                                                 DAGCombinerInfo &DCI) const {
2161   SelectionDAG &DAG = DCI.DAG;
2162   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2163                         !DCI.isBeforeLegalizeOps());
2164 
2165   bool Simplified =
2166       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2167   if (Simplified) {
2168     DCI.AddToWorklist(Op.getNode());
2169     DCI.CommitTargetLoweringOpt(TLO);
2170   }
2171 
2172   return Simplified;
2173 }
2174 
2175 /// Given a vector binary operation and known undefined elements for each input
2176 /// operand, compute whether each element of the output is undefined.
2177 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2178                                          const APInt &UndefOp0,
2179                                          const APInt &UndefOp1) {
2180   EVT VT = BO.getValueType();
2181   assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2182          "Vector binop only");
2183 
2184   EVT EltVT = VT.getVectorElementType();
2185   unsigned NumElts = VT.getVectorNumElements();
2186   assert(UndefOp0.getBitWidth() == NumElts &&
2187          UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2188 
2189   auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2190                                    const APInt &UndefVals) {
2191     if (UndefVals[Index])
2192       return DAG.getUNDEF(EltVT);
2193 
2194     if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2195       // Try hard to make sure that the getNode() call is not creating temporary
2196       // nodes. Ignore opaque integers because they do not constant fold.
2197       SDValue Elt = BV->getOperand(Index);
2198       auto *C = dyn_cast<ConstantSDNode>(Elt);
2199       if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2200         return Elt;
2201     }
2202 
2203     return SDValue();
2204   };
2205 
2206   APInt KnownUndef = APInt::getNullValue(NumElts);
2207   for (unsigned i = 0; i != NumElts; ++i) {
2208     // If both inputs for this element are either constant or undef and match
2209     // the element type, compute the constant/undef result for this element of
2210     // the vector.
2211     // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2212     // not handle FP constants. The code within getNode() should be refactored
2213     // to avoid the danger of creating a bogus temporary node here.
2214     SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2215     SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2216     if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2217       if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2218         KnownUndef.setBit(i);
2219   }
2220   return KnownUndef;
2221 }
2222 
2223 bool TargetLowering::SimplifyDemandedVectorElts(
2224     SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2225     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2226     bool AssumeSingleUse) const {
2227   EVT VT = Op.getValueType();
2228   APInt DemandedElts = OriginalDemandedElts;
2229   unsigned NumElts = DemandedElts.getBitWidth();
2230   assert(VT.isVector() && "Expected vector op");
2231   assert(VT.getVectorNumElements() == NumElts &&
2232          "Mask size mismatches value type element count!");
2233 
2234   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2235 
2236   // Undef operand.
2237   if (Op.isUndef()) {
2238     KnownUndef.setAllBits();
2239     return false;
2240   }
2241 
2242   // If Op has other users, assume that all elements are needed.
2243   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2244     DemandedElts.setAllBits();
2245 
2246   // Not demanding any elements from Op.
2247   if (DemandedElts == 0) {
2248     KnownUndef.setAllBits();
2249     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2250   }
2251 
2252   // Limit search depth.
2253   if (Depth >= SelectionDAG::MaxRecursionDepth)
2254     return false;
2255 
2256   SDLoc DL(Op);
2257   unsigned EltSizeInBits = VT.getScalarSizeInBits();
2258 
2259   switch (Op.getOpcode()) {
2260   case ISD::SCALAR_TO_VECTOR: {
2261     if (!DemandedElts[0]) {
2262       KnownUndef.setAllBits();
2263       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2264     }
2265     KnownUndef.setHighBits(NumElts - 1);
2266     break;
2267   }
2268   case ISD::BITCAST: {
2269     SDValue Src = Op.getOperand(0);
2270     EVT SrcVT = Src.getValueType();
2271 
2272     // We only handle vectors here.
2273     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2274     if (!SrcVT.isVector())
2275       break;
2276 
2277     // Fast handling of 'identity' bitcasts.
2278     unsigned NumSrcElts = SrcVT.getVectorNumElements();
2279     if (NumSrcElts == NumElts)
2280       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2281                                         KnownZero, TLO, Depth + 1);
2282 
2283     APInt SrcZero, SrcUndef;
2284     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2285 
2286     // Bitcast from 'large element' src vector to 'small element' vector, we
2287     // must demand a source element if any DemandedElt maps to it.
2288     if ((NumElts % NumSrcElts) == 0) {
2289       unsigned Scale = NumElts / NumSrcElts;
2290       for (unsigned i = 0; i != NumElts; ++i)
2291         if (DemandedElts[i])
2292           SrcDemandedElts.setBit(i / Scale);
2293 
2294       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2295                                      TLO, Depth + 1))
2296         return true;
2297 
2298       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2299       // of the large element.
2300       // TODO - bigendian once we have test coverage.
2301       if (TLO.DAG.getDataLayout().isLittleEndian()) {
2302         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2303         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2304         for (unsigned i = 0; i != NumElts; ++i)
2305           if (DemandedElts[i]) {
2306             unsigned Ofs = (i % Scale) * EltSizeInBits;
2307             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2308           }
2309 
2310         KnownBits Known;
2311         if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcDemandedElts, Known,
2312                                  TLO, Depth + 1))
2313           return true;
2314       }
2315 
2316       // If the src element is zero/undef then all the output elements will be -
2317       // only demanded elements are guaranteed to be correct.
2318       for (unsigned i = 0; i != NumSrcElts; ++i) {
2319         if (SrcDemandedElts[i]) {
2320           if (SrcZero[i])
2321             KnownZero.setBits(i * Scale, (i + 1) * Scale);
2322           if (SrcUndef[i])
2323             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2324         }
2325       }
2326     }
2327 
2328     // Bitcast from 'small element' src vector to 'large element' vector, we
2329     // demand all smaller source elements covered by the larger demanded element
2330     // of this vector.
2331     if ((NumSrcElts % NumElts) == 0) {
2332       unsigned Scale = NumSrcElts / NumElts;
2333       for (unsigned i = 0; i != NumElts; ++i)
2334         if (DemandedElts[i])
2335           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2336 
2337       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2338                                      TLO, Depth + 1))
2339         return true;
2340 
2341       // If all the src elements covering an output element are zero/undef, then
2342       // the output element will be as well, assuming it was demanded.
2343       for (unsigned i = 0; i != NumElts; ++i) {
2344         if (DemandedElts[i]) {
2345           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2346             KnownZero.setBit(i);
2347           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2348             KnownUndef.setBit(i);
2349         }
2350       }
2351     }
2352     break;
2353   }
2354   case ISD::BUILD_VECTOR: {
2355     // Check all elements and simplify any unused elements with UNDEF.
2356     if (!DemandedElts.isAllOnesValue()) {
2357       // Don't simplify BROADCASTS.
2358       if (llvm::any_of(Op->op_values(),
2359                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2360         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2361         bool Updated = false;
2362         for (unsigned i = 0; i != NumElts; ++i) {
2363           if (!DemandedElts[i] && !Ops[i].isUndef()) {
2364             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2365             KnownUndef.setBit(i);
2366             Updated = true;
2367           }
2368         }
2369         if (Updated)
2370           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2371       }
2372     }
2373     for (unsigned i = 0; i != NumElts; ++i) {
2374       SDValue SrcOp = Op.getOperand(i);
2375       if (SrcOp.isUndef()) {
2376         KnownUndef.setBit(i);
2377       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2378                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2379         KnownZero.setBit(i);
2380       }
2381     }
2382     break;
2383   }
2384   case ISD::CONCAT_VECTORS: {
2385     EVT SubVT = Op.getOperand(0).getValueType();
2386     unsigned NumSubVecs = Op.getNumOperands();
2387     unsigned NumSubElts = SubVT.getVectorNumElements();
2388     for (unsigned i = 0; i != NumSubVecs; ++i) {
2389       SDValue SubOp = Op.getOperand(i);
2390       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2391       APInt SubUndef, SubZero;
2392       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2393                                      Depth + 1))
2394         return true;
2395       KnownUndef.insertBits(SubUndef, i * NumSubElts);
2396       KnownZero.insertBits(SubZero, i * NumSubElts);
2397     }
2398     break;
2399   }
2400   case ISD::INSERT_SUBVECTOR: {
2401     // Demand any elements from the subvector and the remainder from the src its
2402     // inserted into.
2403     SDValue Src = Op.getOperand(0);
2404     SDValue Sub = Op.getOperand(1);
2405     uint64_t Idx = Op.getConstantOperandVal(2);
2406     unsigned NumSubElts = Sub.getValueType().getVectorNumElements();
2407     APInt DemandedSubElts = DemandedElts.extractBits(NumSubElts, Idx);
2408     APInt DemandedSrcElts = DemandedElts;
2409     DemandedSrcElts.insertBits(APInt::getNullValue(NumSubElts), Idx);
2410 
2411     APInt SubUndef, SubZero;
2412     if (SimplifyDemandedVectorElts(Sub, DemandedSubElts, SubUndef, SubZero, TLO,
2413                                    Depth + 1))
2414       return true;
2415 
2416     // If none of the src operand elements are demanded, replace it with undef.
2417     if (!DemandedSrcElts && !Src.isUndef())
2418       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2419                                                TLO.DAG.getUNDEF(VT), Sub,
2420                                                Op.getOperand(2)));
2421 
2422     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownUndef, KnownZero,
2423                                    TLO, Depth + 1))
2424       return true;
2425     KnownUndef.insertBits(SubUndef, Idx);
2426     KnownZero.insertBits(SubZero, Idx);
2427 
2428     // Attempt to avoid multi-use ops if we don't need anything from them.
2429     if (!DemandedSrcElts.isAllOnesValue() ||
2430         !DemandedSubElts.isAllOnesValue()) {
2431       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2432       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2433           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2434       SDValue NewSub = SimplifyMultipleUseDemandedBits(
2435           Sub, DemandedBits, DemandedSubElts, TLO.DAG, Depth + 1);
2436       if (NewSrc || NewSub) {
2437         NewSrc = NewSrc ? NewSrc : Src;
2438         NewSub = NewSub ? NewSub : Sub;
2439         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2440                                         NewSub, Op.getOperand(2));
2441         return TLO.CombineTo(Op, NewOp);
2442       }
2443     }
2444     break;
2445   }
2446   case ISD::EXTRACT_SUBVECTOR: {
2447     // Offset the demanded elts by the subvector index.
2448     SDValue Src = Op.getOperand(0);
2449     uint64_t Idx = Op.getConstantOperandVal(1);
2450     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2451     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2452 
2453     APInt SrcUndef, SrcZero;
2454     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2455                                    Depth + 1))
2456       return true;
2457     KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2458     KnownZero = SrcZero.extractBits(NumElts, Idx);
2459 
2460     // Attempt to avoid multi-use ops if we don't need anything from them.
2461     if (!DemandedElts.isAllOnesValue()) {
2462       APInt DemandedBits = APInt::getAllOnesValue(VT.getScalarSizeInBits());
2463       SDValue NewSrc = SimplifyMultipleUseDemandedBits(
2464           Src, DemandedBits, DemandedSrcElts, TLO.DAG, Depth + 1);
2465       if (NewSrc) {
2466         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, NewSrc,
2467                                         Op.getOperand(1));
2468         return TLO.CombineTo(Op, NewOp);
2469       }
2470     }
2471     break;
2472   }
2473   case ISD::INSERT_VECTOR_ELT: {
2474     SDValue Vec = Op.getOperand(0);
2475     SDValue Scl = Op.getOperand(1);
2476     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2477 
2478     // For a legal, constant insertion index, if we don't need this insertion
2479     // then strip it, else remove it from the demanded elts.
2480     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2481       unsigned Idx = CIdx->getZExtValue();
2482       if (!DemandedElts[Idx])
2483         return TLO.CombineTo(Op, Vec);
2484 
2485       APInt DemandedVecElts(DemandedElts);
2486       DemandedVecElts.clearBit(Idx);
2487       if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2488                                      KnownZero, TLO, Depth + 1))
2489         return true;
2490 
2491       KnownUndef.clearBit(Idx);
2492       if (Scl.isUndef())
2493         KnownUndef.setBit(Idx);
2494 
2495       KnownZero.clearBit(Idx);
2496       if (isNullConstant(Scl) || isNullFPConstant(Scl))
2497         KnownZero.setBit(Idx);
2498       break;
2499     }
2500 
2501     APInt VecUndef, VecZero;
2502     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2503                                    Depth + 1))
2504       return true;
2505     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2506     break;
2507   }
2508   case ISD::VSELECT: {
2509     // Try to transform the select condition based on the current demanded
2510     // elements.
2511     // TODO: If a condition element is undef, we can choose from one arm of the
2512     //       select (and if one arm is undef, then we can propagate that to the
2513     //       result).
2514     // TODO - add support for constant vselect masks (see IR version of this).
2515     APInt UnusedUndef, UnusedZero;
2516     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2517                                    UnusedZero, TLO, Depth + 1))
2518       return true;
2519 
2520     // See if we can simplify either vselect operand.
2521     APInt DemandedLHS(DemandedElts);
2522     APInt DemandedRHS(DemandedElts);
2523     APInt UndefLHS, ZeroLHS;
2524     APInt UndefRHS, ZeroRHS;
2525     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2526                                    ZeroLHS, TLO, Depth + 1))
2527       return true;
2528     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2529                                    ZeroRHS, TLO, Depth + 1))
2530       return true;
2531 
2532     KnownUndef = UndefLHS & UndefRHS;
2533     KnownZero = ZeroLHS & ZeroRHS;
2534     break;
2535   }
2536   case ISD::VECTOR_SHUFFLE: {
2537     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2538 
2539     // Collect demanded elements from shuffle operands..
2540     APInt DemandedLHS(NumElts, 0);
2541     APInt DemandedRHS(NumElts, 0);
2542     for (unsigned i = 0; i != NumElts; ++i) {
2543       int M = ShuffleMask[i];
2544       if (M < 0 || !DemandedElts[i])
2545         continue;
2546       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2547       if (M < (int)NumElts)
2548         DemandedLHS.setBit(M);
2549       else
2550         DemandedRHS.setBit(M - NumElts);
2551     }
2552 
2553     // See if we can simplify either shuffle operand.
2554     APInt UndefLHS, ZeroLHS;
2555     APInt UndefRHS, ZeroRHS;
2556     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2557                                    ZeroLHS, TLO, Depth + 1))
2558       return true;
2559     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2560                                    ZeroRHS, TLO, Depth + 1))
2561       return true;
2562 
2563     // Simplify mask using undef elements from LHS/RHS.
2564     bool Updated = false;
2565     bool IdentityLHS = true, IdentityRHS = true;
2566     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2567     for (unsigned i = 0; i != NumElts; ++i) {
2568       int &M = NewMask[i];
2569       if (M < 0)
2570         continue;
2571       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2572           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2573         Updated = true;
2574         M = -1;
2575       }
2576       IdentityLHS &= (M < 0) || (M == (int)i);
2577       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2578     }
2579 
2580     // Update legal shuffle masks based on demanded elements if it won't reduce
2581     // to Identity which can cause premature removal of the shuffle mask.
2582     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2583       SDValue LegalShuffle =
2584           buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2585                                   NewMask, TLO.DAG);
2586       if (LegalShuffle)
2587         return TLO.CombineTo(Op, LegalShuffle);
2588     }
2589 
2590     // Propagate undef/zero elements from LHS/RHS.
2591     for (unsigned i = 0; i != NumElts; ++i) {
2592       int M = ShuffleMask[i];
2593       if (M < 0) {
2594         KnownUndef.setBit(i);
2595       } else if (M < (int)NumElts) {
2596         if (UndefLHS[M])
2597           KnownUndef.setBit(i);
2598         if (ZeroLHS[M])
2599           KnownZero.setBit(i);
2600       } else {
2601         if (UndefRHS[M - NumElts])
2602           KnownUndef.setBit(i);
2603         if (ZeroRHS[M - NumElts])
2604           KnownZero.setBit(i);
2605       }
2606     }
2607     break;
2608   }
2609   case ISD::ANY_EXTEND_VECTOR_INREG:
2610   case ISD::SIGN_EXTEND_VECTOR_INREG:
2611   case ISD::ZERO_EXTEND_VECTOR_INREG: {
2612     APInt SrcUndef, SrcZero;
2613     SDValue Src = Op.getOperand(0);
2614     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2615     APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2616     if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2617                                    Depth + 1))
2618       return true;
2619     KnownZero = SrcZero.zextOrTrunc(NumElts);
2620     KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2621 
2622     if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2623         Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2624         DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2625       // aext - if we just need the bottom element then we can bitcast.
2626       return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2627     }
2628 
2629     if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2630       // zext(undef) upper bits are guaranteed to be zero.
2631       if (DemandedElts.isSubsetOf(KnownUndef))
2632         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2633       KnownUndef.clearAllBits();
2634     }
2635     break;
2636   }
2637 
2638   // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2639   // MAX, saturated math, etc.
2640   case ISD::OR:
2641   case ISD::XOR:
2642   case ISD::ADD:
2643   case ISD::SUB:
2644   case ISD::FADD:
2645   case ISD::FSUB:
2646   case ISD::FMUL:
2647   case ISD::FDIV:
2648   case ISD::FREM: {
2649     APInt UndefRHS, ZeroRHS;
2650     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2651                                    ZeroRHS, TLO, Depth + 1))
2652       return true;
2653     APInt UndefLHS, ZeroLHS;
2654     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2655                                    ZeroLHS, TLO, Depth + 1))
2656       return true;
2657 
2658     KnownZero = ZeroLHS & ZeroRHS;
2659     KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2660     break;
2661   }
2662   case ISD::SHL:
2663   case ISD::SRL:
2664   case ISD::SRA:
2665   case ISD::ROTL:
2666   case ISD::ROTR: {
2667     APInt UndefRHS, ZeroRHS;
2668     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2669                                    ZeroRHS, TLO, Depth + 1))
2670       return true;
2671     APInt UndefLHS, ZeroLHS;
2672     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2673                                    ZeroLHS, TLO, Depth + 1))
2674       return true;
2675 
2676     KnownZero = ZeroLHS;
2677     KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2678     break;
2679   }
2680   case ISD::MUL:
2681   case ISD::AND: {
2682     APInt SrcUndef, SrcZero;
2683     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2684                                    SrcZero, TLO, Depth + 1))
2685       return true;
2686     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2687                                    KnownZero, TLO, Depth + 1))
2688       return true;
2689 
2690     // If either side has a zero element, then the result element is zero, even
2691     // if the other is an UNDEF.
2692     // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2693     // and then handle 'and' nodes with the rest of the binop opcodes.
2694     KnownZero |= SrcZero;
2695     KnownUndef &= SrcUndef;
2696     KnownUndef &= ~KnownZero;
2697     break;
2698   }
2699   case ISD::TRUNCATE:
2700   case ISD::SIGN_EXTEND:
2701   case ISD::ZERO_EXTEND:
2702     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2703                                    KnownZero, TLO, Depth + 1))
2704       return true;
2705 
2706     if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2707       // zext(undef) upper bits are guaranteed to be zero.
2708       if (DemandedElts.isSubsetOf(KnownUndef))
2709         return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2710       KnownUndef.clearAllBits();
2711     }
2712     break;
2713   default: {
2714     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2715       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2716                                                   KnownZero, TLO, Depth))
2717         return true;
2718     } else {
2719       KnownBits Known;
2720       APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2721       if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2722                                TLO, Depth, AssumeSingleUse))
2723         return true;
2724     }
2725     break;
2726   }
2727   }
2728   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2729 
2730   // Constant fold all undef cases.
2731   // TODO: Handle zero cases as well.
2732   if (DemandedElts.isSubsetOf(KnownUndef))
2733     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2734 
2735   return false;
2736 }
2737 
2738 /// Determine which of the bits specified in Mask are known to be either zero or
2739 /// one and return them in the Known.
2740 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2741                                                    KnownBits &Known,
2742                                                    const APInt &DemandedElts,
2743                                                    const SelectionDAG &DAG,
2744                                                    unsigned Depth) const {
2745   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2746           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2747           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2748           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2749          "Should use MaskedValueIsZero if you don't know whether Op"
2750          " is a target node!");
2751   Known.resetAll();
2752 }
2753 
2754 void TargetLowering::computeKnownBitsForTargetInstr(
2755     GISelKnownBits &Analysis, Register R, KnownBits &Known,
2756     const APInt &DemandedElts, const MachineRegisterInfo &MRI,
2757     unsigned Depth) const {
2758   Known.resetAll();
2759 }
2760 
2761 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2762                                                    KnownBits &Known,
2763                                                    const APInt &DemandedElts,
2764                                                    const SelectionDAG &DAG,
2765                                                    unsigned Depth) const {
2766   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2767 
2768   if (MaybeAlign Alignment = DAG.InferPtrAlign(Op)) {
2769     // The low bits are known zero if the pointer is aligned.
2770     Known.Zero.setLowBits(Log2(*Alignment));
2771   }
2772 }
2773 
2774 /// This method can be implemented by targets that want to expose additional
2775 /// information about sign bits to the DAG Combiner.
2776 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2777                                                          const APInt &,
2778                                                          const SelectionDAG &,
2779                                                          unsigned Depth) const {
2780   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2781           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2782           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2783           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2784          "Should use ComputeNumSignBits if you don't know whether Op"
2785          " is a target node!");
2786   return 1;
2787 }
2788 
2789 unsigned TargetLowering::computeNumSignBitsForTargetInstr(
2790   GISelKnownBits &Analysis, Register R, const APInt &DemandedElts,
2791   const MachineRegisterInfo &MRI, unsigned Depth) const {
2792   return 1;
2793 }
2794 
2795 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2796     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2797     TargetLoweringOpt &TLO, unsigned Depth) const {
2798   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2799           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2800           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2801           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2802          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2803          " is a target node!");
2804   return false;
2805 }
2806 
2807 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2808     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2809     KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2810   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2811           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2812           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2813           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2814          "Should use SimplifyDemandedBits if you don't know whether Op"
2815          " is a target node!");
2816   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2817   return false;
2818 }
2819 
2820 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2821     SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2822     SelectionDAG &DAG, unsigned Depth) const {
2823   assert(
2824       (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2825        Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2826        Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2827        Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2828       "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2829       " is a target node!");
2830   return SDValue();
2831 }
2832 
2833 SDValue
2834 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2835                                         SDValue N1, MutableArrayRef<int> Mask,
2836                                         SelectionDAG &DAG) const {
2837   bool LegalMask = isShuffleMaskLegal(Mask, VT);
2838   if (!LegalMask) {
2839     std::swap(N0, N1);
2840     ShuffleVectorSDNode::commuteMask(Mask);
2841     LegalMask = isShuffleMaskLegal(Mask, VT);
2842   }
2843 
2844   if (!LegalMask)
2845     return SDValue();
2846 
2847   return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2848 }
2849 
2850 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2851   return nullptr;
2852 }
2853 
2854 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2855                                                   const SelectionDAG &DAG,
2856                                                   bool SNaN,
2857                                                   unsigned Depth) const {
2858   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2859           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2860           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2861           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2862          "Should use isKnownNeverNaN if you don't know whether Op"
2863          " is a target node!");
2864   return false;
2865 }
2866 
2867 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2868 // work with truncating build vectors and vectors with elements of less than
2869 // 8 bits.
2870 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2871   if (!N)
2872     return false;
2873 
2874   APInt CVal;
2875   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2876     CVal = CN->getAPIntValue();
2877   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2878     auto *CN = BV->getConstantSplatNode();
2879     if (!CN)
2880       return false;
2881 
2882     // If this is a truncating build vector, truncate the splat value.
2883     // Otherwise, we may fail to match the expected values below.
2884     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2885     CVal = CN->getAPIntValue();
2886     if (BVEltWidth < CVal.getBitWidth())
2887       CVal = CVal.trunc(BVEltWidth);
2888   } else {
2889     return false;
2890   }
2891 
2892   switch (getBooleanContents(N->getValueType(0))) {
2893   case UndefinedBooleanContent:
2894     return CVal[0];
2895   case ZeroOrOneBooleanContent:
2896     return CVal.isOneValue();
2897   case ZeroOrNegativeOneBooleanContent:
2898     return CVal.isAllOnesValue();
2899   }
2900 
2901   llvm_unreachable("Invalid boolean contents");
2902 }
2903 
2904 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2905   if (!N)
2906     return false;
2907 
2908   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2909   if (!CN) {
2910     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2911     if (!BV)
2912       return false;
2913 
2914     // Only interested in constant splats, we don't care about undef
2915     // elements in identifying boolean constants and getConstantSplatNode
2916     // returns NULL if all ops are undef;
2917     CN = BV->getConstantSplatNode();
2918     if (!CN)
2919       return false;
2920   }
2921 
2922   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2923     return !CN->getAPIntValue()[0];
2924 
2925   return CN->isNullValue();
2926 }
2927 
2928 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2929                                        bool SExt) const {
2930   if (VT == MVT::i1)
2931     return N->isOne();
2932 
2933   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2934   switch (Cnt) {
2935   case TargetLowering::ZeroOrOneBooleanContent:
2936     // An extended value of 1 is always true, unless its original type is i1,
2937     // in which case it will be sign extended to -1.
2938     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2939   case TargetLowering::UndefinedBooleanContent:
2940   case TargetLowering::ZeroOrNegativeOneBooleanContent:
2941     return N->isAllOnesValue() && SExt;
2942   }
2943   llvm_unreachable("Unexpected enumeration.");
2944 }
2945 
2946 /// This helper function of SimplifySetCC tries to optimize the comparison when
2947 /// either operand of the SetCC node is a bitwise-and instruction.
2948 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2949                                          ISD::CondCode Cond, const SDLoc &DL,
2950                                          DAGCombinerInfo &DCI) const {
2951   // Match these patterns in any of their permutations:
2952   // (X & Y) == Y
2953   // (X & Y) != Y
2954   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2955     std::swap(N0, N1);
2956 
2957   EVT OpVT = N0.getValueType();
2958   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2959       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2960     return SDValue();
2961 
2962   SDValue X, Y;
2963   if (N0.getOperand(0) == N1) {
2964     X = N0.getOperand(1);
2965     Y = N0.getOperand(0);
2966   } else if (N0.getOperand(1) == N1) {
2967     X = N0.getOperand(0);
2968     Y = N0.getOperand(1);
2969   } else {
2970     return SDValue();
2971   }
2972 
2973   SelectionDAG &DAG = DCI.DAG;
2974   SDValue Zero = DAG.getConstant(0, DL, OpVT);
2975   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2976     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2977     // Note that where Y is variable and is known to have at most one bit set
2978     // (for example, if it is Z & 1) we cannot do this; the expressions are not
2979     // equivalent when Y == 0.
2980     assert(OpVT.isInteger());
2981     Cond = ISD::getSetCCInverse(Cond, OpVT);
2982     if (DCI.isBeforeLegalizeOps() ||
2983         isCondCodeLegal(Cond, N0.getSimpleValueType()))
2984       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2985   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2986     // If the target supports an 'and-not' or 'and-complement' logic operation,
2987     // try to use that to make a comparison operation more efficient.
2988     // But don't do this transform if the mask is a single bit because there are
2989     // more efficient ways to deal with that case (for example, 'bt' on x86 or
2990     // 'rlwinm' on PPC).
2991 
2992     // Bail out if the compare operand that we want to turn into a zero is
2993     // already a zero (otherwise, infinite loop).
2994     auto *YConst = dyn_cast<ConstantSDNode>(Y);
2995     if (YConst && YConst->isNullValue())
2996       return SDValue();
2997 
2998     // Transform this into: ~X & Y == 0.
2999     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
3000     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
3001     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
3002   }
3003 
3004   return SDValue();
3005 }
3006 
3007 /// There are multiple IR patterns that could be checking whether certain
3008 /// truncation of a signed number would be lossy or not. The pattern which is
3009 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
3010 /// We are looking for the following pattern: (KeptBits is a constant)
3011 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
3012 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
3013 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
3014 /// We will unfold it into the natural trunc+sext pattern:
3015 ///   ((%x << C) a>> C) dstcond %x
3016 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
3017 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
3018     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
3019     const SDLoc &DL) const {
3020   // We must be comparing with a constant.
3021   ConstantSDNode *C1;
3022   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
3023     return SDValue();
3024 
3025   // N0 should be:  add %x, (1 << (KeptBits-1))
3026   if (N0->getOpcode() != ISD::ADD)
3027     return SDValue();
3028 
3029   // And we must be 'add'ing a constant.
3030   ConstantSDNode *C01;
3031   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
3032     return SDValue();
3033 
3034   SDValue X = N0->getOperand(0);
3035   EVT XVT = X.getValueType();
3036 
3037   // Validate constants ...
3038 
3039   APInt I1 = C1->getAPIntValue();
3040 
3041   ISD::CondCode NewCond;
3042   if (Cond == ISD::CondCode::SETULT) {
3043     NewCond = ISD::CondCode::SETEQ;
3044   } else if (Cond == ISD::CondCode::SETULE) {
3045     NewCond = ISD::CondCode::SETEQ;
3046     // But need to 'canonicalize' the constant.
3047     I1 += 1;
3048   } else if (Cond == ISD::CondCode::SETUGT) {
3049     NewCond = ISD::CondCode::SETNE;
3050     // But need to 'canonicalize' the constant.
3051     I1 += 1;
3052   } else if (Cond == ISD::CondCode::SETUGE) {
3053     NewCond = ISD::CondCode::SETNE;
3054   } else
3055     return SDValue();
3056 
3057   APInt I01 = C01->getAPIntValue();
3058 
3059   auto checkConstants = [&I1, &I01]() -> bool {
3060     // Both of them must be power-of-two, and the constant from setcc is bigger.
3061     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
3062   };
3063 
3064   if (checkConstants()) {
3065     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
3066   } else {
3067     // What if we invert constants? (and the target predicate)
3068     I1.negate();
3069     I01.negate();
3070     assert(XVT.isInteger());
3071     NewCond = getSetCCInverse(NewCond, XVT);
3072     if (!checkConstants())
3073       return SDValue();
3074     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
3075   }
3076 
3077   // They are power-of-two, so which bit is set?
3078   const unsigned KeptBits = I1.logBase2();
3079   const unsigned KeptBitsMinusOne = I01.logBase2();
3080 
3081   // Magic!
3082   if (KeptBits != (KeptBitsMinusOne + 1))
3083     return SDValue();
3084   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
3085 
3086   // We don't want to do this in every single case.
3087   SelectionDAG &DAG = DCI.DAG;
3088   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
3089           XVT, KeptBits))
3090     return SDValue();
3091 
3092   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
3093   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
3094 
3095   // Unfold into:  ((%x << C) a>> C) cond %x
3096   // Where 'cond' will be either 'eq' or 'ne'.
3097   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
3098   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
3099   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
3100   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
3101 
3102   return T2;
3103 }
3104 
3105 // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3106 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
3107     EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
3108     DAGCombinerInfo &DCI, const SDLoc &DL) const {
3109   assert(isConstOrConstSplat(N1C) &&
3110          isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
3111          "Should be a comparison with 0.");
3112   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3113          "Valid only for [in]equality comparisons.");
3114 
3115   unsigned NewShiftOpcode;
3116   SDValue X, C, Y;
3117 
3118   SelectionDAG &DAG = DCI.DAG;
3119   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3120 
3121   // Look for '(C l>>/<< Y)'.
3122   auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
3123     // The shift should be one-use.
3124     if (!V.hasOneUse())
3125       return false;
3126     unsigned OldShiftOpcode = V.getOpcode();
3127     switch (OldShiftOpcode) {
3128     case ISD::SHL:
3129       NewShiftOpcode = ISD::SRL;
3130       break;
3131     case ISD::SRL:
3132       NewShiftOpcode = ISD::SHL;
3133       break;
3134     default:
3135       return false; // must be a logical shift.
3136     }
3137     // We should be shifting a constant.
3138     // FIXME: best to use isConstantOrConstantVector().
3139     C = V.getOperand(0);
3140     ConstantSDNode *CC =
3141         isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3142     if (!CC)
3143       return false;
3144     Y = V.getOperand(1);
3145 
3146     ConstantSDNode *XC =
3147         isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
3148     return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
3149         X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
3150   };
3151 
3152   // LHS of comparison should be an one-use 'and'.
3153   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
3154     return SDValue();
3155 
3156   X = N0.getOperand(0);
3157   SDValue Mask = N0.getOperand(1);
3158 
3159   // 'and' is commutative!
3160   if (!Match(Mask)) {
3161     std::swap(X, Mask);
3162     if (!Match(Mask))
3163       return SDValue();
3164   }
3165 
3166   EVT VT = X.getValueType();
3167 
3168   // Produce:
3169   // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
3170   SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
3171   SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
3172   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
3173   return T2;
3174 }
3175 
3176 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
3177 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
3178 /// handle the commuted versions of these patterns.
3179 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
3180                                            ISD::CondCode Cond, const SDLoc &DL,
3181                                            DAGCombinerInfo &DCI) const {
3182   unsigned BOpcode = N0.getOpcode();
3183   assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
3184          "Unexpected binop");
3185   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
3186 
3187   // (X + Y) == X --> Y == 0
3188   // (X - Y) == X --> Y == 0
3189   // (X ^ Y) == X --> Y == 0
3190   SelectionDAG &DAG = DCI.DAG;
3191   EVT OpVT = N0.getValueType();
3192   SDValue X = N0.getOperand(0);
3193   SDValue Y = N0.getOperand(1);
3194   if (X == N1)
3195     return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3196 
3197   if (Y != N1)
3198     return SDValue();
3199 
3200   // (X + Y) == Y --> X == 0
3201   // (X ^ Y) == Y --> X == 0
3202   if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3203     return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3204 
3205   // The shift would not be valid if the operands are boolean (i1).
3206   if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3207     return SDValue();
3208 
3209   // (X - Y) == Y --> X == Y << 1
3210   EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3211                                  !DCI.isBeforeLegalize());
3212   SDValue One = DAG.getConstant(1, DL, ShiftVT);
3213   SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3214   if (!DCI.isCalledByLegalizer())
3215     DCI.AddToWorklist(YShl1.getNode());
3216   return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3217 }
3218 
3219 /// Try to simplify a setcc built with the specified operands and cc. If it is
3220 /// unable to simplify it, return a null SDValue.
3221 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3222                                       ISD::CondCode Cond, bool foldBooleans,
3223                                       DAGCombinerInfo &DCI,
3224                                       const SDLoc &dl) const {
3225   SelectionDAG &DAG = DCI.DAG;
3226   const DataLayout &Layout = DAG.getDataLayout();
3227   EVT OpVT = N0.getValueType();
3228 
3229   // Constant fold or commute setcc.
3230   if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3231     return Fold;
3232 
3233   // Ensure that the constant occurs on the RHS and fold constant comparisons.
3234   // TODO: Handle non-splat vector constants. All undef causes trouble.
3235   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3236   if (isConstOrConstSplat(N0) &&
3237       (DCI.isBeforeLegalizeOps() ||
3238        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3239     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3240 
3241   // If we have a subtract with the same 2 non-constant operands as this setcc
3242   // -- but in reverse order -- then try to commute the operands of this setcc
3243   // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3244   // instruction on some targets.
3245   if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3246       (DCI.isBeforeLegalizeOps() ||
3247        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3248       DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3249       !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3250     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3251 
3252   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3253     const APInt &C1 = N1C->getAPIntValue();
3254 
3255     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3256     // equality comparison, then we're just comparing whether X itself is
3257     // zero.
3258     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3259         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3260         N0.getOperand(1).getOpcode() == ISD::Constant) {
3261       const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3262       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3263           ShAmt == Log2_32(N0.getValueSizeInBits())) {
3264         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3265           // (srl (ctlz x), 5) == 0  -> X != 0
3266           // (srl (ctlz x), 5) != 1  -> X != 0
3267           Cond = ISD::SETNE;
3268         } else {
3269           // (srl (ctlz x), 5) != 0  -> X == 0
3270           // (srl (ctlz x), 5) == 1  -> X == 0
3271           Cond = ISD::SETEQ;
3272         }
3273         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3274         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3275                             Zero, Cond);
3276       }
3277     }
3278 
3279     SDValue CTPOP = N0;
3280     // Look through truncs that don't change the value of a ctpop.
3281     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3282       CTPOP = N0.getOperand(0);
3283 
3284     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3285         (N0 == CTPOP ||
3286          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3287       EVT CTVT = CTPOP.getValueType();
3288       SDValue CTOp = CTPOP.getOperand(0);
3289 
3290       // (ctpop x) u< 2 -> (x & x-1) == 0
3291       // (ctpop x) u> 1 -> (x & x-1) != 0
3292       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3293         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3294         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3295         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3296         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3297         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3298       }
3299 
3300       // If ctpop is not supported, expand a power-of-2 comparison based on it.
3301       if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3302           (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3303         // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3304         // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3305         SDValue Zero = DAG.getConstant(0, dl, CTVT);
3306         SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3307         assert(CTVT.isInteger());
3308         ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, CTVT);
3309         SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3310         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3311         SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3312         SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3313         unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3314         return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3315       }
3316     }
3317 
3318     // (zext x) == C --> x == (trunc C)
3319     // (sext x) == C --> x == (trunc C)
3320     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3321         DCI.isBeforeLegalize() && N0->hasOneUse()) {
3322       unsigned MinBits = N0.getValueSizeInBits();
3323       SDValue PreExt;
3324       bool Signed = false;
3325       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3326         // ZExt
3327         MinBits = N0->getOperand(0).getValueSizeInBits();
3328         PreExt = N0->getOperand(0);
3329       } else if (N0->getOpcode() == ISD::AND) {
3330         // DAGCombine turns costly ZExts into ANDs
3331         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3332           if ((C->getAPIntValue()+1).isPowerOf2()) {
3333             MinBits = C->getAPIntValue().countTrailingOnes();
3334             PreExt = N0->getOperand(0);
3335           }
3336       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3337         // SExt
3338         MinBits = N0->getOperand(0).getValueSizeInBits();
3339         PreExt = N0->getOperand(0);
3340         Signed = true;
3341       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3342         // ZEXTLOAD / SEXTLOAD
3343         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3344           MinBits = LN0->getMemoryVT().getSizeInBits();
3345           PreExt = N0;
3346         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3347           Signed = true;
3348           MinBits = LN0->getMemoryVT().getSizeInBits();
3349           PreExt = N0;
3350         }
3351       }
3352 
3353       // Figure out how many bits we need to preserve this constant.
3354       unsigned ReqdBits = Signed ?
3355         C1.getBitWidth() - C1.getNumSignBits() + 1 :
3356         C1.getActiveBits();
3357 
3358       // Make sure we're not losing bits from the constant.
3359       if (MinBits > 0 &&
3360           MinBits < C1.getBitWidth() &&
3361           MinBits >= ReqdBits) {
3362         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3363         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3364           // Will get folded away.
3365           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3366           if (MinBits == 1 && C1 == 1)
3367             // Invert the condition.
3368             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3369                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3370           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3371           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3372         }
3373 
3374         // If truncating the setcc operands is not desirable, we can still
3375         // simplify the expression in some cases:
3376         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3377         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3378         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3379         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3380         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3381         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3382         SDValue TopSetCC = N0->getOperand(0);
3383         unsigned N0Opc = N0->getOpcode();
3384         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3385         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3386             TopSetCC.getOpcode() == ISD::SETCC &&
3387             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3388             (isConstFalseVal(N1C) ||
3389              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3390 
3391           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3392                          (!N1C->isNullValue() && Cond == ISD::SETNE);
3393 
3394           if (!Inverse)
3395             return TopSetCC;
3396 
3397           ISD::CondCode InvCond = ISD::getSetCCInverse(
3398               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3399               TopSetCC.getOperand(0).getValueType());
3400           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3401                                       TopSetCC.getOperand(1),
3402                                       InvCond);
3403         }
3404       }
3405     }
3406 
3407     // If the LHS is '(and load, const)', the RHS is 0, the test is for
3408     // equality or unsigned, and all 1 bits of the const are in the same
3409     // partial word, see if we can shorten the load.
3410     if (DCI.isBeforeLegalize() &&
3411         !ISD::isSignedIntSetCC(Cond) &&
3412         N0.getOpcode() == ISD::AND && C1 == 0 &&
3413         N0.getNode()->hasOneUse() &&
3414         isa<LoadSDNode>(N0.getOperand(0)) &&
3415         N0.getOperand(0).getNode()->hasOneUse() &&
3416         isa<ConstantSDNode>(N0.getOperand(1))) {
3417       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3418       APInt bestMask;
3419       unsigned bestWidth = 0, bestOffset = 0;
3420       if (Lod->isSimple() && Lod->isUnindexed()) {
3421         unsigned origWidth = N0.getValueSizeInBits();
3422         unsigned maskWidth = origWidth;
3423         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3424         // 8 bits, but have to be careful...
3425         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3426           origWidth = Lod->getMemoryVT().getSizeInBits();
3427         const APInt &Mask = N0.getConstantOperandAPInt(1);
3428         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3429           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3430           for (unsigned offset=0; offset<origWidth/width; offset++) {
3431             if (Mask.isSubsetOf(newMask)) {
3432               if (Layout.isLittleEndian())
3433                 bestOffset = (uint64_t)offset * (width/8);
3434               else
3435                 bestOffset = (origWidth/width - offset - 1) * (width/8);
3436               bestMask = Mask.lshr(offset * (width/8) * 8);
3437               bestWidth = width;
3438               break;
3439             }
3440             newMask <<= width;
3441           }
3442         }
3443       }
3444       if (bestWidth) {
3445         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3446         if (newVT.isRound() &&
3447             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3448           SDValue Ptr = Lod->getBasePtr();
3449           if (bestOffset != 0)
3450             Ptr = DAG.getMemBasePlusOffset(Ptr, bestOffset, dl);
3451           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3452           SDValue NewLoad = DAG.getLoad(
3453               newVT, dl, Lod->getChain(), Ptr,
3454               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3455           return DAG.getSetCC(dl, VT,
3456                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3457                                       DAG.getConstant(bestMask.trunc(bestWidth),
3458                                                       dl, newVT)),
3459                               DAG.getConstant(0LL, dl, newVT), Cond);
3460         }
3461       }
3462     }
3463 
3464     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3465     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3466       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3467 
3468       // If the comparison constant has bits in the upper part, the
3469       // zero-extended value could never match.
3470       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3471                                               C1.getBitWidth() - InSize))) {
3472         switch (Cond) {
3473         case ISD::SETUGT:
3474         case ISD::SETUGE:
3475         case ISD::SETEQ:
3476           return DAG.getConstant(0, dl, VT);
3477         case ISD::SETULT:
3478         case ISD::SETULE:
3479         case ISD::SETNE:
3480           return DAG.getConstant(1, dl, VT);
3481         case ISD::SETGT:
3482         case ISD::SETGE:
3483           // True if the sign bit of C1 is set.
3484           return DAG.getConstant(C1.isNegative(), dl, VT);
3485         case ISD::SETLT:
3486         case ISD::SETLE:
3487           // True if the sign bit of C1 isn't set.
3488           return DAG.getConstant(C1.isNonNegative(), dl, VT);
3489         default:
3490           break;
3491         }
3492       }
3493 
3494       // Otherwise, we can perform the comparison with the low bits.
3495       switch (Cond) {
3496       case ISD::SETEQ:
3497       case ISD::SETNE:
3498       case ISD::SETUGT:
3499       case ISD::SETUGE:
3500       case ISD::SETULT:
3501       case ISD::SETULE: {
3502         EVT newVT = N0.getOperand(0).getValueType();
3503         if (DCI.isBeforeLegalizeOps() ||
3504             (isOperationLegal(ISD::SETCC, newVT) &&
3505              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3506           EVT NewSetCCVT = getSetCCResultType(Layout, *DAG.getContext(), newVT);
3507           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3508 
3509           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3510                                           NewConst, Cond);
3511           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3512         }
3513         break;
3514       }
3515       default:
3516         break; // todo, be more careful with signed comparisons
3517       }
3518     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3519                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3520       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3521       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3522       EVT ExtDstTy = N0.getValueType();
3523       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3524 
3525       // If the constant doesn't fit into the number of bits for the source of
3526       // the sign extension, it is impossible for both sides to be equal.
3527       if (C1.getMinSignedBits() > ExtSrcTyBits)
3528         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3529 
3530       SDValue ZextOp;
3531       EVT Op0Ty = N0.getOperand(0).getValueType();
3532       if (Op0Ty == ExtSrcTy) {
3533         ZextOp = N0.getOperand(0);
3534       } else {
3535         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3536         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3537                              DAG.getConstant(Imm, dl, Op0Ty));
3538       }
3539       if (!DCI.isCalledByLegalizer())
3540         DCI.AddToWorklist(ZextOp.getNode());
3541       // Otherwise, make this a use of a zext.
3542       return DAG.getSetCC(dl, VT, ZextOp,
3543                           DAG.getConstant(C1 & APInt::getLowBitsSet(
3544                                                               ExtDstTyBits,
3545                                                               ExtSrcTyBits),
3546                                           dl, ExtDstTy),
3547                           Cond);
3548     } else if ((N1C->isNullValue() || N1C->isOne()) &&
3549                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3550       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
3551       if (N0.getOpcode() == ISD::SETCC &&
3552           isTypeLegal(VT) && VT.bitsLE(N0.getValueType()) &&
3553           (N0.getValueType() == MVT::i1 ||
3554            getBooleanContents(N0.getOperand(0).getValueType()) ==
3555                        ZeroOrOneBooleanContent)) {
3556         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3557         if (TrueWhenTrue)
3558           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3559         // Invert the condition.
3560         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3561         CC = ISD::getSetCCInverse(CC, N0.getOperand(0).getValueType());
3562         if (DCI.isBeforeLegalizeOps() ||
3563             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3564           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3565       }
3566 
3567       if ((N0.getOpcode() == ISD::XOR ||
3568            (N0.getOpcode() == ISD::AND &&
3569             N0.getOperand(0).getOpcode() == ISD::XOR &&
3570             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3571           isa<ConstantSDNode>(N0.getOperand(1)) &&
3572           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3573         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
3574         // can only do this if the top bits are known zero.
3575         unsigned BitWidth = N0.getValueSizeInBits();
3576         if (DAG.MaskedValueIsZero(N0,
3577                                   APInt::getHighBitsSet(BitWidth,
3578                                                         BitWidth-1))) {
3579           // Okay, get the un-inverted input value.
3580           SDValue Val;
3581           if (N0.getOpcode() == ISD::XOR) {
3582             Val = N0.getOperand(0);
3583           } else {
3584             assert(N0.getOpcode() == ISD::AND &&
3585                     N0.getOperand(0).getOpcode() == ISD::XOR);
3586             // ((X^1)&1)^1 -> X & 1
3587             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3588                               N0.getOperand(0).getOperand(0),
3589                               N0.getOperand(1));
3590           }
3591 
3592           return DAG.getSetCC(dl, VT, Val, N1,
3593                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3594         }
3595       } else if (N1C->isOne()) {
3596         SDValue Op0 = N0;
3597         if (Op0.getOpcode() == ISD::TRUNCATE)
3598           Op0 = Op0.getOperand(0);
3599 
3600         if ((Op0.getOpcode() == ISD::XOR) &&
3601             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3602             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3603           SDValue XorLHS = Op0.getOperand(0);
3604           SDValue XorRHS = Op0.getOperand(1);
3605           // Ensure that the input setccs return an i1 type or 0/1 value.
3606           if (Op0.getValueType() == MVT::i1 ||
3607               (getBooleanContents(XorLHS.getOperand(0).getValueType()) ==
3608                       ZeroOrOneBooleanContent &&
3609                getBooleanContents(XorRHS.getOperand(0).getValueType()) ==
3610                         ZeroOrOneBooleanContent)) {
3611             // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3612             Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3613             return DAG.getSetCC(dl, VT, XorLHS, XorRHS, Cond);
3614           }
3615         }
3616         if (Op0.getOpcode() == ISD::AND &&
3617             isa<ConstantSDNode>(Op0.getOperand(1)) &&
3618             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3619           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3620           if (Op0.getValueType().bitsGT(VT))
3621             Op0 = DAG.getNode(ISD::AND, dl, VT,
3622                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3623                           DAG.getConstant(1, dl, VT));
3624           else if (Op0.getValueType().bitsLT(VT))
3625             Op0 = DAG.getNode(ISD::AND, dl, VT,
3626                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3627                         DAG.getConstant(1, dl, VT));
3628 
3629           return DAG.getSetCC(dl, VT, Op0,
3630                               DAG.getConstant(0, dl, Op0.getValueType()),
3631                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3632         }
3633         if (Op0.getOpcode() == ISD::AssertZext &&
3634             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3635           return DAG.getSetCC(dl, VT, Op0,
3636                               DAG.getConstant(0, dl, Op0.getValueType()),
3637                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3638       }
3639     }
3640 
3641     // Given:
3642     //   icmp eq/ne (urem %x, %y), 0
3643     // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3644     //   icmp eq/ne %x, 0
3645     if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3646         (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3647       KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3648       KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3649       if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3650         return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3651     }
3652 
3653     if (SDValue V =
3654             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3655       return V;
3656   }
3657 
3658   // These simplifications apply to splat vectors as well.
3659   // TODO: Handle more splat vector cases.
3660   if (auto *N1C = isConstOrConstSplat(N1)) {
3661     const APInt &C1 = N1C->getAPIntValue();
3662 
3663     APInt MinVal, MaxVal;
3664     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3665     if (ISD::isSignedIntSetCC(Cond)) {
3666       MinVal = APInt::getSignedMinValue(OperandBitSize);
3667       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3668     } else {
3669       MinVal = APInt::getMinValue(OperandBitSize);
3670       MaxVal = APInt::getMaxValue(OperandBitSize);
3671     }
3672 
3673     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3674     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3675       // X >= MIN --> true
3676       if (C1 == MinVal)
3677         return DAG.getBoolConstant(true, dl, VT, OpVT);
3678 
3679       if (!VT.isVector()) { // TODO: Support this for vectors.
3680         // X >= C0 --> X > (C0 - 1)
3681         APInt C = C1 - 1;
3682         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3683         if ((DCI.isBeforeLegalizeOps() ||
3684              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3685             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3686                                   isLegalICmpImmediate(C.getSExtValue())))) {
3687           return DAG.getSetCC(dl, VT, N0,
3688                               DAG.getConstant(C, dl, N1.getValueType()),
3689                               NewCC);
3690         }
3691       }
3692     }
3693 
3694     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3695       // X <= MAX --> true
3696       if (C1 == MaxVal)
3697         return DAG.getBoolConstant(true, dl, VT, OpVT);
3698 
3699       // X <= C0 --> X < (C0 + 1)
3700       if (!VT.isVector()) { // TODO: Support this for vectors.
3701         APInt C = C1 + 1;
3702         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3703         if ((DCI.isBeforeLegalizeOps() ||
3704              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3705             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3706                                   isLegalICmpImmediate(C.getSExtValue())))) {
3707           return DAG.getSetCC(dl, VT, N0,
3708                               DAG.getConstant(C, dl, N1.getValueType()),
3709                               NewCC);
3710         }
3711       }
3712     }
3713 
3714     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3715       if (C1 == MinVal)
3716         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3717 
3718       // TODO: Support this for vectors after legalize ops.
3719       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3720         // Canonicalize setlt X, Max --> setne X, Max
3721         if (C1 == MaxVal)
3722           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3723 
3724         // If we have setult X, 1, turn it into seteq X, 0
3725         if (C1 == MinVal+1)
3726           return DAG.getSetCC(dl, VT, N0,
3727                               DAG.getConstant(MinVal, dl, N0.getValueType()),
3728                               ISD::SETEQ);
3729       }
3730     }
3731 
3732     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3733       if (C1 == MaxVal)
3734         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3735 
3736       // TODO: Support this for vectors after legalize ops.
3737       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3738         // Canonicalize setgt X, Min --> setne X, Min
3739         if (C1 == MinVal)
3740           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3741 
3742         // If we have setugt X, Max-1, turn it into seteq X, Max
3743         if (C1 == MaxVal-1)
3744           return DAG.getSetCC(dl, VT, N0,
3745                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
3746                               ISD::SETEQ);
3747       }
3748     }
3749 
3750     if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3751       // (X & (C l>>/<< Y)) ==/!= 0  -->  ((X <</l>> Y) & C) ==/!= 0
3752       if (C1.isNullValue())
3753         if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3754                 VT, N0, N1, Cond, DCI, dl))
3755           return CC;
3756     }
3757 
3758     // If we have "setcc X, C0", check to see if we can shrink the immediate
3759     // by changing cc.
3760     // TODO: Support this for vectors after legalize ops.
3761     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3762       // SETUGT X, SINTMAX  -> SETLT X, 0
3763       if (Cond == ISD::SETUGT &&
3764           C1 == APInt::getSignedMaxValue(OperandBitSize))
3765         return DAG.getSetCC(dl, VT, N0,
3766                             DAG.getConstant(0, dl, N1.getValueType()),
3767                             ISD::SETLT);
3768 
3769       // SETULT X, SINTMIN  -> SETGT X, -1
3770       if (Cond == ISD::SETULT &&
3771           C1 == APInt::getSignedMinValue(OperandBitSize)) {
3772         SDValue ConstMinusOne =
3773             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3774                             N1.getValueType());
3775         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3776       }
3777     }
3778   }
3779 
3780   // Back to non-vector simplifications.
3781   // TODO: Can we do these for vector splats?
3782   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3783     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3784     const APInt &C1 = N1C->getAPIntValue();
3785     EVT ShValTy = N0.getValueType();
3786 
3787     // Fold bit comparisons when we can.
3788     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3789         (VT == ShValTy || (isTypeLegal(VT) && VT.bitsLE(ShValTy))) &&
3790         N0.getOpcode() == ISD::AND) {
3791       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3792         EVT ShiftTy =
3793             getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3794         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
3795           // Perform the xform if the AND RHS is a single bit.
3796           unsigned ShCt = AndRHS->getAPIntValue().logBase2();
3797           if (AndRHS->getAPIntValue().isPowerOf2() &&
3798               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3799             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3800                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3801                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3802           }
3803         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3804           // (X & 8) == 8  -->  (X & 8) >> 3
3805           // Perform the xform if C1 is a single bit.
3806           unsigned ShCt = C1.logBase2();
3807           if (C1.isPowerOf2() &&
3808               !TLI.shouldAvoidTransformToShift(ShValTy, ShCt)) {
3809             return DAG.getNode(ISD::TRUNCATE, dl, VT,
3810                                DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3811                                            DAG.getConstant(ShCt, dl, ShiftTy)));
3812           }
3813         }
3814       }
3815     }
3816 
3817     if (C1.getMinSignedBits() <= 64 &&
3818         !isLegalICmpImmediate(C1.getSExtValue())) {
3819       EVT ShiftTy = getShiftAmountTy(ShValTy, Layout, !DCI.isBeforeLegalize());
3820       // (X & -256) == 256 -> (X >> 8) == 1
3821       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3822           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3823         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3824           const APInt &AndRHSC = AndRHS->getAPIntValue();
3825           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3826             unsigned ShiftBits = AndRHSC.countTrailingZeros();
3827             if (!TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3828               SDValue Shift =
3829                 DAG.getNode(ISD::SRL, dl, ShValTy, N0.getOperand(0),
3830                             DAG.getConstant(ShiftBits, dl, ShiftTy));
3831               SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, ShValTy);
3832               return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3833             }
3834           }
3835         }
3836       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3837                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3838         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3839         // X <  0x100000000 -> (X >> 32) <  1
3840         // X >= 0x100000000 -> (X >> 32) >= 1
3841         // X <= 0x0ffffffff -> (X >> 32) <  1
3842         // X >  0x0ffffffff -> (X >> 32) >= 1
3843         unsigned ShiftBits;
3844         APInt NewC = C1;
3845         ISD::CondCode NewCond = Cond;
3846         if (AdjOne) {
3847           ShiftBits = C1.countTrailingOnes();
3848           NewC = NewC + 1;
3849           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3850         } else {
3851           ShiftBits = C1.countTrailingZeros();
3852         }
3853         NewC.lshrInPlace(ShiftBits);
3854         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3855             isLegalICmpImmediate(NewC.getSExtValue()) &&
3856             !TLI.shouldAvoidTransformToShift(ShValTy, ShiftBits)) {
3857           SDValue Shift = DAG.getNode(ISD::SRL, dl, ShValTy, N0,
3858                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
3859           SDValue CmpRHS = DAG.getConstant(NewC, dl, ShValTy);
3860           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3861         }
3862       }
3863     }
3864   }
3865 
3866   if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3867     auto *CFP = cast<ConstantFPSDNode>(N1);
3868     assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3869 
3870     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
3871     // constant if knowing that the operand is non-nan is enough.  We prefer to
3872     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3873     // materialize 0.0.
3874     if (Cond == ISD::SETO || Cond == ISD::SETUO)
3875       return DAG.getSetCC(dl, VT, N0, N0, Cond);
3876 
3877     // setcc (fneg x), C -> setcc swap(pred) x, -C
3878     if (N0.getOpcode() == ISD::FNEG) {
3879       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3880       if (DCI.isBeforeLegalizeOps() ||
3881           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3882         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3883         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3884       }
3885     }
3886 
3887     // If the condition is not legal, see if we can find an equivalent one
3888     // which is legal.
3889     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3890       // If the comparison was an awkward floating-point == or != and one of
3891       // the comparison operands is infinity or negative infinity, convert the
3892       // condition to a less-awkward <= or >=.
3893       if (CFP->getValueAPF().isInfinity()) {
3894         bool IsNegInf = CFP->getValueAPF().isNegative();
3895         ISD::CondCode NewCond = ISD::SETCC_INVALID;
3896         switch (Cond) {
3897         case ISD::SETOEQ: NewCond = IsNegInf ? ISD::SETOLE : ISD::SETOGE; break;
3898         case ISD::SETUEQ: NewCond = IsNegInf ? ISD::SETULE : ISD::SETUGE; break;
3899         case ISD::SETUNE: NewCond = IsNegInf ? ISD::SETUGT : ISD::SETULT; break;
3900         case ISD::SETONE: NewCond = IsNegInf ? ISD::SETOGT : ISD::SETOLT; break;
3901         default: break;
3902         }
3903         if (NewCond != ISD::SETCC_INVALID &&
3904             isCondCodeLegal(NewCond, N0.getSimpleValueType()))
3905           return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3906       }
3907     }
3908   }
3909 
3910   if (N0 == N1) {
3911     // The sext(setcc()) => setcc() optimization relies on the appropriate
3912     // constant being emitted.
3913     assert(!N0.getValueType().isInteger() &&
3914            "Integer types should be handled by FoldSetCC");
3915 
3916     bool EqTrue = ISD::isTrueWhenEqual(Cond);
3917     unsigned UOF = ISD::getUnorderedFlavor(Cond);
3918     if (UOF == 2) // FP operators that are undefined on NaNs.
3919       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3920     if (UOF == unsigned(EqTrue))
3921       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3922     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
3923     // if it is not already.
3924     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3925     if (NewCond != Cond &&
3926         (DCI.isBeforeLegalizeOps() ||
3927                             isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3928       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3929   }
3930 
3931   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3932       N0.getValueType().isInteger()) {
3933     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3934         N0.getOpcode() == ISD::XOR) {
3935       // Simplify (X+Y) == (X+Z) -->  Y == Z
3936       if (N0.getOpcode() == N1.getOpcode()) {
3937         if (N0.getOperand(0) == N1.getOperand(0))
3938           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3939         if (N0.getOperand(1) == N1.getOperand(1))
3940           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3941         if (isCommutativeBinOp(N0.getOpcode())) {
3942           // If X op Y == Y op X, try other combinations.
3943           if (N0.getOperand(0) == N1.getOperand(1))
3944             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3945                                 Cond);
3946           if (N0.getOperand(1) == N1.getOperand(0))
3947             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3948                                 Cond);
3949         }
3950       }
3951 
3952       // If RHS is a legal immediate value for a compare instruction, we need
3953       // to be careful about increasing register pressure needlessly.
3954       bool LegalRHSImm = false;
3955 
3956       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3957         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3958           // Turn (X+C1) == C2 --> X == C2-C1
3959           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3960             return DAG.getSetCC(dl, VT, N0.getOperand(0),
3961                                 DAG.getConstant(RHSC->getAPIntValue()-
3962                                                 LHSR->getAPIntValue(),
3963                                 dl, N0.getValueType()), Cond);
3964           }
3965 
3966           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3967           if (N0.getOpcode() == ISD::XOR)
3968             // If we know that all of the inverted bits are zero, don't bother
3969             // performing the inversion.
3970             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3971               return
3972                 DAG.getSetCC(dl, VT, N0.getOperand(0),
3973                              DAG.getConstant(LHSR->getAPIntValue() ^
3974                                                RHSC->getAPIntValue(),
3975                                              dl, N0.getValueType()),
3976                              Cond);
3977         }
3978 
3979         // Turn (C1-X) == C2 --> X == C1-C2
3980         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3981           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3982             return
3983               DAG.getSetCC(dl, VT, N0.getOperand(1),
3984                            DAG.getConstant(SUBC->getAPIntValue() -
3985                                              RHSC->getAPIntValue(),
3986                                            dl, N0.getValueType()),
3987                            Cond);
3988           }
3989         }
3990 
3991         // Could RHSC fold directly into a compare?
3992         if (RHSC->getValueType(0).getSizeInBits() <= 64)
3993           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3994       }
3995 
3996       // (X+Y) == X --> Y == 0 and similar folds.
3997       // Don't do this if X is an immediate that can fold into a cmp
3998       // instruction and X+Y has other uses. It could be an induction variable
3999       // chain, and the transform would increase register pressure.
4000       if (!LegalRHSImm || N0.hasOneUse())
4001         if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
4002           return V;
4003     }
4004 
4005     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
4006         N1.getOpcode() == ISD::XOR)
4007       if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
4008         return V;
4009 
4010     if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
4011       return V;
4012   }
4013 
4014   // Fold remainder of division by a constant.
4015   if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
4016       N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
4017     AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4018 
4019     // When division is cheap or optimizing for minimum size,
4020     // fall through to DIVREM creation by skipping this fold.
4021     if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
4022       if (N0.getOpcode() == ISD::UREM) {
4023         if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
4024           return Folded;
4025       } else if (N0.getOpcode() == ISD::SREM) {
4026         if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
4027           return Folded;
4028       }
4029     }
4030   }
4031 
4032   // Fold away ALL boolean setcc's.
4033   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
4034     SDValue Temp;
4035     switch (Cond) {
4036     default: llvm_unreachable("Unknown integer setcc!");
4037     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
4038       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4039       N0 = DAG.getNOT(dl, Temp, OpVT);
4040       if (!DCI.isCalledByLegalizer())
4041         DCI.AddToWorklist(Temp.getNode());
4042       break;
4043     case ISD::SETNE:  // X != Y   -->  (X^Y)
4044       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
4045       break;
4046     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
4047     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
4048       Temp = DAG.getNOT(dl, N0, OpVT);
4049       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
4050       if (!DCI.isCalledByLegalizer())
4051         DCI.AddToWorklist(Temp.getNode());
4052       break;
4053     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
4054     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
4055       Temp = DAG.getNOT(dl, N1, OpVT);
4056       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
4057       if (!DCI.isCalledByLegalizer())
4058         DCI.AddToWorklist(Temp.getNode());
4059       break;
4060     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
4061     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
4062       Temp = DAG.getNOT(dl, N0, OpVT);
4063       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
4064       if (!DCI.isCalledByLegalizer())
4065         DCI.AddToWorklist(Temp.getNode());
4066       break;
4067     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
4068     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
4069       Temp = DAG.getNOT(dl, N1, OpVT);
4070       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
4071       break;
4072     }
4073     if (VT.getScalarType() != MVT::i1) {
4074       if (!DCI.isCalledByLegalizer())
4075         DCI.AddToWorklist(N0.getNode());
4076       // FIXME: If running after legalize, we probably can't do this.
4077       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
4078       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
4079     }
4080     return N0;
4081   }
4082 
4083   // Could not fold it.
4084   return SDValue();
4085 }
4086 
4087 /// Returns true (and the GlobalValue and the offset) if the node is a
4088 /// GlobalAddress + offset.
4089 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
4090                                     int64_t &Offset) const {
4091 
4092   SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
4093 
4094   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
4095     GA = GASD->getGlobal();
4096     Offset += GASD->getOffset();
4097     return true;
4098   }
4099 
4100   if (N->getOpcode() == ISD::ADD) {
4101     SDValue N1 = N->getOperand(0);
4102     SDValue N2 = N->getOperand(1);
4103     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
4104       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
4105         Offset += V->getSExtValue();
4106         return true;
4107       }
4108     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
4109       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
4110         Offset += V->getSExtValue();
4111         return true;
4112       }
4113     }
4114   }
4115 
4116   return false;
4117 }
4118 
4119 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
4120                                           DAGCombinerInfo &DCI) const {
4121   // Default implementation: no optimization.
4122   return SDValue();
4123 }
4124 
4125 //===----------------------------------------------------------------------===//
4126 //  Inline Assembler Implementation Methods
4127 //===----------------------------------------------------------------------===//
4128 
4129 TargetLowering::ConstraintType
4130 TargetLowering::getConstraintType(StringRef Constraint) const {
4131   unsigned S = Constraint.size();
4132 
4133   if (S == 1) {
4134     switch (Constraint[0]) {
4135     default: break;
4136     case 'r':
4137       return C_RegisterClass;
4138     case 'm': // memory
4139     case 'o': // offsetable
4140     case 'V': // not offsetable
4141       return C_Memory;
4142     case 'n': // Simple Integer
4143     case 'E': // Floating Point Constant
4144     case 'F': // Floating Point Constant
4145       return C_Immediate;
4146     case 'i': // Simple Integer or Relocatable Constant
4147     case 's': // Relocatable Constant
4148     case 'p': // Address.
4149     case 'X': // Allow ANY value.
4150     case 'I': // Target registers.
4151     case 'J':
4152     case 'K':
4153     case 'L':
4154     case 'M':
4155     case 'N':
4156     case 'O':
4157     case 'P':
4158     case '<':
4159     case '>':
4160       return C_Other;
4161     }
4162   }
4163 
4164   if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
4165     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
4166       return C_Memory;
4167     return C_Register;
4168   }
4169   return C_Unknown;
4170 }
4171 
4172 /// Try to replace an X constraint, which matches anything, with another that
4173 /// has more specific requirements based on the type of the corresponding
4174 /// operand.
4175 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
4176   if (ConstraintVT.isInteger())
4177     return "r";
4178   if (ConstraintVT.isFloatingPoint())
4179     return "f"; // works for many targets
4180   return nullptr;
4181 }
4182 
4183 SDValue TargetLowering::LowerAsmOutputForConstraint(
4184     SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4185     SelectionDAG &DAG) const {
4186   return SDValue();
4187 }
4188 
4189 /// Lower the specified operand into the Ops vector.
4190 /// If it is invalid, don't add anything to Ops.
4191 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4192                                                   std::string &Constraint,
4193                                                   std::vector<SDValue> &Ops,
4194                                                   SelectionDAG &DAG) const {
4195 
4196   if (Constraint.length() > 1) return;
4197 
4198   char ConstraintLetter = Constraint[0];
4199   switch (ConstraintLetter) {
4200   default: break;
4201   case 'X':     // Allows any operand; labels (basic block) use this.
4202     if (Op.getOpcode() == ISD::BasicBlock ||
4203         Op.getOpcode() == ISD::TargetBlockAddress) {
4204       Ops.push_back(Op);
4205       return;
4206     }
4207     LLVM_FALLTHROUGH;
4208   case 'i':    // Simple Integer or Relocatable Constant
4209   case 'n':    // Simple Integer
4210   case 's': {  // Relocatable Constant
4211 
4212     GlobalAddressSDNode *GA;
4213     ConstantSDNode *C;
4214     BlockAddressSDNode *BA;
4215     uint64_t Offset = 0;
4216 
4217     // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4218     // etc., since getelementpointer is variadic. We can't use
4219     // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4220     // while in this case the GA may be furthest from the root node which is
4221     // likely an ISD::ADD.
4222     while (1) {
4223       if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4224         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4225                                                  GA->getValueType(0),
4226                                                  Offset + GA->getOffset()));
4227         return;
4228       } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4229                  ConstraintLetter != 's') {
4230         // gcc prints these as sign extended.  Sign extend value to 64 bits
4231         // now; without this it would get ZExt'd later in
4232         // ScheduleDAGSDNodes::EmitNode, which is very generic.
4233         bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4234         BooleanContent BCont = getBooleanContents(MVT::i64);
4235         ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4236                                       : ISD::SIGN_EXTEND;
4237         int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4238                                                     : C->getSExtValue();
4239         Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4240                                             SDLoc(C), MVT::i64));
4241         return;
4242       } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4243                  ConstraintLetter != 'n') {
4244         Ops.push_back(DAG.getTargetBlockAddress(
4245             BA->getBlockAddress(), BA->getValueType(0),
4246             Offset + BA->getOffset(), BA->getTargetFlags()));
4247         return;
4248       } else {
4249         const unsigned OpCode = Op.getOpcode();
4250         if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4251           if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4252             Op = Op.getOperand(1);
4253           // Subtraction is not commutative.
4254           else if (OpCode == ISD::ADD &&
4255                    (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4256             Op = Op.getOperand(0);
4257           else
4258             return;
4259           Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4260           continue;
4261         }
4262       }
4263       return;
4264     }
4265     break;
4266   }
4267   }
4268 }
4269 
4270 std::pair<unsigned, const TargetRegisterClass *>
4271 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4272                                              StringRef Constraint,
4273                                              MVT VT) const {
4274   if (Constraint.empty() || Constraint[0] != '{')
4275     return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4276   assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4277 
4278   // Remove the braces from around the name.
4279   StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4280 
4281   std::pair<unsigned, const TargetRegisterClass *> R =
4282       std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4283 
4284   // Figure out which register class contains this reg.
4285   for (const TargetRegisterClass *RC : RI->regclasses()) {
4286     // If none of the value types for this register class are valid, we
4287     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
4288     if (!isLegalRC(*RI, *RC))
4289       continue;
4290 
4291     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4292          I != E; ++I) {
4293       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4294         std::pair<unsigned, const TargetRegisterClass *> S =
4295             std::make_pair(*I, RC);
4296 
4297         // If this register class has the requested value type, return it,
4298         // otherwise keep searching and return the first class found
4299         // if no other is found which explicitly has the requested type.
4300         if (RI->isTypeLegalForClass(*RC, VT))
4301           return S;
4302         if (!R.second)
4303           R = S;
4304       }
4305     }
4306   }
4307 
4308   return R;
4309 }
4310 
4311 //===----------------------------------------------------------------------===//
4312 // Constraint Selection.
4313 
4314 /// Return true of this is an input operand that is a matching constraint like
4315 /// "4".
4316 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4317   assert(!ConstraintCode.empty() && "No known constraint!");
4318   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4319 }
4320 
4321 /// If this is an input matching constraint, this method returns the output
4322 /// operand it matches.
4323 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4324   assert(!ConstraintCode.empty() && "No known constraint!");
4325   return atoi(ConstraintCode.c_str());
4326 }
4327 
4328 /// Split up the constraint string from the inline assembly value into the
4329 /// specific constraints and their prefixes, and also tie in the associated
4330 /// operand values.
4331 /// If this returns an empty vector, and if the constraint string itself
4332 /// isn't empty, there was an error parsing.
4333 TargetLowering::AsmOperandInfoVector
4334 TargetLowering::ParseConstraints(const DataLayout &DL,
4335                                  const TargetRegisterInfo *TRI,
4336                                  const CallBase &Call) const {
4337   /// Information about all of the constraints.
4338   AsmOperandInfoVector ConstraintOperands;
4339   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
4340   unsigned maCount = 0; // Largest number of multiple alternative constraints.
4341 
4342   // Do a prepass over the constraints, canonicalizing them, and building up the
4343   // ConstraintOperands list.
4344   unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4345   unsigned ResNo = 0; // ResNo - The result number of the next output.
4346 
4347   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4348     ConstraintOperands.emplace_back(std::move(CI));
4349     AsmOperandInfo &OpInfo = ConstraintOperands.back();
4350 
4351     // Update multiple alternative constraint count.
4352     if (OpInfo.multipleAlternatives.size() > maCount)
4353       maCount = OpInfo.multipleAlternatives.size();
4354 
4355     OpInfo.ConstraintVT = MVT::Other;
4356 
4357     // Compute the value type for each operand.
4358     switch (OpInfo.Type) {
4359     case InlineAsm::isOutput:
4360       // Indirect outputs just consume an argument.
4361       if (OpInfo.isIndirect) {
4362         OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4363         break;
4364       }
4365 
4366       // The return value of the call is this value.  As such, there is no
4367       // corresponding argument.
4368       assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
4369       if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
4370         OpInfo.ConstraintVT =
4371             getSimpleValueType(DL, STy->getElementType(ResNo));
4372       } else {
4373         assert(ResNo == 0 && "Asm only has one result!");
4374         OpInfo.ConstraintVT = getSimpleValueType(DL, Call.getType());
4375       }
4376       ++ResNo;
4377       break;
4378     case InlineAsm::isInput:
4379       OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
4380       break;
4381     case InlineAsm::isClobber:
4382       // Nothing to do.
4383       break;
4384     }
4385 
4386     if (OpInfo.CallOperandVal) {
4387       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4388       if (OpInfo.isIndirect) {
4389         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4390         if (!PtrTy)
4391           report_fatal_error("Indirect operand for inline asm not a pointer!");
4392         OpTy = PtrTy->getElementType();
4393       }
4394 
4395       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4396       if (StructType *STy = dyn_cast<StructType>(OpTy))
4397         if (STy->getNumElements() == 1)
4398           OpTy = STy->getElementType(0);
4399 
4400       // If OpTy is not a single value, it may be a struct/union that we
4401       // can tile with integers.
4402       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4403         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4404         switch (BitSize) {
4405         default: break;
4406         case 1:
4407         case 8:
4408         case 16:
4409         case 32:
4410         case 64:
4411         case 128:
4412           OpInfo.ConstraintVT =
4413               MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4414           break;
4415         }
4416       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4417         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4418         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4419       } else {
4420         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4421       }
4422     }
4423   }
4424 
4425   // If we have multiple alternative constraints, select the best alternative.
4426   if (!ConstraintOperands.empty()) {
4427     if (maCount) {
4428       unsigned bestMAIndex = 0;
4429       int bestWeight = -1;
4430       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
4431       int weight = -1;
4432       unsigned maIndex;
4433       // Compute the sums of the weights for each alternative, keeping track
4434       // of the best (highest weight) one so far.
4435       for (maIndex = 0; maIndex < maCount; ++maIndex) {
4436         int weightSum = 0;
4437         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4438              cIndex != eIndex; ++cIndex) {
4439           AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4440           if (OpInfo.Type == InlineAsm::isClobber)
4441             continue;
4442 
4443           // If this is an output operand with a matching input operand,
4444           // look up the matching input. If their types mismatch, e.g. one
4445           // is an integer, the other is floating point, or their sizes are
4446           // different, flag it as an maCantMatch.
4447           if (OpInfo.hasMatchingInput()) {
4448             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4449             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4450               if ((OpInfo.ConstraintVT.isInteger() !=
4451                    Input.ConstraintVT.isInteger()) ||
4452                   (OpInfo.ConstraintVT.getSizeInBits() !=
4453                    Input.ConstraintVT.getSizeInBits())) {
4454                 weightSum = -1; // Can't match.
4455                 break;
4456               }
4457             }
4458           }
4459           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4460           if (weight == -1) {
4461             weightSum = -1;
4462             break;
4463           }
4464           weightSum += weight;
4465         }
4466         // Update best.
4467         if (weightSum > bestWeight) {
4468           bestWeight = weightSum;
4469           bestMAIndex = maIndex;
4470         }
4471       }
4472 
4473       // Now select chosen alternative in each constraint.
4474       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4475            cIndex != eIndex; ++cIndex) {
4476         AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4477         if (cInfo.Type == InlineAsm::isClobber)
4478           continue;
4479         cInfo.selectAlternative(bestMAIndex);
4480       }
4481     }
4482   }
4483 
4484   // Check and hook up tied operands, choose constraint code to use.
4485   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4486        cIndex != eIndex; ++cIndex) {
4487     AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4488 
4489     // If this is an output operand with a matching input operand, look up the
4490     // matching input. If their types mismatch, e.g. one is an integer, the
4491     // other is floating point, or their sizes are different, flag it as an
4492     // error.
4493     if (OpInfo.hasMatchingInput()) {
4494       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4495 
4496       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4497         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4498             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4499                                          OpInfo.ConstraintVT);
4500         std::pair<unsigned, const TargetRegisterClass *> InputRC =
4501             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4502                                          Input.ConstraintVT);
4503         if ((OpInfo.ConstraintVT.isInteger() !=
4504              Input.ConstraintVT.isInteger()) ||
4505             (MatchRC.second != InputRC.second)) {
4506           report_fatal_error("Unsupported asm: input constraint"
4507                              " with a matching output constraint of"
4508                              " incompatible type!");
4509         }
4510       }
4511     }
4512   }
4513 
4514   return ConstraintOperands;
4515 }
4516 
4517 /// Return an integer indicating how general CT is.
4518 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4519   switch (CT) {
4520   case TargetLowering::C_Immediate:
4521   case TargetLowering::C_Other:
4522   case TargetLowering::C_Unknown:
4523     return 0;
4524   case TargetLowering::C_Register:
4525     return 1;
4526   case TargetLowering::C_RegisterClass:
4527     return 2;
4528   case TargetLowering::C_Memory:
4529     return 3;
4530   }
4531   llvm_unreachable("Invalid constraint type");
4532 }
4533 
4534 /// Examine constraint type and operand type and determine a weight value.
4535 /// This object must already have been set up with the operand type
4536 /// and the current alternative constraint selected.
4537 TargetLowering::ConstraintWeight
4538   TargetLowering::getMultipleConstraintMatchWeight(
4539     AsmOperandInfo &info, int maIndex) const {
4540   InlineAsm::ConstraintCodeVector *rCodes;
4541   if (maIndex >= (int)info.multipleAlternatives.size())
4542     rCodes = &info.Codes;
4543   else
4544     rCodes = &info.multipleAlternatives[maIndex].Codes;
4545   ConstraintWeight BestWeight = CW_Invalid;
4546 
4547   // Loop over the options, keeping track of the most general one.
4548   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4549     ConstraintWeight weight =
4550       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4551     if (weight > BestWeight)
4552       BestWeight = weight;
4553   }
4554 
4555   return BestWeight;
4556 }
4557 
4558 /// Examine constraint type and operand type and determine a weight value.
4559 /// This object must already have been set up with the operand type
4560 /// and the current alternative constraint selected.
4561 TargetLowering::ConstraintWeight
4562   TargetLowering::getSingleConstraintMatchWeight(
4563     AsmOperandInfo &info, const char *constraint) const {
4564   ConstraintWeight weight = CW_Invalid;
4565   Value *CallOperandVal = info.CallOperandVal;
4566     // If we don't have a value, we can't do a match,
4567     // but allow it at the lowest weight.
4568   if (!CallOperandVal)
4569     return CW_Default;
4570   // Look at the constraint type.
4571   switch (*constraint) {
4572     case 'i': // immediate integer.
4573     case 'n': // immediate integer with a known value.
4574       if (isa<ConstantInt>(CallOperandVal))
4575         weight = CW_Constant;
4576       break;
4577     case 's': // non-explicit intregal immediate.
4578       if (isa<GlobalValue>(CallOperandVal))
4579         weight = CW_Constant;
4580       break;
4581     case 'E': // immediate float if host format.
4582     case 'F': // immediate float.
4583       if (isa<ConstantFP>(CallOperandVal))
4584         weight = CW_Constant;
4585       break;
4586     case '<': // memory operand with autodecrement.
4587     case '>': // memory operand with autoincrement.
4588     case 'm': // memory operand.
4589     case 'o': // offsettable memory operand
4590     case 'V': // non-offsettable memory operand
4591       weight = CW_Memory;
4592       break;
4593     case 'r': // general register.
4594     case 'g': // general register, memory operand or immediate integer.
4595               // note: Clang converts "g" to "imr".
4596       if (CallOperandVal->getType()->isIntegerTy())
4597         weight = CW_Register;
4598       break;
4599     case 'X': // any operand.
4600   default:
4601     weight = CW_Default;
4602     break;
4603   }
4604   return weight;
4605 }
4606 
4607 /// If there are multiple different constraints that we could pick for this
4608 /// operand (e.g. "imr") try to pick the 'best' one.
4609 /// This is somewhat tricky: constraints fall into four classes:
4610 ///    Other         -> immediates and magic values
4611 ///    Register      -> one specific register
4612 ///    RegisterClass -> a group of regs
4613 ///    Memory        -> memory
4614 /// Ideally, we would pick the most specific constraint possible: if we have
4615 /// something that fits into a register, we would pick it.  The problem here
4616 /// is that if we have something that could either be in a register or in
4617 /// memory that use of the register could cause selection of *other*
4618 /// operands to fail: they might only succeed if we pick memory.  Because of
4619 /// this the heuristic we use is:
4620 ///
4621 ///  1) If there is an 'other' constraint, and if the operand is valid for
4622 ///     that constraint, use it.  This makes us take advantage of 'i'
4623 ///     constraints when available.
4624 ///  2) Otherwise, pick the most general constraint present.  This prefers
4625 ///     'm' over 'r', for example.
4626 ///
4627 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4628                              const TargetLowering &TLI,
4629                              SDValue Op, SelectionDAG *DAG) {
4630   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4631   unsigned BestIdx = 0;
4632   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4633   int BestGenerality = -1;
4634 
4635   // Loop over the options, keeping track of the most general one.
4636   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4637     TargetLowering::ConstraintType CType =
4638       TLI.getConstraintType(OpInfo.Codes[i]);
4639 
4640     // Indirect 'other' or 'immediate' constraints are not allowed.
4641     if (OpInfo.isIndirect && !(CType == TargetLowering::C_Memory ||
4642                                CType == TargetLowering::C_Register ||
4643                                CType == TargetLowering::C_RegisterClass))
4644       continue;
4645 
4646     // If this is an 'other' or 'immediate' constraint, see if the operand is
4647     // valid for it. For example, on X86 we might have an 'rI' constraint. If
4648     // the operand is an integer in the range [0..31] we want to use I (saving a
4649     // load of a register), otherwise we must use 'r'.
4650     if ((CType == TargetLowering::C_Other ||
4651          CType == TargetLowering::C_Immediate) && Op.getNode()) {
4652       assert(OpInfo.Codes[i].size() == 1 &&
4653              "Unhandled multi-letter 'other' constraint");
4654       std::vector<SDValue> ResultOps;
4655       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4656                                        ResultOps, *DAG);
4657       if (!ResultOps.empty()) {
4658         BestType = CType;
4659         BestIdx = i;
4660         break;
4661       }
4662     }
4663 
4664     // Things with matching constraints can only be registers, per gcc
4665     // documentation.  This mainly affects "g" constraints.
4666     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4667       continue;
4668 
4669     // This constraint letter is more general than the previous one, use it.
4670     int Generality = getConstraintGenerality(CType);
4671     if (Generality > BestGenerality) {
4672       BestType = CType;
4673       BestIdx = i;
4674       BestGenerality = Generality;
4675     }
4676   }
4677 
4678   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4679   OpInfo.ConstraintType = BestType;
4680 }
4681 
4682 /// Determines the constraint code and constraint type to use for the specific
4683 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4684 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4685                                             SDValue Op,
4686                                             SelectionDAG *DAG) const {
4687   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4688 
4689   // Single-letter constraints ('r') are very common.
4690   if (OpInfo.Codes.size() == 1) {
4691     OpInfo.ConstraintCode = OpInfo.Codes[0];
4692     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4693   } else {
4694     ChooseConstraint(OpInfo, *this, Op, DAG);
4695   }
4696 
4697   // 'X' matches anything.
4698   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4699     // Labels and constants are handled elsewhere ('X' is the only thing
4700     // that matches labels).  For Functions, the type here is the type of
4701     // the result, which is not what we want to look at; leave them alone.
4702     Value *v = OpInfo.CallOperandVal;
4703     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4704       OpInfo.CallOperandVal = v;
4705       return;
4706     }
4707 
4708     if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4709       return;
4710 
4711     // Otherwise, try to resolve it to something we know about by looking at
4712     // the actual operand type.
4713     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4714       OpInfo.ConstraintCode = Repl;
4715       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4716     }
4717   }
4718 }
4719 
4720 /// Given an exact SDIV by a constant, create a multiplication
4721 /// with the multiplicative inverse of the constant.
4722 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4723                               const SDLoc &dl, SelectionDAG &DAG,
4724                               SmallVectorImpl<SDNode *> &Created) {
4725   SDValue Op0 = N->getOperand(0);
4726   SDValue Op1 = N->getOperand(1);
4727   EVT VT = N->getValueType(0);
4728   EVT SVT = VT.getScalarType();
4729   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4730   EVT ShSVT = ShVT.getScalarType();
4731 
4732   bool UseSRA = false;
4733   SmallVector<SDValue, 16> Shifts, Factors;
4734 
4735   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4736     if (C->isNullValue())
4737       return false;
4738     APInt Divisor = C->getAPIntValue();
4739     unsigned Shift = Divisor.countTrailingZeros();
4740     if (Shift) {
4741       Divisor.ashrInPlace(Shift);
4742       UseSRA = true;
4743     }
4744     // Calculate the multiplicative inverse, using Newton's method.
4745     APInt t;
4746     APInt Factor = Divisor;
4747     while ((t = Divisor * Factor) != 1)
4748       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4749     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4750     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4751     return true;
4752   };
4753 
4754   // Collect all magic values from the build vector.
4755   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4756     return SDValue();
4757 
4758   SDValue Shift, Factor;
4759   if (VT.isVector()) {
4760     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4761     Factor = DAG.getBuildVector(VT, dl, Factors);
4762   } else {
4763     Shift = Shifts[0];
4764     Factor = Factors[0];
4765   }
4766 
4767   SDValue Res = Op0;
4768 
4769   // Shift the value upfront if it is even, so the LSB is one.
4770   if (UseSRA) {
4771     // TODO: For UDIV use SRL instead of SRA.
4772     SDNodeFlags Flags;
4773     Flags.setExact(true);
4774     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4775     Created.push_back(Res.getNode());
4776   }
4777 
4778   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4779 }
4780 
4781 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4782                               SelectionDAG &DAG,
4783                               SmallVectorImpl<SDNode *> &Created) const {
4784   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4785   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4786   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4787     return SDValue(N, 0); // Lower SDIV as SDIV
4788   return SDValue();
4789 }
4790 
4791 /// Given an ISD::SDIV node expressing a divide by constant,
4792 /// return a DAG expression to select that will generate the same value by
4793 /// multiplying by a magic number.
4794 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4795 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4796                                   bool IsAfterLegalization,
4797                                   SmallVectorImpl<SDNode *> &Created) const {
4798   SDLoc dl(N);
4799   EVT VT = N->getValueType(0);
4800   EVT SVT = VT.getScalarType();
4801   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4802   EVT ShSVT = ShVT.getScalarType();
4803   unsigned EltBits = VT.getScalarSizeInBits();
4804 
4805   // Check to see if we can do this.
4806   // FIXME: We should be more aggressive here.
4807   if (!isTypeLegal(VT))
4808     return SDValue();
4809 
4810   // If the sdiv has an 'exact' bit we can use a simpler lowering.
4811   if (N->getFlags().hasExact())
4812     return BuildExactSDIV(*this, N, dl, DAG, Created);
4813 
4814   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4815 
4816   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4817     if (C->isNullValue())
4818       return false;
4819 
4820     const APInt &Divisor = C->getAPIntValue();
4821     APInt::ms magics = Divisor.magic();
4822     int NumeratorFactor = 0;
4823     int ShiftMask = -1;
4824 
4825     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4826       // If d is +1/-1, we just multiply the numerator by +1/-1.
4827       NumeratorFactor = Divisor.getSExtValue();
4828       magics.m = 0;
4829       magics.s = 0;
4830       ShiftMask = 0;
4831     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4832       // If d > 0 and m < 0, add the numerator.
4833       NumeratorFactor = 1;
4834     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4835       // If d < 0 and m > 0, subtract the numerator.
4836       NumeratorFactor = -1;
4837     }
4838 
4839     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4840     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4841     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4842     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4843     return true;
4844   };
4845 
4846   SDValue N0 = N->getOperand(0);
4847   SDValue N1 = N->getOperand(1);
4848 
4849   // Collect the shifts / magic values from each element.
4850   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4851     return SDValue();
4852 
4853   SDValue MagicFactor, Factor, Shift, ShiftMask;
4854   if (VT.isVector()) {
4855     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4856     Factor = DAG.getBuildVector(VT, dl, Factors);
4857     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4858     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4859   } else {
4860     MagicFactor = MagicFactors[0];
4861     Factor = Factors[0];
4862     Shift = Shifts[0];
4863     ShiftMask = ShiftMasks[0];
4864   }
4865 
4866   // Multiply the numerator (operand 0) by the magic value.
4867   // FIXME: We should support doing a MUL in a wider type.
4868   SDValue Q;
4869   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4870                           : isOperationLegalOrCustom(ISD::MULHS, VT))
4871     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4872   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4873                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4874     SDValue LoHi =
4875         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4876     Q = SDValue(LoHi.getNode(), 1);
4877   } else
4878     return SDValue(); // No mulhs or equivalent.
4879   Created.push_back(Q.getNode());
4880 
4881   // (Optionally) Add/subtract the numerator using Factor.
4882   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4883   Created.push_back(Factor.getNode());
4884   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4885   Created.push_back(Q.getNode());
4886 
4887   // Shift right algebraic by shift value.
4888   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4889   Created.push_back(Q.getNode());
4890 
4891   // Extract the sign bit, mask it and add it to the quotient.
4892   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4893   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4894   Created.push_back(T.getNode());
4895   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4896   Created.push_back(T.getNode());
4897   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4898 }
4899 
4900 /// Given an ISD::UDIV node expressing a divide by constant,
4901 /// return a DAG expression to select that will generate the same value by
4902 /// multiplying by a magic number.
4903 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4904 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4905                                   bool IsAfterLegalization,
4906                                   SmallVectorImpl<SDNode *> &Created) const {
4907   SDLoc dl(N);
4908   EVT VT = N->getValueType(0);
4909   EVT SVT = VT.getScalarType();
4910   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4911   EVT ShSVT = ShVT.getScalarType();
4912   unsigned EltBits = VT.getScalarSizeInBits();
4913 
4914   // Check to see if we can do this.
4915   // FIXME: We should be more aggressive here.
4916   if (!isTypeLegal(VT))
4917     return SDValue();
4918 
4919   bool UseNPQ = false;
4920   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4921 
4922   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4923     if (C->isNullValue())
4924       return false;
4925     // FIXME: We should use a narrower constant when the upper
4926     // bits are known to be zero.
4927     APInt Divisor = C->getAPIntValue();
4928     APInt::mu magics = Divisor.magicu();
4929     unsigned PreShift = 0, PostShift = 0;
4930 
4931     // If the divisor is even, we can avoid using the expensive fixup by
4932     // shifting the divided value upfront.
4933     if (magics.a != 0 && !Divisor[0]) {
4934       PreShift = Divisor.countTrailingZeros();
4935       // Get magic number for the shifted divisor.
4936       magics = Divisor.lshr(PreShift).magicu(PreShift);
4937       assert(magics.a == 0 && "Should use cheap fixup now");
4938     }
4939 
4940     APInt Magic = magics.m;
4941 
4942     unsigned SelNPQ;
4943     if (magics.a == 0 || Divisor.isOneValue()) {
4944       assert(magics.s < Divisor.getBitWidth() &&
4945              "We shouldn't generate an undefined shift!");
4946       PostShift = magics.s;
4947       SelNPQ = false;
4948     } else {
4949       PostShift = magics.s - 1;
4950       SelNPQ = true;
4951     }
4952 
4953     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4954     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4955     NPQFactors.push_back(
4956         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4957                                : APInt::getNullValue(EltBits),
4958                         dl, SVT));
4959     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4960     UseNPQ |= SelNPQ;
4961     return true;
4962   };
4963 
4964   SDValue N0 = N->getOperand(0);
4965   SDValue N1 = N->getOperand(1);
4966 
4967   // Collect the shifts/magic values from each element.
4968   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4969     return SDValue();
4970 
4971   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4972   if (VT.isVector()) {
4973     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4974     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4975     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4976     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4977   } else {
4978     PreShift = PreShifts[0];
4979     MagicFactor = MagicFactors[0];
4980     PostShift = PostShifts[0];
4981   }
4982 
4983   SDValue Q = N0;
4984   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4985   Created.push_back(Q.getNode());
4986 
4987   // FIXME: We should support doing a MUL in a wider type.
4988   auto GetMULHU = [&](SDValue X, SDValue Y) {
4989     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4990                             : isOperationLegalOrCustom(ISD::MULHU, VT))
4991       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4992     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4993                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4994       SDValue LoHi =
4995           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4996       return SDValue(LoHi.getNode(), 1);
4997     }
4998     return SDValue(); // No mulhu or equivalent
4999   };
5000 
5001   // Multiply the numerator (operand 0) by the magic value.
5002   Q = GetMULHU(Q, MagicFactor);
5003   if (!Q)
5004     return SDValue();
5005 
5006   Created.push_back(Q.getNode());
5007 
5008   if (UseNPQ) {
5009     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
5010     Created.push_back(NPQ.getNode());
5011 
5012     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
5013     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
5014     if (VT.isVector())
5015       NPQ = GetMULHU(NPQ, NPQFactor);
5016     else
5017       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
5018 
5019     Created.push_back(NPQ.getNode());
5020 
5021     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
5022     Created.push_back(Q.getNode());
5023   }
5024 
5025   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
5026   Created.push_back(Q.getNode());
5027 
5028   SDValue One = DAG.getConstant(1, dl, VT);
5029   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
5030   return DAG.getSelect(dl, VT, IsOne, N0, Q);
5031 }
5032 
5033 /// If all values in Values that *don't* match the predicate are same 'splat'
5034 /// value, then replace all values with that splat value.
5035 /// Else, if AlternativeReplacement was provided, then replace all values that
5036 /// do match predicate with AlternativeReplacement value.
5037 static void
5038 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
5039                           std::function<bool(SDValue)> Predicate,
5040                           SDValue AlternativeReplacement = SDValue()) {
5041   SDValue Replacement;
5042   // Is there a value for which the Predicate does *NOT* match? What is it?
5043   auto SplatValue = llvm::find_if_not(Values, Predicate);
5044   if (SplatValue != Values.end()) {
5045     // Does Values consist only of SplatValue's and values matching Predicate?
5046     if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
5047           return Value == *SplatValue || Predicate(Value);
5048         })) // Then we shall replace values matching predicate with SplatValue.
5049       Replacement = *SplatValue;
5050   }
5051   if (!Replacement) {
5052     // Oops, we did not find the "baseline" splat value.
5053     if (!AlternativeReplacement)
5054       return; // Nothing to do.
5055     // Let's replace with provided value then.
5056     Replacement = AlternativeReplacement;
5057   }
5058   std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
5059 }
5060 
5061 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
5062 /// where the divisor is constant and the comparison target is zero,
5063 /// return a DAG expression that will generate the same comparison result
5064 /// using only multiplications, additions and shifts/rotations.
5065 /// Ref: "Hacker's Delight" 10-17.
5066 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
5067                                         SDValue CompTargetNode,
5068                                         ISD::CondCode Cond,
5069                                         DAGCombinerInfo &DCI,
5070                                         const SDLoc &DL) const {
5071   SmallVector<SDNode *, 5> Built;
5072   if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5073                                          DCI, DL, Built)) {
5074     for (SDNode *N : Built)
5075       DCI.AddToWorklist(N);
5076     return Folded;
5077   }
5078 
5079   return SDValue();
5080 }
5081 
5082 SDValue
5083 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5084                                   SDValue CompTargetNode, ISD::CondCode Cond,
5085                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5086                                   SmallVectorImpl<SDNode *> &Created) const {
5087   // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
5088   // - D must be constant, with D = D0 * 2^K where D0 is odd
5089   // - P is the multiplicative inverse of D0 modulo 2^W
5090   // - Q = floor(((2^W) - 1) / D)
5091   // where W is the width of the common type of N and D.
5092   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5093          "Only applicable for (in)equality comparisons.");
5094 
5095   SelectionDAG &DAG = DCI.DAG;
5096 
5097   EVT VT = REMNode.getValueType();
5098   EVT SVT = VT.getScalarType();
5099   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5100   EVT ShSVT = ShVT.getScalarType();
5101 
5102   // If MUL is unavailable, we cannot proceed in any case.
5103   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5104     return SDValue();
5105 
5106   bool ComparingWithAllZeros = true;
5107   bool AllComparisonsWithNonZerosAreTautological = true;
5108   bool HadTautologicalLanes = false;
5109   bool AllLanesAreTautological = true;
5110   bool HadEvenDivisor = false;
5111   bool AllDivisorsArePowerOfTwo = true;
5112   bool HadTautologicalInvertedLanes = false;
5113   SmallVector<SDValue, 16> PAmts, KAmts, QAmts, IAmts;
5114 
5115   auto BuildUREMPattern = [&](ConstantSDNode *CDiv, ConstantSDNode *CCmp) {
5116     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5117     if (CDiv->isNullValue())
5118       return false;
5119 
5120     const APInt &D = CDiv->getAPIntValue();
5121     const APInt &Cmp = CCmp->getAPIntValue();
5122 
5123     ComparingWithAllZeros &= Cmp.isNullValue();
5124 
5125     // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5126     // if C2 is not less than C1, the comparison is always false.
5127     // But we will only be able to produce the comparison that will give the
5128     // opposive tautological answer. So this lane would need to be fixed up.
5129     bool TautologicalInvertedLane = D.ule(Cmp);
5130     HadTautologicalInvertedLanes |= TautologicalInvertedLane;
5131 
5132     // If all lanes are tautological (either all divisors are ones, or divisor
5133     // is not greater than the constant we are comparing with),
5134     // we will prefer to avoid the fold.
5135     bool TautologicalLane = D.isOneValue() || TautologicalInvertedLane;
5136     HadTautologicalLanes |= TautologicalLane;
5137     AllLanesAreTautological &= TautologicalLane;
5138 
5139     // If we are comparing with non-zero, we need'll need  to subtract said
5140     // comparison value from the LHS. But there is no point in doing that if
5141     // every lane where we are comparing with non-zero is tautological..
5142     if (!Cmp.isNullValue())
5143       AllComparisonsWithNonZerosAreTautological &= TautologicalLane;
5144 
5145     // Decompose D into D0 * 2^K
5146     unsigned K = D.countTrailingZeros();
5147     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5148     APInt D0 = D.lshr(K);
5149 
5150     // D is even if it has trailing zeros.
5151     HadEvenDivisor |= (K != 0);
5152     // D is a power-of-two if D0 is one.
5153     // If all divisors are power-of-two, we will prefer to avoid the fold.
5154     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5155 
5156     // P = inv(D0, 2^W)
5157     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5158     unsigned W = D.getBitWidth();
5159     APInt P = D0.zext(W + 1)
5160                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5161                   .trunc(W);
5162     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5163     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5164 
5165     // Q = floor((2^W - 1) u/ D)
5166     // R = ((2^W - 1) u% D)
5167     APInt Q, R;
5168     APInt::udivrem(APInt::getAllOnesValue(W), D, Q, R);
5169 
5170     // If we are comparing with zero, then that comparison constant is okay,
5171     // else it may need to be one less than that.
5172     if (Cmp.ugt(R))
5173       Q -= 1;
5174 
5175     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5176            "We are expecting that K is always less than all-ones for ShSVT");
5177 
5178     // If the lane is tautological the result can be constant-folded.
5179     if (TautologicalLane) {
5180       // Set P and K amount to a bogus values so we can try to splat them.
5181       P = 0;
5182       K = -1;
5183       // And ensure that comparison constant is tautological,
5184       // it will always compare true/false.
5185       Q = -1;
5186     }
5187 
5188     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5189     KAmts.push_back(
5190         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5191     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5192     return true;
5193   };
5194 
5195   SDValue N = REMNode.getOperand(0);
5196   SDValue D = REMNode.getOperand(1);
5197 
5198   // Collect the values from each element.
5199   if (!ISD::matchBinaryPredicate(D, CompTargetNode, BuildUREMPattern))
5200     return SDValue();
5201 
5202   // If all lanes are tautological, the result can be constant-folded.
5203   if (AllLanesAreTautological)
5204     return SDValue();
5205 
5206   // If this is a urem by a powers-of-two, avoid the fold since it can be
5207   // best implemented as a bit test.
5208   if (AllDivisorsArePowerOfTwo)
5209     return SDValue();
5210 
5211   SDValue PVal, KVal, QVal;
5212   if (VT.isVector()) {
5213     if (HadTautologicalLanes) {
5214       // Try to turn PAmts into a splat, since we don't care about the values
5215       // that are currently '0'. If we can't, just keep '0'`s.
5216       turnVectorIntoSplatVector(PAmts, isNullConstant);
5217       // Try to turn KAmts into a splat, since we don't care about the values
5218       // that are currently '-1'. If we can't, change them to '0'`s.
5219       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5220                                 DAG.getConstant(0, DL, ShSVT));
5221     }
5222 
5223     PVal = DAG.getBuildVector(VT, DL, PAmts);
5224     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5225     QVal = DAG.getBuildVector(VT, DL, QAmts);
5226   } else {
5227     PVal = PAmts[0];
5228     KVal = KAmts[0];
5229     QVal = QAmts[0];
5230   }
5231 
5232   if (!ComparingWithAllZeros && !AllComparisonsWithNonZerosAreTautological) {
5233     if (!isOperationLegalOrCustom(ISD::SUB, VT))
5234       return SDValue(); // FIXME: Could/should use `ISD::ADD`?
5235     assert(CompTargetNode.getValueType() == N.getValueType() &&
5236            "Expecting that the types on LHS and RHS of comparisons match.");
5237     N = DAG.getNode(ISD::SUB, DL, VT, N, CompTargetNode);
5238   }
5239 
5240   // (mul N, P)
5241   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5242   Created.push_back(Op0.getNode());
5243 
5244   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5245   // divisors as a performance improvement, since rotating by 0 is a no-op.
5246   if (HadEvenDivisor) {
5247     // We need ROTR to do this.
5248     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5249       return SDValue();
5250     SDNodeFlags Flags;
5251     Flags.setExact(true);
5252     // UREM: (rotr (mul N, P), K)
5253     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5254     Created.push_back(Op0.getNode());
5255   }
5256 
5257   // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5258   SDValue NewCC =
5259       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5260                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5261   if (!HadTautologicalInvertedLanes)
5262     return NewCC;
5263 
5264   // If any lanes previously compared always-false, the NewCC will give
5265   // always-true result for them, so we need to fixup those lanes.
5266   // Or the other way around for inequality predicate.
5267   assert(VT.isVector() && "Can/should only get here for vectors.");
5268   Created.push_back(NewCC.getNode());
5269 
5270   // x u% C1` is *always* less than C1. So given `x u% C1 == C2`,
5271   // if C2 is not less than C1, the comparison is always false.
5272   // But we have produced the comparison that will give the
5273   // opposive tautological answer. So these lanes would need to be fixed up.
5274   SDValue TautologicalInvertedChannels =
5275       DAG.getSetCC(DL, SETCCVT, D, CompTargetNode, ISD::SETULE);
5276   Created.push_back(TautologicalInvertedChannels.getNode());
5277 
5278   if (isOperationLegalOrCustom(ISD::VSELECT, SETCCVT)) {
5279     // If we have a vector select, let's replace the comparison results in the
5280     // affected lanes with the correct tautological result.
5281     SDValue Replacement = DAG.getBoolConstant(Cond == ISD::SETEQ ? false : true,
5282                                               DL, SETCCVT, SETCCVT);
5283     return DAG.getNode(ISD::VSELECT, DL, SETCCVT, TautologicalInvertedChannels,
5284                        Replacement, NewCC);
5285   }
5286 
5287   // Else, we can just invert the comparison result in the appropriate lanes.
5288   if (isOperationLegalOrCustom(ISD::XOR, SETCCVT))
5289     return DAG.getNode(ISD::XOR, DL, SETCCVT, NewCC,
5290                        TautologicalInvertedChannels);
5291 
5292   return SDValue(); // Don't know how to lower.
5293 }
5294 
5295 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5296 /// where the divisor is constant and the comparison target is zero,
5297 /// return a DAG expression that will generate the same comparison result
5298 /// using only multiplications, additions and shifts/rotations.
5299 /// Ref: "Hacker's Delight" 10-17.
5300 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5301                                         SDValue CompTargetNode,
5302                                         ISD::CondCode Cond,
5303                                         DAGCombinerInfo &DCI,
5304                                         const SDLoc &DL) const {
5305   SmallVector<SDNode *, 7> Built;
5306   if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5307                                          DCI, DL, Built)) {
5308     assert(Built.size() <= 7 && "Max size prediction failed.");
5309     for (SDNode *N : Built)
5310       DCI.AddToWorklist(N);
5311     return Folded;
5312   }
5313 
5314   return SDValue();
5315 }
5316 
5317 SDValue
5318 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5319                                   SDValue CompTargetNode, ISD::CondCode Cond,
5320                                   DAGCombinerInfo &DCI, const SDLoc &DL,
5321                                   SmallVectorImpl<SDNode *> &Created) const {
5322   // Fold:
5323   //   (seteq/ne (srem N, D), 0)
5324   // To:
5325   //   (setule/ugt (rotr (add (mul N, P), A), K), Q)
5326   //
5327   // - D must be constant, with D = D0 * 2^K where D0 is odd
5328   // - P is the multiplicative inverse of D0 modulo 2^W
5329   // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5330   // - Q = floor((2 * A) / (2^K))
5331   // where W is the width of the common type of N and D.
5332   assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5333          "Only applicable for (in)equality comparisons.");
5334 
5335   SelectionDAG &DAG = DCI.DAG;
5336 
5337   EVT VT = REMNode.getValueType();
5338   EVT SVT = VT.getScalarType();
5339   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5340   EVT ShSVT = ShVT.getScalarType();
5341 
5342   // If MUL is unavailable, we cannot proceed in any case.
5343   if (!isOperationLegalOrCustom(ISD::MUL, VT))
5344     return SDValue();
5345 
5346   // TODO: Could support comparing with non-zero too.
5347   ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5348   if (!CompTarget || !CompTarget->isNullValue())
5349     return SDValue();
5350 
5351   bool HadIntMinDivisor = false;
5352   bool HadOneDivisor = false;
5353   bool AllDivisorsAreOnes = true;
5354   bool HadEvenDivisor = false;
5355   bool NeedToApplyOffset = false;
5356   bool AllDivisorsArePowerOfTwo = true;
5357   SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5358 
5359   auto BuildSREMPattern = [&](ConstantSDNode *C) {
5360     // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5361     if (C->isNullValue())
5362       return false;
5363 
5364     // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5365 
5366     // WARNING: this fold is only valid for positive divisors!
5367     APInt D = C->getAPIntValue();
5368     if (D.isNegative())
5369       D.negate(); //  `rem %X, -C` is equivalent to `rem %X, C`
5370 
5371     HadIntMinDivisor |= D.isMinSignedValue();
5372 
5373     // If all divisors are ones, we will prefer to avoid the fold.
5374     HadOneDivisor |= D.isOneValue();
5375     AllDivisorsAreOnes &= D.isOneValue();
5376 
5377     // Decompose D into D0 * 2^K
5378     unsigned K = D.countTrailingZeros();
5379     assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5380     APInt D0 = D.lshr(K);
5381 
5382     if (!D.isMinSignedValue()) {
5383       // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5384       // we don't care about this lane in this fold, we'll special-handle it.
5385       HadEvenDivisor |= (K != 0);
5386     }
5387 
5388     // D is a power-of-two if D0 is one. This includes INT_MIN.
5389     // If all divisors are power-of-two, we will prefer to avoid the fold.
5390     AllDivisorsArePowerOfTwo &= D0.isOneValue();
5391 
5392     // P = inv(D0, 2^W)
5393     // 2^W requires W + 1 bits, so we have to extend and then truncate.
5394     unsigned W = D.getBitWidth();
5395     APInt P = D0.zext(W + 1)
5396                   .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5397                   .trunc(W);
5398     assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5399     assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5400 
5401     // A = floor((2^(W - 1) - 1) / D0) & -2^K
5402     APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5403     A.clearLowBits(K);
5404 
5405     if (!D.isMinSignedValue()) {
5406       // If divisor INT_MIN, then we don't care about this lane in this fold,
5407       // we'll special-handle it.
5408       NeedToApplyOffset |= A != 0;
5409     }
5410 
5411     // Q = floor((2 * A) / (2^K))
5412     APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5413 
5414     assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5415            "We are expecting that A is always less than all-ones for SVT");
5416     assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5417            "We are expecting that K is always less than all-ones for ShSVT");
5418 
5419     // If the divisor is 1 the result can be constant-folded. Likewise, we
5420     // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5421     if (D.isOneValue()) {
5422       // Set P, A and K to a bogus values so we can try to splat them.
5423       P = 0;
5424       A = -1;
5425       K = -1;
5426 
5427       // x ?% 1 == 0  <-->  true  <-->  x u<= -1
5428       Q = -1;
5429     }
5430 
5431     PAmts.push_back(DAG.getConstant(P, DL, SVT));
5432     AAmts.push_back(DAG.getConstant(A, DL, SVT));
5433     KAmts.push_back(
5434         DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5435     QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5436     return true;
5437   };
5438 
5439   SDValue N = REMNode.getOperand(0);
5440   SDValue D = REMNode.getOperand(1);
5441 
5442   // Collect the values from each element.
5443   if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5444     return SDValue();
5445 
5446   // If this is a srem by a one, avoid the fold since it can be constant-folded.
5447   if (AllDivisorsAreOnes)
5448     return SDValue();
5449 
5450   // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5451   // since it can be best implemented as a bit test.
5452   if (AllDivisorsArePowerOfTwo)
5453     return SDValue();
5454 
5455   SDValue PVal, AVal, KVal, QVal;
5456   if (VT.isVector()) {
5457     if (HadOneDivisor) {
5458       // Try to turn PAmts into a splat, since we don't care about the values
5459       // that are currently '0'. If we can't, just keep '0'`s.
5460       turnVectorIntoSplatVector(PAmts, isNullConstant);
5461       // Try to turn AAmts into a splat, since we don't care about the
5462       // values that are currently '-1'. If we can't, change them to '0'`s.
5463       turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5464                                 DAG.getConstant(0, DL, SVT));
5465       // Try to turn KAmts into a splat, since we don't care about the values
5466       // that are currently '-1'. If we can't, change them to '0'`s.
5467       turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5468                                 DAG.getConstant(0, DL, ShSVT));
5469     }
5470 
5471     PVal = DAG.getBuildVector(VT, DL, PAmts);
5472     AVal = DAG.getBuildVector(VT, DL, AAmts);
5473     KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5474     QVal = DAG.getBuildVector(VT, DL, QAmts);
5475   } else {
5476     PVal = PAmts[0];
5477     AVal = AAmts[0];
5478     KVal = KAmts[0];
5479     QVal = QAmts[0];
5480   }
5481 
5482   // (mul N, P)
5483   SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5484   Created.push_back(Op0.getNode());
5485 
5486   if (NeedToApplyOffset) {
5487     // We need ADD to do this.
5488     if (!isOperationLegalOrCustom(ISD::ADD, VT))
5489       return SDValue();
5490 
5491     // (add (mul N, P), A)
5492     Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5493     Created.push_back(Op0.getNode());
5494   }
5495 
5496   // Rotate right only if any divisor was even. We avoid rotates for all-odd
5497   // divisors as a performance improvement, since rotating by 0 is a no-op.
5498   if (HadEvenDivisor) {
5499     // We need ROTR to do this.
5500     if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5501       return SDValue();
5502     SDNodeFlags Flags;
5503     Flags.setExact(true);
5504     // SREM: (rotr (add (mul N, P), A), K)
5505     Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5506     Created.push_back(Op0.getNode());
5507   }
5508 
5509   // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5510   SDValue Fold =
5511       DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5512                    ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5513 
5514   // If we didn't have lanes with INT_MIN divisor, then we're done.
5515   if (!HadIntMinDivisor)
5516     return Fold;
5517 
5518   // That fold is only valid for positive divisors. Which effectively means,
5519   // it is invalid for INT_MIN divisors. So if we have such a lane,
5520   // we must fix-up results for said lanes.
5521   assert(VT.isVector() && "Can/should only get here for vectors.");
5522 
5523   if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5524       !isOperationLegalOrCustom(ISD::AND, VT) ||
5525       !isOperationLegalOrCustom(Cond, VT) ||
5526       !isOperationLegalOrCustom(ISD::VSELECT, VT))
5527     return SDValue();
5528 
5529   Created.push_back(Fold.getNode());
5530 
5531   SDValue IntMin = DAG.getConstant(
5532       APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5533   SDValue IntMax = DAG.getConstant(
5534       APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5535   SDValue Zero =
5536       DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5537 
5538   // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5539   SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5540   Created.push_back(DivisorIsIntMin.getNode());
5541 
5542   // (N s% INT_MIN) ==/!= 0  <-->  (N & INT_MAX) ==/!= 0
5543   SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5544   Created.push_back(Masked.getNode());
5545   SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5546   Created.push_back(MaskedIsZero.getNode());
5547 
5548   // To produce final result we need to blend 2 vectors: 'SetCC' and
5549   // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5550   // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5551   // constant-folded, select can get lowered to a shuffle with constant mask.
5552   SDValue Blended =
5553       DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5554 
5555   return Blended;
5556 }
5557 
5558 bool TargetLowering::
5559 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5560   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5561     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5562                                 "be a constant integer");
5563     return true;
5564   }
5565 
5566   return false;
5567 }
5568 
5569 SDValue TargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
5570                                              bool LegalOps, bool OptForSize,
5571                                              NegatibleCost &Cost,
5572                                              unsigned Depth) const {
5573   // fneg is removable even if it has multiple uses.
5574   if (Op.getOpcode() == ISD::FNEG) {
5575     Cost = NegatibleCost::Cheaper;
5576     return Op.getOperand(0);
5577   }
5578 
5579   // Don't recurse exponentially.
5580   if (Depth > SelectionDAG::MaxRecursionDepth)
5581     return SDValue();
5582 
5583   // Pre-increment recursion depth for use in recursive calls.
5584   ++Depth;
5585   const SDNodeFlags Flags = Op->getFlags();
5586   const TargetOptions &Options = DAG.getTarget().Options;
5587   EVT VT = Op.getValueType();
5588   unsigned Opcode = Op.getOpcode();
5589 
5590   // Don't allow anything with multiple uses unless we know it is free.
5591   if (!Op.hasOneUse() && Opcode != ISD::ConstantFP) {
5592     bool IsFreeExtend = Opcode == ISD::FP_EXTEND &&
5593                         isFPExtFree(VT, Op.getOperand(0).getValueType());
5594     if (!IsFreeExtend)
5595       return SDValue();
5596   }
5597 
5598   SDLoc DL(Op);
5599 
5600   switch (Opcode) {
5601   case ISD::ConstantFP: {
5602     // Don't invert constant FP values after legalization unless the target says
5603     // the negated constant is legal.
5604     bool IsOpLegal =
5605         isOperationLegal(ISD::ConstantFP, VT) ||
5606         isFPImmLegal(neg(cast<ConstantFPSDNode>(Op)->getValueAPF()), VT,
5607                      OptForSize);
5608 
5609     if (LegalOps && !IsOpLegal)
5610       break;
5611 
5612     APFloat V = cast<ConstantFPSDNode>(Op)->getValueAPF();
5613     V.changeSign();
5614     SDValue CFP = DAG.getConstantFP(V, DL, VT);
5615 
5616     // If we already have the use of the negated floating constant, it is free
5617     // to negate it even it has multiple uses.
5618     if (!Op.hasOneUse() && CFP.use_empty())
5619       break;
5620     Cost = NegatibleCost::Neutral;
5621     return CFP;
5622   }
5623   case ISD::BUILD_VECTOR: {
5624     // Only permit BUILD_VECTOR of constants.
5625     if (llvm::any_of(Op->op_values(), [&](SDValue N) {
5626           return !N.isUndef() && !isa<ConstantFPSDNode>(N);
5627         }))
5628       break;
5629 
5630     bool IsOpLegal =
5631         (isOperationLegal(ISD::ConstantFP, VT) &&
5632          isOperationLegal(ISD::BUILD_VECTOR, VT)) ||
5633         llvm::all_of(Op->op_values(), [&](SDValue N) {
5634           return N.isUndef() ||
5635                  isFPImmLegal(neg(cast<ConstantFPSDNode>(N)->getValueAPF()), VT,
5636                               OptForSize);
5637         });
5638 
5639     if (LegalOps && !IsOpLegal)
5640       break;
5641 
5642     SmallVector<SDValue, 4> Ops;
5643     for (SDValue C : Op->op_values()) {
5644       if (C.isUndef()) {
5645         Ops.push_back(C);
5646         continue;
5647       }
5648       APFloat V = cast<ConstantFPSDNode>(C)->getValueAPF();
5649       V.changeSign();
5650       Ops.push_back(DAG.getConstantFP(V, DL, C.getValueType()));
5651     }
5652     Cost = NegatibleCost::Neutral;
5653     return DAG.getBuildVector(VT, DL, Ops);
5654   }
5655   case ISD::FADD: {
5656     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5657       break;
5658 
5659     // After operation legalization, it might not be legal to create new FSUBs.
5660     if (LegalOps && !isOperationLegalOrCustom(ISD::FSUB, VT))
5661       break;
5662     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5663 
5664     // fold (fneg (fadd X, Y)) -> (fsub (fneg X), Y)
5665     NegatibleCost CostX = NegatibleCost::Expensive;
5666     SDValue NegX =
5667         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5668     // fold (fneg (fadd X, Y)) -> (fsub (fneg Y), X)
5669     NegatibleCost CostY = NegatibleCost::Expensive;
5670     SDValue NegY =
5671         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5672 
5673     // Negate the X if its cost is less or equal than Y.
5674     if (NegX && (CostX <= CostY)) {
5675       Cost = CostX;
5676       return DAG.getNode(ISD::FSUB, DL, VT, NegX, Y, Flags);
5677     }
5678 
5679     // Negate the Y if it is not expensive.
5680     if (NegY) {
5681       Cost = CostY;
5682       return DAG.getNode(ISD::FSUB, DL, VT, NegY, X, Flags);
5683     }
5684     break;
5685   }
5686   case ISD::FSUB: {
5687     // We can't turn -(A-B) into B-A when we honor signed zeros.
5688     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5689       break;
5690 
5691     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5692     // fold (fneg (fsub 0, Y)) -> Y
5693     if (ConstantFPSDNode *C = isConstOrConstSplatFP(X, /*AllowUndefs*/ true))
5694       if (C->isZero()) {
5695         Cost = NegatibleCost::Cheaper;
5696         return Y;
5697       }
5698 
5699     // fold (fneg (fsub X, Y)) -> (fsub Y, X)
5700     Cost = NegatibleCost::Neutral;
5701     return DAG.getNode(ISD::FSUB, DL, VT, Y, X, Flags);
5702   }
5703   case ISD::FMUL:
5704   case ISD::FDIV: {
5705     SDValue X = Op.getOperand(0), Y = Op.getOperand(1);
5706 
5707     // fold (fneg (fmul X, Y)) -> (fmul (fneg X), Y)
5708     NegatibleCost CostX = NegatibleCost::Expensive;
5709     SDValue NegX =
5710         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5711     // fold (fneg (fmul X, Y)) -> (fmul X, (fneg Y))
5712     NegatibleCost CostY = NegatibleCost::Expensive;
5713     SDValue NegY =
5714         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5715 
5716     // Negate the X if its cost is less or equal than Y.
5717     if (NegX && (CostX <= CostY)) {
5718       Cost = CostX;
5719       return DAG.getNode(Opcode, DL, VT, NegX, Y, Flags);
5720     }
5721 
5722     // Ignore X * 2.0 because that is expected to be canonicalized to X + X.
5723     if (auto *C = isConstOrConstSplatFP(Op.getOperand(1)))
5724       if (C->isExactlyValue(2.0) && Op.getOpcode() == ISD::FMUL)
5725         break;
5726 
5727     // Negate the Y if it is not expensive.
5728     if (NegY) {
5729       Cost = CostY;
5730       return DAG.getNode(Opcode, DL, VT, X, NegY, Flags);
5731     }
5732     break;
5733   }
5734   case ISD::FMA:
5735   case ISD::FMAD: {
5736     if (!Options.NoSignedZerosFPMath && !Flags.hasNoSignedZeros())
5737       break;
5738 
5739     SDValue X = Op.getOperand(0), Y = Op.getOperand(1), Z = Op.getOperand(2);
5740     NegatibleCost CostZ = NegatibleCost::Expensive;
5741     SDValue NegZ =
5742         getNegatedExpression(Z, DAG, LegalOps, OptForSize, CostZ, Depth);
5743     // Give up if fail to negate the Z.
5744     if (!NegZ)
5745       break;
5746 
5747     // fold (fneg (fma X, Y, Z)) -> (fma (fneg X), Y, (fneg Z))
5748     NegatibleCost CostX = NegatibleCost::Expensive;
5749     SDValue NegX =
5750         getNegatedExpression(X, DAG, LegalOps, OptForSize, CostX, Depth);
5751     // fold (fneg (fma X, Y, Z)) -> (fma X, (fneg Y), (fneg Z))
5752     NegatibleCost CostY = NegatibleCost::Expensive;
5753     SDValue NegY =
5754         getNegatedExpression(Y, DAG, LegalOps, OptForSize, CostY, Depth);
5755 
5756     // Negate the X if its cost is less or equal than Y.
5757     if (NegX && (CostX <= CostY)) {
5758       Cost = std::min(CostX, CostZ);
5759       return DAG.getNode(Opcode, DL, VT, NegX, Y, NegZ, Flags);
5760     }
5761 
5762     // Negate the Y if it is not expensive.
5763     if (NegY) {
5764       Cost = std::min(CostY, CostZ);
5765       return DAG.getNode(Opcode, DL, VT, X, NegY, NegZ, Flags);
5766     }
5767     break;
5768   }
5769 
5770   case ISD::FP_EXTEND:
5771   case ISD::FSIN:
5772     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5773                                             OptForSize, Cost, Depth))
5774       return DAG.getNode(Opcode, DL, VT, NegV);
5775     break;
5776   case ISD::FP_ROUND:
5777     if (SDValue NegV = getNegatedExpression(Op.getOperand(0), DAG, LegalOps,
5778                                             OptForSize, Cost, Depth))
5779       return DAG.getNode(ISD::FP_ROUND, DL, VT, NegV, Op.getOperand(1));
5780     break;
5781   }
5782 
5783   return SDValue();
5784 }
5785 
5786 //===----------------------------------------------------------------------===//
5787 // Legalization Utilities
5788 //===----------------------------------------------------------------------===//
5789 
5790 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5791                                     SDValue LHS, SDValue RHS,
5792                                     SmallVectorImpl<SDValue> &Result,
5793                                     EVT HiLoVT, SelectionDAG &DAG,
5794                                     MulExpansionKind Kind, SDValue LL,
5795                                     SDValue LH, SDValue RL, SDValue RH) const {
5796   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5797          Opcode == ISD::SMUL_LOHI);
5798 
5799   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5800                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5801   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5802                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5803   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5804                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5805   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5806                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5807 
5808   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5809     return false;
5810 
5811   unsigned OuterBitSize = VT.getScalarSizeInBits();
5812   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5813   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5814   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5815 
5816   // LL, LH, RL, and RH must be either all NULL or all set to a value.
5817   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5818          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5819 
5820   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5821   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5822                           bool Signed) -> bool {
5823     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5824       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5825       Hi = SDValue(Lo.getNode(), 1);
5826       return true;
5827     }
5828     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5829       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5830       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5831       return true;
5832     }
5833     return false;
5834   };
5835 
5836   SDValue Lo, Hi;
5837 
5838   if (!LL.getNode() && !RL.getNode() &&
5839       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5840     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5841     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5842   }
5843 
5844   if (!LL.getNode())
5845     return false;
5846 
5847   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5848   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5849       DAG.MaskedValueIsZero(RHS, HighMask)) {
5850     // The inputs are both zero-extended.
5851     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5852       Result.push_back(Lo);
5853       Result.push_back(Hi);
5854       if (Opcode != ISD::MUL) {
5855         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5856         Result.push_back(Zero);
5857         Result.push_back(Zero);
5858       }
5859       return true;
5860     }
5861   }
5862 
5863   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5864       RHSSB > InnerBitSize) {
5865     // The input values are both sign-extended.
5866     // TODO non-MUL case?
5867     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5868       Result.push_back(Lo);
5869       Result.push_back(Hi);
5870       return true;
5871     }
5872   }
5873 
5874   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5875   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5876   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5877     // FIXME getShiftAmountTy does not always return a sensible result when VT
5878     // is an illegal type, and so the type may be too small to fit the shift
5879     // amount. Override it with i32. The shift will have to be legalized.
5880     ShiftAmountTy = MVT::i32;
5881   }
5882   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5883 
5884   if (!LH.getNode() && !RH.getNode() &&
5885       isOperationLegalOrCustom(ISD::SRL, VT) &&
5886       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5887     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5888     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5889     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5890     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5891   }
5892 
5893   if (!LH.getNode())
5894     return false;
5895 
5896   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5897     return false;
5898 
5899   Result.push_back(Lo);
5900 
5901   if (Opcode == ISD::MUL) {
5902     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5903     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5904     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5905     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5906     Result.push_back(Hi);
5907     return true;
5908   }
5909 
5910   // Compute the full width result.
5911   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5912     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5913     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5914     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5915     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5916   };
5917 
5918   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5919   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5920     return false;
5921 
5922   // This is effectively the add part of a multiply-add of half-sized operands,
5923   // so it cannot overflow.
5924   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5925 
5926   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5927     return false;
5928 
5929   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5930   EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5931 
5932   bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5933                   isOperationLegalOrCustom(ISD::ADDE, VT));
5934   if (UseGlue)
5935     Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5936                        Merge(Lo, Hi));
5937   else
5938     Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5939                        Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5940 
5941   SDValue Carry = Next.getValue(1);
5942   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5943   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5944 
5945   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5946     return false;
5947 
5948   if (UseGlue)
5949     Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5950                      Carry);
5951   else
5952     Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5953                      Zero, Carry);
5954 
5955   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5956 
5957   if (Opcode == ISD::SMUL_LOHI) {
5958     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5959                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5960     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5961 
5962     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5963                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5964     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5965   }
5966 
5967   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5968   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5969   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5970   return true;
5971 }
5972 
5973 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5974                                SelectionDAG &DAG, MulExpansionKind Kind,
5975                                SDValue LL, SDValue LH, SDValue RL,
5976                                SDValue RH) const {
5977   SmallVector<SDValue, 2> Result;
5978   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5979                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5980                            DAG, Kind, LL, LH, RL, RH);
5981   if (Ok) {
5982     assert(Result.size() == 2);
5983     Lo = Result[0];
5984     Hi = Result[1];
5985   }
5986   return Ok;
5987 }
5988 
5989 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5990                                        SelectionDAG &DAG) const {
5991   EVT VT = Node->getValueType(0);
5992 
5993   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5994                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
5995                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
5996                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5997     return false;
5998 
5999   // fshl: X << (Z % BW) | Y >> 1 >> (BW - 1 - (Z % BW))
6000   // fshr: X << 1 << (BW - 1 - (Z % BW)) | Y >> (Z % BW)
6001   SDValue X = Node->getOperand(0);
6002   SDValue Y = Node->getOperand(1);
6003   SDValue Z = Node->getOperand(2);
6004 
6005   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6006   bool IsFSHL = Node->getOpcode() == ISD::FSHL;
6007   SDLoc DL(SDValue(Node, 0));
6008 
6009   EVT ShVT = Z.getValueType();
6010   SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6011   SDValue ShAmt;
6012   if (isPowerOf2_32(EltSizeInBits)) {
6013     // Z % BW -> Z & (BW - 1)
6014     ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
6015   } else {
6016     SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6017     ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
6018   }
6019   SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, Mask, ShAmt);
6020 
6021   SDValue One = DAG.getConstant(1, DL, ShVT);
6022   SDValue ShX, ShY;
6023   if (IsFSHL) {
6024     ShX = DAG.getNode(ISD::SHL, DL, VT, X, ShAmt);
6025     SDValue ShY1 = DAG.getNode(ISD::SRL, DL, VT, Y, One);
6026     ShY = DAG.getNode(ISD::SRL, DL, VT, ShY1, InvShAmt);
6027   } else {
6028     SDValue ShX1 = DAG.getNode(ISD::SHL, DL, VT, X, One);
6029     ShX = DAG.getNode(ISD::SHL, DL, VT, ShX1, InvShAmt);
6030     ShY = DAG.getNode(ISD::SRL, DL, VT, Y, ShAmt);
6031   }
6032   Result = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
6033   return true;
6034 }
6035 
6036 // TODO: Merge with expandFunnelShift.
6037 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
6038                                SelectionDAG &DAG) const {
6039   EVT VT = Node->getValueType(0);
6040   unsigned EltSizeInBits = VT.getScalarSizeInBits();
6041   bool IsLeft = Node->getOpcode() == ISD::ROTL;
6042   SDValue Op0 = Node->getOperand(0);
6043   SDValue Op1 = Node->getOperand(1);
6044   SDLoc DL(SDValue(Node, 0));
6045 
6046   EVT ShVT = Op1.getValueType();
6047   SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
6048 
6049   // If a rotate in the other direction is legal, use it.
6050   unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
6051   if (isOperationLegal(RevRot, VT)) {
6052     SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6053     Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
6054     return true;
6055   }
6056 
6057   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
6058                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6059                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6060                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
6061                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6062     return false;
6063 
6064   // Otherwise,
6065   //   (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
6066   //   (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
6067   //
6068   assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
6069          "Expecting the type bitwidth to be a power of 2");
6070   unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
6071   unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
6072   SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
6073   SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
6074   SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
6075   SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
6076   Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
6077                        DAG.getNode(HsOpc, DL, VT, Op0, And1));
6078   return true;
6079 }
6080 
6081 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
6082                                       SelectionDAG &DAG) const {
6083   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6084   SDValue Src = Node->getOperand(OpNo);
6085   EVT SrcVT = Src.getValueType();
6086   EVT DstVT = Node->getValueType(0);
6087   SDLoc dl(SDValue(Node, 0));
6088 
6089   // FIXME: Only f32 to i64 conversions are supported.
6090   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
6091     return false;
6092 
6093   if (Node->isStrictFPOpcode())
6094     // When a NaN is converted to an integer a trap is allowed. We can't
6095     // use this expansion here because it would eliminate that trap. Other
6096     // traps are also allowed and cannot be eliminated. See
6097     // IEEE 754-2008 sec 5.8.
6098     return false;
6099 
6100   // Expand f32 -> i64 conversion
6101   // This algorithm comes from compiler-rt's implementation of fixsfdi:
6102   // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
6103   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
6104   EVT IntVT = SrcVT.changeTypeToInteger();
6105   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
6106 
6107   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
6108   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
6109   SDValue Bias = DAG.getConstant(127, dl, IntVT);
6110   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
6111   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
6112   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
6113 
6114   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
6115 
6116   SDValue ExponentBits = DAG.getNode(
6117       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
6118       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
6119   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
6120 
6121   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
6122                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
6123                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
6124   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
6125 
6126   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
6127                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
6128                           DAG.getConstant(0x00800000, dl, IntVT));
6129 
6130   R = DAG.getZExtOrTrunc(R, dl, DstVT);
6131 
6132   R = DAG.getSelectCC(
6133       dl, Exponent, ExponentLoBit,
6134       DAG.getNode(ISD::SHL, dl, DstVT, R,
6135                   DAG.getZExtOrTrunc(
6136                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
6137                       dl, IntShVT)),
6138       DAG.getNode(ISD::SRL, dl, DstVT, R,
6139                   DAG.getZExtOrTrunc(
6140                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
6141                       dl, IntShVT)),
6142       ISD::SETGT);
6143 
6144   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
6145                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
6146 
6147   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
6148                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
6149   return true;
6150 }
6151 
6152 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
6153                                       SDValue &Chain,
6154                                       SelectionDAG &DAG) const {
6155   SDLoc dl(SDValue(Node, 0));
6156   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6157   SDValue Src = Node->getOperand(OpNo);
6158 
6159   EVT SrcVT = Src.getValueType();
6160   EVT DstVT = Node->getValueType(0);
6161   EVT SetCCVT =
6162       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
6163   EVT DstSetCCVT =
6164       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
6165 
6166   // Only expand vector types if we have the appropriate vector bit operations.
6167   unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
6168                                                    ISD::FP_TO_SINT;
6169   if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
6170                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
6171     return false;
6172 
6173   // If the maximum float value is smaller then the signed integer range,
6174   // the destination signmask can't be represented by the float, so we can
6175   // just use FP_TO_SINT directly.
6176   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
6177   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
6178   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
6179   if (APFloat::opOverflow &
6180       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
6181     if (Node->isStrictFPOpcode()) {
6182       Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6183                            { Node->getOperand(0), Src });
6184       Chain = Result.getValue(1);
6185     } else
6186       Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6187     return true;
6188   }
6189 
6190   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
6191   SDValue Sel;
6192 
6193   if (Node->isStrictFPOpcode()) {
6194     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
6195                        Node->getOperand(0), /*IsSignaling*/ true);
6196     Chain = Sel.getValue(1);
6197   } else {
6198     Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
6199   }
6200 
6201   bool Strict = Node->isStrictFPOpcode() ||
6202                 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
6203 
6204   if (Strict) {
6205     // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
6206     // signmask then offset (the result of which should be fully representable).
6207     // Sel = Src < 0x8000000000000000
6208     // FltOfs = select Sel, 0, 0x8000000000000000
6209     // IntOfs = select Sel, 0, 0x8000000000000000
6210     // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
6211 
6212     // TODO: Should any fast-math-flags be set for the FSUB?
6213     SDValue FltOfs = DAG.getSelect(dl, SrcVT, Sel,
6214                                    DAG.getConstantFP(0.0, dl, SrcVT), Cst);
6215     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6216     SDValue IntOfs = DAG.getSelect(dl, DstVT, Sel,
6217                                    DAG.getConstant(0, dl, DstVT),
6218                                    DAG.getConstant(SignMask, dl, DstVT));
6219     SDValue SInt;
6220     if (Node->isStrictFPOpcode()) {
6221       SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
6222                                 { Chain, Src, FltOfs });
6223       SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
6224                          { Val.getValue(1), Val });
6225       Chain = SInt.getValue(1);
6226     } else {
6227       SDValue Val = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, FltOfs);
6228       SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
6229     }
6230     Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
6231   } else {
6232     // Expand based on maximum range of FP_TO_SINT:
6233     // True = fp_to_sint(Src)
6234     // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
6235     // Result = select (Src < 0x8000000000000000), True, False
6236 
6237     SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
6238     // TODO: Should any fast-math-flags be set for the FSUB?
6239     SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
6240                                 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
6241     False = DAG.getNode(ISD::XOR, dl, DstVT, False,
6242                         DAG.getConstant(SignMask, dl, DstVT));
6243     Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
6244     Result = DAG.getSelect(dl, DstVT, Sel, True, False);
6245   }
6246   return true;
6247 }
6248 
6249 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
6250                                       SDValue &Chain,
6251                                       SelectionDAG &DAG) const {
6252   unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
6253   SDValue Src = Node->getOperand(OpNo);
6254   EVT SrcVT = Src.getValueType();
6255   EVT DstVT = Node->getValueType(0);
6256 
6257   if (SrcVT.getScalarType() != MVT::i64 || DstVT.getScalarType() != MVT::f64)
6258     return false;
6259 
6260   // Only expand vector types if we have the appropriate vector bit operations.
6261   if (SrcVT.isVector() && (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
6262                            !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
6263                            !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
6264                            !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
6265                            !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
6266     return false;
6267 
6268   SDLoc dl(SDValue(Node, 0));
6269   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
6270 
6271   // Implementation of unsigned i64 to f64 following the algorithm in
6272   // __floatundidf in compiler_rt. This implementation has the advantage
6273   // of performing rounding correctly, both in the default rounding mode
6274   // and in all alternate rounding modes.
6275   SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
6276   SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
6277       BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
6278   SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
6279   SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
6280   SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
6281 
6282   SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
6283   SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
6284   SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
6285   SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
6286   SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
6287   SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
6288   if (Node->isStrictFPOpcode()) {
6289     SDValue HiSub =
6290         DAG.getNode(ISD::STRICT_FSUB, dl, {DstVT, MVT::Other},
6291                     {Node->getOperand(0), HiFlt, TwoP84PlusTwoP52});
6292     Result = DAG.getNode(ISD::STRICT_FADD, dl, {DstVT, MVT::Other},
6293                          {HiSub.getValue(1), LoFlt, HiSub});
6294     Chain = Result.getValue(1);
6295   } else {
6296     SDValue HiSub =
6297         DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
6298     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
6299   }
6300   return true;
6301 }
6302 
6303 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
6304                                               SelectionDAG &DAG) const {
6305   SDLoc dl(Node);
6306   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
6307     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
6308   EVT VT = Node->getValueType(0);
6309   if (isOperationLegalOrCustom(NewOp, VT)) {
6310     SDValue Quiet0 = Node->getOperand(0);
6311     SDValue Quiet1 = Node->getOperand(1);
6312 
6313     if (!Node->getFlags().hasNoNaNs()) {
6314       // Insert canonicalizes if it's possible we need to quiet to get correct
6315       // sNaN behavior.
6316       if (!DAG.isKnownNeverSNaN(Quiet0)) {
6317         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
6318                              Node->getFlags());
6319       }
6320       if (!DAG.isKnownNeverSNaN(Quiet1)) {
6321         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
6322                              Node->getFlags());
6323       }
6324     }
6325 
6326     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
6327   }
6328 
6329   // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
6330   // instead if there are no NaNs.
6331   if (Node->getFlags().hasNoNaNs()) {
6332     unsigned IEEE2018Op =
6333         Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
6334     if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
6335       return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
6336                          Node->getOperand(1), Node->getFlags());
6337     }
6338   }
6339 
6340   // If none of the above worked, but there are no NaNs, then expand to
6341   // a compare/select sequence.  This is required for correctness since
6342   // InstCombine might have canonicalized a fcmp+select sequence to a
6343   // FMINNUM/FMAXNUM node.  If we were to fall through to the default
6344   // expansion to libcall, we might introduce a link-time dependency
6345   // on libm into a file that originally did not have one.
6346   if (Node->getFlags().hasNoNaNs()) {
6347     ISD::CondCode Pred =
6348         Node->getOpcode() == ISD::FMINNUM ? ISD::SETLT : ISD::SETGT;
6349     SDValue Op1 = Node->getOperand(0);
6350     SDValue Op2 = Node->getOperand(1);
6351     SDValue SelCC = DAG.getSelectCC(dl, Op1, Op2, Op1, Op2, Pred);
6352     // Copy FMF flags, but always set the no-signed-zeros flag
6353     // as this is implied by the FMINNUM/FMAXNUM semantics.
6354     SDNodeFlags Flags = Node->getFlags();
6355     Flags.setNoSignedZeros(true);
6356     SelCC->setFlags(Flags);
6357     return SelCC;
6358   }
6359 
6360   return SDValue();
6361 }
6362 
6363 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
6364                                  SelectionDAG &DAG) const {
6365   SDLoc dl(Node);
6366   EVT VT = Node->getValueType(0);
6367   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6368   SDValue Op = Node->getOperand(0);
6369   unsigned Len = VT.getScalarSizeInBits();
6370   assert(VT.isInteger() && "CTPOP not implemented for this type.");
6371 
6372   // TODO: Add support for irregular type lengths.
6373   if (!(Len <= 128 && Len % 8 == 0))
6374     return false;
6375 
6376   // Only expand vector types if we have the appropriate vector bit operations.
6377   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
6378                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6379                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6380                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
6381                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
6382     return false;
6383 
6384   // This is the "best" algorithm from
6385   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
6386   SDValue Mask55 =
6387       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
6388   SDValue Mask33 =
6389       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
6390   SDValue Mask0F =
6391       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
6392   SDValue Mask01 =
6393       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
6394 
6395   // v = v - ((v >> 1) & 0x55555555...)
6396   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
6397                    DAG.getNode(ISD::AND, dl, VT,
6398                                DAG.getNode(ISD::SRL, dl, VT, Op,
6399                                            DAG.getConstant(1, dl, ShVT)),
6400                                Mask55));
6401   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
6402   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
6403                    DAG.getNode(ISD::AND, dl, VT,
6404                                DAG.getNode(ISD::SRL, dl, VT, Op,
6405                                            DAG.getConstant(2, dl, ShVT)),
6406                                Mask33));
6407   // v = (v + (v >> 4)) & 0x0F0F0F0F...
6408   Op = DAG.getNode(ISD::AND, dl, VT,
6409                    DAG.getNode(ISD::ADD, dl, VT, Op,
6410                                DAG.getNode(ISD::SRL, dl, VT, Op,
6411                                            DAG.getConstant(4, dl, ShVT))),
6412                    Mask0F);
6413   // v = (v * 0x01010101...) >> (Len - 8)
6414   if (Len > 8)
6415     Op =
6416         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
6417                     DAG.getConstant(Len - 8, dl, ShVT));
6418 
6419   Result = Op;
6420   return true;
6421 }
6422 
6423 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
6424                                 SelectionDAG &DAG) const {
6425   SDLoc dl(Node);
6426   EVT VT = Node->getValueType(0);
6427   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6428   SDValue Op = Node->getOperand(0);
6429   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6430 
6431   // If the non-ZERO_UNDEF version is supported we can use that instead.
6432   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
6433       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
6434     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
6435     return true;
6436   }
6437 
6438   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6439   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
6440     EVT SetCCVT =
6441         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6442     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
6443     SDValue Zero = DAG.getConstant(0, dl, VT);
6444     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6445     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6446                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
6447     return true;
6448   }
6449 
6450   // Only expand vector types if we have the appropriate vector bit operations.
6451   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6452                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
6453                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
6454                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
6455     return false;
6456 
6457   // for now, we do this:
6458   // x = x | (x >> 1);
6459   // x = x | (x >> 2);
6460   // ...
6461   // x = x | (x >>16);
6462   // x = x | (x >>32); // for 64-bit input
6463   // return popcount(~x);
6464   //
6465   // Ref: "Hacker's Delight" by Henry Warren
6466   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
6467     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
6468     Op = DAG.getNode(ISD::OR, dl, VT, Op,
6469                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6470   }
6471   Op = DAG.getNOT(dl, Op, VT);
6472   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6473   return true;
6474 }
6475 
6476 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6477                                 SelectionDAG &DAG) const {
6478   SDLoc dl(Node);
6479   EVT VT = Node->getValueType(0);
6480   SDValue Op = Node->getOperand(0);
6481   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6482 
6483   // If the non-ZERO_UNDEF version is supported we can use that instead.
6484   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6485       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6486     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6487     return true;
6488   }
6489 
6490   // If the ZERO_UNDEF version is supported use that and handle the zero case.
6491   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6492     EVT SetCCVT =
6493         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6494     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6495     SDValue Zero = DAG.getConstant(0, dl, VT);
6496     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6497     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6498                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6499     return true;
6500   }
6501 
6502   // Only expand vector types if we have the appropriate vector bit operations.
6503   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6504                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6505                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6506                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
6507                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6508                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6509     return false;
6510 
6511   // for now, we use: { return popcount(~x & (x - 1)); }
6512   // unless the target has ctlz but not ctpop, in which case we use:
6513   // { return 32 - nlz(~x & (x-1)); }
6514   // Ref: "Hacker's Delight" by Henry Warren
6515   SDValue Tmp = DAG.getNode(
6516       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6517       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6518 
6519   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6520   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6521     Result =
6522         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6523                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6524     return true;
6525   }
6526 
6527   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6528   return true;
6529 }
6530 
6531 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6532                                SelectionDAG &DAG) const {
6533   SDLoc dl(N);
6534   EVT VT = N->getValueType(0);
6535   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6536   SDValue Op = N->getOperand(0);
6537 
6538   // Only expand vector types if we have the appropriate vector operations.
6539   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6540                         !isOperationLegalOrCustom(ISD::ADD, VT) ||
6541                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6542     return false;
6543 
6544   SDValue Shift =
6545       DAG.getNode(ISD::SRA, dl, VT, Op,
6546                   DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6547   SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6548   Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6549   return true;
6550 }
6551 
6552 std::pair<SDValue, SDValue>
6553 TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6554                                     SelectionDAG &DAG) const {
6555   SDLoc SL(LD);
6556   SDValue Chain = LD->getChain();
6557   SDValue BasePTR = LD->getBasePtr();
6558   EVT SrcVT = LD->getMemoryVT();
6559   EVT DstVT = LD->getValueType(0);
6560   ISD::LoadExtType ExtType = LD->getExtensionType();
6561 
6562   unsigned NumElem = SrcVT.getVectorNumElements();
6563 
6564   EVT SrcEltVT = SrcVT.getScalarType();
6565   EVT DstEltVT = DstVT.getScalarType();
6566 
6567   // A vector must always be stored in memory as-is, i.e. without any padding
6568   // between the elements, since various code depend on it, e.g. in the
6569   // handling of a bitcast of a vector type to int, which may be done with a
6570   // vector store followed by an integer load. A vector that does not have
6571   // elements that are byte-sized must therefore be stored as an integer
6572   // built out of the extracted vector elements.
6573   if (!SrcEltVT.isByteSized()) {
6574     unsigned NumLoadBits = SrcVT.getStoreSizeInBits();
6575     EVT LoadVT = EVT::getIntegerVT(*DAG.getContext(), NumLoadBits);
6576 
6577     unsigned NumSrcBits = SrcVT.getSizeInBits();
6578     EVT SrcIntVT = EVT::getIntegerVT(*DAG.getContext(), NumSrcBits);
6579 
6580     unsigned SrcEltBits = SrcEltVT.getSizeInBits();
6581     SDValue SrcEltBitMask = DAG.getConstant(
6582         APInt::getLowBitsSet(NumLoadBits, SrcEltBits), SL, LoadVT);
6583 
6584     // Load the whole vector and avoid masking off the top bits as it makes
6585     // the codegen worse.
6586     SDValue Load =
6587         DAG.getExtLoad(ISD::EXTLOAD, SL, LoadVT, Chain, BasePTR,
6588                        LD->getPointerInfo(), SrcIntVT, LD->getAlignment(),
6589                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6590 
6591     SmallVector<SDValue, 8> Vals;
6592     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6593       unsigned ShiftIntoIdx =
6594           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6595       SDValue ShiftAmount =
6596           DAG.getShiftAmountConstant(ShiftIntoIdx * SrcEltVT.getSizeInBits(),
6597                                      LoadVT, SL, /*LegalTypes=*/false);
6598       SDValue ShiftedElt = DAG.getNode(ISD::SRL, SL, LoadVT, Load, ShiftAmount);
6599       SDValue Elt =
6600           DAG.getNode(ISD::AND, SL, LoadVT, ShiftedElt, SrcEltBitMask);
6601       SDValue Scalar = DAG.getNode(ISD::TRUNCATE, SL, SrcEltVT, Elt);
6602 
6603       if (ExtType != ISD::NON_EXTLOAD) {
6604         unsigned ExtendOp = ISD::getExtForLoadExtType(false, ExtType);
6605         Scalar = DAG.getNode(ExtendOp, SL, DstEltVT, Scalar);
6606       }
6607 
6608       Vals.push_back(Scalar);
6609     }
6610 
6611     SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6612     return std::make_pair(Value, Load.getValue(1));
6613   }
6614 
6615   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6616   assert(SrcEltVT.isByteSized());
6617 
6618   SmallVector<SDValue, 8> Vals;
6619   SmallVector<SDValue, 8> LoadChains;
6620 
6621   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6622     SDValue ScalarLoad =
6623         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6624                        LD->getPointerInfo().getWithOffset(Idx * Stride),
6625                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6626                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6627 
6628     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6629 
6630     Vals.push_back(ScalarLoad.getValue(0));
6631     LoadChains.push_back(ScalarLoad.getValue(1));
6632   }
6633 
6634   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6635   SDValue Value = DAG.getBuildVector(DstVT, SL, Vals);
6636 
6637   return std::make_pair(Value, NewChain);
6638 }
6639 
6640 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6641                                              SelectionDAG &DAG) const {
6642   SDLoc SL(ST);
6643 
6644   SDValue Chain = ST->getChain();
6645   SDValue BasePtr = ST->getBasePtr();
6646   SDValue Value = ST->getValue();
6647   EVT StVT = ST->getMemoryVT();
6648 
6649   // The type of the data we want to save
6650   EVT RegVT = Value.getValueType();
6651   EVT RegSclVT = RegVT.getScalarType();
6652 
6653   // The type of data as saved in memory.
6654   EVT MemSclVT = StVT.getScalarType();
6655 
6656   unsigned NumElem = StVT.getVectorNumElements();
6657 
6658   // A vector must always be stored in memory as-is, i.e. without any padding
6659   // between the elements, since various code depend on it, e.g. in the
6660   // handling of a bitcast of a vector type to int, which may be done with a
6661   // vector store followed by an integer load. A vector that does not have
6662   // elements that are byte-sized must therefore be stored as an integer
6663   // built out of the extracted vector elements.
6664   if (!MemSclVT.isByteSized()) {
6665     unsigned NumBits = StVT.getSizeInBits();
6666     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6667 
6668     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6669 
6670     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6671       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6672                                 DAG.getVectorIdxConstant(Idx, SL));
6673       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6674       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6675       unsigned ShiftIntoIdx =
6676           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6677       SDValue ShiftAmount =
6678           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6679       SDValue ShiftedElt =
6680           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6681       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6682     }
6683 
6684     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6685                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
6686                         ST->getAAInfo());
6687   }
6688 
6689   // Store Stride in bytes
6690   unsigned Stride = MemSclVT.getSizeInBits() / 8;
6691   assert(Stride && "Zero stride!");
6692   // Extract each of the elements from the original vector and save them into
6693   // memory individually.
6694   SmallVector<SDValue, 8> Stores;
6695   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6696     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6697                               DAG.getVectorIdxConstant(Idx, SL));
6698 
6699     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6700 
6701     // This scalar TruncStore may be illegal, but we legalize it later.
6702     SDValue Store = DAG.getTruncStore(
6703         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6704         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6705         ST->getMemOperand()->getFlags(), ST->getAAInfo());
6706 
6707     Stores.push_back(Store);
6708   }
6709 
6710   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6711 }
6712 
6713 std::pair<SDValue, SDValue>
6714 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6715   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6716          "unaligned indexed loads not implemented!");
6717   SDValue Chain = LD->getChain();
6718   SDValue Ptr = LD->getBasePtr();
6719   EVT VT = LD->getValueType(0);
6720   EVT LoadedVT = LD->getMemoryVT();
6721   SDLoc dl(LD);
6722   auto &MF = DAG.getMachineFunction();
6723 
6724   if (VT.isFloatingPoint() || VT.isVector()) {
6725     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6726     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6727       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6728           LoadedVT.isVector()) {
6729         // Scalarize the load and let the individual components be handled.
6730         return scalarizeVectorLoad(LD, DAG);
6731       }
6732 
6733       // Expand to a (misaligned) integer load of the same size,
6734       // then bitconvert to floating point or vector.
6735       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6736                                     LD->getMemOperand());
6737       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6738       if (LoadedVT != VT)
6739         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6740                              ISD::ANY_EXTEND, dl, VT, Result);
6741 
6742       return std::make_pair(Result, newLoad.getValue(1));
6743     }
6744 
6745     // Copy the value to a (aligned) stack slot using (unaligned) integer
6746     // loads and stores, then do a (aligned) load from the stack slot.
6747     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6748     unsigned LoadedBytes = LoadedVT.getStoreSize();
6749     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6750     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6751 
6752     // Make sure the stack slot is also aligned for the register type.
6753     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6754     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6755     SmallVector<SDValue, 8> Stores;
6756     SDValue StackPtr = StackBase;
6757     unsigned Offset = 0;
6758 
6759     EVT PtrVT = Ptr.getValueType();
6760     EVT StackPtrVT = StackPtr.getValueType();
6761 
6762     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6763     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6764 
6765     // Do all but one copies using the full register width.
6766     for (unsigned i = 1; i < NumRegs; i++) {
6767       // Load one integer register's worth from the original location.
6768       SDValue Load = DAG.getLoad(
6769           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6770           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6771           LD->getAAInfo());
6772       // Follow the load with a store to the stack slot.  Remember the store.
6773       Stores.push_back(DAG.getStore(
6774           Load.getValue(1), dl, Load, StackPtr,
6775           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6776       // Increment the pointers.
6777       Offset += RegBytes;
6778 
6779       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6780       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6781     }
6782 
6783     // The last copy may be partial.  Do an extending load.
6784     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6785                                   8 * (LoadedBytes - Offset));
6786     SDValue Load =
6787         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6788                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
6789                        MinAlign(LD->getAlignment(), Offset),
6790                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
6791     // Follow the load with a store to the stack slot.  Remember the store.
6792     // On big-endian machines this requires a truncating store to ensure
6793     // that the bits end up in the right place.
6794     Stores.push_back(DAG.getTruncStore(
6795         Load.getValue(1), dl, Load, StackPtr,
6796         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6797 
6798     // The order of the stores doesn't matter - say it with a TokenFactor.
6799     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6800 
6801     // Finally, perform the original load only redirected to the stack slot.
6802     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6803                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6804                           LoadedVT);
6805 
6806     // Callers expect a MERGE_VALUES node.
6807     return std::make_pair(Load, TF);
6808   }
6809 
6810   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6811          "Unaligned load of unsupported type.");
6812 
6813   // Compute the new VT that is half the size of the old one.  This is an
6814   // integer MVT.
6815   unsigned NumBits = LoadedVT.getSizeInBits();
6816   EVT NewLoadedVT;
6817   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6818   NumBits >>= 1;
6819 
6820   unsigned Alignment = LD->getAlignment();
6821   unsigned IncrementSize = NumBits / 8;
6822   ISD::LoadExtType HiExtType = LD->getExtensionType();
6823 
6824   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6825   if (HiExtType == ISD::NON_EXTLOAD)
6826     HiExtType = ISD::ZEXTLOAD;
6827 
6828   // Load the value in two parts
6829   SDValue Lo, Hi;
6830   if (DAG.getDataLayout().isLittleEndian()) {
6831     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6832                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6833                         LD->getAAInfo());
6834 
6835     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6836     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6837                         LD->getPointerInfo().getWithOffset(IncrementSize),
6838                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6839                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6840   } else {
6841     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6842                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6843                         LD->getAAInfo());
6844 
6845     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6846     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6847                         LD->getPointerInfo().getWithOffset(IncrementSize),
6848                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
6849                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
6850   }
6851 
6852   // aggregate the two parts
6853   SDValue ShiftAmount =
6854       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6855                                                     DAG.getDataLayout()));
6856   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6857   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6858 
6859   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6860                              Hi.getValue(1));
6861 
6862   return std::make_pair(Result, TF);
6863 }
6864 
6865 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6866                                              SelectionDAG &DAG) const {
6867   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6868          "unaligned indexed stores not implemented!");
6869   SDValue Chain = ST->getChain();
6870   SDValue Ptr = ST->getBasePtr();
6871   SDValue Val = ST->getValue();
6872   EVT VT = Val.getValueType();
6873   int Alignment = ST->getAlignment();
6874   auto &MF = DAG.getMachineFunction();
6875   EVT StoreMemVT = ST->getMemoryVT();
6876 
6877   SDLoc dl(ST);
6878   if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6879     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6880     if (isTypeLegal(intVT)) {
6881       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6882           StoreMemVT.isVector()) {
6883         // Scalarize the store and let the individual components be handled.
6884         SDValue Result = scalarizeVectorStore(ST, DAG);
6885         return Result;
6886       }
6887       // Expand to a bitconvert of the value to the integer type of the
6888       // same size, then a (misaligned) int store.
6889       // FIXME: Does not handle truncating floating point stores!
6890       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6891       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6892                             Alignment, ST->getMemOperand()->getFlags());
6893       return Result;
6894     }
6895     // Do a (aligned) store to a stack slot, then copy from the stack slot
6896     // to the final destination using (unaligned) integer loads and stores.
6897     MVT RegVT = getRegisterType(
6898         *DAG.getContext(),
6899         EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6900     EVT PtrVT = Ptr.getValueType();
6901     unsigned StoredBytes = StoreMemVT.getStoreSize();
6902     unsigned RegBytes = RegVT.getSizeInBits() / 8;
6903     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6904 
6905     // Make sure the stack slot is also aligned for the register type.
6906     SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6907     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6908 
6909     // Perform the original store, only redirected to the stack slot.
6910     SDValue Store = DAG.getTruncStore(
6911         Chain, dl, Val, StackPtr,
6912         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6913 
6914     EVT StackPtrVT = StackPtr.getValueType();
6915 
6916     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6917     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6918     SmallVector<SDValue, 8> Stores;
6919     unsigned Offset = 0;
6920 
6921     // Do all but one copies using the full register width.
6922     for (unsigned i = 1; i < NumRegs; i++) {
6923       // Load one integer register's worth from the stack slot.
6924       SDValue Load = DAG.getLoad(
6925           RegVT, dl, Store, StackPtr,
6926           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6927       // Store it to the final location.  Remember the store.
6928       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6929                                     ST->getPointerInfo().getWithOffset(Offset),
6930                                     MinAlign(ST->getAlignment(), Offset),
6931                                     ST->getMemOperand()->getFlags()));
6932       // Increment the pointers.
6933       Offset += RegBytes;
6934       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6935       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6936     }
6937 
6938     // The last store may be partial.  Do a truncating store.  On big-endian
6939     // machines this requires an extending load from the stack slot to ensure
6940     // that the bits are in the right place.
6941     EVT LoadMemVT =
6942         EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6943 
6944     // Load from the stack slot.
6945     SDValue Load = DAG.getExtLoad(
6946         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6947         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6948 
6949     Stores.push_back(
6950         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6951                           ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6952                           MinAlign(ST->getAlignment(), Offset),
6953                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6954     // The order of the stores doesn't matter - say it with a TokenFactor.
6955     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6956     return Result;
6957   }
6958 
6959   assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6960          "Unaligned store of unknown type.");
6961   // Get the half-size VT
6962   EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6963   int NumBits = NewStoredVT.getSizeInBits();
6964   int IncrementSize = NumBits / 8;
6965 
6966   // Divide the stored value in two parts.
6967   SDValue ShiftAmount = DAG.getConstant(
6968       NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6969   SDValue Lo = Val;
6970   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6971 
6972   // Store the two parts
6973   SDValue Store1, Store2;
6974   Store1 = DAG.getTruncStore(Chain, dl,
6975                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6976                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6977                              ST->getMemOperand()->getFlags());
6978 
6979   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6980   Alignment = MinAlign(Alignment, IncrementSize);
6981   Store2 = DAG.getTruncStore(
6982       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6983       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6984       ST->getMemOperand()->getFlags(), ST->getAAInfo());
6985 
6986   SDValue Result =
6987       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6988   return Result;
6989 }
6990 
6991 SDValue
6992 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6993                                        const SDLoc &DL, EVT DataVT,
6994                                        SelectionDAG &DAG,
6995                                        bool IsCompressedMemory) const {
6996   SDValue Increment;
6997   EVT AddrVT = Addr.getValueType();
6998   EVT MaskVT = Mask.getValueType();
6999   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
7000          "Incompatible types of Data and Mask");
7001   if (IsCompressedMemory) {
7002     // Incrementing the pointer according to number of '1's in the mask.
7003     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
7004     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
7005     if (MaskIntVT.getSizeInBits() < 32) {
7006       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
7007       MaskIntVT = MVT::i32;
7008     }
7009 
7010     // Count '1's with POPCNT.
7011     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
7012     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
7013     // Scale is an element size in bytes.
7014     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
7015                                     AddrVT);
7016     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
7017   } else
7018     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
7019 
7020   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
7021 }
7022 
7023 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
7024                                        SDValue Idx,
7025                                        EVT VecVT,
7026                                        const SDLoc &dl) {
7027   if (isa<ConstantSDNode>(Idx))
7028     return Idx;
7029 
7030   EVT IdxVT = Idx.getValueType();
7031   unsigned NElts = VecVT.getVectorNumElements();
7032   if (isPowerOf2_32(NElts)) {
7033     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
7034                                      Log2_32(NElts));
7035     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
7036                        DAG.getConstant(Imm, dl, IdxVT));
7037   }
7038 
7039   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
7040                      DAG.getConstant(NElts - 1, dl, IdxVT));
7041 }
7042 
7043 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
7044                                                 SDValue VecPtr, EVT VecVT,
7045                                                 SDValue Index) const {
7046   SDLoc dl(Index);
7047   // Make sure the index type is big enough to compute in.
7048   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
7049 
7050   EVT EltVT = VecVT.getVectorElementType();
7051 
7052   // Calculate the element offset and add it to the pointer.
7053   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
7054   assert(EltSize * 8 == EltVT.getSizeInBits() &&
7055          "Converting bits to bytes lost precision");
7056 
7057   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
7058 
7059   EVT IdxVT = Index.getValueType();
7060 
7061   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
7062                       DAG.getConstant(EltSize, dl, IdxVT));
7063   return DAG.getMemBasePlusOffset(VecPtr, Index, dl);
7064 }
7065 
7066 //===----------------------------------------------------------------------===//
7067 // Implementation of Emulated TLS Model
7068 //===----------------------------------------------------------------------===//
7069 
7070 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
7071                                                 SelectionDAG &DAG) const {
7072   // Access to address of TLS varialbe xyz is lowered to a function call:
7073   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
7074   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7075   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
7076   SDLoc dl(GA);
7077 
7078   ArgListTy Args;
7079   ArgListEntry Entry;
7080   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
7081   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
7082   StringRef EmuTlsVarName(NameString);
7083   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
7084   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
7085   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
7086   Entry.Ty = VoidPtrType;
7087   Args.push_back(Entry);
7088 
7089   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
7090 
7091   TargetLowering::CallLoweringInfo CLI(DAG);
7092   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
7093   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
7094   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
7095 
7096   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7097   // At last for X86 targets, maybe good for other targets too?
7098   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
7099   MFI.setAdjustsStack(true); // Is this only for X86 target?
7100   MFI.setHasCalls(true);
7101 
7102   assert((GA->getOffset() == 0) &&
7103          "Emulated TLS must have zero offset in GlobalAddressSDNode");
7104   return CallResult.first;
7105 }
7106 
7107 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
7108                                                 SelectionDAG &DAG) const {
7109   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
7110   if (!isCtlzFast())
7111     return SDValue();
7112   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
7113   SDLoc dl(Op);
7114   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
7115     if (C->isNullValue() && CC == ISD::SETEQ) {
7116       EVT VT = Op.getOperand(0).getValueType();
7117       SDValue Zext = Op.getOperand(0);
7118       if (VT.bitsLT(MVT::i32)) {
7119         VT = MVT::i32;
7120         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
7121       }
7122       unsigned Log2b = Log2_32(VT.getSizeInBits());
7123       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
7124       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
7125                                 DAG.getConstant(Log2b, dl, MVT::i32));
7126       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
7127     }
7128   }
7129   return SDValue();
7130 }
7131 
7132 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
7133   unsigned Opcode = Node->getOpcode();
7134   SDValue LHS = Node->getOperand(0);
7135   SDValue RHS = Node->getOperand(1);
7136   EVT VT = LHS.getValueType();
7137   SDLoc dl(Node);
7138 
7139   assert(VT == RHS.getValueType() && "Expected operands to be the same type");
7140   assert(VT.isInteger() && "Expected operands to be integers");
7141 
7142   // usub.sat(a, b) -> umax(a, b) - b
7143   if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
7144     SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
7145     return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
7146   }
7147 
7148   if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
7149     SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
7150     SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
7151     return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
7152   }
7153 
7154   unsigned OverflowOp;
7155   switch (Opcode) {
7156   case ISD::SADDSAT:
7157     OverflowOp = ISD::SADDO;
7158     break;
7159   case ISD::UADDSAT:
7160     OverflowOp = ISD::UADDO;
7161     break;
7162   case ISD::SSUBSAT:
7163     OverflowOp = ISD::SSUBO;
7164     break;
7165   case ISD::USUBSAT:
7166     OverflowOp = ISD::USUBO;
7167     break;
7168   default:
7169     llvm_unreachable("Expected method to receive signed or unsigned saturation "
7170                      "addition or subtraction node.");
7171   }
7172 
7173   unsigned BitWidth = LHS.getScalarValueSizeInBits();
7174   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7175   SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
7176                                LHS, RHS);
7177   SDValue SumDiff = Result.getValue(0);
7178   SDValue Overflow = Result.getValue(1);
7179   SDValue Zero = DAG.getConstant(0, dl, VT);
7180   SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
7181 
7182   if (Opcode == ISD::UADDSAT) {
7183     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7184       // (LHS + RHS) | OverflowMask
7185       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7186       return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
7187     }
7188     // Overflow ? 0xffff.... : (LHS + RHS)
7189     return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
7190   } else if (Opcode == ISD::USUBSAT) {
7191     if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
7192       // (LHS - RHS) & ~OverflowMask
7193       SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
7194       SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
7195       return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
7196     }
7197     // Overflow ? 0 : (LHS - RHS)
7198     return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
7199   } else {
7200     // SatMax -> Overflow && SumDiff < 0
7201     // SatMin -> Overflow && SumDiff >= 0
7202     APInt MinVal = APInt::getSignedMinValue(BitWidth);
7203     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
7204     SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7205     SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7206     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
7207     Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
7208     return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
7209   }
7210 }
7211 
7212 SDValue
7213 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
7214   assert((Node->getOpcode() == ISD::SMULFIX ||
7215           Node->getOpcode() == ISD::UMULFIX ||
7216           Node->getOpcode() == ISD::SMULFIXSAT ||
7217           Node->getOpcode() == ISD::UMULFIXSAT) &&
7218          "Expected a fixed point multiplication opcode");
7219 
7220   SDLoc dl(Node);
7221   SDValue LHS = Node->getOperand(0);
7222   SDValue RHS = Node->getOperand(1);
7223   EVT VT = LHS.getValueType();
7224   unsigned Scale = Node->getConstantOperandVal(2);
7225   bool Saturating = (Node->getOpcode() == ISD::SMULFIXSAT ||
7226                      Node->getOpcode() == ISD::UMULFIXSAT);
7227   bool Signed = (Node->getOpcode() == ISD::SMULFIX ||
7228                  Node->getOpcode() == ISD::SMULFIXSAT);
7229   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7230   unsigned VTSize = VT.getScalarSizeInBits();
7231 
7232   if (!Scale) {
7233     // [us]mul.fix(a, b, 0) -> mul(a, b)
7234     if (!Saturating) {
7235       if (isOperationLegalOrCustom(ISD::MUL, VT))
7236         return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7237     } else if (Signed && isOperationLegalOrCustom(ISD::SMULO, VT)) {
7238       SDValue Result =
7239           DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7240       SDValue Product = Result.getValue(0);
7241       SDValue Overflow = Result.getValue(1);
7242       SDValue Zero = DAG.getConstant(0, dl, VT);
7243 
7244       APInt MinVal = APInt::getSignedMinValue(VTSize);
7245       APInt MaxVal = APInt::getSignedMaxValue(VTSize);
7246       SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
7247       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7248       SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
7249       Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
7250       return DAG.getSelect(dl, VT, Overflow, Result, Product);
7251     } else if (!Signed && isOperationLegalOrCustom(ISD::UMULO, VT)) {
7252       SDValue Result =
7253           DAG.getNode(ISD::UMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
7254       SDValue Product = Result.getValue(0);
7255       SDValue Overflow = Result.getValue(1);
7256 
7257       APInt MaxVal = APInt::getMaxValue(VTSize);
7258       SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
7259       return DAG.getSelect(dl, VT, Overflow, SatMax, Product);
7260     }
7261   }
7262 
7263   assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
7264          "Expected scale to be less than the number of bits if signed or at "
7265          "most the number of bits if unsigned.");
7266   assert(LHS.getValueType() == RHS.getValueType() &&
7267          "Expected both operands to be the same type");
7268 
7269   // Get the upper and lower bits of the result.
7270   SDValue Lo, Hi;
7271   unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
7272   unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
7273   if (isOperationLegalOrCustom(LoHiOp, VT)) {
7274     SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
7275     Lo = Result.getValue(0);
7276     Hi = Result.getValue(1);
7277   } else if (isOperationLegalOrCustom(HiOp, VT)) {
7278     Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7279     Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
7280   } else if (VT.isVector()) {
7281     return SDValue();
7282   } else {
7283     report_fatal_error("Unable to expand fixed point multiplication.");
7284   }
7285 
7286   if (Scale == VTSize)
7287     // Result is just the top half since we'd be shifting by the width of the
7288     // operand. Overflow impossible so this works for both UMULFIX and
7289     // UMULFIXSAT.
7290     return Hi;
7291 
7292   // The result will need to be shifted right by the scale since both operands
7293   // are scaled. The result is given to us in 2 halves, so we only want part of
7294   // both in the result.
7295   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7296   SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
7297                                DAG.getConstant(Scale, dl, ShiftTy));
7298   if (!Saturating)
7299     return Result;
7300 
7301   if (!Signed) {
7302     // Unsigned overflow happened if the upper (VTSize - Scale) bits (of the
7303     // widened multiplication) aren't all zeroes.
7304 
7305     // Saturate to max if ((Hi >> Scale) != 0),
7306     // which is the same as if (Hi > ((1 << Scale) - 1))
7307     APInt MaxVal = APInt::getMaxValue(VTSize);
7308     SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale),
7309                                       dl, VT);
7310     Result = DAG.getSelectCC(dl, Hi, LowMask,
7311                              DAG.getConstant(MaxVal, dl, VT), Result,
7312                              ISD::SETUGT);
7313 
7314     return Result;
7315   }
7316 
7317   // Signed overflow happened if the upper (VTSize - Scale + 1) bits (of the
7318   // widened multiplication) aren't all ones or all zeroes.
7319 
7320   SDValue SatMin = DAG.getConstant(APInt::getSignedMinValue(VTSize), dl, VT);
7321   SDValue SatMax = DAG.getConstant(APInt::getSignedMaxValue(VTSize), dl, VT);
7322 
7323   if (Scale == 0) {
7324     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, Lo,
7325                                DAG.getConstant(VTSize - 1, dl, ShiftTy));
7326     SDValue Overflow = DAG.getSetCC(dl, BoolVT, Hi, Sign, ISD::SETNE);
7327     // Saturated to SatMin if wide product is negative, and SatMax if wide
7328     // product is positive ...
7329     SDValue Zero = DAG.getConstant(0, dl, VT);
7330     SDValue ResultIfOverflow = DAG.getSelectCC(dl, Hi, Zero, SatMin, SatMax,
7331                                                ISD::SETLT);
7332     // ... but only if we overflowed.
7333     return DAG.getSelect(dl, VT, Overflow, ResultIfOverflow, Result);
7334   }
7335 
7336   //  We handled Scale==0 above so all the bits to examine is in Hi.
7337 
7338   // Saturate to max if ((Hi >> (Scale - 1)) > 0),
7339   // which is the same as if (Hi > (1 << (Scale - 1)) - 1)
7340   SDValue LowMask = DAG.getConstant(APInt::getLowBitsSet(VTSize, Scale - 1),
7341                                     dl, VT);
7342   Result = DAG.getSelectCC(dl, Hi, LowMask, SatMax, Result, ISD::SETGT);
7343   // Saturate to min if (Hi >> (Scale - 1)) < -1),
7344   // which is the same as if (HI < (-1 << (Scale - 1))
7345   SDValue HighMask =
7346       DAG.getConstant(APInt::getHighBitsSet(VTSize, VTSize - Scale + 1),
7347                       dl, VT);
7348   Result = DAG.getSelectCC(dl, Hi, HighMask, SatMin, Result, ISD::SETLT);
7349   return Result;
7350 }
7351 
7352 SDValue
7353 TargetLowering::expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
7354                                     SDValue LHS, SDValue RHS,
7355                                     unsigned Scale, SelectionDAG &DAG) const {
7356   assert((Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT ||
7357           Opcode == ISD::UDIVFIX || Opcode == ISD::UDIVFIXSAT) &&
7358          "Expected a fixed point division opcode");
7359 
7360   EVT VT = LHS.getValueType();
7361   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
7362   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
7363   EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7364 
7365   // If there is enough room in the type to upscale the LHS or downscale the
7366   // RHS before the division, we can perform it in this type without having to
7367   // resize. For signed operations, the LHS headroom is the number of
7368   // redundant sign bits, and for unsigned ones it is the number of zeroes.
7369   // The headroom for the RHS is the number of trailing zeroes.
7370   unsigned LHSLead = Signed ? DAG.ComputeNumSignBits(LHS) - 1
7371                             : DAG.computeKnownBits(LHS).countMinLeadingZeros();
7372   unsigned RHSTrail = DAG.computeKnownBits(RHS).countMinTrailingZeros();
7373 
7374   // For signed saturating operations, we need to be able to detect true integer
7375   // division overflow; that is, when you have MIN / -EPS. However, this
7376   // is undefined behavior and if we emit divisions that could take such
7377   // values it may cause undesired behavior (arithmetic exceptions on x86, for
7378   // example).
7379   // Avoid this by requiring an extra bit so that we never get this case.
7380   // FIXME: This is a bit unfortunate as it means that for an 8-bit 7-scale
7381   // signed saturating division, we need to emit a whopping 32-bit division.
7382   if (LHSLead + RHSTrail < Scale + (unsigned)(Saturating && Signed))
7383     return SDValue();
7384 
7385   unsigned LHSShift = std::min(LHSLead, Scale);
7386   unsigned RHSShift = Scale - LHSShift;
7387 
7388   // At this point, we know that if we shift the LHS up by LHSShift and the
7389   // RHS down by RHSShift, we can emit a regular division with a final scaling
7390   // factor of Scale.
7391 
7392   EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
7393   if (LHSShift)
7394     LHS = DAG.getNode(ISD::SHL, dl, VT, LHS,
7395                       DAG.getConstant(LHSShift, dl, ShiftTy));
7396   if (RHSShift)
7397     RHS = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, dl, VT, RHS,
7398                       DAG.getConstant(RHSShift, dl, ShiftTy));
7399 
7400   SDValue Quot;
7401   if (Signed) {
7402     // For signed operations, if the resulting quotient is negative and the
7403     // remainder is nonzero, subtract 1 from the quotient to round towards
7404     // negative infinity.
7405     SDValue Rem;
7406     // FIXME: Ideally we would always produce an SDIVREM here, but if the
7407     // type isn't legal, SDIVREM cannot be expanded. There is no reason why
7408     // we couldn't just form a libcall, but the type legalizer doesn't do it.
7409     if (isTypeLegal(VT) &&
7410         isOperationLegalOrCustom(ISD::SDIVREM, VT)) {
7411       Quot = DAG.getNode(ISD::SDIVREM, dl,
7412                          DAG.getVTList(VT, VT),
7413                          LHS, RHS);
7414       Rem = Quot.getValue(1);
7415       Quot = Quot.getValue(0);
7416     } else {
7417       Quot = DAG.getNode(ISD::SDIV, dl, VT,
7418                          LHS, RHS);
7419       Rem = DAG.getNode(ISD::SREM, dl, VT,
7420                         LHS, RHS);
7421     }
7422     SDValue Zero = DAG.getConstant(0, dl, VT);
7423     SDValue RemNonZero = DAG.getSetCC(dl, BoolVT, Rem, Zero, ISD::SETNE);
7424     SDValue LHSNeg = DAG.getSetCC(dl, BoolVT, LHS, Zero, ISD::SETLT);
7425     SDValue RHSNeg = DAG.getSetCC(dl, BoolVT, RHS, Zero, ISD::SETLT);
7426     SDValue QuotNeg = DAG.getNode(ISD::XOR, dl, BoolVT, LHSNeg, RHSNeg);
7427     SDValue Sub1 = DAG.getNode(ISD::SUB, dl, VT, Quot,
7428                                DAG.getConstant(1, dl, VT));
7429     Quot = DAG.getSelect(dl, VT,
7430                          DAG.getNode(ISD::AND, dl, BoolVT, RemNonZero, QuotNeg),
7431                          Sub1, Quot);
7432   } else
7433     Quot = DAG.getNode(ISD::UDIV, dl, VT,
7434                        LHS, RHS);
7435 
7436   return Quot;
7437 }
7438 
7439 void TargetLowering::expandUADDSUBO(
7440     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7441   SDLoc dl(Node);
7442   SDValue LHS = Node->getOperand(0);
7443   SDValue RHS = Node->getOperand(1);
7444   bool IsAdd = Node->getOpcode() == ISD::UADDO;
7445 
7446   // If ADD/SUBCARRY is legal, use that instead.
7447   unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
7448   if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
7449     SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
7450     SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
7451                                     { LHS, RHS, CarryIn });
7452     Result = SDValue(NodeCarry.getNode(), 0);
7453     Overflow = SDValue(NodeCarry.getNode(), 1);
7454     return;
7455   }
7456 
7457   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7458                             LHS.getValueType(), LHS, RHS);
7459 
7460   EVT ResultType = Node->getValueType(1);
7461   EVT SetCCType = getSetCCResultType(
7462       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7463   ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
7464   SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
7465   Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7466 }
7467 
7468 void TargetLowering::expandSADDSUBO(
7469     SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
7470   SDLoc dl(Node);
7471   SDValue LHS = Node->getOperand(0);
7472   SDValue RHS = Node->getOperand(1);
7473   bool IsAdd = Node->getOpcode() == ISD::SADDO;
7474 
7475   Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
7476                             LHS.getValueType(), LHS, RHS);
7477 
7478   EVT ResultType = Node->getValueType(1);
7479   EVT OType = getSetCCResultType(
7480       DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
7481 
7482   // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
7483   unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
7484   if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
7485     SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
7486     SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
7487     Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
7488     return;
7489   }
7490 
7491   SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
7492 
7493   // For an addition, the result should be less than one of the operands (LHS)
7494   // if and only if the other operand (RHS) is negative, otherwise there will
7495   // be overflow.
7496   // For a subtraction, the result should be less than one of the operands
7497   // (LHS) if and only if the other operand (RHS) is (non-zero) positive,
7498   // otherwise there will be overflow.
7499   SDValue ResultLowerThanLHS = DAG.getSetCC(dl, OType, Result, LHS, ISD::SETLT);
7500   SDValue ConditionRHS =
7501       DAG.getSetCC(dl, OType, RHS, Zero, IsAdd ? ISD::SETLT : ISD::SETGT);
7502 
7503   Overflow = DAG.getBoolExtOrTrunc(
7504       DAG.getNode(ISD::XOR, dl, OType, ConditionRHS, ResultLowerThanLHS), dl,
7505       ResultType, ResultType);
7506 }
7507 
7508 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
7509                                 SDValue &Overflow, SelectionDAG &DAG) const {
7510   SDLoc dl(Node);
7511   EVT VT = Node->getValueType(0);
7512   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
7513   SDValue LHS = Node->getOperand(0);
7514   SDValue RHS = Node->getOperand(1);
7515   bool isSigned = Node->getOpcode() == ISD::SMULO;
7516 
7517   // For power-of-two multiplications we can use a simpler shift expansion.
7518   if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
7519     const APInt &C = RHSC->getAPIntValue();
7520     // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
7521     if (C.isPowerOf2()) {
7522       // smulo(x, signed_min) is same as umulo(x, signed_min).
7523       bool UseArithShift = isSigned && !C.isMinSignedValue();
7524       EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
7525       SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
7526       Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
7527       Overflow = DAG.getSetCC(dl, SetCCVT,
7528           DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
7529                       dl, VT, Result, ShiftAmt),
7530           LHS, ISD::SETNE);
7531       return true;
7532     }
7533   }
7534 
7535   EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
7536   if (VT.isVector())
7537     WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
7538                               VT.getVectorNumElements());
7539 
7540   SDValue BottomHalf;
7541   SDValue TopHalf;
7542   static const unsigned Ops[2][3] =
7543       { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
7544         { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
7545   if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
7546     BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
7547     TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
7548   } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
7549     BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
7550                              RHS);
7551     TopHalf = BottomHalf.getValue(1);
7552   } else if (isTypeLegal(WideVT)) {
7553     LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
7554     RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
7555     SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
7556     BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
7557     SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
7558         getShiftAmountTy(WideVT, DAG.getDataLayout()));
7559     TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
7560                           DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
7561   } else {
7562     if (VT.isVector())
7563       return false;
7564 
7565     // We can fall back to a libcall with an illegal type for the MUL if we
7566     // have a libcall big enough.
7567     // Also, we can fall back to a division in some cases, but that's a big
7568     // performance hit in the general case.
7569     RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
7570     if (WideVT == MVT::i16)
7571       LC = RTLIB::MUL_I16;
7572     else if (WideVT == MVT::i32)
7573       LC = RTLIB::MUL_I32;
7574     else if (WideVT == MVT::i64)
7575       LC = RTLIB::MUL_I64;
7576     else if (WideVT == MVT::i128)
7577       LC = RTLIB::MUL_I128;
7578     assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
7579 
7580     SDValue HiLHS;
7581     SDValue HiRHS;
7582     if (isSigned) {
7583       // The high part is obtained by SRA'ing all but one of the bits of low
7584       // part.
7585       unsigned LoSize = VT.getSizeInBits();
7586       HiLHS =
7587           DAG.getNode(ISD::SRA, dl, VT, LHS,
7588                       DAG.getConstant(LoSize - 1, dl,
7589                                       getPointerTy(DAG.getDataLayout())));
7590       HiRHS =
7591           DAG.getNode(ISD::SRA, dl, VT, RHS,
7592                       DAG.getConstant(LoSize - 1, dl,
7593                                       getPointerTy(DAG.getDataLayout())));
7594     } else {
7595         HiLHS = DAG.getConstant(0, dl, VT);
7596         HiRHS = DAG.getConstant(0, dl, VT);
7597     }
7598 
7599     // Here we're passing the 2 arguments explicitly as 4 arguments that are
7600     // pre-lowered to the correct types. This all depends upon WideVT not
7601     // being a legal type for the architecture and thus has to be split to
7602     // two arguments.
7603     SDValue Ret;
7604     TargetLowering::MakeLibCallOptions CallOptions;
7605     CallOptions.setSExt(isSigned);
7606     CallOptions.setIsPostTypeLegalization(true);
7607     if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
7608       // Halves of WideVT are packed into registers in different order
7609       // depending on platform endianness. This is usually handled by
7610       // the C calling convention, but we can't defer to it in
7611       // the legalizer.
7612       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
7613       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7614     } else {
7615       SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
7616       Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
7617     }
7618     assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
7619            "Ret value is a collection of constituent nodes holding result.");
7620     if (DAG.getDataLayout().isLittleEndian()) {
7621       // Same as above.
7622       BottomHalf = Ret.getOperand(0);
7623       TopHalf = Ret.getOperand(1);
7624     } else {
7625       BottomHalf = Ret.getOperand(1);
7626       TopHalf = Ret.getOperand(0);
7627     }
7628   }
7629 
7630   Result = BottomHalf;
7631   if (isSigned) {
7632     SDValue ShiftAmt = DAG.getConstant(
7633         VT.getScalarSizeInBits() - 1, dl,
7634         getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
7635     SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
7636     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
7637   } else {
7638     Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
7639                             DAG.getConstant(0, dl, VT), ISD::SETNE);
7640   }
7641 
7642   // Truncate the result if SetCC returns a larger type than needed.
7643   EVT RType = Node->getValueType(1);
7644   if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7645     Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7646 
7647   assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7648          "Unexpected result type for S/UMULO legalization");
7649   return true;
7650 }
7651 
7652 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7653   SDLoc dl(Node);
7654   bool NoNaN = Node->getFlags().hasNoNaNs();
7655   unsigned BaseOpcode = 0;
7656   switch (Node->getOpcode()) {
7657   default: llvm_unreachable("Expected VECREDUCE opcode");
7658   case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7659   case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7660   case ISD::VECREDUCE_ADD:  BaseOpcode = ISD::ADD; break;
7661   case ISD::VECREDUCE_MUL:  BaseOpcode = ISD::MUL; break;
7662   case ISD::VECREDUCE_AND:  BaseOpcode = ISD::AND; break;
7663   case ISD::VECREDUCE_OR:   BaseOpcode = ISD::OR; break;
7664   case ISD::VECREDUCE_XOR:  BaseOpcode = ISD::XOR; break;
7665   case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7666   case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7667   case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7668   case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7669   case ISD::VECREDUCE_FMAX:
7670     BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7671     break;
7672   case ISD::VECREDUCE_FMIN:
7673     BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7674     break;
7675   }
7676 
7677   SDValue Op = Node->getOperand(0);
7678   EVT VT = Op.getValueType();
7679 
7680   // Try to use a shuffle reduction for power of two vectors.
7681   if (VT.isPow2VectorType()) {
7682     while (VT.getVectorNumElements() > 1) {
7683       EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7684       if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7685         break;
7686 
7687       SDValue Lo, Hi;
7688       std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7689       Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7690       VT = HalfVT;
7691     }
7692   }
7693 
7694   EVT EltVT = VT.getVectorElementType();
7695   unsigned NumElts = VT.getVectorNumElements();
7696 
7697   SmallVector<SDValue, 8> Ops;
7698   DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7699 
7700   SDValue Res = Ops[0];
7701   for (unsigned i = 1; i < NumElts; i++)
7702     Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7703 
7704   // Result type may be wider than element type.
7705   if (EltVT != Node->getValueType(0))
7706     Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7707   return Res;
7708 }
7709