1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements the TargetLowering class. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/CodeGen/TargetLowering.h" 14 #include "llvm/ADT/BitVector.h" 15 #include "llvm/ADT/STLExtras.h" 16 #include "llvm/CodeGen/CallingConvLower.h" 17 #include "llvm/CodeGen/MachineFrameInfo.h" 18 #include "llvm/CodeGen/MachineFunction.h" 19 #include "llvm/CodeGen/MachineJumpTableInfo.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/SelectionDAG.h" 22 #include "llvm/CodeGen/TargetRegisterInfo.h" 23 #include "llvm/CodeGen/TargetSubtargetInfo.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCExpr.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/KnownBits.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Target/TargetLoweringObjectFile.h" 34 #include "llvm/Target/TargetMachine.h" 35 #include <cctype> 36 using namespace llvm; 37 38 /// NOTE: The TargetMachine owns TLOF. 39 TargetLowering::TargetLowering(const TargetMachine &tm) 40 : TargetLoweringBase(tm) {} 41 42 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const { 43 return nullptr; 44 } 45 46 bool TargetLowering::isPositionIndependent() const { 47 return getTargetMachine().isPositionIndependent(); 48 } 49 50 /// Check whether a given call node is in tail position within its function. If 51 /// so, it sets Chain to the input chain of the tail call. 52 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, 53 SDValue &Chain) const { 54 const Function &F = DAG.getMachineFunction().getFunction(); 55 56 // Conservatively require the attributes of the call to match those of 57 // the return. Ignore NoAlias and NonNull because they don't affect the 58 // call sequence. 59 AttributeList CallerAttrs = F.getAttributes(); 60 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex) 61 .removeAttribute(Attribute::NoAlias) 62 .removeAttribute(Attribute::NonNull) 63 .hasAttributes()) 64 return false; 65 66 // It's not safe to eliminate the sign / zero extension of the return value. 67 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) || 68 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt)) 69 return false; 70 71 // Check if the only use is a function return node. 72 return isUsedByReturnOnly(Node, Chain); 73 } 74 75 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI, 76 const uint32_t *CallerPreservedMask, 77 const SmallVectorImpl<CCValAssign> &ArgLocs, 78 const SmallVectorImpl<SDValue> &OutVals) const { 79 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) { 80 const CCValAssign &ArgLoc = ArgLocs[I]; 81 if (!ArgLoc.isRegLoc()) 82 continue; 83 unsigned Reg = ArgLoc.getLocReg(); 84 // Only look at callee saved registers. 85 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg)) 86 continue; 87 // Check that we pass the value used for the caller. 88 // (We look for a CopyFromReg reading a virtual register that is used 89 // for the function live-in value of register Reg) 90 SDValue Value = OutVals[I]; 91 if (Value->getOpcode() != ISD::CopyFromReg) 92 return false; 93 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg(); 94 if (MRI.getLiveInPhysReg(ArgReg) != Reg) 95 return false; 96 } 97 return true; 98 } 99 100 /// Set CallLoweringInfo attribute flags based on a call instruction 101 /// and called function attributes. 102 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS, 103 unsigned ArgIdx) { 104 IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt); 105 IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt); 106 IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg); 107 IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet); 108 IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest); 109 IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal); 110 IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca); 111 IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned); 112 IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf); 113 IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError); 114 Alignment = CS->getParamAlignment(ArgIdx); 115 } 116 117 /// Generate a libcall taking the given operands as arguments and returning a 118 /// result of type RetVT. 119 std::pair<SDValue, SDValue> 120 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, 121 ArrayRef<SDValue> Ops, bool isSigned, 122 const SDLoc &dl, bool doesNotReturn, 123 bool isReturnValueUsed) const { 124 TargetLowering::ArgListTy Args; 125 Args.reserve(Ops.size()); 126 127 TargetLowering::ArgListEntry Entry; 128 for (SDValue Op : Ops) { 129 Entry.Node = Op; 130 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 131 Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 132 Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned); 133 Args.push_back(Entry); 134 } 135 136 if (LC == RTLIB::UNKNOWN_LIBCALL) 137 report_fatal_error("Unsupported library call operation!"); 138 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 139 getPointerTy(DAG.getDataLayout())); 140 141 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 142 TargetLowering::CallLoweringInfo CLI(DAG); 143 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned); 144 CLI.setDebugLoc(dl) 145 .setChain(DAG.getEntryNode()) 146 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args)) 147 .setNoReturn(doesNotReturn) 148 .setDiscardResult(!isReturnValueUsed) 149 .setSExtResult(signExtend) 150 .setZExtResult(!signExtend); 151 return LowerCallTo(CLI); 152 } 153 154 /// Soften the operands of a comparison. This code is shared among BR_CC, 155 /// SELECT_CC, and SETCC handlers. 156 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT, 157 SDValue &NewLHS, SDValue &NewRHS, 158 ISD::CondCode &CCCode, 159 const SDLoc &dl) const { 160 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128) 161 && "Unsupported setcc type!"); 162 163 // Expand into one or more soft-fp libcall(s). 164 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL; 165 bool ShouldInvertCC = false; 166 switch (CCCode) { 167 case ISD::SETEQ: 168 case ISD::SETOEQ: 169 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 170 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 171 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 172 break; 173 case ISD::SETNE: 174 case ISD::SETUNE: 175 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 : 176 (VT == MVT::f64) ? RTLIB::UNE_F64 : 177 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128; 178 break; 179 case ISD::SETGE: 180 case ISD::SETOGE: 181 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 182 (VT == MVT::f64) ? RTLIB::OGE_F64 : 183 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 184 break; 185 case ISD::SETLT: 186 case ISD::SETOLT: 187 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 188 (VT == MVT::f64) ? RTLIB::OLT_F64 : 189 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 190 break; 191 case ISD::SETLE: 192 case ISD::SETOLE: 193 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 194 (VT == MVT::f64) ? RTLIB::OLE_F64 : 195 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 196 break; 197 case ISD::SETGT: 198 case ISD::SETOGT: 199 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 200 (VT == MVT::f64) ? RTLIB::OGT_F64 : 201 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 202 break; 203 case ISD::SETUO: 204 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 205 (VT == MVT::f64) ? RTLIB::UO_F64 : 206 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 207 break; 208 case ISD::SETO: 209 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 : 210 (VT == MVT::f64) ? RTLIB::O_F64 : 211 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128; 212 break; 213 case ISD::SETONE: 214 // SETONE = SETOLT | SETOGT 215 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 216 (VT == MVT::f64) ? RTLIB::OLT_F64 : 217 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 218 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 219 (VT == MVT::f64) ? RTLIB::OGT_F64 : 220 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 221 break; 222 case ISD::SETUEQ: 223 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 : 224 (VT == MVT::f64) ? RTLIB::UO_F64 : 225 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128; 226 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 : 227 (VT == MVT::f64) ? RTLIB::OEQ_F64 : 228 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128; 229 break; 230 default: 231 // Invert CC for unordered comparisons 232 ShouldInvertCC = true; 233 switch (CCCode) { 234 case ISD::SETULT: 235 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 : 236 (VT == MVT::f64) ? RTLIB::OGE_F64 : 237 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128; 238 break; 239 case ISD::SETULE: 240 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 : 241 (VT == MVT::f64) ? RTLIB::OGT_F64 : 242 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128; 243 break; 244 case ISD::SETUGT: 245 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 : 246 (VT == MVT::f64) ? RTLIB::OLE_F64 : 247 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128; 248 break; 249 case ISD::SETUGE: 250 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 : 251 (VT == MVT::f64) ? RTLIB::OLT_F64 : 252 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128; 253 break; 254 default: llvm_unreachable("Do not know how to soften this setcc!"); 255 } 256 } 257 258 // Use the target specific return value for comparions lib calls. 259 EVT RetVT = getCmpLibcallReturnType(); 260 SDValue Ops[2] = {NewLHS, NewRHS}; 261 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/, 262 dl).first; 263 NewRHS = DAG.getConstant(0, dl, RetVT); 264 265 CCCode = getCmpLibcallCC(LC1); 266 if (ShouldInvertCC) 267 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true); 268 269 if (LC2 != RTLIB::UNKNOWN_LIBCALL) { 270 SDValue Tmp = DAG.getNode( 271 ISD::SETCC, dl, 272 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 273 NewLHS, NewRHS, DAG.getCondCode(CCCode)); 274 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/, 275 dl).first; 276 NewLHS = DAG.getNode( 277 ISD::SETCC, dl, 278 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT), 279 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2))); 280 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS); 281 NewRHS = SDValue(); 282 } 283 } 284 285 /// Return the entry encoding for a jump table in the current function. The 286 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum. 287 unsigned TargetLowering::getJumpTableEncoding() const { 288 // In non-pic modes, just use the address of a block. 289 if (!isPositionIndependent()) 290 return MachineJumpTableInfo::EK_BlockAddress; 291 292 // In PIC mode, if the target supports a GPRel32 directive, use it. 293 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr) 294 return MachineJumpTableInfo::EK_GPRel32BlockAddress; 295 296 // Otherwise, use a label difference. 297 return MachineJumpTableInfo::EK_LabelDifference32; 298 } 299 300 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table, 301 SelectionDAG &DAG) const { 302 // If our PIC model is GP relative, use the global offset table as the base. 303 unsigned JTEncoding = getJumpTableEncoding(); 304 305 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) || 306 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress)) 307 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout())); 308 309 return Table; 310 } 311 312 /// This returns the relocation base for the given PIC jumptable, the same as 313 /// getPICJumpTableRelocBase, but as an MCExpr. 314 const MCExpr * 315 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, 316 unsigned JTI,MCContext &Ctx) const{ 317 // The normal PIC reloc base is the label at the start of the jump table. 318 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx); 319 } 320 321 bool 322 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 323 const TargetMachine &TM = getTargetMachine(); 324 const GlobalValue *GV = GA->getGlobal(); 325 326 // If the address is not even local to this DSO we will have to load it from 327 // a got and then add the offset. 328 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV)) 329 return false; 330 331 // If the code is position independent we will have to add a base register. 332 if (isPositionIndependent()) 333 return false; 334 335 // Otherwise we can do it. 336 return true; 337 } 338 339 //===----------------------------------------------------------------------===// 340 // Optimization Methods 341 //===----------------------------------------------------------------------===// 342 343 /// If the specified instruction has a constant integer operand and there are 344 /// bits set in that constant that are not demanded, then clear those bits and 345 /// return true. 346 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, 347 TargetLoweringOpt &TLO) const { 348 SelectionDAG &DAG = TLO.DAG; 349 SDLoc DL(Op); 350 unsigned Opcode = Op.getOpcode(); 351 352 // Do target-specific constant optimization. 353 if (targetShrinkDemandedConstant(Op, Demanded, TLO)) 354 return TLO.New.getNode(); 355 356 // FIXME: ISD::SELECT, ISD::SELECT_CC 357 switch (Opcode) { 358 default: 359 break; 360 case ISD::XOR: 361 case ISD::AND: 362 case ISD::OR: { 363 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 364 if (!Op1C) 365 return false; 366 367 // If this is a 'not' op, don't touch it because that's a canonical form. 368 const APInt &C = Op1C->getAPIntValue(); 369 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C)) 370 return false; 371 372 if (!C.isSubsetOf(Demanded)) { 373 EVT VT = Op.getValueType(); 374 SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); 375 SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); 376 return TLO.CombineTo(Op, NewOp); 377 } 378 379 break; 380 } 381 } 382 383 return false; 384 } 385 386 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. 387 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be 388 /// generalized for targets with other types of implicit widening casts. 389 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, 390 const APInt &Demanded, 391 TargetLoweringOpt &TLO) const { 392 assert(Op.getNumOperands() == 2 && 393 "ShrinkDemandedOp only supports binary operators!"); 394 assert(Op.getNode()->getNumValues() == 1 && 395 "ShrinkDemandedOp only supports nodes with one result!"); 396 397 SelectionDAG &DAG = TLO.DAG; 398 SDLoc dl(Op); 399 400 // Early return, as this function cannot handle vector types. 401 if (Op.getValueType().isVector()) 402 return false; 403 404 // Don't do this if the node has another user, which may require the 405 // full value. 406 if (!Op.getNode()->hasOneUse()) 407 return false; 408 409 // Search for the smallest integer type with free casts to and from 410 // Op's type. For expedience, just check power-of-2 integer types. 411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 412 unsigned DemandedSize = Demanded.getActiveBits(); 413 unsigned SmallVTBits = DemandedSize; 414 if (!isPowerOf2_32(SmallVTBits)) 415 SmallVTBits = NextPowerOf2(SmallVTBits); 416 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) { 417 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits); 418 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) && 419 TLI.isZExtFree(SmallVT, Op.getValueType())) { 420 // We found a type with free casts. 421 SDValue X = DAG.getNode( 422 Op.getOpcode(), dl, SmallVT, 423 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)), 424 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1))); 425 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?"); 426 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X); 427 return TLO.CombineTo(Op, Z); 428 } 429 } 430 return false; 431 } 432 433 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 434 DAGCombinerInfo &DCI) const { 435 SelectionDAG &DAG = DCI.DAG; 436 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 437 !DCI.isBeforeLegalizeOps()); 438 KnownBits Known; 439 440 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO); 441 if (Simplified) { 442 DCI.AddToWorklist(Op.getNode()); 443 DCI.CommitTargetLoweringOpt(TLO); 444 } 445 return Simplified; 446 } 447 448 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, 449 KnownBits &Known, 450 TargetLoweringOpt &TLO, 451 unsigned Depth, 452 bool AssumeSingleUse) const { 453 EVT VT = Op.getValueType(); 454 APInt DemandedElts = VT.isVector() 455 ? APInt::getAllOnesValue(VT.getVectorNumElements()) 456 : APInt(1, 1); 457 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth, 458 AssumeSingleUse); 459 } 460 461 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the 462 /// result of Op are ever used downstream. If we can use this information to 463 /// simplify Op, create a new simplified DAG node and return true, returning the 464 /// original and new nodes in Old and New. Otherwise, analyze the expression and 465 /// return a mask of Known bits for the expression (used to simplify the 466 /// caller). The Known bits may only be accurate for those bits in the 467 /// OriginalDemandedBits and OriginalDemandedElts. 468 bool TargetLowering::SimplifyDemandedBits( 469 SDValue Op, const APInt &OriginalDemandedBits, 470 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, 471 unsigned Depth, bool AssumeSingleUse) const { 472 unsigned BitWidth = OriginalDemandedBits.getBitWidth(); 473 assert(Op.getScalarValueSizeInBits() == BitWidth && 474 "Mask size mismatches value type size!"); 475 476 unsigned NumElts = OriginalDemandedElts.getBitWidth(); 477 assert((!Op.getValueType().isVector() || 478 NumElts == Op.getValueType().getVectorNumElements()) && 479 "Unexpected vector size"); 480 481 APInt DemandedBits = OriginalDemandedBits; 482 APInt DemandedElts = OriginalDemandedElts; 483 SDLoc dl(Op); 484 auto &DL = TLO.DAG.getDataLayout(); 485 486 // Don't know anything. 487 Known = KnownBits(BitWidth); 488 489 if (Op.getOpcode() == ISD::Constant) { 490 // We know all of the bits for a constant! 491 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue(); 492 Known.Zero = ~Known.One; 493 return false; 494 } 495 496 // Other users may use these bits. 497 EVT VT = Op.getValueType(); 498 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) { 499 if (Depth != 0) { 500 // If not at the root, Just compute the Known bits to 501 // simplify things downstream. 502 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 503 return false; 504 } 505 // If this is the root being simplified, allow it to have multiple uses, 506 // just set the DemandedBits/Elts to all bits. 507 DemandedBits = APInt::getAllOnesValue(BitWidth); 508 DemandedElts = APInt::getAllOnesValue(NumElts); 509 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) { 510 // Not demanding any bits/elts from Op. 511 if (!Op.isUndef()) 512 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 513 return false; 514 } else if (Depth == 6) { // Limit search depth. 515 return false; 516 } 517 518 KnownBits Known2, KnownOut; 519 switch (Op.getOpcode()) { 520 case ISD::BUILD_VECTOR: 521 // Collect the known bits that are shared by every constant vector element. 522 Known.Zero.setAllBits(); Known.One.setAllBits(); 523 for (SDValue SrcOp : Op->ops()) { 524 if (!isa<ConstantSDNode>(SrcOp)) { 525 // We can only handle all constant values - bail out with no known bits. 526 Known = KnownBits(BitWidth); 527 return false; 528 } 529 Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue(); 530 Known2.Zero = ~Known2.One; 531 532 // BUILD_VECTOR can implicitly truncate sources, we must handle this. 533 if (Known2.One.getBitWidth() != BitWidth) { 534 assert(Known2.getBitWidth() > BitWidth && 535 "Expected BUILD_VECTOR implicit truncation"); 536 Known2 = Known2.trunc(BitWidth); 537 } 538 539 // Known bits are the values that are shared by every element. 540 // TODO: support per-element known bits. 541 Known.One &= Known2.One; 542 Known.Zero &= Known2.Zero; 543 } 544 return false; // Don't fall through, will infinitely loop. 545 case ISD::CONCAT_VECTORS: { 546 Known.Zero.setAllBits(); 547 Known.One.setAllBits(); 548 EVT SubVT = Op.getOperand(0).getValueType(); 549 unsigned NumSubVecs = Op.getNumOperands(); 550 unsigned NumSubElts = SubVT.getVectorNumElements(); 551 for (unsigned i = 0; i != NumSubVecs; ++i) { 552 APInt DemandedSubElts = 553 DemandedElts.extractBits(NumSubElts, i * NumSubElts); 554 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts, 555 Known2, TLO, Depth + 1)) 556 return true; 557 // Known bits are shared by every demanded subvector element. 558 if (!!DemandedSubElts) { 559 Known.One &= Known2.One; 560 Known.Zero &= Known2.Zero; 561 } 562 } 563 break; 564 } 565 case ISD::VECTOR_SHUFFLE: { 566 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 567 568 // Collect demanded elements from shuffle operands.. 569 APInt DemandedLHS(NumElts, 0); 570 APInt DemandedRHS(NumElts, 0); 571 for (unsigned i = 0; i != NumElts; ++i) { 572 if (!DemandedElts[i]) 573 continue; 574 int M = ShuffleMask[i]; 575 if (M < 0) { 576 // For UNDEF elements, we don't know anything about the common state of 577 // the shuffle result. 578 DemandedLHS.clearAllBits(); 579 DemandedRHS.clearAllBits(); 580 break; 581 } 582 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 583 if (M < (int)NumElts) 584 DemandedLHS.setBit(M); 585 else 586 DemandedRHS.setBit(M - NumElts); 587 } 588 589 if (!!DemandedLHS || !!DemandedRHS) { 590 Known.Zero.setAllBits(); 591 Known.One.setAllBits(); 592 if (!!DemandedLHS) { 593 if (SimplifyDemandedBits(Op.getOperand(0), DemandedBits, DemandedLHS, 594 Known2, TLO, Depth + 1)) 595 return true; 596 Known.One &= Known2.One; 597 Known.Zero &= Known2.Zero; 598 } 599 if (!!DemandedRHS) { 600 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, DemandedRHS, 601 Known2, TLO, Depth + 1)) 602 return true; 603 Known.One &= Known2.One; 604 Known.Zero &= Known2.Zero; 605 } 606 } 607 break; 608 } 609 case ISD::AND: { 610 SDValue Op0 = Op.getOperand(0); 611 SDValue Op1 = Op.getOperand(1); 612 613 // If the RHS is a constant, check to see if the LHS would be zero without 614 // using the bits from the RHS. Below, we use knowledge about the RHS to 615 // simplify the LHS, here we're using information from the LHS to simplify 616 // the RHS. 617 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) { 618 // Do not increment Depth here; that can cause an infinite loop. 619 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth); 620 // If the LHS already has zeros where RHSC does, this 'and' is dead. 621 if ((LHSKnown.Zero & DemandedBits) == 622 (~RHSC->getAPIntValue() & DemandedBits)) 623 return TLO.CombineTo(Op, Op0); 624 625 // If any of the set bits in the RHS are known zero on the LHS, shrink 626 // the constant. 627 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO)) 628 return true; 629 630 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its 631 // constant, but if this 'and' is only clearing bits that were just set by 632 // the xor, then this 'and' can be eliminated by shrinking the mask of 633 // the xor. For example, for a 32-bit X: 634 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1 635 if (isBitwiseNot(Op0) && Op0.hasOneUse() && 636 LHSKnown.One == ~RHSC->getAPIntValue()) { 637 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1); 638 return TLO.CombineTo(Op, Xor); 639 } 640 } 641 642 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) 643 return true; 644 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 645 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts, Known2, TLO, 646 Depth + 1)) 647 return true; 648 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 649 650 // If all of the demanded bits are known one on one side, return the other. 651 // These bits cannot contribute to the result of the 'and'. 652 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One)) 653 return TLO.CombineTo(Op, Op0); 654 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One)) 655 return TLO.CombineTo(Op, Op1); 656 // If all of the demanded bits in the inputs are known zeros, return zero. 657 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 658 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT)); 659 // If the RHS is a constant, see if we can simplify it. 660 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO)) 661 return true; 662 // If the operation can be done in a smaller type, do so. 663 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 664 return true; 665 666 // Output known-1 bits are only known if set in both the LHS & RHS. 667 Known.One &= Known2.One; 668 // Output known-0 are known to be clear if zero in either the LHS | RHS. 669 Known.Zero |= Known2.Zero; 670 break; 671 } 672 case ISD::OR: { 673 SDValue Op0 = Op.getOperand(0); 674 SDValue Op1 = Op.getOperand(1); 675 676 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) 677 return true; 678 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 679 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts, Known2, TLO, 680 Depth + 1)) 681 return true; 682 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 683 684 // If all of the demanded bits are known zero on one side, return the other. 685 // These bits cannot contribute to the result of the 'or'. 686 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero)) 687 return TLO.CombineTo(Op, Op0); 688 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero)) 689 return TLO.CombineTo(Op, Op1); 690 // If the RHS is a constant, see if we can simplify it. 691 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 692 return true; 693 // If the operation can be done in a smaller type, do so. 694 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 695 return true; 696 697 // Output known-0 bits are only known if clear in both the LHS & RHS. 698 Known.Zero &= Known2.Zero; 699 // Output known-1 are known to be set if set in either the LHS | RHS. 700 Known.One |= Known2.One; 701 break; 702 } 703 case ISD::XOR: { 704 SDValue Op0 = Op.getOperand(0); 705 SDValue Op1 = Op.getOperand(1); 706 707 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO, Depth + 1)) 708 return true; 709 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 710 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO, Depth + 1)) 711 return true; 712 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 713 714 // If all of the demanded bits are known zero on one side, return the other. 715 // These bits cannot contribute to the result of the 'xor'. 716 if (DemandedBits.isSubsetOf(Known.Zero)) 717 return TLO.CombineTo(Op, Op0); 718 if (DemandedBits.isSubsetOf(Known2.Zero)) 719 return TLO.CombineTo(Op, Op1); 720 // If the operation can be done in a smaller type, do so. 721 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) 722 return true; 723 724 // If all of the unknown bits are known to be zero on one side or the other 725 // (but not both) turn this into an *inclusive* or. 726 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0 727 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero)) 728 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1)); 729 730 // Output known-0 bits are known if clear or set in both the LHS & RHS. 731 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 732 // Output known-1 are known to be set if set in only one of the LHS, RHS. 733 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 734 735 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) { 736 // If one side is a constant, and all of the known set bits on the other 737 // side are also set in the constant, turn this into an AND, as we know 738 // the bits will be cleared. 739 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2 740 // NB: it is okay if more bits are known than are requested 741 if (C->getAPIntValue() == Known2.One) { 742 SDValue ANDC = 743 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT); 744 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC)); 745 } 746 747 // If the RHS is a constant, see if we can change it. Don't alter a -1 748 // constant because that's a 'not' op, and that is better for combining 749 // and codegen. 750 if (!C->isAllOnesValue()) { 751 if (DemandedBits.isSubsetOf(C->getAPIntValue())) { 752 // We're flipping all demanded bits. Flip the undemanded bits too. 753 SDValue New = TLO.DAG.getNOT(dl, Op0, VT); 754 return TLO.CombineTo(Op, New); 755 } 756 // If we can't turn this into a 'not', try to shrink the constant. 757 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 758 return true; 759 } 760 } 761 762 Known = std::move(KnownOut); 763 break; 764 } 765 case ISD::SELECT: 766 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO, 767 Depth + 1)) 768 return true; 769 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO, 770 Depth + 1)) 771 return true; 772 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 773 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 774 775 // If the operands are constants, see if we can simplify them. 776 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 777 return true; 778 779 // Only known if known in both the LHS and RHS. 780 Known.One &= Known2.One; 781 Known.Zero &= Known2.Zero; 782 break; 783 case ISD::SELECT_CC: 784 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO, 785 Depth + 1)) 786 return true; 787 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO, 788 Depth + 1)) 789 return true; 790 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 791 assert(!Known2.hasConflict() && "Bits known to be one AND zero?"); 792 793 // If the operands are constants, see if we can simplify them. 794 if (ShrinkDemandedConstant(Op, DemandedBits, TLO)) 795 return true; 796 797 // Only known if known in both the LHS and RHS. 798 Known.One &= Known2.One; 799 Known.Zero &= Known2.Zero; 800 break; 801 case ISD::SETCC: { 802 SDValue Op0 = Op.getOperand(0); 803 SDValue Op1 = Op.getOperand(1); 804 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 805 // If (1) we only need the sign-bit, (2) the setcc operands are the same 806 // width as the setcc result, and (3) the result of a setcc conforms to 0 or 807 // -1, we may be able to bypass the setcc. 808 if (DemandedBits.isSignMask() && 809 Op0.getScalarValueSizeInBits() == BitWidth && 810 getBooleanContents(VT) == 811 BooleanContent::ZeroOrNegativeOneBooleanContent) { 812 // If we're testing X < 0, then this compare isn't needed - just use X! 813 // FIXME: We're limiting to integer types here, but this should also work 814 // if we don't care about FP signed-zero. The use of SETLT with FP means 815 // that we don't care about NaNs. 816 if (CC == ISD::SETLT && Op1.getValueType().isInteger() && 817 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode()))) 818 return TLO.CombineTo(Op, Op0); 819 820 // TODO: Should we check for other forms of sign-bit comparisons? 821 // Examples: X <= -1, X >= 0 822 } 823 if (getBooleanContents(Op0.getValueType()) == 824 TargetLowering::ZeroOrOneBooleanContent && 825 BitWidth > 1) 826 Known.Zero.setBitsFrom(1); 827 break; 828 } 829 case ISD::SHL: { 830 SDValue Op0 = Op.getOperand(0); 831 SDValue Op1 = Op.getOperand(1); 832 833 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 834 // If the shift count is an invalid immediate, don't do anything. 835 if (SA->getAPIntValue().uge(BitWidth)) 836 break; 837 838 unsigned ShAmt = SA->getZExtValue(); 839 840 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a 841 // single shift. We can do this if the bottom bits (which are shifted 842 // out) are never demanded. 843 if (Op0.getOpcode() == ISD::SRL) { 844 if (ShAmt && 845 (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) { 846 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 847 if (SA2->getAPIntValue().ult(BitWidth)) { 848 unsigned C1 = SA2->getZExtValue(); 849 unsigned Opc = ISD::SHL; 850 int Diff = ShAmt - C1; 851 if (Diff < 0) { 852 Diff = -Diff; 853 Opc = ISD::SRL; 854 } 855 856 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 857 return TLO.CombineTo( 858 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 859 } 860 } 861 } 862 } 863 864 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts, Known, TLO, 865 Depth + 1)) 866 return true; 867 868 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits 869 // are not demanded. This will likely allow the anyext to be folded away. 870 if (Op0.getOpcode() == ISD::ANY_EXTEND) { 871 SDValue InnerOp = Op0.getOperand(0); 872 EVT InnerVT = InnerOp.getValueType(); 873 unsigned InnerBits = InnerVT.getScalarSizeInBits(); 874 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits && 875 isTypeDesirableForOp(ISD::SHL, InnerVT)) { 876 EVT ShTy = getShiftAmountTy(InnerVT, DL); 877 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits())) 878 ShTy = InnerVT; 879 SDValue NarrowShl = 880 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp, 881 TLO.DAG.getConstant(ShAmt, dl, ShTy)); 882 return TLO.CombineTo( 883 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl)); 884 } 885 // Repeat the SHL optimization above in cases where an extension 886 // intervenes: (shl (anyext (shr x, c1)), c2) to 887 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits 888 // aren't demanded (as above) and that the shifted upper c1 bits of 889 // x aren't demanded. 890 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL && 891 InnerOp.hasOneUse()) { 892 if (ConstantSDNode *SA2 = 893 isConstOrConstSplat(InnerOp.getOperand(1))) { 894 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits); 895 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits && 896 DemandedBits.getActiveBits() <= 897 (InnerBits - InnerShAmt + ShAmt) && 898 DemandedBits.countTrailingZeros() >= ShAmt) { 899 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl, 900 Op1.getValueType()); 901 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, 902 InnerOp.getOperand(0)); 903 return TLO.CombineTo( 904 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA)); 905 } 906 } 907 } 908 } 909 910 Known.Zero <<= ShAmt; 911 Known.One <<= ShAmt; 912 // low bits known zero. 913 Known.Zero.setLowBits(ShAmt); 914 } 915 break; 916 } 917 case ISD::SRL: { 918 SDValue Op0 = Op.getOperand(0); 919 SDValue Op1 = Op.getOperand(1); 920 921 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 922 // If the shift count is an invalid immediate, don't do anything. 923 if (SA->getAPIntValue().uge(BitWidth)) 924 break; 925 926 unsigned ShAmt = SA->getZExtValue(); 927 APInt InDemandedMask = (DemandedBits << ShAmt); 928 929 // If the shift is exact, then it does demand the low bits (and knows that 930 // they are zero). 931 if (Op->getFlags().hasExact()) 932 InDemandedMask.setLowBits(ShAmt); 933 934 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a 935 // single shift. We can do this if the top bits (which are shifted out) 936 // are never demanded. 937 if (Op0.getOpcode() == ISD::SHL) { 938 if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) { 939 if (ShAmt && 940 (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) { 941 if (SA2->getAPIntValue().ult(BitWidth)) { 942 unsigned C1 = SA2->getZExtValue(); 943 unsigned Opc = ISD::SRL; 944 int Diff = ShAmt - C1; 945 if (Diff < 0) { 946 Diff = -Diff; 947 Opc = ISD::SHL; 948 } 949 950 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType()); 951 return TLO.CombineTo( 952 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA)); 953 } 954 } 955 } 956 } 957 958 // Compute the new bits that are at the top now. 959 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1)) 960 return true; 961 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 962 Known.Zero.lshrInPlace(ShAmt); 963 Known.One.lshrInPlace(ShAmt); 964 965 Known.Zero.setHighBits(ShAmt); // High bits known zero. 966 } 967 break; 968 } 969 case ISD::SRA: { 970 SDValue Op0 = Op.getOperand(0); 971 SDValue Op1 = Op.getOperand(1); 972 973 // If this is an arithmetic shift right and only the low-bit is set, we can 974 // always convert this into a logical shr, even if the shift amount is 975 // variable. The low bit of the shift cannot be an input sign bit unless 976 // the shift amount is >= the size of the datatype, which is undefined. 977 if (DemandedBits.isOneValue()) 978 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1)); 979 980 if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) { 981 // If the shift count is an invalid immediate, don't do anything. 982 if (SA->getAPIntValue().uge(BitWidth)) 983 break; 984 985 unsigned ShAmt = SA->getZExtValue(); 986 APInt InDemandedMask = (DemandedBits << ShAmt); 987 988 // If the shift is exact, then it does demand the low bits (and knows that 989 // they are zero). 990 if (Op->getFlags().hasExact()) 991 InDemandedMask.setLowBits(ShAmt); 992 993 // If any of the demanded bits are produced by the sign extension, we also 994 // demand the input sign bit. 995 if (DemandedBits.countLeadingZeros() < ShAmt) 996 InDemandedMask.setSignBit(); 997 998 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO, Depth + 1)) 999 return true; 1000 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1001 Known.Zero.lshrInPlace(ShAmt); 1002 Known.One.lshrInPlace(ShAmt); 1003 1004 // If the input sign bit is known to be zero, or if none of the top bits 1005 // are demanded, turn this into an unsigned shift right. 1006 if (Known.Zero[BitWidth - ShAmt - 1] || 1007 DemandedBits.countLeadingZeros() >= ShAmt) { 1008 SDNodeFlags Flags; 1009 Flags.setExact(Op->getFlags().hasExact()); 1010 return TLO.CombineTo( 1011 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags)); 1012 } 1013 1014 int Log2 = DemandedBits.exactLogBase2(); 1015 if (Log2 >= 0) { 1016 // The bit must come from the sign. 1017 SDValue NewSA = 1018 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType()); 1019 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA)); 1020 } 1021 1022 if (Known.One[BitWidth - ShAmt - 1]) 1023 // New bits are known one. 1024 Known.One.setHighBits(ShAmt); 1025 } 1026 break; 1027 } 1028 case ISD::SIGN_EXTEND_INREG: { 1029 SDValue Op0 = Op.getOperand(0); 1030 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1031 unsigned ExVTBits = ExVT.getScalarSizeInBits(); 1032 1033 // If we only care about the highest bit, don't bother shifting right. 1034 if (DemandedBits.isSignMask()) { 1035 bool AlreadySignExtended = 1036 TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1; 1037 // However if the input is already sign extended we expect the sign 1038 // extension to be dropped altogether later and do not simplify. 1039 if (!AlreadySignExtended) { 1040 // Compute the correct shift amount type, which must be getShiftAmountTy 1041 // for scalar types after legalization. 1042 EVT ShiftAmtTy = VT; 1043 if (TLO.LegalTypes() && !ShiftAmtTy.isVector()) 1044 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL); 1045 1046 SDValue ShiftAmt = 1047 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy); 1048 return TLO.CombineTo(Op, 1049 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt)); 1050 } 1051 } 1052 1053 // If none of the extended bits are demanded, eliminate the sextinreg. 1054 if (DemandedBits.getActiveBits() <= ExVTBits) 1055 return TLO.CombineTo(Op, Op0); 1056 1057 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits); 1058 1059 // Since the sign extended bits are demanded, we know that the sign 1060 // bit is demanded. 1061 InputDemandedBits.setBit(ExVTBits - 1); 1062 1063 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1)) 1064 return true; 1065 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1066 1067 // If the sign bit of the input is known set or clear, then we know the 1068 // top bits of the result. 1069 1070 // If the input sign bit is known zero, convert this into a zero extension. 1071 if (Known.Zero[ExVTBits - 1]) 1072 return TLO.CombineTo( 1073 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType())); 1074 1075 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits); 1076 if (Known.One[ExVTBits - 1]) { // Input sign bit known set 1077 Known.One.setBitsFrom(ExVTBits); 1078 Known.Zero &= Mask; 1079 } else { // Input sign bit unknown 1080 Known.Zero &= Mask; 1081 Known.One &= Mask; 1082 } 1083 break; 1084 } 1085 case ISD::BUILD_PAIR: { 1086 EVT HalfVT = Op.getOperand(0).getValueType(); 1087 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits(); 1088 1089 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth); 1090 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth); 1091 1092 KnownBits KnownLo, KnownHi; 1093 1094 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1)) 1095 return true; 1096 1097 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1)) 1098 return true; 1099 1100 Known.Zero = KnownLo.Zero.zext(BitWidth) | 1101 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth); 1102 1103 Known.One = KnownLo.One.zext(BitWidth) | 1104 KnownHi.One.zext(BitWidth).shl(HalfBitWidth); 1105 break; 1106 } 1107 case ISD::ZERO_EXTEND: { 1108 SDValue Src = Op.getOperand(0); 1109 unsigned InBits = Src.getScalarValueSizeInBits(); 1110 1111 // If none of the top bits are demanded, convert this into an any_extend. 1112 if (DemandedBits.getActiveBits() <= InBits) 1113 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1114 1115 APInt InDemandedBits = DemandedBits.trunc(InBits); 1116 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) 1117 return true; 1118 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1119 Known = Known.zext(BitWidth); 1120 Known.Zero.setBitsFrom(InBits); 1121 break; 1122 } 1123 case ISD::SIGN_EXTEND: { 1124 SDValue Src = Op.getOperand(0); 1125 unsigned InBits = Src.getScalarValueSizeInBits(); 1126 1127 // If none of the top bits are demanded, convert this into an any_extend. 1128 if (DemandedBits.getActiveBits() <= InBits) 1129 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src)); 1130 1131 // Since some of the sign extended bits are demanded, we know that the sign 1132 // bit is demanded. 1133 APInt InDemandedBits = DemandedBits.trunc(InBits); 1134 InDemandedBits.setBit(InBits - 1); 1135 1136 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1137 return true; 1138 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1139 // If the sign bit is known one, the top bits match. 1140 Known = Known.sext(BitWidth); 1141 1142 // If the sign bit is known zero, convert this to a zero extend. 1143 if (Known.isNonNegative()) 1144 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src)); 1145 break; 1146 } 1147 case ISD::SIGN_EXTEND_VECTOR_INREG: { 1148 // TODO - merge this with SIGN_EXTEND above? 1149 SDValue Src = Op.getOperand(0); 1150 unsigned InBits = Src.getScalarValueSizeInBits(); 1151 1152 APInt InDemandedBits = DemandedBits.trunc(InBits); 1153 1154 // If some of the sign extended bits are demanded, we know that the sign 1155 // bit is demanded. 1156 if (InBits < DemandedBits.getActiveBits()) 1157 InDemandedBits.setBit(InBits - 1); 1158 1159 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1)) 1160 return true; 1161 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1162 // If the sign bit is known one, the top bits match. 1163 Known = Known.sext(BitWidth); 1164 break; 1165 } 1166 case ISD::ANY_EXTEND: { 1167 SDValue Src = Op.getOperand(0); 1168 unsigned InBits = Src.getScalarValueSizeInBits(); 1169 APInt InDemandedBits = DemandedBits.trunc(InBits); 1170 if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1)) 1171 return true; 1172 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1173 Known = Known.zext(BitWidth); 1174 break; 1175 } 1176 case ISD::TRUNCATE: { 1177 SDValue Src = Op.getOperand(0); 1178 1179 // Simplify the input, using demanded bit information, and compute the known 1180 // zero/one bits live out. 1181 unsigned OperandBitWidth = Src.getScalarValueSizeInBits(); 1182 APInt TruncMask = DemandedBits.zext(OperandBitWidth); 1183 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1)) 1184 return true; 1185 Known = Known.trunc(BitWidth); 1186 1187 // If the input is only used by this truncate, see if we can shrink it based 1188 // on the known demanded bits. 1189 if (Src.getNode()->hasOneUse()) { 1190 switch (Src.getOpcode()) { 1191 default: 1192 break; 1193 case ISD::SRL: 1194 // Shrink SRL by a constant if none of the high bits shifted in are 1195 // demanded. 1196 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT)) 1197 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is 1198 // undesirable. 1199 break; 1200 ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1)); 1201 if (!ShAmt) 1202 break; 1203 SDValue Shift = Src.getOperand(1); 1204 if (TLO.LegalTypes()) { 1205 uint64_t ShVal = ShAmt->getZExtValue(); 1206 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL)); 1207 } 1208 1209 if (ShAmt->getZExtValue() < BitWidth) { 1210 APInt HighBits = APInt::getHighBitsSet(OperandBitWidth, 1211 OperandBitWidth - BitWidth); 1212 HighBits.lshrInPlace(ShAmt->getZExtValue()); 1213 HighBits = HighBits.trunc(BitWidth); 1214 1215 if (!(HighBits & DemandedBits)) { 1216 // None of the shifted in bits are needed. Add a truncate of the 1217 // shift input, then shift it. 1218 SDValue NewTrunc = 1219 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0)); 1220 return TLO.CombineTo( 1221 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift)); 1222 } 1223 } 1224 break; 1225 } 1226 } 1227 1228 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1229 break; 1230 } 1231 case ISD::AssertZext: { 1232 // AssertZext demands all of the high bits, plus any of the low bits 1233 // demanded by its users. 1234 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 1235 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits()); 1236 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, 1237 Known, TLO, Depth+1)) 1238 return true; 1239 assert(!Known.hasConflict() && "Bits known to be one AND zero?"); 1240 1241 Known.Zero |= ~InMask; 1242 break; 1243 } 1244 case ISD::EXTRACT_VECTOR_ELT: { 1245 SDValue Src = Op.getOperand(0); 1246 SDValue Idx = Op.getOperand(1); 1247 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1248 unsigned EltBitWidth = Src.getScalarValueSizeInBits(); 1249 1250 // Demand the bits from every vector element without a constant index. 1251 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts); 1252 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx)) 1253 if (CIdx->getAPIntValue().ult(NumSrcElts)) 1254 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue()); 1255 1256 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know 1257 // anything about the extended bits. 1258 APInt DemandedSrcBits = DemandedBits; 1259 if (BitWidth > EltBitWidth) 1260 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth); 1261 1262 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO, 1263 Depth + 1)) 1264 return true; 1265 1266 Known = Known2; 1267 if (BitWidth > EltBitWidth) 1268 Known = Known.zext(BitWidth); 1269 break; 1270 } 1271 case ISD::BITCAST: { 1272 SDValue Src = Op.getOperand(0); 1273 EVT SrcVT = Src.getValueType(); 1274 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits(); 1275 1276 // If this is an FP->Int bitcast and if the sign bit is the only 1277 // thing demanded, turn this into a FGETSIGN. 1278 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() && 1279 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) && 1280 SrcVT.isFloatingPoint()) { 1281 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT); 1282 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32); 1283 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 && 1284 SrcVT != MVT::f128) { 1285 // Cannot eliminate/lower SHL for f128 yet. 1286 EVT Ty = OpVTLegal ? VT : MVT::i32; 1287 // Make a FGETSIGN + SHL to move the sign bit into the appropriate 1288 // place. We expect the SHL to be eliminated by other optimizations. 1289 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src); 1290 unsigned OpVTSizeInBits = Op.getValueSizeInBits(); 1291 if (!OpVTLegal && OpVTSizeInBits > 32) 1292 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign); 1293 unsigned ShVal = Op.getValueSizeInBits() - 1; 1294 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT); 1295 return TLO.CombineTo(Op, 1296 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt)); 1297 } 1298 } 1299 // If bitcast from a vector, see if we can use SimplifyDemandedVectorElts by 1300 // demanding the element if any bits from it are demanded. 1301 // TODO - bigendian once we have test coverage. 1302 // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support. 1303 if (SrcVT.isVector() && NumSrcEltBits > 1 && 1304 (BitWidth % NumSrcEltBits) == 0 && 1305 TLO.DAG.getDataLayout().isLittleEndian()) { 1306 unsigned Scale = BitWidth / NumSrcEltBits; 1307 auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool { 1308 DemandedSubElts = APInt::getNullValue(Scale); 1309 for (unsigned i = 0; i != Scale; ++i) { 1310 unsigned Offset = i * NumSrcEltBits; 1311 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset); 1312 if (!Sub.isNullValue()) 1313 DemandedSubElts.setBit(i); 1314 } 1315 return true; 1316 }; 1317 1318 APInt DemandedSubElts; 1319 if (GetDemandedSubMask(DemandedSubElts)) { 1320 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1321 APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts); 1322 1323 APInt KnownUndef, KnownZero; 1324 if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero, 1325 TLO, Depth + 1)) 1326 return true; 1327 } 1328 } 1329 // If this is a bitcast, let computeKnownBits handle it. Only do this on a 1330 // recursive call where Known may be useful to the caller. 1331 if (Depth > 0) { 1332 Known = TLO.DAG.computeKnownBits(Op, Depth); 1333 return false; 1334 } 1335 break; 1336 } 1337 case ISD::ADD: 1338 case ISD::MUL: 1339 case ISD::SUB: { 1340 // Add, Sub, and Mul don't demand any bits in positions beyond that 1341 // of the highest bit demanded of them. 1342 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1); 1343 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros(); 1344 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ); 1345 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO, Depth + 1) || 1346 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO, Depth + 1) || 1347 // See if the operation should be performed at a smaller bit width. 1348 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) { 1349 SDNodeFlags Flags = Op.getNode()->getFlags(); 1350 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) { 1351 // Disable the nsw and nuw flags. We can no longer guarantee that we 1352 // won't wrap after simplification. 1353 Flags.setNoSignedWrap(false); 1354 Flags.setNoUnsignedWrap(false); 1355 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, 1356 Flags); 1357 return TLO.CombineTo(Op, NewOp); 1358 } 1359 return true; 1360 } 1361 1362 // If we have a constant operand, we may be able to turn it into -1 if we 1363 // do not demand the high bits. This can make the constant smaller to 1364 // encode, allow more general folding, or match specialized instruction 1365 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that 1366 // is probably not useful (and could be detrimental). 1367 ConstantSDNode *C = isConstOrConstSplat(Op1); 1368 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ); 1369 if (C && !C->isAllOnesValue() && !C->isOne() && 1370 (C->getAPIntValue() | HighMask).isAllOnesValue()) { 1371 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT); 1372 // We can't guarantee that the new math op doesn't wrap, so explicitly 1373 // clear those flags to prevent folding with a potential existing node 1374 // that has those flags set. 1375 SDNodeFlags Flags; 1376 Flags.setNoSignedWrap(false); 1377 Flags.setNoUnsignedWrap(false); 1378 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags); 1379 return TLO.CombineTo(Op, NewOp); 1380 } 1381 1382 LLVM_FALLTHROUGH; 1383 } 1384 default: 1385 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1386 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts, 1387 Known, TLO, Depth)) 1388 return true; 1389 break; 1390 } 1391 1392 // Just use computeKnownBits to compute output bits. 1393 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth); 1394 break; 1395 } 1396 1397 // If we know the value of all of the demanded bits, return this as a 1398 // constant. 1399 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) { 1400 // Avoid folding to a constant if any OpaqueConstant is involved. 1401 const SDNode *N = Op.getNode(); 1402 for (SDNodeIterator I = SDNodeIterator::begin(N), 1403 E = SDNodeIterator::end(N); 1404 I != E; ++I) { 1405 SDNode *Op = *I; 1406 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) 1407 if (C->isOpaque()) 1408 return false; 1409 } 1410 // TODO: Handle float bits as well. 1411 if (VT.isInteger()) 1412 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT)); 1413 } 1414 1415 return false; 1416 } 1417 1418 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op, 1419 const APInt &DemandedElts, 1420 APInt &KnownUndef, 1421 APInt &KnownZero, 1422 DAGCombinerInfo &DCI) const { 1423 SelectionDAG &DAG = DCI.DAG; 1424 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 1425 !DCI.isBeforeLegalizeOps()); 1426 1427 bool Simplified = 1428 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO); 1429 if (Simplified) { 1430 DCI.AddToWorklist(Op.getNode()); 1431 DCI.CommitTargetLoweringOpt(TLO); 1432 } 1433 return Simplified; 1434 } 1435 1436 bool TargetLowering::SimplifyDemandedVectorElts( 1437 SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, 1438 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth, 1439 bool AssumeSingleUse) const { 1440 EVT VT = Op.getValueType(); 1441 APInt DemandedElts = DemandedEltMask; 1442 unsigned NumElts = DemandedElts.getBitWidth(); 1443 assert(VT.isVector() && "Expected vector op"); 1444 assert(VT.getVectorNumElements() == NumElts && 1445 "Mask size mismatches value type element count!"); 1446 1447 KnownUndef = KnownZero = APInt::getNullValue(NumElts); 1448 1449 // Undef operand. 1450 if (Op.isUndef()) { 1451 KnownUndef.setAllBits(); 1452 return false; 1453 } 1454 1455 // If Op has other users, assume that all elements are needed. 1456 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) 1457 DemandedElts.setAllBits(); 1458 1459 // Not demanding any elements from Op. 1460 if (DemandedElts == 0) { 1461 KnownUndef.setAllBits(); 1462 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1463 } 1464 1465 // Limit search depth. 1466 if (Depth >= 6) 1467 return false; 1468 1469 SDLoc DL(Op); 1470 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 1471 1472 switch (Op.getOpcode()) { 1473 case ISD::SCALAR_TO_VECTOR: { 1474 if (!DemandedElts[0]) { 1475 KnownUndef.setAllBits(); 1476 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1477 } 1478 KnownUndef.setHighBits(NumElts - 1); 1479 break; 1480 } 1481 case ISD::BITCAST: { 1482 SDValue Src = Op.getOperand(0); 1483 EVT SrcVT = Src.getValueType(); 1484 1485 // We only handle vectors here. 1486 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits? 1487 if (!SrcVT.isVector()) 1488 break; 1489 1490 // Fast handling of 'identity' bitcasts. 1491 unsigned NumSrcElts = SrcVT.getVectorNumElements(); 1492 if (NumSrcElts == NumElts) 1493 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, 1494 KnownZero, TLO, Depth + 1); 1495 1496 APInt SrcZero, SrcUndef; 1497 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts); 1498 1499 // Bitcast from 'large element' src vector to 'small element' vector, we 1500 // must demand a source element if any DemandedElt maps to it. 1501 if ((NumElts % NumSrcElts) == 0) { 1502 unsigned Scale = NumElts / NumSrcElts; 1503 for (unsigned i = 0; i != NumElts; ++i) 1504 if (DemandedElts[i]) 1505 SrcDemandedElts.setBit(i / Scale); 1506 1507 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1508 TLO, Depth + 1)) 1509 return true; 1510 1511 // Try calling SimplifyDemandedBits, converting demanded elts to the bits 1512 // of the large element. 1513 // TODO - bigendian once we have test coverage. 1514 if (TLO.DAG.getDataLayout().isLittleEndian()) { 1515 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits(); 1516 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits); 1517 for (unsigned i = 0; i != NumElts; ++i) 1518 if (DemandedElts[i]) { 1519 unsigned Ofs = (i % Scale) * EltSizeInBits; 1520 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits); 1521 } 1522 1523 KnownBits Known; 1524 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1)) 1525 return true; 1526 } 1527 1528 // If the src element is zero/undef then all the output elements will be - 1529 // only demanded elements are guaranteed to be correct. 1530 for (unsigned i = 0; i != NumSrcElts; ++i) { 1531 if (SrcDemandedElts[i]) { 1532 if (SrcZero[i]) 1533 KnownZero.setBits(i * Scale, (i + 1) * Scale); 1534 if (SrcUndef[i]) 1535 KnownUndef.setBits(i * Scale, (i + 1) * Scale); 1536 } 1537 } 1538 } 1539 1540 // Bitcast from 'small element' src vector to 'large element' vector, we 1541 // demand all smaller source elements covered by the larger demanded element 1542 // of this vector. 1543 if ((NumSrcElts % NumElts) == 0) { 1544 unsigned Scale = NumSrcElts / NumElts; 1545 for (unsigned i = 0; i != NumElts; ++i) 1546 if (DemandedElts[i]) 1547 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale); 1548 1549 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero, 1550 TLO, Depth + 1)) 1551 return true; 1552 1553 // If all the src elements covering an output element are zero/undef, then 1554 // the output element will be as well, assuming it was demanded. 1555 for (unsigned i = 0; i != NumElts; ++i) { 1556 if (DemandedElts[i]) { 1557 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue()) 1558 KnownZero.setBit(i); 1559 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue()) 1560 KnownUndef.setBit(i); 1561 } 1562 } 1563 } 1564 break; 1565 } 1566 case ISD::BUILD_VECTOR: { 1567 // Check all elements and simplify any unused elements with UNDEF. 1568 if (!DemandedElts.isAllOnesValue()) { 1569 // Don't simplify BROADCASTS. 1570 if (llvm::any_of(Op->op_values(), 1571 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) { 1572 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end()); 1573 bool Updated = false; 1574 for (unsigned i = 0; i != NumElts; ++i) { 1575 if (!DemandedElts[i] && !Ops[i].isUndef()) { 1576 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType()); 1577 KnownUndef.setBit(i); 1578 Updated = true; 1579 } 1580 } 1581 if (Updated) 1582 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops)); 1583 } 1584 } 1585 for (unsigned i = 0; i != NumElts; ++i) { 1586 SDValue SrcOp = Op.getOperand(i); 1587 if (SrcOp.isUndef()) { 1588 KnownUndef.setBit(i); 1589 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() && 1590 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) { 1591 KnownZero.setBit(i); 1592 } 1593 } 1594 break; 1595 } 1596 case ISD::CONCAT_VECTORS: { 1597 EVT SubVT = Op.getOperand(0).getValueType(); 1598 unsigned NumSubVecs = Op.getNumOperands(); 1599 unsigned NumSubElts = SubVT.getVectorNumElements(); 1600 for (unsigned i = 0; i != NumSubVecs; ++i) { 1601 SDValue SubOp = Op.getOperand(i); 1602 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts); 1603 APInt SubUndef, SubZero; 1604 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO, 1605 Depth + 1)) 1606 return true; 1607 KnownUndef.insertBits(SubUndef, i * NumSubElts); 1608 KnownZero.insertBits(SubZero, i * NumSubElts); 1609 } 1610 break; 1611 } 1612 case ISD::INSERT_SUBVECTOR: { 1613 if (!isa<ConstantSDNode>(Op.getOperand(2))) 1614 break; 1615 SDValue Base = Op.getOperand(0); 1616 SDValue Sub = Op.getOperand(1); 1617 EVT SubVT = Sub.getValueType(); 1618 unsigned NumSubElts = SubVT.getVectorNumElements(); 1619 const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue(); 1620 if (Idx.ugt(NumElts - NumSubElts)) 1621 break; 1622 unsigned SubIdx = Idx.getZExtValue(); 1623 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx); 1624 APInt SubUndef, SubZero; 1625 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO, 1626 Depth + 1)) 1627 return true; 1628 APInt BaseElts = DemandedElts; 1629 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx); 1630 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO, 1631 Depth + 1)) 1632 return true; 1633 KnownUndef.insertBits(SubUndef, SubIdx); 1634 KnownZero.insertBits(SubZero, SubIdx); 1635 break; 1636 } 1637 case ISD::EXTRACT_SUBVECTOR: { 1638 SDValue Src = Op.getOperand(0); 1639 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 1640 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1641 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) { 1642 // Offset the demanded elts by the subvector index. 1643 uint64_t Idx = SubIdx->getZExtValue(); 1644 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx); 1645 APInt SrcUndef, SrcZero; 1646 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO, 1647 Depth + 1)) 1648 return true; 1649 KnownUndef = SrcUndef.extractBits(NumElts, Idx); 1650 KnownZero = SrcZero.extractBits(NumElts, Idx); 1651 } 1652 break; 1653 } 1654 case ISD::INSERT_VECTOR_ELT: { 1655 SDValue Vec = Op.getOperand(0); 1656 SDValue Scl = Op.getOperand(1); 1657 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 1658 1659 // For a legal, constant insertion index, if we don't need this insertion 1660 // then strip it, else remove it from the demanded elts. 1661 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) { 1662 unsigned Idx = CIdx->getZExtValue(); 1663 if (!DemandedElts[Idx]) 1664 return TLO.CombineTo(Op, Vec); 1665 1666 APInt DemandedVecElts(DemandedElts); 1667 DemandedVecElts.clearBit(Idx); 1668 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef, 1669 KnownZero, TLO, Depth + 1)) 1670 return true; 1671 1672 KnownUndef.clearBit(Idx); 1673 if (Scl.isUndef()) 1674 KnownUndef.setBit(Idx); 1675 1676 KnownZero.clearBit(Idx); 1677 if (isNullConstant(Scl) || isNullFPConstant(Scl)) 1678 KnownZero.setBit(Idx); 1679 break; 1680 } 1681 1682 APInt VecUndef, VecZero; 1683 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO, 1684 Depth + 1)) 1685 return true; 1686 // Without knowing the insertion index we can't set KnownUndef/KnownZero. 1687 break; 1688 } 1689 case ISD::VSELECT: { 1690 // Try to transform the select condition based on the current demanded 1691 // elements. 1692 // TODO: If a condition element is undef, we can choose from one arm of the 1693 // select (and if one arm is undef, then we can propagate that to the 1694 // result). 1695 // TODO - add support for constant vselect masks (see IR version of this). 1696 APInt UnusedUndef, UnusedZero; 1697 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef, 1698 UnusedZero, TLO, Depth + 1)) 1699 return true; 1700 1701 // See if we can simplify either vselect operand. 1702 APInt DemandedLHS(DemandedElts); 1703 APInt DemandedRHS(DemandedElts); 1704 APInt UndefLHS, ZeroLHS; 1705 APInt UndefRHS, ZeroRHS; 1706 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS, 1707 ZeroLHS, TLO, Depth + 1)) 1708 return true; 1709 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS, 1710 ZeroRHS, TLO, Depth + 1)) 1711 return true; 1712 1713 KnownUndef = UndefLHS & UndefRHS; 1714 KnownZero = ZeroLHS & ZeroRHS; 1715 break; 1716 } 1717 case ISD::VECTOR_SHUFFLE: { 1718 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask(); 1719 1720 // Collect demanded elements from shuffle operands.. 1721 APInt DemandedLHS(NumElts, 0); 1722 APInt DemandedRHS(NumElts, 0); 1723 for (unsigned i = 0; i != NumElts; ++i) { 1724 int M = ShuffleMask[i]; 1725 if (M < 0 || !DemandedElts[i]) 1726 continue; 1727 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range"); 1728 if (M < (int)NumElts) 1729 DemandedLHS.setBit(M); 1730 else 1731 DemandedRHS.setBit(M - NumElts); 1732 } 1733 1734 // See if we can simplify either shuffle operand. 1735 APInt UndefLHS, ZeroLHS; 1736 APInt UndefRHS, ZeroRHS; 1737 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS, 1738 ZeroLHS, TLO, Depth + 1)) 1739 return true; 1740 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS, 1741 ZeroRHS, TLO, Depth + 1)) 1742 return true; 1743 1744 // Simplify mask using undef elements from LHS/RHS. 1745 bool Updated = false; 1746 bool IdentityLHS = true, IdentityRHS = true; 1747 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end()); 1748 for (unsigned i = 0; i != NumElts; ++i) { 1749 int &M = NewMask[i]; 1750 if (M < 0) 1751 continue; 1752 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) || 1753 (M >= (int)NumElts && UndefRHS[M - NumElts])) { 1754 Updated = true; 1755 M = -1; 1756 } 1757 IdentityLHS &= (M < 0) || (M == (int)i); 1758 IdentityRHS &= (M < 0) || ((M - NumElts) == i); 1759 } 1760 1761 // Update legal shuffle masks based on demanded elements if it won't reduce 1762 // to Identity which can cause premature removal of the shuffle mask. 1763 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps && 1764 isShuffleMaskLegal(NewMask, VT)) 1765 return TLO.CombineTo(Op, 1766 TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0), 1767 Op.getOperand(1), NewMask)); 1768 1769 // Propagate undef/zero elements from LHS/RHS. 1770 for (unsigned i = 0; i != NumElts; ++i) { 1771 int M = ShuffleMask[i]; 1772 if (M < 0) { 1773 KnownUndef.setBit(i); 1774 } else if (M < (int)NumElts) { 1775 if (UndefLHS[M]) 1776 KnownUndef.setBit(i); 1777 if (ZeroLHS[M]) 1778 KnownZero.setBit(i); 1779 } else { 1780 if (UndefRHS[M - NumElts]) 1781 KnownUndef.setBit(i); 1782 if (ZeroRHS[M - NumElts]) 1783 KnownZero.setBit(i); 1784 } 1785 } 1786 break; 1787 } 1788 case ISD::SIGN_EXTEND_VECTOR_INREG: 1789 case ISD::ZERO_EXTEND_VECTOR_INREG: { 1790 APInt SrcUndef, SrcZero; 1791 SDValue Src = Op.getOperand(0); 1792 unsigned NumSrcElts = Src.getValueType().getVectorNumElements(); 1793 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts); 1794 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, 1795 SrcZero, TLO, Depth + 1)) 1796 return true; 1797 KnownZero = SrcZero.zextOrTrunc(NumElts); 1798 KnownUndef = SrcUndef.zextOrTrunc(NumElts); 1799 1800 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) { 1801 // zext(undef) upper bits are guaranteed to be zero. 1802 if (DemandedElts.isSubsetOf(KnownUndef)) 1803 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1804 KnownUndef.clearAllBits(); 1805 } 1806 break; 1807 } 1808 case ISD::OR: 1809 case ISD::XOR: 1810 case ISD::ADD: 1811 case ISD::SUB: 1812 case ISD::FADD: 1813 case ISD::FSUB: 1814 case ISD::FMUL: 1815 case ISD::FDIV: 1816 case ISD::FREM: { 1817 APInt SrcUndef, SrcZero; 1818 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1819 SrcZero, TLO, Depth + 1)) 1820 return true; 1821 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1822 KnownZero, TLO, Depth + 1)) 1823 return true; 1824 KnownZero &= SrcZero; 1825 KnownUndef &= SrcUndef; 1826 break; 1827 } 1828 case ISD::AND: { 1829 APInt SrcUndef, SrcZero; 1830 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef, 1831 SrcZero, TLO, Depth + 1)) 1832 return true; 1833 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1834 KnownZero, TLO, Depth + 1)) 1835 return true; 1836 1837 // If either side has a zero element, then the result element is zero, even 1838 // if the other is an UNDEF. 1839 KnownZero |= SrcZero; 1840 KnownUndef &= SrcUndef; 1841 KnownUndef &= ~KnownZero; 1842 break; 1843 } 1844 case ISD::TRUNCATE: 1845 case ISD::SIGN_EXTEND: 1846 case ISD::ZERO_EXTEND: 1847 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef, 1848 KnownZero, TLO, Depth + 1)) 1849 return true; 1850 1851 if (Op.getOpcode() == ISD::ZERO_EXTEND) { 1852 // zext(undef) upper bits are guaranteed to be zero. 1853 if (DemandedElts.isSubsetOf(KnownUndef)) 1854 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT)); 1855 KnownUndef.clearAllBits(); 1856 } 1857 break; 1858 default: { 1859 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) { 1860 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef, 1861 KnownZero, TLO, Depth)) 1862 return true; 1863 } else { 1864 KnownBits Known; 1865 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits); 1866 if (SimplifyDemandedBits(Op, DemandedBits, DemandedEltMask, Known, TLO, 1867 Depth, AssumeSingleUse)) 1868 return true; 1869 } 1870 break; 1871 } 1872 } 1873 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero"); 1874 1875 // Constant fold all undef cases. 1876 // TODO: Handle zero cases as well. 1877 if (DemandedElts.isSubsetOf(KnownUndef)) 1878 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT)); 1879 1880 return false; 1881 } 1882 1883 /// Determine which of the bits specified in Mask are known to be either zero or 1884 /// one and return them in the Known. 1885 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 1886 KnownBits &Known, 1887 const APInt &DemandedElts, 1888 const SelectionDAG &DAG, 1889 unsigned Depth) const { 1890 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1891 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1892 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1893 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1894 "Should use MaskedValueIsZero if you don't know whether Op" 1895 " is a target node!"); 1896 Known.resetAll(); 1897 } 1898 1899 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op, 1900 KnownBits &Known, 1901 const APInt &DemandedElts, 1902 const SelectionDAG &DAG, 1903 unsigned Depth) const { 1904 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex"); 1905 1906 if (unsigned Align = DAG.InferPtrAlignment(Op)) { 1907 // The low bits are known zero if the pointer is aligned. 1908 Known.Zero.setLowBits(Log2_32(Align)); 1909 } 1910 } 1911 1912 /// This method can be implemented by targets that want to expose additional 1913 /// information about sign bits to the DAG Combiner. 1914 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op, 1915 const APInt &, 1916 const SelectionDAG &, 1917 unsigned Depth) const { 1918 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1919 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1920 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1921 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1922 "Should use ComputeNumSignBits if you don't know whether Op" 1923 " is a target node!"); 1924 return 1; 1925 } 1926 1927 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode( 1928 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, 1929 TargetLoweringOpt &TLO, unsigned Depth) const { 1930 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1931 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1932 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1933 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1934 "Should use SimplifyDemandedVectorElts if you don't know whether Op" 1935 " is a target node!"); 1936 return false; 1937 } 1938 1939 bool TargetLowering::SimplifyDemandedBitsForTargetNode( 1940 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, 1941 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const { 1942 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1943 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1944 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1945 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1946 "Should use SimplifyDemandedBits if you don't know whether Op" 1947 " is a target node!"); 1948 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth); 1949 return false; 1950 } 1951 1952 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, 1953 const SelectionDAG &DAG, 1954 bool SNaN, 1955 unsigned Depth) const { 1956 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END || 1957 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN || 1958 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN || 1959 Op.getOpcode() == ISD::INTRINSIC_VOID) && 1960 "Should use isKnownNeverNaN if you don't know whether Op" 1961 " is a target node!"); 1962 return false; 1963 } 1964 1965 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must 1966 // work with truncating build vectors and vectors with elements of less than 1967 // 8 bits. 1968 bool TargetLowering::isConstTrueVal(const SDNode *N) const { 1969 if (!N) 1970 return false; 1971 1972 APInt CVal; 1973 if (auto *CN = dyn_cast<ConstantSDNode>(N)) { 1974 CVal = CN->getAPIntValue(); 1975 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) { 1976 auto *CN = BV->getConstantSplatNode(); 1977 if (!CN) 1978 return false; 1979 1980 // If this is a truncating build vector, truncate the splat value. 1981 // Otherwise, we may fail to match the expected values below. 1982 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits(); 1983 CVal = CN->getAPIntValue(); 1984 if (BVEltWidth < CVal.getBitWidth()) 1985 CVal = CVal.trunc(BVEltWidth); 1986 } else { 1987 return false; 1988 } 1989 1990 switch (getBooleanContents(N->getValueType(0))) { 1991 case UndefinedBooleanContent: 1992 return CVal[0]; 1993 case ZeroOrOneBooleanContent: 1994 return CVal.isOneValue(); 1995 case ZeroOrNegativeOneBooleanContent: 1996 return CVal.isAllOnesValue(); 1997 } 1998 1999 llvm_unreachable("Invalid boolean contents"); 2000 } 2001 2002 bool TargetLowering::isConstFalseVal(const SDNode *N) const { 2003 if (!N) 2004 return false; 2005 2006 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N); 2007 if (!CN) { 2008 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N); 2009 if (!BV) 2010 return false; 2011 2012 // Only interested in constant splats, we don't care about undef 2013 // elements in identifying boolean constants and getConstantSplatNode 2014 // returns NULL if all ops are undef; 2015 CN = BV->getConstantSplatNode(); 2016 if (!CN) 2017 return false; 2018 } 2019 2020 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent) 2021 return !CN->getAPIntValue()[0]; 2022 2023 return CN->isNullValue(); 2024 } 2025 2026 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT, 2027 bool SExt) const { 2028 if (VT == MVT::i1) 2029 return N->isOne(); 2030 2031 TargetLowering::BooleanContent Cnt = getBooleanContents(VT); 2032 switch (Cnt) { 2033 case TargetLowering::ZeroOrOneBooleanContent: 2034 // An extended value of 1 is always true, unless its original type is i1, 2035 // in which case it will be sign extended to -1. 2036 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1)); 2037 case TargetLowering::UndefinedBooleanContent: 2038 case TargetLowering::ZeroOrNegativeOneBooleanContent: 2039 return N->isAllOnesValue() && SExt; 2040 } 2041 llvm_unreachable("Unexpected enumeration."); 2042 } 2043 2044 /// This helper function of SimplifySetCC tries to optimize the comparison when 2045 /// either operand of the SetCC node is a bitwise-and instruction. 2046 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1, 2047 ISD::CondCode Cond, 2048 DAGCombinerInfo &DCI, 2049 const SDLoc &DL) const { 2050 // Match these patterns in any of their permutations: 2051 // (X & Y) == Y 2052 // (X & Y) != Y 2053 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND) 2054 std::swap(N0, N1); 2055 2056 EVT OpVT = N0.getValueType(); 2057 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() || 2058 (Cond != ISD::SETEQ && Cond != ISD::SETNE)) 2059 return SDValue(); 2060 2061 SDValue X, Y; 2062 if (N0.getOperand(0) == N1) { 2063 X = N0.getOperand(1); 2064 Y = N0.getOperand(0); 2065 } else if (N0.getOperand(1) == N1) { 2066 X = N0.getOperand(0); 2067 Y = N0.getOperand(1); 2068 } else { 2069 return SDValue(); 2070 } 2071 2072 SelectionDAG &DAG = DCI.DAG; 2073 SDValue Zero = DAG.getConstant(0, DL, OpVT); 2074 if (DAG.isKnownToBeAPowerOfTwo(Y)) { 2075 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set. 2076 // Note that where Y is variable and is known to have at most one bit set 2077 // (for example, if it is Z & 1) we cannot do this; the expressions are not 2078 // equivalent when Y == 0. 2079 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true); 2080 if (DCI.isBeforeLegalizeOps() || 2081 isCondCodeLegal(Cond, N0.getSimpleValueType())) 2082 return DAG.getSetCC(DL, VT, N0, Zero, Cond); 2083 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) { 2084 // If the target supports an 'and-not' or 'and-complement' logic operation, 2085 // try to use that to make a comparison operation more efficient. 2086 // But don't do this transform if the mask is a single bit because there are 2087 // more efficient ways to deal with that case (for example, 'bt' on x86 or 2088 // 'rlwinm' on PPC). 2089 2090 // Bail out if the compare operand that we want to turn into a zero is 2091 // already a zero (otherwise, infinite loop). 2092 auto *YConst = dyn_cast<ConstantSDNode>(Y); 2093 if (YConst && YConst->isNullValue()) 2094 return SDValue(); 2095 2096 // Transform this into: ~X & Y == 0. 2097 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT); 2098 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y); 2099 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond); 2100 } 2101 2102 return SDValue(); 2103 } 2104 2105 /// There are multiple IR patterns that could be checking whether certain 2106 /// truncation of a signed number would be lossy or not. The pattern which is 2107 /// best at IR level, may not lower optimally. Thus, we want to unfold it. 2108 /// We are looking for the following pattern: (KeptBits is a constant) 2109 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits) 2110 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false. 2111 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0 2112 /// We will unfold it into the natural trunc+sext pattern: 2113 /// ((%x << C) a>> C) dstcond %x 2114 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x) 2115 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck( 2116 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI, 2117 const SDLoc &DL) const { 2118 // We must be comparing with a constant. 2119 ConstantSDNode *C1; 2120 if (!(C1 = dyn_cast<ConstantSDNode>(N1))) 2121 return SDValue(); 2122 2123 // N0 should be: add %x, (1 << (KeptBits-1)) 2124 if (N0->getOpcode() != ISD::ADD) 2125 return SDValue(); 2126 2127 // And we must be 'add'ing a constant. 2128 ConstantSDNode *C01; 2129 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1)))) 2130 return SDValue(); 2131 2132 SDValue X = N0->getOperand(0); 2133 EVT XVT = X.getValueType(); 2134 2135 // Validate constants ... 2136 2137 APInt I1 = C1->getAPIntValue(); 2138 2139 ISD::CondCode NewCond; 2140 if (Cond == ISD::CondCode::SETULT) { 2141 NewCond = ISD::CondCode::SETEQ; 2142 } else if (Cond == ISD::CondCode::SETULE) { 2143 NewCond = ISD::CondCode::SETEQ; 2144 // But need to 'canonicalize' the constant. 2145 I1 += 1; 2146 } else if (Cond == ISD::CondCode::SETUGT) { 2147 NewCond = ISD::CondCode::SETNE; 2148 // But need to 'canonicalize' the constant. 2149 I1 += 1; 2150 } else if (Cond == ISD::CondCode::SETUGE) { 2151 NewCond = ISD::CondCode::SETNE; 2152 } else 2153 return SDValue(); 2154 2155 APInt I01 = C01->getAPIntValue(); 2156 2157 auto checkConstants = [&I1, &I01]() -> bool { 2158 // Both of them must be power-of-two, and the constant from setcc is bigger. 2159 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2(); 2160 }; 2161 2162 if (checkConstants()) { 2163 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256 2164 } else { 2165 // What if we invert constants? (and the target predicate) 2166 I1.negate(); 2167 I01.negate(); 2168 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true); 2169 if (!checkConstants()) 2170 return SDValue(); 2171 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256 2172 } 2173 2174 // They are power-of-two, so which bit is set? 2175 const unsigned KeptBits = I1.logBase2(); 2176 const unsigned KeptBitsMinusOne = I01.logBase2(); 2177 2178 // Magic! 2179 if (KeptBits != (KeptBitsMinusOne + 1)) 2180 return SDValue(); 2181 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable"); 2182 2183 // We don't want to do this in every single case. 2184 SelectionDAG &DAG = DCI.DAG; 2185 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck( 2186 XVT, KeptBits)) 2187 return SDValue(); 2188 2189 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits; 2190 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable"); 2191 2192 // Unfold into: ((%x << C) a>> C) cond %x 2193 // Where 'cond' will be either 'eq' or 'ne'. 2194 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT); 2195 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt); 2196 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt); 2197 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond); 2198 2199 return T2; 2200 } 2201 2202 /// Try to simplify a setcc built with the specified operands and cc. If it is 2203 /// unable to simplify it, return a null SDValue. 2204 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1, 2205 ISD::CondCode Cond, bool foldBooleans, 2206 DAGCombinerInfo &DCI, 2207 const SDLoc &dl) const { 2208 SelectionDAG &DAG = DCI.DAG; 2209 EVT OpVT = N0.getValueType(); 2210 2211 // These setcc operations always fold. 2212 switch (Cond) { 2213 default: break; 2214 case ISD::SETFALSE: 2215 case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT); 2216 case ISD::SETTRUE: 2217 case ISD::SETTRUE2: return DAG.getBoolConstant(true, dl, VT, OpVT); 2218 } 2219 2220 // Ensure that the constant occurs on the RHS and fold constant comparisons. 2221 // TODO: Handle non-splat vector constants. All undef causes trouble. 2222 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond); 2223 if (isConstOrConstSplat(N0) && 2224 (DCI.isBeforeLegalizeOps() || 2225 isCondCodeLegal(SwappedCC, N0.getSimpleValueType()))) 2226 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC); 2227 2228 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2229 const APInt &C1 = N1C->getAPIntValue(); 2230 2231 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an 2232 // equality comparison, then we're just comparing whether X itself is 2233 // zero. 2234 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) && 2235 N0.getOperand(0).getOpcode() == ISD::CTLZ && 2236 N0.getOperand(1).getOpcode() == ISD::Constant) { 2237 const APInt &ShAmt 2238 = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2239 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2240 ShAmt == Log2_32(N0.getValueSizeInBits())) { 2241 if ((C1 == 0) == (Cond == ISD::SETEQ)) { 2242 // (srl (ctlz x), 5) == 0 -> X != 0 2243 // (srl (ctlz x), 5) != 1 -> X != 0 2244 Cond = ISD::SETNE; 2245 } else { 2246 // (srl (ctlz x), 5) != 0 -> X == 0 2247 // (srl (ctlz x), 5) == 1 -> X == 0 2248 Cond = ISD::SETEQ; 2249 } 2250 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType()); 2251 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0), 2252 Zero, Cond); 2253 } 2254 } 2255 2256 SDValue CTPOP = N0; 2257 // Look through truncs that don't change the value of a ctpop. 2258 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE) 2259 CTPOP = N0.getOperand(0); 2260 2261 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP && 2262 (N0 == CTPOP || 2263 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) { 2264 EVT CTVT = CTPOP.getValueType(); 2265 SDValue CTOp = CTPOP.getOperand(0); 2266 2267 // (ctpop x) u< 2 -> (x & x-1) == 0 2268 // (ctpop x) u> 1 -> (x & x-1) != 0 2269 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){ 2270 SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp, 2271 DAG.getConstant(1, dl, CTVT)); 2272 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub); 2273 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE; 2274 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC); 2275 } 2276 2277 // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal. 2278 } 2279 2280 // (zext x) == C --> x == (trunc C) 2281 // (sext x) == C --> x == (trunc C) 2282 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2283 DCI.isBeforeLegalize() && N0->hasOneUse()) { 2284 unsigned MinBits = N0.getValueSizeInBits(); 2285 SDValue PreExt; 2286 bool Signed = false; 2287 if (N0->getOpcode() == ISD::ZERO_EXTEND) { 2288 // ZExt 2289 MinBits = N0->getOperand(0).getValueSizeInBits(); 2290 PreExt = N0->getOperand(0); 2291 } else if (N0->getOpcode() == ISD::AND) { 2292 // DAGCombine turns costly ZExts into ANDs 2293 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1))) 2294 if ((C->getAPIntValue()+1).isPowerOf2()) { 2295 MinBits = C->getAPIntValue().countTrailingOnes(); 2296 PreExt = N0->getOperand(0); 2297 } 2298 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) { 2299 // SExt 2300 MinBits = N0->getOperand(0).getValueSizeInBits(); 2301 PreExt = N0->getOperand(0); 2302 Signed = true; 2303 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) { 2304 // ZEXTLOAD / SEXTLOAD 2305 if (LN0->getExtensionType() == ISD::ZEXTLOAD) { 2306 MinBits = LN0->getMemoryVT().getSizeInBits(); 2307 PreExt = N0; 2308 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) { 2309 Signed = true; 2310 MinBits = LN0->getMemoryVT().getSizeInBits(); 2311 PreExt = N0; 2312 } 2313 } 2314 2315 // Figure out how many bits we need to preserve this constant. 2316 unsigned ReqdBits = Signed ? 2317 C1.getBitWidth() - C1.getNumSignBits() + 1 : 2318 C1.getActiveBits(); 2319 2320 // Make sure we're not losing bits from the constant. 2321 if (MinBits > 0 && 2322 MinBits < C1.getBitWidth() && 2323 MinBits >= ReqdBits) { 2324 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits); 2325 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) { 2326 // Will get folded away. 2327 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt); 2328 if (MinBits == 1 && C1 == 1) 2329 // Invert the condition. 2330 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1), 2331 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2332 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT); 2333 return DAG.getSetCC(dl, VT, Trunc, C, Cond); 2334 } 2335 2336 // If truncating the setcc operands is not desirable, we can still 2337 // simplify the expression in some cases: 2338 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc) 2339 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc)) 2340 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc)) 2341 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc) 2342 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc)) 2343 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc) 2344 SDValue TopSetCC = N0->getOperand(0); 2345 unsigned N0Opc = N0->getOpcode(); 2346 bool SExt = (N0Opc == ISD::SIGN_EXTEND); 2347 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 && 2348 TopSetCC.getOpcode() == ISD::SETCC && 2349 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) && 2350 (isConstFalseVal(N1C) || 2351 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) { 2352 2353 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) || 2354 (!N1C->isNullValue() && Cond == ISD::SETNE); 2355 2356 if (!Inverse) 2357 return TopSetCC; 2358 2359 ISD::CondCode InvCond = ISD::getSetCCInverse( 2360 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(), 2361 TopSetCC.getOperand(0).getValueType().isInteger()); 2362 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0), 2363 TopSetCC.getOperand(1), 2364 InvCond); 2365 } 2366 } 2367 } 2368 2369 // If the LHS is '(and load, const)', the RHS is 0, the test is for 2370 // equality or unsigned, and all 1 bits of the const are in the same 2371 // partial word, see if we can shorten the load. 2372 if (DCI.isBeforeLegalize() && 2373 !ISD::isSignedIntSetCC(Cond) && 2374 N0.getOpcode() == ISD::AND && C1 == 0 && 2375 N0.getNode()->hasOneUse() && 2376 isa<LoadSDNode>(N0.getOperand(0)) && 2377 N0.getOperand(0).getNode()->hasOneUse() && 2378 isa<ConstantSDNode>(N0.getOperand(1))) { 2379 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0)); 2380 APInt bestMask; 2381 unsigned bestWidth = 0, bestOffset = 0; 2382 if (!Lod->isVolatile() && Lod->isUnindexed()) { 2383 unsigned origWidth = N0.getValueSizeInBits(); 2384 unsigned maskWidth = origWidth; 2385 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to 2386 // 8 bits, but have to be careful... 2387 if (Lod->getExtensionType() != ISD::NON_EXTLOAD) 2388 origWidth = Lod->getMemoryVT().getSizeInBits(); 2389 const APInt &Mask = 2390 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue(); 2391 for (unsigned width = origWidth / 2; width>=8; width /= 2) { 2392 APInt newMask = APInt::getLowBitsSet(maskWidth, width); 2393 for (unsigned offset=0; offset<origWidth/width; offset++) { 2394 if (Mask.isSubsetOf(newMask)) { 2395 if (DAG.getDataLayout().isLittleEndian()) 2396 bestOffset = (uint64_t)offset * (width/8); 2397 else 2398 bestOffset = (origWidth/width - offset - 1) * (width/8); 2399 bestMask = Mask.lshr(offset * (width/8) * 8); 2400 bestWidth = width; 2401 break; 2402 } 2403 newMask <<= width; 2404 } 2405 } 2406 } 2407 if (bestWidth) { 2408 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth); 2409 if (newVT.isRound() && 2410 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) { 2411 EVT PtrType = Lod->getOperand(1).getValueType(); 2412 SDValue Ptr = Lod->getBasePtr(); 2413 if (bestOffset != 0) 2414 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(), 2415 DAG.getConstant(bestOffset, dl, PtrType)); 2416 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset); 2417 SDValue NewLoad = DAG.getLoad( 2418 newVT, dl, Lod->getChain(), Ptr, 2419 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign); 2420 return DAG.getSetCC(dl, VT, 2421 DAG.getNode(ISD::AND, dl, newVT, NewLoad, 2422 DAG.getConstant(bestMask.trunc(bestWidth), 2423 dl, newVT)), 2424 DAG.getConstant(0LL, dl, newVT), Cond); 2425 } 2426 } 2427 } 2428 2429 // If the LHS is a ZERO_EXTEND, perform the comparison on the input. 2430 if (N0.getOpcode() == ISD::ZERO_EXTEND) { 2431 unsigned InSize = N0.getOperand(0).getValueSizeInBits(); 2432 2433 // If the comparison constant has bits in the upper part, the 2434 // zero-extended value could never match. 2435 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(), 2436 C1.getBitWidth() - InSize))) { 2437 switch (Cond) { 2438 case ISD::SETUGT: 2439 case ISD::SETUGE: 2440 case ISD::SETEQ: 2441 return DAG.getConstant(0, dl, VT); 2442 case ISD::SETULT: 2443 case ISD::SETULE: 2444 case ISD::SETNE: 2445 return DAG.getConstant(1, dl, VT); 2446 case ISD::SETGT: 2447 case ISD::SETGE: 2448 // True if the sign bit of C1 is set. 2449 return DAG.getConstant(C1.isNegative(), dl, VT); 2450 case ISD::SETLT: 2451 case ISD::SETLE: 2452 // True if the sign bit of C1 isn't set. 2453 return DAG.getConstant(C1.isNonNegative(), dl, VT); 2454 default: 2455 break; 2456 } 2457 } 2458 2459 // Otherwise, we can perform the comparison with the low bits. 2460 switch (Cond) { 2461 case ISD::SETEQ: 2462 case ISD::SETNE: 2463 case ISD::SETUGT: 2464 case ISD::SETUGE: 2465 case ISD::SETULT: 2466 case ISD::SETULE: { 2467 EVT newVT = N0.getOperand(0).getValueType(); 2468 if (DCI.isBeforeLegalizeOps() || 2469 (isOperationLegal(ISD::SETCC, newVT) && 2470 isCondCodeLegal(Cond, newVT.getSimpleVT()))) { 2471 EVT NewSetCCVT = 2472 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT); 2473 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT); 2474 2475 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0), 2476 NewConst, Cond); 2477 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType()); 2478 } 2479 break; 2480 } 2481 default: 2482 break; // todo, be more careful with signed comparisons 2483 } 2484 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG && 2485 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2486 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT(); 2487 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits(); 2488 EVT ExtDstTy = N0.getValueType(); 2489 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits(); 2490 2491 // If the constant doesn't fit into the number of bits for the source of 2492 // the sign extension, it is impossible for both sides to be equal. 2493 if (C1.getMinSignedBits() > ExtSrcTyBits) 2494 return DAG.getConstant(Cond == ISD::SETNE, dl, VT); 2495 2496 SDValue ZextOp; 2497 EVT Op0Ty = N0.getOperand(0).getValueType(); 2498 if (Op0Ty == ExtSrcTy) { 2499 ZextOp = N0.getOperand(0); 2500 } else { 2501 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits); 2502 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0), 2503 DAG.getConstant(Imm, dl, Op0Ty)); 2504 } 2505 if (!DCI.isCalledByLegalizer()) 2506 DCI.AddToWorklist(ZextOp.getNode()); 2507 // Otherwise, make this a use of a zext. 2508 return DAG.getSetCC(dl, VT, ZextOp, 2509 DAG.getConstant(C1 & APInt::getLowBitsSet( 2510 ExtDstTyBits, 2511 ExtSrcTyBits), 2512 dl, ExtDstTy), 2513 Cond); 2514 } else if ((N1C->isNullValue() || N1C->isOne()) && 2515 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) { 2516 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC 2517 if (N0.getOpcode() == ISD::SETCC && 2518 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) { 2519 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne()); 2520 if (TrueWhenTrue) 2521 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0); 2522 // Invert the condition. 2523 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get(); 2524 CC = ISD::getSetCCInverse(CC, 2525 N0.getOperand(0).getValueType().isInteger()); 2526 if (DCI.isBeforeLegalizeOps() || 2527 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType())) 2528 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC); 2529 } 2530 2531 if ((N0.getOpcode() == ISD::XOR || 2532 (N0.getOpcode() == ISD::AND && 2533 N0.getOperand(0).getOpcode() == ISD::XOR && 2534 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) && 2535 isa<ConstantSDNode>(N0.getOperand(1)) && 2536 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) { 2537 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We 2538 // can only do this if the top bits are known zero. 2539 unsigned BitWidth = N0.getValueSizeInBits(); 2540 if (DAG.MaskedValueIsZero(N0, 2541 APInt::getHighBitsSet(BitWidth, 2542 BitWidth-1))) { 2543 // Okay, get the un-inverted input value. 2544 SDValue Val; 2545 if (N0.getOpcode() == ISD::XOR) { 2546 Val = N0.getOperand(0); 2547 } else { 2548 assert(N0.getOpcode() == ISD::AND && 2549 N0.getOperand(0).getOpcode() == ISD::XOR); 2550 // ((X^1)&1)^1 -> X & 1 2551 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(), 2552 N0.getOperand(0).getOperand(0), 2553 N0.getOperand(1)); 2554 } 2555 2556 return DAG.getSetCC(dl, VT, Val, N1, 2557 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2558 } 2559 } else if (N1C->isOne() && 2560 (VT == MVT::i1 || 2561 getBooleanContents(N0->getValueType(0)) == 2562 ZeroOrOneBooleanContent)) { 2563 SDValue Op0 = N0; 2564 if (Op0.getOpcode() == ISD::TRUNCATE) 2565 Op0 = Op0.getOperand(0); 2566 2567 if ((Op0.getOpcode() == ISD::XOR) && 2568 Op0.getOperand(0).getOpcode() == ISD::SETCC && 2569 Op0.getOperand(1).getOpcode() == ISD::SETCC) { 2570 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc) 2571 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ; 2572 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1), 2573 Cond); 2574 } 2575 if (Op0.getOpcode() == ISD::AND && 2576 isa<ConstantSDNode>(Op0.getOperand(1)) && 2577 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) { 2578 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0. 2579 if (Op0.getValueType().bitsGT(VT)) 2580 Op0 = DAG.getNode(ISD::AND, dl, VT, 2581 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)), 2582 DAG.getConstant(1, dl, VT)); 2583 else if (Op0.getValueType().bitsLT(VT)) 2584 Op0 = DAG.getNode(ISD::AND, dl, VT, 2585 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)), 2586 DAG.getConstant(1, dl, VT)); 2587 2588 return DAG.getSetCC(dl, VT, Op0, 2589 DAG.getConstant(0, dl, Op0.getValueType()), 2590 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2591 } 2592 if (Op0.getOpcode() == ISD::AssertZext && 2593 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1) 2594 return DAG.getSetCC(dl, VT, Op0, 2595 DAG.getConstant(0, dl, Op0.getValueType()), 2596 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ); 2597 } 2598 } 2599 2600 if (SDValue V = 2601 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl)) 2602 return V; 2603 } 2604 2605 // These simplifications apply to splat vectors as well. 2606 // TODO: Handle more splat vector cases. 2607 if (auto *N1C = isConstOrConstSplat(N1)) { 2608 const APInt &C1 = N1C->getAPIntValue(); 2609 2610 APInt MinVal, MaxVal; 2611 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits(); 2612 if (ISD::isSignedIntSetCC(Cond)) { 2613 MinVal = APInt::getSignedMinValue(OperandBitSize); 2614 MaxVal = APInt::getSignedMaxValue(OperandBitSize); 2615 } else { 2616 MinVal = APInt::getMinValue(OperandBitSize); 2617 MaxVal = APInt::getMaxValue(OperandBitSize); 2618 } 2619 2620 // Canonicalize GE/LE comparisons to use GT/LT comparisons. 2621 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) { 2622 // X >= MIN --> true 2623 if (C1 == MinVal) 2624 return DAG.getBoolConstant(true, dl, VT, OpVT); 2625 2626 if (!VT.isVector()) { // TODO: Support this for vectors. 2627 // X >= C0 --> X > (C0 - 1) 2628 APInt C = C1 - 1; 2629 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT; 2630 if ((DCI.isBeforeLegalizeOps() || 2631 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2632 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2633 isLegalICmpImmediate(C.getSExtValue())))) { 2634 return DAG.getSetCC(dl, VT, N0, 2635 DAG.getConstant(C, dl, N1.getValueType()), 2636 NewCC); 2637 } 2638 } 2639 } 2640 2641 if (Cond == ISD::SETLE || Cond == ISD::SETULE) { 2642 // X <= MAX --> true 2643 if (C1 == MaxVal) 2644 return DAG.getBoolConstant(true, dl, VT, OpVT); 2645 2646 // X <= C0 --> X < (C0 + 1) 2647 if (!VT.isVector()) { // TODO: Support this for vectors. 2648 APInt C = C1 + 1; 2649 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT; 2650 if ((DCI.isBeforeLegalizeOps() || 2651 isCondCodeLegal(NewCC, VT.getSimpleVT())) && 2652 (!N1C->isOpaque() || (C.getBitWidth() <= 64 && 2653 isLegalICmpImmediate(C.getSExtValue())))) { 2654 return DAG.getSetCC(dl, VT, N0, 2655 DAG.getConstant(C, dl, N1.getValueType()), 2656 NewCC); 2657 } 2658 } 2659 } 2660 2661 if (Cond == ISD::SETLT || Cond == ISD::SETULT) { 2662 if (C1 == MinVal) 2663 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false 2664 2665 // TODO: Support this for vectors after legalize ops. 2666 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2667 // Canonicalize setlt X, Max --> setne X, Max 2668 if (C1 == MaxVal) 2669 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2670 2671 // If we have setult X, 1, turn it into seteq X, 0 2672 if (C1 == MinVal+1) 2673 return DAG.getSetCC(dl, VT, N0, 2674 DAG.getConstant(MinVal, dl, N0.getValueType()), 2675 ISD::SETEQ); 2676 } 2677 } 2678 2679 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) { 2680 if (C1 == MaxVal) 2681 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false 2682 2683 // TODO: Support this for vectors after legalize ops. 2684 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2685 // Canonicalize setgt X, Min --> setne X, Min 2686 if (C1 == MinVal) 2687 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE); 2688 2689 // If we have setugt X, Max-1, turn it into seteq X, Max 2690 if (C1 == MaxVal-1) 2691 return DAG.getSetCC(dl, VT, N0, 2692 DAG.getConstant(MaxVal, dl, N0.getValueType()), 2693 ISD::SETEQ); 2694 } 2695 } 2696 2697 // If we have "setcc X, C0", check to see if we can shrink the immediate 2698 // by changing cc. 2699 // TODO: Support this for vectors after legalize ops. 2700 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) { 2701 // SETUGT X, SINTMAX -> SETLT X, 0 2702 if (Cond == ISD::SETUGT && 2703 C1 == APInt::getSignedMaxValue(OperandBitSize)) 2704 return DAG.getSetCC(dl, VT, N0, 2705 DAG.getConstant(0, dl, N1.getValueType()), 2706 ISD::SETLT); 2707 2708 // SETULT X, SINTMIN -> SETGT X, -1 2709 if (Cond == ISD::SETULT && 2710 C1 == APInt::getSignedMinValue(OperandBitSize)) { 2711 SDValue ConstMinusOne = 2712 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl, 2713 N1.getValueType()); 2714 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT); 2715 } 2716 } 2717 } 2718 2719 // Back to non-vector simplifications. 2720 // TODO: Can we do these for vector splats? 2721 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) { 2722 const APInt &C1 = N1C->getAPIntValue(); 2723 2724 // Fold bit comparisons when we can. 2725 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2726 (VT == N0.getValueType() || 2727 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) && 2728 N0.getOpcode() == ISD::AND) { 2729 auto &DL = DAG.getDataLayout(); 2730 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2731 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2732 !DCI.isBeforeLegalize()); 2733 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3 2734 // Perform the xform if the AND RHS is a single bit. 2735 if (AndRHS->getAPIntValue().isPowerOf2()) { 2736 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2737 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2738 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl, 2739 ShiftTy))); 2740 } 2741 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) { 2742 // (X & 8) == 8 --> (X & 8) >> 3 2743 // Perform the xform if C1 is a single bit. 2744 if (C1.isPowerOf2()) { 2745 return DAG.getNode(ISD::TRUNCATE, dl, VT, 2746 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0, 2747 DAG.getConstant(C1.logBase2(), dl, 2748 ShiftTy))); 2749 } 2750 } 2751 } 2752 } 2753 2754 if (C1.getMinSignedBits() <= 64 && 2755 !isLegalICmpImmediate(C1.getSExtValue())) { 2756 // (X & -256) == 256 -> (X >> 8) == 1 2757 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2758 N0.getOpcode() == ISD::AND && N0.hasOneUse()) { 2759 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2760 const APInt &AndRHSC = AndRHS->getAPIntValue(); 2761 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) { 2762 unsigned ShiftBits = AndRHSC.countTrailingZeros(); 2763 auto &DL = DAG.getDataLayout(); 2764 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2765 !DCI.isBeforeLegalize()); 2766 EVT CmpTy = N0.getValueType(); 2767 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0), 2768 DAG.getConstant(ShiftBits, dl, 2769 ShiftTy)); 2770 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy); 2771 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond); 2772 } 2773 } 2774 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE || 2775 Cond == ISD::SETULE || Cond == ISD::SETUGT) { 2776 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT); 2777 // X < 0x100000000 -> (X >> 32) < 1 2778 // X >= 0x100000000 -> (X >> 32) >= 1 2779 // X <= 0x0ffffffff -> (X >> 32) < 1 2780 // X > 0x0ffffffff -> (X >> 32) >= 1 2781 unsigned ShiftBits; 2782 APInt NewC = C1; 2783 ISD::CondCode NewCond = Cond; 2784 if (AdjOne) { 2785 ShiftBits = C1.countTrailingOnes(); 2786 NewC = NewC + 1; 2787 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 2788 } else { 2789 ShiftBits = C1.countTrailingZeros(); 2790 } 2791 NewC.lshrInPlace(ShiftBits); 2792 if (ShiftBits && NewC.getMinSignedBits() <= 64 && 2793 isLegalICmpImmediate(NewC.getSExtValue())) { 2794 auto &DL = DAG.getDataLayout(); 2795 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL, 2796 !DCI.isBeforeLegalize()); 2797 EVT CmpTy = N0.getValueType(); 2798 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0, 2799 DAG.getConstant(ShiftBits, dl, ShiftTy)); 2800 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy); 2801 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond); 2802 } 2803 } 2804 } 2805 } 2806 2807 if (isa<ConstantFPSDNode>(N0.getNode())) { 2808 // Constant fold or commute setcc. 2809 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl); 2810 if (O.getNode()) return O; 2811 } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) { 2812 // If the RHS of an FP comparison is a constant, simplify it away in 2813 // some cases. 2814 if (CFP->getValueAPF().isNaN()) { 2815 // If an operand is known to be a nan, we can fold it. 2816 switch (ISD::getUnorderedFlavor(Cond)) { 2817 default: llvm_unreachable("Unknown flavor!"); 2818 case 0: // Known false. 2819 return DAG.getBoolConstant(false, dl, VT, OpVT); 2820 case 1: // Known true. 2821 return DAG.getBoolConstant(true, dl, VT, OpVT); 2822 case 2: // Undefined. 2823 return DAG.getUNDEF(VT); 2824 } 2825 } 2826 2827 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the 2828 // constant if knowing that the operand is non-nan is enough. We prefer to 2829 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to 2830 // materialize 0.0. 2831 if (Cond == ISD::SETO || Cond == ISD::SETUO) 2832 return DAG.getSetCC(dl, VT, N0, N0, Cond); 2833 2834 // setcc (fneg x), C -> setcc swap(pred) x, -C 2835 if (N0.getOpcode() == ISD::FNEG) { 2836 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond); 2837 if (DCI.isBeforeLegalizeOps() || 2838 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) { 2839 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1); 2840 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond); 2841 } 2842 } 2843 2844 // If the condition is not legal, see if we can find an equivalent one 2845 // which is legal. 2846 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) { 2847 // If the comparison was an awkward floating-point == or != and one of 2848 // the comparison operands is infinity or negative infinity, convert the 2849 // condition to a less-awkward <= or >=. 2850 if (CFP->getValueAPF().isInfinity()) { 2851 if (CFP->getValueAPF().isNegative()) { 2852 if (Cond == ISD::SETOEQ && 2853 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2854 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE); 2855 if (Cond == ISD::SETUEQ && 2856 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType())) 2857 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE); 2858 if (Cond == ISD::SETUNE && 2859 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2860 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT); 2861 if (Cond == ISD::SETONE && 2862 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType())) 2863 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT); 2864 } else { 2865 if (Cond == ISD::SETOEQ && 2866 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2867 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE); 2868 if (Cond == ISD::SETUEQ && 2869 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType())) 2870 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE); 2871 if (Cond == ISD::SETUNE && 2872 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2873 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT); 2874 if (Cond == ISD::SETONE && 2875 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType())) 2876 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT); 2877 } 2878 } 2879 } 2880 } 2881 2882 if (N0 == N1) { 2883 // The sext(setcc()) => setcc() optimization relies on the appropriate 2884 // constant being emitted. 2885 2886 bool EqTrue = ISD::isTrueWhenEqual(Cond); 2887 2888 // We can always fold X == X for integer setcc's. 2889 if (N0.getValueType().isInteger()) 2890 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2891 2892 unsigned UOF = ISD::getUnorderedFlavor(Cond); 2893 if (UOF == 2) // FP operators that are undefined on NaNs. 2894 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2895 if (UOF == unsigned(EqTrue)) 2896 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT); 2897 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO 2898 // if it is not already. 2899 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO; 2900 if (NewCond != Cond && 2901 (DCI.isBeforeLegalizeOps() || 2902 isCondCodeLegal(NewCond, N0.getSimpleValueType()))) 2903 return DAG.getSetCC(dl, VT, N0, N1, NewCond); 2904 } 2905 2906 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) && 2907 N0.getValueType().isInteger()) { 2908 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB || 2909 N0.getOpcode() == ISD::XOR) { 2910 // Simplify (X+Y) == (X+Z) --> Y == Z 2911 if (N0.getOpcode() == N1.getOpcode()) { 2912 if (N0.getOperand(0) == N1.getOperand(0)) 2913 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond); 2914 if (N0.getOperand(1) == N1.getOperand(1)) 2915 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond); 2916 if (isCommutativeBinOp(N0.getOpcode())) { 2917 // If X op Y == Y op X, try other combinations. 2918 if (N0.getOperand(0) == N1.getOperand(1)) 2919 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0), 2920 Cond); 2921 if (N0.getOperand(1) == N1.getOperand(0)) 2922 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1), 2923 Cond); 2924 } 2925 } 2926 2927 // If RHS is a legal immediate value for a compare instruction, we need 2928 // to be careful about increasing register pressure needlessly. 2929 bool LegalRHSImm = false; 2930 2931 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) { 2932 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) { 2933 // Turn (X+C1) == C2 --> X == C2-C1 2934 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) { 2935 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2936 DAG.getConstant(RHSC->getAPIntValue()- 2937 LHSR->getAPIntValue(), 2938 dl, N0.getValueType()), Cond); 2939 } 2940 2941 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0. 2942 if (N0.getOpcode() == ISD::XOR) 2943 // If we know that all of the inverted bits are zero, don't bother 2944 // performing the inversion. 2945 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue())) 2946 return 2947 DAG.getSetCC(dl, VT, N0.getOperand(0), 2948 DAG.getConstant(LHSR->getAPIntValue() ^ 2949 RHSC->getAPIntValue(), 2950 dl, N0.getValueType()), 2951 Cond); 2952 } 2953 2954 // Turn (C1-X) == C2 --> X == C1-C2 2955 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) { 2956 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) { 2957 return 2958 DAG.getSetCC(dl, VT, N0.getOperand(1), 2959 DAG.getConstant(SUBC->getAPIntValue() - 2960 RHSC->getAPIntValue(), 2961 dl, N0.getValueType()), 2962 Cond); 2963 } 2964 } 2965 2966 // Could RHSC fold directly into a compare? 2967 if (RHSC->getValueType(0).getSizeInBits() <= 64) 2968 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue()); 2969 } 2970 2971 // Simplify (X+Z) == X --> Z == 0 2972 // Don't do this if X is an immediate that can fold into a cmp 2973 // instruction and X+Z has other uses. It could be an induction variable 2974 // chain, and the transform would increase register pressure. 2975 if (!LegalRHSImm || N0.getNode()->hasOneUse()) { 2976 if (N0.getOperand(0) == N1) 2977 return DAG.getSetCC(dl, VT, N0.getOperand(1), 2978 DAG.getConstant(0, dl, N0.getValueType()), Cond); 2979 if (N0.getOperand(1) == N1) { 2980 if (isCommutativeBinOp(N0.getOpcode())) 2981 return DAG.getSetCC(dl, VT, N0.getOperand(0), 2982 DAG.getConstant(0, dl, N0.getValueType()), 2983 Cond); 2984 if (N0.getNode()->hasOneUse()) { 2985 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!"); 2986 auto &DL = DAG.getDataLayout(); 2987 // (Z-X) == X --> Z == X<<1 2988 SDValue SH = DAG.getNode( 2989 ISD::SHL, dl, N1.getValueType(), N1, 2990 DAG.getConstant(1, dl, 2991 getShiftAmountTy(N1.getValueType(), DL, 2992 !DCI.isBeforeLegalize()))); 2993 if (!DCI.isCalledByLegalizer()) 2994 DCI.AddToWorklist(SH.getNode()); 2995 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond); 2996 } 2997 } 2998 } 2999 } 3000 3001 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB || 3002 N1.getOpcode() == ISD::XOR) { 3003 // Simplify X == (X+Z) --> Z == 0 3004 if (N1.getOperand(0) == N0) 3005 return DAG.getSetCC(dl, VT, N1.getOperand(1), 3006 DAG.getConstant(0, dl, N1.getValueType()), Cond); 3007 if (N1.getOperand(1) == N0) { 3008 if (isCommutativeBinOp(N1.getOpcode())) 3009 return DAG.getSetCC(dl, VT, N1.getOperand(0), 3010 DAG.getConstant(0, dl, N1.getValueType()), Cond); 3011 if (N1.getNode()->hasOneUse()) { 3012 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!"); 3013 auto &DL = DAG.getDataLayout(); 3014 // X == (Z-X) --> X<<1 == Z 3015 SDValue SH = DAG.getNode( 3016 ISD::SHL, dl, N1.getValueType(), N0, 3017 DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL, 3018 !DCI.isBeforeLegalize()))); 3019 if (!DCI.isCalledByLegalizer()) 3020 DCI.AddToWorklist(SH.getNode()); 3021 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond); 3022 } 3023 } 3024 } 3025 3026 if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl)) 3027 return V; 3028 } 3029 3030 // Fold away ALL boolean setcc's. 3031 SDValue Temp; 3032 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) { 3033 EVT OpVT = N0.getValueType(); 3034 switch (Cond) { 3035 default: llvm_unreachable("Unknown integer setcc!"); 3036 case ISD::SETEQ: // X == Y -> ~(X^Y) 3037 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3038 N0 = DAG.getNOT(dl, Temp, OpVT); 3039 if (!DCI.isCalledByLegalizer()) 3040 DCI.AddToWorklist(Temp.getNode()); 3041 break; 3042 case ISD::SETNE: // X != Y --> (X^Y) 3043 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1); 3044 break; 3045 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y 3046 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y 3047 Temp = DAG.getNOT(dl, N0, OpVT); 3048 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp); 3049 if (!DCI.isCalledByLegalizer()) 3050 DCI.AddToWorklist(Temp.getNode()); 3051 break; 3052 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X 3053 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X 3054 Temp = DAG.getNOT(dl, N1, OpVT); 3055 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp); 3056 if (!DCI.isCalledByLegalizer()) 3057 DCI.AddToWorklist(Temp.getNode()); 3058 break; 3059 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y 3060 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y 3061 Temp = DAG.getNOT(dl, N0, OpVT); 3062 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp); 3063 if (!DCI.isCalledByLegalizer()) 3064 DCI.AddToWorklist(Temp.getNode()); 3065 break; 3066 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X 3067 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X 3068 Temp = DAG.getNOT(dl, N1, OpVT); 3069 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp); 3070 break; 3071 } 3072 if (VT.getScalarType() != MVT::i1) { 3073 if (!DCI.isCalledByLegalizer()) 3074 DCI.AddToWorklist(N0.getNode()); 3075 // FIXME: If running after legalize, we probably can't do this. 3076 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT)); 3077 N0 = DAG.getNode(ExtendCode, dl, VT, N0); 3078 } 3079 return N0; 3080 } 3081 3082 // Could not fold it. 3083 return SDValue(); 3084 } 3085 3086 /// Returns true (and the GlobalValue and the offset) if the node is a 3087 /// GlobalAddress + offset. 3088 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA, 3089 int64_t &Offset) const { 3090 3091 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode(); 3092 3093 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) { 3094 GA = GASD->getGlobal(); 3095 Offset += GASD->getOffset(); 3096 return true; 3097 } 3098 3099 if (N->getOpcode() == ISD::ADD) { 3100 SDValue N1 = N->getOperand(0); 3101 SDValue N2 = N->getOperand(1); 3102 if (isGAPlusOffset(N1.getNode(), GA, Offset)) { 3103 if (auto *V = dyn_cast<ConstantSDNode>(N2)) { 3104 Offset += V->getSExtValue(); 3105 return true; 3106 } 3107 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) { 3108 if (auto *V = dyn_cast<ConstantSDNode>(N1)) { 3109 Offset += V->getSExtValue(); 3110 return true; 3111 } 3112 } 3113 } 3114 3115 return false; 3116 } 3117 3118 SDValue TargetLowering::PerformDAGCombine(SDNode *N, 3119 DAGCombinerInfo &DCI) const { 3120 // Default implementation: no optimization. 3121 return SDValue(); 3122 } 3123 3124 //===----------------------------------------------------------------------===// 3125 // Inline Assembler Implementation Methods 3126 //===----------------------------------------------------------------------===// 3127 3128 TargetLowering::ConstraintType 3129 TargetLowering::getConstraintType(StringRef Constraint) const { 3130 unsigned S = Constraint.size(); 3131 3132 if (S == 1) { 3133 switch (Constraint[0]) { 3134 default: break; 3135 case 'r': return C_RegisterClass; 3136 case 'm': // memory 3137 case 'o': // offsetable 3138 case 'V': // not offsetable 3139 return C_Memory; 3140 case 'i': // Simple Integer or Relocatable Constant 3141 case 'n': // Simple Integer 3142 case 'E': // Floating Point Constant 3143 case 'F': // Floating Point Constant 3144 case 's': // Relocatable Constant 3145 case 'p': // Address. 3146 case 'X': // Allow ANY value. 3147 case 'I': // Target registers. 3148 case 'J': 3149 case 'K': 3150 case 'L': 3151 case 'M': 3152 case 'N': 3153 case 'O': 3154 case 'P': 3155 case '<': 3156 case '>': 3157 return C_Other; 3158 } 3159 } 3160 3161 if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') { 3162 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}" 3163 return C_Memory; 3164 return C_Register; 3165 } 3166 return C_Unknown; 3167 } 3168 3169 /// Try to replace an X constraint, which matches anything, with another that 3170 /// has more specific requirements based on the type of the corresponding 3171 /// operand. 3172 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{ 3173 if (ConstraintVT.isInteger()) 3174 return "r"; 3175 if (ConstraintVT.isFloatingPoint()) 3176 return "f"; // works for many targets 3177 return nullptr; 3178 } 3179 3180 /// Lower the specified operand into the Ops vector. 3181 /// If it is invalid, don't add anything to Ops. 3182 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op, 3183 std::string &Constraint, 3184 std::vector<SDValue> &Ops, 3185 SelectionDAG &DAG) const { 3186 3187 if (Constraint.length() > 1) return; 3188 3189 char ConstraintLetter = Constraint[0]; 3190 switch (ConstraintLetter) { 3191 default: break; 3192 case 'X': // Allows any operand; labels (basic block) use this. 3193 if (Op.getOpcode() == ISD::BasicBlock) { 3194 Ops.push_back(Op); 3195 return; 3196 } 3197 LLVM_FALLTHROUGH; 3198 case 'i': // Simple Integer or Relocatable Constant 3199 case 'n': // Simple Integer 3200 case 's': { // Relocatable Constant 3201 // These operands are interested in values of the form (GV+C), where C may 3202 // be folded in as an offset of GV, or it may be explicitly added. Also, it 3203 // is possible and fine if either GV or C are missing. 3204 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 3205 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op); 3206 3207 // If we have "(add GV, C)", pull out GV/C 3208 if (Op.getOpcode() == ISD::ADD) { 3209 C = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 3210 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0)); 3211 if (!C || !GA) { 3212 C = dyn_cast<ConstantSDNode>(Op.getOperand(0)); 3213 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1)); 3214 } 3215 if (!C || !GA) { 3216 C = nullptr; 3217 GA = nullptr; 3218 } 3219 } 3220 3221 // If we find a valid operand, map to the TargetXXX version so that the 3222 // value itself doesn't get selected. 3223 if (GA) { // Either &GV or &GV+C 3224 if (ConstraintLetter != 'n') { 3225 int64_t Offs = GA->getOffset(); 3226 if (C) Offs += C->getZExtValue(); 3227 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), 3228 C ? SDLoc(C) : SDLoc(), 3229 Op.getValueType(), Offs)); 3230 } 3231 return; 3232 } 3233 if (C) { // just C, no GV. 3234 // Simple constants are not allowed for 's'. 3235 if (ConstraintLetter != 's') { 3236 // gcc prints these as sign extended. Sign extend value to 64 bits 3237 // now; without this it would get ZExt'd later in 3238 // ScheduleDAGSDNodes::EmitNode, which is very generic. 3239 Ops.push_back(DAG.getTargetConstant(C->getSExtValue(), 3240 SDLoc(C), MVT::i64)); 3241 } 3242 return; 3243 } 3244 break; 3245 } 3246 } 3247 } 3248 3249 std::pair<unsigned, const TargetRegisterClass *> 3250 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI, 3251 StringRef Constraint, 3252 MVT VT) const { 3253 if (Constraint.empty() || Constraint[0] != '{') 3254 return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr)); 3255 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?"); 3256 3257 // Remove the braces from around the name. 3258 StringRef RegName(Constraint.data()+1, Constraint.size()-2); 3259 3260 std::pair<unsigned, const TargetRegisterClass*> R = 3261 std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr)); 3262 3263 // Figure out which register class contains this reg. 3264 for (const TargetRegisterClass *RC : RI->regclasses()) { 3265 // If none of the value types for this register class are valid, we 3266 // can't use it. For example, 64-bit reg classes on 32-bit targets. 3267 if (!isLegalRC(*RI, *RC)) 3268 continue; 3269 3270 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); 3271 I != E; ++I) { 3272 if (RegName.equals_lower(RI->getRegAsmName(*I))) { 3273 std::pair<unsigned, const TargetRegisterClass*> S = 3274 std::make_pair(*I, RC); 3275 3276 // If this register class has the requested value type, return it, 3277 // otherwise keep searching and return the first class found 3278 // if no other is found which explicitly has the requested type. 3279 if (RI->isTypeLegalForClass(*RC, VT)) 3280 return S; 3281 if (!R.second) 3282 R = S; 3283 } 3284 } 3285 } 3286 3287 return R; 3288 } 3289 3290 //===----------------------------------------------------------------------===// 3291 // Constraint Selection. 3292 3293 /// Return true of this is an input operand that is a matching constraint like 3294 /// "4". 3295 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const { 3296 assert(!ConstraintCode.empty() && "No known constraint!"); 3297 return isdigit(static_cast<unsigned char>(ConstraintCode[0])); 3298 } 3299 3300 /// If this is an input matching constraint, this method returns the output 3301 /// operand it matches. 3302 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const { 3303 assert(!ConstraintCode.empty() && "No known constraint!"); 3304 return atoi(ConstraintCode.c_str()); 3305 } 3306 3307 /// Split up the constraint string from the inline assembly value into the 3308 /// specific constraints and their prefixes, and also tie in the associated 3309 /// operand values. 3310 /// If this returns an empty vector, and if the constraint string itself 3311 /// isn't empty, there was an error parsing. 3312 TargetLowering::AsmOperandInfoVector 3313 TargetLowering::ParseConstraints(const DataLayout &DL, 3314 const TargetRegisterInfo *TRI, 3315 ImmutableCallSite CS) const { 3316 /// Information about all of the constraints. 3317 AsmOperandInfoVector ConstraintOperands; 3318 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 3319 unsigned maCount = 0; // Largest number of multiple alternative constraints. 3320 3321 // Do a prepass over the constraints, canonicalizing them, and building up the 3322 // ConstraintOperands list. 3323 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 3324 unsigned ResNo = 0; // ResNo - The result number of the next output. 3325 3326 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3327 ConstraintOperands.emplace_back(std::move(CI)); 3328 AsmOperandInfo &OpInfo = ConstraintOperands.back(); 3329 3330 // Update multiple alternative constraint count. 3331 if (OpInfo.multipleAlternatives.size() > maCount) 3332 maCount = OpInfo.multipleAlternatives.size(); 3333 3334 OpInfo.ConstraintVT = MVT::Other; 3335 3336 // Compute the value type for each operand. 3337 switch (OpInfo.Type) { 3338 case InlineAsm::isOutput: 3339 // Indirect outputs just consume an argument. 3340 if (OpInfo.isIndirect) { 3341 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3342 break; 3343 } 3344 3345 // The return value of the call is this value. As such, there is no 3346 // corresponding argument. 3347 assert(!CS.getType()->isVoidTy() && 3348 "Bad inline asm!"); 3349 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 3350 OpInfo.ConstraintVT = 3351 getSimpleValueType(DL, STy->getElementType(ResNo)); 3352 } else { 3353 assert(ResNo == 0 && "Asm only has one result!"); 3354 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType()); 3355 } 3356 ++ResNo; 3357 break; 3358 case InlineAsm::isInput: 3359 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 3360 break; 3361 case InlineAsm::isClobber: 3362 // Nothing to do. 3363 break; 3364 } 3365 3366 if (OpInfo.CallOperandVal) { 3367 llvm::Type *OpTy = OpInfo.CallOperandVal->getType(); 3368 if (OpInfo.isIndirect) { 3369 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 3370 if (!PtrTy) 3371 report_fatal_error("Indirect operand for inline asm not a pointer!"); 3372 OpTy = PtrTy->getElementType(); 3373 } 3374 3375 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 3376 if (StructType *STy = dyn_cast<StructType>(OpTy)) 3377 if (STy->getNumElements() == 1) 3378 OpTy = STy->getElementType(0); 3379 3380 // If OpTy is not a single value, it may be a struct/union that we 3381 // can tile with integers. 3382 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 3383 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 3384 switch (BitSize) { 3385 default: break; 3386 case 1: 3387 case 8: 3388 case 16: 3389 case 32: 3390 case 64: 3391 case 128: 3392 OpInfo.ConstraintVT = 3393 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true); 3394 break; 3395 } 3396 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) { 3397 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace()); 3398 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize); 3399 } else { 3400 OpInfo.ConstraintVT = MVT::getVT(OpTy, true); 3401 } 3402 } 3403 } 3404 3405 // If we have multiple alternative constraints, select the best alternative. 3406 if (!ConstraintOperands.empty()) { 3407 if (maCount) { 3408 unsigned bestMAIndex = 0; 3409 int bestWeight = -1; 3410 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match. 3411 int weight = -1; 3412 unsigned maIndex; 3413 // Compute the sums of the weights for each alternative, keeping track 3414 // of the best (highest weight) one so far. 3415 for (maIndex = 0; maIndex < maCount; ++maIndex) { 3416 int weightSum = 0; 3417 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3418 cIndex != eIndex; ++cIndex) { 3419 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3420 if (OpInfo.Type == InlineAsm::isClobber) 3421 continue; 3422 3423 // If this is an output operand with a matching input operand, 3424 // look up the matching input. If their types mismatch, e.g. one 3425 // is an integer, the other is floating point, or their sizes are 3426 // different, flag it as an maCantMatch. 3427 if (OpInfo.hasMatchingInput()) { 3428 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3429 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3430 if ((OpInfo.ConstraintVT.isInteger() != 3431 Input.ConstraintVT.isInteger()) || 3432 (OpInfo.ConstraintVT.getSizeInBits() != 3433 Input.ConstraintVT.getSizeInBits())) { 3434 weightSum = -1; // Can't match. 3435 break; 3436 } 3437 } 3438 } 3439 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex); 3440 if (weight == -1) { 3441 weightSum = -1; 3442 break; 3443 } 3444 weightSum += weight; 3445 } 3446 // Update best. 3447 if (weightSum > bestWeight) { 3448 bestWeight = weightSum; 3449 bestMAIndex = maIndex; 3450 } 3451 } 3452 3453 // Now select chosen alternative in each constraint. 3454 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3455 cIndex != eIndex; ++cIndex) { 3456 AsmOperandInfo& cInfo = ConstraintOperands[cIndex]; 3457 if (cInfo.Type == InlineAsm::isClobber) 3458 continue; 3459 cInfo.selectAlternative(bestMAIndex); 3460 } 3461 } 3462 } 3463 3464 // Check and hook up tied operands, choose constraint code to use. 3465 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size(); 3466 cIndex != eIndex; ++cIndex) { 3467 AsmOperandInfo& OpInfo = ConstraintOperands[cIndex]; 3468 3469 // If this is an output operand with a matching input operand, look up the 3470 // matching input. If their types mismatch, e.g. one is an integer, the 3471 // other is floating point, or their sizes are different, flag it as an 3472 // error. 3473 if (OpInfo.hasMatchingInput()) { 3474 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 3475 3476 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 3477 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 3478 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 3479 OpInfo.ConstraintVT); 3480 std::pair<unsigned, const TargetRegisterClass *> InputRC = 3481 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 3482 Input.ConstraintVT); 3483 if ((OpInfo.ConstraintVT.isInteger() != 3484 Input.ConstraintVT.isInteger()) || 3485 (MatchRC.second != InputRC.second)) { 3486 report_fatal_error("Unsupported asm: input constraint" 3487 " with a matching output constraint of" 3488 " incompatible type!"); 3489 } 3490 } 3491 } 3492 } 3493 3494 return ConstraintOperands; 3495 } 3496 3497 /// Return an integer indicating how general CT is. 3498 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) { 3499 switch (CT) { 3500 case TargetLowering::C_Other: 3501 case TargetLowering::C_Unknown: 3502 return 0; 3503 case TargetLowering::C_Register: 3504 return 1; 3505 case TargetLowering::C_RegisterClass: 3506 return 2; 3507 case TargetLowering::C_Memory: 3508 return 3; 3509 } 3510 llvm_unreachable("Invalid constraint type"); 3511 } 3512 3513 /// Examine constraint type and operand type and determine a weight value. 3514 /// This object must already have been set up with the operand type 3515 /// and the current alternative constraint selected. 3516 TargetLowering::ConstraintWeight 3517 TargetLowering::getMultipleConstraintMatchWeight( 3518 AsmOperandInfo &info, int maIndex) const { 3519 InlineAsm::ConstraintCodeVector *rCodes; 3520 if (maIndex >= (int)info.multipleAlternatives.size()) 3521 rCodes = &info.Codes; 3522 else 3523 rCodes = &info.multipleAlternatives[maIndex].Codes; 3524 ConstraintWeight BestWeight = CW_Invalid; 3525 3526 // Loop over the options, keeping track of the most general one. 3527 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) { 3528 ConstraintWeight weight = 3529 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str()); 3530 if (weight > BestWeight) 3531 BestWeight = weight; 3532 } 3533 3534 return BestWeight; 3535 } 3536 3537 /// Examine constraint type and operand type and determine a weight value. 3538 /// This object must already have been set up with the operand type 3539 /// and the current alternative constraint selected. 3540 TargetLowering::ConstraintWeight 3541 TargetLowering::getSingleConstraintMatchWeight( 3542 AsmOperandInfo &info, const char *constraint) const { 3543 ConstraintWeight weight = CW_Invalid; 3544 Value *CallOperandVal = info.CallOperandVal; 3545 // If we don't have a value, we can't do a match, 3546 // but allow it at the lowest weight. 3547 if (!CallOperandVal) 3548 return CW_Default; 3549 // Look at the constraint type. 3550 switch (*constraint) { 3551 case 'i': // immediate integer. 3552 case 'n': // immediate integer with a known value. 3553 if (isa<ConstantInt>(CallOperandVal)) 3554 weight = CW_Constant; 3555 break; 3556 case 's': // non-explicit intregal immediate. 3557 if (isa<GlobalValue>(CallOperandVal)) 3558 weight = CW_Constant; 3559 break; 3560 case 'E': // immediate float if host format. 3561 case 'F': // immediate float. 3562 if (isa<ConstantFP>(CallOperandVal)) 3563 weight = CW_Constant; 3564 break; 3565 case '<': // memory operand with autodecrement. 3566 case '>': // memory operand with autoincrement. 3567 case 'm': // memory operand. 3568 case 'o': // offsettable memory operand 3569 case 'V': // non-offsettable memory operand 3570 weight = CW_Memory; 3571 break; 3572 case 'r': // general register. 3573 case 'g': // general register, memory operand or immediate integer. 3574 // note: Clang converts "g" to "imr". 3575 if (CallOperandVal->getType()->isIntegerTy()) 3576 weight = CW_Register; 3577 break; 3578 case 'X': // any operand. 3579 default: 3580 weight = CW_Default; 3581 break; 3582 } 3583 return weight; 3584 } 3585 3586 /// If there are multiple different constraints that we could pick for this 3587 /// operand (e.g. "imr") try to pick the 'best' one. 3588 /// This is somewhat tricky: constraints fall into four classes: 3589 /// Other -> immediates and magic values 3590 /// Register -> one specific register 3591 /// RegisterClass -> a group of regs 3592 /// Memory -> memory 3593 /// Ideally, we would pick the most specific constraint possible: if we have 3594 /// something that fits into a register, we would pick it. The problem here 3595 /// is that if we have something that could either be in a register or in 3596 /// memory that use of the register could cause selection of *other* 3597 /// operands to fail: they might only succeed if we pick memory. Because of 3598 /// this the heuristic we use is: 3599 /// 3600 /// 1) If there is an 'other' constraint, and if the operand is valid for 3601 /// that constraint, use it. This makes us take advantage of 'i' 3602 /// constraints when available. 3603 /// 2) Otherwise, pick the most general constraint present. This prefers 3604 /// 'm' over 'r', for example. 3605 /// 3606 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo, 3607 const TargetLowering &TLI, 3608 SDValue Op, SelectionDAG *DAG) { 3609 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options"); 3610 unsigned BestIdx = 0; 3611 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown; 3612 int BestGenerality = -1; 3613 3614 // Loop over the options, keeping track of the most general one. 3615 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) { 3616 TargetLowering::ConstraintType CType = 3617 TLI.getConstraintType(OpInfo.Codes[i]); 3618 3619 // If this is an 'other' constraint, see if the operand is valid for it. 3620 // For example, on X86 we might have an 'rI' constraint. If the operand 3621 // is an integer in the range [0..31] we want to use I (saving a load 3622 // of a register), otherwise we must use 'r'. 3623 if (CType == TargetLowering::C_Other && Op.getNode()) { 3624 assert(OpInfo.Codes[i].size() == 1 && 3625 "Unhandled multi-letter 'other' constraint"); 3626 std::vector<SDValue> ResultOps; 3627 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i], 3628 ResultOps, *DAG); 3629 if (!ResultOps.empty()) { 3630 BestType = CType; 3631 BestIdx = i; 3632 break; 3633 } 3634 } 3635 3636 // Things with matching constraints can only be registers, per gcc 3637 // documentation. This mainly affects "g" constraints. 3638 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput()) 3639 continue; 3640 3641 // This constraint letter is more general than the previous one, use it. 3642 int Generality = getConstraintGenerality(CType); 3643 if (Generality > BestGenerality) { 3644 BestType = CType; 3645 BestIdx = i; 3646 BestGenerality = Generality; 3647 } 3648 } 3649 3650 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx]; 3651 OpInfo.ConstraintType = BestType; 3652 } 3653 3654 /// Determines the constraint code and constraint type to use for the specific 3655 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType. 3656 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo, 3657 SDValue Op, 3658 SelectionDAG *DAG) const { 3659 assert(!OpInfo.Codes.empty() && "Must have at least one constraint"); 3660 3661 // Single-letter constraints ('r') are very common. 3662 if (OpInfo.Codes.size() == 1) { 3663 OpInfo.ConstraintCode = OpInfo.Codes[0]; 3664 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3665 } else { 3666 ChooseConstraint(OpInfo, *this, Op, DAG); 3667 } 3668 3669 // 'X' matches anything. 3670 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) { 3671 // Labels and constants are handled elsewhere ('X' is the only thing 3672 // that matches labels). For Functions, the type here is the type of 3673 // the result, which is not what we want to look at; leave them alone. 3674 Value *v = OpInfo.CallOperandVal; 3675 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) { 3676 OpInfo.CallOperandVal = v; 3677 return; 3678 } 3679 3680 // Otherwise, try to resolve it to something we know about by looking at 3681 // the actual operand type. 3682 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) { 3683 OpInfo.ConstraintCode = Repl; 3684 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode); 3685 } 3686 } 3687 } 3688 3689 /// Given an exact SDIV by a constant, create a multiplication 3690 /// with the multiplicative inverse of the constant. 3691 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N, 3692 const SDLoc &dl, SelectionDAG &DAG, 3693 SmallVectorImpl<SDNode *> &Created) { 3694 SDValue Op0 = N->getOperand(0); 3695 SDValue Op1 = N->getOperand(1); 3696 EVT VT = N->getValueType(0); 3697 EVT SVT = VT.getScalarType(); 3698 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3699 EVT ShSVT = ShVT.getScalarType(); 3700 3701 bool UseSRA = false; 3702 SmallVector<SDValue, 16> Shifts, Factors; 3703 3704 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3705 if (C->isNullValue()) 3706 return false; 3707 APInt Divisor = C->getAPIntValue(); 3708 unsigned Shift = Divisor.countTrailingZeros(); 3709 if (Shift) { 3710 Divisor.ashrInPlace(Shift); 3711 UseSRA = true; 3712 } 3713 // Calculate the multiplicative inverse, using Newton's method. 3714 APInt t; 3715 APInt Factor = Divisor; 3716 while ((t = Divisor * Factor) != 1) 3717 Factor *= APInt(Divisor.getBitWidth(), 2) - t; 3718 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT)); 3719 Factors.push_back(DAG.getConstant(Factor, dl, SVT)); 3720 return true; 3721 }; 3722 3723 // Collect all magic values from the build vector. 3724 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern)) 3725 return SDValue(); 3726 3727 SDValue Shift, Factor; 3728 if (VT.isVector()) { 3729 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3730 Factor = DAG.getBuildVector(VT, dl, Factors); 3731 } else { 3732 Shift = Shifts[0]; 3733 Factor = Factors[0]; 3734 } 3735 3736 SDValue Res = Op0; 3737 3738 // Shift the value upfront if it is even, so the LSB is one. 3739 if (UseSRA) { 3740 // TODO: For UDIV use SRL instead of SRA. 3741 SDNodeFlags Flags; 3742 Flags.setExact(true); 3743 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags); 3744 Created.push_back(Res.getNode()); 3745 } 3746 3747 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor); 3748 } 3749 3750 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, 3751 SelectionDAG &DAG, 3752 SmallVectorImpl<SDNode *> &Created) const { 3753 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes(); 3754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3755 if (TLI.isIntDivCheap(N->getValueType(0), Attr)) 3756 return SDValue(N,0); // Lower SDIV as SDIV 3757 return SDValue(); 3758 } 3759 3760 /// Given an ISD::SDIV node expressing a divide by constant, 3761 /// return a DAG expression to select that will generate the same value by 3762 /// multiplying by a magic number. 3763 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3764 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG, 3765 bool IsAfterLegalization, 3766 SmallVectorImpl<SDNode *> &Created) const { 3767 SDLoc dl(N); 3768 EVT VT = N->getValueType(0); 3769 EVT SVT = VT.getScalarType(); 3770 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3771 EVT ShSVT = ShVT.getScalarType(); 3772 unsigned EltBits = VT.getScalarSizeInBits(); 3773 3774 // Check to see if we can do this. 3775 // FIXME: We should be more aggressive here. 3776 if (!isTypeLegal(VT)) 3777 return SDValue(); 3778 3779 // If the sdiv has an 'exact' bit we can use a simpler lowering. 3780 if (N->getFlags().hasExact()) 3781 return BuildExactSDIV(*this, N, dl, DAG, Created); 3782 3783 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks; 3784 3785 auto BuildSDIVPattern = [&](ConstantSDNode *C) { 3786 if (C->isNullValue()) 3787 return false; 3788 3789 const APInt &Divisor = C->getAPIntValue(); 3790 APInt::ms magics = Divisor.magic(); 3791 int NumeratorFactor = 0; 3792 int ShiftMask = -1; 3793 3794 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) { 3795 // If d is +1/-1, we just multiply the numerator by +1/-1. 3796 NumeratorFactor = Divisor.getSExtValue(); 3797 magics.m = 0; 3798 magics.s = 0; 3799 ShiftMask = 0; 3800 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) { 3801 // If d > 0 and m < 0, add the numerator. 3802 NumeratorFactor = 1; 3803 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) { 3804 // If d < 0 and m > 0, subtract the numerator. 3805 NumeratorFactor = -1; 3806 } 3807 3808 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT)); 3809 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT)); 3810 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT)); 3811 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT)); 3812 return true; 3813 }; 3814 3815 SDValue N0 = N->getOperand(0); 3816 SDValue N1 = N->getOperand(1); 3817 3818 // Collect the shifts / magic values from each element. 3819 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern)) 3820 return SDValue(); 3821 3822 SDValue MagicFactor, Factor, Shift, ShiftMask; 3823 if (VT.isVector()) { 3824 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3825 Factor = DAG.getBuildVector(VT, dl, Factors); 3826 Shift = DAG.getBuildVector(ShVT, dl, Shifts); 3827 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks); 3828 } else { 3829 MagicFactor = MagicFactors[0]; 3830 Factor = Factors[0]; 3831 Shift = Shifts[0]; 3832 ShiftMask = ShiftMasks[0]; 3833 } 3834 3835 // Multiply the numerator (operand 0) by the magic value. 3836 // FIXME: We should support doing a MUL in a wider type. 3837 SDValue Q; 3838 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT) 3839 : isOperationLegalOrCustom(ISD::MULHS, VT)) 3840 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor); 3841 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT) 3842 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 3843 SDValue LoHi = 3844 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor); 3845 Q = SDValue(LoHi.getNode(), 1); 3846 } else 3847 return SDValue(); // No mulhs or equivalent. 3848 Created.push_back(Q.getNode()); 3849 3850 // (Optionally) Add/subtract the numerator using Factor. 3851 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor); 3852 Created.push_back(Factor.getNode()); 3853 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor); 3854 Created.push_back(Q.getNode()); 3855 3856 // Shift right algebraic by shift value. 3857 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift); 3858 Created.push_back(Q.getNode()); 3859 3860 // Extract the sign bit, mask it and add it to the quotient. 3861 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT); 3862 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift); 3863 Created.push_back(T.getNode()); 3864 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask); 3865 Created.push_back(T.getNode()); 3866 return DAG.getNode(ISD::ADD, dl, VT, Q, T); 3867 } 3868 3869 /// Given an ISD::UDIV node expressing a divide by constant, 3870 /// return a DAG expression to select that will generate the same value by 3871 /// multiplying by a magic number. 3872 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide". 3873 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG, 3874 bool IsAfterLegalization, 3875 SmallVectorImpl<SDNode *> &Created) const { 3876 SDLoc dl(N); 3877 EVT VT = N->getValueType(0); 3878 EVT SVT = VT.getScalarType(); 3879 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 3880 EVT ShSVT = ShVT.getScalarType(); 3881 unsigned EltBits = VT.getScalarSizeInBits(); 3882 3883 // Check to see if we can do this. 3884 // FIXME: We should be more aggressive here. 3885 if (!isTypeLegal(VT)) 3886 return SDValue(); 3887 3888 bool UseNPQ = false; 3889 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors; 3890 3891 auto BuildUDIVPattern = [&](ConstantSDNode *C) { 3892 if (C->isNullValue()) 3893 return false; 3894 // FIXME: We should use a narrower constant when the upper 3895 // bits are known to be zero. 3896 APInt Divisor = C->getAPIntValue(); 3897 APInt::mu magics = Divisor.magicu(); 3898 unsigned PreShift = 0, PostShift = 0; 3899 3900 // If the divisor is even, we can avoid using the expensive fixup by 3901 // shifting the divided value upfront. 3902 if (magics.a != 0 && !Divisor[0]) { 3903 PreShift = Divisor.countTrailingZeros(); 3904 // Get magic number for the shifted divisor. 3905 magics = Divisor.lshr(PreShift).magicu(PreShift); 3906 assert(magics.a == 0 && "Should use cheap fixup now"); 3907 } 3908 3909 APInt Magic = magics.m; 3910 3911 unsigned SelNPQ; 3912 if (magics.a == 0 || Divisor.isOneValue()) { 3913 assert(magics.s < Divisor.getBitWidth() && 3914 "We shouldn't generate an undefined shift!"); 3915 PostShift = magics.s; 3916 SelNPQ = false; 3917 } else { 3918 PostShift = magics.s - 1; 3919 SelNPQ = true; 3920 } 3921 3922 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT)); 3923 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT)); 3924 NPQFactors.push_back( 3925 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1) 3926 : APInt::getNullValue(EltBits), 3927 dl, SVT)); 3928 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT)); 3929 UseNPQ |= SelNPQ; 3930 return true; 3931 }; 3932 3933 SDValue N0 = N->getOperand(0); 3934 SDValue N1 = N->getOperand(1); 3935 3936 // Collect the shifts/magic values from each element. 3937 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern)) 3938 return SDValue(); 3939 3940 SDValue PreShift, PostShift, MagicFactor, NPQFactor; 3941 if (VT.isVector()) { 3942 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts); 3943 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors); 3944 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors); 3945 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts); 3946 } else { 3947 PreShift = PreShifts[0]; 3948 MagicFactor = MagicFactors[0]; 3949 PostShift = PostShifts[0]; 3950 } 3951 3952 SDValue Q = N0; 3953 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift); 3954 Created.push_back(Q.getNode()); 3955 3956 // FIXME: We should support doing a MUL in a wider type. 3957 auto GetMULHU = [&](SDValue X, SDValue Y) { 3958 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT) 3959 : isOperationLegalOrCustom(ISD::MULHU, VT)) 3960 return DAG.getNode(ISD::MULHU, dl, VT, X, Y); 3961 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT) 3962 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) { 3963 SDValue LoHi = 3964 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y); 3965 return SDValue(LoHi.getNode(), 1); 3966 } 3967 return SDValue(); // No mulhu or equivalent 3968 }; 3969 3970 // Multiply the numerator (operand 0) by the magic value. 3971 Q = GetMULHU(Q, MagicFactor); 3972 if (!Q) 3973 return SDValue(); 3974 3975 Created.push_back(Q.getNode()); 3976 3977 if (UseNPQ) { 3978 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q); 3979 Created.push_back(NPQ.getNode()); 3980 3981 // For vectors we might have a mix of non-NPQ/NPQ paths, so use 3982 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero. 3983 if (VT.isVector()) 3984 NPQ = GetMULHU(NPQ, NPQFactor); 3985 else 3986 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT)); 3987 3988 Created.push_back(NPQ.getNode()); 3989 3990 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q); 3991 Created.push_back(Q.getNode()); 3992 } 3993 3994 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift); 3995 Created.push_back(Q.getNode()); 3996 3997 SDValue One = DAG.getConstant(1, dl, VT); 3998 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ); 3999 return DAG.getSelect(dl, VT, IsOne, N0, Q); 4000 } 4001 4002 bool TargetLowering:: 4003 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const { 4004 if (!isa<ConstantSDNode>(Op.getOperand(0))) { 4005 DAG.getContext()->emitError("argument to '__builtin_return_address' must " 4006 "be a constant integer"); 4007 return true; 4008 } 4009 4010 return false; 4011 } 4012 4013 //===----------------------------------------------------------------------===// 4014 // Legalization Utilities 4015 //===----------------------------------------------------------------------===// 4016 4017 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl, 4018 SDValue LHS, SDValue RHS, 4019 SmallVectorImpl<SDValue> &Result, 4020 EVT HiLoVT, SelectionDAG &DAG, 4021 MulExpansionKind Kind, SDValue LL, 4022 SDValue LH, SDValue RL, SDValue RH) const { 4023 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI || 4024 Opcode == ISD::SMUL_LOHI); 4025 4026 bool HasMULHS = (Kind == MulExpansionKind::Always) || 4027 isOperationLegalOrCustom(ISD::MULHS, HiLoVT); 4028 bool HasMULHU = (Kind == MulExpansionKind::Always) || 4029 isOperationLegalOrCustom(ISD::MULHU, HiLoVT); 4030 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) || 4031 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT); 4032 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) || 4033 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT); 4034 4035 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI) 4036 return false; 4037 4038 unsigned OuterBitSize = VT.getScalarSizeInBits(); 4039 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits(); 4040 unsigned LHSSB = DAG.ComputeNumSignBits(LHS); 4041 unsigned RHSSB = DAG.ComputeNumSignBits(RHS); 4042 4043 // LL, LH, RL, and RH must be either all NULL or all set to a value. 4044 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) || 4045 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode())); 4046 4047 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT); 4048 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi, 4049 bool Signed) -> bool { 4050 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) { 4051 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R); 4052 Hi = SDValue(Lo.getNode(), 1); 4053 return true; 4054 } 4055 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) { 4056 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R); 4057 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R); 4058 return true; 4059 } 4060 return false; 4061 }; 4062 4063 SDValue Lo, Hi; 4064 4065 if (!LL.getNode() && !RL.getNode() && 4066 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4067 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS); 4068 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS); 4069 } 4070 4071 if (!LL.getNode()) 4072 return false; 4073 4074 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize); 4075 if (DAG.MaskedValueIsZero(LHS, HighMask) && 4076 DAG.MaskedValueIsZero(RHS, HighMask)) { 4077 // The inputs are both zero-extended. 4078 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) { 4079 Result.push_back(Lo); 4080 Result.push_back(Hi); 4081 if (Opcode != ISD::MUL) { 4082 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4083 Result.push_back(Zero); 4084 Result.push_back(Zero); 4085 } 4086 return true; 4087 } 4088 } 4089 4090 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize && 4091 RHSSB > InnerBitSize) { 4092 // The input values are both sign-extended. 4093 // TODO non-MUL case? 4094 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) { 4095 Result.push_back(Lo); 4096 Result.push_back(Hi); 4097 return true; 4098 } 4099 } 4100 4101 unsigned ShiftAmount = OuterBitSize - InnerBitSize; 4102 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout()); 4103 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) { 4104 // FIXME getShiftAmountTy does not always return a sensible result when VT 4105 // is an illegal type, and so the type may be too small to fit the shift 4106 // amount. Override it with i32. The shift will have to be legalized. 4107 ShiftAmountTy = MVT::i32; 4108 } 4109 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy); 4110 4111 if (!LH.getNode() && !RH.getNode() && 4112 isOperationLegalOrCustom(ISD::SRL, VT) && 4113 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) { 4114 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift); 4115 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH); 4116 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift); 4117 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH); 4118 } 4119 4120 if (!LH.getNode()) 4121 return false; 4122 4123 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false)) 4124 return false; 4125 4126 Result.push_back(Lo); 4127 4128 if (Opcode == ISD::MUL) { 4129 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH); 4130 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL); 4131 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH); 4132 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH); 4133 Result.push_back(Hi); 4134 return true; 4135 } 4136 4137 // Compute the full width result. 4138 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue { 4139 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 4140 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4141 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 4142 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 4143 }; 4144 4145 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi); 4146 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false)) 4147 return false; 4148 4149 // This is effectively the add part of a multiply-add of half-sized operands, 4150 // so it cannot overflow. 4151 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4152 4153 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false)) 4154 return false; 4155 4156 SDValue Zero = DAG.getConstant(0, dl, HiLoVT); 4157 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4158 4159 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) && 4160 isOperationLegalOrCustom(ISD::ADDE, VT)); 4161 if (UseGlue) 4162 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next, 4163 Merge(Lo, Hi)); 4164 else 4165 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next, 4166 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType)); 4167 4168 SDValue Carry = Next.getValue(1); 4169 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4170 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4171 4172 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI)) 4173 return false; 4174 4175 if (UseGlue) 4176 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero, 4177 Carry); 4178 else 4179 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi, 4180 Zero, Carry); 4181 4182 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi)); 4183 4184 if (Opcode == ISD::SMUL_LOHI) { 4185 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4186 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL)); 4187 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT); 4188 4189 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next, 4190 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL)); 4191 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT); 4192 } 4193 4194 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4195 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift); 4196 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next)); 4197 return true; 4198 } 4199 4200 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, 4201 SelectionDAG &DAG, MulExpansionKind Kind, 4202 SDValue LL, SDValue LH, SDValue RL, 4203 SDValue RH) const { 4204 SmallVector<SDValue, 2> Result; 4205 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N, 4206 N->getOperand(0), N->getOperand(1), Result, HiLoVT, 4207 DAG, Kind, LL, LH, RL, RH); 4208 if (Ok) { 4209 assert(Result.size() == 2); 4210 Lo = Result[0]; 4211 Hi = Result[1]; 4212 } 4213 return Ok; 4214 } 4215 4216 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result, 4217 SelectionDAG &DAG) const { 4218 EVT VT = Node->getValueType(0); 4219 4220 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4221 !isOperationLegalOrCustom(ISD::SRL, VT) || 4222 !isOperationLegalOrCustom(ISD::SUB, VT) || 4223 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4224 return false; 4225 4226 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 4227 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 4228 SDValue X = Node->getOperand(0); 4229 SDValue Y = Node->getOperand(1); 4230 SDValue Z = Node->getOperand(2); 4231 4232 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4233 bool IsFSHL = Node->getOpcode() == ISD::FSHL; 4234 SDLoc DL(SDValue(Node, 0)); 4235 4236 EVT ShVT = Z.getValueType(); 4237 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4238 SDValue Zero = DAG.getConstant(0, DL, ShVT); 4239 4240 SDValue ShAmt; 4241 if (isPowerOf2_32(EltSizeInBits)) { 4242 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4243 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask); 4244 } else { 4245 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC); 4246 } 4247 4248 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt); 4249 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt); 4250 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt); 4251 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY); 4252 4253 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 4254 // and that is undefined. We must compare and select to avoid UB. 4255 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT); 4256 4257 // For fshl, 0-shift returns the 1st arg (X). 4258 // For fshr, 0-shift returns the 2nd arg (Y). 4259 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ); 4260 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or); 4261 return true; 4262 } 4263 4264 // TODO: Merge with expandFunnelShift. 4265 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result, 4266 SelectionDAG &DAG) const { 4267 EVT VT = Node->getValueType(0); 4268 unsigned EltSizeInBits = VT.getScalarSizeInBits(); 4269 bool IsLeft = Node->getOpcode() == ISD::ROTL; 4270 SDValue Op0 = Node->getOperand(0); 4271 SDValue Op1 = Node->getOperand(1); 4272 SDLoc DL(SDValue(Node, 0)); 4273 4274 EVT ShVT = Op1.getValueType(); 4275 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT); 4276 4277 // If a rotate in the other direction is legal, use it. 4278 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL; 4279 if (isOperationLegal(RevRot, VT)) { 4280 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4281 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub); 4282 return true; 4283 } 4284 4285 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) || 4286 !isOperationLegalOrCustom(ISD::SRL, VT) || 4287 !isOperationLegalOrCustom(ISD::SUB, VT) || 4288 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) || 4289 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4290 return false; 4291 4292 // Otherwise, 4293 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1))) 4294 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1))) 4295 // 4296 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 && 4297 "Expecting the type bitwidth to be a power of 2"); 4298 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL; 4299 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL; 4300 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT); 4301 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1); 4302 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC); 4303 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC); 4304 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0), 4305 DAG.getNode(HsOpc, DL, VT, Op0, And1)); 4306 return true; 4307 } 4308 4309 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result, 4310 SelectionDAG &DAG) const { 4311 SDValue Src = Node->getOperand(0); 4312 EVT SrcVT = Src.getValueType(); 4313 EVT DstVT = Node->getValueType(0); 4314 SDLoc dl(SDValue(Node, 0)); 4315 4316 // FIXME: Only f32 to i64 conversions are supported. 4317 if (SrcVT != MVT::f32 || DstVT != MVT::i64) 4318 return false; 4319 4320 // Expand f32 -> i64 conversion 4321 // This algorithm comes from compiler-rt's implementation of fixsfdi: 4322 // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c 4323 unsigned SrcEltBits = SrcVT.getScalarSizeInBits(); 4324 EVT IntVT = SrcVT.changeTypeToInteger(); 4325 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout()); 4326 4327 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT); 4328 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT); 4329 SDValue Bias = DAG.getConstant(127, dl, IntVT); 4330 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT); 4331 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT); 4332 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT); 4333 4334 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src); 4335 4336 SDValue ExponentBits = DAG.getNode( 4337 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask), 4338 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT)); 4339 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias); 4340 4341 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT, 4342 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask), 4343 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT)); 4344 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT); 4345 4346 SDValue R = DAG.getNode(ISD::OR, dl, IntVT, 4347 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask), 4348 DAG.getConstant(0x00800000, dl, IntVT)); 4349 4350 R = DAG.getZExtOrTrunc(R, dl, DstVT); 4351 4352 R = DAG.getSelectCC( 4353 dl, Exponent, ExponentLoBit, 4354 DAG.getNode(ISD::SHL, dl, DstVT, R, 4355 DAG.getZExtOrTrunc( 4356 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit), 4357 dl, IntShVT)), 4358 DAG.getNode(ISD::SRL, dl, DstVT, R, 4359 DAG.getZExtOrTrunc( 4360 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent), 4361 dl, IntShVT)), 4362 ISD::SETGT); 4363 4364 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT, 4365 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign); 4366 4367 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT), 4368 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT); 4369 return true; 4370 } 4371 4372 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result, 4373 SelectionDAG &DAG) const { 4374 SDLoc dl(SDValue(Node, 0)); 4375 SDValue Src = Node->getOperand(0); 4376 4377 EVT SrcVT = Src.getValueType(); 4378 EVT DstVT = Node->getValueType(0); 4379 EVT SetCCVT = 4380 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4381 4382 // Only expand vector types if we have the appropriate vector bit operations. 4383 if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) || 4384 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT))) 4385 return false; 4386 4387 // If the maximum float value is smaller then the signed integer range, 4388 // the destination signmask can't be represented by the float, so we can 4389 // just use FP_TO_SINT directly. 4390 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT); 4391 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits())); 4392 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits()); 4393 if (APFloat::opOverflow & 4394 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) { 4395 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4396 return true; 4397 } 4398 4399 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); 4400 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT); 4401 4402 bool Strict = shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false); 4403 if (Strict) { 4404 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the 4405 // signmask then offset (the result of which should be fully representable). 4406 // Sel = Src < 0x8000000000000000 4407 // Val = select Sel, Src, Src - 0x8000000000000000 4408 // Ofs = select Sel, 0, 0x8000000000000000 4409 // Result = fp_to_sint(Val) ^ Ofs 4410 4411 // TODO: Should any fast-math-flags be set for the FSUB? 4412 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, 4413 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4414 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), 4415 DAG.getConstant(SignMask, dl, DstVT)); 4416 Result = DAG.getNode(ISD::XOR, dl, DstVT, 4417 DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val), Ofs); 4418 } else { 4419 // Expand based on maximum range of FP_TO_SINT: 4420 // True = fp_to_sint(Src) 4421 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000) 4422 // Result = select (Src < 0x8000000000000000), True, False 4423 4424 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src); 4425 // TODO: Should any fast-math-flags be set for the FSUB? 4426 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, 4427 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst)); 4428 False = DAG.getNode(ISD::XOR, dl, DstVT, False, 4429 DAG.getConstant(SignMask, dl, DstVT)); 4430 Result = DAG.getSelect(dl, DstVT, Sel, True, False); 4431 } 4432 return true; 4433 } 4434 4435 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result, 4436 SelectionDAG &DAG) const { 4437 SDValue Src = Node->getOperand(0); 4438 EVT SrcVT = Src.getValueType(); 4439 EVT DstVT = Node->getValueType(0); 4440 4441 if (SrcVT.getScalarType() != MVT::i64) 4442 return false; 4443 4444 SDLoc dl(SDValue(Node, 0)); 4445 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout()); 4446 4447 if (DstVT.getScalarType() == MVT::f32) { 4448 // Only expand vector types if we have the appropriate vector bit 4449 // operations. 4450 if (SrcVT.isVector() && 4451 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4452 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4453 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) || 4454 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4455 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4456 return false; 4457 4458 // For unsigned conversions, convert them to signed conversions using the 4459 // algorithm from the x86_64 __floatundidf in compiler_rt. 4460 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src); 4461 4462 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT); 4463 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst); 4464 SDValue AndConst = DAG.getConstant(1, dl, SrcVT); 4465 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst); 4466 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr); 4467 4468 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or); 4469 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt); 4470 4471 // TODO: This really should be implemented using a branch rather than a 4472 // select. We happen to get lucky and machinesink does the right 4473 // thing most of the time. This would be a good candidate for a 4474 // pseudo-op, or, even better, for whole-function isel. 4475 EVT SetCCVT = 4476 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); 4477 4478 SDValue SignBitTest = DAG.getSetCC( 4479 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT); 4480 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast); 4481 return true; 4482 } 4483 4484 if (DstVT.getScalarType() == MVT::f64) { 4485 // Only expand vector types if we have the appropriate vector bit 4486 // operations. 4487 if (SrcVT.isVector() && 4488 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) || 4489 !isOperationLegalOrCustom(ISD::FADD, DstVT) || 4490 !isOperationLegalOrCustom(ISD::FSUB, DstVT) || 4491 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) || 4492 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT))) 4493 return false; 4494 4495 // Implementation of unsigned i64 to f64 following the algorithm in 4496 // __floatundidf in compiler_rt. This implementation has the advantage 4497 // of performing rounding correctly, both in the default rounding mode 4498 // and in all alternate rounding modes. 4499 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT); 4500 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP( 4501 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT); 4502 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT); 4503 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT); 4504 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT); 4505 4506 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask); 4507 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift); 4508 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52); 4509 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84); 4510 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr); 4511 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr); 4512 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52); 4513 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub); 4514 return true; 4515 } 4516 4517 return false; 4518 } 4519 4520 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node, 4521 SelectionDAG &DAG) const { 4522 SDLoc dl(Node); 4523 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ? 4524 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE; 4525 EVT VT = Node->getValueType(0); 4526 if (isOperationLegalOrCustom(NewOp, VT)) { 4527 SDValue Quiet0 = Node->getOperand(0); 4528 SDValue Quiet1 = Node->getOperand(1); 4529 4530 if (!Node->getFlags().hasNoNaNs()) { 4531 // Insert canonicalizes if it's possible we need to quiet to get correct 4532 // sNaN behavior. 4533 if (!DAG.isKnownNeverSNaN(Quiet0)) { 4534 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0, 4535 Node->getFlags()); 4536 } 4537 if (!DAG.isKnownNeverSNaN(Quiet1)) { 4538 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1, 4539 Node->getFlags()); 4540 } 4541 } 4542 4543 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags()); 4544 } 4545 4546 return SDValue(); 4547 } 4548 4549 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result, 4550 SelectionDAG &DAG) const { 4551 SDLoc dl(Node); 4552 EVT VT = Node->getValueType(0); 4553 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4554 SDValue Op = Node->getOperand(0); 4555 unsigned Len = VT.getScalarSizeInBits(); 4556 assert(VT.isInteger() && "CTPOP not implemented for this type."); 4557 4558 // TODO: Add support for irregular type lengths. 4559 if (!(Len <= 128 && Len % 8 == 0)) 4560 return false; 4561 4562 // Only expand vector types if we have the appropriate vector bit operations. 4563 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) || 4564 !isOperationLegalOrCustom(ISD::SUB, VT) || 4565 !isOperationLegalOrCustom(ISD::SRL, VT) || 4566 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) || 4567 !isOperationLegalOrCustomOrPromote(ISD::AND, VT))) 4568 return false; 4569 4570 // This is the "best" algorithm from 4571 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 4572 SDValue Mask55 = 4573 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT); 4574 SDValue Mask33 = 4575 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT); 4576 SDValue Mask0F = 4577 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT); 4578 SDValue Mask01 = 4579 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT); 4580 4581 // v = v - ((v >> 1) & 0x55555555...) 4582 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 4583 DAG.getNode(ISD::AND, dl, VT, 4584 DAG.getNode(ISD::SRL, dl, VT, Op, 4585 DAG.getConstant(1, dl, ShVT)), 4586 Mask55)); 4587 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 4588 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 4589 DAG.getNode(ISD::AND, dl, VT, 4590 DAG.getNode(ISD::SRL, dl, VT, Op, 4591 DAG.getConstant(2, dl, ShVT)), 4592 Mask33)); 4593 // v = (v + (v >> 4)) & 0x0F0F0F0F... 4594 Op = DAG.getNode(ISD::AND, dl, VT, 4595 DAG.getNode(ISD::ADD, dl, VT, Op, 4596 DAG.getNode(ISD::SRL, dl, VT, Op, 4597 DAG.getConstant(4, dl, ShVT))), 4598 Mask0F); 4599 // v = (v * 0x01010101...) >> (Len - 8) 4600 if (Len > 8) 4601 Op = 4602 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 4603 DAG.getConstant(Len - 8, dl, ShVT)); 4604 4605 Result = Op; 4606 return true; 4607 } 4608 4609 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result, 4610 SelectionDAG &DAG) const { 4611 SDLoc dl(Node); 4612 EVT VT = Node->getValueType(0); 4613 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4614 SDValue Op = Node->getOperand(0); 4615 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4616 4617 // If the non-ZERO_UNDEF version is supported we can use that instead. 4618 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF && 4619 isOperationLegalOrCustom(ISD::CTLZ, VT)) { 4620 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op); 4621 return true; 4622 } 4623 4624 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4625 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) { 4626 EVT SetCCVT = 4627 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4628 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op); 4629 SDValue Zero = DAG.getConstant(0, dl, VT); 4630 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4631 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4632 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ); 4633 return true; 4634 } 4635 4636 // Only expand vector types if we have the appropriate vector bit operations. 4637 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4638 !isOperationLegalOrCustom(ISD::CTPOP, VT) || 4639 !isOperationLegalOrCustom(ISD::SRL, VT) || 4640 !isOperationLegalOrCustomOrPromote(ISD::OR, VT))) 4641 return false; 4642 4643 // for now, we do this: 4644 // x = x | (x >> 1); 4645 // x = x | (x >> 2); 4646 // ... 4647 // x = x | (x >>16); 4648 // x = x | (x >>32); // for 64-bit input 4649 // return popcount(~x); 4650 // 4651 // Ref: "Hacker's Delight" by Henry Warren 4652 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) { 4653 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT); 4654 Op = DAG.getNode(ISD::OR, dl, VT, Op, 4655 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp)); 4656 } 4657 Op = DAG.getNOT(dl, Op, VT); 4658 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op); 4659 return true; 4660 } 4661 4662 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result, 4663 SelectionDAG &DAG) const { 4664 SDLoc dl(Node); 4665 EVT VT = Node->getValueType(0); 4666 SDValue Op = Node->getOperand(0); 4667 unsigned NumBitsPerElt = VT.getScalarSizeInBits(); 4668 4669 // If the non-ZERO_UNDEF version is supported we can use that instead. 4670 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF && 4671 isOperationLegalOrCustom(ISD::CTTZ, VT)) { 4672 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op); 4673 return true; 4674 } 4675 4676 // If the ZERO_UNDEF version is supported use that and handle the zero case. 4677 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) { 4678 EVT SetCCVT = 4679 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 4680 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op); 4681 SDValue Zero = DAG.getConstant(0, dl, VT); 4682 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ); 4683 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero, 4684 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ); 4685 return true; 4686 } 4687 4688 // Only expand vector types if we have the appropriate vector bit operations. 4689 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) || 4690 (!isOperationLegalOrCustom(ISD::CTPOP, VT) && 4691 !isOperationLegalOrCustom(ISD::CTLZ, VT)) || 4692 !isOperationLegalOrCustom(ISD::SUB, VT) || 4693 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) || 4694 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4695 return false; 4696 4697 // for now, we use: { return popcount(~x & (x - 1)); } 4698 // unless the target has ctlz but not ctpop, in which case we use: 4699 // { return 32 - nlz(~x & (x-1)); } 4700 // Ref: "Hacker's Delight" by Henry Warren 4701 SDValue Tmp = DAG.getNode( 4702 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT), 4703 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT))); 4704 4705 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 4706 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) { 4707 Result = 4708 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT), 4709 DAG.getNode(ISD::CTLZ, dl, VT, Tmp)); 4710 return true; 4711 } 4712 4713 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp); 4714 return true; 4715 } 4716 4717 bool TargetLowering::expandABS(SDNode *N, SDValue &Result, 4718 SelectionDAG &DAG) const { 4719 SDLoc dl(N); 4720 EVT VT = N->getValueType(0); 4721 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout()); 4722 SDValue Op = N->getOperand(0); 4723 4724 // Only expand vector types if we have the appropriate vector operations. 4725 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) || 4726 !isOperationLegalOrCustom(ISD::ADD, VT) || 4727 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT))) 4728 return false; 4729 4730 SDValue Shift = 4731 DAG.getNode(ISD::SRA, dl, VT, Op, 4732 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT)); 4733 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift); 4734 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift); 4735 return true; 4736 } 4737 4738 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD, 4739 SelectionDAG &DAG) const { 4740 SDLoc SL(LD); 4741 SDValue Chain = LD->getChain(); 4742 SDValue BasePTR = LD->getBasePtr(); 4743 EVT SrcVT = LD->getMemoryVT(); 4744 ISD::LoadExtType ExtType = LD->getExtensionType(); 4745 4746 unsigned NumElem = SrcVT.getVectorNumElements(); 4747 4748 EVT SrcEltVT = SrcVT.getScalarType(); 4749 EVT DstEltVT = LD->getValueType(0).getScalarType(); 4750 4751 unsigned Stride = SrcEltVT.getSizeInBits() / 8; 4752 assert(SrcEltVT.isByteSized()); 4753 4754 SmallVector<SDValue, 8> Vals; 4755 SmallVector<SDValue, 8> LoadChains; 4756 4757 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4758 SDValue ScalarLoad = 4759 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR, 4760 LD->getPointerInfo().getWithOffset(Idx * Stride), 4761 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride), 4762 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4763 4764 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride); 4765 4766 Vals.push_back(ScalarLoad.getValue(0)); 4767 LoadChains.push_back(ScalarLoad.getValue(1)); 4768 } 4769 4770 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains); 4771 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals); 4772 4773 return DAG.getMergeValues({ Value, NewChain }, SL); 4774 } 4775 4776 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST, 4777 SelectionDAG &DAG) const { 4778 SDLoc SL(ST); 4779 4780 SDValue Chain = ST->getChain(); 4781 SDValue BasePtr = ST->getBasePtr(); 4782 SDValue Value = ST->getValue(); 4783 EVT StVT = ST->getMemoryVT(); 4784 4785 // The type of the data we want to save 4786 EVT RegVT = Value.getValueType(); 4787 EVT RegSclVT = RegVT.getScalarType(); 4788 4789 // The type of data as saved in memory. 4790 EVT MemSclVT = StVT.getScalarType(); 4791 4792 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout()); 4793 unsigned NumElem = StVT.getVectorNumElements(); 4794 4795 // A vector must always be stored in memory as-is, i.e. without any padding 4796 // between the elements, since various code depend on it, e.g. in the 4797 // handling of a bitcast of a vector type to int, which may be done with a 4798 // vector store followed by an integer load. A vector that does not have 4799 // elements that are byte-sized must therefore be stored as an integer 4800 // built out of the extracted vector elements. 4801 if (!MemSclVT.isByteSized()) { 4802 unsigned NumBits = StVT.getSizeInBits(); 4803 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 4804 4805 SDValue CurrVal = DAG.getConstant(0, SL, IntVT); 4806 4807 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4808 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4809 DAG.getConstant(Idx, SL, IdxVT)); 4810 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt); 4811 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc); 4812 unsigned ShiftIntoIdx = 4813 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx); 4814 SDValue ShiftAmount = 4815 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT); 4816 SDValue ShiftedElt = 4817 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount); 4818 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt); 4819 } 4820 4821 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(), 4822 ST->getAlignment(), ST->getMemOperand()->getFlags(), 4823 ST->getAAInfo()); 4824 } 4825 4826 // Store Stride in bytes 4827 unsigned Stride = MemSclVT.getSizeInBits() / 8; 4828 assert (Stride && "Zero stride!"); 4829 // Extract each of the elements from the original vector and save them into 4830 // memory individually. 4831 SmallVector<SDValue, 8> Stores; 4832 for (unsigned Idx = 0; Idx < NumElem; ++Idx) { 4833 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value, 4834 DAG.getConstant(Idx, SL, IdxVT)); 4835 4836 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride); 4837 4838 // This scalar TruncStore may be illegal, but we legalize it later. 4839 SDValue Store = DAG.getTruncStore( 4840 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride), 4841 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride), 4842 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 4843 4844 Stores.push_back(Store); 4845 } 4846 4847 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores); 4848 } 4849 4850 std::pair<SDValue, SDValue> 4851 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const { 4852 assert(LD->getAddressingMode() == ISD::UNINDEXED && 4853 "unaligned indexed loads not implemented!"); 4854 SDValue Chain = LD->getChain(); 4855 SDValue Ptr = LD->getBasePtr(); 4856 EVT VT = LD->getValueType(0); 4857 EVT LoadedVT = LD->getMemoryVT(); 4858 SDLoc dl(LD); 4859 auto &MF = DAG.getMachineFunction(); 4860 4861 if (VT.isFloatingPoint() || VT.isVector()) { 4862 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 4863 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) { 4864 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) && 4865 LoadedVT.isVector()) { 4866 // Scalarize the load and let the individual components be handled. 4867 SDValue Scalarized = scalarizeVectorLoad(LD, DAG); 4868 if (Scalarized->getOpcode() == ISD::MERGE_VALUES) 4869 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1)); 4870 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1)); 4871 } 4872 4873 // Expand to a (misaligned) integer load of the same size, 4874 // then bitconvert to floating point or vector. 4875 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 4876 LD->getMemOperand()); 4877 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 4878 if (LoadedVT != VT) 4879 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 4880 ISD::ANY_EXTEND, dl, VT, Result); 4881 4882 return std::make_pair(Result, newLoad.getValue(1)); 4883 } 4884 4885 // Copy the value to a (aligned) stack slot using (unaligned) integer 4886 // loads and stores, then do a (aligned) load from the stack slot. 4887 MVT RegVT = getRegisterType(*DAG.getContext(), intVT); 4888 unsigned LoadedBytes = LoadedVT.getStoreSize(); 4889 unsigned RegBytes = RegVT.getSizeInBits() / 8; 4890 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 4891 4892 // Make sure the stack slot is also aligned for the register type. 4893 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 4894 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex(); 4895 SmallVector<SDValue, 8> Stores; 4896 SDValue StackPtr = StackBase; 4897 unsigned Offset = 0; 4898 4899 EVT PtrVT = Ptr.getValueType(); 4900 EVT StackPtrVT = StackPtr.getValueType(); 4901 4902 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 4903 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 4904 4905 // Do all but one copies using the full register width. 4906 for (unsigned i = 1; i < NumRegs; i++) { 4907 // Load one integer register's worth from the original location. 4908 SDValue Load = DAG.getLoad( 4909 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset), 4910 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(), 4911 LD->getAAInfo()); 4912 // Follow the load with a store to the stack slot. Remember the store. 4913 Stores.push_back(DAG.getStore( 4914 Load.getValue(1), dl, Load, StackPtr, 4915 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset))); 4916 // Increment the pointers. 4917 Offset += RegBytes; 4918 4919 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 4920 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 4921 } 4922 4923 // The last copy may be partial. Do an extending load. 4924 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 4925 8 * (LoadedBytes - Offset)); 4926 SDValue Load = 4927 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 4928 LD->getPointerInfo().getWithOffset(Offset), MemVT, 4929 MinAlign(LD->getAlignment(), Offset), 4930 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4931 // Follow the load with a store to the stack slot. Remember the store. 4932 // On big-endian machines this requires a truncating store to ensure 4933 // that the bits end up in the right place. 4934 Stores.push_back(DAG.getTruncStore( 4935 Load.getValue(1), dl, Load, StackPtr, 4936 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT)); 4937 4938 // The order of the stores doesn't matter - say it with a TokenFactor. 4939 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 4940 4941 // Finally, perform the original load only redirected to the stack slot. 4942 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 4943 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), 4944 LoadedVT); 4945 4946 // Callers expect a MERGE_VALUES node. 4947 return std::make_pair(Load, TF); 4948 } 4949 4950 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 4951 "Unaligned load of unsupported type."); 4952 4953 // Compute the new VT that is half the size of the old one. This is an 4954 // integer MVT. 4955 unsigned NumBits = LoadedVT.getSizeInBits(); 4956 EVT NewLoadedVT; 4957 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 4958 NumBits >>= 1; 4959 4960 unsigned Alignment = LD->getAlignment(); 4961 unsigned IncrementSize = NumBits / 8; 4962 ISD::LoadExtType HiExtType = LD->getExtensionType(); 4963 4964 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 4965 if (HiExtType == ISD::NON_EXTLOAD) 4966 HiExtType = ISD::ZEXTLOAD; 4967 4968 // Load the value in two parts 4969 SDValue Lo, Hi; 4970 if (DAG.getDataLayout().isLittleEndian()) { 4971 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4972 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4973 LD->getAAInfo()); 4974 4975 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4976 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 4977 LD->getPointerInfo().getWithOffset(IncrementSize), 4978 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4979 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4980 } else { 4981 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 4982 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(), 4983 LD->getAAInfo()); 4984 4985 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 4986 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 4987 LD->getPointerInfo().getWithOffset(IncrementSize), 4988 NewLoadedVT, MinAlign(Alignment, IncrementSize), 4989 LD->getMemOperand()->getFlags(), LD->getAAInfo()); 4990 } 4991 4992 // aggregate the two parts 4993 SDValue ShiftAmount = 4994 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(), 4995 DAG.getDataLayout())); 4996 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 4997 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 4998 4999 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 5000 Hi.getValue(1)); 5001 5002 return std::make_pair(Result, TF); 5003 } 5004 5005 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST, 5006 SelectionDAG &DAG) const { 5007 assert(ST->getAddressingMode() == ISD::UNINDEXED && 5008 "unaligned indexed stores not implemented!"); 5009 SDValue Chain = ST->getChain(); 5010 SDValue Ptr = ST->getBasePtr(); 5011 SDValue Val = ST->getValue(); 5012 EVT VT = Val.getValueType(); 5013 int Alignment = ST->getAlignment(); 5014 auto &MF = DAG.getMachineFunction(); 5015 EVT MemVT = ST->getMemoryVT(); 5016 5017 SDLoc dl(ST); 5018 if (MemVT.isFloatingPoint() || MemVT.isVector()) { 5019 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 5020 if (isTypeLegal(intVT)) { 5021 if (!isOperationLegalOrCustom(ISD::STORE, intVT) && 5022 MemVT.isVector()) { 5023 // Scalarize the store and let the individual components be handled. 5024 SDValue Result = scalarizeVectorStore(ST, DAG); 5025 5026 return Result; 5027 } 5028 // Expand to a bitconvert of the value to the integer type of the 5029 // same size, then a (misaligned) int store. 5030 // FIXME: Does not handle truncating floating point stores! 5031 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 5032 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 5033 Alignment, ST->getMemOperand()->getFlags()); 5034 return Result; 5035 } 5036 // Do a (aligned) store to a stack slot, then copy from the stack slot 5037 // to the final destination using (unaligned) integer loads and stores. 5038 EVT StoredVT = ST->getMemoryVT(); 5039 MVT RegVT = 5040 getRegisterType(*DAG.getContext(), 5041 EVT::getIntegerVT(*DAG.getContext(), 5042 StoredVT.getSizeInBits())); 5043 EVT PtrVT = Ptr.getValueType(); 5044 unsigned StoredBytes = StoredVT.getStoreSize(); 5045 unsigned RegBytes = RegVT.getSizeInBits() / 8; 5046 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 5047 5048 // Make sure the stack slot is also aligned for the register type. 5049 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 5050 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 5051 5052 // Perform the original store, only redirected to the stack slot. 5053 SDValue Store = DAG.getTruncStore( 5054 Chain, dl, Val, StackPtr, 5055 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT); 5056 5057 EVT StackPtrVT = StackPtr.getValueType(); 5058 5059 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT); 5060 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT); 5061 SmallVector<SDValue, 8> Stores; 5062 unsigned Offset = 0; 5063 5064 // Do all but one copies using the full register width. 5065 for (unsigned i = 1; i < NumRegs; i++) { 5066 // Load one integer register's worth from the stack slot. 5067 SDValue Load = DAG.getLoad( 5068 RegVT, dl, Store, StackPtr, 5069 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)); 5070 // Store it to the final location. Remember the store. 5071 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 5072 ST->getPointerInfo().getWithOffset(Offset), 5073 MinAlign(ST->getAlignment(), Offset), 5074 ST->getMemOperand()->getFlags())); 5075 // Increment the pointers. 5076 Offset += RegBytes; 5077 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement); 5078 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement); 5079 } 5080 5081 // The last store may be partial. Do a truncating store. On big-endian 5082 // machines this requires an extending load from the stack slot to ensure 5083 // that the bits are in the right place. 5084 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 5085 8 * (StoredBytes - Offset)); 5086 5087 // Load from the stack slot. 5088 SDValue Load = DAG.getExtLoad( 5089 ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 5090 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT); 5091 5092 Stores.push_back( 5093 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 5094 ST->getPointerInfo().getWithOffset(Offset), MemVT, 5095 MinAlign(ST->getAlignment(), Offset), 5096 ST->getMemOperand()->getFlags(), ST->getAAInfo())); 5097 // The order of the stores doesn't matter - say it with a TokenFactor. 5098 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 5099 return Result; 5100 } 5101 5102 assert(ST->getMemoryVT().isInteger() && 5103 !ST->getMemoryVT().isVector() && 5104 "Unaligned store of unknown type."); 5105 // Get the half-size VT 5106 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 5107 int NumBits = NewStoredVT.getSizeInBits(); 5108 int IncrementSize = NumBits / 8; 5109 5110 // Divide the stored value in two parts. 5111 SDValue ShiftAmount = 5112 DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(), 5113 DAG.getDataLayout())); 5114 SDValue Lo = Val; 5115 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 5116 5117 // Store the two parts 5118 SDValue Store1, Store2; 5119 Store1 = DAG.getTruncStore(Chain, dl, 5120 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 5121 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment, 5122 ST->getMemOperand()->getFlags()); 5123 5124 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize); 5125 Alignment = MinAlign(Alignment, IncrementSize); 5126 Store2 = DAG.getTruncStore( 5127 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 5128 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment, 5129 ST->getMemOperand()->getFlags(), ST->getAAInfo()); 5130 5131 SDValue Result = 5132 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 5133 return Result; 5134 } 5135 5136 SDValue 5137 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask, 5138 const SDLoc &DL, EVT DataVT, 5139 SelectionDAG &DAG, 5140 bool IsCompressedMemory) const { 5141 SDValue Increment; 5142 EVT AddrVT = Addr.getValueType(); 5143 EVT MaskVT = Mask.getValueType(); 5144 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() && 5145 "Incompatible types of Data and Mask"); 5146 if (IsCompressedMemory) { 5147 // Incrementing the pointer according to number of '1's in the mask. 5148 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits()); 5149 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask); 5150 if (MaskIntVT.getSizeInBits() < 32) { 5151 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg); 5152 MaskIntVT = MVT::i32; 5153 } 5154 5155 // Count '1's with POPCNT. 5156 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg); 5157 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT); 5158 // Scale is an element size in bytes. 5159 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL, 5160 AddrVT); 5161 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale); 5162 } else 5163 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT); 5164 5165 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment); 5166 } 5167 5168 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG, 5169 SDValue Idx, 5170 EVT VecVT, 5171 const SDLoc &dl) { 5172 if (isa<ConstantSDNode>(Idx)) 5173 return Idx; 5174 5175 EVT IdxVT = Idx.getValueType(); 5176 unsigned NElts = VecVT.getVectorNumElements(); 5177 if (isPowerOf2_32(NElts)) { 5178 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(), 5179 Log2_32(NElts)); 5180 return DAG.getNode(ISD::AND, dl, IdxVT, Idx, 5181 DAG.getConstant(Imm, dl, IdxVT)); 5182 } 5183 5184 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx, 5185 DAG.getConstant(NElts - 1, dl, IdxVT)); 5186 } 5187 5188 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG, 5189 SDValue VecPtr, EVT VecVT, 5190 SDValue Index) const { 5191 SDLoc dl(Index); 5192 // Make sure the index type is big enough to compute in. 5193 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType()); 5194 5195 EVT EltVT = VecVT.getVectorElementType(); 5196 5197 // Calculate the element offset and add it to the pointer. 5198 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size. 5199 assert(EltSize * 8 == EltVT.getSizeInBits() && 5200 "Converting bits to bytes lost precision"); 5201 5202 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl); 5203 5204 EVT IdxVT = Index.getValueType(); 5205 5206 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index, 5207 DAG.getConstant(EltSize, dl, IdxVT)); 5208 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index); 5209 } 5210 5211 //===----------------------------------------------------------------------===// 5212 // Implementation of Emulated TLS Model 5213 //===----------------------------------------------------------------------===// 5214 5215 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, 5216 SelectionDAG &DAG) const { 5217 // Access to address of TLS varialbe xyz is lowered to a function call: 5218 // __emutls_get_address( address of global variable named "__emutls_v.xyz" ) 5219 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 5220 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext()); 5221 SDLoc dl(GA); 5222 5223 ArgListTy Args; 5224 ArgListEntry Entry; 5225 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str(); 5226 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent()); 5227 StringRef EmuTlsVarName(NameString); 5228 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName); 5229 assert(EmuTlsVar && "Cannot find EmuTlsVar "); 5230 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT); 5231 Entry.Ty = VoidPtrType; 5232 Args.push_back(Entry); 5233 5234 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT); 5235 5236 TargetLowering::CallLoweringInfo CLI(DAG); 5237 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()); 5238 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args)); 5239 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 5240 5241 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls. 5242 // At last for X86 targets, maybe good for other targets too? 5243 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5244 MFI.setAdjustsStack(true); // Is this only for X86 target? 5245 MFI.setHasCalls(true); 5246 5247 assert((GA->getOffset() == 0) && 5248 "Emulated TLS must have zero offset in GlobalAddressSDNode"); 5249 return CallResult.first; 5250 } 5251 5252 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op, 5253 SelectionDAG &DAG) const { 5254 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node."); 5255 if (!isCtlzFast()) 5256 return SDValue(); 5257 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get(); 5258 SDLoc dl(Op); 5259 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) { 5260 if (C->isNullValue() && CC == ISD::SETEQ) { 5261 EVT VT = Op.getOperand(0).getValueType(); 5262 SDValue Zext = Op.getOperand(0); 5263 if (VT.bitsLT(MVT::i32)) { 5264 VT = MVT::i32; 5265 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0)); 5266 } 5267 unsigned Log2b = Log2_32(VT.getSizeInBits()); 5268 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext); 5269 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz, 5270 DAG.getConstant(Log2b, dl, MVT::i32)); 5271 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc); 5272 } 5273 } 5274 return SDValue(); 5275 } 5276 5277 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const { 5278 unsigned Opcode = Node->getOpcode(); 5279 SDValue LHS = Node->getOperand(0); 5280 SDValue RHS = Node->getOperand(1); 5281 EVT VT = LHS.getValueType(); 5282 SDLoc dl(Node); 5283 5284 // usub.sat(a, b) -> umax(a, b) - b 5285 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) { 5286 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS); 5287 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS); 5288 } 5289 5290 if (VT.isVector()) { 5291 // TODO: Consider not scalarizing here. 5292 return SDValue(); 5293 } 5294 5295 unsigned OverflowOp; 5296 switch (Opcode) { 5297 case ISD::SADDSAT: 5298 OverflowOp = ISD::SADDO; 5299 break; 5300 case ISD::UADDSAT: 5301 OverflowOp = ISD::UADDO; 5302 break; 5303 case ISD::SSUBSAT: 5304 OverflowOp = ISD::SSUBO; 5305 break; 5306 case ISD::USUBSAT: 5307 OverflowOp = ISD::USUBO; 5308 break; 5309 default: 5310 llvm_unreachable("Expected method to receive signed or unsigned saturation " 5311 "addition or subtraction node."); 5312 } 5313 5314 assert(LHS.getValueType().isScalarInteger() && 5315 "Expected operands to be integers. Vector of int arguments should " 5316 "already be unrolled."); 5317 assert(RHS.getValueType().isScalarInteger() && 5318 "Expected operands to be integers. Vector of int arguments should " 5319 "already be unrolled."); 5320 assert(LHS.getValueType() == RHS.getValueType() && 5321 "Expected both operands to be the same type"); 5322 5323 unsigned BitWidth = LHS.getValueSizeInBits(); 5324 EVT ResultType = LHS.getValueType(); 5325 EVT BoolVT = 5326 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType); 5327 SDValue Result = 5328 DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS); 5329 SDValue SumDiff = Result.getValue(0); 5330 SDValue Overflow = Result.getValue(1); 5331 SDValue Zero = DAG.getConstant(0, dl, ResultType); 5332 5333 if (Opcode == ISD::UADDSAT) { 5334 // Just need to check overflow for SatMax. 5335 APInt MaxVal = APInt::getMaxValue(BitWidth); 5336 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5337 return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff); 5338 } else if (Opcode == ISD::USUBSAT) { 5339 // Just need to check overflow for SatMin. 5340 APInt MinVal = APInt::getMinValue(BitWidth); 5341 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5342 return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff); 5343 } else { 5344 // SatMax -> Overflow && SumDiff < 0 5345 // SatMin -> Overflow && SumDiff >= 0 5346 APInt MinVal = APInt::getSignedMinValue(BitWidth); 5347 APInt MaxVal = APInt::getSignedMaxValue(BitWidth); 5348 SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType); 5349 SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType); 5350 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT); 5351 Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin); 5352 return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff); 5353 } 5354 } 5355 5356 SDValue 5357 TargetLowering::getExpandedFixedPointMultiplication(SDNode *Node, 5358 SelectionDAG &DAG) const { 5359 assert(Node->getOpcode() == ISD::SMULFIX && "Expected opcode to be SMULFIX."); 5360 assert(Node->getNumOperands() == 3 && 5361 "Expected signed fixed point multiplication to have 3 operands."); 5362 5363 SDLoc dl(Node); 5364 SDValue LHS = Node->getOperand(0); 5365 SDValue RHS = Node->getOperand(1); 5366 assert(LHS.getValueType().isScalarInteger() && 5367 "Expected operands to be integers. Vector of int arguments should " 5368 "already be unrolled."); 5369 assert(RHS.getValueType().isScalarInteger() && 5370 "Expected operands to be integers. Vector of int arguments should " 5371 "already be unrolled."); 5372 assert(LHS.getValueType() == RHS.getValueType() && 5373 "Expected both operands to be the same type"); 5374 5375 unsigned Scale = Node->getConstantOperandVal(2); 5376 EVT VT = LHS.getValueType(); 5377 assert(Scale < VT.getScalarSizeInBits() && 5378 "Expected scale to be less than the number of bits."); 5379 5380 if (!Scale) 5381 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5382 5383 // Get the upper and lower bits of the result. 5384 SDValue Lo, Hi; 5385 if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) { 5386 SDValue Result = 5387 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), LHS, RHS); 5388 Lo = Result.getValue(0); 5389 Hi = Result.getValue(1); 5390 } else if (isOperationLegalOrCustom(ISD::MULHS, VT)) { 5391 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 5392 Hi = DAG.getNode(ISD::MULHS, dl, VT, LHS, RHS); 5393 } else { 5394 report_fatal_error("Unable to expand signed fixed point multiplication."); 5395 } 5396 5397 // The result will need to be shifted right by the scale since both operands 5398 // are scaled. The result is given to us in 2 halves, so we only want part of 5399 // both in the result. 5400 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout()); 5401 Lo = DAG.getNode(ISD::SRL, dl, VT, Lo, DAG.getConstant(Scale, dl, ShiftTy)); 5402 Hi = DAG.getNode( 5403 ISD::SHL, dl, VT, Hi, 5404 DAG.getConstant(VT.getScalarSizeInBits() - Scale, dl, ShiftTy)); 5405 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi); 5406 } 5407