1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/CodeGen/CallingConvLower.h"
18 #include "llvm/CodeGen/MachineFrameInfo.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineJumpTableInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/TargetRegisterInfo.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/MC/MCAsmInfo.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/KnownBits.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include <cctype>
37 using namespace llvm;
38 
39 /// NOTE: The TargetMachine owns TLOF.
40 TargetLowering::TargetLowering(const TargetMachine &tm)
41   : TargetLoweringBase(tm) {}
42 
43 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
44   return nullptr;
45 }
46 
47 bool TargetLowering::isPositionIndependent() const {
48   return getTargetMachine().isPositionIndependent();
49 }
50 
51 /// Check whether a given call node is in tail position within its function. If
52 /// so, it sets Chain to the input chain of the tail call.
53 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
54                                           SDValue &Chain) const {
55   const Function &F = DAG.getMachineFunction().getFunction();
56 
57   // Conservatively require the attributes of the call to match those of
58   // the return. Ignore NoAlias and NonNull because they don't affect the
59   // call sequence.
60   AttributeList CallerAttrs = F.getAttributes();
61   if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
62           .removeAttribute(Attribute::NoAlias)
63           .removeAttribute(Attribute::NonNull)
64           .hasAttributes())
65     return false;
66 
67   // It's not safe to eliminate the sign / zero extension of the return value.
68   if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
69       CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
70     return false;
71 
72   // Check if the only use is a function return node.
73   return isUsedByReturnOnly(Node, Chain);
74 }
75 
76 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
77     const uint32_t *CallerPreservedMask,
78     const SmallVectorImpl<CCValAssign> &ArgLocs,
79     const SmallVectorImpl<SDValue> &OutVals) const {
80   for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
81     const CCValAssign &ArgLoc = ArgLocs[I];
82     if (!ArgLoc.isRegLoc())
83       continue;
84     unsigned Reg = ArgLoc.getLocReg();
85     // Only look at callee saved registers.
86     if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
87       continue;
88     // Check that we pass the value used for the caller.
89     // (We look for a CopyFromReg reading a virtual register that is used
90     //  for the function live-in value of register Reg)
91     SDValue Value = OutVals[I];
92     if (Value->getOpcode() != ISD::CopyFromReg)
93       return false;
94     unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
95     if (MRI.getLiveInPhysReg(ArgReg) != Reg)
96       return false;
97   }
98   return true;
99 }
100 
101 /// Set CallLoweringInfo attribute flags based on a call instruction
102 /// and called function attributes.
103 void TargetLoweringBase::ArgListEntry::setAttributes(ImmutableCallSite *CS,
104                                                      unsigned ArgIdx) {
105   IsSExt = CS->paramHasAttr(ArgIdx, Attribute::SExt);
106   IsZExt = CS->paramHasAttr(ArgIdx, Attribute::ZExt);
107   IsInReg = CS->paramHasAttr(ArgIdx, Attribute::InReg);
108   IsSRet = CS->paramHasAttr(ArgIdx, Attribute::StructRet);
109   IsNest = CS->paramHasAttr(ArgIdx, Attribute::Nest);
110   IsByVal = CS->paramHasAttr(ArgIdx, Attribute::ByVal);
111   IsInAlloca = CS->paramHasAttr(ArgIdx, Attribute::InAlloca);
112   IsReturned = CS->paramHasAttr(ArgIdx, Attribute::Returned);
113   IsSwiftSelf = CS->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
114   IsSwiftError = CS->paramHasAttr(ArgIdx, Attribute::SwiftError);
115   Alignment  = CS->getParamAlignment(ArgIdx);
116 }
117 
118 /// Generate a libcall taking the given operands as arguments and returning a
119 /// result of type RetVT.
120 std::pair<SDValue, SDValue>
121 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
122                             ArrayRef<SDValue> Ops, bool isSigned,
123                             const SDLoc &dl, bool doesNotReturn,
124                             bool isReturnValueUsed) const {
125   TargetLowering::ArgListTy Args;
126   Args.reserve(Ops.size());
127 
128   TargetLowering::ArgListEntry Entry;
129   for (SDValue Op : Ops) {
130     Entry.Node = Op;
131     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
132     Entry.IsSExt = shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
133     Entry.IsZExt = !shouldSignExtendTypeInLibCall(Op.getValueType(), isSigned);
134     Args.push_back(Entry);
135   }
136 
137   if (LC == RTLIB::UNKNOWN_LIBCALL)
138     report_fatal_error("Unsupported library call operation!");
139   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
140                                          getPointerTy(DAG.getDataLayout()));
141 
142   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
143   TargetLowering::CallLoweringInfo CLI(DAG);
144   bool signExtend = shouldSignExtendTypeInLibCall(RetVT, isSigned);
145   CLI.setDebugLoc(dl)
146       .setChain(DAG.getEntryNode())
147       .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
148       .setNoReturn(doesNotReturn)
149       .setDiscardResult(!isReturnValueUsed)
150       .setSExtResult(signExtend)
151       .setZExtResult(!signExtend);
152   return LowerCallTo(CLI);
153 }
154 
155 /// Soften the operands of a comparison. This code is shared among BR_CC,
156 /// SELECT_CC, and SETCC handlers.
157 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
158                                          SDValue &NewLHS, SDValue &NewRHS,
159                                          ISD::CondCode &CCCode,
160                                          const SDLoc &dl) const {
161   assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
162          && "Unsupported setcc type!");
163 
164   // Expand into one or more soft-fp libcall(s).
165   RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
166   bool ShouldInvertCC = false;
167   switch (CCCode) {
168   case ISD::SETEQ:
169   case ISD::SETOEQ:
170     LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
171           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
172           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
173     break;
174   case ISD::SETNE:
175   case ISD::SETUNE:
176     LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
177           (VT == MVT::f64) ? RTLIB::UNE_F64 :
178           (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
179     break;
180   case ISD::SETGE:
181   case ISD::SETOGE:
182     LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
183           (VT == MVT::f64) ? RTLIB::OGE_F64 :
184           (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
185     break;
186   case ISD::SETLT:
187   case ISD::SETOLT:
188     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
189           (VT == MVT::f64) ? RTLIB::OLT_F64 :
190           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
191     break;
192   case ISD::SETLE:
193   case ISD::SETOLE:
194     LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
195           (VT == MVT::f64) ? RTLIB::OLE_F64 :
196           (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
197     break;
198   case ISD::SETGT:
199   case ISD::SETOGT:
200     LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
201           (VT == MVT::f64) ? RTLIB::OGT_F64 :
202           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
203     break;
204   case ISD::SETUO:
205     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
206           (VT == MVT::f64) ? RTLIB::UO_F64 :
207           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
208     break;
209   case ISD::SETO:
210     LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
211           (VT == MVT::f64) ? RTLIB::O_F64 :
212           (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
213     break;
214   case ISD::SETONE:
215     // SETONE = SETOLT | SETOGT
216     LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
217           (VT == MVT::f64) ? RTLIB::OLT_F64 :
218           (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
219     LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
220           (VT == MVT::f64) ? RTLIB::OGT_F64 :
221           (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
222     break;
223   case ISD::SETUEQ:
224     LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
225           (VT == MVT::f64) ? RTLIB::UO_F64 :
226           (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
227     LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
228           (VT == MVT::f64) ? RTLIB::OEQ_F64 :
229           (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
230     break;
231   default:
232     // Invert CC for unordered comparisons
233     ShouldInvertCC = true;
234     switch (CCCode) {
235     case ISD::SETULT:
236       LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
237             (VT == MVT::f64) ? RTLIB::OGE_F64 :
238             (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
239       break;
240     case ISD::SETULE:
241       LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
242             (VT == MVT::f64) ? RTLIB::OGT_F64 :
243             (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
244       break;
245     case ISD::SETUGT:
246       LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
247             (VT == MVT::f64) ? RTLIB::OLE_F64 :
248             (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
249       break;
250     case ISD::SETUGE:
251       LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
252             (VT == MVT::f64) ? RTLIB::OLT_F64 :
253             (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
254       break;
255     default: llvm_unreachable("Do not know how to soften this setcc!");
256     }
257   }
258 
259   // Use the target specific return value for comparions lib calls.
260   EVT RetVT = getCmpLibcallReturnType();
261   SDValue Ops[2] = {NewLHS, NewRHS};
262   NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, false /*sign irrelevant*/,
263                        dl).first;
264   NewRHS = DAG.getConstant(0, dl, RetVT);
265 
266   CCCode = getCmpLibcallCC(LC1);
267   if (ShouldInvertCC)
268     CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
269 
270   if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
271     SDValue Tmp = DAG.getNode(
272         ISD::SETCC, dl,
273         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
274         NewLHS, NewRHS, DAG.getCondCode(CCCode));
275     NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, false/*sign irrelevant*/,
276                          dl).first;
277     NewLHS = DAG.getNode(
278         ISD::SETCC, dl,
279         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
280         NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
281     NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
282     NewRHS = SDValue();
283   }
284 }
285 
286 /// Return the entry encoding for a jump table in the current function. The
287 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
288 unsigned TargetLowering::getJumpTableEncoding() const {
289   // In non-pic modes, just use the address of a block.
290   if (!isPositionIndependent())
291     return MachineJumpTableInfo::EK_BlockAddress;
292 
293   // In PIC mode, if the target supports a GPRel32 directive, use it.
294   if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
295     return MachineJumpTableInfo::EK_GPRel32BlockAddress;
296 
297   // Otherwise, use a label difference.
298   return MachineJumpTableInfo::EK_LabelDifference32;
299 }
300 
301 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
302                                                  SelectionDAG &DAG) const {
303   // If our PIC model is GP relative, use the global offset table as the base.
304   unsigned JTEncoding = getJumpTableEncoding();
305 
306   if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
307       (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
308     return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
309 
310   return Table;
311 }
312 
313 /// This returns the relocation base for the given PIC jumptable, the same as
314 /// getPICJumpTableRelocBase, but as an MCExpr.
315 const MCExpr *
316 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
317                                              unsigned JTI,MCContext &Ctx) const{
318   // The normal PIC reloc base is the label at the start of the jump table.
319   return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
320 }
321 
322 bool
323 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
324   const TargetMachine &TM = getTargetMachine();
325   const GlobalValue *GV = GA->getGlobal();
326 
327   // If the address is not even local to this DSO we will have to load it from
328   // a got and then add the offset.
329   if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
330     return false;
331 
332   // If the code is position independent we will have to add a base register.
333   if (isPositionIndependent())
334     return false;
335 
336   // Otherwise we can do it.
337   return true;
338 }
339 
340 //===----------------------------------------------------------------------===//
341 //  Optimization Methods
342 //===----------------------------------------------------------------------===//
343 
344 /// If the specified instruction has a constant integer operand and there are
345 /// bits set in that constant that are not demanded, then clear those bits and
346 /// return true.
347 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
348                                             TargetLoweringOpt &TLO) const {
349   SelectionDAG &DAG = TLO.DAG;
350   SDLoc DL(Op);
351   unsigned Opcode = Op.getOpcode();
352 
353   // Do target-specific constant optimization.
354   if (targetShrinkDemandedConstant(Op, Demanded, TLO))
355     return TLO.New.getNode();
356 
357   // FIXME: ISD::SELECT, ISD::SELECT_CC
358   switch (Opcode) {
359   default:
360     break;
361   case ISD::XOR:
362   case ISD::AND:
363   case ISD::OR: {
364     auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
365     if (!Op1C)
366       return false;
367 
368     // If this is a 'not' op, don't touch it because that's a canonical form.
369     const APInt &C = Op1C->getAPIntValue();
370     if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
371       return false;
372 
373     if (!C.isSubsetOf(Demanded)) {
374       EVT VT = Op.getValueType();
375       SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
376       SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
377       return TLO.CombineTo(Op, NewOp);
378     }
379 
380     break;
381   }
382   }
383 
384   return false;
385 }
386 
387 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
388 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
389 /// generalized for targets with other types of implicit widening casts.
390 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
391                                       const APInt &Demanded,
392                                       TargetLoweringOpt &TLO) const {
393   assert(Op.getNumOperands() == 2 &&
394          "ShrinkDemandedOp only supports binary operators!");
395   assert(Op.getNode()->getNumValues() == 1 &&
396          "ShrinkDemandedOp only supports nodes with one result!");
397 
398   SelectionDAG &DAG = TLO.DAG;
399   SDLoc dl(Op);
400 
401   // Early return, as this function cannot handle vector types.
402   if (Op.getValueType().isVector())
403     return false;
404 
405   // Don't do this if the node has another user, which may require the
406   // full value.
407   if (!Op.getNode()->hasOneUse())
408     return false;
409 
410   // Search for the smallest integer type with free casts to and from
411   // Op's type. For expedience, just check power-of-2 integer types.
412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
413   unsigned DemandedSize = Demanded.getActiveBits();
414   unsigned SmallVTBits = DemandedSize;
415   if (!isPowerOf2_32(SmallVTBits))
416     SmallVTBits = NextPowerOf2(SmallVTBits);
417   for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
418     EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
419     if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
420         TLI.isZExtFree(SmallVT, Op.getValueType())) {
421       // We found a type with free casts.
422       SDValue X = DAG.getNode(
423           Op.getOpcode(), dl, SmallVT,
424           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
425           DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
426       assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
427       SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
428       return TLO.CombineTo(Op, Z);
429     }
430   }
431   return false;
432 }
433 
434 bool
435 TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
436                                      const APInt &DemandedBits,
437                                      DAGCombinerInfo &DCI,
438                                      TargetLoweringOpt &TLO) const {
439   SDValue Op = User->getOperand(OpIdx);
440   KnownBits Known;
441 
442   if (!SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, true))
443     return false;
444 
445 
446   // Old will not always be the same as Op.  For example:
447   //
448   // Demanded = 0xffffff
449   // Op = i64 truncate (i32 and x, 0xffffff)
450   // In this case simplify demand bits will want to replace the 'and' node
451   // with the value 'x', which will give us:
452   // Old = i32 and x, 0xffffff
453   // New = x
454   if (TLO.Old.hasOneUse()) {
455     // For the one use case, we just commit the change.
456     DCI.CommitTargetLoweringOpt(TLO);
457     return true;
458   }
459 
460   // If Old has more than one use then it must be Op, because the
461   // AssumeSingleUse flag is not propogated to recursive calls of
462   // SimplifyDemanded bits, so the only node with multiple use that
463   // it will attempt to combine will be Op.
464   assert(TLO.Old == Op);
465 
466   SmallVector <SDValue, 4> NewOps;
467   for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
468     if (i == OpIdx) {
469       NewOps.push_back(TLO.New);
470       continue;
471     }
472     NewOps.push_back(User->getOperand(i));
473   }
474   User = TLO.DAG.UpdateNodeOperands(User, NewOps);
475   // Op has less users now, so we may be able to perform additional combines
476   // with it.
477   DCI.AddToWorklist(Op.getNode());
478   // User's operands have been updated, so we may be able to do new combines
479   // with it.
480   DCI.AddToWorklist(User);
481   return true;
482 }
483 
484 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
485                                           DAGCombinerInfo &DCI) const {
486   SelectionDAG &DAG = DCI.DAG;
487   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
488                         !DCI.isBeforeLegalizeOps());
489   KnownBits Known;
490 
491   bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
492   if (Simplified) {
493     DCI.AddToWorklist(Op.getNode());
494     DCI.CommitTargetLoweringOpt(TLO);
495   }
496   return Simplified;
497 }
498 
499 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
500 /// result of Op are ever used downstream. If we can use this information to
501 /// simplify Op, create a new simplified DAG node and return true, returning the
502 /// original and new nodes in Old and New. Otherwise, analyze the expression and
503 /// return a mask of Known bits for the expression (used to simplify the
504 /// caller).  The Known bits may only be accurate for those bits in the
505 /// DemandedMask.
506 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
507                                           const APInt &OriginalDemandedBits,
508                                           KnownBits &Known,
509                                           TargetLoweringOpt &TLO,
510                                           unsigned Depth,
511                                           bool AssumeSingleUse) const {
512   unsigned BitWidth = OriginalDemandedBits.getBitWidth();
513   assert(Op.getScalarValueSizeInBits() == BitWidth &&
514          "Mask size mismatches value type size!");
515   APInt DemandedBits = OriginalDemandedBits;
516   SDLoc dl(Op);
517   auto &DL = TLO.DAG.getDataLayout();
518 
519   // Don't know anything.
520   Known = KnownBits(BitWidth);
521 
522   if (Op.getOpcode() == ISD::Constant) {
523     // We know all of the bits for a constant!
524     Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
525     Known.Zero = ~Known.One;
526     return false;
527   }
528 
529   // Other users may use these bits.
530   EVT VT = Op.getValueType();
531   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
532     if (Depth != 0) {
533       // If not at the root, Just compute the Known bits to
534       // simplify things downstream.
535       TLO.DAG.computeKnownBits(Op, Known, Depth);
536       return false;
537     }
538     // If this is the root being simplified, allow it to have multiple uses,
539     // just set the DemandedBits to all bits.
540     DemandedBits = APInt::getAllOnesValue(BitWidth);
541   } else if (OriginalDemandedBits == 0) {
542     // Not demanding any bits from Op.
543     if (!Op.isUndef())
544       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
545     return false;
546   } else if (Depth == 6) {        // Limit search depth.
547     return false;
548   }
549 
550   KnownBits Known2, KnownOut;
551   switch (Op.getOpcode()) {
552   case ISD::BUILD_VECTOR:
553     // Collect the known bits that are shared by every constant vector element.
554     Known.Zero.setAllBits(); Known.One.setAllBits();
555     for (SDValue SrcOp : Op->ops()) {
556       if (!isa<ConstantSDNode>(SrcOp)) {
557         // We can only handle all constant values - bail out with no known bits.
558         Known = KnownBits(BitWidth);
559         return false;
560       }
561       Known2.One = cast<ConstantSDNode>(SrcOp)->getAPIntValue();
562       Known2.Zero = ~Known2.One;
563 
564       // BUILD_VECTOR can implicitly truncate sources, we must handle this.
565       if (Known2.One.getBitWidth() != BitWidth) {
566         assert(Known2.getBitWidth() > BitWidth &&
567                "Expected BUILD_VECTOR implicit truncation");
568         Known2 = Known2.trunc(BitWidth);
569       }
570 
571       // Known bits are the values that are shared by every element.
572       // TODO: support per-element known bits.
573       Known.One &= Known2.One;
574       Known.Zero &= Known2.Zero;
575     }
576     return false;   // Don't fall through, will infinitely loop.
577   case ISD::CONCAT_VECTORS:
578     Known.Zero.setAllBits();
579     Known.One.setAllBits();
580     for (SDValue SrcOp : Op->ops()) {
581       if (SimplifyDemandedBits(SrcOp, DemandedBits, Known2, TLO, Depth + 1))
582         return true;
583       // Known bits are the values that are shared by every subvector.
584       Known.One &= Known2.One;
585       Known.Zero &= Known2.Zero;
586     }
587     break;
588   case ISD::AND: {
589     SDValue Op0 = Op.getOperand(0);
590     SDValue Op1 = Op.getOperand(1);
591 
592     // If the RHS is a constant, check to see if the LHS would be zero without
593     // using the bits from the RHS.  Below, we use knowledge about the RHS to
594     // simplify the LHS, here we're using information from the LHS to simplify
595     // the RHS.
596     if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
597       KnownBits LHSKnown;
598       // Do not increment Depth here; that can cause an infinite loop.
599       TLO.DAG.computeKnownBits(Op0, LHSKnown, Depth);
600       // If the LHS already has zeros where RHSC does, this 'and' is dead.
601       if ((LHSKnown.Zero & DemandedBits) ==
602           (~RHSC->getAPIntValue() & DemandedBits))
603         return TLO.CombineTo(Op, Op0);
604 
605       // If any of the set bits in the RHS are known zero on the LHS, shrink
606       // the constant.
607       if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
608         return true;
609 
610       // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
611       // constant, but if this 'and' is only clearing bits that were just set by
612       // the xor, then this 'and' can be eliminated by shrinking the mask of
613       // the xor. For example, for a 32-bit X:
614       // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
615       if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
616           LHSKnown.One == ~RHSC->getAPIntValue()) {
617         SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
618         return TLO.CombineTo(Op, Xor);
619       }
620     }
621 
622     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
623       return true;
624     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
625     if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, Known2, TLO,
626                              Depth + 1))
627       return true;
628     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
629 
630     // If all of the demanded bits are known one on one side, return the other.
631     // These bits cannot contribute to the result of the 'and'.
632     if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
633       return TLO.CombineTo(Op, Op0);
634     if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
635       return TLO.CombineTo(Op, Op1);
636     // If all of the demanded bits in the inputs are known zeros, return zero.
637     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
638       return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
639     // If the RHS is a constant, see if we can simplify it.
640     if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
641       return true;
642     // If the operation can be done in a smaller type, do so.
643     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
644       return true;
645 
646     // Output known-1 bits are only known if set in both the LHS & RHS.
647     Known.One &= Known2.One;
648     // Output known-0 are known to be clear if zero in either the LHS | RHS.
649     Known.Zero |= Known2.Zero;
650     break;
651   }
652   case ISD::OR: {
653     SDValue Op0 = Op.getOperand(0);
654     SDValue Op1 = Op.getOperand(1);
655 
656     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
657       return true;
658     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
659     if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, Known2, TLO, Depth + 1))
660       return true;
661     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
662 
663     // If all of the demanded bits are known zero on one side, return the other.
664     // These bits cannot contribute to the result of the 'or'.
665     if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
666       return TLO.CombineTo(Op, Op0);
667     if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
668       return TLO.CombineTo(Op, Op1);
669     // If the RHS is a constant, see if we can simplify it.
670     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
671       return true;
672     // If the operation can be done in a smaller type, do so.
673     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
674       return true;
675 
676     // Output known-0 bits are only known if clear in both the LHS & RHS.
677     Known.Zero &= Known2.Zero;
678     // Output known-1 are known to be set if set in either the LHS | RHS.
679     Known.One |= Known2.One;
680     break;
681   }
682   case ISD::XOR: {
683     SDValue Op0 = Op.getOperand(0);
684     SDValue Op1 = Op.getOperand(1);
685 
686     if (SimplifyDemandedBits(Op1, DemandedBits, Known, TLO, Depth + 1))
687       return true;
688     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
689     if (SimplifyDemandedBits(Op0, DemandedBits, Known2, TLO, Depth + 1))
690       return true;
691     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
692 
693     // If all of the demanded bits are known zero on one side, return the other.
694     // These bits cannot contribute to the result of the 'xor'.
695     if (DemandedBits.isSubsetOf(Known.Zero))
696       return TLO.CombineTo(Op, Op0);
697     if (DemandedBits.isSubsetOf(Known2.Zero))
698       return TLO.CombineTo(Op, Op1);
699     // If the operation can be done in a smaller type, do so.
700     if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
701       return true;
702 
703     // If all of the unknown bits are known to be zero on one side or the other
704     // (but not both) turn this into an *inclusive* or.
705     //    e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
706     if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
707       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
708 
709     // Output known-0 bits are known if clear or set in both the LHS & RHS.
710     KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
711     // Output known-1 are known to be set if set in only one of the LHS, RHS.
712     KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
713 
714     if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
715       // If one side is a constant, and all of the known set bits on the other
716       // side are also set in the constant, turn this into an AND, as we know
717       // the bits will be cleared.
718       //    e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
719       // NB: it is okay if more bits are known than are requested
720       if (C->getAPIntValue() == Known2.One) {
721         SDValue ANDC =
722             TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
723         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
724       }
725 
726       // If the RHS is a constant, see if we can change it. Don't alter a -1
727       // constant because that's a 'not' op, and that is better for combining
728       // and codegen.
729       if (!C->isAllOnesValue()) {
730         if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
731           // We're flipping all demanded bits. Flip the undemanded bits too.
732           SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
733           return TLO.CombineTo(Op, New);
734         }
735         // If we can't turn this into a 'not', try to shrink the constant.
736         if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
737           return true;
738       }
739     }
740 
741     Known = std::move(KnownOut);
742     break;
743   }
744   case ISD::SELECT:
745     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
746                              Depth + 1))
747       return true;
748     if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
749                              Depth + 1))
750       return true;
751     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
752     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
753 
754     // If the operands are constants, see if we can simplify them.
755     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
756       return true;
757 
758     // Only known if known in both the LHS and RHS.
759     Known.One &= Known2.One;
760     Known.Zero &= Known2.Zero;
761     break;
762   case ISD::SELECT_CC:
763     if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
764                              Depth + 1))
765       return true;
766     if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
767                              Depth + 1))
768       return true;
769     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
770     assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
771 
772     // If the operands are constants, see if we can simplify them.
773     if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
774       return true;
775 
776     // Only known if known in both the LHS and RHS.
777     Known.One &= Known2.One;
778     Known.Zero &= Known2.Zero;
779     break;
780   case ISD::SETCC: {
781     SDValue Op0 = Op.getOperand(0);
782     SDValue Op1 = Op.getOperand(1);
783     ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
784     // If (1) we only need the sign-bit, (2) the setcc operands are the same
785     // width as the setcc result, and (3) the result of a setcc conforms to 0 or
786     // -1, we may be able to bypass the setcc.
787     if (DemandedBits.isSignMask() &&
788         Op0.getScalarValueSizeInBits() == BitWidth &&
789         getBooleanContents(VT) ==
790             BooleanContent::ZeroOrNegativeOneBooleanContent) {
791       // If we're testing X < 0, then this compare isn't needed - just use X!
792       // FIXME: We're limiting to integer types here, but this should also work
793       // if we don't care about FP signed-zero. The use of SETLT with FP means
794       // that we don't care about NaNs.
795       if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
796           (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
797         return TLO.CombineTo(Op, Op0);
798 
799       // TODO: Should we check for other forms of sign-bit comparisons?
800       // Examples: X <= -1, X >= 0
801     }
802     if (getBooleanContents(Op0.getValueType()) ==
803             TargetLowering::ZeroOrOneBooleanContent &&
804         BitWidth > 1)
805       Known.Zero.setBitsFrom(1);
806     break;
807   }
808   case ISD::SHL: {
809     SDValue Op0 = Op.getOperand(0);
810     SDValue Op1 = Op.getOperand(1);
811 
812     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
813       // If the shift count is an invalid immediate, don't do anything.
814       if (SA->getAPIntValue().uge(BitWidth))
815         break;
816 
817       unsigned ShAmt = SA->getZExtValue();
818 
819       // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
820       // single shift.  We can do this if the bottom bits (which are shifted
821       // out) are never demanded.
822       if (Op0.getOpcode() == ISD::SRL) {
823         if (ShAmt &&
824             (DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
825           if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
826             if (SA2->getAPIntValue().ult(BitWidth)) {
827               unsigned C1 = SA2->getZExtValue();
828               unsigned Opc = ISD::SHL;
829               int Diff = ShAmt - C1;
830               if (Diff < 0) {
831                 Diff = -Diff;
832                 Opc = ISD::SRL;
833               }
834 
835               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
836               return TLO.CombineTo(
837                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
838             }
839           }
840         }
841       }
842 
843       if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), Known, TLO,
844                                Depth + 1))
845         return true;
846 
847       // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
848       // are not demanded. This will likely allow the anyext to be folded away.
849       if (Op0.getOpcode() == ISD::ANY_EXTEND) {
850         SDValue InnerOp = Op0.getOperand(0);
851         EVT InnerVT = InnerOp.getValueType();
852         unsigned InnerBits = InnerVT.getScalarSizeInBits();
853         if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
854             isTypeDesirableForOp(ISD::SHL, InnerVT)) {
855           EVT ShTy = getShiftAmountTy(InnerVT, DL);
856           if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
857             ShTy = InnerVT;
858           SDValue NarrowShl =
859               TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
860                               TLO.DAG.getConstant(ShAmt, dl, ShTy));
861           return TLO.CombineTo(
862               Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
863         }
864         // Repeat the SHL optimization above in cases where an extension
865         // intervenes: (shl (anyext (shr x, c1)), c2) to
866         // (shl (anyext x), c2-c1).  This requires that the bottom c1 bits
867         // aren't demanded (as above) and that the shifted upper c1 bits of
868         // x aren't demanded.
869         if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
870             InnerOp.hasOneUse()) {
871           if (ConstantSDNode *SA2 =
872                   isConstOrConstSplat(InnerOp.getOperand(1))) {
873             unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
874             if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
875                 DemandedBits.getActiveBits() <=
876                     (InnerBits - InnerShAmt + ShAmt) &&
877                 DemandedBits.countTrailingZeros() >= ShAmt) {
878               SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
879                                                   Op1.getValueType());
880               SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
881                                                InnerOp.getOperand(0));
882               return TLO.CombineTo(
883                   Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
884             }
885           }
886         }
887       }
888 
889       Known.Zero <<= ShAmt;
890       Known.One <<= ShAmt;
891       // low bits known zero.
892       Known.Zero.setLowBits(ShAmt);
893     }
894     break;
895   }
896   case ISD::SRL: {
897     SDValue Op0 = Op.getOperand(0);
898     SDValue Op1 = Op.getOperand(1);
899 
900     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
901       // If the shift count is an invalid immediate, don't do anything.
902       if (SA->getAPIntValue().uge(BitWidth))
903         break;
904 
905       unsigned ShAmt = SA->getZExtValue();
906       APInt InDemandedMask = (DemandedBits << ShAmt);
907 
908       // If the shift is exact, then it does demand the low bits (and knows that
909       // they are zero).
910       if (Op->getFlags().hasExact())
911         InDemandedMask.setLowBits(ShAmt);
912 
913       // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
914       // single shift.  We can do this if the top bits (which are shifted out)
915       // are never demanded.
916       if (Op0.getOpcode() == ISD::SHL) {
917         if (ConstantSDNode *SA2 = isConstOrConstSplat(Op0.getOperand(1))) {
918           if (ShAmt &&
919               (DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
920             if (SA2->getAPIntValue().ult(BitWidth)) {
921               unsigned C1 = SA2->getZExtValue();
922               unsigned Opc = ISD::SRL;
923               int Diff = ShAmt - C1;
924               if (Diff < 0) {
925                 Diff = -Diff;
926                 Opc = ISD::SHL;
927               }
928 
929               SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
930               return TLO.CombineTo(
931                   Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
932             }
933           }
934         }
935       }
936 
937       // Compute the new bits that are at the top now.
938       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
939         return true;
940       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
941       Known.Zero.lshrInPlace(ShAmt);
942       Known.One.lshrInPlace(ShAmt);
943 
944       Known.Zero.setHighBits(ShAmt); // High bits known zero.
945     }
946     break;
947   }
948   case ISD::SRA: {
949     SDValue Op0 = Op.getOperand(0);
950     SDValue Op1 = Op.getOperand(1);
951 
952     // If this is an arithmetic shift right and only the low-bit is set, we can
953     // always convert this into a logical shr, even if the shift amount is
954     // variable.  The low bit of the shift cannot be an input sign bit unless
955     // the shift amount is >= the size of the datatype, which is undefined.
956     if (DemandedBits.isOneValue())
957       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
958 
959     if (ConstantSDNode *SA = isConstOrConstSplat(Op1)) {
960       // If the shift count is an invalid immediate, don't do anything.
961       if (SA->getAPIntValue().uge(BitWidth))
962         break;
963 
964       unsigned ShAmt = SA->getZExtValue();
965       APInt InDemandedMask = (DemandedBits << ShAmt);
966 
967       // If the shift is exact, then it does demand the low bits (and knows that
968       // they are zero).
969       if (Op->getFlags().hasExact())
970         InDemandedMask.setLowBits(ShAmt);
971 
972       // If any of the demanded bits are produced by the sign extension, we also
973       // demand the input sign bit.
974       if (DemandedBits.countLeadingZeros() < ShAmt)
975         InDemandedMask.setSignBit();
976 
977       if (SimplifyDemandedBits(Op0, InDemandedMask, Known, TLO, Depth + 1))
978         return true;
979       assert(!Known.hasConflict() && "Bits known to be one AND zero?");
980       Known.Zero.lshrInPlace(ShAmt);
981       Known.One.lshrInPlace(ShAmt);
982 
983       // If the input sign bit is known to be zero, or if none of the top bits
984       // are demanded, turn this into an unsigned shift right.
985       if (Known.Zero[BitWidth - ShAmt - 1] ||
986           DemandedBits.countLeadingZeros() >= ShAmt) {
987         SDNodeFlags Flags;
988         Flags.setExact(Op->getFlags().hasExact());
989         return TLO.CombineTo(
990             Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
991       }
992 
993       int Log2 = DemandedBits.exactLogBase2();
994       if (Log2 >= 0) {
995         // The bit must come from the sign.
996         SDValue NewSA =
997             TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
998         return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
999       }
1000 
1001       if (Known.One[BitWidth - ShAmt - 1])
1002         // New bits are known one.
1003         Known.One.setHighBits(ShAmt);
1004     }
1005     break;
1006   }
1007   case ISD::SIGN_EXTEND_INREG: {
1008     SDValue Op0 = Op.getOperand(0);
1009     EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1010     unsigned ExVTBits = ExVT.getScalarSizeInBits();
1011 
1012     // If we only care about the highest bit, don't bother shifting right.
1013     if (DemandedBits.isSignMask()) {
1014       bool AlreadySignExtended =
1015           TLO.DAG.ComputeNumSignBits(Op0) >= BitWidth - ExVTBits + 1;
1016       // However if the input is already sign extended we expect the sign
1017       // extension to be dropped altogether later and do not simplify.
1018       if (!AlreadySignExtended) {
1019         // Compute the correct shift amount type, which must be getShiftAmountTy
1020         // for scalar types after legalization.
1021         EVT ShiftAmtTy = VT;
1022         if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1023           ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1024 
1025         SDValue ShiftAmt =
1026             TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1027         return TLO.CombineTo(Op,
1028                              TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1029       }
1030     }
1031 
1032     // If none of the extended bits are demanded, eliminate the sextinreg.
1033     if (DemandedBits.getActiveBits() <= ExVTBits)
1034       return TLO.CombineTo(Op, Op0);
1035 
1036     APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1037 
1038     // Since the sign extended bits are demanded, we know that the sign
1039     // bit is demanded.
1040     InputDemandedBits.setBit(ExVTBits - 1);
1041 
1042     if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1043       return true;
1044     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1045 
1046     // If the sign bit of the input is known set or clear, then we know the
1047     // top bits of the result.
1048 
1049     // If the input sign bit is known zero, convert this into a zero extension.
1050     if (Known.Zero[ExVTBits - 1])
1051       return TLO.CombineTo(
1052           Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1053 
1054     APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1055     if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1056       Known.One.setBitsFrom(ExVTBits);
1057       Known.Zero &= Mask;
1058     } else { // Input sign bit unknown
1059       Known.Zero &= Mask;
1060       Known.One &= Mask;
1061     }
1062     break;
1063   }
1064   case ISD::BUILD_PAIR: {
1065     EVT HalfVT = Op.getOperand(0).getValueType();
1066     unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1067 
1068     APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1069     APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1070 
1071     KnownBits KnownLo, KnownHi;
1072 
1073     if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1074       return true;
1075 
1076     if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1077       return true;
1078 
1079     Known.Zero = KnownLo.Zero.zext(BitWidth) |
1080                 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1081 
1082     Known.One = KnownLo.One.zext(BitWidth) |
1083                KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1084     break;
1085   }
1086   case ISD::ZERO_EXTEND: {
1087     SDValue Src = Op.getOperand(0);
1088     unsigned InBits = Src.getScalarValueSizeInBits();
1089 
1090     // If none of the top bits are demanded, convert this into an any_extend.
1091     if (DemandedBits.getActiveBits() <= InBits)
1092       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1093 
1094     APInt InDemandedBits = DemandedBits.trunc(InBits);
1095     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1096       return true;
1097     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1098     Known = Known.zext(BitWidth);
1099     Known.Zero.setBitsFrom(InBits);
1100     break;
1101   }
1102   case ISD::SIGN_EXTEND: {
1103     SDValue Src = Op.getOperand(0);
1104     unsigned InBits = Src.getScalarValueSizeInBits();
1105 
1106     // If none of the top bits are demanded, convert this into an any_extend.
1107     if (DemandedBits.getActiveBits() <= InBits)
1108       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, Src));
1109 
1110     // Since some of the sign extended bits are demanded, we know that the sign
1111     // bit is demanded.
1112     APInt InDemandedBits = DemandedBits.trunc(InBits);
1113     InDemandedBits.setBit(InBits - 1);
1114 
1115     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1116       return true;
1117     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1118     // If the sign bit is known one, the top bits match.
1119     Known = Known.sext(BitWidth);
1120 
1121     // If the sign bit is known zero, convert this to a zero extend.
1122     if (Known.isNonNegative())
1123       return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Src));
1124     break;
1125   }
1126   case ISD::SIGN_EXTEND_VECTOR_INREG: {
1127     // TODO - merge this with SIGN_EXTEND above?
1128     SDValue Src = Op.getOperand(0);
1129     unsigned InBits = Src.getScalarValueSizeInBits();
1130 
1131     APInt InDemandedBits = DemandedBits.trunc(InBits);
1132 
1133     // If some of the sign extended bits are demanded, we know that the sign
1134     // bit is demanded.
1135     if (InBits < DemandedBits.getActiveBits())
1136       InDemandedBits.setBit(InBits - 1);
1137 
1138     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth + 1))
1139       return true;
1140     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1141     // If the sign bit is known one, the top bits match.
1142     Known = Known.sext(BitWidth);
1143     break;
1144   }
1145   case ISD::ANY_EXTEND: {
1146     SDValue Src = Op.getOperand(0);
1147     unsigned InBits = Src.getScalarValueSizeInBits();
1148     APInt InDemandedBits = DemandedBits.trunc(InBits);
1149     if (SimplifyDemandedBits(Src, InDemandedBits, Known, TLO, Depth+1))
1150       return true;
1151     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1152     Known = Known.zext(BitWidth);
1153     break;
1154   }
1155   case ISD::TRUNCATE: {
1156     SDValue Src = Op.getOperand(0);
1157 
1158     // Simplify the input, using demanded bit information, and compute the known
1159     // zero/one bits live out.
1160     unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1161     APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1162     if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1163       return true;
1164     Known = Known.trunc(BitWidth);
1165 
1166     // If the input is only used by this truncate, see if we can shrink it based
1167     // on the known demanded bits.
1168     if (Src.getNode()->hasOneUse()) {
1169       switch (Src.getOpcode()) {
1170       default:
1171         break;
1172       case ISD::SRL:
1173         // Shrink SRL by a constant if none of the high bits shifted in are
1174         // demanded.
1175         if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1176           // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1177           // undesirable.
1178           break;
1179         ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1180         if (!ShAmt)
1181           break;
1182         SDValue Shift = Src.getOperand(1);
1183         if (TLO.LegalTypes()) {
1184           uint64_t ShVal = ShAmt->getZExtValue();
1185           Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1186         }
1187 
1188         if (ShAmt->getZExtValue() < BitWidth) {
1189           APInt HighBits = APInt::getHighBitsSet(OperandBitWidth,
1190                                                  OperandBitWidth - BitWidth);
1191           HighBits.lshrInPlace(ShAmt->getZExtValue());
1192           HighBits = HighBits.trunc(BitWidth);
1193 
1194           if (!(HighBits & DemandedBits)) {
1195             // None of the shifted in bits are needed.  Add a truncate of the
1196             // shift input, then shift it.
1197             SDValue NewTrunc =
1198                 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1199             return TLO.CombineTo(
1200                 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1201           }
1202         }
1203         break;
1204       }
1205     }
1206 
1207     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1208     break;
1209   }
1210   case ISD::AssertZext: {
1211     // AssertZext demands all of the high bits, plus any of the low bits
1212     // demanded by its users.
1213     EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1214     APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1215     if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits,
1216                              Known, TLO, Depth+1))
1217       return true;
1218     assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1219 
1220     Known.Zero |= ~InMask;
1221     break;
1222   }
1223   case ISD::BITCAST: {
1224     SDValue Src = Op.getOperand(0);
1225     EVT SrcVT = Src.getValueType();
1226     unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1227 
1228     // If this is an FP->Int bitcast and if the sign bit is the only
1229     // thing demanded, turn this into a FGETSIGN.
1230     if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1231         DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1232         SrcVT.isFloatingPoint()) {
1233       bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1234       bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1235       if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1236           SrcVT != MVT::f128) {
1237         // Cannot eliminate/lower SHL for f128 yet.
1238         EVT Ty = OpVTLegal ? VT : MVT::i32;
1239         // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1240         // place.  We expect the SHL to be eliminated by other optimizations.
1241         SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1242         unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1243         if (!OpVTLegal && OpVTSizeInBits > 32)
1244           Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1245         unsigned ShVal = Op.getValueSizeInBits() - 1;
1246         SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1247         return TLO.CombineTo(Op,
1248                              TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1249       }
1250     }
1251     // If bitcast from a vector and the mask covers entire elements, see if we
1252     // can use SimplifyDemandedVectorElts.
1253     // TODO - bigendian once we have test coverage.
1254     // TODO - bool vectors once SimplifyDemandedVectorElts has SETCC support.
1255     if (SrcVT.isVector() && NumSrcEltBits > 1 &&
1256         (BitWidth % NumSrcEltBits) == 0 &&
1257         TLO.DAG.getDataLayout().isLittleEndian()) {
1258       unsigned Scale = BitWidth / NumSrcEltBits;
1259       auto GetDemandedSubMask = [&](APInt &DemandedSubElts) -> bool {
1260         DemandedSubElts = APInt::getNullValue(Scale);
1261         for (unsigned i = 0; i != Scale; ++i) {
1262           unsigned Offset = i * NumSrcEltBits;
1263           APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1264           if (Sub.isAllOnesValue())
1265             DemandedSubElts.setBit(i);
1266           else if (!Sub.isNullValue())
1267             return false;
1268         }
1269         return true;
1270       };
1271 
1272       APInt DemandedSubElts;
1273       if (GetDemandedSubMask(DemandedSubElts)) {
1274         unsigned NumSrcElts = SrcVT.getVectorNumElements();
1275         APInt DemandedElts = APInt::getSplat(NumSrcElts, DemandedSubElts);
1276 
1277         APInt KnownUndef, KnownZero;
1278         if (SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef, KnownZero,
1279                                        TLO, Depth + 1))
1280           return true;
1281       }
1282     }
1283     // If this is a bitcast, let computeKnownBits handle it.  Only do this on a
1284     // recursive call where Known may be useful to the caller.
1285     if (Depth > 0) {
1286       TLO.DAG.computeKnownBits(Op, Known, Depth);
1287       return false;
1288     }
1289     break;
1290   }
1291   case ISD::ADD:
1292   case ISD::MUL:
1293   case ISD::SUB: {
1294     // Add, Sub, and Mul don't demand any bits in positions beyond that
1295     // of the highest bit demanded of them.
1296     SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1297     unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1298     APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1299     if (SimplifyDemandedBits(Op0, LoMask, Known2, TLO, Depth + 1) ||
1300         SimplifyDemandedBits(Op1, LoMask, Known2, TLO, Depth + 1) ||
1301         // See if the operation should be performed at a smaller bit width.
1302         ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1303       SDNodeFlags Flags = Op.getNode()->getFlags();
1304       if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1305         // Disable the nsw and nuw flags. We can no longer guarantee that we
1306         // won't wrap after simplification.
1307         Flags.setNoSignedWrap(false);
1308         Flags.setNoUnsignedWrap(false);
1309         SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1,
1310                                         Flags);
1311         return TLO.CombineTo(Op, NewOp);
1312       }
1313       return true;
1314     }
1315 
1316     // If we have a constant operand, we may be able to turn it into -1 if we
1317     // do not demand the high bits. This can make the constant smaller to
1318     // encode, allow more general folding, or match specialized instruction
1319     // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1320     // is probably not useful (and could be detrimental).
1321     ConstantSDNode *C = isConstOrConstSplat(Op1);
1322     APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1323     if (C && !C->isAllOnesValue() && !C->isOne() &&
1324         (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1325       SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1326       // We can't guarantee that the new math op doesn't wrap, so explicitly
1327       // clear those flags to prevent folding with a potential existing node
1328       // that has those flags set.
1329       SDNodeFlags Flags;
1330       Flags.setNoSignedWrap(false);
1331       Flags.setNoUnsignedWrap(false);
1332       SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1333       return TLO.CombineTo(Op, NewOp);
1334     }
1335 
1336     LLVM_FALLTHROUGH;
1337   }
1338   default:
1339     if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1340       if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, Known, TLO,
1341                                             Depth))
1342         return true;
1343       break;
1344     }
1345 
1346     // Just use computeKnownBits to compute output bits.
1347     TLO.DAG.computeKnownBits(Op, Known, Depth);
1348     break;
1349   }
1350 
1351   // If we know the value of all of the demanded bits, return this as a
1352   // constant.
1353   if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1354     // Avoid folding to a constant if any OpaqueConstant is involved.
1355     const SDNode *N = Op.getNode();
1356     for (SDNodeIterator I = SDNodeIterator::begin(N),
1357                         E = SDNodeIterator::end(N);
1358          I != E; ++I) {
1359       SDNode *Op = *I;
1360       if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1361         if (C->isOpaque())
1362           return false;
1363     }
1364     return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1365   }
1366 
1367   return false;
1368 }
1369 
1370 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1371                                                 const APInt &DemandedElts,
1372                                                 APInt &KnownUndef,
1373                                                 APInt &KnownZero,
1374                                                 DAGCombinerInfo &DCI) const {
1375   SelectionDAG &DAG = DCI.DAG;
1376   TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
1377                         !DCI.isBeforeLegalizeOps());
1378 
1379   bool Simplified =
1380       SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
1381   if (Simplified) {
1382     DCI.AddToWorklist(Op.getNode());
1383     DCI.CommitTargetLoweringOpt(TLO);
1384   }
1385   return Simplified;
1386 }
1387 
1388 bool TargetLowering::SimplifyDemandedVectorElts(
1389     SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef,
1390     APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
1391     bool AssumeSingleUse) const {
1392   EVT VT = Op.getValueType();
1393   APInt DemandedElts = DemandedEltMask;
1394   unsigned NumElts = DemandedElts.getBitWidth();
1395   assert(VT.isVector() && "Expected vector op");
1396   assert(VT.getVectorNumElements() == NumElts &&
1397          "Mask size mismatches value type element count!");
1398 
1399   KnownUndef = KnownZero = APInt::getNullValue(NumElts);
1400 
1401   // Undef operand.
1402   if (Op.isUndef()) {
1403     KnownUndef.setAllBits();
1404     return false;
1405   }
1406 
1407   // If Op has other users, assume that all elements are needed.
1408   if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
1409     DemandedElts.setAllBits();
1410 
1411   // Not demanding any elements from Op.
1412   if (DemandedElts == 0) {
1413     KnownUndef.setAllBits();
1414     return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1415   }
1416 
1417   // Limit search depth.
1418   if (Depth >= 6)
1419     return false;
1420 
1421   SDLoc DL(Op);
1422   unsigned EltSizeInBits = VT.getScalarSizeInBits();
1423 
1424   switch (Op.getOpcode()) {
1425   case ISD::SCALAR_TO_VECTOR: {
1426     if (!DemandedElts[0]) {
1427       KnownUndef.setAllBits();
1428       return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
1429     }
1430     KnownUndef.setHighBits(NumElts - 1);
1431     break;
1432   }
1433   case ISD::BITCAST: {
1434     SDValue Src = Op.getOperand(0);
1435     EVT SrcVT = Src.getValueType();
1436 
1437     // We only handle vectors here.
1438     // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
1439     if (!SrcVT.isVector())
1440       break;
1441 
1442     // Fast handling of 'identity' bitcasts.
1443     unsigned NumSrcElts = SrcVT.getVectorNumElements();
1444     if (NumSrcElts == NumElts)
1445       return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
1446                                         KnownZero, TLO, Depth + 1);
1447 
1448     APInt SrcZero, SrcUndef;
1449     APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
1450 
1451     // Bitcast from 'large element' src vector to 'small element' vector, we
1452     // must demand a source element if any DemandedElt maps to it.
1453     if ((NumElts % NumSrcElts) == 0) {
1454       unsigned Scale = NumElts / NumSrcElts;
1455       for (unsigned i = 0; i != NumElts; ++i)
1456         if (DemandedElts[i])
1457           SrcDemandedElts.setBit(i / Scale);
1458 
1459       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1460                                      TLO, Depth + 1))
1461         return true;
1462 
1463       // Try calling SimplifyDemandedBits, converting demanded elts to the bits
1464       // of the large element.
1465       // TODO - bigendian once we have test coverage.
1466       if (TLO.DAG.getDataLayout().isLittleEndian()) {
1467         unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
1468         APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
1469         for (unsigned i = 0; i != NumElts; ++i)
1470           if (DemandedElts[i]) {
1471             unsigned Ofs = (i % Scale) * EltSizeInBits;
1472             SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
1473           }
1474 
1475         KnownBits Known;
1476         if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
1477           return true;
1478       }
1479 
1480       // If the src element is zero/undef then all the output elements will be -
1481       // only demanded elements are guaranteed to be correct.
1482       for (unsigned i = 0; i != NumSrcElts; ++i) {
1483         if (SrcDemandedElts[i]) {
1484           if (SrcZero[i])
1485             KnownZero.setBits(i * Scale, (i + 1) * Scale);
1486           if (SrcUndef[i])
1487             KnownUndef.setBits(i * Scale, (i + 1) * Scale);
1488         }
1489       }
1490     }
1491 
1492     // Bitcast from 'small element' src vector to 'large element' vector, we
1493     // demand all smaller source elements covered by the larger demanded element
1494     // of this vector.
1495     if ((NumSrcElts % NumElts) == 0) {
1496       unsigned Scale = NumSrcElts / NumElts;
1497       for (unsigned i = 0; i != NumElts; ++i)
1498         if (DemandedElts[i])
1499           SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
1500 
1501       if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
1502                                      TLO, Depth + 1))
1503         return true;
1504 
1505       // If all the src elements covering an output element are zero/undef, then
1506       // the output element will be as well, assuming it was demanded.
1507       for (unsigned i = 0; i != NumElts; ++i) {
1508         if (DemandedElts[i]) {
1509           if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
1510             KnownZero.setBit(i);
1511           if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
1512             KnownUndef.setBit(i);
1513         }
1514       }
1515     }
1516     break;
1517   }
1518   case ISD::BUILD_VECTOR: {
1519     // Check all elements and simplify any unused elements with UNDEF.
1520     if (!DemandedElts.isAllOnesValue()) {
1521       // Don't simplify BROADCASTS.
1522       if (llvm::any_of(Op->op_values(),
1523                        [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
1524         SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
1525         bool Updated = false;
1526         for (unsigned i = 0; i != NumElts; ++i) {
1527           if (!DemandedElts[i] && !Ops[i].isUndef()) {
1528             Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
1529             KnownUndef.setBit(i);
1530             Updated = true;
1531           }
1532         }
1533         if (Updated)
1534           return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
1535       }
1536     }
1537     for (unsigned i = 0; i != NumElts; ++i) {
1538       SDValue SrcOp = Op.getOperand(i);
1539       if (SrcOp.isUndef()) {
1540         KnownUndef.setBit(i);
1541       } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
1542                  (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
1543         KnownZero.setBit(i);
1544       }
1545     }
1546     break;
1547   }
1548   case ISD::CONCAT_VECTORS: {
1549     EVT SubVT = Op.getOperand(0).getValueType();
1550     unsigned NumSubVecs = Op.getNumOperands();
1551     unsigned NumSubElts = SubVT.getVectorNumElements();
1552     for (unsigned i = 0; i != NumSubVecs; ++i) {
1553       SDValue SubOp = Op.getOperand(i);
1554       APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
1555       APInt SubUndef, SubZero;
1556       if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
1557                                      Depth + 1))
1558         return true;
1559       KnownUndef.insertBits(SubUndef, i * NumSubElts);
1560       KnownZero.insertBits(SubZero, i * NumSubElts);
1561     }
1562     break;
1563   }
1564   case ISD::INSERT_SUBVECTOR: {
1565     if (!isa<ConstantSDNode>(Op.getOperand(2)))
1566       break;
1567     SDValue Base = Op.getOperand(0);
1568     SDValue Sub = Op.getOperand(1);
1569     EVT SubVT = Sub.getValueType();
1570     unsigned NumSubElts = SubVT.getVectorNumElements();
1571     const APInt& Idx = cast<ConstantSDNode>(Op.getOperand(2))->getAPIntValue();
1572     if (Idx.ugt(NumElts - NumSubElts))
1573       break;
1574     unsigned SubIdx = Idx.getZExtValue();
1575     APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
1576     APInt SubUndef, SubZero;
1577     if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
1578                                    Depth + 1))
1579       return true;
1580     APInt BaseElts = DemandedElts;
1581     BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
1582     if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
1583                                    Depth + 1))
1584       return true;
1585     KnownUndef.insertBits(SubUndef, SubIdx);
1586     KnownZero.insertBits(SubZero, SubIdx);
1587     break;
1588   }
1589   case ISD::EXTRACT_SUBVECTOR: {
1590     SDValue Src = Op.getOperand(0);
1591     ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1592     unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1593     if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
1594       // Offset the demanded elts by the subvector index.
1595       uint64_t Idx = SubIdx->getZExtValue();
1596       APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
1597       APInt SrcUndef, SrcZero;
1598       if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
1599                                      Depth + 1))
1600         return true;
1601       KnownUndef = SrcUndef.extractBits(NumElts, Idx);
1602       KnownZero = SrcZero.extractBits(NumElts, Idx);
1603     }
1604     break;
1605   }
1606   case ISD::INSERT_VECTOR_ELT: {
1607     SDValue Vec = Op.getOperand(0);
1608     SDValue Scl = Op.getOperand(1);
1609     auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
1610 
1611     // For a legal, constant insertion index, if we don't need this insertion
1612     // then strip it, else remove it from the demanded elts.
1613     if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
1614       unsigned Idx = CIdx->getZExtValue();
1615       if (!DemandedElts[Idx])
1616         return TLO.CombineTo(Op, Vec);
1617       DemandedElts.clearBit(Idx);
1618 
1619       if (SimplifyDemandedVectorElts(Vec, DemandedElts, KnownUndef,
1620                                      KnownZero, TLO, Depth + 1))
1621         return true;
1622 
1623       KnownUndef.clearBit(Idx);
1624       if (Scl.isUndef())
1625         KnownUndef.setBit(Idx);
1626 
1627       KnownZero.clearBit(Idx);
1628       if (isNullConstant(Scl) || isNullFPConstant(Scl))
1629         KnownZero.setBit(Idx);
1630       break;
1631     }
1632 
1633     APInt VecUndef, VecZero;
1634     if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
1635                                    Depth + 1))
1636       return true;
1637     // Without knowing the insertion index we can't set KnownUndef/KnownZero.
1638     break;
1639   }
1640   case ISD::VSELECT: {
1641     // Try to transform the select condition based on the current demanded
1642     // elements.
1643     // TODO: If a condition element is undef, we can choose from one arm of the
1644     //       select (and if one arm is undef, then we can propagate that to the
1645     //       result).
1646     // TODO - add support for constant vselect masks (see IR version of this).
1647     APInt UnusedUndef, UnusedZero;
1648     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
1649                                    UnusedZero, TLO, Depth + 1))
1650       return true;
1651 
1652     // See if we can simplify either vselect operand.
1653     APInt DemandedLHS(DemandedElts);
1654     APInt DemandedRHS(DemandedElts);
1655     APInt UndefLHS, ZeroLHS;
1656     APInt UndefRHS, ZeroRHS;
1657     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
1658                                    ZeroLHS, TLO, Depth + 1))
1659       return true;
1660     if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
1661                                    ZeroRHS, TLO, Depth + 1))
1662       return true;
1663 
1664     KnownUndef = UndefLHS & UndefRHS;
1665     KnownZero = ZeroLHS & ZeroRHS;
1666     break;
1667   }
1668   case ISD::VECTOR_SHUFFLE: {
1669     ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
1670 
1671     // Collect demanded elements from shuffle operands..
1672     APInt DemandedLHS(NumElts, 0);
1673     APInt DemandedRHS(NumElts, 0);
1674     for (unsigned i = 0; i != NumElts; ++i) {
1675       int M = ShuffleMask[i];
1676       if (M < 0 || !DemandedElts[i])
1677         continue;
1678       assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
1679       if (M < (int)NumElts)
1680         DemandedLHS.setBit(M);
1681       else
1682         DemandedRHS.setBit(M - NumElts);
1683     }
1684 
1685     // See if we can simplify either shuffle operand.
1686     APInt UndefLHS, ZeroLHS;
1687     APInt UndefRHS, ZeroRHS;
1688     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
1689                                    ZeroLHS, TLO, Depth + 1))
1690       return true;
1691     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
1692                                    ZeroRHS, TLO, Depth + 1))
1693       return true;
1694 
1695     // Simplify mask using undef elements from LHS/RHS.
1696     bool Updated = false;
1697     bool IdentityLHS = true, IdentityRHS = true;
1698     SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
1699     for (unsigned i = 0; i != NumElts; ++i) {
1700       int &M = NewMask[i];
1701       if (M < 0)
1702         continue;
1703       if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
1704           (M >= (int)NumElts && UndefRHS[M - NumElts])) {
1705         Updated = true;
1706         M = -1;
1707       }
1708       IdentityLHS &= (M < 0) || (M == (int)i);
1709       IdentityRHS &= (M < 0) || ((M - NumElts) == i);
1710     }
1711 
1712     // Update legal shuffle masks based on demanded elements if it won't reduce
1713     // to Identity which can cause premature removal of the shuffle mask.
1714     if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps &&
1715         isShuffleMaskLegal(NewMask, VT))
1716       return TLO.CombineTo(Op,
1717                            TLO.DAG.getVectorShuffle(VT, DL, Op.getOperand(0),
1718                                                     Op.getOperand(1), NewMask));
1719 
1720     // Propagate undef/zero elements from LHS/RHS.
1721     for (unsigned i = 0; i != NumElts; ++i) {
1722       int M = ShuffleMask[i];
1723       if (M < 0) {
1724         KnownUndef.setBit(i);
1725       } else if (M < (int)NumElts) {
1726         if (UndefLHS[M])
1727           KnownUndef.setBit(i);
1728         if (ZeroLHS[M])
1729           KnownZero.setBit(i);
1730       } else {
1731         if (UndefRHS[M - NumElts])
1732           KnownUndef.setBit(i);
1733         if (ZeroRHS[M - NumElts])
1734           KnownZero.setBit(i);
1735       }
1736     }
1737     break;
1738   }
1739   case ISD::ADD:
1740   case ISD::SUB:
1741   case ISD::FADD:
1742   case ISD::FSUB:
1743   case ISD::FMUL:
1744   case ISD::FDIV:
1745   case ISD::FREM: {
1746     APInt SrcUndef, SrcZero;
1747     if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
1748                                    SrcZero, TLO, Depth + 1))
1749       return true;
1750     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1751                                    KnownZero, TLO, Depth + 1))
1752       return true;
1753     KnownZero &= SrcZero;
1754     KnownUndef &= SrcUndef;
1755     break;
1756   }
1757   case ISD::TRUNCATE:
1758     if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
1759                                    KnownZero, TLO, Depth + 1))
1760       return true;
1761     break;
1762   default: {
1763     if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
1764       if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
1765                                                   KnownZero, TLO, Depth))
1766         return true;
1767     break;
1768   }
1769   }
1770 
1771   assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
1772   return false;
1773 }
1774 
1775 /// Determine which of the bits specified in Mask are known to be either zero or
1776 /// one and return them in the Known.
1777 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
1778                                                    KnownBits &Known,
1779                                                    const APInt &DemandedElts,
1780                                                    const SelectionDAG &DAG,
1781                                                    unsigned Depth) const {
1782   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1783           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1784           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1785           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1786          "Should use MaskedValueIsZero if you don't know whether Op"
1787          " is a target node!");
1788   Known.resetAll();
1789 }
1790 
1791 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
1792                                                    KnownBits &Known,
1793                                                    const APInt &DemandedElts,
1794                                                    const SelectionDAG &DAG,
1795                                                    unsigned Depth) const {
1796   assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
1797 
1798   if (unsigned Align = DAG.InferPtrAlignment(Op)) {
1799     // The low bits are known zero if the pointer is aligned.
1800     Known.Zero.setLowBits(Log2_32(Align));
1801   }
1802 }
1803 
1804 /// This method can be implemented by targets that want to expose additional
1805 /// information about sign bits to the DAG Combiner.
1806 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1807                                                          const APInt &,
1808                                                          const SelectionDAG &,
1809                                                          unsigned Depth) const {
1810   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1811           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1812           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1813           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1814          "Should use ComputeNumSignBits if you don't know whether Op"
1815          " is a target node!");
1816   return 1;
1817 }
1818 
1819 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
1820     SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
1821     TargetLoweringOpt &TLO, unsigned Depth) const {
1822   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1823           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1824           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1825           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1826          "Should use SimplifyDemandedVectorElts if you don't know whether Op"
1827          " is a target node!");
1828   return false;
1829 }
1830 
1831 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
1832     SDValue Op, const APInt &DemandedBits, KnownBits &Known,
1833     TargetLoweringOpt &TLO, unsigned Depth) const {
1834   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1835           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1836           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1837           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1838          "Should use SimplifyDemandedBits if you don't know whether Op"
1839          " is a target node!");
1840   EVT VT = Op.getValueType();
1841   APInt DemandedElts = VT.isVector()
1842                            ? APInt::getAllOnesValue(VT.getVectorNumElements())
1843                            : APInt(1, 1);
1844   computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
1845   return false;
1846 }
1847 
1848 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
1849                                                   const SelectionDAG &DAG,
1850                                                   bool SNaN,
1851                                                   unsigned Depth) const {
1852   assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1853           Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1854           Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1855           Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1856          "Should use isKnownNeverNaN if you don't know whether Op"
1857          " is a target node!");
1858   return false;
1859 }
1860 
1861 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
1862 // work with truncating build vectors and vectors with elements of less than
1863 // 8 bits.
1864 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
1865   if (!N)
1866     return false;
1867 
1868   APInt CVal;
1869   if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
1870     CVal = CN->getAPIntValue();
1871   } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
1872     auto *CN = BV->getConstantSplatNode();
1873     if (!CN)
1874       return false;
1875 
1876     // If this is a truncating build vector, truncate the splat value.
1877     // Otherwise, we may fail to match the expected values below.
1878     unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
1879     CVal = CN->getAPIntValue();
1880     if (BVEltWidth < CVal.getBitWidth())
1881       CVal = CVal.trunc(BVEltWidth);
1882   } else {
1883     return false;
1884   }
1885 
1886   switch (getBooleanContents(N->getValueType(0))) {
1887   case UndefinedBooleanContent:
1888     return CVal[0];
1889   case ZeroOrOneBooleanContent:
1890     return CVal.isOneValue();
1891   case ZeroOrNegativeOneBooleanContent:
1892     return CVal.isAllOnesValue();
1893   }
1894 
1895   llvm_unreachable("Invalid boolean contents");
1896 }
1897 
1898 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
1899   if (!N)
1900     return false;
1901 
1902   const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1903   if (!CN) {
1904     const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
1905     if (!BV)
1906       return false;
1907 
1908     // Only interested in constant splats, we don't care about undef
1909     // elements in identifying boolean constants and getConstantSplatNode
1910     // returns NULL if all ops are undef;
1911     CN = BV->getConstantSplatNode();
1912     if (!CN)
1913       return false;
1914   }
1915 
1916   if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
1917     return !CN->getAPIntValue()[0];
1918 
1919   return CN->isNullValue();
1920 }
1921 
1922 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
1923                                        bool SExt) const {
1924   if (VT == MVT::i1)
1925     return N->isOne();
1926 
1927   TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
1928   switch (Cnt) {
1929   case TargetLowering::ZeroOrOneBooleanContent:
1930     // An extended value of 1 is always true, unless its original type is i1,
1931     // in which case it will be sign extended to -1.
1932     return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
1933   case TargetLowering::UndefinedBooleanContent:
1934   case TargetLowering::ZeroOrNegativeOneBooleanContent:
1935     return N->isAllOnesValue() && SExt;
1936   }
1937   llvm_unreachable("Unexpected enumeration.");
1938 }
1939 
1940 /// This helper function of SimplifySetCC tries to optimize the comparison when
1941 /// either operand of the SetCC node is a bitwise-and instruction.
1942 SDValue TargetLowering::simplifySetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
1943                                              ISD::CondCode Cond,
1944                                              DAGCombinerInfo &DCI,
1945                                              const SDLoc &DL) const {
1946   // Match these patterns in any of their permutations:
1947   // (X & Y) == Y
1948   // (X & Y) != Y
1949   if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
1950     std::swap(N0, N1);
1951 
1952   EVT OpVT = N0.getValueType();
1953   if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
1954       (Cond != ISD::SETEQ && Cond != ISD::SETNE))
1955     return SDValue();
1956 
1957   SDValue X, Y;
1958   if (N0.getOperand(0) == N1) {
1959     X = N0.getOperand(1);
1960     Y = N0.getOperand(0);
1961   } else if (N0.getOperand(1) == N1) {
1962     X = N0.getOperand(0);
1963     Y = N0.getOperand(1);
1964   } else {
1965     return SDValue();
1966   }
1967 
1968   SelectionDAG &DAG = DCI.DAG;
1969   SDValue Zero = DAG.getConstant(0, DL, OpVT);
1970   if (DAG.isKnownToBeAPowerOfTwo(Y)) {
1971     // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
1972     // Note that where Y is variable and is known to have at most one bit set
1973     // (for example, if it is Z & 1) we cannot do this; the expressions are not
1974     // equivalent when Y == 0.
1975     Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1976     if (DCI.isBeforeLegalizeOps() ||
1977         isCondCodeLegal(Cond, N0.getSimpleValueType()))
1978       return DAG.getSetCC(DL, VT, N0, Zero, Cond);
1979   } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
1980     // If the target supports an 'and-not' or 'and-complement' logic operation,
1981     // try to use that to make a comparison operation more efficient.
1982     // But don't do this transform if the mask is a single bit because there are
1983     // more efficient ways to deal with that case (for example, 'bt' on x86 or
1984     // 'rlwinm' on PPC).
1985 
1986     // Bail out if the compare operand that we want to turn into a zero is
1987     // already a zero (otherwise, infinite loop).
1988     auto *YConst = dyn_cast<ConstantSDNode>(Y);
1989     if (YConst && YConst->isNullValue())
1990       return SDValue();
1991 
1992     // Transform this into: ~X & Y == 0.
1993     SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
1994     SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
1995     return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
1996   }
1997 
1998   return SDValue();
1999 }
2000 
2001 /// There are multiple IR patterns that could be checking whether certain
2002 /// truncation of a signed number would be lossy or not. The pattern which is
2003 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2004 /// We are looking for the following pattern: (KeptBits is a constant)
2005 ///   (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2006 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2007 /// KeptBits also can't be 1, that would have been folded to  %x dstcond 0
2008 /// We will unfold it into the natural trunc+sext pattern:
2009 ///   ((%x << C) a>> C) dstcond %x
2010 /// Where  C = bitwidth(x) - KeptBits  and  C u< bitwidth(x)
2011 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2012     EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2013     const SDLoc &DL) const {
2014   // We must be comparing with a constant.
2015   ConstantSDNode *C1;
2016   if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2017     return SDValue();
2018 
2019   // N0 should be:  add %x, (1 << (KeptBits-1))
2020   if (N0->getOpcode() != ISD::ADD)
2021     return SDValue();
2022 
2023   // And we must be 'add'ing a constant.
2024   ConstantSDNode *C01;
2025   if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2026     return SDValue();
2027 
2028   SDValue X = N0->getOperand(0);
2029   EVT XVT = X.getValueType();
2030 
2031   // Validate constants ...
2032 
2033   APInt I1 = C1->getAPIntValue();
2034 
2035   ISD::CondCode NewCond;
2036   if (Cond == ISD::CondCode::SETULT) {
2037     NewCond = ISD::CondCode::SETEQ;
2038   } else if (Cond == ISD::CondCode::SETULE) {
2039     NewCond = ISD::CondCode::SETEQ;
2040     // But need to 'canonicalize' the constant.
2041     I1 += 1;
2042   } else if (Cond == ISD::CondCode::SETUGT) {
2043     NewCond = ISD::CondCode::SETNE;
2044     // But need to 'canonicalize' the constant.
2045     I1 += 1;
2046   } else if (Cond == ISD::CondCode::SETUGE) {
2047     NewCond = ISD::CondCode::SETNE;
2048   } else
2049     return SDValue();
2050 
2051   APInt I01 = C01->getAPIntValue();
2052 
2053   auto checkConstants = [&I1, &I01]() -> bool {
2054     // Both of them must be power-of-two, and the constant from setcc is bigger.
2055     return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2056   };
2057 
2058   if (checkConstants()) {
2059     // Great, e.g. got  icmp ult i16 (add i16 %x, 128), 256
2060   } else {
2061     // What if we invert constants? (and the target predicate)
2062     I1.negate();
2063     I01.negate();
2064     NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2065     if (!checkConstants())
2066       return SDValue();
2067     // Great, e.g. got  icmp uge i16 (add i16 %x, -128), -256
2068   }
2069 
2070   // They are power-of-two, so which bit is set?
2071   const unsigned KeptBits = I1.logBase2();
2072   const unsigned KeptBitsMinusOne = I01.logBase2();
2073 
2074   // Magic!
2075   if (KeptBits != (KeptBitsMinusOne + 1))
2076     return SDValue();
2077   assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2078 
2079   // We don't want to do this in every single case.
2080   SelectionDAG &DAG = DCI.DAG;
2081   if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2082           XVT, KeptBits))
2083     return SDValue();
2084 
2085   const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2086   assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2087 
2088   // Unfold into:  ((%x << C) a>> C) cond %x
2089   // Where 'cond' will be either 'eq' or 'ne'.
2090   SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2091   SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2092   SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2093   SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2094 
2095   return T2;
2096 }
2097 
2098 /// Try to simplify a setcc built with the specified operands and cc. If it is
2099 /// unable to simplify it, return a null SDValue.
2100 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
2101                                       ISD::CondCode Cond, bool foldBooleans,
2102                                       DAGCombinerInfo &DCI,
2103                                       const SDLoc &dl) const {
2104   SelectionDAG &DAG = DCI.DAG;
2105   EVT OpVT = N0.getValueType();
2106 
2107   // These setcc operations always fold.
2108   switch (Cond) {
2109   default: break;
2110   case ISD::SETFALSE:
2111   case ISD::SETFALSE2: return DAG.getBoolConstant(false, dl, VT, OpVT);
2112   case ISD::SETTRUE:
2113   case ISD::SETTRUE2:  return DAG.getBoolConstant(true, dl, VT, OpVT);
2114   }
2115 
2116   // Ensure that the constant occurs on the RHS and fold constant comparisons.
2117   // TODO: Handle non-splat vector constants. All undef causes trouble.
2118   ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
2119   if (isConstOrConstSplat(N0) &&
2120       (DCI.isBeforeLegalizeOps() ||
2121        isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
2122     return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
2123 
2124   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2125     const APInt &C1 = N1C->getAPIntValue();
2126 
2127     // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
2128     // equality comparison, then we're just comparing whether X itself is
2129     // zero.
2130     if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
2131         N0.getOperand(0).getOpcode() == ISD::CTLZ &&
2132         N0.getOperand(1).getOpcode() == ISD::Constant) {
2133       const APInt &ShAmt
2134         = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2135       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2136           ShAmt == Log2_32(N0.getValueSizeInBits())) {
2137         if ((C1 == 0) == (Cond == ISD::SETEQ)) {
2138           // (srl (ctlz x), 5) == 0  -> X != 0
2139           // (srl (ctlz x), 5) != 1  -> X != 0
2140           Cond = ISD::SETNE;
2141         } else {
2142           // (srl (ctlz x), 5) != 0  -> X == 0
2143           // (srl (ctlz x), 5) == 1  -> X == 0
2144           Cond = ISD::SETEQ;
2145         }
2146         SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
2147         return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
2148                             Zero, Cond);
2149       }
2150     }
2151 
2152     SDValue CTPOP = N0;
2153     // Look through truncs that don't change the value of a ctpop.
2154     if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
2155       CTPOP = N0.getOperand(0);
2156 
2157     if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
2158         (N0 == CTPOP ||
2159          N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
2160       EVT CTVT = CTPOP.getValueType();
2161       SDValue CTOp = CTPOP.getOperand(0);
2162 
2163       // (ctpop x) u< 2 -> (x & x-1) == 0
2164       // (ctpop x) u> 1 -> (x & x-1) != 0
2165       if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
2166         SDValue Sub = DAG.getNode(ISD::SUB, dl, CTVT, CTOp,
2167                                   DAG.getConstant(1, dl, CTVT));
2168         SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Sub);
2169         ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
2170         return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
2171       }
2172 
2173       // TODO: (ctpop x) == 1 -> x && (x & x-1) == 0 iff ctpop is illegal.
2174     }
2175 
2176     // (zext x) == C --> x == (trunc C)
2177     // (sext x) == C --> x == (trunc C)
2178     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2179         DCI.isBeforeLegalize() && N0->hasOneUse()) {
2180       unsigned MinBits = N0.getValueSizeInBits();
2181       SDValue PreExt;
2182       bool Signed = false;
2183       if (N0->getOpcode() == ISD::ZERO_EXTEND) {
2184         // ZExt
2185         MinBits = N0->getOperand(0).getValueSizeInBits();
2186         PreExt = N0->getOperand(0);
2187       } else if (N0->getOpcode() == ISD::AND) {
2188         // DAGCombine turns costly ZExts into ANDs
2189         if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
2190           if ((C->getAPIntValue()+1).isPowerOf2()) {
2191             MinBits = C->getAPIntValue().countTrailingOnes();
2192             PreExt = N0->getOperand(0);
2193           }
2194       } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
2195         // SExt
2196         MinBits = N0->getOperand(0).getValueSizeInBits();
2197         PreExt = N0->getOperand(0);
2198         Signed = true;
2199       } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
2200         // ZEXTLOAD / SEXTLOAD
2201         if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
2202           MinBits = LN0->getMemoryVT().getSizeInBits();
2203           PreExt = N0;
2204         } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
2205           Signed = true;
2206           MinBits = LN0->getMemoryVT().getSizeInBits();
2207           PreExt = N0;
2208         }
2209       }
2210 
2211       // Figure out how many bits we need to preserve this constant.
2212       unsigned ReqdBits = Signed ?
2213         C1.getBitWidth() - C1.getNumSignBits() + 1 :
2214         C1.getActiveBits();
2215 
2216       // Make sure we're not losing bits from the constant.
2217       if (MinBits > 0 &&
2218           MinBits < C1.getBitWidth() &&
2219           MinBits >= ReqdBits) {
2220         EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
2221         if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
2222           // Will get folded away.
2223           SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
2224           if (MinBits == 1 && C1 == 1)
2225             // Invert the condition.
2226             return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
2227                                 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2228           SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
2229           return DAG.getSetCC(dl, VT, Trunc, C, Cond);
2230         }
2231 
2232         // If truncating the setcc operands is not desirable, we can still
2233         // simplify the expression in some cases:
2234         // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
2235         // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
2236         // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
2237         // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
2238         // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
2239         // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
2240         SDValue TopSetCC = N0->getOperand(0);
2241         unsigned N0Opc = N0->getOpcode();
2242         bool SExt = (N0Opc == ISD::SIGN_EXTEND);
2243         if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
2244             TopSetCC.getOpcode() == ISD::SETCC &&
2245             (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
2246             (isConstFalseVal(N1C) ||
2247              isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
2248 
2249           bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
2250                          (!N1C->isNullValue() && Cond == ISD::SETNE);
2251 
2252           if (!Inverse)
2253             return TopSetCC;
2254 
2255           ISD::CondCode InvCond = ISD::getSetCCInverse(
2256               cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
2257               TopSetCC.getOperand(0).getValueType().isInteger());
2258           return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
2259                                       TopSetCC.getOperand(1),
2260                                       InvCond);
2261         }
2262       }
2263     }
2264 
2265     // If the LHS is '(and load, const)', the RHS is 0, the test is for
2266     // equality or unsigned, and all 1 bits of the const are in the same
2267     // partial word, see if we can shorten the load.
2268     if (DCI.isBeforeLegalize() &&
2269         !ISD::isSignedIntSetCC(Cond) &&
2270         N0.getOpcode() == ISD::AND && C1 == 0 &&
2271         N0.getNode()->hasOneUse() &&
2272         isa<LoadSDNode>(N0.getOperand(0)) &&
2273         N0.getOperand(0).getNode()->hasOneUse() &&
2274         isa<ConstantSDNode>(N0.getOperand(1))) {
2275       LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
2276       APInt bestMask;
2277       unsigned bestWidth = 0, bestOffset = 0;
2278       if (!Lod->isVolatile() && Lod->isUnindexed()) {
2279         unsigned origWidth = N0.getValueSizeInBits();
2280         unsigned maskWidth = origWidth;
2281         // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
2282         // 8 bits, but have to be careful...
2283         if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
2284           origWidth = Lod->getMemoryVT().getSizeInBits();
2285         const APInt &Mask =
2286           cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
2287         for (unsigned width = origWidth / 2; width>=8; width /= 2) {
2288           APInt newMask = APInt::getLowBitsSet(maskWidth, width);
2289           for (unsigned offset=0; offset<origWidth/width; offset++) {
2290             if (Mask.isSubsetOf(newMask)) {
2291               if (DAG.getDataLayout().isLittleEndian())
2292                 bestOffset = (uint64_t)offset * (width/8);
2293               else
2294                 bestOffset = (origWidth/width - offset - 1) * (width/8);
2295               bestMask = Mask.lshr(offset * (width/8) * 8);
2296               bestWidth = width;
2297               break;
2298             }
2299             newMask <<= width;
2300           }
2301         }
2302       }
2303       if (bestWidth) {
2304         EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
2305         if (newVT.isRound() &&
2306             shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
2307           EVT PtrType = Lod->getOperand(1).getValueType();
2308           SDValue Ptr = Lod->getBasePtr();
2309           if (bestOffset != 0)
2310             Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
2311                               DAG.getConstant(bestOffset, dl, PtrType));
2312           unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
2313           SDValue NewLoad = DAG.getLoad(
2314               newVT, dl, Lod->getChain(), Ptr,
2315               Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
2316           return DAG.getSetCC(dl, VT,
2317                               DAG.getNode(ISD::AND, dl, newVT, NewLoad,
2318                                       DAG.getConstant(bestMask.trunc(bestWidth),
2319                                                       dl, newVT)),
2320                               DAG.getConstant(0LL, dl, newVT), Cond);
2321         }
2322       }
2323     }
2324 
2325     // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
2326     if (N0.getOpcode() == ISD::ZERO_EXTEND) {
2327       unsigned InSize = N0.getOperand(0).getValueSizeInBits();
2328 
2329       // If the comparison constant has bits in the upper part, the
2330       // zero-extended value could never match.
2331       if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
2332                                               C1.getBitWidth() - InSize))) {
2333         switch (Cond) {
2334         case ISD::SETUGT:
2335         case ISD::SETUGE:
2336         case ISD::SETEQ:
2337           return DAG.getConstant(0, dl, VT);
2338         case ISD::SETULT:
2339         case ISD::SETULE:
2340         case ISD::SETNE:
2341           return DAG.getConstant(1, dl, VT);
2342         case ISD::SETGT:
2343         case ISD::SETGE:
2344           // True if the sign bit of C1 is set.
2345           return DAG.getConstant(C1.isNegative(), dl, VT);
2346         case ISD::SETLT:
2347         case ISD::SETLE:
2348           // True if the sign bit of C1 isn't set.
2349           return DAG.getConstant(C1.isNonNegative(), dl, VT);
2350         default:
2351           break;
2352         }
2353       }
2354 
2355       // Otherwise, we can perform the comparison with the low bits.
2356       switch (Cond) {
2357       case ISD::SETEQ:
2358       case ISD::SETNE:
2359       case ISD::SETUGT:
2360       case ISD::SETUGE:
2361       case ISD::SETULT:
2362       case ISD::SETULE: {
2363         EVT newVT = N0.getOperand(0).getValueType();
2364         if (DCI.isBeforeLegalizeOps() ||
2365             (isOperationLegal(ISD::SETCC, newVT) &&
2366              isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
2367           EVT NewSetCCVT =
2368               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
2369           SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
2370 
2371           SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
2372                                           NewConst, Cond);
2373           return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
2374         }
2375         break;
2376       }
2377       default:
2378         break;   // todo, be more careful with signed comparisons
2379       }
2380     } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
2381                (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2382       EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
2383       unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
2384       EVT ExtDstTy = N0.getValueType();
2385       unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
2386 
2387       // If the constant doesn't fit into the number of bits for the source of
2388       // the sign extension, it is impossible for both sides to be equal.
2389       if (C1.getMinSignedBits() > ExtSrcTyBits)
2390         return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
2391 
2392       SDValue ZextOp;
2393       EVT Op0Ty = N0.getOperand(0).getValueType();
2394       if (Op0Ty == ExtSrcTy) {
2395         ZextOp = N0.getOperand(0);
2396       } else {
2397         APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
2398         ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
2399                               DAG.getConstant(Imm, dl, Op0Ty));
2400       }
2401       if (!DCI.isCalledByLegalizer())
2402         DCI.AddToWorklist(ZextOp.getNode());
2403       // Otherwise, make this a use of a zext.
2404       return DAG.getSetCC(dl, VT, ZextOp,
2405                           DAG.getConstant(C1 & APInt::getLowBitsSet(
2406                                                               ExtDstTyBits,
2407                                                               ExtSrcTyBits),
2408                                           dl, ExtDstTy),
2409                           Cond);
2410     } else if ((N1C->isNullValue() || N1C->isOne()) &&
2411                 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
2412       // SETCC (SETCC), [0|1], [EQ|NE]  -> SETCC
2413       if (N0.getOpcode() == ISD::SETCC &&
2414           isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
2415         bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
2416         if (TrueWhenTrue)
2417           return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
2418         // Invert the condition.
2419         ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
2420         CC = ISD::getSetCCInverse(CC,
2421                                   N0.getOperand(0).getValueType().isInteger());
2422         if (DCI.isBeforeLegalizeOps() ||
2423             isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
2424           return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
2425       }
2426 
2427       if ((N0.getOpcode() == ISD::XOR ||
2428            (N0.getOpcode() == ISD::AND &&
2429             N0.getOperand(0).getOpcode() == ISD::XOR &&
2430             N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
2431           isa<ConstantSDNode>(N0.getOperand(1)) &&
2432           cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
2433         // If this is (X^1) == 0/1, swap the RHS and eliminate the xor.  We
2434         // can only do this if the top bits are known zero.
2435         unsigned BitWidth = N0.getValueSizeInBits();
2436         if (DAG.MaskedValueIsZero(N0,
2437                                   APInt::getHighBitsSet(BitWidth,
2438                                                         BitWidth-1))) {
2439           // Okay, get the un-inverted input value.
2440           SDValue Val;
2441           if (N0.getOpcode() == ISD::XOR) {
2442             Val = N0.getOperand(0);
2443           } else {
2444             assert(N0.getOpcode() == ISD::AND &&
2445                     N0.getOperand(0).getOpcode() == ISD::XOR);
2446             // ((X^1)&1)^1 -> X & 1
2447             Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
2448                               N0.getOperand(0).getOperand(0),
2449                               N0.getOperand(1));
2450           }
2451 
2452           return DAG.getSetCC(dl, VT, Val, N1,
2453                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2454         }
2455       } else if (N1C->isOne() &&
2456                  (VT == MVT::i1 ||
2457                   getBooleanContents(N0->getValueType(0)) ==
2458                       ZeroOrOneBooleanContent)) {
2459         SDValue Op0 = N0;
2460         if (Op0.getOpcode() == ISD::TRUNCATE)
2461           Op0 = Op0.getOperand(0);
2462 
2463         if ((Op0.getOpcode() == ISD::XOR) &&
2464             Op0.getOperand(0).getOpcode() == ISD::SETCC &&
2465             Op0.getOperand(1).getOpcode() == ISD::SETCC) {
2466           // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
2467           Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
2468           return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
2469                               Cond);
2470         }
2471         if (Op0.getOpcode() == ISD::AND &&
2472             isa<ConstantSDNode>(Op0.getOperand(1)) &&
2473             cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
2474           // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
2475           if (Op0.getValueType().bitsGT(VT))
2476             Op0 = DAG.getNode(ISD::AND, dl, VT,
2477                           DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
2478                           DAG.getConstant(1, dl, VT));
2479           else if (Op0.getValueType().bitsLT(VT))
2480             Op0 = DAG.getNode(ISD::AND, dl, VT,
2481                         DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
2482                         DAG.getConstant(1, dl, VT));
2483 
2484           return DAG.getSetCC(dl, VT, Op0,
2485                               DAG.getConstant(0, dl, Op0.getValueType()),
2486                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2487         }
2488         if (Op0.getOpcode() == ISD::AssertZext &&
2489             cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
2490           return DAG.getSetCC(dl, VT, Op0,
2491                               DAG.getConstant(0, dl, Op0.getValueType()),
2492                               Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
2493       }
2494     }
2495 
2496     if (SDValue V =
2497             optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
2498       return V;
2499   }
2500 
2501   // These simplifications apply to splat vectors as well.
2502   // TODO: Handle more splat vector cases.
2503   if (auto *N1C = isConstOrConstSplat(N1)) {
2504     const APInt &C1 = N1C->getAPIntValue();
2505 
2506     APInt MinVal, MaxVal;
2507     unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
2508     if (ISD::isSignedIntSetCC(Cond)) {
2509       MinVal = APInt::getSignedMinValue(OperandBitSize);
2510       MaxVal = APInt::getSignedMaxValue(OperandBitSize);
2511     } else {
2512       MinVal = APInt::getMinValue(OperandBitSize);
2513       MaxVal = APInt::getMaxValue(OperandBitSize);
2514     }
2515 
2516     // Canonicalize GE/LE comparisons to use GT/LT comparisons.
2517     if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
2518       // X >= MIN --> true
2519       if (C1 == MinVal)
2520         return DAG.getBoolConstant(true, dl, VT, OpVT);
2521 
2522       if (!VT.isVector()) { // TODO: Support this for vectors.
2523         // X >= C0 --> X > (C0 - 1)
2524         APInt C = C1 - 1;
2525         ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
2526         if ((DCI.isBeforeLegalizeOps() ||
2527              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2528             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2529                                   isLegalICmpImmediate(C.getSExtValue())))) {
2530           return DAG.getSetCC(dl, VT, N0,
2531                               DAG.getConstant(C, dl, N1.getValueType()),
2532                               NewCC);
2533         }
2534       }
2535     }
2536 
2537     if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
2538       // X <= MAX --> true
2539       if (C1 == MaxVal)
2540         return DAG.getBoolConstant(true, dl, VT, OpVT);
2541 
2542       // X <= C0 --> X < (C0 + 1)
2543       if (!VT.isVector()) { // TODO: Support this for vectors.
2544         APInt C = C1 + 1;
2545         ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
2546         if ((DCI.isBeforeLegalizeOps() ||
2547              isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
2548             (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
2549                                   isLegalICmpImmediate(C.getSExtValue())))) {
2550           return DAG.getSetCC(dl, VT, N0,
2551                               DAG.getConstant(C, dl, N1.getValueType()),
2552                               NewCC);
2553         }
2554       }
2555     }
2556 
2557     if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
2558       if (C1 == MinVal)
2559         return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
2560 
2561       // TODO: Support this for vectors after legalize ops.
2562       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2563         // Canonicalize setlt X, Max --> setne X, Max
2564         if (C1 == MaxVal)
2565           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2566 
2567         // If we have setult X, 1, turn it into seteq X, 0
2568         if (C1 == MinVal+1)
2569           return DAG.getSetCC(dl, VT, N0,
2570                               DAG.getConstant(MinVal, dl, N0.getValueType()),
2571                               ISD::SETEQ);
2572       }
2573     }
2574 
2575     if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
2576       if (C1 == MaxVal)
2577         return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
2578 
2579       // TODO: Support this for vectors after legalize ops.
2580       if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2581         // Canonicalize setgt X, Min --> setne X, Min
2582         if (C1 == MinVal)
2583           return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
2584 
2585         // If we have setugt X, Max-1, turn it into seteq X, Max
2586         if (C1 == MaxVal-1)
2587           return DAG.getSetCC(dl, VT, N0,
2588                               DAG.getConstant(MaxVal, dl, N0.getValueType()),
2589                               ISD::SETEQ);
2590       }
2591     }
2592 
2593     // If we have "setcc X, C0", check to see if we can shrink the immediate
2594     // by changing cc.
2595     // TODO: Support this for vectors after legalize ops.
2596     if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
2597       // SETUGT X, SINTMAX  -> SETLT X, 0
2598       if (Cond == ISD::SETUGT &&
2599           C1 == APInt::getSignedMaxValue(OperandBitSize))
2600         return DAG.getSetCC(dl, VT, N0,
2601                             DAG.getConstant(0, dl, N1.getValueType()),
2602                             ISD::SETLT);
2603 
2604       // SETULT X, SINTMIN  -> SETGT X, -1
2605       if (Cond == ISD::SETULT &&
2606           C1 == APInt::getSignedMinValue(OperandBitSize)) {
2607         SDValue ConstMinusOne =
2608             DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
2609                             N1.getValueType());
2610         return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
2611       }
2612     }
2613   }
2614 
2615   // Back to non-vector simplifications.
2616   // TODO: Can we do these for vector splats?
2617   if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
2618     const APInt &C1 = N1C->getAPIntValue();
2619 
2620     // Fold bit comparisons when we can.
2621     if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2622         (VT == N0.getValueType() ||
2623          (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
2624         N0.getOpcode() == ISD::AND) {
2625       auto &DL = DAG.getDataLayout();
2626       if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2627         EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2628                                        !DCI.isBeforeLegalize());
2629         if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0  -->  (X & 8) >> 3
2630           // Perform the xform if the AND RHS is a single bit.
2631           if (AndRHS->getAPIntValue().isPowerOf2()) {
2632             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2633                               DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2634                    DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
2635                                    ShiftTy)));
2636           }
2637         } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
2638           // (X & 8) == 8  -->  (X & 8) >> 3
2639           // Perform the xform if C1 is a single bit.
2640           if (C1.isPowerOf2()) {
2641             return DAG.getNode(ISD::TRUNCATE, dl, VT,
2642                                DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
2643                                       DAG.getConstant(C1.logBase2(), dl,
2644                                                       ShiftTy)));
2645           }
2646         }
2647       }
2648     }
2649 
2650     if (C1.getMinSignedBits() <= 64 &&
2651         !isLegalICmpImmediate(C1.getSExtValue())) {
2652       // (X & -256) == 256 -> (X >> 8) == 1
2653       if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2654           N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
2655         if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2656           const APInt &AndRHSC = AndRHS->getAPIntValue();
2657           if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
2658             unsigned ShiftBits = AndRHSC.countTrailingZeros();
2659             auto &DL = DAG.getDataLayout();
2660             EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2661                                            !DCI.isBeforeLegalize());
2662             EVT CmpTy = N0.getValueType();
2663             SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
2664                                         DAG.getConstant(ShiftBits, dl,
2665                                                         ShiftTy));
2666             SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
2667             return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
2668           }
2669         }
2670       } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
2671                  Cond == ISD::SETULE || Cond == ISD::SETUGT) {
2672         bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
2673         // X <  0x100000000 -> (X >> 32) <  1
2674         // X >= 0x100000000 -> (X >> 32) >= 1
2675         // X <= 0x0ffffffff -> (X >> 32) <  1
2676         // X >  0x0ffffffff -> (X >> 32) >= 1
2677         unsigned ShiftBits;
2678         APInt NewC = C1;
2679         ISD::CondCode NewCond = Cond;
2680         if (AdjOne) {
2681           ShiftBits = C1.countTrailingOnes();
2682           NewC = NewC + 1;
2683           NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
2684         } else {
2685           ShiftBits = C1.countTrailingZeros();
2686         }
2687         NewC.lshrInPlace(ShiftBits);
2688         if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
2689           isLegalICmpImmediate(NewC.getSExtValue())) {
2690           auto &DL = DAG.getDataLayout();
2691           EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
2692                                          !DCI.isBeforeLegalize());
2693           EVT CmpTy = N0.getValueType();
2694           SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
2695                                       DAG.getConstant(ShiftBits, dl, ShiftTy));
2696           SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
2697           return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
2698         }
2699       }
2700     }
2701   }
2702 
2703   if (isa<ConstantFPSDNode>(N0.getNode())) {
2704     // Constant fold or commute setcc.
2705     SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
2706     if (O.getNode()) return O;
2707   } else if (auto *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
2708     // If the RHS of an FP comparison is a constant, simplify it away in
2709     // some cases.
2710     if (CFP->getValueAPF().isNaN()) {
2711       // If an operand is known to be a nan, we can fold it.
2712       switch (ISD::getUnorderedFlavor(Cond)) {
2713       default: llvm_unreachable("Unknown flavor!");
2714       case 0:  // Known false.
2715         return DAG.getBoolConstant(false, dl, VT, OpVT);
2716       case 1:  // Known true.
2717         return DAG.getBoolConstant(true, dl, VT, OpVT);
2718       case 2:  // Undefined.
2719         return DAG.getUNDEF(VT);
2720       }
2721     }
2722 
2723     // Otherwise, we know the RHS is not a NaN.  Simplify the node to drop the
2724     // constant if knowing that the operand is non-nan is enough.  We prefer to
2725     // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
2726     // materialize 0.0.
2727     if (Cond == ISD::SETO || Cond == ISD::SETUO)
2728       return DAG.getSetCC(dl, VT, N0, N0, Cond);
2729 
2730     // setcc (fneg x), C -> setcc swap(pred) x, -C
2731     if (N0.getOpcode() == ISD::FNEG) {
2732       ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
2733       if (DCI.isBeforeLegalizeOps() ||
2734           isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
2735         SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
2736         return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
2737       }
2738     }
2739 
2740     // If the condition is not legal, see if we can find an equivalent one
2741     // which is legal.
2742     if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
2743       // If the comparison was an awkward floating-point == or != and one of
2744       // the comparison operands is infinity or negative infinity, convert the
2745       // condition to a less-awkward <= or >=.
2746       if (CFP->getValueAPF().isInfinity()) {
2747         if (CFP->getValueAPF().isNegative()) {
2748           if (Cond == ISD::SETOEQ &&
2749               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2750             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
2751           if (Cond == ISD::SETUEQ &&
2752               isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
2753             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
2754           if (Cond == ISD::SETUNE &&
2755               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2756             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
2757           if (Cond == ISD::SETONE &&
2758               isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
2759             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
2760         } else {
2761           if (Cond == ISD::SETOEQ &&
2762               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2763             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
2764           if (Cond == ISD::SETUEQ &&
2765               isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
2766             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
2767           if (Cond == ISD::SETUNE &&
2768               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2769             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
2770           if (Cond == ISD::SETONE &&
2771               isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
2772             return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
2773         }
2774       }
2775     }
2776   }
2777 
2778   if (N0 == N1) {
2779     // The sext(setcc()) => setcc() optimization relies on the appropriate
2780     // constant being emitted.
2781 
2782     bool EqTrue = ISD::isTrueWhenEqual(Cond);
2783 
2784     // We can always fold X == X for integer setcc's.
2785     if (N0.getValueType().isInteger())
2786       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2787 
2788     unsigned UOF = ISD::getUnorderedFlavor(Cond);
2789     if (UOF == 2)   // FP operators that are undefined on NaNs.
2790       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2791     if (UOF == unsigned(EqTrue))
2792       return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
2793     // Otherwise, we can't fold it.  However, we can simplify it to SETUO/SETO
2794     // if it is not already.
2795     ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
2796     if (NewCond != Cond &&
2797         (DCI.isBeforeLegalizeOps() ||
2798          isCondCodeLegal(NewCond, N0.getSimpleValueType())))
2799       return DAG.getSetCC(dl, VT, N0, N1, NewCond);
2800   }
2801 
2802   if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2803       N0.getValueType().isInteger()) {
2804     if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
2805         N0.getOpcode() == ISD::XOR) {
2806       // Simplify (X+Y) == (X+Z) -->  Y == Z
2807       if (N0.getOpcode() == N1.getOpcode()) {
2808         if (N0.getOperand(0) == N1.getOperand(0))
2809           return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
2810         if (N0.getOperand(1) == N1.getOperand(1))
2811           return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
2812         if (isCommutativeBinOp(N0.getOpcode())) {
2813           // If X op Y == Y op X, try other combinations.
2814           if (N0.getOperand(0) == N1.getOperand(1))
2815             return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
2816                                 Cond);
2817           if (N0.getOperand(1) == N1.getOperand(0))
2818             return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
2819                                 Cond);
2820         }
2821       }
2822 
2823       // If RHS is a legal immediate value for a compare instruction, we need
2824       // to be careful about increasing register pressure needlessly.
2825       bool LegalRHSImm = false;
2826 
2827       if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
2828         if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
2829           // Turn (X+C1) == C2 --> X == C2-C1
2830           if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
2831             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2832                                 DAG.getConstant(RHSC->getAPIntValue()-
2833                                                 LHSR->getAPIntValue(),
2834                                 dl, N0.getValueType()), Cond);
2835           }
2836 
2837           // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
2838           if (N0.getOpcode() == ISD::XOR)
2839             // If we know that all of the inverted bits are zero, don't bother
2840             // performing the inversion.
2841             if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
2842               return
2843                 DAG.getSetCC(dl, VT, N0.getOperand(0),
2844                              DAG.getConstant(LHSR->getAPIntValue() ^
2845                                                RHSC->getAPIntValue(),
2846                                              dl, N0.getValueType()),
2847                              Cond);
2848         }
2849 
2850         // Turn (C1-X) == C2 --> X == C1-C2
2851         if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
2852           if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
2853             return
2854               DAG.getSetCC(dl, VT, N0.getOperand(1),
2855                            DAG.getConstant(SUBC->getAPIntValue() -
2856                                              RHSC->getAPIntValue(),
2857                                            dl, N0.getValueType()),
2858                            Cond);
2859           }
2860         }
2861 
2862         // Could RHSC fold directly into a compare?
2863         if (RHSC->getValueType(0).getSizeInBits() <= 64)
2864           LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
2865       }
2866 
2867       // Simplify (X+Z) == X -->  Z == 0
2868       // Don't do this if X is an immediate that can fold into a cmp
2869       // instruction and X+Z has other uses. It could be an induction variable
2870       // chain, and the transform would increase register pressure.
2871       if (!LegalRHSImm || N0.getNode()->hasOneUse()) {
2872         if (N0.getOperand(0) == N1)
2873           return DAG.getSetCC(dl, VT, N0.getOperand(1),
2874                               DAG.getConstant(0, dl, N0.getValueType()), Cond);
2875         if (N0.getOperand(1) == N1) {
2876           if (isCommutativeBinOp(N0.getOpcode()))
2877             return DAG.getSetCC(dl, VT, N0.getOperand(0),
2878                                 DAG.getConstant(0, dl, N0.getValueType()),
2879                                 Cond);
2880           if (N0.getNode()->hasOneUse()) {
2881             assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
2882             auto &DL = DAG.getDataLayout();
2883             // (Z-X) == X  --> Z == X<<1
2884             SDValue SH = DAG.getNode(
2885                 ISD::SHL, dl, N1.getValueType(), N1,
2886                 DAG.getConstant(1, dl,
2887                                 getShiftAmountTy(N1.getValueType(), DL,
2888                                                  !DCI.isBeforeLegalize())));
2889             if (!DCI.isCalledByLegalizer())
2890               DCI.AddToWorklist(SH.getNode());
2891             return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
2892           }
2893         }
2894       }
2895     }
2896 
2897     if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
2898         N1.getOpcode() == ISD::XOR) {
2899       // Simplify  X == (X+Z) -->  Z == 0
2900       if (N1.getOperand(0) == N0)
2901         return DAG.getSetCC(dl, VT, N1.getOperand(1),
2902                         DAG.getConstant(0, dl, N1.getValueType()), Cond);
2903       if (N1.getOperand(1) == N0) {
2904         if (isCommutativeBinOp(N1.getOpcode()))
2905           return DAG.getSetCC(dl, VT, N1.getOperand(0),
2906                           DAG.getConstant(0, dl, N1.getValueType()), Cond);
2907         if (N1.getNode()->hasOneUse()) {
2908           assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
2909           auto &DL = DAG.getDataLayout();
2910           // X == (Z-X)  --> X<<1 == Z
2911           SDValue SH = DAG.getNode(
2912               ISD::SHL, dl, N1.getValueType(), N0,
2913               DAG.getConstant(1, dl, getShiftAmountTy(N0.getValueType(), DL,
2914                                                       !DCI.isBeforeLegalize())));
2915           if (!DCI.isCalledByLegalizer())
2916             DCI.AddToWorklist(SH.getNode());
2917           return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
2918         }
2919       }
2920     }
2921 
2922     if (SDValue V = simplifySetCCWithAnd(VT, N0, N1, Cond, DCI, dl))
2923       return V;
2924   }
2925 
2926   // Fold away ALL boolean setcc's.
2927   SDValue Temp;
2928   if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
2929     EVT OpVT = N0.getValueType();
2930     switch (Cond) {
2931     default: llvm_unreachable("Unknown integer setcc!");
2932     case ISD::SETEQ:  // X == Y  -> ~(X^Y)
2933       Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2934       N0 = DAG.getNOT(dl, Temp, OpVT);
2935       if (!DCI.isCalledByLegalizer())
2936         DCI.AddToWorklist(Temp.getNode());
2937       break;
2938     case ISD::SETNE:  // X != Y   -->  (X^Y)
2939       N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
2940       break;
2941     case ISD::SETGT:  // X >s Y   -->  X == 0 & Y == 1  -->  ~X & Y
2942     case ISD::SETULT: // X <u Y   -->  X == 0 & Y == 1  -->  ~X & Y
2943       Temp = DAG.getNOT(dl, N0, OpVT);
2944       N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
2945       if (!DCI.isCalledByLegalizer())
2946         DCI.AddToWorklist(Temp.getNode());
2947       break;
2948     case ISD::SETLT:  // X <s Y   --> X == 1 & Y == 0  -->  ~Y & X
2949     case ISD::SETUGT: // X >u Y   --> X == 1 & Y == 0  -->  ~Y & X
2950       Temp = DAG.getNOT(dl, N1, OpVT);
2951       N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
2952       if (!DCI.isCalledByLegalizer())
2953         DCI.AddToWorklist(Temp.getNode());
2954       break;
2955     case ISD::SETULE: // X <=u Y  --> X == 0 | Y == 1  -->  ~X | Y
2956     case ISD::SETGE:  // X >=s Y  --> X == 0 | Y == 1  -->  ~X | Y
2957       Temp = DAG.getNOT(dl, N0, OpVT);
2958       N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
2959       if (!DCI.isCalledByLegalizer())
2960         DCI.AddToWorklist(Temp.getNode());
2961       break;
2962     case ISD::SETUGE: // X >=u Y  --> X == 1 | Y == 0  -->  ~Y | X
2963     case ISD::SETLE:  // X <=s Y  --> X == 1 | Y == 0  -->  ~Y | X
2964       Temp = DAG.getNOT(dl, N1, OpVT);
2965       N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
2966       break;
2967     }
2968     if (VT.getScalarType() != MVT::i1) {
2969       if (!DCI.isCalledByLegalizer())
2970         DCI.AddToWorklist(N0.getNode());
2971       // FIXME: If running after legalize, we probably can't do this.
2972       ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
2973       N0 = DAG.getNode(ExtendCode, dl, VT, N0);
2974     }
2975     return N0;
2976   }
2977 
2978   // Could not fold it.
2979   return SDValue();
2980 }
2981 
2982 /// Returns true (and the GlobalValue and the offset) if the node is a
2983 /// GlobalAddress + offset.
2984 bool TargetLowering::isGAPlusOffset(SDNode *N, const GlobalValue *&GA,
2985                                     int64_t &Offset) const {
2986   if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
2987     GA = GASD->getGlobal();
2988     Offset += GASD->getOffset();
2989     return true;
2990   }
2991 
2992   if (N->getOpcode() == ISD::ADD) {
2993     SDValue N1 = N->getOperand(0);
2994     SDValue N2 = N->getOperand(1);
2995     if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2996       if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
2997         Offset += V->getSExtValue();
2998         return true;
2999       }
3000     } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3001       if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3002         Offset += V->getSExtValue();
3003         return true;
3004       }
3005     }
3006   }
3007 
3008   return false;
3009 }
3010 
3011 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3012                                           DAGCombinerInfo &DCI) const {
3013   // Default implementation: no optimization.
3014   return SDValue();
3015 }
3016 
3017 //===----------------------------------------------------------------------===//
3018 //  Inline Assembler Implementation Methods
3019 //===----------------------------------------------------------------------===//
3020 
3021 TargetLowering::ConstraintType
3022 TargetLowering::getConstraintType(StringRef Constraint) const {
3023   unsigned S = Constraint.size();
3024 
3025   if (S == 1) {
3026     switch (Constraint[0]) {
3027     default: break;
3028     case 'r': return C_RegisterClass;
3029     case 'm':    // memory
3030     case 'o':    // offsetable
3031     case 'V':    // not offsetable
3032       return C_Memory;
3033     case 'i':    // Simple Integer or Relocatable Constant
3034     case 'n':    // Simple Integer
3035     case 'E':    // Floating Point Constant
3036     case 'F':    // Floating Point Constant
3037     case 's':    // Relocatable Constant
3038     case 'p':    // Address.
3039     case 'X':    // Allow ANY value.
3040     case 'I':    // Target registers.
3041     case 'J':
3042     case 'K':
3043     case 'L':
3044     case 'M':
3045     case 'N':
3046     case 'O':
3047     case 'P':
3048     case '<':
3049     case '>':
3050       return C_Other;
3051     }
3052   }
3053 
3054   if (S > 1 && Constraint[0] == '{' && Constraint[S-1] == '}') {
3055     if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3056       return C_Memory;
3057     return C_Register;
3058   }
3059   return C_Unknown;
3060 }
3061 
3062 /// Try to replace an X constraint, which matches anything, with another that
3063 /// has more specific requirements based on the type of the corresponding
3064 /// operand.
3065 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const{
3066   if (ConstraintVT.isInteger())
3067     return "r";
3068   if (ConstraintVT.isFloatingPoint())
3069     return "f";      // works for many targets
3070   return nullptr;
3071 }
3072 
3073 /// Lower the specified operand into the Ops vector.
3074 /// If it is invalid, don't add anything to Ops.
3075 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
3076                                                   std::string &Constraint,
3077                                                   std::vector<SDValue> &Ops,
3078                                                   SelectionDAG &DAG) const {
3079 
3080   if (Constraint.length() > 1) return;
3081 
3082   char ConstraintLetter = Constraint[0];
3083   switch (ConstraintLetter) {
3084   default: break;
3085   case 'X':     // Allows any operand; labels (basic block) use this.
3086     if (Op.getOpcode() == ISD::BasicBlock) {
3087       Ops.push_back(Op);
3088       return;
3089     }
3090     LLVM_FALLTHROUGH;
3091   case 'i':    // Simple Integer or Relocatable Constant
3092   case 'n':    // Simple Integer
3093   case 's': {  // Relocatable Constant
3094     // These operands are interested in values of the form (GV+C), where C may
3095     // be folded in as an offset of GV, or it may be explicitly added.  Also, it
3096     // is possible and fine if either GV or C are missing.
3097     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
3098     GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
3099 
3100     // If we have "(add GV, C)", pull out GV/C
3101     if (Op.getOpcode() == ISD::ADD) {
3102       C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
3103       GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
3104       if (!C || !GA) {
3105         C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
3106         GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
3107       }
3108       if (!C || !GA) {
3109         C = nullptr;
3110         GA = nullptr;
3111       }
3112     }
3113 
3114     // If we find a valid operand, map to the TargetXXX version so that the
3115     // value itself doesn't get selected.
3116     if (GA) {   // Either &GV   or   &GV+C
3117       if (ConstraintLetter != 'n') {
3118         int64_t Offs = GA->getOffset();
3119         if (C) Offs += C->getZExtValue();
3120         Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
3121                                                  C ? SDLoc(C) : SDLoc(),
3122                                                  Op.getValueType(), Offs));
3123       }
3124       return;
3125     }
3126     if (C) {   // just C, no GV.
3127       // Simple constants are not allowed for 's'.
3128       if (ConstraintLetter != 's') {
3129         // gcc prints these as sign extended.  Sign extend value to 64 bits
3130         // now; without this it would get ZExt'd later in
3131         // ScheduleDAGSDNodes::EmitNode, which is very generic.
3132         Ops.push_back(DAG.getTargetConstant(C->getSExtValue(),
3133                                             SDLoc(C), MVT::i64));
3134       }
3135       return;
3136     }
3137     break;
3138   }
3139   }
3140 }
3141 
3142 std::pair<unsigned, const TargetRegisterClass *>
3143 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
3144                                              StringRef Constraint,
3145                                              MVT VT) const {
3146   if (Constraint.empty() || Constraint[0] != '{')
3147     return std::make_pair(0u, static_cast<TargetRegisterClass*>(nullptr));
3148   assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
3149 
3150   // Remove the braces from around the name.
3151   StringRef RegName(Constraint.data()+1, Constraint.size()-2);
3152 
3153   std::pair<unsigned, const TargetRegisterClass*> R =
3154     std::make_pair(0u, static_cast<const TargetRegisterClass*>(nullptr));
3155 
3156   // Figure out which register class contains this reg.
3157   for (const TargetRegisterClass *RC : RI->regclasses()) {
3158     // If none of the value types for this register class are valid, we
3159     // can't use it.  For example, 64-bit reg classes on 32-bit targets.
3160     if (!isLegalRC(*RI, *RC))
3161       continue;
3162 
3163     for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
3164          I != E; ++I) {
3165       if (RegName.equals_lower(RI->getRegAsmName(*I))) {
3166         std::pair<unsigned, const TargetRegisterClass*> S =
3167           std::make_pair(*I, RC);
3168 
3169         // If this register class has the requested value type, return it,
3170         // otherwise keep searching and return the first class found
3171         // if no other is found which explicitly has the requested type.
3172         if (RI->isTypeLegalForClass(*RC, VT))
3173           return S;
3174         if (!R.second)
3175           R = S;
3176       }
3177     }
3178   }
3179 
3180   return R;
3181 }
3182 
3183 //===----------------------------------------------------------------------===//
3184 // Constraint Selection.
3185 
3186 /// Return true of this is an input operand that is a matching constraint like
3187 /// "4".
3188 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
3189   assert(!ConstraintCode.empty() && "No known constraint!");
3190   return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
3191 }
3192 
3193 /// If this is an input matching constraint, this method returns the output
3194 /// operand it matches.
3195 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
3196   assert(!ConstraintCode.empty() && "No known constraint!");
3197   return atoi(ConstraintCode.c_str());
3198 }
3199 
3200 /// Split up the constraint string from the inline assembly value into the
3201 /// specific constraints and their prefixes, and also tie in the associated
3202 /// operand values.
3203 /// If this returns an empty vector, and if the constraint string itself
3204 /// isn't empty, there was an error parsing.
3205 TargetLowering::AsmOperandInfoVector
3206 TargetLowering::ParseConstraints(const DataLayout &DL,
3207                                  const TargetRegisterInfo *TRI,
3208                                  ImmutableCallSite CS) const {
3209   /// Information about all of the constraints.
3210   AsmOperandInfoVector ConstraintOperands;
3211   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
3212   unsigned maCount = 0; // Largest number of multiple alternative constraints.
3213 
3214   // Do a prepass over the constraints, canonicalizing them, and building up the
3215   // ConstraintOperands list.
3216   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
3217   unsigned ResNo = 0;   // ResNo - The result number of the next output.
3218 
3219   for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
3220     ConstraintOperands.emplace_back(std::move(CI));
3221     AsmOperandInfo &OpInfo = ConstraintOperands.back();
3222 
3223     // Update multiple alternative constraint count.
3224     if (OpInfo.multipleAlternatives.size() > maCount)
3225       maCount = OpInfo.multipleAlternatives.size();
3226 
3227     OpInfo.ConstraintVT = MVT::Other;
3228 
3229     // Compute the value type for each operand.
3230     switch (OpInfo.Type) {
3231     case InlineAsm::isOutput:
3232       // Indirect outputs just consume an argument.
3233       if (OpInfo.isIndirect) {
3234         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3235         break;
3236       }
3237 
3238       // The return value of the call is this value.  As such, there is no
3239       // corresponding argument.
3240       assert(!CS.getType()->isVoidTy() &&
3241              "Bad inline asm!");
3242       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
3243         OpInfo.ConstraintVT =
3244             getSimpleValueType(DL, STy->getElementType(ResNo));
3245       } else {
3246         assert(ResNo == 0 && "Asm only has one result!");
3247         OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
3248       }
3249       ++ResNo;
3250       break;
3251     case InlineAsm::isInput:
3252       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
3253       break;
3254     case InlineAsm::isClobber:
3255       // Nothing to do.
3256       break;
3257     }
3258 
3259     if (OpInfo.CallOperandVal) {
3260       llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
3261       if (OpInfo.isIndirect) {
3262         llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
3263         if (!PtrTy)
3264           report_fatal_error("Indirect operand for inline asm not a pointer!");
3265         OpTy = PtrTy->getElementType();
3266       }
3267 
3268       // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
3269       if (StructType *STy = dyn_cast<StructType>(OpTy))
3270         if (STy->getNumElements() == 1)
3271           OpTy = STy->getElementType(0);
3272 
3273       // If OpTy is not a single value, it may be a struct/union that we
3274       // can tile with integers.
3275       if (!OpTy->isSingleValueType() && OpTy->isSized()) {
3276         unsigned BitSize = DL.getTypeSizeInBits(OpTy);
3277         switch (BitSize) {
3278         default: break;
3279         case 1:
3280         case 8:
3281         case 16:
3282         case 32:
3283         case 64:
3284         case 128:
3285           OpInfo.ConstraintVT =
3286             MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
3287           break;
3288         }
3289       } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
3290         unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
3291         OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
3292       } else {
3293         OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
3294       }
3295     }
3296   }
3297 
3298   // If we have multiple alternative constraints, select the best alternative.
3299   if (!ConstraintOperands.empty()) {
3300     if (maCount) {
3301       unsigned bestMAIndex = 0;
3302       int bestWeight = -1;
3303       // weight:  -1 = invalid match, and 0 = so-so match to 5 = good match.
3304       int weight = -1;
3305       unsigned maIndex;
3306       // Compute the sums of the weights for each alternative, keeping track
3307       // of the best (highest weight) one so far.
3308       for (maIndex = 0; maIndex < maCount; ++maIndex) {
3309         int weightSum = 0;
3310         for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3311             cIndex != eIndex; ++cIndex) {
3312           AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3313           if (OpInfo.Type == InlineAsm::isClobber)
3314             continue;
3315 
3316           // If this is an output operand with a matching input operand,
3317           // look up the matching input. If their types mismatch, e.g. one
3318           // is an integer, the other is floating point, or their sizes are
3319           // different, flag it as an maCantMatch.
3320           if (OpInfo.hasMatchingInput()) {
3321             AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3322             if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3323               if ((OpInfo.ConstraintVT.isInteger() !=
3324                    Input.ConstraintVT.isInteger()) ||
3325                   (OpInfo.ConstraintVT.getSizeInBits() !=
3326                    Input.ConstraintVT.getSizeInBits())) {
3327                 weightSum = -1;  // Can't match.
3328                 break;
3329               }
3330             }
3331           }
3332           weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
3333           if (weight == -1) {
3334             weightSum = -1;
3335             break;
3336           }
3337           weightSum += weight;
3338         }
3339         // Update best.
3340         if (weightSum > bestWeight) {
3341           bestWeight = weightSum;
3342           bestMAIndex = maIndex;
3343         }
3344       }
3345 
3346       // Now select chosen alternative in each constraint.
3347       for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3348           cIndex != eIndex; ++cIndex) {
3349         AsmOperandInfo& cInfo = ConstraintOperands[cIndex];
3350         if (cInfo.Type == InlineAsm::isClobber)
3351           continue;
3352         cInfo.selectAlternative(bestMAIndex);
3353       }
3354     }
3355   }
3356 
3357   // Check and hook up tied operands, choose constraint code to use.
3358   for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
3359       cIndex != eIndex; ++cIndex) {
3360     AsmOperandInfo& OpInfo = ConstraintOperands[cIndex];
3361 
3362     // If this is an output operand with a matching input operand, look up the
3363     // matching input. If their types mismatch, e.g. one is an integer, the
3364     // other is floating point, or their sizes are different, flag it as an
3365     // error.
3366     if (OpInfo.hasMatchingInput()) {
3367       AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
3368 
3369       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
3370         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
3371             getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
3372                                          OpInfo.ConstraintVT);
3373         std::pair<unsigned, const TargetRegisterClass *> InputRC =
3374             getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
3375                                          Input.ConstraintVT);
3376         if ((OpInfo.ConstraintVT.isInteger() !=
3377              Input.ConstraintVT.isInteger()) ||
3378             (MatchRC.second != InputRC.second)) {
3379           report_fatal_error("Unsupported asm: input constraint"
3380                              " with a matching output constraint of"
3381                              " incompatible type!");
3382         }
3383       }
3384     }
3385   }
3386 
3387   return ConstraintOperands;
3388 }
3389 
3390 /// Return an integer indicating how general CT is.
3391 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
3392   switch (CT) {
3393   case TargetLowering::C_Other:
3394   case TargetLowering::C_Unknown:
3395     return 0;
3396   case TargetLowering::C_Register:
3397     return 1;
3398   case TargetLowering::C_RegisterClass:
3399     return 2;
3400   case TargetLowering::C_Memory:
3401     return 3;
3402   }
3403   llvm_unreachable("Invalid constraint type");
3404 }
3405 
3406 /// Examine constraint type and operand type and determine a weight value.
3407 /// This object must already have been set up with the operand type
3408 /// and the current alternative constraint selected.
3409 TargetLowering::ConstraintWeight
3410   TargetLowering::getMultipleConstraintMatchWeight(
3411     AsmOperandInfo &info, int maIndex) const {
3412   InlineAsm::ConstraintCodeVector *rCodes;
3413   if (maIndex >= (int)info.multipleAlternatives.size())
3414     rCodes = &info.Codes;
3415   else
3416     rCodes = &info.multipleAlternatives[maIndex].Codes;
3417   ConstraintWeight BestWeight = CW_Invalid;
3418 
3419   // Loop over the options, keeping track of the most general one.
3420   for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
3421     ConstraintWeight weight =
3422       getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
3423     if (weight > BestWeight)
3424       BestWeight = weight;
3425   }
3426 
3427   return BestWeight;
3428 }
3429 
3430 /// Examine constraint type and operand type and determine a weight value.
3431 /// This object must already have been set up with the operand type
3432 /// and the current alternative constraint selected.
3433 TargetLowering::ConstraintWeight
3434   TargetLowering::getSingleConstraintMatchWeight(
3435     AsmOperandInfo &info, const char *constraint) const {
3436   ConstraintWeight weight = CW_Invalid;
3437   Value *CallOperandVal = info.CallOperandVal;
3438     // If we don't have a value, we can't do a match,
3439     // but allow it at the lowest weight.
3440   if (!CallOperandVal)
3441     return CW_Default;
3442   // Look at the constraint type.
3443   switch (*constraint) {
3444     case 'i': // immediate integer.
3445     case 'n': // immediate integer with a known value.
3446       if (isa<ConstantInt>(CallOperandVal))
3447         weight = CW_Constant;
3448       break;
3449     case 's': // non-explicit intregal immediate.
3450       if (isa<GlobalValue>(CallOperandVal))
3451         weight = CW_Constant;
3452       break;
3453     case 'E': // immediate float if host format.
3454     case 'F': // immediate float.
3455       if (isa<ConstantFP>(CallOperandVal))
3456         weight = CW_Constant;
3457       break;
3458     case '<': // memory operand with autodecrement.
3459     case '>': // memory operand with autoincrement.
3460     case 'm': // memory operand.
3461     case 'o': // offsettable memory operand
3462     case 'V': // non-offsettable memory operand
3463       weight = CW_Memory;
3464       break;
3465     case 'r': // general register.
3466     case 'g': // general register, memory operand or immediate integer.
3467               // note: Clang converts "g" to "imr".
3468       if (CallOperandVal->getType()->isIntegerTy())
3469         weight = CW_Register;
3470       break;
3471     case 'X': // any operand.
3472     default:
3473       weight = CW_Default;
3474       break;
3475   }
3476   return weight;
3477 }
3478 
3479 /// If there are multiple different constraints that we could pick for this
3480 /// operand (e.g. "imr") try to pick the 'best' one.
3481 /// This is somewhat tricky: constraints fall into four classes:
3482 ///    Other         -> immediates and magic values
3483 ///    Register      -> one specific register
3484 ///    RegisterClass -> a group of regs
3485 ///    Memory        -> memory
3486 /// Ideally, we would pick the most specific constraint possible: if we have
3487 /// something that fits into a register, we would pick it.  The problem here
3488 /// is that if we have something that could either be in a register or in
3489 /// memory that use of the register could cause selection of *other*
3490 /// operands to fail: they might only succeed if we pick memory.  Because of
3491 /// this the heuristic we use is:
3492 ///
3493 ///  1) If there is an 'other' constraint, and if the operand is valid for
3494 ///     that constraint, use it.  This makes us take advantage of 'i'
3495 ///     constraints when available.
3496 ///  2) Otherwise, pick the most general constraint present.  This prefers
3497 ///     'm' over 'r', for example.
3498 ///
3499 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
3500                              const TargetLowering &TLI,
3501                              SDValue Op, SelectionDAG *DAG) {
3502   assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
3503   unsigned BestIdx = 0;
3504   TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
3505   int BestGenerality = -1;
3506 
3507   // Loop over the options, keeping track of the most general one.
3508   for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
3509     TargetLowering::ConstraintType CType =
3510       TLI.getConstraintType(OpInfo.Codes[i]);
3511 
3512     // If this is an 'other' constraint, see if the operand is valid for it.
3513     // For example, on X86 we might have an 'rI' constraint.  If the operand
3514     // is an integer in the range [0..31] we want to use I (saving a load
3515     // of a register), otherwise we must use 'r'.
3516     if (CType == TargetLowering::C_Other && Op.getNode()) {
3517       assert(OpInfo.Codes[i].size() == 1 &&
3518              "Unhandled multi-letter 'other' constraint");
3519       std::vector<SDValue> ResultOps;
3520       TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
3521                                        ResultOps, *DAG);
3522       if (!ResultOps.empty()) {
3523         BestType = CType;
3524         BestIdx = i;
3525         break;
3526       }
3527     }
3528 
3529     // Things with matching constraints can only be registers, per gcc
3530     // documentation.  This mainly affects "g" constraints.
3531     if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
3532       continue;
3533 
3534     // This constraint letter is more general than the previous one, use it.
3535     int Generality = getConstraintGenerality(CType);
3536     if (Generality > BestGenerality) {
3537       BestType = CType;
3538       BestIdx = i;
3539       BestGenerality = Generality;
3540     }
3541   }
3542 
3543   OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
3544   OpInfo.ConstraintType = BestType;
3545 }
3546 
3547 /// Determines the constraint code and constraint type to use for the specific
3548 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
3549 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
3550                                             SDValue Op,
3551                                             SelectionDAG *DAG) const {
3552   assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
3553 
3554   // Single-letter constraints ('r') are very common.
3555   if (OpInfo.Codes.size() == 1) {
3556     OpInfo.ConstraintCode = OpInfo.Codes[0];
3557     OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3558   } else {
3559     ChooseConstraint(OpInfo, *this, Op, DAG);
3560   }
3561 
3562   // 'X' matches anything.
3563   if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
3564     // Labels and constants are handled elsewhere ('X' is the only thing
3565     // that matches labels).  For Functions, the type here is the type of
3566     // the result, which is not what we want to look at; leave them alone.
3567     Value *v = OpInfo.CallOperandVal;
3568     if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
3569       OpInfo.CallOperandVal = v;
3570       return;
3571     }
3572 
3573     // Otherwise, try to resolve it to something we know about by looking at
3574     // the actual operand type.
3575     if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
3576       OpInfo.ConstraintCode = Repl;
3577       OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
3578     }
3579   }
3580 }
3581 
3582 /// Given an exact SDIV by a constant, create a multiplication
3583 /// with the multiplicative inverse of the constant.
3584 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
3585                               const SDLoc &dl, SelectionDAG &DAG,
3586                               SmallVectorImpl<SDNode *> &Created) {
3587   SDValue Op0 = N->getOperand(0);
3588   SDValue Op1 = N->getOperand(1);
3589   EVT VT = N->getValueType(0);
3590   EVT SVT = VT.getScalarType();
3591   EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
3592   EVT ShSVT = ShVT.getScalarType();
3593 
3594   bool UseSRA = false;
3595   SmallVector<SDValue, 16> Shifts, Factors;
3596 
3597   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3598     if (C->isNullValue())
3599       return false;
3600     APInt Divisor = C->getAPIntValue();
3601     unsigned Shift = Divisor.countTrailingZeros();
3602     if (Shift) {
3603       Divisor.ashrInPlace(Shift);
3604       UseSRA = true;
3605     }
3606     // Calculate the multiplicative inverse, using Newton's method.
3607     APInt t;
3608     APInt Factor = Divisor;
3609     while ((t = Divisor * Factor) != 1)
3610       Factor *= APInt(Divisor.getBitWidth(), 2) - t;
3611     Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
3612     Factors.push_back(DAG.getConstant(Factor, dl, SVT));
3613     return true;
3614   };
3615 
3616   // Collect all magic values from the build vector.
3617   if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
3618     return SDValue();
3619 
3620   SDValue Shift, Factor;
3621   if (VT.isVector()) {
3622     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3623     Factor = DAG.getBuildVector(VT, dl, Factors);
3624   } else {
3625     Shift = Shifts[0];
3626     Factor = Factors[0];
3627   }
3628 
3629   SDValue Res = Op0;
3630 
3631   // Shift the value upfront if it is even, so the LSB is one.
3632   if (UseSRA) {
3633     // TODO: For UDIV use SRL instead of SRA.
3634     SDNodeFlags Flags;
3635     Flags.setExact(true);
3636     Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
3637     Created.push_back(Res.getNode());
3638   }
3639 
3640   return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
3641 }
3642 
3643 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
3644                                      SelectionDAG &DAG,
3645                                      SmallVectorImpl<SDNode *> &Created) const {
3646   AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3647   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3648   if (TLI.isIntDivCheap(N->getValueType(0), Attr))
3649     return SDValue(N,0); // Lower SDIV as SDIV
3650   return SDValue();
3651 }
3652 
3653 /// Given an ISD::SDIV node expressing a divide by constant,
3654 /// return a DAG expression to select that will generate the same value by
3655 /// multiplying by a magic number.
3656 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3657 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
3658                                   bool IsAfterLegalization,
3659                                   SmallVectorImpl<SDNode *> &Created) const {
3660   SDLoc dl(N);
3661   EVT VT = N->getValueType(0);
3662   EVT SVT = VT.getScalarType();
3663   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3664   EVT ShSVT = ShVT.getScalarType();
3665   unsigned EltBits = VT.getScalarSizeInBits();
3666 
3667   // Check to see if we can do this.
3668   // FIXME: We should be more aggressive here.
3669   if (!isTypeLegal(VT))
3670     return SDValue();
3671 
3672   // If the sdiv has an 'exact' bit we can use a simpler lowering.
3673   if (N->getFlags().hasExact())
3674     return BuildExactSDIV(*this, N, dl, DAG, Created);
3675 
3676   SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
3677 
3678   auto BuildSDIVPattern = [&](ConstantSDNode *C) {
3679     if (C->isNullValue())
3680       return false;
3681 
3682     const APInt &Divisor = C->getAPIntValue();
3683     APInt::ms magics = Divisor.magic();
3684     int NumeratorFactor = 0;
3685     int ShiftMask = -1;
3686 
3687     if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
3688       // If d is +1/-1, we just multiply the numerator by +1/-1.
3689       NumeratorFactor = Divisor.getSExtValue();
3690       magics.m = 0;
3691       magics.s = 0;
3692       ShiftMask = 0;
3693     } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
3694       // If d > 0 and m < 0, add the numerator.
3695       NumeratorFactor = 1;
3696     } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
3697       // If d < 0 and m > 0, subtract the numerator.
3698       NumeratorFactor = -1;
3699     }
3700 
3701     MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
3702     Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
3703     Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
3704     ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
3705     return true;
3706   };
3707 
3708   SDValue N0 = N->getOperand(0);
3709   SDValue N1 = N->getOperand(1);
3710 
3711   // Collect the shifts / magic values from each element.
3712   if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
3713     return SDValue();
3714 
3715   SDValue MagicFactor, Factor, Shift, ShiftMask;
3716   if (VT.isVector()) {
3717     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3718     Factor = DAG.getBuildVector(VT, dl, Factors);
3719     Shift = DAG.getBuildVector(ShVT, dl, Shifts);
3720     ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
3721   } else {
3722     MagicFactor = MagicFactors[0];
3723     Factor = Factors[0];
3724     Shift = Shifts[0];
3725     ShiftMask = ShiftMasks[0];
3726   }
3727 
3728   // Multiply the numerator (operand 0) by the magic value.
3729   // FIXME: We should support doing a MUL in a wider type.
3730   SDValue Q;
3731   if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
3732                           : isOperationLegalOrCustom(ISD::MULHS, VT))
3733     Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
3734   else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
3735                                : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
3736     SDValue LoHi =
3737         DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
3738     Q = SDValue(LoHi.getNode(), 1);
3739   } else
3740     return SDValue(); // No mulhs or equivalent.
3741   Created.push_back(Q.getNode());
3742 
3743   // (Optionally) Add/subtract the numerator using Factor.
3744   Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
3745   Created.push_back(Factor.getNode());
3746   Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
3747   Created.push_back(Q.getNode());
3748 
3749   // Shift right algebraic by shift value.
3750   Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
3751   Created.push_back(Q.getNode());
3752 
3753   // Extract the sign bit, mask it and add it to the quotient.
3754   SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
3755   SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
3756   Created.push_back(T.getNode());
3757   T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
3758   Created.push_back(T.getNode());
3759   return DAG.getNode(ISD::ADD, dl, VT, Q, T);
3760 }
3761 
3762 /// Given an ISD::UDIV node expressing a divide by constant,
3763 /// return a DAG expression to select that will generate the same value by
3764 /// multiplying by a magic number.
3765 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
3766 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
3767                                   bool IsAfterLegalization,
3768                                   SmallVectorImpl<SDNode *> &Created) const {
3769   SDLoc dl(N);
3770   EVT VT = N->getValueType(0);
3771   EVT SVT = VT.getScalarType();
3772   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
3773   EVT ShSVT = ShVT.getScalarType();
3774   unsigned EltBits = VT.getScalarSizeInBits();
3775 
3776   // Check to see if we can do this.
3777   // FIXME: We should be more aggressive here.
3778   if (!isTypeLegal(VT))
3779     return SDValue();
3780 
3781   bool UseNPQ = false;
3782   SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
3783 
3784   auto BuildUDIVPattern = [&](ConstantSDNode *C) {
3785     if (C->isNullValue())
3786       return false;
3787     // FIXME: We should use a narrower constant when the upper
3788     // bits are known to be zero.
3789     APInt Divisor = C->getAPIntValue();
3790     APInt::mu magics = Divisor.magicu();
3791     unsigned PreShift = 0, PostShift = 0;
3792 
3793     // If the divisor is even, we can avoid using the expensive fixup by
3794     // shifting the divided value upfront.
3795     if (magics.a != 0 && !Divisor[0]) {
3796       PreShift = Divisor.countTrailingZeros();
3797       // Get magic number for the shifted divisor.
3798       magics = Divisor.lshr(PreShift).magicu(PreShift);
3799       assert(magics.a == 0 && "Should use cheap fixup now");
3800     }
3801 
3802     APInt Magic = magics.m;
3803 
3804     unsigned SelNPQ;
3805     if (magics.a == 0 || Divisor.isOneValue()) {
3806       assert(magics.s < Divisor.getBitWidth() &&
3807              "We shouldn't generate an undefined shift!");
3808       PostShift = magics.s;
3809       SelNPQ = false;
3810     } else {
3811       PostShift = magics.s - 1;
3812       SelNPQ = true;
3813     }
3814 
3815     PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
3816     MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
3817     NPQFactors.push_back(
3818         DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
3819                                : APInt::getNullValue(EltBits),
3820                         dl, SVT));
3821     PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
3822     UseNPQ |= SelNPQ;
3823     return true;
3824   };
3825 
3826   SDValue N0 = N->getOperand(0);
3827   SDValue N1 = N->getOperand(1);
3828 
3829   // Collect the shifts/magic values from each element.
3830   if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
3831     return SDValue();
3832 
3833   SDValue PreShift, PostShift, MagicFactor, NPQFactor;
3834   if (VT.isVector()) {
3835     PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
3836     MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
3837     NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
3838     PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
3839   } else {
3840     PreShift = PreShifts[0];
3841     MagicFactor = MagicFactors[0];
3842     PostShift = PostShifts[0];
3843   }
3844 
3845   SDValue Q = N0;
3846   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
3847   Created.push_back(Q.getNode());
3848 
3849   // FIXME: We should support doing a MUL in a wider type.
3850   auto GetMULHU = [&](SDValue X, SDValue Y) {
3851     if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
3852                             : isOperationLegalOrCustom(ISD::MULHU, VT))
3853       return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
3854     if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
3855                             : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
3856       SDValue LoHi =
3857           DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
3858       return SDValue(LoHi.getNode(), 1);
3859     }
3860     return SDValue(); // No mulhu or equivalent
3861   };
3862 
3863   // Multiply the numerator (operand 0) by the magic value.
3864   Q = GetMULHU(Q, MagicFactor);
3865   if (!Q)
3866     return SDValue();
3867 
3868   Created.push_back(Q.getNode());
3869 
3870   if (UseNPQ) {
3871     SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
3872     Created.push_back(NPQ.getNode());
3873 
3874     // For vectors we might have a mix of non-NPQ/NPQ paths, so use
3875     // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
3876     if (VT.isVector())
3877       NPQ = GetMULHU(NPQ, NPQFactor);
3878     else
3879       NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
3880 
3881     Created.push_back(NPQ.getNode());
3882 
3883     Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
3884     Created.push_back(Q.getNode());
3885   }
3886 
3887   Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
3888   Created.push_back(Q.getNode());
3889 
3890   SDValue One = DAG.getConstant(1, dl, VT);
3891   SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
3892   return DAG.getSelect(dl, VT, IsOne, N0, Q);
3893 }
3894 
3895 bool TargetLowering::
3896 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
3897   if (!isa<ConstantSDNode>(Op.getOperand(0))) {
3898     DAG.getContext()->emitError("argument to '__builtin_return_address' must "
3899                                 "be a constant integer");
3900     return true;
3901   }
3902 
3903   return false;
3904 }
3905 
3906 //===----------------------------------------------------------------------===//
3907 // Legalization Utilities
3908 //===----------------------------------------------------------------------===//
3909 
3910 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
3911                                     SDValue LHS, SDValue RHS,
3912                                     SmallVectorImpl<SDValue> &Result,
3913                                     EVT HiLoVT, SelectionDAG &DAG,
3914                                     MulExpansionKind Kind, SDValue LL,
3915                                     SDValue LH, SDValue RL, SDValue RH) const {
3916   assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
3917          Opcode == ISD::SMUL_LOHI);
3918 
3919   bool HasMULHS = (Kind == MulExpansionKind::Always) ||
3920                   isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
3921   bool HasMULHU = (Kind == MulExpansionKind::Always) ||
3922                   isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
3923   bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3924                       isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
3925   bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
3926                       isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
3927 
3928   if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
3929     return false;
3930 
3931   unsigned OuterBitSize = VT.getScalarSizeInBits();
3932   unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
3933   unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
3934   unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
3935 
3936   // LL, LH, RL, and RH must be either all NULL or all set to a value.
3937   assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
3938          (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
3939 
3940   SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
3941   auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
3942                           bool Signed) -> bool {
3943     if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
3944       Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
3945       Hi = SDValue(Lo.getNode(), 1);
3946       return true;
3947     }
3948     if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
3949       Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
3950       Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
3951       return true;
3952     }
3953     return false;
3954   };
3955 
3956   SDValue Lo, Hi;
3957 
3958   if (!LL.getNode() && !RL.getNode() &&
3959       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
3960     LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
3961     RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
3962   }
3963 
3964   if (!LL.getNode())
3965     return false;
3966 
3967   APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
3968   if (DAG.MaskedValueIsZero(LHS, HighMask) &&
3969       DAG.MaskedValueIsZero(RHS, HighMask)) {
3970     // The inputs are both zero-extended.
3971     if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
3972       Result.push_back(Lo);
3973       Result.push_back(Hi);
3974       if (Opcode != ISD::MUL) {
3975         SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
3976         Result.push_back(Zero);
3977         Result.push_back(Zero);
3978       }
3979       return true;
3980     }
3981   }
3982 
3983   if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
3984       RHSSB > InnerBitSize) {
3985     // The input values are both sign-extended.
3986     // TODO non-MUL case?
3987     if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
3988       Result.push_back(Lo);
3989       Result.push_back(Hi);
3990       return true;
3991     }
3992   }
3993 
3994   unsigned ShiftAmount = OuterBitSize - InnerBitSize;
3995   EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
3996   if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
3997     // FIXME getShiftAmountTy does not always return a sensible result when VT
3998     // is an illegal type, and so the type may be too small to fit the shift
3999     // amount. Override it with i32. The shift will have to be legalized.
4000     ShiftAmountTy = MVT::i32;
4001   }
4002   SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
4003 
4004   if (!LH.getNode() && !RH.getNode() &&
4005       isOperationLegalOrCustom(ISD::SRL, VT) &&
4006       isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
4007     LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
4008     LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
4009     RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
4010     RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
4011   }
4012 
4013   if (!LH.getNode())
4014     return false;
4015 
4016   if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
4017     return false;
4018 
4019   Result.push_back(Lo);
4020 
4021   if (Opcode == ISD::MUL) {
4022     RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
4023     LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
4024     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
4025     Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
4026     Result.push_back(Hi);
4027     return true;
4028   }
4029 
4030   // Compute the full width result.
4031   auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
4032     Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
4033     Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4034     Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
4035     return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
4036   };
4037 
4038   SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
4039   if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
4040     return false;
4041 
4042   // This is effectively the add part of a multiply-add of half-sized operands,
4043   // so it cannot overflow.
4044   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4045 
4046   if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
4047     return false;
4048 
4049   Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
4050                      Merge(Lo, Hi));
4051 
4052   SDValue Carry = Next.getValue(1);
4053   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4054   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4055 
4056   if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
4057     return false;
4058 
4059   SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
4060   Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
4061                    Carry);
4062   Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
4063 
4064   if (Opcode == ISD::SMUL_LOHI) {
4065     SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4066                                   DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
4067     Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
4068 
4069     NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
4070                           DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
4071     Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
4072   }
4073 
4074   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4075   Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
4076   Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
4077   return true;
4078 }
4079 
4080 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
4081                                SelectionDAG &DAG, MulExpansionKind Kind,
4082                                SDValue LL, SDValue LH, SDValue RL,
4083                                SDValue RH) const {
4084   SmallVector<SDValue, 2> Result;
4085   bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
4086                            N->getOperand(0), N->getOperand(1), Result, HiLoVT,
4087                            DAG, Kind, LL, LH, RL, RH);
4088   if (Ok) {
4089     assert(Result.size() == 2);
4090     Lo = Result[0];
4091     Hi = Result[1];
4092   }
4093   return Ok;
4094 }
4095 
4096 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
4097                                SelectionDAG &DAG) const {
4098   SDValue Src = Node->getOperand(0);
4099   EVT SrcVT = Src.getValueType();
4100   EVT DstVT = Node->getValueType(0);
4101   SDLoc dl(SDValue(Node, 0));
4102 
4103   // FIXME: Only f32 to i64 conversions are supported.
4104   if (SrcVT != MVT::f32 || DstVT != MVT::i64)
4105     return false;
4106 
4107   // Expand f32 -> i64 conversion
4108   // This algorithm comes from compiler-rt's implementation of fixsfdi:
4109   // https://github.com/llvm-mirror/compiler-rt/blob/master/lib/builtins/fixsfdi.c
4110   unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
4111   EVT IntVT = SrcVT.changeTypeToInteger();
4112   EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
4113 
4114   SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
4115   SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
4116   SDValue Bias = DAG.getConstant(127, dl, IntVT);
4117   SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
4118   SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
4119   SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
4120 
4121   SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
4122 
4123   SDValue ExponentBits = DAG.getNode(
4124       ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
4125       DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
4126   SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
4127 
4128   SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
4129                              DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
4130                              DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
4131   Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
4132 
4133   SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
4134                           DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
4135                           DAG.getConstant(0x00800000, dl, IntVT));
4136 
4137   R = DAG.getZExtOrTrunc(R, dl, DstVT);
4138 
4139   R = DAG.getSelectCC(
4140       dl, Exponent, ExponentLoBit,
4141       DAG.getNode(ISD::SHL, dl, DstVT, R,
4142                   DAG.getZExtOrTrunc(
4143                       DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
4144                       dl, IntShVT)),
4145       DAG.getNode(ISD::SRL, dl, DstVT, R,
4146                   DAG.getZExtOrTrunc(
4147                       DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
4148                       dl, IntShVT)),
4149       ISD::SETGT);
4150 
4151   SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
4152                             DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
4153 
4154   Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
4155                            DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
4156   return true;
4157 }
4158 
4159 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
4160                                       SelectionDAG &DAG) const {
4161   SDLoc dl(SDValue(Node, 0));
4162   SDValue Src = Node->getOperand(0);
4163 
4164   EVT SrcVT = Src.getValueType();
4165   EVT DstVT = Node->getValueType(0);
4166   EVT SetCCVT =
4167       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4168 
4169   // Only expand vector types if we have the appropriate vector bit operations.
4170   if (DstVT.isVector() && (!isOperationLegalOrCustom(ISD::FP_TO_SINT, DstVT) ||
4171                            !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
4172     return false;
4173 
4174   // If the maximum float value is smaller then the signed integer range,
4175   // the destination signmask can't be represented by the float, so we can
4176   // just use FP_TO_SINT directly.
4177   const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
4178   APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
4179   APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
4180   if (APFloat::opOverflow &
4181       APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
4182     Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4183     return true;
4184   }
4185 
4186   // Expand based on maximum range of FP_TO_SINT:
4187   // True = fp_to_sint(Src)
4188   // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
4189   // Result = select (Src < 0x8000000000000000), True, False
4190   SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
4191   SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
4192 
4193   SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
4194   // TODO: Should any fast-math-flags be set for the FSUB?
4195   SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
4196                               DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
4197   False = DAG.getNode(ISD::XOR, dl, DstVT, False,
4198                       DAG.getConstant(SignMask, dl, DstVT));
4199   Result = DAG.getSelect(dl, DstVT, Sel, True, False);
4200   return true;
4201 }
4202 
4203 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
4204                                       SelectionDAG &DAG) const {
4205   SDValue Src = Node->getOperand(0);
4206   EVT SrcVT = Src.getValueType();
4207   EVT DstVT = Node->getValueType(0);
4208 
4209   if (SrcVT.getScalarType() != MVT::i64)
4210     return false;
4211 
4212   SDLoc dl(SDValue(Node, 0));
4213   EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
4214 
4215   if (DstVT.getScalarType() == MVT::f32) {
4216     // Only expand vector types if we have the appropriate vector bit
4217     // operations.
4218     if (SrcVT.isVector() &&
4219         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4220          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4221          !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
4222          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4223          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4224       return false;
4225 
4226     // For unsigned conversions, convert them to signed conversions using the
4227     // algorithm from the x86_64 __floatundidf in compiler_rt.
4228     SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
4229 
4230     SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
4231     SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
4232     SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
4233     SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
4234     SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
4235 
4236     SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
4237     SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
4238 
4239     // TODO: This really should be implemented using a branch rather than a
4240     // select.  We happen to get lucky and machinesink does the right
4241     // thing most of the time.  This would be a good candidate for a
4242     // pseudo-op, or, even better, for whole-function isel.
4243     EVT SetCCVT =
4244         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
4245 
4246     SDValue SignBitTest = DAG.getSetCC(
4247         dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
4248     Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
4249     return true;
4250   }
4251 
4252   if (DstVT.getScalarType() == MVT::f64) {
4253     // Only expand vector types if we have the appropriate vector bit
4254     // operations.
4255     if (SrcVT.isVector() &&
4256         (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
4257          !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
4258          !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
4259          !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
4260          !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
4261       return false;
4262 
4263     // Implementation of unsigned i64 to f64 following the algorithm in
4264     // __floatundidf in compiler_rt. This implementation has the advantage
4265     // of performing rounding correctly, both in the default rounding mode
4266     // and in all alternate rounding modes.
4267     SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
4268     SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
4269         BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
4270     SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
4271     SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
4272     SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
4273 
4274     SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
4275     SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
4276     SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
4277     SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
4278     SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
4279     SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
4280     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
4281     Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
4282     return true;
4283   }
4284 
4285   return false;
4286 }
4287 
4288 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
4289                                               SelectionDAG &DAG) const {
4290   SDLoc dl(Node);
4291   unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
4292     ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
4293   EVT VT = Node->getValueType(0);
4294   if (isOperationLegalOrCustom(NewOp, VT)) {
4295     SDValue Quiet0 = Node->getOperand(0);
4296     SDValue Quiet1 = Node->getOperand(1);
4297 
4298     if (!Node->getFlags().hasNoNaNs()) {
4299       // Insert canonicalizes if it's possible we need to quiet to get correct
4300       // sNaN behavior.
4301       if (!DAG.isKnownNeverSNaN(Quiet0)) {
4302         Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
4303                              Node->getFlags());
4304       }
4305       if (!DAG.isKnownNeverSNaN(Quiet1)) {
4306         Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
4307                              Node->getFlags());
4308       }
4309     }
4310 
4311     return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
4312   }
4313 
4314   return SDValue();
4315 }
4316 
4317 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
4318                                  SelectionDAG &DAG) const {
4319   SDLoc dl(Node);
4320   EVT VT = Node->getValueType(0);
4321   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4322   SDValue Op = Node->getOperand(0);
4323   unsigned Len = VT.getScalarSizeInBits();
4324   assert(VT.isInteger() && "CTPOP not implemented for this type.");
4325 
4326   // TODO: Add support for irregular type lengths.
4327   if (!(Len <= 128 && Len % 8 == 0))
4328     return false;
4329 
4330   // Only expand vector types if we have the appropriate vector bit operations.
4331   if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
4332                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4333                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4334                         (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
4335                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
4336     return false;
4337 
4338   // This is the "best" algorithm from
4339   // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
4340   SDValue Mask55 =
4341       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
4342   SDValue Mask33 =
4343       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
4344   SDValue Mask0F =
4345       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
4346   SDValue Mask01 =
4347       DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
4348 
4349   // v = v - ((v >> 1) & 0x55555555...)
4350   Op = DAG.getNode(ISD::SUB, dl, VT, Op,
4351                    DAG.getNode(ISD::AND, dl, VT,
4352                                DAG.getNode(ISD::SRL, dl, VT, Op,
4353                                            DAG.getConstant(1, dl, ShVT)),
4354                                Mask55));
4355   // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
4356   Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
4357                    DAG.getNode(ISD::AND, dl, VT,
4358                                DAG.getNode(ISD::SRL, dl, VT, Op,
4359                                            DAG.getConstant(2, dl, ShVT)),
4360                                Mask33));
4361   // v = (v + (v >> 4)) & 0x0F0F0F0F...
4362   Op = DAG.getNode(ISD::AND, dl, VT,
4363                    DAG.getNode(ISD::ADD, dl, VT, Op,
4364                                DAG.getNode(ISD::SRL, dl, VT, Op,
4365                                            DAG.getConstant(4, dl, ShVT))),
4366                    Mask0F);
4367   // v = (v * 0x01010101...) >> (Len - 8)
4368   if (Len > 8)
4369     Op =
4370         DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
4371                     DAG.getConstant(Len - 8, dl, ShVT));
4372 
4373   Result = Op;
4374   return true;
4375 }
4376 
4377 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
4378                                 SelectionDAG &DAG) const {
4379   SDLoc dl(Node);
4380   EVT VT = Node->getValueType(0);
4381   EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4382   SDValue Op = Node->getOperand(0);
4383   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4384 
4385   // If the non-ZERO_UNDEF version is supported we can use that instead.
4386   if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
4387       isOperationLegalOrCustom(ISD::CTLZ, VT)) {
4388     Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
4389     return true;
4390   }
4391 
4392   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4393   if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
4394     EVT SetCCVT =
4395         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4396     SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
4397     SDValue Zero = DAG.getConstant(0, dl, VT);
4398     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4399     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4400                          DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
4401     return true;
4402   }
4403 
4404   // Only expand vector types if we have the appropriate vector bit operations.
4405   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4406                         !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
4407                         !isOperationLegalOrCustom(ISD::SRL, VT) ||
4408                         !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
4409     return false;
4410 
4411   // for now, we do this:
4412   // x = x | (x >> 1);
4413   // x = x | (x >> 2);
4414   // ...
4415   // x = x | (x >>16);
4416   // x = x | (x >>32); // for 64-bit input
4417   // return popcount(~x);
4418   //
4419   // Ref: "Hacker's Delight" by Henry Warren
4420   for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
4421     SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
4422     Op = DAG.getNode(ISD::OR, dl, VT, Op,
4423                      DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
4424   }
4425   Op = DAG.getNOT(dl, Op, VT);
4426   Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
4427   return true;
4428 }
4429 
4430 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
4431                                 SelectionDAG &DAG) const {
4432   SDLoc dl(Node);
4433   EVT VT = Node->getValueType(0);
4434   SDValue Op = Node->getOperand(0);
4435   unsigned NumBitsPerElt = VT.getScalarSizeInBits();
4436 
4437   // If the non-ZERO_UNDEF version is supported we can use that instead.
4438   if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
4439       isOperationLegalOrCustom(ISD::CTTZ, VT)) {
4440     Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
4441     return true;
4442   }
4443 
4444   // If the ZERO_UNDEF version is supported use that and handle the zero case.
4445   if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
4446     EVT SetCCVT =
4447         getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
4448     SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
4449     SDValue Zero = DAG.getConstant(0, dl, VT);
4450     SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
4451     Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
4452                          DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
4453     return true;
4454   }
4455 
4456   // Only expand vector types if we have the appropriate vector bit operations.
4457   if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
4458                         (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
4459                          !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
4460                         !isOperationLegalOrCustom(ISD::SUB, VT) ||
4461                         !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
4462                         !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
4463     return false;
4464 
4465   // for now, we use: { return popcount(~x & (x - 1)); }
4466   // unless the target has ctlz but not ctpop, in which case we use:
4467   // { return 32 - nlz(~x & (x-1)); }
4468   // Ref: "Hacker's Delight" by Henry Warren
4469   SDValue Tmp = DAG.getNode(
4470       ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
4471       DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
4472 
4473   // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
4474   if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
4475     Result =
4476         DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
4477                     DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
4478     return true;
4479   }
4480 
4481   Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
4482   return true;
4483 }
4484 
4485 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
4486                                             SelectionDAG &DAG) const {
4487   SDLoc SL(LD);
4488   SDValue Chain = LD->getChain();
4489   SDValue BasePTR = LD->getBasePtr();
4490   EVT SrcVT = LD->getMemoryVT();
4491   ISD::LoadExtType ExtType = LD->getExtensionType();
4492 
4493   unsigned NumElem = SrcVT.getVectorNumElements();
4494 
4495   EVT SrcEltVT = SrcVT.getScalarType();
4496   EVT DstEltVT = LD->getValueType(0).getScalarType();
4497 
4498   unsigned Stride = SrcEltVT.getSizeInBits() / 8;
4499   assert(SrcEltVT.isByteSized());
4500 
4501   SmallVector<SDValue, 8> Vals;
4502   SmallVector<SDValue, 8> LoadChains;
4503 
4504   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4505     SDValue ScalarLoad =
4506         DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
4507                        LD->getPointerInfo().getWithOffset(Idx * Stride),
4508                        SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
4509                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4510 
4511     BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
4512 
4513     Vals.push_back(ScalarLoad.getValue(0));
4514     LoadChains.push_back(ScalarLoad.getValue(1));
4515   }
4516 
4517   SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
4518   SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
4519 
4520   return DAG.getMergeValues({ Value, NewChain }, SL);
4521 }
4522 
4523 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
4524                                              SelectionDAG &DAG) const {
4525   SDLoc SL(ST);
4526 
4527   SDValue Chain = ST->getChain();
4528   SDValue BasePtr = ST->getBasePtr();
4529   SDValue Value = ST->getValue();
4530   EVT StVT = ST->getMemoryVT();
4531 
4532   // The type of the data we want to save
4533   EVT RegVT = Value.getValueType();
4534   EVT RegSclVT = RegVT.getScalarType();
4535 
4536   // The type of data as saved in memory.
4537   EVT MemSclVT = StVT.getScalarType();
4538 
4539   EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
4540   unsigned NumElem = StVT.getVectorNumElements();
4541 
4542   // A vector must always be stored in memory as-is, i.e. without any padding
4543   // between the elements, since various code depend on it, e.g. in the
4544   // handling of a bitcast of a vector type to int, which may be done with a
4545   // vector store followed by an integer load. A vector that does not have
4546   // elements that are byte-sized must therefore be stored as an integer
4547   // built out of the extracted vector elements.
4548   if (!MemSclVT.isByteSized()) {
4549     unsigned NumBits = StVT.getSizeInBits();
4550     EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
4551 
4552     SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
4553 
4554     for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4555       SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4556                                 DAG.getConstant(Idx, SL, IdxVT));
4557       SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
4558       SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
4559       unsigned ShiftIntoIdx =
4560           (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
4561       SDValue ShiftAmount =
4562           DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
4563       SDValue ShiftedElt =
4564           DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
4565       CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
4566     }
4567 
4568     return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
4569                         ST->getAlignment(), ST->getMemOperand()->getFlags(),
4570                         ST->getAAInfo());
4571   }
4572 
4573   // Store Stride in bytes
4574   unsigned Stride = MemSclVT.getSizeInBits() / 8;
4575   assert (Stride && "Zero stride!");
4576   // Extract each of the elements from the original vector and save them into
4577   // memory individually.
4578   SmallVector<SDValue, 8> Stores;
4579   for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
4580     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
4581                               DAG.getConstant(Idx, SL, IdxVT));
4582 
4583     SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
4584 
4585     // This scalar TruncStore may be illegal, but we legalize it later.
4586     SDValue Store = DAG.getTruncStore(
4587         Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
4588         MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
4589         ST->getMemOperand()->getFlags(), ST->getAAInfo());
4590 
4591     Stores.push_back(Store);
4592   }
4593 
4594   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
4595 }
4596 
4597 std::pair<SDValue, SDValue>
4598 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
4599   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
4600          "unaligned indexed loads not implemented!");
4601   SDValue Chain = LD->getChain();
4602   SDValue Ptr = LD->getBasePtr();
4603   EVT VT = LD->getValueType(0);
4604   EVT LoadedVT = LD->getMemoryVT();
4605   SDLoc dl(LD);
4606   auto &MF = DAG.getMachineFunction();
4607 
4608   if (VT.isFloatingPoint() || VT.isVector()) {
4609     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
4610     if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
4611       if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
4612           LoadedVT.isVector()) {
4613         // Scalarize the load and let the individual components be handled.
4614         SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
4615         if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
4616           return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
4617         return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
4618       }
4619 
4620       // Expand to a (misaligned) integer load of the same size,
4621       // then bitconvert to floating point or vector.
4622       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
4623                                     LD->getMemOperand());
4624       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
4625       if (LoadedVT != VT)
4626         Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
4627                              ISD::ANY_EXTEND, dl, VT, Result);
4628 
4629       return std::make_pair(Result, newLoad.getValue(1));
4630     }
4631 
4632     // Copy the value to a (aligned) stack slot using (unaligned) integer
4633     // loads and stores, then do a (aligned) load from the stack slot.
4634     MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
4635     unsigned LoadedBytes = LoadedVT.getStoreSize();
4636     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4637     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
4638 
4639     // Make sure the stack slot is also aligned for the register type.
4640     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
4641     auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
4642     SmallVector<SDValue, 8> Stores;
4643     SDValue StackPtr = StackBase;
4644     unsigned Offset = 0;
4645 
4646     EVT PtrVT = Ptr.getValueType();
4647     EVT StackPtrVT = StackPtr.getValueType();
4648 
4649     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4650     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4651 
4652     // Do all but one copies using the full register width.
4653     for (unsigned i = 1; i < NumRegs; i++) {
4654       // Load one integer register's worth from the original location.
4655       SDValue Load = DAG.getLoad(
4656           RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
4657           MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
4658           LD->getAAInfo());
4659       // Follow the load with a store to the stack slot.  Remember the store.
4660       Stores.push_back(DAG.getStore(
4661           Load.getValue(1), dl, Load, StackPtr,
4662           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
4663       // Increment the pointers.
4664       Offset += RegBytes;
4665 
4666       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4667       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4668     }
4669 
4670     // The last copy may be partial.  Do an extending load.
4671     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4672                                   8 * (LoadedBytes - Offset));
4673     SDValue Load =
4674         DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
4675                        LD->getPointerInfo().getWithOffset(Offset), MemVT,
4676                        MinAlign(LD->getAlignment(), Offset),
4677                        LD->getMemOperand()->getFlags(), LD->getAAInfo());
4678     // Follow the load with a store to the stack slot.  Remember the store.
4679     // On big-endian machines this requires a truncating store to ensure
4680     // that the bits end up in the right place.
4681     Stores.push_back(DAG.getTruncStore(
4682         Load.getValue(1), dl, Load, StackPtr,
4683         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
4684 
4685     // The order of the stores doesn't matter - say it with a TokenFactor.
4686     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4687 
4688     // Finally, perform the original load only redirected to the stack slot.
4689     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
4690                           MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
4691                           LoadedVT);
4692 
4693     // Callers expect a MERGE_VALUES node.
4694     return std::make_pair(Load, TF);
4695   }
4696 
4697   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
4698          "Unaligned load of unsupported type.");
4699 
4700   // Compute the new VT that is half the size of the old one.  This is an
4701   // integer MVT.
4702   unsigned NumBits = LoadedVT.getSizeInBits();
4703   EVT NewLoadedVT;
4704   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
4705   NumBits >>= 1;
4706 
4707   unsigned Alignment = LD->getAlignment();
4708   unsigned IncrementSize = NumBits / 8;
4709   ISD::LoadExtType HiExtType = LD->getExtensionType();
4710 
4711   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
4712   if (HiExtType == ISD::NON_EXTLOAD)
4713     HiExtType = ISD::ZEXTLOAD;
4714 
4715   // Load the value in two parts
4716   SDValue Lo, Hi;
4717   if (DAG.getDataLayout().isLittleEndian()) {
4718     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4719                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4720                         LD->getAAInfo());
4721 
4722     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4723     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
4724                         LD->getPointerInfo().getWithOffset(IncrementSize),
4725                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4726                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4727   } else {
4728     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
4729                         NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
4730                         LD->getAAInfo());
4731 
4732     Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4733     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
4734                         LD->getPointerInfo().getWithOffset(IncrementSize),
4735                         NewLoadedVT, MinAlign(Alignment, IncrementSize),
4736                         LD->getMemOperand()->getFlags(), LD->getAAInfo());
4737   }
4738 
4739   // aggregate the two parts
4740   SDValue ShiftAmount =
4741       DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
4742                                                     DAG.getDataLayout()));
4743   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
4744   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
4745 
4746   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
4747                              Hi.getValue(1));
4748 
4749   return std::make_pair(Result, TF);
4750 }
4751 
4752 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
4753                                              SelectionDAG &DAG) const {
4754   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
4755          "unaligned indexed stores not implemented!");
4756   SDValue Chain = ST->getChain();
4757   SDValue Ptr = ST->getBasePtr();
4758   SDValue Val = ST->getValue();
4759   EVT VT = Val.getValueType();
4760   int Alignment = ST->getAlignment();
4761   auto &MF = DAG.getMachineFunction();
4762   EVT MemVT = ST->getMemoryVT();
4763 
4764   SDLoc dl(ST);
4765   if (MemVT.isFloatingPoint() || MemVT.isVector()) {
4766     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
4767     if (isTypeLegal(intVT)) {
4768       if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
4769           MemVT.isVector()) {
4770         // Scalarize the store and let the individual components be handled.
4771         SDValue Result = scalarizeVectorStore(ST, DAG);
4772 
4773         return Result;
4774       }
4775       // Expand to a bitconvert of the value to the integer type of the
4776       // same size, then a (misaligned) int store.
4777       // FIXME: Does not handle truncating floating point stores!
4778       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
4779       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
4780                             Alignment, ST->getMemOperand()->getFlags());
4781       return Result;
4782     }
4783     // Do a (aligned) store to a stack slot, then copy from the stack slot
4784     // to the final destination using (unaligned) integer loads and stores.
4785     EVT StoredVT = ST->getMemoryVT();
4786     MVT RegVT =
4787       getRegisterType(*DAG.getContext(),
4788                       EVT::getIntegerVT(*DAG.getContext(),
4789                                         StoredVT.getSizeInBits()));
4790     EVT PtrVT = Ptr.getValueType();
4791     unsigned StoredBytes = StoredVT.getStoreSize();
4792     unsigned RegBytes = RegVT.getSizeInBits() / 8;
4793     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
4794 
4795     // Make sure the stack slot is also aligned for the register type.
4796     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
4797     auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
4798 
4799     // Perform the original store, only redirected to the stack slot.
4800     SDValue Store = DAG.getTruncStore(
4801         Chain, dl, Val, StackPtr,
4802         MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoredVT);
4803 
4804     EVT StackPtrVT = StackPtr.getValueType();
4805 
4806     SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
4807     SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
4808     SmallVector<SDValue, 8> Stores;
4809     unsigned Offset = 0;
4810 
4811     // Do all but one copies using the full register width.
4812     for (unsigned i = 1; i < NumRegs; i++) {
4813       // Load one integer register's worth from the stack slot.
4814       SDValue Load = DAG.getLoad(
4815           RegVT, dl, Store, StackPtr,
4816           MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
4817       // Store it to the final location.  Remember the store.
4818       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
4819                                     ST->getPointerInfo().getWithOffset(Offset),
4820                                     MinAlign(ST->getAlignment(), Offset),
4821                                     ST->getMemOperand()->getFlags()));
4822       // Increment the pointers.
4823       Offset += RegBytes;
4824       StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
4825       Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
4826     }
4827 
4828     // The last store may be partial.  Do a truncating store.  On big-endian
4829     // machines this requires an extending load from the stack slot to ensure
4830     // that the bits are in the right place.
4831     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
4832                                   8 * (StoredBytes - Offset));
4833 
4834     // Load from the stack slot.
4835     SDValue Load = DAG.getExtLoad(
4836         ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
4837         MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT);
4838 
4839     Stores.push_back(
4840         DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
4841                           ST->getPointerInfo().getWithOffset(Offset), MemVT,
4842                           MinAlign(ST->getAlignment(), Offset),
4843                           ST->getMemOperand()->getFlags(), ST->getAAInfo()));
4844     // The order of the stores doesn't matter - say it with a TokenFactor.
4845     SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
4846     return Result;
4847   }
4848 
4849   assert(ST->getMemoryVT().isInteger() &&
4850          !ST->getMemoryVT().isVector() &&
4851          "Unaligned store of unknown type.");
4852   // Get the half-size VT
4853   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
4854   int NumBits = NewStoredVT.getSizeInBits();
4855   int IncrementSize = NumBits / 8;
4856 
4857   // Divide the stored value in two parts.
4858   SDValue ShiftAmount =
4859       DAG.getConstant(NumBits, dl, getShiftAmountTy(Val.getValueType(),
4860                                                     DAG.getDataLayout()));
4861   SDValue Lo = Val;
4862   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
4863 
4864   // Store the two parts
4865   SDValue Store1, Store2;
4866   Store1 = DAG.getTruncStore(Chain, dl,
4867                              DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
4868                              Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
4869                              ST->getMemOperand()->getFlags());
4870 
4871   Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
4872   Alignment = MinAlign(Alignment, IncrementSize);
4873   Store2 = DAG.getTruncStore(
4874       Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
4875       ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
4876       ST->getMemOperand()->getFlags(), ST->getAAInfo());
4877 
4878   SDValue Result =
4879     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
4880   return Result;
4881 }
4882 
4883 SDValue
4884 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
4885                                        const SDLoc &DL, EVT DataVT,
4886                                        SelectionDAG &DAG,
4887                                        bool IsCompressedMemory) const {
4888   SDValue Increment;
4889   EVT AddrVT = Addr.getValueType();
4890   EVT MaskVT = Mask.getValueType();
4891   assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
4892          "Incompatible types of Data and Mask");
4893   if (IsCompressedMemory) {
4894     // Incrementing the pointer according to number of '1's in the mask.
4895     EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
4896     SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
4897     if (MaskIntVT.getSizeInBits() < 32) {
4898       MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
4899       MaskIntVT = MVT::i32;
4900     }
4901 
4902     // Count '1's with POPCNT.
4903     Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
4904     Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
4905     // Scale is an element size in bytes.
4906     SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
4907                                     AddrVT);
4908     Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
4909   } else
4910     Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
4911 
4912   return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
4913 }
4914 
4915 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
4916                                        SDValue Idx,
4917                                        EVT VecVT,
4918                                        const SDLoc &dl) {
4919   if (isa<ConstantSDNode>(Idx))
4920     return Idx;
4921 
4922   EVT IdxVT = Idx.getValueType();
4923   unsigned NElts = VecVT.getVectorNumElements();
4924   if (isPowerOf2_32(NElts)) {
4925     APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
4926                                      Log2_32(NElts));
4927     return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
4928                        DAG.getConstant(Imm, dl, IdxVT));
4929   }
4930 
4931   return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
4932                      DAG.getConstant(NElts - 1, dl, IdxVT));
4933 }
4934 
4935 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
4936                                                 SDValue VecPtr, EVT VecVT,
4937                                                 SDValue Index) const {
4938   SDLoc dl(Index);
4939   // Make sure the index type is big enough to compute in.
4940   Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
4941 
4942   EVT EltVT = VecVT.getVectorElementType();
4943 
4944   // Calculate the element offset and add it to the pointer.
4945   unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
4946   assert(EltSize * 8 == EltVT.getSizeInBits() &&
4947          "Converting bits to bytes lost precision");
4948 
4949   Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
4950 
4951   EVT IdxVT = Index.getValueType();
4952 
4953   Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
4954                       DAG.getConstant(EltSize, dl, IdxVT));
4955   return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
4956 }
4957 
4958 //===----------------------------------------------------------------------===//
4959 // Implementation of Emulated TLS Model
4960 //===----------------------------------------------------------------------===//
4961 
4962 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
4963                                                 SelectionDAG &DAG) const {
4964   // Access to address of TLS varialbe xyz is lowered to a function call:
4965   //   __emutls_get_address( address of global variable named "__emutls_v.xyz" )
4966   EVT PtrVT = getPointerTy(DAG.getDataLayout());
4967   PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
4968   SDLoc dl(GA);
4969 
4970   ArgListTy Args;
4971   ArgListEntry Entry;
4972   std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
4973   Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
4974   StringRef EmuTlsVarName(NameString);
4975   GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
4976   assert(EmuTlsVar && "Cannot find EmuTlsVar ");
4977   Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
4978   Entry.Ty = VoidPtrType;
4979   Args.push_back(Entry);
4980 
4981   SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
4982 
4983   TargetLowering::CallLoweringInfo CLI(DAG);
4984   CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
4985   CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
4986   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
4987 
4988   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
4989   // At last for X86 targets, maybe good for other targets too?
4990   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
4991   MFI.setAdjustsStack(true);  // Is this only for X86 target?
4992   MFI.setHasCalls(true);
4993 
4994   assert((GA->getOffset() == 0) &&
4995          "Emulated TLS must have zero offset in GlobalAddressSDNode");
4996   return CallResult.first;
4997 }
4998 
4999 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
5000                                                 SelectionDAG &DAG) const {
5001   assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
5002   if (!isCtlzFast())
5003     return SDValue();
5004   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
5005   SDLoc dl(Op);
5006   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
5007     if (C->isNullValue() && CC == ISD::SETEQ) {
5008       EVT VT = Op.getOperand(0).getValueType();
5009       SDValue Zext = Op.getOperand(0);
5010       if (VT.bitsLT(MVT::i32)) {
5011         VT = MVT::i32;
5012         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
5013       }
5014       unsigned Log2b = Log2_32(VT.getSizeInBits());
5015       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
5016       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
5017                                 DAG.getConstant(Log2b, dl, MVT::i32));
5018       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
5019     }
5020   }
5021   return SDValue();
5022 }
5023 
5024 SDValue TargetLowering::getExpandedSaturationAdditionSubtraction(
5025     SDNode *Node, SelectionDAG &DAG) const {
5026   unsigned Opcode = Node->getOpcode();
5027   unsigned OverflowOp;
5028   switch (Opcode) {
5029   case ISD::SADDSAT:
5030     OverflowOp = ISD::SADDO;
5031     break;
5032   case ISD::UADDSAT:
5033     OverflowOp = ISD::UADDO;
5034     break;
5035   case ISD::SSUBSAT:
5036     OverflowOp = ISD::SSUBO;
5037     break;
5038   case ISD::USUBSAT:
5039     OverflowOp = ISD::USUBO;
5040     break;
5041   default:
5042     llvm_unreachable("Expected method to receive signed or unsigned saturation "
5043                      "addition or subtraction node.");
5044   }
5045   assert(Node->getNumOperands() == 2 && "Expected node to have 2 operands.");
5046 
5047   SDLoc dl(Node);
5048   SDValue LHS = Node->getOperand(0);
5049   SDValue RHS = Node->getOperand(1);
5050   assert(LHS.getValueType().isScalarInteger() &&
5051          "Expected operands to be integers. Vector of int arguments should "
5052          "already be unrolled.");
5053   assert(RHS.getValueType().isScalarInteger() &&
5054          "Expected operands to be integers. Vector of int arguments should "
5055          "already be unrolled.");
5056   assert(LHS.getValueType() == RHS.getValueType() &&
5057          "Expected both operands to be the same type");
5058 
5059   unsigned BitWidth = LHS.getValueSizeInBits();
5060   EVT ResultType = LHS.getValueType();
5061   EVT BoolVT =
5062       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ResultType);
5063   SDValue Result =
5064       DAG.getNode(OverflowOp, dl, DAG.getVTList(ResultType, BoolVT), LHS, RHS);
5065   SDValue SumDiff = Result.getValue(0);
5066   SDValue Overflow = Result.getValue(1);
5067   SDValue Zero = DAG.getConstant(0, dl, ResultType);
5068 
5069   if (Opcode == ISD::UADDSAT) {
5070     // Just need to check overflow for SatMax.
5071     APInt MaxVal = APInt::getMaxValue(BitWidth);
5072     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5073     return DAG.getSelect(dl, ResultType, Overflow, SatMax, SumDiff);
5074   } else if (Opcode == ISD::USUBSAT) {
5075     // Just need to check overflow for SatMin.
5076     APInt MinVal = APInt::getMinValue(BitWidth);
5077     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5078     return DAG.getSelect(dl, ResultType, Overflow, SatMin, SumDiff);
5079   } else {
5080     // SatMax -> Overflow && SumDiff < 0
5081     // SatMin -> Overflow && SumDiff >= 0
5082     APInt MinVal = APInt::getSignedMinValue(BitWidth);
5083     APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
5084     SDValue SatMin = DAG.getConstant(MinVal, dl, ResultType);
5085     SDValue SatMax = DAG.getConstant(MaxVal, dl, ResultType);
5086     SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
5087     Result = DAG.getSelect(dl, ResultType, SumNeg, SatMax, SatMin);
5088     return DAG.getSelect(dl, ResultType, Overflow, Result, SumDiff);
5089   }
5090 }
5091